WorldWideScience

Sample records for reliable accelerator components

  1. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  2. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Burgazzi, Luciano [ENEA-Centro Ricerche ' Ezio Clementel' , Advanced Physics Technology Division, Via Martiri di Monte Sole, 4, 40129 Bologna (Italy)]. E-mail: burgazzi@bologna.enea.it; Pierini, Paolo [INFN-Sezione di Milano, Laboratorio Acceleratori e Superconduttivita Applicata, Via Fratelli Cervi 201, I-20090 Segrate (MI) (Italy)

    2007-04-15

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well.

  3. Reliability studies of a high-power proton accelerator for accelerator-driven system applications for nuclear waste transmutation

    International Nuclear Information System (INIS)

    Burgazzi, Luciano; Pierini, Paolo

    2007-01-01

    The main effort of the present study is to analyze the availability and reliability of a high-performance linac (linear accelerator) conceived for Accelerator-Driven Systems (ADS) purpose and to suggest recommendations, in order both to meet the high operability goals and to satisfy the safety requirements dictated by the reactor system. Reliability Block Diagrams (RBD) approach has been considered for system modelling, according to the present level of definition of the design: component failure modes are assessed in terms of Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR), reliability and availability figures are derived, applying the current reliability algorithms. The lack of a well-established component database has been pointed out as the main issue related to the accelerator reliability assessment. The results, affected by the conservative character of the study, show a high margin for the improvement in terms of accelerator reliability and availability figures prediction. The paper outlines the viable path towards the accelerator reliability and availability enhancement process and delineates the most proper strategies. The improvement in the reliability characteristics along this path is shown as well

  4. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  5. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  6. Modeling high-Power Accelerators Reliability-SNS LINAC (SNS-ORNL); MAX LINAC (MYRRHA)

    International Nuclear Information System (INIS)

    Pitigoi, A. E.; Fernandez Ramos, P.

    2013-01-01

    Improving reliability has recently become a very important objective in the field of particle accelerators. The particle accelerators in operation are constantly undergoing modifications, and improvements are implemented using new technologies, more reliable components or redundant schemes (to obtain more reliability, strength, more power, etc.) A reliability model of SNS (Spallation Neutron Source) LINAC has been developed within MAX project and analysis of the accelerator systems reliability has been performed within the MAX project, using the Risk Spectrum reliability analysis software. The analysis results have been evaluated by comparison with the SNS operational data. Results and conclusions are presented in this paper, oriented to identify design weaknesses and provide recommendations for improving reliability of MYRRHA linear accelerator. The SNS reliability model developed for the MAX preliminary design phase indicates possible avenues for further investigation that could be needed to improve the reliability of the high-power accelerators, in view of the future reliability targets of ADS accelerators.

  7. First Assessment of Reliability Data for the LHC Accelerator and Detector Cryogenic System Components

    CERN Document Server

    Perinic, G; Alonso-Canella, I; Balle, C; Barth, K; Bel, J F; Benda, V; Bremer, J; Brodzinski, K; Casas-Cubillos, J; Cuccuru, G; Cugnet, M; Delikaris, D; Delruelle, N; Dufay-Chanat, L; Fabre, C; Ferlin, G; Fluder, C; Gavard, E; Girardot, R; Haug, F; Herblin, L; Junker, S; Klabi , T; Knoops, S; Lamboy, J P; Legrand, D; Metselaar, J; Park, A; Perin, A; Pezzetti, M; Penacoba-Fernandez, G; Pirotte, O; Rogez, E; Suraci, A; Stewart, L; Tavian, L J; Tovar-Gonzalez, A; Van Weelderen, R; Vauthier, N; Vullierme, B; Wagner, U

    2012-01-01

    The Large Hadron Collider (LHC) cryogenic system comprises eight independent refrigeration and distribution systems that supply the eight 3.3 km long accelerator sectors with cryogenic refrigeration power as well as four refrigeration systems for the needs of the detectors ATLAS and CMS. In order to ensure the highest possible reliability of the installations, it is important to apply a reliability centred approach for the maintenance. Even though large scale cryogenic refrigeration exists since the mid 20th century, very little third party reliability data is available today. CERN has started to collect data with its computer aided maintenance management system (CAMMS) in 2009, when the accelerator has gone into normal operation. This paper presents the reliability observations from the operation and the maintenance side, as well as statistical data collected by the means of the CAMMS system.

  8. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  9. Reliability and availability of high power proton accelerators

    International Nuclear Information System (INIS)

    Cho, Y.

    1999-01-01

    It has become increasingly important to address the issues of operational reliability and availability of an accelerator complex early in its design and construction phases. In this context, reliability addresses the mean time between failures and the failure rate, and availability takes into account the failure rate as well as the length of time required to repair the failure. Methods to reduce failure rates include reduction of the number of components and over-design of certain key components. Reduction of the on-line repair time can be achieved by judiciously designed hardware, quick-service spare systems and redundancy. In addition, provisions for easy inspection and maintainability are important for both reduction of the failure rate as well as reduction of the time to repair. The radiation safety exposure principle of ALARA (as low as reasonably achievable) is easier to comply with when easy inspection capability and easy maintainability are incorporated into the design. Discussions of past experience in improving accelerator availability, some recent developments, and potential R and D items are presented. (author)

  10. CERN Technical training 2008 - Learning for the LHC: Special Workshop demonstrating reliability with accelerated testing

    CERN Multimedia

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrates that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the electro...

  11. CERN Technical training 2008 - Learning for the LHC: Special Workshop demonstrating reliability with accelerated testing

    CERN Multimedia

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrate that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of the utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the elec...

  12. CERN Technical training 2008 - Learning for the LHC: Special workshop demonstrating reliability with accelerated testing

    CERN Multimedia

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrate that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of the utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the elec...

  13. Accelerated reliability demonstration under competing failure modes

    International Nuclear Information System (INIS)

    Luo, Wei; Zhang, Chun-hua; Chen, Xun; Tan, Yuan-yuan

    2015-01-01

    The conventional reliability demonstration tests are difficult to apply to products with competing failure modes due to the complexity of the lifetime models. This paper develops a testing methodology based on the reliability target allocation for reliability demonstration under competing failure modes at accelerated conditions. The specified reliability at mission time and the risk caused by sampling of the reliability target for products are allocated for each failure mode. The risk caused by degradation measurement fitting of the target for a product involving performance degradation is equally allocated to each degradation failure mode. According to the allocated targets, the accelerated life reliability demonstration test (ALRDT) plans for the failure modes are designed. The accelerated degradation reliability demonstration test plans and the associated ALRDT plans for the degradation failure modes are also designed. Next, the test plan and the decision rules for the products are designed. Additionally, the effects of the discreteness of sample size and accepted number of failures for failure modes on the actual risks caused by sampling for the products are investigated. - Highlights: • Accelerated reliability demonstration under competing failure modes is studied. • The method is based on the reliability target allocation involving the risks. • The test plan for the products is based on the plans for all the failure modes. • Both failure mode and degradation failure modes are considered. • The error of actual risks caused by sampling for the products is small enough

  14. Component reliability analysis for development of component reliability DB of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.; Kim, S. H.

    2002-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA and Risk Informed Application. We have performed a project to develop the component reliability DB and calculate the component reliability such as failure rate and unavailability. We have collected the component operation data and failure/repair data of Korean standard NPPs. We have analyzed failure data by developing a data analysis method which incorporates the domestic data situation. And then we have compared the reliability results with the generic data for the foreign NPPs

  15. Finding an acceleration function for calculating the reliability of redundant systems - Application to common mode failures

    International Nuclear Information System (INIS)

    Gonnot, R.

    1975-01-01

    While it may be reasonable to assume that the reliability of a system - the design of which is perfectly known - can be evaluated, it seems less easy to be sure that overall reliability is correctly estimated in the case of multiple redundancies arranged in sequence. Framatome is trying to develop a method of evaluating overall reliability correctly for its installations. For example, the protection systems in its power stations considered as a whole are such that several scram signals may be relayed in sequence when an incident occurs. These signals all involve the same components for a given type of action, but the components themselves are in fact subject to different stresses and constraints, which tend to reduce their reliability. Whatever the sequence in which these signals are transmitted (in a fast-developing accident, for example), it is possible to evaluate the actual reliability of a given system (or component) for different constraints, as the latter are generally obtained via the transient codes. By applying the so-called ''equal probability'' hypothesis one can estimate a reliability acceleration function taking into account the constraints imposed. This function is linear for the principal failure probability distribution laws. By generalizing such a method one can: (1) Perform failure calculations for redundant systems (or components) in a more general way than is possible with event trees, since one of the main parameters is the constraint exercised on that system (or component); (2) Determine failure rates of components on the basis of accelerated tests (up to complete failure of the component) which are quicker than the normal long-term tests (statistical results of operation); (3) Evaluate the multiplication factor for the reliability of a system or component in the case of common mode failures. The author presents the mathematical tools required for such a method and described their application in the cases mentioned above

  16. OPTIMUM DESIGN OF EXPERIMENTS FOR ACCELERATED RELIABILITY TESTING

    Directory of Open Access Journals (Sweden)

    Sebastian Marian ZAHARIA

    2014-05-01

    Full Text Available In this paper is presented a case study that demonstrates how design to experiments (DOE information can be used to design better accelerated reliability tests. In the case study described in this paper, will be done a comparison and optimization between main accelerated reliability test plans (3 Level Best Standard Plan, 3 Level Best Compromise Plan, 3 Level Best Equal Expected Number Failing Plan, 3 Level 4:2:1 Allocation Plan. Before starting an accelerated reliability test, it is advisable to have a plan that helps in accurately estimating reliability at operating conditions while minimizing test time and costs. A test plan should be used to decide on the appropriate stress levels that should be used (for each stress type and the amount of the test units that need to be allocated to the different stress levels (for each combination of the different stress types' levels. For the case study it used ALTA 7 software what provides a complete analysis for data from accelerated reliability tests

  17. Developing MESA : an accelerated reliability test

    NARCIS (Netherlands)

    Baskoro, G.; Rouvroye, J.L.; Bacher, W.; Brombacher, A.C.

    2003-01-01

    This paper describes the on-going research on an accelerated reliability test strategy called MESA (Multiple Environment Stress Analysis) intended to find in a fast and efficient manner (potential) reliability problems during the design phase of high volume consumer products. This test has shown

  18. Accelerator Availability and Reliability Issues

    Energy Technology Data Exchange (ETDEWEB)

    Steve Suhring

    2003-05-01

    Maintaining reliable machine operations for existing machines as well as planning for future machines' operability present significant challenges to those responsible for system performance and improvement. Changes to machine requirements and beam specifications often reduce overall machine availability in an effort to meet user needs. Accelerator reliability issues from around the world will be presented, followed by a discussion of the major factors influencing machine availability.

  19. Reliability of high power electron accelerators for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  20. Reliability of high power electron accelerators for radiation processing

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  1. Reliability and availability considerations in the RF systems of ATW-class accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tallerico, P.J.; Lynch, M.T.; Lawrence, G. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    In an RF-driven, ion accelerator for waste transmutation or nuclear material production, the overall availability is perhaps the most important specification. The synchronism requirements in an ion accelerator, as contrasted to an electron accelerator, cause a failure of an RF source to have a greater consequence. These large machines also are major capital investments, so the availability determines the return on this capital. RF system design methods to insure a high availability without paying a serious cost penalty are the subject of this paper. The overall availability goal in the present designs is 75% for the entire ATW complex, and from 25 to 35% of the unavailability is allocated to the RF system, since it is one of the most complicated subsystems in the complex. The allowed down time for the RF system (including the linac and all other systems) is then only 7 to 9% of the operating time per year, or as little as 613 hours per year, for continuous operation. Since large accelerators consume large amounts of electrical power, excellent efficiency is also required with the excellent availability. The availability also influences the sizes of the RF components; smaller components may fail and yet the accelerator may still meet all specifications. Larger components are also attractive, since the cost of an RF system usually increases as the square root of the number of RF systems utilized. In some cases, there is a reliability penalty that accompanies the cost savings from using larger components. The authors discuss these factors, and present an availability model that allows one to examine these trade offs, and make rational choices in the RF and accelerator system designs.

  2. Component reliability for electronic systems

    CERN Document Server

    Bajenescu, Titu-Marius I

    2010-01-01

    The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.

  3. Techniques for increasing the reliability of accelerator control system electronics

    International Nuclear Information System (INIS)

    Utterback, J.

    1993-09-01

    As the physical size of modern accelerators becomes larger and larger, the number of required control system circuit boards increases, and the probability of one of those circuit boards failing while in service also increases. In order to do physics, the experimenters need the accelerator to provide beam reliably with as little down time as possible. With the advent of colliding beams physics, reliability becomes even more important due to the fact that a control system failure can cause the loss of painstakingly produced antiprotons. These facts prove the importance of keeping reliability in mind when designing and maintaining accelerator control system electronics

  4. Reliability parameters of distribution networks components

    Energy Technology Data Exchange (ETDEWEB)

    Gono, R.; Kratky, M.; Rusek, S.; Kral, V. [Technical Univ. of Ostrava (Czech Republic)

    2009-03-11

    This paper presented a framework for the retrieval of parameters from various heterogenous power system databases. The framework was designed to transform the heterogenous outage data in a common relational scheme. The framework was used to retrieve outage data parameters from the Czech and Slovak republics in order to demonstrate the scalability of the framework. A reliability computation of the system was computed in 2 phases representing the retrieval of component reliability parameters and the reliability computation. Reliability rates were determined using component reliability and global reliability indices. Input data for the reliability was retrieved from data on equipment operating under similar conditions, while the probability of failure-free operations was evaluated by determining component status. Anomalies in distribution outage data were described as scheme, attribute, and term differences. Input types consisted of input relations; transformation programs; codebooks; and translation tables. The system was used to successfully retrieve data from 7 distributors in the Czech Republic and Slovak Republic between 2000-2007. The database included 301,555 records. Data were queried using SQL language. 29 refs., 2 tabs., 2 figs.

  5. Expert system for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi; Liu Chunliang

    1995-01-01

    An expert system by Arity Prolog is developed for accelerator single-freedom nonlinear components. It automatically yields any order approximate analytical solutions for various accelerator single-freedom nonlinear components. As an example, the eighth order approximate analytical solution is derived by this expert system for a general accelerator single-freedom nonlinear component, showing that the design of the expert system is successful

  6. Solid State Lighting Reliability Components to Systems

    CERN Document Server

    Fan, XJ

    2013-01-01

    Solid State Lighting Reliability: Components to Systems begins with an explanation of the major benefits of solid state lighting (SSL) when compared to conventional lighting systems including but not limited to long useful lifetimes of 50,000 (or more) hours and high efficacy. When designing effective devices that take advantage of SSL capabilities the reliability of internal components (optics, drive electronics, controls, thermal design) take on critical importance. As such a detailed discussion of reliability from performance at the device level to sub components is included as well as the integrated systems of SSL modules, lamps and luminaires including various failure modes, reliability testing and reliability performance. This book also: Covers the essential reliability theories and practices for current and future development of Solid State Lighting components and systems Provides a systematic overview for not only the state-of-the-art, but also future roadmap and perspectives of Solid State Lighting r...

  7. Reliability Considerations for the Operation of Large Accelerator User Facilities

    CERN Document Server

    Willeke, F.J.

    2016-01-01

    The lecture provides an overview of considerations relevant for achieving highly reliable operation of accelerator based user facilities. The article starts with an overview of statistical reliability formalism which is followed by high reliability design considerations with examples. The article closes with operational aspects of high reliability such as preventive maintenance and spares inventory.

  8. To the problem of reliability of high-voltage accelerators for industrial purposes

    International Nuclear Information System (INIS)

    Al'bertinskij, B.I.; Svin'in, M.P.; Tsepakin, S.G.

    1979-01-01

    Statistical data characterizing the reliability of ELECTRON and AVRORA-2 type accelerators are presented. Used as a reliability index was the mean time to failure of the main accelerator units. The analysis of accelerator failures allowed a number of conclusions to be drawn. The high failure rate level is connected with inadequate training of the servicing personnel and a natural period of equipment adjustment. The mathematical analysis of the failure rate showed that the main responsibility for insufficient high reliability rests with selenium diodes which are employed in the high voltage power supply. Substitution of selenium diodes by silicon ones increases time between failures. It is shown that accumulation and processing of operational statistical data will permit more accurate prediction of the reliability of produced high-voltage accelerators, make it possible to cope with the problems of planning optimal, in time, preventive inspections and repair, and to select optimal safety factors and test procedures n time, preventive inspections and repair, and to select optimal safety factors and test procedures n time, prevent

  9. Reliability analysis of component of affination centrifugal 1 machine by using reliability engineering

    Science.gov (United States)

    Sembiring, N.; Ginting, E.; Darnello, T.

    2017-12-01

    Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.

  10. Reliability-based sensitivity of mechanical components with arbitrary distribution parameters

    International Nuclear Information System (INIS)

    Zhang, Yi Min; Yang, Zhou; Wen, Bang Chun; He, Xiang Dong; Liu, Qiaoling

    2010-01-01

    This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Techniques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical components were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical components

  11. Parts and Components Reliability Assessment: A Cost Effective Approach

    Science.gov (United States)

    Lee, Lydia

    2009-01-01

    System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.

  12. A Components Database Design and Implementation for Accelerators and Detectors

    International Nuclear Information System (INIS)

    Chan, A.; Meyer, S.

    2011-01-01

    Many accelerator and detector systems being fabricated for the PEP-II Accelerator and BABAR Detector needed configuration control and calibration measurements tracked for their components. Instead of building a database for each distinct system, a Components Database was designed and implemented that can encompass any type of component and any type of measurement. In this paper we describe this database design that is especially suited for the engineering and fabrication processes of the accelerator and detector environments where there are thousands of unique component types. We give examples of information stored in the Components Database, which includes accelerator configuration, calibration measurements, fabrication history, design specifications, inventory, etc. The World Wide Web interface is used to access the data, and templates are available for international collaborations to collect data off-line.

  13. Leveraging accelerated testing of LED drivers to model the reliability of two-stage and multi-channel drivers

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Perkins, Curtis; Smith, Aaron; Clark, Terry; Mills, Karmann

    2017-05-30

    The next wave of LED lighting technology is likely to be tunable white lighting (TWL) devices which can adjust the colour of the emitted light between warm white (~ 2700 K) and cool white (~ 6500 K). This type of lighting system uses LED assemblies of two or more colours each controlled by separate driver channels that independently adjust the current levels to achieve the desired lighting colour. Drivers used in TWL devices are inherently more complex than those found in simple SSL devices, due to the number of electrical components in the driver required to achieve this level of control. The reliability of such lighting systems can only be studied using accelerated stress tests (AST) that accelerate the aging process to time frames that can be accommodated in laboratory testing. This paper describes AST methods and findings developed from AST data that provide insights into the lifetime of the main components of one-channel and multi-channel LED devices. The use of AST protocols to confirm product reliability is necessary to ensure that the technology can meet the performance and lifetime requirements of the intended application.

  14. The Volterra's integral equation theory for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi

    1996-01-01

    The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed

  15. Reliability assessment for metallized film pulse capacitors with accelerated degradation test

    International Nuclear Information System (INIS)

    Zhao Jianyin; Liu Fang; Xi Wenjun; He Shaobo; Wei Xiaofeng

    2011-01-01

    The high energy density self-healing metallized film pulse capacitor has been applied to all kinds of laser facilities for their power conditioning systems, whose reliability is straightforward affected by the reliability level of capacitors. Reliability analysis of highly reliable devices, such as metallized film capacitors, is a challenge due to cost and time restriction. Accelerated degradation test provides a way to predict its life cost and time effectively. A model and analyses for accelerated degradation data of metallized film capacitors are described. Also described is a method for estimating the distribution of failure time. The estimation values of the unknown parameters in this model are 9.066 9 x 10 -8 and 0.022 1. Both the failure probability density function (PDF) and the cumulative distribution function (CDF) can be presented by this degradation failure model. Based on these estimation values and the PDF/CDF, the reliability model of the metallized film capacitors is obtained. According to the reliability model, the probability of the capacitors surviving to 20 000 shot is 0.972 4. (authors)

  16. Application of fuzzy-MOORA method: Ranking of components for reliability estimation of component-based software systems

    Directory of Open Access Journals (Sweden)

    Zeeshan Ali Siddiqui

    2016-01-01

    Full Text Available Component-based software system (CBSS development technique is an emerging discipline that promises to take software development into a new era. As hardware systems are presently being constructed from kits of parts, software systems may also be assembled from components. It is more reliable to reuse software than to create. It is the glue code and individual components reliability that contribute to the reliability of the overall system. Every component contributes to overall system reliability according to the number of times it is being used, some components are of critical usage, known as usage frequency of component. The usage frequency decides the weight of each component. According to their weights, each component contributes to the overall reliability of the system. Therefore, ranking of components may be obtained by analyzing their reliability impacts on overall application. In this paper, we propose the application of fuzzy multi-objective optimization on the basis of ratio analysis, Fuzzy-MOORA. The method helps us find the best suitable alternative, software component, from a set of available feasible alternatives named software components. It is an accurate and easy to understand tool for solving multi-criteria decision making problems that have imprecise and vague evaluation data. By the use of ratio analysis, the proposed method determines the most suitable alternative among all possible alternatives, and dimensionless measurement will realize the job of ranking of components for estimating CBSS reliability in a non-subjective way. Finally, three case studies are shown to illustrate the use of the proposed technique.

  17. The common component architecture for particle accelerator simulations

    International Nuclear Information System (INIS)

    Dechow, D.R.; Norris, B.; Amundson, J.

    2007-01-01

    Synergia2 is a beam dynamics modeling and simulation application for high-energy accelerators such as the Tevatron at Fermilab and the International Linear Collider, which is now under planning and development. Synergia2 is a hybrid, multilanguage software package comprised of two separate accelerator physics packages (Synergia and MaryLie/Impact) and one high-performance computer science package (PETSc). We describe our approach to producing a set of beam dynamics-specific software components based on the Common Component Architecture specification. Among other topics, we describe particular experiences with the following tasks: using Python steering to guide the creation of interfaces and to prototype components; working with legacy Fortran codes; and an example component-based, beam dynamics simulation.

  18. Reliability demonstration test for load-sharing systems with exponential and Weibull components.

    Directory of Open Access Journals (Sweden)

    Jianyu Xu

    Full Text Available Conducting a Reliability Demonstration Test (RDT is a crucial step in production. Products are tested under certain schemes to demonstrate whether their reliability indices reach pre-specified thresholds. Test schemes for RDT have been studied in different situations, e.g., lifetime testing, degradation testing and accelerated testing. Systems designed with several structures are also investigated in many RDT plans. Despite the availability of a range of test plans for different systems, RDT planning for load-sharing systems hasn't yet received the attention it deserves. In this paper, we propose a demonstration method for two specific types of load-sharing systems with components subject to two distributions: exponential and Weibull. Based on the assumptions and interpretations made in several previous works on such load-sharing systems, we set the mean time to failure (MTTF of the total system as the demonstration target. We represent the MTTF as a summation of mean time between successive component failures. Next, we introduce generalized test statistics for both the underlying distributions. Finally, RDT plans for the two types of systems are established on the basis of these test statistics.

  19. Reliability estimation for check valves and other components

    International Nuclear Information System (INIS)

    McElhaney, K.L.; Staunton, R.H.

    1996-01-01

    For years the nuclear industry has depended upon component operational reliability information compiled from reliability handbooks and other generic sources as well as private databases generated by recognized experts both within and outside the nuclear industry. Regrettably, these technical bases lacked the benefit of large-scale operational data and comprehensive data verification, and did not take into account the parameters and combinations of parameters that affect the determination of failure rates. This paper briefly examines the historic use of generic component reliability data, its sources, and its limitations. The concept of using a single failure rate for a particular component type is also examined. Particular emphasis is placed on check valves due to the information available on those components. The Appendix presents some of the results of the extensive analyses done by Oak Ridge National Laboratory (ORNL) on check valve performance

  20. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  1. Design and implementation of component reliability database management system for NPP

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, J. K.; Choi, S. Y.; Lee, Y. H.; Han, S. H.

    1999-01-01

    KAERI is constructing the component reliability database for Korean nuclear power plant. This paper describes the development of data management tool, which runs for component reliability database. This is running under intranet environment and is used to analyze the failure mode and failure severity to compute the component failure rate. Now we are developing the additional modules to manage operation history, test history and algorithms for calculation of component failure history and reliability

  2. Optimization of Reliability Centered Maintenance Bassed on Maintenance Costs and Reliability with Consideration of Location of Components

    Directory of Open Access Journals (Sweden)

    Mahdi Karbasian

    2011-03-01

    Full Text Available The reliability of designing systems such as electrical and electronic circuits, power generation/ distribution networks and mechanical systems, in which the failure of a component may cause the whole system failure, and even the reliability of cellular manufacturing systems that their machines are connected to as series are critically important. So far approaches for improving the reliability of these systems have been mainly based on the enhancement of inherent reliability of any system component or increasing system reliability based on maintenance strategies. Also in some of the resources, only the influence of the location of systems' components on reliability is studied. Therefore, it seems other approaches have been rarely applied. In this paper, a multi criteria model has been proposed to perform a balance among a system's reliability, location costs, and its system maintenance. Finally, a numerical example has been presented and solved by the Lingo software.

  3. Study and implementation of a thermal acceleration test for the improvement of the quality and reliability of components and systems; Estudo e implementacao de um teste de aceleracao termica para a melhoria da qualidade e confiabilidade de componentes e sistemas

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Felippe Carneiro

    1993-09-01

    The objective of this work is to introduce the application of the burn-in test (test of thermal acceleration) in electronic products, using the practical example of this test in a power supply and to do an analysis of the application of this test in a production line showing the advantages and disadvantages of its implementation. For that it is made an abbreviation presentation of the basic concepts of quality and reliability. Starting from these concepts are presented the statistical models used in reliability, that describe the behavior of life of products and components. Besides showing, from the speed chemical reaction model , the influence of the temperature about this reliability.

  4. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  5. Reliability for systems of degrading components with distinct component shock sets

    International Nuclear Information System (INIS)

    Song, Sanling; Coit, David W.; Feng, Qianmei

    2014-01-01

    This paper studies reliability for multi-component systems subject to dependent competing risks of degradation wear and random shocks, with distinct shock sets. In practice, many systems are exposed to distinct and different types of shocks that can be categorized according to their sizes, function, affected components, etc. Previous research primarily focuses on simple systems with independent failure processes, systems with independent component time-to-failure, or components that share the same shock set or type of shocks. In our new model, we classify random shocks into different sets based on their sizes or function. Shocks with specific sizes or function can selectively affect one or more components in the system but not necessarily all components. Additionally the shocks from the different shock sets can arrive at different rates and have different relative magnitudes. Preventive maintenance (PM) optimization is conducted for the system with different component shock sets. Decision variables for two different maintenance scheduling problems, the PM replacement time interval, and the PM inspection time interval, are determined by minimizing a defined system cost rate. Sensitivity analysis is performed to provide insight into the behavior of the proposed maintenance policies. These models can be applied directly or customized for many complex systems that experience dependent competing failure processes with different component shock sets. A MEMS (Micro-electro mechanical systems) oscillator is a typical system subject to dependent and competing failure processes, and it is used as a numerical example to illustrate our new reliability and maintenance models

  6. IAEA's experience in compiling a generic component reliability data base

    International Nuclear Information System (INIS)

    Tomic, B.; Lederman, L.

    1991-01-01

    Reliability data are essential in probabilistic safety assessment, with component reliability parameters being particularly important. Component failure data which is plant specific would be most appropriate but this is rather limited. However, similar components are used in different designs. Generic data, that is all data that is not plant specific to the plant being analyzed but which relates to components more generally, is important. The International Atomic Energy Agency has compiled the Generic Component Reliability Data Base from data available in the open literature. It is part of the IAEA computer code package for fault/event tree analysis. The Data Base contains 1010 different records including most of the components used in probabilistic safety analyses of nuclear power plants. The data base input was quality controlled and data sources noted. The data compilation procedure and problems associated with using generic data are explained. (UK)

  7. Dynamic k-out-of-n system reliability with component partnership

    International Nuclear Information System (INIS)

    Coit, David W.; Chatwattanasiri, Nida; Wattanapongsakorn, Naruemon; Konak, Abdullah

    2015-01-01

    This paper describes a new k-out-of-n system reliability model that is appropriate for certain design problems when the minimum number of required components, k, changes dynamically in response to failures to maximize the utility of the available collection of functioning components. This new model shares some distinct similarities with weighted k-out-of-n models and for some problems they produce the same result. However, there are subtle and distinct differences, and in practice, there are some complex applications have not been properly explained or modeled by traditional or extended k-out-of-n system models. For this application, components are arranged in a k-out-of-n configuration of heterogeneous components with different performance levels. Component performance is indicated by a component-specific component partnership level; the fewer partners required to operate successfully implies higher performance. The components can work collectively with partners at the same level to maintain system reliability, or they can create a partnership group with components at higher performance levels which serve as replacements to provide the necessary number of working components. When components fail, the dynamic k-out-of-n configuration maintains reliability of the system with changing k by having components create partnerships with other components at the same level or above. To demonstrate the model, a system replacement maintenance policy based on a replacement interval variable is applied to an example system to obtain the optimal replacement time. - Highlights: • A new k-out-of-n system reliability model is presented. • Components can form partnerships with other components. • The new k-out-of-n model is presented with a dynamic or changing k. • The new model is for systems with components that must work together in a group

  8. Reliability prediction of engineering systems with competing failure modes due to component degradation

    International Nuclear Information System (INIS)

    Son, Young Kap

    2011-01-01

    Reliability of an engineering system depends on two reliability metrics: the mechanical reliability, considering component failures, that a functional system topology is maintained and the performance reliability of adequate system performance in each functional configuration. Component degradation explains not only the component aging processes leading to failure in function, but also system performance change over time. Multiple competing failure modes for systems with degrading components in terms of system functionality and system performance are considered in this paper with the assumption that system functionality is not independent of system performance. To reduce errors in system reliability prediction, this paper tries to extend system performance reliability prediction methods in open literature through combining system mechanical reliability from component reliabilities and system performance reliability. The extended reliability prediction method provides a useful way to compare designs as well as to determine effective maintenance policy for efficient reliability growth. Application of the method to an electro-mechanical system, as an illustrative example, is explained in detail, and the prediction results are discussed. Both mechanical reliability and performance reliability are compared to total system reliability in terms of reliability prediction errors

  9. Component reliability data for use in probabilistic safety assessment

    International Nuclear Information System (INIS)

    1988-10-01

    Generic component reliability data is indispensable in any probabilistic safety analysis. It is not realistic to assume that all possible component failures and failure modes modeled in a PSA would be available from the operating experience of a specific plant in a statistically meaningful way. The degree that generic data is used in PSAs varies from case to case. Some studies are totally based on generic data while others use generic data as prior information to be specialized by plant specific data. Most studies, however, finally use a combination where data for certain components come from generic data sources and others from Bayesian updating. The IAEA effort to compile a generic component reliability data base aimed at facilitating the use of data available in the literature and at highlighting pitfalls which deserve special consideration. It was also intended to complement the fault tree and event tree package (PSAPACK) and to facilitate its use. Moreover, it should be noted, that the IAEA has recently initiated a Coordinated Research Program in Reliability Data Collection, Retrieval and Analysis. In this framework the issues identified as most affecting the quality of existing data bases would be addressed. This report presents the results of a compilation made from the specialized literature and includes reliability data for components usually considered in PSA

  10. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  11. Approach to assurance of reliability of linear accelerator operation observations

    International Nuclear Information System (INIS)

    Bakov, S.M.; Borovikov, A.A.; Kavkun, S.L.

    1994-01-01

    The system approach to solving the task of assuring reliability of observations over the linear accelerator operation is proposed. The basic principles of this method consist in application of dependences between the facility parameters, decrease in the number of the system apparatus channels for data acquisition without replacement of failed channel by reserve one. The signal commutation unit, the introduction whereof into the data acquisition system essentially increases the reliability of the measurement system on the account of active reserve, is considered detail. 8 refs. 6 figs

  12. Reliability Models Applied to a System of Power Converters in Particle Accelerators

    OpenAIRE

    Siemaszko, D; Speiser, M; Pittet, S

    2012-01-01

    Several reliability models are studied when applied to a power system containing a large number of power converters. A methodology is proposed and illustrated in the case study of a novel linear particle accelerator designed for reaching high energies. The proposed methods result in the prediction of both reliability and availability of the considered system for optimisation purposes.

  13. Generic component reliability data for research reactor PSA

    International Nuclear Information System (INIS)

    1997-02-01

    The purpose of this document is to provide reference generic component-reliability information for a variety of research reactor types. As noted in Section 2 and Table IV, component data accumulated over many years is in the database. It is expected that the report should provide representative data which will remain valid for a number of years. The database provides component failure rates on a time and/or demand related basis according to the operational modes of the components. No update of the database is presently planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available by the contributing research reactor facilities themselves. As noted in Section 1.1, the report does not include a detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussions regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, 7 tabs

  14. Reliability of optical fibres and components final report of COST 246

    CERN Document Server

    Griffioen, Willem; Gadonna, Michel; Limberger, Hans; Heens, Bernard; Knuuttila, Hanna; Kurkjian, Charles; Mirza, Shehzad; Opacic, Aleksandar; Regio, Paola; Semjonov, Sergei

    1999-01-01

    Reliability of Optical Fibres and Components reports the findings of COST 246 (1993-1998) - European research initiative in the field of optical telecommunications. Experts in the materials and reliability field of optical fibres and components have contributed to this unique study programme. The results, conclusions and achievements of their work have been obtained through joint experimentation and discussion with representatives from manufacturing and research groups. Topics covered include: Lifetime estimation; Failure mechanisms; Ageing test methods; Field data and service environments for components. For the first time the reader can explore the reliability of products and examine the results and conclusions in published form. This comprehensive volume is intended to provide a deeper understanding of the reliability of optical fibres and components. The book will be extremely useful to all scientists and practitioners involved in the industry.

  15. Mechanical development for reliable reactor components

    International Nuclear Information System (INIS)

    Ross-Ross, P.A.; Metcalfe, R.

    1983-09-01

    The CANDU reactor has achieved worldwide distinction because of its reliable performance. To achieve this, special attention was given to the reliability and maintainability of components in the heavy water circuits. Development programs were initiated early in the history of the CANDU reactor to improve the effectiveness of pump seals, valves, and static seals because of unacceptable performance of the commercial equipment then available. As a result, pump seals with a five year life now appear achievable, and valves and static seals are no longer a significant concern in CANDU reactors. Increasing effort is being given remotely operated tools and fabrication systems for radioactive environments

  16. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G.; Balan, I. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safetly, Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  17. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Balan, I.; Ionescu-Bujor, M.

    2008-01-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  18. Exploration of reliability databases and comparison of former IFMIF's results

    International Nuclear Information System (INIS)

    Tapia, Carlos; Dies, Javier; Abal, Javier; Ibarra, Angel; Arroyo, Jose M.

    2011-01-01

    There is an uncertainty issue about the applicability of industrial databases to new designs, such as the International Fusion Materials Irradiation Facility (IFMIF), as they usually contain elements for which no historical statistics exist. The exploration of common components reliability data in Accelerator Driven Systems (ADS) and Liquid Metal Technologies (LMT) frameworks is the milestone to analyze the data used in IFMIF reliability's reports and for future studies. The comparison between the reliability accelerator results given in the former IFMIF's reports and the databases explored has been made by means of a new accelerator Reliability, Availability, Maintainability (RAM) analysis. The reliability database used in this analysis is traceable.

  19. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  20. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  1. Modeling accelerator structures and RF components

    International Nuclear Information System (INIS)

    Ko, K., Ng, C.K.; Herrmannsfeldt, W.B.

    1993-03-01

    Computer modeling has become an integral part of the design and analysis of accelerator structures RF components. Sophisticated 3D codes, powerful workstations and timely theory support all contributed to this development. We will describe our modeling experience with these resources and discuss their impact on ongoing work at SLAC. Specific examples from R ampersand D on a future linear collide and a proposed e + e - storage ring will be included

  2. Handling and Transport of Oversized Accelerator Components and Physics Detectors

    CERN Document Server

    Prodon, S; Guinchard, M; Minginette, P

    2006-01-01

    For cost, planning and organisational reasons, it is often decided to install large pre-built accelerators components and physics detectors. As a result surface exceptional transports are required from the construction to the installation sites. Such heavy transports have been numerous during the LHC installation phase. This paper will describe the different types of transport techniques used to fit the particularities of accelerators and detectors components (weight, height, acceleration, planarity) as well as the measurement techniques for monitoring and the logistical aspects (organisation with the police, obstacles on the roads, etc). As far as oversized equipment is concerned, the lowering into the pit is challenging, as well as the transport in tunnel galleries in a very scare space and without handling means attached to the structure like overhead travelling cranes. From the PS accelerator to the LHC, handling systems have been developed at CERN to fit with these particular working conditions. This pap...

  3. Design and development of R.F. LINAC accelerator components

    International Nuclear Information System (INIS)

    Abhay Kumar; Guha, S.; Balasubramaniam, R.; Jawale, S.B.

    2003-01-01

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  4. Development of the software for the component reliability database system of Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Hoon; Kim, Seung Hwan; Choi, Sun Young [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-03-01

    A study was performed to develop the system for the component reliability database which consists of database system to store the reliability data and softwares to analyze the reliability data.This system is a part of KIND (Korea Information System for Nuclear Reliability Database).The MS-SQL database is used to stores the component population data, component maintenance history, and the results of reliability analysis. Two softwares were developed for the component reliability system. One is the KIND-InfoView for the data storing, retrieving and searching. The other is the KIND-CompRel for the statistical analysis of component reliability. 4 refs., 13 figs., 7 tabs. (Author)

  5. Nuclear plant reliability data system. 1979 annual reports of cumulative system and component reliability

    International Nuclear Information System (INIS)

    1979-01-01

    The primary purposes of the information in these reports are the following: to provide operating statistics of safety-related systems within a unit which may be used to compare and evaluate reliability performance and to provide failure mode and failure rate statistics on components which may be used in failure mode effects analysis, fault hazard analysis, probabilistic reliability analysis, and so forth

  6. Availability, reliability and downtime of systems with repairable components

    DEFF Research Database (Denmark)

    Kiureghian, Armen Der; Ditlevsen, Ove Dalager; Song, J.

    2007-01-01

    Closed-form expressions are derived for the steady-state availability, mean rate of failure, mean duration of downtime and lower bound reliability of a general system with randomly and independently failing repairable components. Component failures are assumed to be homogeneous Poisson events in ...

  7. Development status of component reliability database for Korean NPPs and a case study

    International Nuclear Information System (INIS)

    Choi, S. Y.; Yang, S. H.; Lee, S. C.; Kim, S. H.; Han, S. H.

    1999-01-01

    We have applied a generic database to the PSA (Probabilistic Safety Assessment) for the Korean Standard NPPs (Nuclear Power Plant) since there is no specific component reliability database. However generic data is not enough to reflect the specific characteristics of domestic plants since it is collected by foreign plants. Therefore we are developing the plant-specific component reliability database for domestic NPPs. In this paper, we describe the development status of the component reliability database and the approach method of data collection and component failure analysis. We also summarize a case study of component failure analysis. We first collect the failure and repair data from the TR (Trouble Report) electronic database and the daily operation report sheet. Now we add a data collection method that checks the original TR sheet to improve the data quality. We input the component failure and repair data of principal components of about 30 systems into the component reliability database. Now, we are analyzing the component failure data of 11 safety systems among the systems to calculate component failure rate and unavailability etc

  8. Reliability Analysis of Load-Sharing K-out-of-N System Considering Component Degradation

    Directory of Open Access Journals (Sweden)

    Chunbo Yang

    2015-01-01

    Full Text Available The K-out-of-N configuration is a typical form of redundancy techniques to improve system reliability, where at least K-out-of-N components must work for successful operation of system. When the components are degraded, more components are needed to meet the system requirement, which means that the value of K has to increase. The current reliability analysis methods overestimate the reliability, because using constant K ignores the degradation effect. In a load-sharing system with degrading components, the workload shared on each surviving component will increase after a random component failure, resulting in higher failure rate and increased performance degradation rate. This paper proposes a method combining a tampered failure rate model with a performance degradation model to analyze the reliability of load-sharing K-out-of-N system with degrading components. The proposed method considers the value of K as a variable which is derived by the performance degradation model. Also, the load-sharing effect is evaluated by the tampered failure rate model. Monte-Carlo simulation procedure is used to estimate the discrete probability distribution of K. The case of a solar panel is studied in this paper, and the result shows that the reliability considering component degradation is less than that ignoring component degradation.

  9. Measuring and aligning accelerator components to the nanometre scale

    CERN Document Server

    Catalán Lasheras, N; Modena, M

    2014-01-01

    First tests have shown that the precision and accuracy required for linear colliders and other future accelerators of 10 micrometers is costly and lengthy with a process based on independent fiducializations of single components. Indeed, the systematic and random errors at each step add up during the process with the final accuracy of each component center well above the target. A new EC-funded training network named PACMAN (a study on Particle Accelerator Components Metrology and Alignment to the Nanometer scale) will propose and develop an alternative solution integrating all the alignment steps and a large number of technologies at the same time and location, in order to gain the required precision and accuracy. The network composed of seven industrial partners and nine universities and research centers will be based at CERN where ten doctoral students will explore the technology limitations of metrology. They will develop new techniques to measure magnetic and microwave fields, optical and non-contact sen...

  10. Component aging and reliability trends in Loviisa Nuclear Power Plant

    International Nuclear Information System (INIS)

    Jankala, K.E.; Vaurio, J.K.

    1989-01-01

    A plant-specific reliability data collection and analysis system has been developed at the Loviisa Nuclear Power Plant to perform tests for component aging and analysis of reliability trends. The system yields both mean values an uncertainty distribution information for reliability parameters to be used in the PSA project underway and in living-PSA applications. Several different trend models are included in the reliability analysis system. Simple analytical expressions have been derived from the parameters of these models, and their variances have been obtained using the information matrix. This paper is focused on the details of the learning/aging models and the estimation of their parameters and statistical accuracies. Applications to the historical data of the Loviisa plant are presented. The results indicate both up- and down-trends in failure rates as well as individuality between nominally identical components

  11. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Science.gov (United States)

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  12. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    Science.gov (United States)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  13. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Kumar, Sachin; Mishra, Vivek; Joshi, N.S.; Varde, P.V.

    2014-01-01

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  14. Accelerated life testing and reliability of high K multilayer ceramic capacitors

    Science.gov (United States)

    Minford, W. J.

    1981-01-01

    The reliability of one lot of high K multilayer ceramic capacitors was evaluated using accelerated life testing. The degradation in insulation resistance was characterized as a function of voltage and temperature. The times to failure at a voltage-temperature stress conformed to a lognormal distribution with a standard deviation approximately 0.5.

  15. Reliability of solid-state lighting electrical drivers subjected to WHTOL accelerated aging

    Energy Technology Data Exchange (ETDEWEB)

    Lall, Pradeep; Sakalauku, Peter; Davis, Lynn

    2014-05-27

    An investigation of a solid-state lighting (SSL) luminaire with the focus on the electronic driver which has been exposed to a standard wet hot temperature operating life (WHTOL) of 85% RH and 85°C in order to assess reliability of prolonged exposer to a harsh environment has been conducted. SSL luminaires are beginning introduced as head lamps in some of today's luxury automobiles and may also be fulfilling a variety of important outdoor applications such as overhead street lamps, traffic signals and landscape lighting. SSL luminaires in these environments are almost certain to encounter excessive moisture from humidity and high temperatures for a persistent period of time. The lack of accelerated test methods for LEDs to assess long-term reliability prior to introduction into the marketplace, a need for SSL physics based PHM modeling indicators for assessment and prediction of LED life, as well as the U.S. Department of Energy's R&D roadmap to replace todays lighting with SSL luminaires makes it important to increase the understanding of the reliability of SSL devices, specifically, in harsh environment applications. In this work, a set of SSL electrical drivers were investigated to determine failure mechanisms that occur during prolonged harsh environment applications. Each driver consists of four aluminum electrolytic capacitors (AECs) of three different types and was considered the weakest component inside the SSL electrical driver. The reliability of the electrical driver was assessed by monitoring the change in capacitance and the change in equivalent series resistance for each AEC, as well as monitoring the luminous flux of the SSL luminaire or the output of the electrical driver. The luminous flux of a pristine SSL electrical driver was also monitored in order to detect minute changes in the electrical drivers output and to aid in the investigation of the SSL luminaires reliability. The failure mechanisms of the electrical drivers have been

  16. The effect of introducing increased-reliability-risk electronic components into 3rd generation telecommunications systems

    International Nuclear Information System (INIS)

    Salmela, Olli

    2005-01-01

    In this paper, the dependability of 3rd generation telecommunications network systems is studied. Special attention is paid to a case where increased-reliability-risk electronic components are introduced to the system. The paper consists of three parts: First, the reliability data of four electronic components is considered. This includes statistical analysis of the reliability test data, thermo-mechanical finite element analysis of the printed wiring board structures, and based on those, a field reliability estimate of the components is constructed. Second, the component level reliability data is introduced into the network element reliability analysis. This is accomplished by using a reliability block diagram technique and Monte Carlo simulation of the network element. The end result of the second part is a reliability estimate of the network element with and without the high-risk component. Third, the whole 3rd generation network having multiple network elements is analyzed. In this part, the criticality of introducing high-risk electronic components into a 3rd generation telecommunications network is considered

  17. The effect of introducing increased-reliability-risk electronic components into 3rd generation telecommunications systems

    Energy Technology Data Exchange (ETDEWEB)

    Salmela, Olli [Nokia Networks, P.O. Box 301, 00045 Nokia Group (Finland)]. E-mail: olli.salmela@nokia.com

    2005-08-01

    In this paper, the dependability of 3rd generation telecommunications network systems is studied. Special attention is paid to a case where increased-reliability-risk electronic components are introduced to the system. The paper consists of three parts: First, the reliability data of four electronic components is considered. This includes statistical analysis of the reliability test data, thermo-mechanical finite element analysis of the printed wiring board structures, and based on those, a field reliability estimate of the components is constructed. Second, the component level reliability data is introduced into the network element reliability analysis. This is accomplished by using a reliability block diagram technique and Monte Carlo simulation of the network element. The end result of the second part is a reliability estimate of the network element with and without the high-risk component. Third, the whole 3rd generation network having multiple network elements is analyzed. In this part, the criticality of introducing high-risk electronic components into a 3rd generation telecommunications network is considered.

  18. Reliability determination of aluminium electrolytic capacitors by the mean of various methods application to the protection system of the LHC

    CERN Document Server

    Perisse, F; Rojat, G

    2004-01-01

    The lifetime of power electronic components is often calculated from reliability reports, but this method can be discussed. We compare in this article the results of various reliability reports to an accelerated ageing test of component and introduced the load-strength concept. Large aluminium electrolytic capacitors are taken here in example in the context of the protection system of LHC (Large Hadron Collider) in CERN where the level of reliability is essential. We notice important differences of MTBF (Mean Time Between Failure) according to the reliability report used. Accelerating ageing tests carried out prove that a Weibull law is more adapted to determinate failure rates of components. The load-strength concept associated with accelerated ageing tests can be a solution to determine the lifetime of power electronic components.

  19. Reliability Prediction Of System And Component Of Process System Of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Sitorus Pane, Jupiter

    2001-01-01

    The older the reactor the higher the probability of the system and components suffer from loss of function or degradation. This phenomenon occurred because of wear, corrosion, and fatigue. Study on component reliability was generally performed deterministically and statistically. This paper would describe an analysis of using statistical method, i.e. regression Cox, in order to predict the reliability of the components and their environmental influence's factors. The result showed that the dynamics, non safety related, and mechanic components have higher risk of failure, whereas static, safety related, and electric have lower risk of failures. The relative risk value for variable of components dynamics, quality, dummy 1 and dummy 2 are of 1.54, 1.59, 1.50, and 0.83 compare to other components type with each variable. Component with the higher risk have lower reliability than lower one

  20. Reliability analysis and component functional allocations for the ESF multi-loop controller design

    International Nuclear Information System (INIS)

    Hur, Seop; Kim, D.H.; Choi, J.K.; Park, J.C.; Seong, S.H.; Lee, D.Y.

    2006-01-01

    This paper deals with the reliability analysis and component functional allocations to ensure the enhanced system reliability and availability. In the Engineered Safety Features, functionally dependent components are controlled by a multi-loop controller. The system reliability of the Engineered Safety Features-Component Control System, especially, the multi-loop controller which is changed comparing to the conventional controllers is an important factor for the Probability Safety Assessment in the nuclear field. To evaluate the multi-loop controller's failure rate of the k-out-of-m redundant system, the binomial process is used. In addition, the component functional allocation is performed to tolerate a single multi-loop controller failure without the loss of vital operation within the constraints of the piping and component configuration, and ensure that mechanically redundant components remain functional. (author)

  1. Reliability Assessment of IGBT Modules Modeled as Systems with Correlated Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    configuration. The estimated system reliability by the proposed method is a conservative estimate. Application of the suggested method could be extended for reliability estimation of systems composing of welding joints, bolts, bearings, etc. The reliability model incorporates the correlation between...... was applied for the systems failure functions estimation. It is desired to compare the results with the true system failure function, which is possible to estimate using simulation techniques. Theoretical model development should be applied for the further research. One of the directions for it might...... be modeling the system based on the Sequential Order Statistics, by considering the failure of the minimum (weakest component) at each loading level. The proposed idea to represent the system by the independent components could also be used for modeling reliability by Sequential Order Statistics....

  2. An Intuitionistic Fuzzy Methodology for Component-Based Software Reliability Optimization

    DEFF Research Database (Denmark)

    Madsen, Henrik; Grigore, Albeanu; Popenţiuvlǎdicescu, Florin

    2012-01-01

    Component-based software development is the current methodology facilitating agility in project management, software reuse in design and implementation, promoting quality and productivity, and increasing the reliability and performability. This paper illustrates the usage of intuitionistic fuzzy...... degree approach in modelling the quality of entities in imprecise software reliability computing in order to optimize management results. Intuitionistic fuzzy optimization algorithms are proposed to be used for complex software systems reliability optimization under various constraints....

  3. Human reliability program: Components and effects

    International Nuclear Information System (INIS)

    Baley-Downes, S.

    1986-01-01

    The term ''Human Reliability Program'' (HRP) is defined as a series of selective controls which are implemented and integrated to identify the ''insider threat'' from current and prospective employees who are dishonest, disloyal and unreliable. The HRP, although not a prediction of human behaviour, is an excellent tool for decision making and should compliment security and improve employee quality. The HRP consists of several component applications such as management evaluation; appropriate background investigative requirements; occupational health examination and laboratory testing; drug/alcohol screening; psychological testing and interviews; polygraph examination; job related aberrant behaviour recognition; on-going education and training; document control; drug/alcohol rehabilitation; periodic HRP audit; and implementation of an onsite central clearing house. The components and effects of HRP are discussed in further detail in this paper

  4. Reliability considerations of electronics components for the deep underwater muon and neutrino detection system

    International Nuclear Information System (INIS)

    Leskovar, B.

    1980-02-01

    The reliability of some electronics components for the Deep Underwater Muon and Neutrino Detection (DUMAND) System is discussed. An introductory overview of engineering concepts and technique for reliability assessment is given. Component reliability is discussed in the contest of major factors causing failures, particularly with respect to physical and chemical causes, process technology and testing, and screening procedures. Failure rates are presented for discrete devices and for integrated circuits as well as for basic electronics components. Furthermore, the military reliability specifications and standards for semiconductor devices are reviewed

  5. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  6. Computational needs for modelling accelerator components

    International Nuclear Information System (INIS)

    Hanerfeld, H.

    1985-06-01

    The particle-in-cell MASK is being used to model several different electron accelerator components. These studies are being used both to design new devices and to understand particle behavior within existing structures. Studies include the injector for the Stanford Linear Collider and the 50 megawatt klystron currently being built at SLAC. MASK is a 2D electromagnetic code which is being used by SLAC both on our own IBM 3081 and on the CRAY X-MP at the NMFECC. Our experience with running MASK illustrates the need for supercomputers to continue work of the kind described. 3 refs., 2 figs

  7. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    Science.gov (United States)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  8. A new model for reliability optimization of series-parallel systems with non-homogeneous components

    International Nuclear Information System (INIS)

    Feizabadi, Mohammad; Jahromi, Abdolhamid Eshraghniaye

    2017-01-01

    In discussions related to reliability optimization using redundancy allocation, one of the structures that has attracted the attention of many researchers, is series-parallel structure. In models previously presented for reliability optimization of series-parallel systems, there is a restricting assumption based on which all components of a subsystem must be homogeneous. This constraint limits system designers in selecting components and prevents achieving higher levels of reliability. In this paper, a new model is proposed for reliability optimization of series-parallel systems, which makes possible the use of non-homogeneous components in each subsystem. As a result of this flexibility, the process of supplying system components will be easier. To solve the proposed model, since the redundancy allocation problem (RAP) belongs to the NP-hard class of optimization problems, a genetic algorithm (GA) is developed. The computational results of the designed GA are indicative of high performance of the proposed model in increasing system reliability and decreasing costs. - Highlights: • In this paper, a new model is proposed for reliability optimization of series-parallel systems. • In the previous models, there is a restricting assumption based on which all components of a subsystem must be homogeneous. • The presented model provides a possibility for the subsystems’ components to be non- homogeneous in the required conditions. • The computational results demonstrate the high performance of the proposed model in improving reliability and reducing costs.

  9. Sodium component reliability data collection at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.; Manning, J.J.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a national center for collection, evaluation and dissemination of reliability data for advanced reactors. While the system is being developed and continuous data collection at the two U.S. reactor sites (EBR-II and FFTF) is being established, data on advanced reactor components which have been in use at U.S. test loops and experimental reactors have been collected and analyzed. Engineering, operating and event data on sodium valves, pumps, flow meters, rupture discs, heat exchangers and cold traps have been collected from more than a dozen sites. The results of analyses of the data performed to date are presented

  10. System reliability with correlated components: Accuracy of the Equivalent Planes method

    NARCIS (Netherlands)

    Roscoe, K.; Diermanse, F.; Vrouwenvelder, A.C.W.M.

    2015-01-01

    Computing system reliability when system components are correlated presents a challenge because it usually requires solving multi-fold integrals numerically, which is generally infeasible due to the computational cost. In Dutch flood defense reliability modeling, an efficient method for computing

  11. System reliability with correlated components : Accuracy of the Equivalent Planes method

    NARCIS (Netherlands)

    Roscoe, K.; Diermanse, F.; Vrouwenvelder, T.

    2015-01-01

    Computing system reliability when system components are correlated presents a challenge because it usually requires solving multi-fold integrals numerically, which is generally infeasible due to the computational cost. In Dutch flood defense reliability modeling, an efficient method for computing

  12. SEARCH FOR A RELIABLE STORAGE ARCHITECTURE FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BINELLO,S.; KATZ, R.A.; MORRIS, J.T.

    2007-10-15

    Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system.

  13. SEARCH FOR A RELIABLE STORAGE ARCHITECTURE FOR RHIC

    International Nuclear Information System (INIS)

    BINELLO, S.; KATZ, R.A.; MORRIS, J.T.

    2007-01-01

    Software used to operate the Relativistic Heavy Ion Collider (RHIC) resides on one operational RAID storage system. This storage system is also used to store data that reflects the status and recent history of accelerator operations. Failure of this system interrupts the operation of the accelerator as backup systems are brought online. In order to increase the reliability of this critical control system component, the storage system architecture has been upgraded to use Storage Area Network (SAN) technology and to introduce redundant components and redundant storage paths. This paper describes the evolution of the storage system, the contributions to reliability that each additional feature has provided, further improvements that are being considered, and real-life experience with the current system

  14. Principle of maximum entropy for reliability analysis in the design of machine components

    Science.gov (United States)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  15. Accelerated oxygen-induced retinopathy is a reliable model of ischemia-induced retinal neovascularization.

    Science.gov (United States)

    Villacampa, Pilar; Menger, Katja E; Abelleira, Laura; Ribeiro, Joana; Duran, Yanai; Smith, Alexander J; Ali, Robin R; Luhmann, Ulrich F; Bainbridge, James W B

    2017-01-01

    Retinal ischemia and pathological angiogenesis cause severe impairment of sight. Oxygen-induced retinopathy (OIR) in young mice is widely used as a model to investigate the underlying pathological mechanisms and develop therapeutic interventions. We compared directly the conventional OIR model (exposure to 75% O2 from postnatal day (P) 7 to P12) with an alternative, accelerated version (85% O2 from P8 to P11). We found that accelerated OIR induces similar pre-retinal neovascularization but greater retinal vascular regression that recovers more rapidly. The extent of retinal gliosis is similar but neuroretinal function, as measured by electroretinography, is better maintained in the accelerated model. We found no systemic or maternal morbidity in either model. Accelerated OIR offers a safe, reliable and more rapid alternative model in which pre-retinal neovascularization is similar but retinal vascular regression is greater.

  16. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    Science.gov (United States)

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  17. Parameter estimation of component reliability models in PSA model of Krsko NPP

    International Nuclear Information System (INIS)

    Jordan Cizelj, R.; Vrbanic, I.

    2001-01-01

    In the paper, the uncertainty analysis of component reliability models for independent failures is shown. The present approach for parameter estimation of component reliability models in NPP Krsko is presented. Mathematical approaches for different types of uncertainty analyses are introduced and used in accordance with some predisposed requirements. Results of the uncertainty analyses are shown in an example for time-related components. As the most appropriate uncertainty analysis proved the Bayesian estimation with the numerical estimation of a posterior, which can be approximated with some appropriate probability distribution, in this paper with lognormal distribution.(author)

  18. Reliability of Wind Turbine Components-Solder Elements Fatigue Failure

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    on the temperature mean and temperature range. Constant terms and model errors are estimated. The proposed methods are useful to predict damage values for solder joint in power electrical components. Based on the proposed methods it is described how to find the damage level for a given temperature loading profile....... The proposed methods are discussed for application in reliability assessment of Wind Turbine’s electrical components considering physical, model and measurement uncertainties. For further research it is proposed to evaluate damage criteria for electrical components due to the operational temperature...

  19. Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing

    NARCIS (Netherlands)

    Yazdan Mehr, M.; van Driel, W.D.; Zhang, G.Q.

    2015-01-01

    A methodology, based on accelerated degradation testing, is developed to predict the lifetime of remote phosphor plates used in solid-state lighting (SSL) applications. Both thermal stress and light intensity are used to accelerate degradation reaction in remote phosphor plates. A reliability model,

  20. Cooling intensification during quenching of power plant components - the way to increase reliability

    International Nuclear Information System (INIS)

    Borisov, I.A.

    1989-01-01

    To enchance the complex of mechanical properties and to increase operation time of large components of power facilities, regimes of accelerated cooling are developed. Results of heat treatment with accelerated cooling of turbine rotor of steel 26KhN3M2FAA, disks of turbine welded rotor of steel 20KhN2MFAA, components of steel 35KhN3MFA, are given. Special steels with carbon content less than 0.30% for details of power machine-building are developed

  1. System Reliability for LED-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy

    2014-04-07

    Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.

  2. Bayes approach in RDT using accelerated and long-term life data

    International Nuclear Information System (INIS)

    Bris, R.

    2000-01-01

    A common problem of reliability demonstration testing (RDT) is the magnitude of total time on test required to demonstrate reliability to the consumer's satisfaction, particularly in the case of high reliability components. One solution is the use of accelerated life testing (ALT) techniques. Another is to incorporate prior beliefs, engineering experience, or previous data into the testing framework. This may have the effect of reducing the amount of testing required in the RDT in order to reach a decision regarding conformance to the reliability specification. It is in this spirit that the use of a Bayesian approach can, in many cases, significantly reduce the amount of testing required. We demonstrate the use of this approach to estimate the acceleration factor in the Arrhenius reliability model based on long-term data given by a manufacturer of electronic components (EC). Using the Bayes approach we consider failure rate and acceleration factor to vary randomly according to some prior distributions. Bayes approach enables for a given type of technology the optimal choice of test plan for RDT under accelerated conditions when exacting reliability requirements must be met. These requirements are given by a hypothetical consumer by two different ways. The calculation of posterior consumer's risk is demonstrated in both cases. The test plans are optimum in that they take into account Var{λ vertical bar data}, posterior risk, E{λ vertical bar data}, Median λ or other percentiles of λ at data observed at the accelerated conditions. The test setup assumes testing of units with time censoring

  3. Assessing high reliability via Bayesian approach and accelerated tests

    International Nuclear Information System (INIS)

    Erto, Pasquale; Giorgio, Massimiliano

    2002-01-01

    Sometimes the assessment of very high reliability levels is difficult for the following main reasons: - the high reliability level of each item makes it impossible to obtain, in a reasonably short time, a sufficient number of failures; - the high cost of the high reliability items to submit to life tests makes it unfeasible to collect enough data for 'classical' statistical analyses. In the above context, this paper presents a Bayesian solution to the problem of estimation of the parameters of the Weibull-inverse power law model, on the basis of a limited number (say six) of life tests, carried out at different stress levels, all higher than the normal one. The over-stressed (i.e. accelerated) tests allow the use of experimental data obtained in a reasonably short time. The Bayesian approach enables one to reduce the required number of failures adding to the failure information the available a priori engineers' knowledge. This engineers' involvement conforms to the most advanced management policy that aims at involving everyone's commitment in order to obtain total quality. A Monte Carlo study of the non-asymptotic properties of the proposed estimators and a comparison with the properties of maximum likelihood estimators closes the work

  4. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  5. NDT Reliability - Final Report. Reliability in non-destructive testing (NDT) of the canister components

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, Mato; Takahashi, Kazunori; Mueller, Christina; Boehm, Rainer (BAM, Federal Inst. for Materials Research and Testing, Berlin (Germany)); Ronneteg, Ulf (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    This report describes the methodology of the reliability investigation performed on the ultrasonic phased array NDT system, developed by SKB in collaboration with Posiva, for inspection of the canisters for permanent storage of nuclear spent fuel. The canister is composed of a cast iron insert surrounded by a copper shell. The shell is composed of the tube and the lid/base which are welded to the tube after the fuel has been place, in the tube. The manufacturing process of the canister parts and the welding process are described. Possible defects, which might arise in the canister components during the manufacturing or in the weld during the welding, are identified. The number of real defects in manufactured components have been limited. Therefore the reliability of the NDT system has been determined using a number of test objects with artificial defects. The reliability analysis is based on the signal response analysis. The conventional signal response analysis is adopted and further developed before applied on the modern ultrasonic phased-array NDT system. The concept of multi-parameter a, where the response of the NDT system is dependent on more than just one parameter, is introduced. The weakness of use of the peak signal response in the analysis is demonstrated and integration of the amplitudes in the C-scan is proposed as an alternative. The calculation of the volume POD, when the part is inspected with more configurations, is also presented. The reliability analysis is supported by the ultrasonic simulation based on the point source synthesis method

  6. Imprecise system reliability and component importance based on survival signature

    International Nuclear Information System (INIS)

    Feng, Geng; Patelli, Edoardo; Beer, Michael; Coolen, Frank P.A.

    2016-01-01

    The concept of the survival signature has recently attracted increasing attention for performing reliability analysis on systems with multiple types of components. It opens a new pathway for a structured approach with high computational efficiency based on a complete probabilistic description of the system. In practical applications, however, some of the parameters of the system might not be defined completely due to limited data, which implies the need to take imprecisions of component specifications into account. This paper presents a methodology to include explicitly the imprecision, which leads to upper and lower bounds of the survival function of the system. In addition, the approach introduces novel and efficient component importance measures. By implementing relative importance index of each component without or with imprecision, the most critical component in the system can be identified depending on the service time of the system. Simulation method based on survival signature is introduced to deal with imprecision within components, which is precise and efficient. Numerical example is presented to show the applicability of the approach for systems. - Highlights: • Survival signature is a novel way for system reliability and component importance • High computational efficiency based on a complete description of system. • Include explicitly the imprecision, which leads to bounds of the survival function. • A novel relative importance index is proposed as importance measure. • Allows to identify critical components depending on the service time of the system.

  7. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  8. Advanced Test Accelerator (ATA) pulse power technology development

    International Nuclear Information System (INIS)

    Reginato, L.L.; Branum, D.; Cook, E.

    1981-01-01

    The Advanced Test Accelerator (ATA) is a pulsed linear induction accelerator with the following design parameters: 50 MeV, 10 kA, 70 ns, and 1 kHz in a ten-pulse burst. Acceleration is accomplished by means of 190 ferrite-loaded cells, each capable of maintaining a 250 kV voltage pulse for 70 ns across a 1-inch gap. The unique characteristic of this machine is its 1 kHz burst mode capability at very high currents. This paper dscribes the pulse power development program which used the Experimental Test Accelerator (ETA) technology as a starting base. Considerable changes have been made both electrically and mechanically in the pulse power components with special consideration being given to the design to achieve higher reliability. A prototype module which incorporates all the pulse power components has been built and tested for millions of shots. Prototype components and test results are described

  9. Optics Elements for Modeling Electrostatic Lenses and Accelerator Components: III. Electrostatic Deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    1999-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the computer code TRACE 3-D. TRACE 3-D is an envelope (matrix) code, which includes a linear space charge model, that was originally developed to model bunched beams in magnetic transport systems and radiofrequency (RF) accelerators. Several new optical models for a number of electrostatic lenses and accelerator columns have been developed recently that allow the code to be used for modeling beamlines and accelerators with electrostatic components. The new models include a number of options for: (1) Einzel lenses, (2) accelerator columns, (3) electrostatic prisms, and (4) electrostatic quadrupoles. A prescription for setting up the initial beam appropriate to modeling 2-D (continuous) beams has also been developed. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the modeling of cylindrical, spherical, and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low energy beamline at CAMS

  10. Design and fabrication of a eccentric wheels based motorised alignment mechanism for cylindrical accelerator components

    International Nuclear Information System (INIS)

    Mundra, G.; Jain, V.; Karmarkar, Mangesh; Kotaiah, S.

    2006-01-01

    Precision alignment mechanisms with long term stability are required for accelerator components. For some of the components motorised and remotely operable alignment mechanism are required. An eccentric wheel mechanism based alignment system is very much suitable for such application. One such alignment system is designed, a prototype is machined/fabricated for SFDTL type accelerating structure and preliminary trial experiments have been done. (author)

  11. Accelerator system for producing two-component beams for studies of interactive surface effects

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.; Ekern, R.; Hess, D.C.

    1977-01-01

    For studies of interactive surface effects caused by the simultaneous bombardment of targets by both chemically active and inactive ion species (e.g., D + and He + , respectively) a two beam component accelerator facility was placed in operation. One component, consisting of light ions (e.g., H, D, He) is accelerated by a 2-MV Van de Graaff accelerator which provides a mass analyzed and focussed beam for the energy range from approximately 100-keV to 2-MeV (for singly charged ions). The other component is a beam of light ions in the energy range from approximately 10-keV to 100-keV. This is furnished by a 100-kV dc accelerator system which provides a mass analyzed focussed beam. This beam is guided into the beam line of the Van de Graaff accelerator electrostatically, and with the aid of beam steerers it is made to be co-axial with the Van de Graaff generated beam. The angle of incidence becomes hereby a free parameter for the interaction of the mixed beams with a surface. For each beam component, current densities of 650 μA cm -2 on target can readily be obtained. In order to reduce carbon contamination of the irradiated targets significantly, stainless steel beam lines have been used together with a combination of turbomolecular pumps and ion-sublimation pumps.A total pressure of 2 to 3 x 10 -8 torr in the beam lines and of 2 x 10 -9 torr in the target chamber can be obtained readily. Experimental results on the surface damage of Ni bombarded simultaneously with He + and D + ions are presented. The importance of such studies of interactive surface effects for the controlled thermonuclear fusion program are discussed

  12. The numerical simulation of accelerator components

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.; Hanerfeld, H.

    1987-05-01

    The techniques of the numerical simulation of plasmas can be readily applied to problems in accelerator physics. Because the problems usually involve a single component ''plasma,'' and times that are at most, a few plasma oscillation periods, it is frequently possible to make very good simulations with relatively modest computation resources. We will discuss the methods and illustrate them with several examples. One of the more powerful techniques of understanding the motion of charged particles is to view computer-generated motion pictures. We will show several little movie strips to illustrate the discussions. The examples will be drawn from the application areas of Heavy Ion Fusion, electron-positron linear colliders and injectors for free-electron lasers. 13 refs., 10 figs., 2 tabs

  13. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information

    International Nuclear Information System (INIS)

    Wang, Lizhi; Pan, Rong; Li, Xiaoyang; Jiang, Tongmin

    2013-01-01

    Accelerated degradation testing (ADT) is a common approach in reliability prediction, especially for products with high reliability. However, oftentimes the laboratory condition of ADT is different from the field condition; thus, to predict field failure, one need to calibrate the prediction made by using ADT data. In this paper a Bayesian evaluation method is proposed to integrate the ADT data from laboratory with the failure data from field. Calibration factors are introduced to calibrate the difference between the lab and the field conditions so as to predict a product's actual field reliability more accurately. The information fusion and statistical inference procedure are carried out through a Bayesian approach and Markov chain Monte Carlo methods. The proposed method is demonstrated by two examples and the sensitivity analysis to prior distribution assumption

  14. Reliability Analysis of Fatigue Failure of Cast Components for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Hesam Mirzaei Rafsanjani

    2015-04-01

    Full Text Available Fatigue failure is one of the main failure modes for wind turbine drivetrain components made of cast iron. The wind turbine drivetrain consists of a variety of heavily loaded components, like the main shaft, the main bearings, the gearbox and the generator. The failure of each component will lead to substantial economic losses such as cost of lost energy production and cost of repairs. During the design lifetime, the drivetrain components are exposed to variable loads from winds and waves and other sources of loads that are uncertain and have to be modeled as stochastic variables. The types of loads are different for offshore and onshore wind turbines. Moreover, uncertainties about the fatigue strength play an important role in modeling and assessment of the reliability of the components. In this paper, a generic stochastic model for fatigue failure of cast iron components based on fatigue test data and a limit state equation for fatigue failure based on the SN-curve approach and Miner’s rule is presented. The statistical analysis of the fatigue data is performed using the Maximum Likelihood Method which also gives an estimate of the statistical uncertainties. Finally, illustrative examples are presented with reliability analyses depending on various stochastic models and partial safety factors.

  15. Reliability analysis of nuclear component cooling water system using semi-Markov process model

    International Nuclear Information System (INIS)

    Veeramany, Arun; Pandey, Mahesh D.

    2011-01-01

    Research highlights: → Semi-Markov process (SMP) model is used to evaluate system failure probability of the nuclear component cooling water (NCCW) system. → SMP is used because it can solve reliability block diagram with a mixture of redundant repairable and non-repairable components. → The primary objective is to demonstrate that SMP can consider Weibull failure time distribution for components while a Markov model cannot → Result: the variability in component failure time is directly proportional to the NCCW system failure probability. → The result can be utilized as an initiating event probability in probabilistic safety assessment projects. - Abstract: A reliability analysis of nuclear component cooling water (NCCW) system is carried out. Semi-Markov process model is used in the analysis because it has potential to solve a reliability block diagram with a mixture of repairable and non-repairable components. With Markov models it is only possible to assume an exponential profile for component failure times. An advantage of the proposed model is the ability to assume Weibull distribution for the failure time of components. In an attempt to reduce the number of states in the model, it is shown that usage of poly-Weibull distribution arises. The objective of the paper is to determine system failure probability under these assumptions. Monte Carlo simulation is used to validate the model result. This result can be utilized as an initiating event probability in probabilistic safety assessment projects.

  16. An adaptive neuro fuzzy model for estimating the reliability of component-based software systems

    Directory of Open Access Journals (Sweden)

    Kirti Tyagi

    2014-01-01

    Full Text Available Although many algorithms and techniques have been developed for estimating the reliability of component-based software systems (CBSSs, much more research is needed. Accurate estimation of the reliability of a CBSS is difficult because it depends on two factors: component reliability and glue code reliability. Moreover, reliability is a real-world phenomenon with many associated real-time problems. Soft computing techniques can help to solve problems whose solutions are uncertain or unpredictable. A number of soft computing approaches for estimating CBSS reliability have been proposed. These techniques learn from the past and capture existing patterns in data. The two basic elements of soft computing are neural networks and fuzzy logic. In this paper, we propose a model for estimating CBSS reliability, known as an adaptive neuro fuzzy inference system (ANFIS, that is based on these two basic elements of soft computing, and we compare its performance with that of a plain FIS (fuzzy inference system for different data sets.

  17. IAEA's experience in compiling a generic component reliability data base

    International Nuclear Information System (INIS)

    Tomic, B.; Lederman, L.

    1988-01-01

    Reliability data are an essential part of probabilistic safety assessment. The quality of data can determine the quality of the study as a whole. It is obvious that component failure data originated from the plant being analyzed would be most appropriate. However, in few cases complete reliance on plant experience is possible, mainly because of the rather limited operating experience. Nuclear plants, although of different design, often use fairly similar components, so some of the experience could be combined and transferred from one plant to another. In addition information about component failures is available also from experts with knowledge on component design, manufacturing and operation. That bring us to the importance of assessing generic data. (Generic is meant to be everything that is not plant specific regarding the plant being analyzed). The generic data available in the open literature, can be divided in three broad categories. The first one includes data base used in previous analysis. These can be plant specific or updated from generic with plant specific information (latter case deserve special attention). The second one is based on compilation of plants' operating experience usually based on some kind of event reporting system. The third category includes data sources based on expert opinions (single or aggregate) or combination of expert opinions and other nuclear and non-nuclear experience. This paper reflects insights gained in compiling data from generic data sources and highlights advantages and pitfalls of using generic component reliability data in PSAs

  18. Reliability, availability, and quality assurance considerations for fusion components

    International Nuclear Information System (INIS)

    Buende, R.

    1995-01-01

    The complexity of magnetic confinement machines has been a matter of concern in developing fusion power plants as electricity generating stations because it might reduce plant availability. A comprehensive reliability and availability (R and A) programme to determine the availability of a next step fusion machine was performed during definition and conceptual design of the Next European Torus. In addition to giving an overview of the expected contributions to unavailability of the various components, this activity identified the basic approach to be taken to specify and to achieve necessary improvements. This paper, after giving some basic definitions, describes the essentials of the R and A programme, its results, and the guidelines derived for further work towards a sufficiently reliable fusion plant. These guidelines refer to improvement of the reliability database and the quality assurance to be performed at the design stage of a next step machine. (orig.)

  19. A study on the reliability evaluation of shot peened aluminium alloy using accelerated life test

    International Nuclear Information System (INIS)

    Nam, Ji Hun; Cheong, Seong Kyun; Kang, Min Woo

    2006-01-01

    In this paper, the concept of accelerated life test, which is a popular research field nowadays, is applied to the shot peened material. To predict the efficient and exact room temperature fatigue characteristics from the high temperature fatigue data, the adequate accelerated model is investigated. Ono type rotary bending fatigue tester and high temperature chamber were used for the experiment. Room temperature fatigue lives were predicted by applying accelerated models and doing reliability evaluation. Room temperature fatigue tests were accomplished to check the effectiveness of predicted data and the adequate accelerated life test models were presented by considering errors. Experimental result using Arrhenius model, fatigue limit obtain almost 5.45% of error, inverse power law has about 1.36% of error, so we found that inverse power law is applied well to temperature-life relative of shot peended material

  20. Radiations effects on polymeric materials used in CERN particles accelerators

    International Nuclear Information System (INIS)

    Tavlet, M.

    1997-01-01

    For fundamental research on the basis structure of matter, the European Organization for Nuclear Research (CERN) operates several high-energy particle accelerators around which materials and components are exposed to ionizing radiation. To ensure a safe and reliable operation, the radiation behaviour of most of the components is systematically tested prior to their selection. The long-term radiation-test programme allows to assess the component lifetime in the environment or our accelerators where the absorbed doses are continuously recorded. This article presents organic materials in use at CERN, and some recent results are given on their behaviour under irradiation. (authors)

  1. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    International Nuclear Information System (INIS)

    Zhang, Chunhua; Lu, Xiang; Tan, Yuanyuan; Wang, Yashun

    2015-01-01

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  2. Long-Term Reliability of SiGe/Si HBTs From Accelerated Lifetime Testing

    Science.gov (United States)

    Bhattacharya, Pallab

    2001-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si(0.7)Ge(0.3)/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175 C-275 C. The transistors (with 5x20 sq micron emitter area) have DC current gains approx. 40-50 and f(sub T) and f(sub max) of up to 22 GHz and 25 GHz, respectively. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REED has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of these devices at room temperature under 1.35 x 10(exp 4) A/sq cm current density operation is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation.

  3. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    Science.gov (United States)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  4. The Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.

    1993-04-01

    During the past several years, there has been tremendous progress the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report oil the status of the design, component development, and construction of the NLC Test Accelerator

  5. Estimating The Reliability of the Lawrence Livermore National Laboratory (LLNL) Flash X-ray (FXR) Machine

    International Nuclear Information System (INIS)

    Ong, M M; Kihara, R; Zentler, J M; Kreitzer, B R; DeHope, W J

    2007-01-01

    At Lawrence Livermore National Laboratory (LLNL), our flash X-ray accelerator (FXR) is used on multi-million dollar hydrodynamic experiments. Because of the importance of the radiographs, FXR must be ultra-reliable. Flash linear accelerators that can generate a 3 kA beam at 18 MeV are very complex. They have thousands, if not millions, of critical components that could prevent the machine from performing correctly. For the last five years, we have quantified and are tracking component failures. From this data, we have determined that the reliability of the high-voltage gas-switches that initiate the pulses, which drive the accelerator cells, dominates the statistics. The failure mode is a single-switch pre-fire that reduces the energy of the beam and degrades the X-ray spot-size. The unfortunate result is a lower resolution radiograph. FXR is a production machine that allows only a modest number of pulses for testing. Therefore, reliability switch testing that requires thousands of shots is performed on our test stand. Study of representative switches has produced pre-fire statistical information and probability distribution curves. This information is applied to FXR to develop test procedures and determine individual switch reliability using a minimal number of accelerator pulses

  6. Assuring the reliability of structural components - experimental data and non-destructive examination requirements

    International Nuclear Information System (INIS)

    Lucia, A.C.

    1984-01-01

    The probability of failure of a structural component can be estimated by either statistical methods or a probabilistic structural reliability approach (where the failure is seen as a level crossing of a damage stochastic process which develops in space and in time). The probabilistic approach has the advantage that it makes available not only an absolute value of the failure probability but also a lot of additional information. The disadvantage of the probabilistic approach is its complexity. It is discussed for the following situations: reliability of a structural component, material properties, data for fatigue crack growth evaluation, a bench mark exercise on reactor pressure vessel failure probability computation, and non-destructive examination for assuring a given level of structural reliability. (U.K.)

  7. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  8. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  9. Reliability enhancement of Navier-Stokes codes through convergence acceleration

    Science.gov (United States)

    Merkle, Charles L.; Dulikravich, George S.

    1995-01-01

    Methods for enhancing the reliability of Navier-Stokes computer codes through improving convergence characteristics are presented. The improving of these characteristics decreases the likelihood of code unreliability and user interventions in a design environment. The problem referred to as a 'stiffness' in the governing equations for propulsion-related flowfields is investigated, particularly in regard to common sources of equation stiffness that lead to convergence degradation of CFD algorithms. Von Neumann stability theory is employed as a tool to study the convergence difficulties involved. Based on the stability results, improved algorithms are devised to ensure efficient convergence in different situations. A number of test cases are considered to confirm a correlation between stability theory and numerical convergence. The examples of turbulent and reacting flow are presented, and a generalized form of the preconditioning matrix is derived to handle these problems, i.e., the problems involving additional differential equations for describing the transport of turbulent kinetic energy, dissipation rate and chemical species. Algorithms for unsteady computations are considered. The extension of the preconditioning techniques and algorithms derived for Navier-Stokes computations to three-dimensional flow problems is discussed. New methods to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential equtions are developed, with a special emphasis on the acceleration of convergence on highly clustered grids.

  10. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Directory of Open Access Journals (Sweden)

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  11. Particle-beam accelerators for radiotherapy and radioisotopes

    International Nuclear Information System (INIS)

    Boyd, T.J.; Crandall, K.R.; Hamm, R.W.

    1981-01-01

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  12. Nonparametric predictive inference for reliability of a k-out-of-m:G system with multiple component types

    International Nuclear Information System (INIS)

    Aboalkhair, Ahmad M.; Coolen, Frank P.A.; MacPhee, Iain M.

    2014-01-01

    Nonparametric predictive inference for system reliability has recently been presented, with specific focus on k-out-of-m:G systems. The reliability of systems is quantified by lower and upper probabilities of system functioning, given binary test results on components, taking uncertainty about component functioning and indeterminacy due to limited test information explicitly into account. Thus far, systems considered were series configurations of subsystems, with each subsystem i a k i -out-of-m i :G system which consisted of only one type of components. Key results are briefly summarized in this paper, and as an important generalization new results are presented for a single k-out-of-m:G system consisting of components of multiple types. The important aspects of redundancy and diversity for such systems are discussed. - Highlights: • New results on nonparametric predictive inference for system reliability. • Prediction of system reliability based on test data for components. • New insights on system redundancy optimization and diversity. • Components that appear inferior in tests may be included to enhance redundancy

  13. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  14. Development of Power System for Medium Energy Accelerator

    International Nuclear Information System (INIS)

    Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Seol, Kyung Tae; Jang, Ji Ho; Cho, Yong Sub; Hong, In Seok; Kim, Kyung Ryul

    2008-05-01

    The main goal of the studies are to develop a power supply system used for 100MeV proton accelerator and to operate 20MeV accelerator which has been installed in KAERI site. The 100MeV proton accelerator uses RF cavity to accelerate beams and need RF amplifier, klystron. To operate the klystron, a high power pulse power supply is required and the power supply system should have high quality because the reliability of the power supply has critical impact on the overall reliability of accelerator system. Therefore, high power pulse power system and related technology development are inevitable for 100MeV accelerator system development. 20MeV accelerator system has been developed and installed in KAERI site, which will be used as an injector for 100MeV accelerator and supply 20MeV beam to users. A study on the 20MeV accelerator characteristics should be performed to operate the machine efficiently. In addition, this machine can be used as a test bench for developing the 100MeV accelerator components. Therefore, not only the hardware so called 'high voltage power supply', but the related technology of the high quality high voltage power system and man power can be obtained from the results of this studies. The test results of the 20MeV accelerator can be utilized as a basis for efficient operation of 100MeV accelerator and these are the ultimate objective and necessities of the study

  15. Reliability Analysis of 6-Component Star Markov Repairable System with Spatial Dependence

    Directory of Open Access Journals (Sweden)

    Liying Wang

    2017-01-01

    Full Text Available Star repairable systems with spatial dependence consist of a center component and several peripheral components. The peripheral components are arranged around the center component, and the performance of each component depends on its spatial “neighbors.” Vector-Markov process is adapted to describe the performance of the system. The state space and transition rate matrix corresponding to the 6-component star Markov repairable system with spatial dependence are presented via probability analysis method. Several reliability indices, such as the availability, the probabilities of visiting the safety, the degradation, the alert, and the failed state sets, are obtained by Laplace transform method and a numerical example is provided to illustrate the results.

  16. Concept of control and modifying systems of accelerator components; Kontseptsiya sistem avtomatizatsii kontrolya i upravleniya

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, K A; Chepurnov, A S; Shumakov, A V [NNIYaF MGU, Moskva (Russian Federation)

    1996-12-31

    Paper considers the main trends of development of automated control and monitoring systems of accelerator components. Application of communication ring structures will enable to design highly efficient object-oriented systems of automation of research and process components. 5 refs.

  17. Accelerated life assessment of coating on the radar structure components in coastal environment.

    Science.gov (United States)

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  18. Reliability Assessment of Offshore Wind Turbines Considering Faults of Electrical / Mechanical Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    For offshore wind turbines, the cost contribution to Cost of Energy from inspections and Operation & Maintenance can be substantial, and can be expected to increase when wind farms are placed at deeper water depths, further from the coast and in more harsh environments. Estimates of the reliability...... is considered and related to reliability estimation by taking into account faults e.g. due to failure of an electrical component or loss of grid....

  19. Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution

    International Nuclear Information System (INIS)

    Kim, Heungseob; Kim, Pansoo

    2017-01-01

    This research paper presents practical stochastic models for designing and analyzing the time-dependent reliability of nonrepairable systems. The models are formulated for nonrepairable systems with heterogeneous components having phase-type time-to-failure distributions by a structured continuous time Markov chain (CTMC). The versatility of the phase-type distributions enhances the flexibility and practicality of the systems. By virtue of these benefits, studies in reliability engineering can be more advanced than the previous studies. This study attempts to solve a redundancy allocation problem (RAP) by using these new models. The implications of mixing components, redundancy levels, and redundancy strategies are simultaneously considered to maximize the reliability of a system. An imperfect switching case in a standby redundant system is also considered. Furthermore, the experimental results for a well-known RAP benchmark problem are presented to demonstrate the approximating error of the previous reliability function for a standby redundant system and the usefulness of the current research. - Highlights: • Phase-type time-to-failure distribution is used for components. • Reliability model for nonrepairable system is developed using Markov chain. • System is composed of heterogeneous components. • Model provides the real value of standby system reliability not an approximation. • Redundancy allocation problem is used to show usefulness of this model.

  20. An accelerated stress testing program for determining the reliability sensitivity of silicon solar cells to encapsulation and metallization systems

    Science.gov (United States)

    Lathrop, J. W.; Davis, C. W.; Royal, E.

    1982-01-01

    The use of accelerated testing methods in a program to determine the reliability attributes of terrestrial silicon solar cells is discussed. Different failure modes are to be expected when cells with and without encapsulation are subjected to accelerated testing and separate test schedules for each are described. Unencapsulated test cells having slight variations in metallization are used to illustrate how accelerated testing can highlight different diffusion related failure mechanisms. The usefulness of accelerated testing when applied to encapsulated cells is illustrated by results showing that moisture related degradation may be many times worse with some forms of encapsulation than with no encapsulation at all.

  1. Predicting Induced Radioactivity at High Energy Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fasso, Alberto

    1999-08-27

    Radioactive nuclides are produced at high-energy electron accelerators by different kinds of particle interactions with accelerator components and shielding structures. Radioactivity can also be induced in air, cooling fluids, soil and groundwater. The physical reactions involved include spallations due to the hadronic component of electromagnetic showers, photonuclear reactions by intermediate energy photons and low-energy neutron capture. Although the amount of induced radioactivity is less important than that of proton accelerators by about two orders of magnitude, reliable methods to predict induced radioactivity distributions are essential in order to assess the environmental impact of a facility and to plan its decommissioning. Conventional techniques used so far are reviewed, and a new integrated approach is presented, based on an extension of methods used at proton accelerators and on the unique capability of the FLUKA Monte Carlo code to handle the whole joint electromagnetic and hadronic cascade, scoring residual nuclei produced by all relevant particles. The radiation aspects related to the operation of superconducting RF cavities are also addressed.

  2. PACMAN Project: A New Solution for the High-accuracy Alignment of Accelerator Components

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalán Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon; Modena, Michele; Novotny, Peter; Russenschuck, Stephan; Sanz, Claude; Severino, Giordana; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia

    2016-01-01

    The beam alignment requirements for the next generation of lepton colliders have become increasingly challenging. As an example, the alignment requirements for the three major collider components of the CLIC linear collider are as follows. Before the first beam circulates, the Beam Position Monitors (BPM), Accelerating Structures (AS)and quadrupoles will have to be aligned up to 10 μm w.r.t. a straight line over 200 m long segments, along the 20 km of linacs. PACMAN is a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale. It is an Innovative Doctoral Program, funded by the EU and hosted by CERN, providing high quality training to 10 Early Stage Researchers working towards a PhD thesis. The technical aim of the project is to improve the alignment accuracy of the CLIC components by developing new methods and tools addressing several steps of alignment simultaneously, to gain time and accuracy. The tools and methods developed will be validated on a test bench. This paper pr...

  3. Paper-Less CAD/CAM For Accelerator Components

    International Nuclear Information System (INIS)

    Franks, R M; Alford, O; Bertolini, L R

    2001-01-01

    Computer-aided design and manufacture (CAD/CAM) have enabled advances in the design and manufacture of many accelerator components, though government procurement rules tend to inhibit its use. We developed and executed a method that provides adequate documentation for the procurement process, industrial vendor manufacturing processes, and laboratory installation activities. We detail our experiences in the design and manufacture of 60 separate and unique PEP-II Low Energy Ring Interaction Region vacuum chambers totaling ∼ 140m in length as an example of how we used this technique, reducing design effort and manufacturing risk while streamlining the production process. We provide ''lessons learned'' to better implement and execute the process in subsequent iterations. We present our study to determine the estimated savings in the design and production of the Spallation Neutron Source room temperature linac if this process were utilized

  4. Improving power output of inertial energy harvesters by employing principal component analysis of input acceleration

    Science.gov (United States)

    Smilek, Jan; Hadas, Zdenek

    2017-02-01

    In this paper we propose the use of principal component analysis to process the measured acceleration data in order to determine the direction of acceleration with the highest variance on given frequency of interest. This method can be used for improving the power generated by inertial energy harvesters. Their power output is highly dependent on the excitation acceleration magnitude and frequency, but the axes of acceleration measurements might not always be perfectly aligned with the directions of movement, and therefore the generated power output might be severely underestimated in simulations, possibly leading to false conclusions about the feasibility of using the inertial energy harvester for the examined application.

  5. Estimation of acceptable beam trip frequencies of accelerators for ADS and comparison with performances of existing accelerators

    International Nuclear Information System (INIS)

    Takei, Hayanori; Tsujimoto, Kazufumi; Nishihara, Kenji; Furukawa, Kazuro; Yano, Yoshiharu; Ogawa, Yujiro; Oigawa, Hiroyuki

    2009-09-01

    Frequent beam trips as experienced in existing high power proton accelerators may cause thermal fatigue problems in ADS components which may lead to degradation of their structural integrity and reduction of their lifetime. Thermal transient analyses were performed to investigate the effects of beam trips on the reactor components, with the objective of formulating ADS design that had higher engineering possibilities and determining the requirements for accelerator reliability. These analyses were made on the thermal responses of four parts of the reactor components; the beam window, the cladding tube, the inner barrel and the reactor vessel. Our results indicated that the acceptable frequency of beam trips ranged from 50 to 2x10 4 times per year depending on the beam trip duration. As the beam trips for durations exceeding five minutes were assumed to make the plant shut down and restart, the plant availability was estimated to be 70%. In order to consider measures to reduce the frequency of beam trips on the high power accelerator for ADS, we compared the acceptable frequency of beam trips with the operation data of existing accelerators. The result of this comparison showed that for typical conditions the beam trip frequency for durations of 10 seconds or less was within the acceptable level, while that exceeding five minutes should be reduced to about 1/30 to satisfy the thermal stress conditions. (author)

  6. Examples of fatigue lifetime and reliability evaluation of larger wind turbine components

    DEFF Research Database (Denmark)

    Tarp-Johansen, N.J.

    2003-01-01

    This report is one out of several that constitute the final report on the ELSAM funded PSO project “Vindmøllekomponenters udmattelsesstyrke og levetid”, project no. 2079, which regards the lifetime distribution of larger wind turbine components in ageneric turbine that has real life dimensions....... Though it was the initial intention of the project to consider only the distribution of lifetimes the work reported in this document provides also calculations of reliabilities and partial load safetyfactors under specific assumptions about uncertainty sources, as reliabilities are considered...

  7. Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells

    Science.gov (United States)

    Lathrop, J. W.; Prince, J. L.

    1980-04-01

    Three tasks were undertaken to investigate reliability attributes of terrestrial solar cells: (1) a study of the electrical behavior of cells in the second (reverse) quadrant; (2) the accelerated stress testing of three new state-of-the-art cells; and (3) the continued bias-temperature testing of four block 2 type silicon cells at 78 C and 135 C. Electrical characteristics measured in the second quadrant were determined to be a function of the cell's thermal behavior with breakdown depending on the initiation of localized heating. This implied that high breakdown cells may be more fault tolerant when forced to operate in the second quadrant, a result contrary to conventional thinking. The accelerated stress tests used in the first (power) quadrant were bias-temperature, bias-temperature-humidity, temperature-humidity, thermal shock, and thermal cycle. The new type cells measured included an EFG cell, a polycrystalline cell, and a Czochralski cell. Significant differences in the response to the various tests were observed between cell types. A microprocessed controlled, short interval solar cell tester was designed and construction initiated on a prototype.

  8. Reliability and microstructure of lead-free solder joints in industrial electronics after accelerated thermal aging

    NARCIS (Netherlands)

    Scaltro, F.; Biglari, M.H.; Kodentsov, A.; Yakovleva, O.; Brom, E.

    2009-01-01

    The reliability of lead-free (LF) solder joints in surface-mounted device components (SMD) has been investigated after thermo-cycle testing. Kirkendall voids have been observed at the interface component/solder together with the formation of fractures. The evolution, the morphology and the elemental

  9. The prediction of reliability and residual life of reactor pressure components

    International Nuclear Information System (INIS)

    Nemec, J.; Antalovsky, S.

    1978-01-01

    The paper deals with the problem of PWR pressure components reliability and residual life evaluation and prediction. A physical model of damage cumulation which serves as a theoretical basis for all considerations presents two major aspects. The first one describes the dependence of the degree of damage in the crack leading-edge in pressure components on the reactor system load-time history, i.e. on the number of transient loads. Both stages, fatigue crack initiation and growth through the wall until the critical length is reached, are investigated. The crack is supposed to initiate at the flaws in a strength weld joint or in the bimetallic weld of the base ferritic steel and the austenitic stainless overlay cladding. The growth rates of developed cracks are analysed in respect to different load-time histories. Important cyclic properties of some steels are derived from the low-cycle fatigue theory. The second aspect is the load-time history-dependent process of precipitation, deformation and radiation aging, characterized entirely by the critical crack-length value mentioned above. The fracture point, defined by the equation ''crack-length=critical value'' and hence the residual life, can be evaluated using this model and verified by in-service inspection. The physical model described is randomized by considering all the parameters of the model as random. Monte Carlo methods are applied and fatigue crack initiation and growth is simulated. This permits evaluation of the reliability and residual life of the component. The distributions of material and load-time history parameters are needed for such simulation. Both the deterministic and computer-simulated probabilistic predictions of reliability and residual life are verified by prior-to-failure sequential testing of data coming from in-service NDT periodical inspections. (author)

  10. Reliability and integrity management program for PBMR helium pressure boundary components - HTR2008-58036

    International Nuclear Information System (INIS)

    Fleming, K. N.; Gamble, R.; Gosselin, S.; Fletcher, J.; Broom, N.

    2008-01-01

    The purpose of this paper is to present the results of a study to establish strategies for the reliability and integrity management (RIM) of passive metallic components for the PBMR. The RIM strategies investigated include design elements, leak detection and testing approaches, and non-destructive examinations. Specific combinations of strategies are determined to be necessary and sufficient to achieve target reliability goals for passive components. This study recommends a basis for the RIM program for the PBMR Demonstration Power Plant (DPP) and provides guidance for the development by the American Society of Mechanical Engineers (ASME) of RIM requirements for Modular High Temperature Gas-Cooled Reactors (MHRs). (authors)

  11. Increasing the reliability of the fluid/crystallized difference score from the Kaufman Adolescent and Adult Intelligence Test with reliable component analysis.

    Science.gov (United States)

    Caruso, J C

    2001-06-01

    The unreliability of difference scores is a well documented phenomenon in the social sciences and has led researchers and practitioners to interpret differences cautiously, if at all. In the case of the Kaufman Adult and Adolescent Intelligence Test (KAIT), the unreliability of the difference between the Fluid IQ and the Crystallized IQ is due to the high correlation between the two scales. The consequences of the lack of precision with which differences are identified are wide confidence intervals and unpowerful significance tests (i.e., large differences are required to be declared statistically significant). Reliable component analysis (RCA) was performed on the subtests of the KAIT in order to address these problems. RCA is a new data reduction technique that results in uncorrelated component scores with maximum proportions of reliable variance. Results indicate that the scores defined by RCA have discriminant and convergent validity (with respect to the equally weighted scores) and that differences between the scores, derived from a single testing session, were more reliable than differences derived from equal weighting for each age group (11-14 years, 15-34 years, 35-85+ years). This reliability advantage results in narrower confidence intervals around difference scores and smaller differences required for statistical significance.

  12. Lifetime prediction and reliability estimation methodology for Stirling-type pulse tube refrigerators by gaseous contamination accelerated degradation testing

    Science.gov (United States)

    Wan, Fubin; Tan, Yuanyuan; Jiang, Zhenhua; Chen, Xun; Wu, Yinong; Zhao, Peng

    2017-12-01

    Lifetime and reliability are the two performance parameters of premium importance for modern space Stirling-type pulse tube refrigerators (SPTRs), which are required to operate in excess of 10 years. Demonstration of these parameters provides a significant challenge. This paper proposes a lifetime prediction and reliability estimation method that utilizes accelerated degradation testing (ADT) for SPTRs related to gaseous contamination failure. The method was experimentally validated via three groups of gaseous contamination ADT. First, the performance degradation model based on mechanism of contamination failure and material outgassing characteristics of SPTRs was established. Next, a preliminary test was performed to determine whether the mechanism of contamination failure of the SPTRs during ADT is consistent with normal life testing. Subsequently, the experimental program of ADT was designed for SPTRs. Then, three groups of gaseous contamination ADT were performed at elevated ambient temperatures of 40 °C, 50 °C, and 60 °C, respectively and the estimated lifetimes of the SPTRs under normal condition were obtained through acceleration model (Arrhenius model). The results show good fitting of the degradation model with the experimental data. Finally, we obtained the reliability estimation of SPTRs through using the Weibull distribution. The proposed novel methodology enables us to take less than one year time to estimate the reliability of the SPTRs designed for more than 10 years.

  13. Planned reliability in the transport and installation of large nuclear components

    International Nuclear Information System (INIS)

    Bieler, L.

    1988-01-01

    The transport and installation of heavy and bulky large components require detailed planning of all jobs and activities, trained and experienced personnel and corresponding technical equipment for reliable and quality-assured implementation. The correct approach to the planning and implementation of such transports and installations has been confirmed by years of successful performance of these jobs e.g. in reactor pressure vessels and steam generators for nuclear power plants. Large components for nuclear power plants are truly extreme examples but will be all the better suited for demonstrating the problems inherent in transport and installation. (orig.) [de

  14. Evolving inspection technologies for reliable condition assessment of components and plants

    International Nuclear Information System (INIS)

    Baldev Raj

    1994-01-01

    Condition assessment of components and plants are being done regularly in many an industry. The methodologies adopted are being continuously refined. However, each of these methodologies are being applied in isolation, without realizing the synergistic advantage we derive when a global approach is taken for condition assessment. Developments in a variety of fields, that have a definite bearing on the reliability of condition assessment, are not applied (or even thought that they could be applied) together. The possible impact of evolving technologies in enhancing the efficiency of condition assessment of components and plants are discussed. (author). 11 refs

  15. Manufacturing of ultra high vacuum compatible accelerator and laser components

    International Nuclear Information System (INIS)

    Mundra, G.; Sharma, S.D.; Bhatnagar, V.

    2015-01-01

    For carrying out advanced basic research, Raja Ramanna Centre for Advanced Technology, (RRCAT) had set up 450 MeV and 2.5 GeV Synchrotron Radiation Sources. Many beamlines are being utilized by researchers from various universities and institutions of the country. Centre has also developed various lasers that find application in various front line areas like medicine, industry and research. To cater the need of manufacturing for these programs, an advanced and versatile manufacturing development center was established, called Accelerator Components Design and Fabrication Section (ACDFS),

  16. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: raissaomarques@gmail.com, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  17. Human reliability in non-destructive inspections of nuclear power plant components: modeling and analysis

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Soares, Wellington Antonio; Marques, Raíssa Oliveira; Silva Júnior, Silvério Ferreira da; Raso, Amanda Laureano

    2017-01-01

    Non-destructive inspection (NDI) is one of the key elements in ensuring quality of engineering systems and their safe use. NDI is a very complex task, during which the inspectors have to rely on their sensory, perceptual, cognitive, and motor skills. It requires high vigilance once it is often carried out on large components, over a long period of time, and in hostile environments and restriction of workplace. A successful NDI requires careful planning, choice of appropriate NDI methods and inspection procedures, as well as qualified and trained inspection personnel. A failure of NDI to detect critical defects in safety-related components of nuclear power plants, for instance, may lead to catastrophic consequences for workers, public and environment. Therefore, ensuring that NDI methods are reliable and capable of detecting all critical defects is of utmost importance. Despite increased use of automation in NDI, human inspectors, and thus human factors, still play an important role in NDI reliability. Human reliability is the probability of humans conducting specific tasks with satisfactory performance. Many techniques are suitable for modeling and analyzing human reliability in NDI of nuclear power plant components. Among these can be highlighted Failure Modes and Effects Analysis (FMEA) and THERP (Technique for Human Error Rate Prediction). The application of these techniques is illustrated in an example of qualitative and quantitative studies to improve typical NDI of pipe segments of a core cooling system of a nuclear power plant, through acting on human factors issues. (author)

  18. Designing reliability into accelerators

    International Nuclear Information System (INIS)

    Hutton, A.

    1992-08-01

    For the next generation of high performance, high average luminosity colliders, the ''factories,'' reliability engineering must be introduced right at the inception of the project and maintained as a central theme throughout the project. There are several aspects which will be addressed separately: Concept; design; motivation; management techniques; and fault diagnosis

  19. Centralized Reliability Data Organization (CREDO) assessment of critical component unavailability in liquid metal reactors

    International Nuclear Information System (INIS)

    Koger, K.H.; Haire, M.J.; Humphrys, B.L.; Manneschmidt, J.F.; Setoguchi, K.; Nakai, R.

    1988-01-01

    The Centralized Reliability Data Organization (CREDO) is the largest repository of liquid metal reactor (LMR) component reliability data in the world. It is jointly sponsored by the US Dept. of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. The CREDO data base contains information on a population of more than 20,000 components and approximately 1500 event records. A conservative estimation is that the total component operating hours is approaching 2.2 billion hours. The work reported here focuses on the availability information contained in CREDO and the development of availability critical items lists. That is, individual components are ranked in prioritized lists from worst to best performers from an availability standpoint. Availability as used here is an inherent characteristics of the component and is not necessarily related to plant operability. A major observation is that a few components have a much higher unavailability factor than the average. The top fifteen components contribute 93%, 77%, and 87% of the total system unavailability for EBR-II, FFTF, and JOYO respectively. Critical components common to all three sites are mechanical pumps and electromagnetic pumps. Application of resources to these components with the highest unavailability will have the greatest effect on overall availability. All three sites demonstrate that low maintainability (i.e., long repair times), rather than unreliability (i.e., high failure rates), are the main contributors, by about a two-to-one margin, to liquid metal system unavailability

  20. Reliability modeling of digital component in plant protection system with various fault-tolerant techniques

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kang, Hyun Gook; Kim, Hee Eun; Lee, Seung Jun; Seong, Poong Hyun

    2013-01-01

    Highlights: • Integrated fault coverage is introduced for reflecting characteristics of fault-tolerant techniques in the reliability model of digital protection system in NPPs. • The integrated fault coverage considers the process of fault-tolerant techniques from detection to fail-safe generation process. • With integrated fault coverage, the unavailability of repairable component of DPS can be estimated. • The new developed reliability model can reveal the effects of fault-tolerant techniques explicitly for risk analysis. • The reliability model makes it possible to confirm changes of unavailability according to variation of diverse factors. - Abstract: With the improvement of digital technologies, digital protection system (DPS) has more multiple sophisticated fault-tolerant techniques (FTTs), in order to increase fault detection and to help the system safely perform the required functions in spite of the possible presence of faults. Fault detection coverage is vital factor of FTT in reliability. However, the fault detection coverage is insufficient to reflect the effects of various FTTs in reliability model. To reflect characteristics of FTTs in the reliability model, integrated fault coverage is introduced. The integrated fault coverage considers the process of FTT from detection to fail-safe generation process. A model has been developed to estimate the unavailability of repairable component of DPS using the integrated fault coverage. The new developed model can quantify unavailability according to a diversity of conditions. Sensitivity studies are performed to ascertain important variables which affect the integrated fault coverage and unavailability

  1. Design, construction, qualification and reliability of main components, from the safety aspect

    International Nuclear Information System (INIS)

    Crette, J.P.

    1982-01-01

    In FRANCE, the design and construction of reliable components, which condition the safe operation and availability of breeder plants, is based on the experience acquired during the operation of RAPSODIE, PHENIX and the various test facilities. The technical progress achieved on all main components is illustrated by examples taken from the CREYS-MALVILLE plant. In parallel with the development of these components, an extensive program covering research, development and the definition of design, construction and inspection rules, together with scheduling and quality assurance methods, prepares the industrialization of this reactor system, in compliance with the rules and recommendations issued by the pertinent safety authorities

  2. A review of the reliability analysis of LPRS including the components repairs

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    The reliability analysis of low pressure recirculation system in its long-term recicurlation phase before 24hs is presented. The possibility of repairing the components out of the containment is included. A general revision of analysis of the short-term recirculation phase is done. (author) [pt

  3. Quality and reliability assurance of electronic components in small-scale and middle-sized plants

    International Nuclear Information System (INIS)

    Becker, P.

    1982-01-01

    Electronic components are forever finding their way into new fields of application and have an ever increasing influence on the quality and reliability of the products in which they are used. The user has very negligible influence on the production methods used for the manufacture of the components and the element properties. (orig.) [de

  4. Resiliency as a component importance measure in network reliability

    International Nuclear Information System (INIS)

    Whitson, John C.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This paper seeks to define the concept of resiliency as a component importance measure related to network reliability. Resiliency can be defined as a composite of: (1) the ability of a network to provide service despite external failures and (2) the time to restore service when in the presence of such failures. Although, Resiliency has been extensively studied in different research areas, this paper will study the specific aspects of quantifiable network resiliency when the network is experiencing potential catastrophic failures from external events and/or influences, and when it is not known a priori which specific components within the network will fail. A formal definition for Category I resiliency is proposed and a step-by-step approach based on Monte-Carlo simulation to calculate it is defined. To illustrate the approach, two-terminal networks with varying degrees of redundancy, have been considered. The results obtained for test networks show that this new quantifiable concept of resiliency provides insight into the performance and topology of the network. Future use for this work could include methods for safeguarding critical network components and optimizing the use of redundancy as a technique to improve network resiliency.

  5. The selection of field component reliability data for use in nuclear safety studies

    International Nuclear Information System (INIS)

    Coxson, B.A.; Tabaie, Mansour

    1990-01-01

    The paper reviews the user requirements for field component failure data in nuclear safety studies, and the capability of various data sources to satisfy these requirements. Aspects such as estimating the population of items exposed to failure, incompleteness, and under-reporting problems are discussed. The paper takes as an example the selection of component reliability data for use in the Pre-Operational Safety Report (POSR) for Sizewell 'B' Power Station, where field data has in many cases been derived from equipment other than that to be procured and operated on site. The paper concludes that the main quality sought in the available data sources for such studies is the ability to examine failure narratives in component reliability data systems for equipment performing comparable duties to the intended plant application. The main benefit brought about in the last decade is the interactive access to data systems which are adequately structured with regard to the equipment covered, and also provide a text-searching capability of quality-controlled event narratives. (author)

  6. Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, R.; Melin, A.; Burress, T.; Fugate, D.; Holcomb, D.; Wilgen, J.; Miller, J.; Wilson, D.; Silva, P.; Whitlow, L.; Peretz, F.

    2012-09-15

    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C.

  7. Practical applications of age-dependent reliability models and analysis of operational data

    Energy Technology Data Exchange (ETDEWEB)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L

    2005-07-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.

  8. Practical applications of age-dependent reliability models and analysis of operational data

    International Nuclear Information System (INIS)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L.

    2005-01-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems

  9. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  10. Estimation of structural reliability under combined loads

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads

  11. Commercial Off-The-Shelf (COTS) Electronics Reliability for Space Applications

    Science.gov (United States)

    Pellish, Jonathan

    2018-01-01

    This presentation describes the accelerating use of Commercial off the Shelf (COTS) parts in space applications. Component reliability and threats in the context of the mission, environment, application, and lifetime. Provides overview of traditional approaches applied to COTS parts in flight applications, and shows challenges and potential paths forward for COTS systems in flight applications it's all about data!

  12. Some reliability targets affecting the necessary provisions for in-service inspection and monitoring of LMFBR engineering components

    International Nuclear Information System (INIS)

    Bolt, P.R.

    1980-01-01

    The possible consequences of failure of primary and secondary sodium circuit components are discussed with particular reference to post incident fault diagnosis, remedial procedures and outage durations. The core support structures and steam generator units are identified as particularly important components in terms of economic consequence of their failure. Important safety considerations may also apply. Levels of reliability for core support and steam generator integrity, necessary to meet economic and certain safety criteria, are discussed and quantitative data is given. Possible failure and deterioration mechanisms which could result in unacceptable reductions in reliability are then identified for the core support and steam generator units. Following a consideration of the reliability targets and possible causes of loss of reliability, an appraisal is made of the necessary extent of in-service data to be obtained on component behaviour and condition. In-service inspection and monitoring methods that could be used to obtain this data are described. Consideration is given to UK and overseas inspection experience on LMFBR and other nuclear plant. (author)

  13. Some reliability targets affecting the necessary provisions for in-service inspection and monitoring of LMFBR engineering components

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, P R [Fast Reactor Engineering, Plant Engineering Department, CEGB, Barnwood, Gloucester (United Kingdom)

    1980-11-01

    The possible consequences of failure of primary and secondary sodium circuit components are discussed with particular reference to post incident fault diagnosis, remedial procedures and outage durations. The core support structures and steam generator units are identified as particularly important components in terms of economic consequence of their failure. Important safety considerations may also apply. Levels of reliability for core support and steam generator integrity, necessary to meet economic and certain safety criteria, are discussed and quantitative data is given. Possible failure and deterioration mechanisms which could result in unacceptable reductions in reliability are then identified for the core support and steam generator units. Following a consideration of the reliability targets and possible causes of loss of reliability, an appraisal is made of the necessary extent of in-service data to be obtained on component behaviour and condition. In-service inspection and monitoring methods that could be used to obtain this data are described. Consideration is given to UK and overseas inspection experience on LMFBR and other nuclear plant. (author)

  14. Engineering, maintenance, and new initiatives to improve LAMPF beam availability and system reliability

    International Nuclear Information System (INIS)

    Harris, H.W.; DeHaven, R.A.; Hart, V.E.; Parsons, W.M.; Sturrock, J.C.

    1992-01-01

    Two different requirements are driving engineering studies and hardware development to improve LAMPF. The first is concerned with component and system improvements to increase beam availability during the LAMPF production cycle. Hardware changes in RF, power supplies, and magnets are being implemented to increase mean time between failure and reduce time to replace or repair failed units. A joint LAMPF-Industry project is on-going to improve reliability of RF components. A component test stand is being refurbished to include significant development capability. The second approach includes several changes that will increase the duty factor of the existing accelerator. Major changes are being evaluated for replacing the front end of the accelerator. Other changes improving high brightness capability could result in a new performance plateau for LAMPF

  15. An accelerator controls network designed for reliability and flexibility

    International Nuclear Information System (INIS)

    McDowell, W. P.; Sidorowicz, K. V.

    1997-01-01

    The APS accelerator control system is a typical modern system based on the standard control system model, which consists of operator interfaces to a network and computer-controlled interfaces to hardware. The network provides a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The network is an integral part of all modern control systems and network performance will determine many characteristics of a control system. This paper describes the methods used to provide redundancy for various network system components as well as methods used to provide comprehensive monitoring of this network. The effect of archiving tens of thousands of data points on a regular basis and the effect on the controls network will be discussed. Metrics are provided on the performance of the system under various conditions

  16. Reliability of mechanical components subjected to combined alternating and mean stresses with a nonconstant stress ratio

    International Nuclear Information System (INIS)

    Kececioglu, D.; Lamarre, G.B.

    1979-01-01

    The reliability of reactor mechanical components and structural members, submitted to external loads which induce alternating bending stresses and mean shear stresses at the critical section where failure has a high probability of occurring, is predicted assuming that the ratio of the distributed alternating stress to the mean stress is also distributed and yields a bivariate failure-governing, combined alternating and mean, stress distribution. A computer programmed methodology is developed to calculate the reliability under these conditions given the associated distributional Goodman diagram for a reactor component or structural member. (orig.)

  17. Effect of residual stresses on the reliability of components under fatigue

    International Nuclear Information System (INIS)

    Ruestenberg, I.

    1995-01-01

    The assurance of the reliability of mechanical components relative to a variety of failure mechanisms is of decisive technical, industrial, and economic importance. In this dissertation, the reliability, i.e. the probability that the lifetime does not fall below a given value, is examined with respect to the particularly important failure mechanisms of fracture and fatigue. The general problem of uniaxial fatigue is studied on the basis of both continuum damage mechanics and crack mechanics. In particular, the mechanisms of crack initiation, as characterized by the Coffin-Manson-Neuber local strain-life equations for notched components as well as the mechanism of crack growth, as governed by the Paris-Erdogang relation, are taken into account. The nonlinear fatigue damage accumulation process for components subjected to general, cyclic loading histories is modeled by a multilinear damage law which allows, in principle, to characterize the subsequent activation of different fatigue mechanisms. Explicit equations are developed for quintuple-, quadruple-, and triple-linear damage accumulation. Particularly promising appears the triple-linear damage approach which allows, in principle, the identification of a nucleation, an initiation, and a final growth stage up to rupture of fatigue cracks. The beneficial effect of intentionally induced compressive residual stresses on the lifetime of the component is investigated. To this end, an elasto-plastic contact problem, based on Prandtl-Reuss' constitutive equations, is numerically solved, and the residual stress field, as it is typically produced by the mechanical process of cold rolling, is established. Assessments of the effect of adaptation, i.e. the subsequent reduction of the residual stresses due to cyclic in-service loading as well as of the effect of unavoidable surface roughness, introduced by manufacturing processes like forging, are carried out. (author) figs., tabs., refs

  18. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  19. EXTENDED WARRANTY STRATEGIES FOR ONLINE SHOPPING SUPPLY CHAIN WITH COMPETING SUPPLIERS CONSIDERING COMPONENT RELIABILITY

    Institute of Scientific and Technical Information of China (English)

    Xinghong Qin; Qiang Su; Samuel H.Huang

    2017-01-01

    This article presents the issue of extended warranty and management strategies in a three-echelon competing online shopping supply chain with price-and base warranty period-dependent demand.We employ game theory to develop decision models to explore the interactions between component suppliers and the manufacturer,as well as competition between two component suppliers.Products and extended warranty are sold by an online store,which is the leader in the Stackelberg game.Two scenarios are considered:either the manufacturer offers a prepaid extended warranty to customers or doses not.In each scenario,base warranties are assumed to be bundled with products.Our results show that when the manufacturer's repair costs change in a proper range,providing extended warranty can benefit both the manufacturer and the online store;otherwise,the manufacturer has no incentive to offer the extended warranty.Reducing repair costs,improving component reliability,or shortening the base warranty period allows the manufacturer to realize significantly better value of the extended warranty.High component reliability benefits both the manufacturer and the online store,with the manufacturer reaping more benefit.Extending the length of the base warranty adversely affects profit of the manufacturer and the value of the extended warranty.

  20. Engineering, maintenance, and initiatives to improve LAMPF beam availability and system reliability

    International Nuclear Information System (INIS)

    Harris, H.W.; DeHaven, R.A.; Hart, V.E.; Parsons, W.M.; Sturrock, J.C.

    1992-01-01

    Two different requirements are driving engineering studies and hardware development to improve LAMPF. The first is concerned with component and system improvements to increase beam availability during the LAMPF production cycle. Hardware changes in RF, power supplies, and magnets are being implemented to increase mean time between failure and reduce time to replace or repair failed units. A joint LAMPF-Industry project is on-going to improve reliability of RF components. A component test stand is being refurbished to include significant development capability. The second approach includes several changes that will increase the duty factor of the existing accelerator. Major changes are being evaluated for replacing the front end of the accelerator. Other changes improving the high brightness capability could result in a new performance plateau for LAMPF. 2 refs., 2 figs

  1. Reliability data collection on IC and VLSI devices tested under accelerated life conditions

    International Nuclear Information System (INIS)

    Barry, D.M.; Meniconi, M.

    1986-01-01

    As part of a more general investigation into the reliability and failure causes of semiconductor devices, statistical samples of integrated circuit devices (LM741C) and dynamic random access memory devices (TMS4116) were tested destructively to failure using elevated temperature as the accelerating stress. The devices were operated during the life test and the failure data generated were collected automatically using a multiple question-and-answer program and a process control computer. The failure data were modelled from the lognormal, inverse Gaussian and Weibull distribution using an Arrhenius reaction rate model. The failed devices were later decapsulated for failure cause determination. (orig./DG)

  2. PREP KITT, System Reliability by Fault Tree Analysis. PREP, Min Path Set and Min Cut Set for Fault Tree Analysis, Monte-Carlo Method. KITT, Component and System Reliability Information from Kinetic Fault Tree Theory

    International Nuclear Information System (INIS)

    Vesely, W.E.; Narum, R.E.

    1997-01-01

    1 - Description of problem or function: The PREP/KITT computer program package obtains system reliability information from a system fault tree. The PREP program finds the minimal cut sets and/or the minimal path sets of the system fault tree. (A minimal cut set is a smallest set of components such that if all the components are simultaneously failed the system is failed. A minimal path set is a smallest set of components such that if all of the components are simultaneously functioning the system is functioning.) The KITT programs determine reliability information for the components of each minimal cut or path set, for each minimal cut or path set, and for the system. Exact, time-dependent reliability information is determined for each component and for each minimal cut set or path set. For the system, reliability results are obtained by upper bound approximations or by a bracketing procedure in which various upper and lower bounds may be obtained as close to one another as desired. The KITT programs can handle independent components which are non-repairable or which have a constant repair time. Any assortment of non-repairable components and components having constant repair times can be considered. Any inhibit conditions having constant probabilities of occurrence can be handled. The failure intensity of each component is assumed to be constant with respect to time. The KITT2 program can also handle components which during different time intervals, called phases, may have different reliability properties. 2 - Method of solution: The PREP program obtains minimal cut sets by either direct deterministic testing or by an efficient Monte Carlo algorithm. The minimal path sets are obtained using the Monte Carlo algorithm. The reliability information is obtained by the KITT programs from numerical solution of the simple integral balance equations of kinetic tree theory. 3 - Restrictions on the complexity of the problem: The PREP program will obtain the minimal cut and

  3. Failure mechanism dependence and reliability evaluation of non-repairable system

    International Nuclear Information System (INIS)

    Chen, Ying; Yang, Liu; Ye, Cui; Kang, Rui

    2015-01-01

    Reliability study of electronic system with the physics-of-failure method has been promoted due to the increase knowledge of electronic failure mechanisms. System failure initiates from independent failure mechanisms, have effect on or affect by other failure mechanisms and finally result in system failure. Failure mechanisms in a non-repairable system have many kinds of correlation. One failure mechanism developing to a certain degree will trigger, accelerate or inhibit another or many other failure mechanisms, some kind of failure mechanisms may have the same effect on the failure site, component or system. The destructive effect will be accumulated and result in early failure. This paper presents a reliability evaluation method considering correlativity among failure mechanisms, which includes trigger, acceleration, inhibition, accumulation, and competition. Based on fundamental rule of physics of failure, decoupling methods of these correlations are discussed. With a case, reliability of electronic system is evaluated considering failure mechanism dependence. - Highlights: • Five types of failure mechanism correlations are described. • Decoupling methods of these correlations are discussed. • A reliability evaluation method considering mechanism dependence is proposed. • Results are quite different to results under failure independence assumption

  4. Reliability in automotive and mechanical engineering determination of component and system reliability

    CERN Document Server

    Bertsche, Bernd

    2008-01-01

    In the present contemporary climate of global competition in every branch of engineering and manufacture it has been shown from extensive customer surveys that above every other attribute, reliability stands as the most desired feature in a finished product. To survive this relentless fight for survival any organisation, which neglect the plea of attaining to excellence in reliability, will do so at a serious cost Reliability in Automotive and Mechanical Engineering draws together a wide spectrum of diverse and relevant applications and analyses on reliability engineering. This is distilled into this attractive and well documented volume and practising engineers are challenged with the formidable task of simultaneously improving reliability and reducing the costs and down-time due to maintenance. The volume brings together eleven chapters to highlight the importance of the interrelated reliability and maintenance disciplines. They represent the development trends and progress resulting in making this book ess...

  5. On the applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Curzio, Edgar [ORNL; Radovic, Miladin [Texas A& M University; Luttrell, Claire R [ORNL

    2016-01-01

    The applicability of probabilistic analyses to assess the structural reliability of materials and components for solid-oxide fuel cells (SOFC) is investigated by measuring the failure rate of Ni-YSZ when subjected to a temperature gradient and comparing it with that predicted using the Ceramics Analysis and Reliability Evaluation of Structures (CARES) code. The use of a temperature gradient to induce stresses was chosen because temperature gradients resulting from gas flow patterns generate stresses during SOFC operation that are the likely to control the structural reliability of cell components The magnitude of the predicted failure rate was found to be comparable to that determined experimentally, which suggests that such probabilistic analyses are appropriate for predicting the structural reliability of materials and components for SOFCs. Considerations for performing more comprehensive studies are discussed.

  6. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  7. Reliability of hydroelectric generation components, systems and units; Confiabilidad de componentes, sistemas y unidades de generacion hidroelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Sanchez, Ramon; Torres Toledano, Gerardo; Franco Nava, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    This article presents a methodology for the calculation of the reliability of components, systems and hydroelectric generating units, as well as the scope of a computational system for the evaluation of such reliability. In the case of the reliability calculation of components and systems, the computer programs is not limited to hydro stations and can be used in other type of systems. [Espanol] En este articulo se presenta una metodologia para calcular la confiabilidad de componentes, sistemas y unidades de generacion hidroelectrica, asi como el alcance de un sistema computacional para evaluar dicha confiabilidad. En el caso del calculo de confiabilidad de componentes y sistemas, el programa de computo no se limita a centrales hidroelectricas y puede utilizarse en otro tipo de sistemas.

  8. Reliability of hydroelectric generation components, systems and units; Confiabilidad de componentes, sistemas y unidades de generacion hidroelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Sanchez, Ramon; Torres Toledano, Gerardo; Franco Nava, Jose Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    This article presents a methodology for the calculation of the reliability of components, systems and hydroelectric generating units, as well as the scope of a computational system for the evaluation of such reliability. In the case of the reliability calculation of components and systems, the computer programs is not limited to hydro stations and can be used in other type of systems. [Espanol] En este articulo se presenta una metodologia para calcular la confiabilidad de componentes, sistemas y unidades de generacion hidroelectrica, asi como el alcance de un sistema computacional para evaluar dicha confiabilidad. En el caso del calculo de confiabilidad de componentes y sistemas, el programa de computo no se limita a centrales hidroelectricas y puede utilizarse en otro tipo de sistemas.

  9. SLAC modulator operation and reliability in the SLC Era

    International Nuclear Information System (INIS)

    Donaldson, A.R.; Ashton, J.R.

    1992-06-01

    A discussion of the operation and reliability of the 244 modulators in the SLAC linac with an emphasis on the past three years of operation. The linac modulators were designed and built in the 60's, upgraded for the SLAC Linear Collider (SLC) in the mid 80s, and despite their age are still reliable accelerator components. The 60s modulator operated at 65 MW peak and 83 kW average power. The upgrade resulted in 150 MW peak output at an average power of 87 kW, a modest increase since the repetition rate was dropped from 360 to 120 Hz. In the present accelerator configuration, the Linac operates as a source of electrons and positrons to a single pass coillider. The classic collider is a storage ring filled with oppositely charged, counter-rotating particles which are allowed to collide until an accelerator fault occurs and the stored beams are aborted. A reasonable storage ring can store and collide particles for as long as eight hours with a 10 or 20 minute filling time. A single pass collider, + on the other hand, can only produce e - and e + collisions at whatever rate the source operates. To be effective the SLC must operate at 120 Hz with a very high degree of reliability and on a continuous basis. Fortunately, the linac has a modest excess of modulator/klystron systems which allows some measure of redundancy and hence some freedom from the constraint that all 244 modulator/klystrons operate simultaneously. Nonetheless, high importance is placed on modulator MTBF and MTRR or, in the parlance of reliability experts and accelerator physicists, availability. This is especially true of the modulators associated with the fundamental requirements of a collider such as injection, compression and positron production

  10. In-plant reliability data base for nuclear power plant components: data collection and methodology report

    International Nuclear Information System (INIS)

    Drago, J.P.; Borkowski, R.J.; Pike, D.H.; Goldberg, F.F.

    1982-07-01

    The development of a component reliability data for use in nuclear power plant probabilistic risk assessments and reliabiilty studies is presented in this report. The sources of the data are the in-plant maintenance work request records from a sample of nuclear power plants. This data base is called the In-Plant Reliability Data (IPRD) system. Features of the IPRD system are compared with other data sources such as the Licensee Event Report system, the Nuclear Plant Reliability Data system, and IEEE Standard 500. Generic descriptions of nuclear power plant systems formulated for IPRD are given

  11. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  12. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  13. Between-Day Reliability of Pre-Participation Screening Components in Pre-Professional Ballet and Contemporary Dancers.

    Science.gov (United States)

    Kenny, Sarah J; Palacios-Derflingher, Luz; Owoeye, Oluwatoyosi B A; Whittaker, Jackie L; Emery, Carolyn A

    2018-03-15

    Critical appraisal of research investigating risk factors for musculoskeletal injury in dancers suggests high quality reliability studies are lacking. The purpose of this study was to determine between-day reliability of pre-participation screening (PPS) components in pre-professional ballet and contemporary dancers. Thirty-eight dancers (35 female, 3 male; median age; 18 years; range: 11 to 30 years) participated. Screening components (Athletic Coping Skills Inventory-28, body mass index, percent total body fat, total bone mineral density, Foot Posture Index-6, hip and ankle range of motion, three lumbopelvic control tasks, unipedal dynamic balance, and the Y-Balance Test) were conducted one week apart. Intra-class correlation coefficients (ICCs: 95% confidence intervals), standard error of measurement, minimal detectable change (MDC), Bland-Altman methods of agreement [95% limits of agreement (LOA)], Cohen's kappa coefficients, standard error, and percent agreements were calculated. Depending on the screening component, ICC estimates ranged from 0.51 to 0.98, kappa coefficients varied between -0.09 and 0.47, and percent agreement spanned 71% to 95%. Wide 95% LOA were demonstrated by Foot Posture Index-6 (right: -6.06, 7.31), passive hip external rotation (right: -9.89, 16.54), and passive supine turnout (left: -15.36, 17.58). The PPS components examined demonstrated moderate to excellent relative reliability with mean between-day differences less than MDC, or sufficient percent agreement, across all assessments. However, due to wide 95% limits of agreement, the Foot Posture Index-6 and passive hip range of motion are not recommended for screening injury risk in pre-professional dancers.

  14. Dependent systems reliability estimation by structural reliability approach

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2014-01-01

    Estimation of system reliability by classical system reliability methods generally assumes that the components are statistically independent, thus limiting its applicability in many practical situations. A method is proposed for estimation of the system reliability with dependent components, where...... the leading failure mechanism(s) is described by physics of failure model(s). The proposed method is based on structural reliability techniques and accounts for both statistical and failure effect correlations. It is assumed that failure of any component is due to increasing damage (fatigue phenomena...... identification. Application of the proposed method can be found in many real world systems....

  15. Design of rf-cavities in the funnel of accelerators for transmutation technologies

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Bultman, N.K.; Chan, K.D.C.; Martineau, R.L.; Nath, S.; Young, L.M.

    1994-01-01

    Funnels are a key component of accelerator structures proposed for transmutation technologies. In addition to conventional accelerator elements, specialized rf-cavities are needed for these structures. Simulations were done to obtain their electromagnetic field distribution and to minimize the rf-induced heat loads. Using these results a structural and thermal analysis of these cavities was performed to insure their reliability at high average power and to determine their cooling requirements. For one cavity the thermal expansion data in return was used to estimate the thermal detuning

  16. Under sodium reliability tests on core components and in-core instrumentation

    International Nuclear Information System (INIS)

    Ruppert, E.; Stehle, H.; Vinzens, K.

    1977-01-01

    A sodium test facility for fast breeder core components (AKB), built by INTERATOM at Bensberg, has been operating since 1971 to test fuel dummies and blanket elements as well as absorber elements under simulated normal and extreme reactor conditions. Individual full-scale fuel or blanket elements and arrays of seven elements, modelling a section of the SNR-300 reactor core, have been tested under a wide range of sodium mass flow and isothermal test conditions up to 925K as well as under cyclic changed temperature transients. Besides endurance testing of the core components a special sodium and high-temperature instrumentation is provided to investigate thermohydraulic and vibrational behaviour of the test objects. During all test periods the main subassembly characteristics could be reproduced and the reliability of the instrumentation could be proven. (orig.) [de

  17. Basic Design Study on 1-MV Electrostatic Accelerator for ion irradiation

    International Nuclear Information System (INIS)

    Cho, Yongsub; Kim, Kyeryung; Lee, Chanyoung

    2014-01-01

    The KOMAC (KOrea Multi-purpose Accelerator Complex) has electrostatic ion accelerators whose terminal voltages are less than 100kV. To extend ion beam irradiations with higher energy ions for industrial purposes, an electrostatic accelerator of 1-MV terminal voltage should have been studied. For industrial applications, the most important features of the accelerator are high current and high reliability for high irradiation dose and high through-put with high current and long irradiation time. The basic study on 1-MV electrostatic ion accelerator for industrial applications has been done. The key components are a high voltage power supply, an ion source, and an accelerating column. The feasibility study for fabrication is being performed. Especially the R and D for ion source is required. The 1-MV ion accelerator will be constructed with domestic companies and installed in the beam application research building, which is under construction in the site of KOMAC at Gyeongju

  18. Big data analytics for the Future Circular Collider reliability and availability studies

    Science.gov (United States)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  19. Forecast of reliability for mechanical components subjected to wearing; Pronostico de la fiabilidad de componentes mecanicos sometidos a desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Angulo-Zevallos, J.; Castellote-Varona, C.; Alanbari, M.

    2010-07-01

    Generally, improving quality and price of products, obtaining a complete customer satisfaction and achieving excellence in all the processes are some of the challenges currently set up by every company. To do this, knowing frequently the reliability of some component is necessary. To achieve this goal, a research, that contributes with clear ideas and offers a methodology for the assessment of the parameters involved in the reliability calculation, becomes necessary. A parameter closely related to this concept is the probability of product failure depending on the operating time. It is known that mechanical components fail by: creep, fatigue, wear, corrosion, etc. This article proposes a methodology for finding the reliability of a component subject to wear, such as brake pads, grinding wheels, brake linings of clutch discs, etc. (Author)

  20. Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J. Lynn [RTI International, Research Triangle Park, NC (United States)

    2017-05-31

    The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.

  1. Reliability and risk functions for structural components taking into account inspection results

    International Nuclear Information System (INIS)

    Rackwitz, R.; Schall, G.

    1989-01-01

    The method of outcrossings has been shown to be efficient when calculating the failure probability of metallic structural components under ergodic Gaussian loading. Using Paris/Erdogan's crack growth law it is possible to develop a semi-analytical calculation model for both the reliability and the risk function. For numerical studies an approximate method of asymptotic nature is proposed. The same methodology also enables to incorporate inspection observations. (orig.) [de

  2. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.

    Science.gov (United States)

    Giandolini, Marlene; Horvais, Nicolas; Rossi, Jérémy; Millet, Guillaume Y; Samozino, Pierre; Morin, Jean-Benoît

    2016-06-14

    Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Development of reliability database for safety-related I and C component based on operating experience of KSNP

    International Nuclear Information System (INIS)

    Jang, S. C.; Han, S. H.; Min, K. R.

    2001-01-01

    Reliability database for safety-related I and C components has been developed, based on domestic operating experience of total 8.63 years from four units-Yonggwang Units 3 and 4, and Ulchin Units 3 and 4. This plant-specific data of safety-related I and C components has compared with operating experience for CE-supplied plants in U.S.A. As a results, we found that on the whole the domestic reliability data was similar to CE-supplied plants in USA, through lots of failures occurred early in the commercial operation were included in our analyses without percolation

  4. Different Approaches for Ensuring Performance/Reliability of Plastic Encapsulated Microcircuits (PEMs) in Space Applications

    Science.gov (United States)

    Gerke, R. David; Sandor, Mike; Agarwal, Shri; Moor, Andrew F.; Cooper, Kim A.

    2000-01-01

    Engineers within the commercial and aerospace industries are using trade-off and risk analysis to aid in reducing spacecraft system cost while increasing performance and maintaining high reliability. In many cases, Commercial Off-The-Shelf (COTS) components, which include Plastic Encapsulated Microcircuits (PEMs), are candidate packaging technologies for spacecrafts due to their lower cost, lower weight and enhanced functionality. Establishing and implementing a parts program that effectively and reliably makes use of these potentially less reliable, but state-of-the-art devices, has become a significant portion of the job for the parts engineer. Assembling a reliable high performance electronic system, which includes COTS components, requires that the end user assume a risk. To minimize the risk involved, companies have developed methodologies by which they use accelerated stress testing to assess the product and reduce the risk involved to the total system. Currently, there are no industry standard procedures for accomplishing this risk mitigation. This paper will present the approaches for reducing the risk of using PEMs devices in space flight systems as developed by two independent Laboratories. The JPL procedure involves primarily a tailored screening with accelerated stress philosophy while the APL procedure is primarily, a lot qualification procedure. Both Laboratories successfully have reduced the risk of using the particular devices for their respective systems and mission requirements.

  5. Requirements of a proton beam accelerator for an accelerator-driven reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; Zhao, Y.; Tsoupas, N.; An, Y.; Yamazaki, Y.

    1997-01-01

    When the authors first proposed an accelerator-driven reactor, the concept was opposed by physicists who had earlier used the accelerator for their physics experiments. This opposition arose because they had nuisance experiences in that the accelerator was not reliable, and very often disrupted their work as the accelerator shut down due to electric tripping. This paper discusses the requirements for the proton beam accelerator. It addresses how to solve the tripping problem and how to shape the proton beam

  6. Highlights from the early (and pre-) history of reliability engineering

    International Nuclear Information System (INIS)

    Saleh, J.H.; Marais, K.

    2006-01-01

    Reliability is a popular concept that has been celebrated for years as a commendable attribute of a person or an artifact. From its modest beginning in 1816-the word reliability was first coined by Samuel T. Coleridge-reliability grew into an omnipresent attribute with qualitative and quantitative connotations that pervades every aspect of our present day technologically intensive world. In this short communication, we highlight key events and the history of ideas that led to the birth of Reliability Engineering, and its development in the subsequent decades. We first argue that statistics and mass production were the enablers in the rise of this new discipline, and the catalyst that accelerated the coming of this new discipline was the (unreliability of the) vacuum tube. We highlight the foundational role of AGREE report in 1957 in the birth of reliability engineering, and discuss the consolidation of numerous efforts in the 1950s into a coherent new technical discipline. We show that an evolution took place in the discipline in the following two decades along two directions: first, there was an increased specialization in the discipline (increased sophistication of statistical techniques, and the rise of a new branch focused on the actual physics of failure of components, Reliability Physics); second, there occurred a shift in the emphasis of the discipline from a component-centric to an emphasis on system-level attributes (system reliability, availability, safety). Finally, in selecting the particular events and highlights in the history of ideas that led to the birth and subsequent development of reliability engineering, we acknowledge a subjective component in this work and make no claims to exhaustiveness

  7. Optics elements for modeling electrostatic lenses and accelerator components: III. Electrostatic deflectors

    International Nuclear Information System (INIS)

    Brown, T.A.; Gillespie, G.H.

    2000-01-01

    Ion-beam optics models for simulating electrostatic prisms (deflectors) of different geometries have been developed for the envelope (matrix) computer code TRACE 3-D as a part of the development of a suite of electrostatic beamline element models which includes lenses, acceleration columns, quadrupoles and prisms. The models for electrostatic prisms are described in this paper. The electrostatic prism model options allow the first-order modeling of cylindrical, spherical and toroidal electrostatic deflectors. The application of these models in the development of ion-beam transport systems is illustrated through the modeling of a spherical electrostatic analyzer as a component of the new low-energy beamline at the Center for Accelerator Mass Spectrometry. Although initial tests following installation of the new beamline showed that the new spherical electrostatic analyzer was not behaving as predicted by these first-order models, operational conditions were found under which the analyzer now works properly as a double-focusing spherical electrostatic prism

  8. A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components

    International Nuclear Information System (INIS)

    Kang, Won-Hee; Kliese, Alyce

    2014-01-01

    Lifeline networks, such as transportation, water supply, sewers, telecommunications, and electrical and gas networks, are essential elements for the economic and societal functions of urban areas, but their components are highly susceptible to natural or man-made hazards. In this context, it is essential to provide effective pre-disaster hazard mitigation strategies and prompt post-disaster risk management efforts based on rapid system reliability assessment. This paper proposes a rapid reliability estimation method for node-pair connectivity analysis of lifeline networks especially when the network components are statistically correlated. Recursive procedures are proposed to compound all network nodes until they become a single super node representing the connectivity between the origin and destination nodes. The proposed method is applied to numerical network examples and benchmark interconnected power and water networks in Memphis, Shelby County. The connectivity analysis results show the proposed method's reasonable accuracy and remarkable efficiency as compared to the Monte Carlo simulations

  9. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Science.gov (United States)

    van Hees, Vincent T; Gorzelniak, Lukas; Dean León, Emmanuel Carlos; Eder, Martin; Pias, Marcelo; Taherian, Salman; Ekelund, Ulf; Renström, Frida; Franks, Paul W; Horsch, Alexander; Brage, Søren

    2013-01-01

    Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr), and wrist in 63 women (20-35 yr) in whom daily activity-related energy expenditure (PAEE) was available. In the robot experiment, HFEN+ had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in

  10. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity.

    Directory of Open Access Journals (Sweden)

    Vincent T van Hees

    Full Text Available INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. METHODS: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN+] were derived for each experimental condition and compared against the reference acceleration (forward kinematics of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22-65 yr, and wrist in 63 women (20-35 yr in whom daily activity-related energy expenditure (PAEE was available. RESULTS: In the robot experiment, HFEN+ had lowest error during (vertical plane rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively. ENMO, HFEN and HFEN+ explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN. CONCLUSION: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice

  11. Performance Results for Building the 1 MV Electrostatic Accelerator at KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Il; Kwon, Hyeok-Jung; Park, Sae-Hoon; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    1 MV electrostatic accelerator of KOrea Multi-purpose Accelerator Complex (KOMAC) is being developed to satisfy the needs from the users, especially for the applications with a MeV range ion beam implantation. Table 1 shows specifications of the 1MV electrostatic accelerator. The accelerator consists of ion source, beam transport system and target chamber. The ion source and accelerating column are installed inside the pressure vessel of high voltage power supply. The layout of the system is shown in Fig. 1. A 1 MV electrostatic accelerator is being developed at KOMAC. The high voltage power supply is already developed. The 200 MHz RF ion source is now being tested in the 300 kV test-stand. In the test results, it is necessary to improve increasing RF power absorption into the plasma in order to supply 1 mA beam. For this goal, we need more reliable the matching circuit and should be modified the matching components.

  12. Design, construction and installation of the electromechanical components of the current control of filament of the Pelletron Electron Accelerator

    International Nuclear Information System (INIS)

    Aguilar J, R.A.; Valdovinos A, M.; Lopez V, H.

    1985-01-01

    For the operation of the Pelletron electron accelerator is required to have control of the filament current. For it was designed, built and installed an electromechanical system located in the Acceleration Unit inside the Accelerator tank and operated from the Control console. All the components located inside the tank operated under the following conditions: Pressure: until 7.03 Kg/cm 2 ; High voltage: 10 6 V (only the insulating arrow); Atmosphere: mixture of N 2 and CO 2 or SF 6 . (Author)

  13. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    International Nuclear Information System (INIS)

    2015-01-01

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  14. Reliability-based optimization of maintenance scheduling of mechanical components under fatigue

    Science.gov (United States)

    Beaurepaire, P.; Valdebenito, M.A.; Schuëller, G.I.; Jensen, H.A.

    2012-01-01

    This study presents the optimization of the maintenance scheduling of mechanical components under fatigue loading. The cracks of damaged structures may be detected during non-destructive inspection and subsequently repaired. Fatigue crack initiation and growth show inherent variability, and as well the outcome of inspection activities. The problem is addressed under the framework of reliability based optimization. The initiation and propagation of fatigue cracks are efficiently modeled using cohesive zone elements. The applicability of the method is demonstrated by a numerical example, which involves a plate with two holes subject to alternating stress. PMID:23564979

  15. Development of component reliability data for PSA and risk based management in Japan

    International Nuclear Information System (INIS)

    Yoshihiro Tomioka; Mitsumasa Hirano; Shunsuke Kondo

    1997-01-01

    The author presents the outline of development of the component reliability data for PSA and risk based management in Japan. In the first part following the introduction, the development process is described. The next part describes issues discussed in the course of the development, which are treatment of zero failure data, error factor, estimation of unavailable failure rate and integral test

  16. SLAC modulator system improvements and reliability results

    International Nuclear Information System (INIS)

    Donaldson, A.R.

    1998-06-01

    In 1995, an improvement project was completed on the 244 klystron modulators in the linear accelerator. The modulator system has been previously described. This article offers project details and their resulting effect on modulator and component reliability. Prior to the project, the authors had collected four operating cycles (1991 through 1995) of MTTF data. In this discussion, the '91 data will be excluded since the modulators operated at 60 Hz. The five periods following the '91 run were reviewed due to the common repetition rate at 120 Hz

  17. Seismic proving tests on the reliability for large components and equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Ohno, Tokue; Tanaka, Nagatoshi

    1988-01-01

    Since Japan has destructive earthquakes frequently, the structural reliability for large components and equipment of nuclear power plants are rigorously required. They are designed using sophisticated seismic analyses and have not yet encountered a destructive earthquake. When nuclear power plants are planned, it is very important that the general public understand the structural reliability during and after an earthquake. Seismic Proving Tests have been planned by Ministry of International Trade and Industry (Miti) to comply with public requirement in Japan. A large-scale high-performance vibration table was constructed at Tasted Engineering Laboratory of Nuclear Power Engineering Test Center (NU PEC), in order to prove the structural reliability by vibrating the test model (of full scale or close to the actual size) in the condition of a destructive earthquake. As for the test models, the following four items were selected out of large components and equipment important to the safety: Reactor Containment Vessel; Primary Coolant Loop or Primary Loop Recirculation System; Reactor Pressure Vessel; and Reactor Core Internals. Here is described a brief of the vibration table, the test method and the results of the tests on PWR Reactor Containment Vessel and BWR Primary Loop Recirculation System (author)

  18. Impact of thermal and intermediate energy neutrons on the semiconductor memories for the CERN accelerators

    CERN Document Server

    Cecchetto, Matteo; Gerardin, Simone

    A wide quantity of SRAM memories are employed along the Large Hadron Collider (LHC), the main CERN accelerator, and they are subjected to high levels of ionizing radiations which compromise the reliability of these devices. The Single Event Effect (SEE) qualification for components to be used in the complex high-energy accelerator at CERN relies on the characterization of two cross sections: 200-MeV protons and thermal neutrons. However, due to cost and time constraints, it is not always possible to characterize the SEE response of components to thermal neutrons, which is often regarded as negligible for components without borophosphosilicate glass (BPSG). Nevertheless, as recent studies show, the sensitivity of deep sub-micron technologies to thermal neutrons has increased owing to the presence of Boron 10 as a dopant and contact contaminant. The very large thermal neutron fluxes relative to high-energy hadron fluxes in some of the heavily shielded accelerator areas imply that even comparatively small therm...

  19. Adjoint sensitivity analysis procedure of Markov chains with applications on reliability of IFMIF accelerator-system facilities

    Energy Technology Data Exchange (ETDEWEB)

    Balan, I.

    2005-05-01

    This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for the Continuous Time, Discrete Space Markov chains (CTMC), as an alternative to the other computational expensive methods. In order to develop this procedure as an end product in reliability studies, the reliability of the physical systems is analyzed using a coupled Fault-Tree - Markov chain technique, i.e. the abstraction of the physical system is performed using as the high level interface the Fault-Tree and afterwards this one is automatically converted into a Markov chain. The resulting differential equations based on the Markov chain model are solved in order to evaluate the system reliability. Further sensitivity analyses using ASAP applied to CTMC equations are performed to study the influence of uncertainties in input data to the reliability measures and to get the confidence in the final reliability results. The methods to generate the Markov chain and the ASAP for the Markov chain equations have been implemented into the new computer code system QUEFT/MARKOMAGS/MCADJSEN for reliability and sensitivity analysis of physical systems. The validation of this code system has been carried out by using simple problems for which analytical solutions can be obtained. Typical sensitivity results show that the numerical solution using ASAP is robust, stable and accurate. The method and the code system developed during this work can be used further as an efficient and flexible tool to evaluate the sensitivities of reliability measures for any physical system analyzed using the Markov chain. Reliability and sensitivity analyses using these methods have been performed during this work for the IFMIF Accelerator System Facilities. The reliability studies using Markov chain have been concentrated around the availability of the main subsystems of this complex physical system for a typical mission time. The sensitivity studies for two typical responses using ASAP have been

  20. Reliability optimization for series systems under uncertain component failure rates in the design phase

    NARCIS (Netherlands)

    Ge, Q.; Peng, H.; van Houtum, G.J.J.A.N.; Adan, I.J.B.F.

    2018-01-01

    We develop an optimization model to determine the reliability design of critical components in a serial system. The system is under a service contract, and a penalty cost has to be paid by the OEM when the total system down time exceeds a predetermined level, which complicates the evaluation of the

  1. Basis for the power supply reliability study of the 1 MW neutron source

    International Nuclear Information System (INIS)

    McGhee, D.G.; Fathizadeh, M.

    1993-01-01

    The Intense Pulsed Neutron Source (IPNS) upgrade to 1 MW requires new power supply designs. This paper describes the tools and the methodology needed to assess the reliability of the power supplies. Both the design and operation of the power supplies in the synchrotron will be taken into account. To develop a reliability budget, the experiments to be conducted with this accelerator are reviewed, and data is collected on the number and duration of interruptions possible before an experiment is required to start over. Once the budget is established, several accelerators of this type will be examined. The budget is allocated to the different accelerator systems based on their operating experience. The accelerator data is usually in terms of machine availability and system down time. It takes into account mean time to failure (MTTF), time to diagnose, time to repair or replace the failed components, and time to get the machine back online. These estimated times are used as baselines for the design. Even though we are in the early stage of design, available data can be analyzed to estimate the MTTF for the power supplies

  2. Methodology for predicting the life of waste-package materials, and components using multifactor accelerated life tests

    International Nuclear Information System (INIS)

    Thomas, R.E.; Cote, R.W.

    1983-09-01

    Accelerated life tests are essential for estimating the service life of waste-package materials and components. A recommended methodology for generating accelerated life tests is described in this report. The objective of the methodology is to define an accelerated life test program that is scientifically and statistically defensible. The methodology is carried out using a select team of scientists and usually requires 4 to 12 man-months of effort. Specific agendas for the successive meetings of the team are included in the report for use by the team manager. The agendas include assignments for the team scientists and a different set of assignments for the team statistician. The report also includes descriptions of factorial tables, hierarchical trees, and associated mathematical models that are proposed as technical tools to guide the efforts of the design team

  3. Assessment of ALWR passive safety system reliability. Phase 1: Methodology development and component failure quantification

    International Nuclear Information System (INIS)

    Hake, T.M.; Heger, A.S.

    1995-04-01

    Many advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive systems to perform safety functions, rather than active systems as in current reactor designs. These passive systems depend to a great extent on physical processes such as natural circulation for their driving force, and not on active components, such as pumps. An NRC-sponsored study was begun at Sandia National Laboratories to develop and implement a methodology for evaluating ALWR passive system reliability in the context of probabilistic risk assessment (PRA). This report documents the first of three phases of this study, including methodology development, system-level qualitative analysis, and sequence-level component failure quantification. The methodology developed addresses both the component (e.g. valve) failure aspect of passive system failure, and uncertainties in system success criteria arising from uncertainties in the system's underlying physical processes. Traditional PRA methods, such as fault and event tree modeling, are applied to the component failure aspect. Thermal-hydraulic calculations are incorporated into a formal expert judgment process to address uncertainties in selected natural processes and success criteria. The first phase of the program has emphasized the component failure element of passive system reliability, rather than the natural process uncertainties. Although cursory evaluation of the natural processes has been performed as part of Phase 1, detailed assessment of these processes will take place during Phases 2 and 3 of the program

  4. RAMI analysis and modeling for the LANSCE accelerator systems

    Energy Technology Data Exchange (ETDEWEB)

    Macek, R.J.; Wilkinson, C.A. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Reliability, availability, maintainability, and inspectability (RAMI) have become important issues for the high-power machines being planned for applications such as accelerator transmutation of nuclear waste (ATW), accelerator production of tritium (APT) and the next generation spallation neutron source. Beam reliability and beam availability are vitally important specifications to the present users of accelerator-driven spallation neutron sources, synchrotron light sources and medical accelerators. At Los Alamos, improved beam availability is a key goal in the planned LANSCE improvement program. Clearly, the capability to adequately model and predict the reliability and availability of complex accelerator systems will be of great value in assessing and optimizing RAMI measures in accelerator design and improvement programs. To date, no major accelerator project has developed comprehensive reliability models although the Advance Photon Source at ANL has started work on reliability analysis for selected subsystems. In this paper the authors discuss their experience in developing RAMI analysis and modeling for the LANSCE Accelerator Systems. Progress has been made in developing suitable measures and functions to characterize user risk, in logging of needed data on failure rates and repair/down times, and in developing a first-pass RAMI model for selected subsystems. Plans have been made for a more complete RAMI model. In addition, the authors discuss their experience in the use of probabilistic risk assessment (PRA) methodology for estimation of the reliability of active, instrumentation-based, radiation safety systems at LANSCE.

  5. MYRRHA cryogenic system study on performances and reliability requirements

    International Nuclear Information System (INIS)

    Junquera, T.; Chevalier, N.R.; Thermeau, J.P.; Medeiros Romao, L.; Vandeplassche, D.

    2015-01-01

    A precise evaluation of the cryogenic requirements for accelerator-driven system such as the MYRRHA project has been performed. In particular, operation temperature, thermal losses, and required cryogenic power have been evaluated. A preliminary architecture of the cryogenic system including all its major components, as well as the principles for the cryogenic fluids distribution has been proposed. A detailed study on the reliability aspects has also been initiated. This study is based on the reliability of large cryogenic systems used for accelerators like HERA, LHC or SNS Linac. The requirements to guarantee good cryogenic system availability can be summarised as follows: 1) Mean Time Between Maintenance (MTBM) should be > 8 000 hours; 2) Valves, heat exchangers and turbines are particularly sensitive elements to impurities (dust, oil, gases), improvements are necessary to keep a minimal level in these components; 3) Redundancy studies for all elements containing moving/vibrating parts (turbines, compressors, including their respective bearings and seal shafts) are necessary; 4) Periodic maintenance is mandatory: oil checks, control of screw compressors every 10.000-15.000 hours, vibration surveillance programme, etc; 5) Special control and maintenance of utilities equipment (supply of cooling water, compressed air and electrical supply) is necessary; 6) Periodic vacuum checks to identify leakage appearance such as insulation vacuum of transfer lines and distribution boxes are necessary; 7) Easily exchangeable cold compressors are required

  6. Evaluation and analysis of the residual radioactivity for the 15UD Pelletron accelerator facility

    International Nuclear Information System (INIS)

    Sonkawade, R. G.

    2007-01-01

    For the assessment of radiological impact of the accelerators, it will be better to have the documented information on activation of metal parts of the accelerator components. It is very much essential to get reliable data on these subjects. During acceleration of light ion, the residual radioactivity in the accelerator facility was found near the Analyzing Magnet, single slit, Beam Profile Monitors (BPM), Faraday Cups (FC), bellows, beginning of switching magnet bellows, at the target and the ladder. Study with HPGE detector gives an insight of the formation of the short or long lived radionuclides. The different targets used in the light ion experiment were also monitored and proper decommissioning and decontamination steps were followed. This paper presents the data of residual radioactivity in the 15UD Pelletron accelerator infrastructure. (author)

  7. Development of a Magnetron Resonance Frequency Auto Tuning System for Medical Xband [9300 MHz] RF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-05-15

    The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.

  8. Microelectromechanical acceleration-sensing apparatus

    Science.gov (United States)

    Lee, Robb M [Albuquerque, NM; Shul, Randy J [Albuquerque, NM; Polosky, Marc A [Albuquerque, NM; Hoke, Darren A [Albuquerque, NM; Vernon, George E [Rio Rancho, NM

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  9. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    Science.gov (United States)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  10. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    International Nuclear Information System (INIS)

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goal of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.

  11. Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Lowry, Peter P.; Layton, Robert F.; Toloczko, Mychailo B.; Johnson, Kenneth I.; Sanborn, Scott E.

    2011-07-01

    This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities.

  12. Reliability of the individual components of the Canadian Armed Forces Physical Employment Standard.

    Science.gov (United States)

    Stockbrugger, Barry G; Reilly, Tara J; Blacklock, Rachel E; Gagnon, Patrick J

    2018-01-29

    This investigation recruited 24 participants from both the Canadian Armed Forces (CAF) and civilian populations to complete 4 separate trials at "best effort" of each of the 4 components in the CAF Physical Employment Standard named the FORCE Evaluation: Fitness for Operational Requirements of CAF Employment. Analyses were performed to examine the level of variability and reliability within each component. The results demonstrate that candidates should be provided with at least 1 retest if they have recently completed at least 2 previous best effort attempts as per the protocol. In addition, the minimal detectable difference is given for each of the 4 components in seconds which identifies the threshold for subsequent action, either retest or remedial training, for those unable to meet the minimum standard. These results will educate the delivery of this employment standard, function as a method of accommodation, in addition to providing direction for physical training programs.

  13. The reliability of the repair weld joints of aged high temperature components in fossil power boilers

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, Hiroyuki [Science Univ. of Tokyo (Japan); Ohtani, Ryuichi [Kyoto Univ. (Japan); Fujii, Kazuya [Japan Power Engineering and Inspection Corp., Tokyo (Japan); Yokoyama, Tomomitsu; Nishimura, Nobuhiko [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Suzuki, Komei [Japan Steel Works Ltd., Tokyo (Japan)

    1998-11-01

    It is of fundamental engineering importance to be able to give reliable assessments of the effective service life of the critical components used within fossil power plants, particularly for those operating for prolonged periods. It is common practice for such assessments to have been estimated using destructive tests, typically the stress rupture test, this having been recognized as one of the most reliable evaluation methods available. Its only drawback is that it often does not permit the component to be in use following the sampling of the test specimen without repairing. The current piece of work focuses on the reliability of the repair welds of components for specimens taken from fossil power plants, having been in service for prolonged periods. Several such repairs to welds have been made to an old power boiler, in particular to a superheater header which is fabricated from 2.25Cr-1Mo steel. Under close examination the repairs to the girth weldment showed susceptibilities of weld cracking, similar to that observed in as-manufactured material. Within the repaired region of the welded joint the microstructure, tensile properties and toughness seemed to be unaffected. The hardness attained its minimum value within the heat affected zone, HAZ of the repair weld, overlapping that of original girth weld HAZ. Furthermore, the stress rupture strength achieved its minimum value at the same position taking on the same value as the strength associated with the aged girth welded joint. (orig.)

  14. Reliability Assessment Of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2014-01-01

    Reduction of cost of energy for wind turbines are very important in order to make wind energy competitive compared to other energy sources. Therefore the turbine components should be designed to have sufficient reliability but also not be too costly (and safe). This paper presents models...... for uncertainty modeling and reliability assessment of especially the structural components such as tower, blades, substructure and foundation. But since the function of a wind turbine is highly dependent on many electrical and mechanical components as well as a control system also reliability aspects...... of these components are discussed and it is described how there reliability influences the reliability of the structural components. Two illustrative examples are presented considering uncertainty modeling, reliability assessment and calibration of partial safety factors for structural wind turbine components exposed...

  15. Component development for X-band above 100 MW

    International Nuclear Information System (INIS)

    Fowkes, W.R.; Callin, R.S.; Studzinski, M.

    1991-05-01

    The requirement for some of the components described in this paper began with the Relativistic Klystron program done in collaboration with LLNL and LBL. This effort culminated in a klystron operating at 11.4 GHz delivering 330 MW into a pair of high-gradient accelerating structures. The electron beam for this klystron was formed in a 1 MeV induction linac at a very low duty cycle. The subsequent RF source development work at SLAC for the Next Linear Collider utilized some of these components, and required further and new development of others, work reliably at higher average power. 6 refs., 6 figs., 1 tab

  16. Development of core technology for KNGR system design; development of quantitative reliability evaluation methodologies of KNGR digital I and C components

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Poong Hyun; Choi, Jong Gyun; Kim, Ung Soo; Kim, Jong Hyun; Kim, Man Cheol; Lee, Seung Jun; Lee, Young Je; Ha, Jun Soo [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-03-01

    For the digital systems to be applied to the nuclear industry, which has its unique conservertive to safety, reliability assessment of digital systems is a prerequisite. But, because digital systems show different failure modes from compared to existing analog systems, the existing reliability assessment method cannot be applied to digital systems. It means that a new reliability assessment method for digital systems should be developed. The goal of this study is development of reliability assessment method for digital systems on board level and related software tool. To achieve the goal, we have conducted researches on development of a database for hardware components for digital I and C systems, development of a reliability assessment model for the reliability prediction of digital systems on board level, and the applicability to KNGR digital I and C systems. We developed a database for reliability assessment of digital hardware components, a reliability assessment method for digital systems with consideration of software and hardware together, and a software tool for the reliability assessment of digital systems, which is named as RelPredic. We plan to apply the results of this study to the reliability assessment of digital systems in KNGR digital I and C systems. 13 refs., 71 figs., 31 tabs. (Author)

  17. Scaled CMOS Technology Reliability Users Guide

    Science.gov (United States)

    White, Mark

    2010-01-01

    The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is

  18. Note: An online testing method for lifetime projection of high power light-emitting diode under accelerated reliability test.

    Science.gov (United States)

    Chen, Qi; Chen, Quan; Luo, Xiaobing

    2014-09-01

    In recent years, due to the fast development of high power light-emitting diode (LED), its lifetime prediction and assessment have become a crucial issue. Although the in situ measurement has been widely used for reliability testing in laser diode community, it has not been applied commonly in LED community. In this paper, an online testing method for LED life projection under accelerated reliability test was proposed and the prototype was built. The optical parametric data were collected. The systematic error and the measuring uncertainty were calculated to be within 0.2% and within 2%, respectively. With this online testing method, experimental data can be acquired continuously and sufficient amount of data can be gathered. Thus, the projection fitting accuracy can be improved (r(2) = 0.954) and testing duration can be shortened.

  19. The linear proton accelerator for the MYRRHA-ADS

    International Nuclear Information System (INIS)

    Vandeplassche, D.; Medeiros Ramao, L.

    2013-01-01

    The article discusses the development of a linear proton accelerator for the MYRRHA Accelerator Driven System (ADS). The linear proton accelerator provides a high energy and high intensity proton beam that is directed to a spallation target, which will deliver neutrons to a subcritical nuclear reactor core. The article describes the MYRRHA linear accelerator, which mainly consists of a sequence of superconducting accelerating radiofrequent cavities that are positioned in a linear configuration. The beam requirements for MYRRHA are discussed involving, amongst others, a continuous wave beam delivery mode with a high reliability goal. The key concepts to increase the reliability of the accelerator are described.

  20. T-book. Reliability data of components in Nordic nuclear power plants. 6. ed

    International Nuclear Information System (INIS)

    2005-01-01

    The main objective of the T-Book is to provide reliability data for the unavailability computations that are made for each component that is considered in the compulsory, probabilistic safety assessments (PSA) of nuclear power plants. As the use of PSA is large in the normal safety work at the NPPs, there is a need for easily accessible and reliable failure data. The failure characteristics presented in the T-Book are primarily based on the failure reports stored in the central database TUD and the Licensee Event Reports delivered to the Swedish Nuclear Power Inspectorate (SKI). Fortunately, the TUD database was started already in the middle of the seventies by the Swedish power companies. In 1981, the Finnish power company TVO, operating two reactor units of Swedish design, joined the data collection system. Before the TUD data are statistically treated they are carefully examined with respect to the consistency and correctness. This T-Book comprises only critical failures, i.e. failures that stops the function of components or leads to repair. The first edition of the T-Book was issued in 1982 encompassing operational statistics from 21 reactor years. The second edition was published 1985, based on operating data covering about 40 reactor years. The T-Book 3 was published in 1992 and included data up to the operating year 1987 (108 reactor years). Edition 4 was published 1994 containing information up to and including 1992 (178 reactor years). Edition 5 was published year 2000 containing information up to and including 1996 (234 reactor years). This edition 6 contains information including year 2002 (315 reactor years). At the same time as the amount of data has increased with the successive editions of the T-Book there has been a continuous work to improve the methods for the statistical inference and related program tools, required to derive the reliability parameters from the operational data in the database. Already in the initial edition there was a Bayesian

  1. Reliability of the Phi angle to assess rotational alignment of the talar component in total ankle replacement.

    Science.gov (United States)

    Manzi, Luigi; Villafañe, Jorge Hugo; Indino, Cristian; Tamini, Jacopo; Berjano, Pedro; Usuelli, Federico Giuseppe

    2017-11-08

    The purpose of this study was to investigate the test-retest reliability of the Phi angle in patients undergoing total ankle replacement (TAR) for end stage ankle osteoarthritis (OA) to assess the rotational alignment of the talar component. Retrospective observational cross-sectional study of prospectively collected data. Post-operative anteroposterior radiographs of the foot of 170 patients who underwent TAR for the ankle OA were evaluated. Three physicians measured Phi on the 170 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), inter and intra-observer agreement were evaluated. Test-retest reliability of Phi angle measurement was excellent for patients with Hintegra TAR (ICC=0.995; pPhi angle measurement between patients with Hintegra vs. Zimmer implants (p>0.05). Measurement of Phi angle on weight-bearing dorsoplantar radiograph showed an excellent reliability among orthopaedic surgeons in determining the position of the talar component in the axial plane. Level II, cross sectional study. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  2. Design of a MeV, 4kA linear induction accelerator for flash radiography

    International Nuclear Information System (INIS)

    Kulke, B.; Brier, R.; Chapin, W.

    1981-01-01

    For verifying the hydrodynamics of nuclear weapons design it is useful to have flash x-ray machines that can deliver a maximum dose in a minimum pulse length and with very high reliability. At LLNL, such a requirement was identified some years ago as 500 roentgens at one meter, in a 60 nsec pulse length. In response to this requirement, a linear induction accelerator was proposed to and funded by DOE in 1977. The design of this machine, called FXR, has now been completed and construction has begun. The FXR design extends the parameters of a similar machine that had been built and operated at LBL, Berkeley, some ten years ago. Using a cold cathode injector followed by 48 accelerator modules rated at 400 kV each, the FXR machine will accelerate a 4 kA electron beam pulse to 20 MeV final energy. Key design features are the generation and the stable transport of a low emittance (100 mr-cm) beam from a field emitter diode, the design of reliable, compact energy storage components such as Blumleins, feedlines and accelerator modules, and a computer-assisted control system

  3. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  4. Reliability calculation of cracked components using probabilistic fracture mechanics and a Markovian approach

    International Nuclear Information System (INIS)

    Schmidt, T.

    1988-01-01

    The numerical reliability calculation of cracked construction components under cyclical fatigue stress can be done with the help of models of probabilistic fracture mechanics. An alternative to the Monte Carlo simulation method is examined; the alternative method is based on the description of failure processes with the help of a Markov process. The Markov method is traced back directly to the stochastic parameters of a two-dimensional fracture mechanics model, the effects of inspections and repairs also being considered. The probability of failure and expected failure frequency can be determined as time functions with the transition and conditional probabilities of the original or derived Markov process. For concrete calculation, an approximative Markov chain is designed which, under certain conditions, is capable of giving a sufficient approximation of the original Markov process and the reliability characteristics determined by it. The application of the MARKOV program code developed into an algorithm reveals sufficient conformity with the Monte Carlo reference results. The starting point of the investigation was the 'Deutsche Risikostudie B (DWR)' ('German Risk Study B (DWR)'), specifically, the reliability of the main coolant line. (orig./HP) [de

  5. A review of the radiological safety of the ISIS accelerator - A paper prepared for the advanced reactor safety topical meeting, Orlando, Florida (USA) June 1997

    International Nuclear Information System (INIS)

    Wright, P.

    1997-01-01

    This paper describes the current radiological safety aspects of operation of ISIS accelerator components and spallation targets. Improvements in the design of a new facility with higher power are also suggested for each main component. General comments on the regulatory and organisational aspects are made. Regulation is by European Union and British Legislation. Specific ISIS components described are the ion source, linear accelerator, synchrotron, target station, experimental beam lines and radioactive materials stores. The reliability of tantalum and uranium targets is discussed. Environmental discharges of tritium and other nuclides can become a limiting factor in accelerator operation. Methods of discharge monitoring at ISIS are explained and suggestions for improvements are outlined. Waste accumulation, associated doses and costs are described. 3 refs

  6. Reliability analysis and optimisation of subsea compression system facing operational covariate stresses

    International Nuclear Information System (INIS)

    Okaro, Ikenna Anthony; Tao, Longbin

    2016-01-01

    This paper proposes an enhanced Weibull-Corrosion Covariate model for reliability assessment of a system facing operational stresses. The newly developed model is applied to a Subsea Gas Compression System planned for offshore West Africa to predict its reliability index. System technical failure was modelled by developing a Weibull failure model incorporating a physically tested corrosion profile as stress in order to quantify the survival rate of the system under additional operational covariates including marine pH, temperature and pressure. Using Reliability Block Diagrams and enhanced Fusell-Vesely formulations, the whole system was systematically decomposed to sub-systems to analyse the criticality of each component and optimise them. Human reliability was addressed using an enhanced barrier weighting method. A rapid degradation curve is obtained on a subsea system relative to the base case subjected to a time-dependent corrosion stress factor. It reveals that subsea system components failed faster than their Mean time to failure specifications from Offshore Reliability Database as a result of cumulative marine stresses exertion. The case study demonstrated that the reliability of a subsea system can be systematically optimised by modelling the system under higher technical and organisational stresses, prioritising the critical sub-systems and making befitting provisions for redundancy and tolerances. - Highlights: • Novel Weibull Corrosion-Covariate model for reliability analysis of subsea assets. • Predict the accelerated degradation profile of a subsea gas compression. • An enhanced optimisation method based on Fusell-Vesely decomposition process. • New optimisation approach for smoothening of over- and under-designed components. • Demonstrated a significant improvement in producing more realistic failure rate.

  7. On the optimal scheduling of periodic tests and maintenance for reliable redundant components

    International Nuclear Information System (INIS)

    Courtois, Pierre-Jacques; Delsarte, Philippe

    2006-01-01

    Periodically, some m of the n redundant components of a dependable system may have to be taken out of service for inspection, testing or preventive maintenance. The system is then constrained to operate with lower (n-m) redundancy and thus with less reliability during these periods. However, more frequent periodic inspections decrease the probability that a component fail undetected in the time interval between successive inspections. An optimal time schedule of periodic preventive operations arises from these two conflicting factors, balancing the loss of redundancy during inspections against the reliability benefits of more frequent inspections. Considering no other factor than this decreased redundancy at inspection time, this paper demonstrates the existence of an optimal interval between inspections, which maximizes the mean time between system failures. By suitable transformations and variable identifications, an analytic closed form expression of the optimum is obtained for the general (m, n) case. The optimum is shown to be unique within the ranges of parameter values valid in practice; its expression is easy to evaluate and shown to be useful to analyze and understand the influence of these parameters. Inspections are assumed to be perfect, i.e. they cause no component failure by themselves and leave no failure undetected. In this sense, the optimum determines a lowest bound for the system failure rate that can be achieved by a system of n-redundant components, m of which require for inspection or maintenance recurrent periods of unavailability of length t. The model and its general closed form solution are believed to be new . Previous work had computed optimal values for an estimation of a time average of system unavailability, but by numerical procedures only and with different numerical approximations, other objectives and model assumptions (one component only inspected at a time), and taking into account failures caused by testing itself, repair and

  8. Runtime accelerator configuration tools at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Tiefenback, M.G.; Doolittle, L.; Benesch, J.F.

    1997-01-01

    RF and magnet system configuration and monitoring tools are being implemented at Jefferson Lab to improve system reliability and reduce operating costs. They are prototype components of the Momentum Management System being developed. The RF is of special interest because it affects the momentum and momentum spread of the beam, and because of the immediate financial benefit of managing the klystron DC supply power. The authors describe present and planned monitoring of accelerating system parameters, use of these data, RF system performance calculations, and procedures for magnet configuration for handling beam of any of five beam energies to any of three targets

  9. Commissioning experiences on high voltage generator of 750 KeV DC accelerator at RRCAT, Indore

    International Nuclear Information System (INIS)

    Banwari, R.; Kasliwal, A.; Pandit, T.G.

    2009-01-01

    Design approach of high voltage generator for 750 keV DC accelerator, developed at RRCAT Indore, inculcates a unique feature of high frequency operation of symmetrical Cockcroft-Walton voltage generator. Apart from design simplicity and feasibility of modular construction, the high frequency use of symmetrical Cockcroft-Walton circuit gives added advantages of less ripple, better regulation, faster response and low stored energy in the system. Additionally the scheme allows us the use of low voltage, light weight components thus improving the overall economy of the system. The accelerator has been commissioned and made operational at its rated energy of 750 keV in the recent past. With brief introduction on design aspects of high voltage generator and filament power supply of this accelerator, the paper presented here describes the developmental steps of various components with focus on challenges encountered and solutions implemented. Development of high frequency inverter, high voltage ferrite core transformer, compensating inductors, interface bushings, voltage multiplier stack, and filament transformer along with floating power supply for electron emitter of the accelerator has been dealt in detail. The failures encountered during commissioning stages of the accelerator have been reported with measures taken for improvement of the specific components. Intricacies of the reflected capacitance of the multiplier stack and arc-current ground return are also described with their effects on system operation and reliability. (author)

  10. Integration Test of the High Voltage Hall Accelerator System Components

    Science.gov (United States)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  11. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  12. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    Science.gov (United States)

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  13. Development of a reliability-analysis method for category I structures

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Reich, M.

    1983-01-01

    The present paper develops a reliability analysis method for category I nuclear structures, particularly for reinforced concrete containment structures subjected to various load combinations. The loads considered here include dead loads, accidental internal pressure and earthquake ground acceleration. For mathematical tractability, an earthquake occurrence is assumed to be governed by the Poisson arrival law, while its acceleration history is idealized as a Gaussian vector process of finite duration. A vector process consists of three component processes, each with zero mean. The second order statistics of this process are specified by a three-by-three spectral density matrix with a multiplying factor representing the overall intensity of the ground acceleration. With respect to accidental internal pressure, the following assumptions are made: (a) it occurs in accordance with the Poisson law; (b) its intensity and duration are random; and (c) its temporal rise and fall behaviors are such that a quasi-static structural analysis applies. A dead load is considered to be a deterministic constant

  14. Supervision Software for the Integration of the Beam Interlock System with the CERN Accelerator Complex

    CERN Document Server

    Audrain, M; Dragu, M; Fuchsberger, K; Garnier, JC; Gorzawski, AA; Koza, M; Krol, K; Moscatelli, A; Puccio, B; Stamos, K; Zerlauth, M

    2014-01-01

    The Accelerator complex at the European Organisation for Nuclear Research (CERN) is composed of many systems which are required to function in a valid state to ensure safe beam operation. One key component of machine protection, the Beam Interlock System (BIS), was designed to interface critical systems around the accelerator chain, provide fast and reliable transmission of beam dump requests and trigger beam extraction in case of malfunctioning of equipment systems or beam losses. Numerous upgrades of accelerator and controls components during the Long Shutdown 1 (LS1) are followed by subsequent software updates that need to be thoroughly validated before the restart of beam operation in 2015. In parallel, the ongoing deployments of the BIS hardware in the PS booster (PSB) and the future LINAC4 give rise to new requirements for the related controls and monitoring software due to their fast cycle times. This paper describes the current status and ongoing work as well as the long-term vision for the integratio...

  15. Continuous estimates on the earthquake early warning magnitude by use of the near-field acceleration records

    Science.gov (United States)

    Li, Jun; Jin, Xing; Wei, Yongxiang; Zhang, Hongcai

    2013-10-01

    In this article, the seismic records of Japan's Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.

  16. Contribution to improving reliability assessments of mechanical structural components requiring a high degree of safety using weighted Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kutter, R

    1981-12-04

    Physical theories to inquire lifetime and reliability of mechanical structures or components under multiscale random stress do not exist. Today those dates were examinated e.g. in development of aircrafts and motorcars by fatigue-testing of original components and sections during long terms. Knowing the distributions of stress and material-parameters the same testing is to be realized simulationary on highspeed computers. This study gives methods to reduce the necessary computation time to attending ones even to proof reliability up to R=1-10/sup -9/. These methods were of Monte-Carlo-Simulation with weighted parameters and respect to life-history.

  17. IEEE guide to the collection and presentation of electrical, electronic, and sensing component reliability data for nuclear-power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Guidelines are given for the purpose of establishing standardization methods for collecting and presenting reliability data for quantitative systematic analysis in nuclear power plants. This guide may be also used for reliability analysis in other segments of power industry. The data considered include failure rates, failure modes and environmental impact on component behavior

  18. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  19. Proposed research on class I components to test a general approach to accelerated aging under combined stress environments

    International Nuclear Information System (INIS)

    Gillen, K.T.; Salazar, E.A.; Frank, C.W.

    1977-04-01

    This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model

  20. Component reliability criticality or importance metrics for systems with degrading components

    NARCIS (Netherlands)

    Peng, H.; Coit, D.W.; Feng, Q.

    2012-01-01

    This paper proposes two new importance measures: one new importance measure for systems with -independent degrading components, and another one for systems with -correlated degrading components. Importance measures in previous research are inadequate for systems with degrading components because

  1. High intensity proton accelerator controls network upgrade

    International Nuclear Information System (INIS)

    Krempaska, R.; Bertrand, A.; Lendzian, F.; Lutz, H.

    2012-01-01

    The High Intensity Proton Accelerator (HIPA) control system network is spread through a vast area in PSI and it was grown historically in an unorganized way. The miscellaneous network hardware infrastructure and the lack of the documentation and components overview could no longer guarantee the reliability of the control system and the facility operation. Therefore, a new network, based on modern network topology, PSI standard hardware with monitoring and detailed documentation and overview was needed. The number of active components has been reduced from 25 to 9 Cisco Catalyst 24- or 48-port switches. They are the same type as other PSI switches, thus a replacement emergency stock is not an issue anymore. We would like to present how we successfully achieved this goal and the advantages of the clean and well documented network infrastructure. (authors)

  2. Ion Acceleration by Double Layers with Multi-Component Ion Species

    Science.gov (United States)

    Good, Timothy; Aguirre, Evan; Scime, Earl; West Virginia University Team

    2017-10-01

    Current-free double layers (CFDL) models have been proposed to explain observations of magnetic field-aligned ion acceleration in plasmas expanding into divergent magnetic field regions. More recently, experimental studies of the Bohm sheath criterion in multiple ion species plasma reveal an equilibration of Bohm speeds at the sheath-presheath boundary for a grounded plate in a multipole-confined filament discharge. We aim to test this ion velocity effect for CFDL acceleration. We report high resolution ion velocity distribution function (IVDF) measurements using laser induced fluorescence downstream of a CFDL in a helicon plasma. Combinations of argon-helium, argon-krypton, and argon-xenon gases are ionized and measurements of argon or xenon IVDFs are investigated to determine whether ion acceleration is enhanced (or diminished) by the presence of lighter (or heavier) ions in the mix. We find that the predominant effect is a reduction of ion acceleration consistent with increased drag arising from increased gas pressure under all conditions, including constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in these expanding plasmas. Department of Physics, Gettysburg College.

  3. A Statistical Perspective on Highly Accelerated Testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  4. Summary report on large HVEC accelerators

    International Nuclear Information System (INIS)

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated

  5. Component fragility data base for reliability and probability studies

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassier, M.; Pepper, S.

    1989-01-01

    Safety-related equipment in a nuclear plant plays a vital role in its proper operation and control, and failure of such equipment due to an earthquake may pose a risk to the safe operation of the plant. Therefore, in order to assess the overall reliability of a plant, the reliability of performance of the equipment should be studied first. The success of a reliability or a probability study depends to a great extent on the data base. To meet this demand, Brookhaven National Laboratory (BNL) has formed a test data base relating the seismic capacity of equipment specimens to the earthquake levels. Subsequently, the test data have been analyzed for use in reliability and probability studies. This paper describes the data base and discusses the analysis methods. The final results that can be directly used in plant reliability and probability studies are also presented in this paper

  6. Rejuvenating CERN's Accelerators

    CERN Multimedia

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  7. The importance of reliability to the SunShot Initiative (Presentation Recording)

    Science.gov (United States)

    Jones-Albertus, Rebecca

    2015-09-01

    The U.S. Department of Energy's SunShot Initiative was launched in 2011 to make subsidy-free solar electricity cost competitive with conventional energy sources by the end of the decade. Research in reliability can play a major role in realizing the SunShot goal of 0.06/kWh. By improving photovoltaic module lifetime and reducing degradation rates, a system's lifetime energy output is increased. Increasing confidence in photovoltaic performance prediction can lower perceived investment risk and thus the cost of capital. Accordingly, in 2015, SunShot expects to award more than $40 million through its SunShot National Laboratory Multiyear Partnership (SuNLaMP) and Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) 2 funding programs, for research into reliability topics such as determining acceleration factors, modeling degradation rates and failure mechanisms, improving predictive performance models, and developing new test methods and instrumentation.

  8. SALOME: An Accelerator for the Practical Course in Accelerator Physics

    OpenAIRE

    Miltchev, Velizar; Riebesehl, Daniel; Roßbach, Jörg; Trunk, Maximilian; Stein, Oliver

    2014-01-01

    SALOME (Simple Accelerator for Learning Optics and the Manipulation of Electrons) is a short low energy linear electron accelerator built by the University of Hamburg. The goal of this project is to give the students the possibility to obtain hands-on experience with the basics of accelerator physics. In this contribution the layout of the device will be presented. The most important components of the accelerator will be discussed and an overview of the planned demonstration experiments will ...

  9. Building and integrating reliability models in a Reliability-Centered-Maintenance approach

    International Nuclear Information System (INIS)

    Verite, B.; Villain, B.; Venturini, V.; Hugonnard, S.; Bryla, P.

    1998-03-01

    Electricite de France (EDF) has recently developed its OMF-Structures method, designed to optimize preventive maintenance of passive structures such as pipes and support, based on risk. In particular, reliability performances of components need to be determined; it is a two-step process, consisting of a qualitative sort followed by a quantitative evaluation, involving two types of models. Initially, degradation models are widely used to exclude some components from the field of preventive maintenance. The reliability of the remaining components is then evaluated by means of quantitative reliability models. The results are then included in a risk indicator that is used to directly optimize preventive maintenance tasks. (author)

  10. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  11. Environmental risk assessment of biocidal products: identification of relevant components and reliability of a component-based mixture assessment.

    Science.gov (United States)

    Coors, Anja; Vollmar, Pia; Heim, Jennifer; Sacher, Frank; Kehrer, Anja

    2018-01-01

    study developed criteria for the identification of CBA-relevant components in a biocidal product. These criteria are based on existing criteria stated in the regulation for classification, labelling and packaging of substances. The CBA was found sufficiently protective and reliable for the tested products when applying the here recommended criteria. The lack of available aquatic toxicity data for some of the identified relevant components was the main reason for underestimation of product toxicity.

  12. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  13. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  14. Effect of amplifier component maintenance on laser system availability and reliability for the US National Ignition Facility

    International Nuclear Information System (INIS)

    Erlandson, A.C.; Lambert, H.; Zapata, L.E.

    1996-12-01

    We have analyzed the availability and reliability of the flashlamp-pumped, Nd:glass amplifiers that, as a part of a laser now being designed for future experiments, in inertial confinement fusion (ICF), will be used in the National Ignition Facility (NIF). Clearly , in order for large ICF systems such as the NIF to operate effectively as a whole, all components must meet demanding availability and reliability requirements. Accordingly, the NIF amplifiers can achieve high reliability and availability by using reliable parts, and by using a cassette-based maintenance design that allows most key amplifier parts to be 1744 replaced within a few hours. In this way, parts that degrade slowly, as the laser slabs, silver reflectors, and blastshields can be expected to do, based on previous experience, can be replaced either between shots or during scheduled maintenance periods, with no effect on availability or reliability. In contrast, parts that fail rapidly, such as the flashlamps, can and do cause unavailability or unreliability. Our analysis demonstrates that the amplifiers for the NIF will meet availability and reliability goals, respectively, of 99.8% and 99.4%, provided that the 7680 NIF flashlamps in NIF have failure rates of less than, or equal to, those experienced on Nova, a 5000-lamp laser at Lawrence Livermore National Laboratory (LLNL)

  15. A reliability simulation language for reliability analysis

    International Nuclear Information System (INIS)

    Deans, N.D.; Miller, A.J.; Mann, D.P.

    1986-01-01

    The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)

  16. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  17. Safety and reliability criteria

    International Nuclear Information System (INIS)

    O'Neil, R.

    1978-01-01

    Nuclear power plants and, in particular, reactor pressure boundary components have unique reliability requirements, in that usually no significant redundancy is possible, and a single failure can give rise to possible widespread core damage and fission product release. Reliability may be required for availability or safety reasons, but in the case of the pressure boundary and certain other systems safety may dominate. Possible Safety and Reliability (S and R) criteria are proposed which would produce acceptable reactor design. Without some S and R requirement the designer has no way of knowing how far he must go in analysing his system or component, or whether his proposed solution is likely to gain acceptance. The paper shows how reliability targets for given components and systems can be individually considered against the derived S and R criteria at the design and construction stage. Since in the case of nuclear pressure boundary components there is often very little direct experience on which to base reliability studies, relevant non-nuclear experience is examined. (author)

  18. System reliability developments in structural engineering

    International Nuclear Information System (INIS)

    Moses, F.

    1982-01-01

    Two major limitations occur in present structural design code developments utilizing reliability theory. The notional system reliabilities may differ significantly from calibrated component reliabilities. Secondly, actual failures are often due to gross errors not reflected in most present code formats. A review is presented of system reliability methods and further new concepts are developed. The incremental load approach for identifying and expressing collapse modes is expanded by employing a strategy to identify and enumerate the significant structural collapse modes. It further isolates the importance of critical components in the system performance. Ductile and brittle component behavior and strength correlation is reflected in the system model and illustrated in several examples. Modal combinations for the system reliability are also reviewed. From these developments a system factor can be addended to component safety checking equations. Values may be derived from system behavior by substituting in a damage model which accounts for the response range from component failure to collapse. Other strategies are discussed which emphasize quality assurance during design and in-service inspection for components whose behavior is critical to the system reliability. (Auth.)

  19. Reliability analysis of a repairable k-out-of-n system with some components being suspended when the system is down

    International Nuclear Information System (INIS)

    Li Xiaohu; Zuo, Ming J.; Yam, Richard C.M.

    2006-01-01

    A k-out-of-n system with independent exponential components is investigated. It is assumed that some working components are suspended as soon as the system is down, repair starts immediately when a component fails and repair times are independent and exponentially distributed. Formulas for various reliability indices of the system including mean time between failures, mean working time in a failure-repair cycle, and mean down time in a failure-repair cycle are derived

  20. Reliability and maintainability assessment factors for reliable fault-tolerant systems

    Science.gov (United States)

    Bavuso, S. J.

    1984-01-01

    A long term goal of the NASA Langley Research Center is the development of a reliability assessment methodology of sufficient power to enable the credible comparison of the stochastic attributes of one ultrareliable system design against others. This methodology, developed over a 10 year period, is a combined analytic and simulative technique. An analytic component is the Computer Aided Reliability Estimation capability, third generation, or simply CARE III. A simulative component is the Gate Logic Software Simulator capability, or GLOSS. The numerous factors that potentially have a degrading effect on system reliability and the ways in which these factors that are peculiar to highly reliable fault tolerant systems are accounted for in credible reliability assessments. Also presented are the modeling difficulties that result from their inclusion and the ways in which CARE III and GLOSS mitigate the intractability of the heretofore unworkable mathematics.

  1. How simulation of failure risk can improve structural reliability - application to pressurized components and pipes

    OpenAIRE

    Cioclov, Dimitru Dragos

    2013-01-01

    Probabilistic methods for failure risk assessment are introduced, with reference to load carrying structures, such as pressure vessels (PV) and components of pipes systems. The definition of the failure risk associated with structural integrity is made in the context of the general approach to structural reliability. Sources of risk are summarily outlined with emphasis on variability and uncertainties (V&U) which might be encountered in the analysis. To highlight the problem, in its practical...

  2. Compact all-fiber interferometer system for shock acceleration measurement

    Science.gov (United States)

    Zhao, Jiang; Pi, Shaohua; Hong, Guangwei; Zhao, Dong; Jia, Bo

    2013-08-01

    Acceleration measurement plays an important role in a variety of fields in science and engineering. In particular, the accurate, continuous and non-contact recording of the shock acceleration profiles of the free target surfaces is considered as a critical technique in shock physics. Various kinds of optical interferometers have been developed to monitor the motion of the surfaces of shocked targets since the 1960s, for instance, the velocity interferometer system for any reflector, the fiber optic accelerometer, the photonic Doppler velocimetry system and the displacement interferometer. However, most of such systems rely on the coherent quasi-monochromatic illumination and discrete optic elements, which are costly in setting-up and maintenance. In 1996, L. Levin et al reported an interferometric fiber-optic Doppler velocimeter with high-dynamic range, in which fiber-coupled components were used to replace the discrete optic elements. However, the fringe visibility of the Levin's system is low because of the coupled components, which greatly limits the reliability and accuracy in the shock measurement. In this paper, a compact all-fiber interferometer system for measuring the shock acceleration is developed and tested. The advantage of the system is that not only removes the non-interfering light and enhances the fringe visibility, but also reduces polarization induced signal fading and the polarization induced phase shift. Moreover, it also does not require a source of long coherence length. The system bases entirely on single-mode fiber optics and mainly consists of a polarization beam splitter, a faraday rotator, a depolarizer and a 3×3 single-mode fiber coupler which work at 1310 nm wavelength. The optical systems of the interferometer are described and the experimental results compared with a shock acceleration calibration system with a pneumatic exciter (PneuShockTM Model 9525C by The Modal Shop) are reported. In the shock acceleration test, the

  3. Estimation of structural reliability under combined loads

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads. Indeed, depending on the limit state condition to be specified, these limit state probabilities can indicate which particular load combination provides the dominant contribution to the overall limit state probability. On the other hand, some of the load combinations contribute very little to the overall limit state probability. These observations provide insight into the complex problem of which load combinations must be considered for design, for which limit states and at what level of limit state probabilities. (orig.)

  4. Reliability analysis of different structure parameters of PCBA under drop impact

    Science.gov (United States)

    Liu, P. S.; Fan, G. M.; Liu, Y. H.

    2018-03-01

    The establishing process of PCBA is modelled by finite element analysis software ABAQUS. Firstly, introduce the Input-G method and the fatigue life under drop impact are introduced and the mechanism of the solder joint failure in the process of drop is analysed. The main reason of solder joint failure is that the PCB component is suffering repeated tension and compression stress during the drop impact. Finally, the equivalent stress and peel stress of different solder joint and plate-level components under different impact acceleration are also analysed. The results show that the reliability of tin-silver copper joint is better than that of tin- lead solder joint, and the fatigue life of solder joint expectancy decrease as the impact pulse amplitude increases.

  5. Accelerated tests for the soft error rate determination of single radiation particles in components of terrestrial and avionic electronic systems

    International Nuclear Information System (INIS)

    Flament, O.; Baggio, J.

    2010-01-01

    This paper describes the main features of the accelerated test procedures used to determine reliability data of microelectronics devices used in terrestrial environment.This paper focuses on the high energy particle test that could be performed through spallation neutron source or quasi-mono-energetic neutron or proton. Improvements of standards are illustrated with respect to the state of the art of knowledge in radiation effects and scaling down of microelectronics technologies. (authors)

  6. Source-to-accelerator quadrupole matching section for a compact linear accelerator

    Science.gov (United States)

    Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.

    2018-05-01

    Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.

  7. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  8. Developing Reliable Life Support for Mars

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    A human mission to Mars will require highly reliable life support systems. Mars life support systems may recycle water and oxygen using systems similar to those on the International Space Station (ISS). However, achieving sufficient reliability is less difficult for ISS than it will be for Mars. If an ISS system has a serious failure, it is possible to provide spare parts, or directly supply water or oxygen, or if necessary bring the crew back to Earth. Life support for Mars must be designed, tested, and improved as needed to achieve high demonstrated reliability. A quantitative reliability goal should be established and used to guide development t. The designers should select reliable components and minimize interface and integration problems. In theory a system can achieve the component-limited reliability, but testing often reveal unexpected failures due to design mistakes or flawed components. Testing should extend long enough to detect any unexpected failure modes and to verify the expected reliability. Iterated redesign and retest may be required to achieve the reliability goal. If the reliability is less than required, it may be improved by providing spare components or redundant systems. The number of spares required to achieve a given reliability goal depends on the component failure rate. If the failure rate is under estimated, the number of spares will be insufficient and the system may fail. If the design is likely to have undiscovered design or component problems, it is advisable to use dissimilar redundancy, even though this multiplies the design and development cost. In the ideal case, a human tended closed system operational test should be conducted to gain confidence in operations, maintenance, and repair. The difficulty in achieving high reliability in unproven complex systems may require the use of simpler, more mature, intrinsically higher reliability systems. The limitations of budget, schedule, and technology may suggest accepting lower and

  9. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  10. Advances in electrostatic accelerators

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1975-01-01

    Advances in the design and performance of electrostatic accelerators since 1969 are reviewed with special emphasis on the ''forefront'' accelerators that are currently leading in voltage capability. A comparison of the acceleration tube design offered by the National Electrostatics Corporation and the High Voltage Engineering Corporation is also made. Other methods of increasing heavy ion energy by means of dual foil stripping are discussed as well as the performance of a newly developed sputter ion source for the production of negative heavy ions with reliability and flexibility that greatly exceeds all other present systems. Finally, new developments in terms of both booster systems and very high voltage electrostatic accelerators (25 to 60 MV) are discussed. (U.S.)

  11. Performance and Reliability of Bonded Interfaces for High-Temperature Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Paul P [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-02

    Sintered silver has proven to be a promising candidate for use as a die-attach and substrate-attach material in automotive power electronics components. It holds promise of greater reliability than lead-based and lead-free solders, especially at higher temperatures (>200 degrees C). Accurate predictive lifetime models of sintered silver need to be developed and its failure mechanisms thoroughly characterized before it can be deployed as a die-attach or substrate-attach material in wide-bandgap device-based packages. Mechanical characterization tests that result in stress-strain curves and accelerated tests that produce cycles-to-failure result will be conducted. Also, we present a finite element method (FEM) modeling methodology that can offer greater accuracy in predicting the failure of sintered silver under accelerated thermal cycling. A fracture mechanics-based approach is adopted in the FEM model, and J-integral/thermal cycle values are computed.

  12. Reliability measures in managing GI bleeding.

    Science.gov (United States)

    Sonnenberg, Amnon

    2012-06-01

    Multiple procedures and devices are used in a complex interplay to diagnose and treat GI bleeding. To model how a large variety of diagnostic and therapeutic components interact in the successful management of GI bleeding. The analysis uses the concept of reliability block diagrams from probability theory to model management outcome. Separate components of the management process are arranged in a serial or parallel fashion. If the outcome depends on the function of each component individually, such components are modeled to be arranged in series. If components complement each other and can mutually compensate for each of their failures, such components are arranged in a parallel fashion. General endoscopy practice. Patients with GI bleeding of unknown etiology. All available endoscopic and radiographic means to diagnose and treat GI bleeding. Process reliability in achieving hemostasis. Serial arrangements tend to reduce process reliability, whereas parallel arrangements increase it. Whenever possible, serial components should be bridged and complemented by additional alternative (parallel) routes of operation. Parallel components with low individual reliability can still contribute to overall process reliability as long as they function independently of other pre-existing alternatives. Probability of success associated with individual components is partly unknown. Modeling management of GI bleeding by a reliability block diagram provides a useful tool in assessing the impact of individual endoscopic techniques and administrative structures on the overall outcome. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  13. AC-loss considerations of a pulse SMES for an accelerator

    International Nuclear Information System (INIS)

    Lyly, M; Hiltunen, I; Jaervelae, J; Korpela, A; Lehti, L; Stenvall, A; Mikkonen, R

    2010-01-01

    In particle accelerators quasi-DC superconducting magnets are used to keep particles in desired tracks. The needed rapid field variations of these high energy magnets require large energy bursts. If these bursts are taken from and fed back to the utility grid, its voltage is distorted and the quality of the electricity degrades. In addition, these bursts may decrease operation life time of generators and extra arrangements may be required by the electricity producers. Thus, an energy storage is an essential component for a cost-effective particle accelerator. Flywheels, capacitors and superconducting magnetic energy storage (SMES) are possible options for these relatively large and high power energy storages. Here we concentrate on AC-loss of a pulse SMES aiming to demonstrate the feasibility of NbTi SMES in a particle accelerator. The designing of a SMES requires highly reliable AC-loss simulations. In this paper, calorimetric AC-loss measurements of a NbTi magnet have been carried out to consider conductor's suitability in a pulse SMES. In addition, the measured results are compared with AC-loss simulations.

  14. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  15. Reliability and Validity of the Sensory Component of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI): A Systematic Review

    Science.gov (United States)

    Hales, M.; Biros, E.

    2015-01-01

    Background: Since 1982, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) has been used to classify sensation of spinal cord injury (SCI) through pinprick and light touch scores. The absence of proprioception, pain, and temperature within this scale creates questions about its validity and accuracy. Objectives: To assess whether the sensory component of the ISNCSCI represents a reliable and valid measure of classification of SCI. Methods: A systematic review of studies examining the reliability and validity of the sensory component of the ISNCSCI published between 1982 and February 2013 was conducted. The electronic databases MEDLINE via Ovid, CINAHL, PEDro, and Scopus were searched for relevant articles. A secondary search of reference lists was also completed. Chosen articles were assessed according to the Oxford Centre for Evidence-Based Medicine hierarchy of evidence and critically appraised using the McMasters Critical Review Form. A statistical analysis was conducted to investigate the variability of the results given by reliability studies. Results: Twelve studies were identified: 9 reviewed reliability and 3 reviewed validity. All studies demonstrated low levels of evidence and moderate critical appraisal scores. The majority of the articles (~67%; 6/9) assessing the reliability suggested that training was positively associated with better posttest results. The results of the 3 studies that assessed the validity of the ISNCSCI scale were confounding. Conclusions: Due to the low to moderate quality of the current literature, the sensory component of the ISNCSCI requires further revision and investigation if it is to be a useful tool in clinical trials. PMID:26363591

  16. Reliability and Validity of the Sensory Component of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI): A Systematic Review.

    Science.gov (United States)

    Hales, M; Biros, E; Reznik, J E

    2015-01-01

    Since 1982, the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) has been used to classify sensation of spinal cord injury (SCI) through pinprick and light touch scores. The absence of proprioception, pain, and temperature within this scale creates questions about its validity and accuracy. To assess whether the sensory component of the ISNCSCI represents a reliable and valid measure of classification of SCI. A systematic review of studies examining the reliability and validity of the sensory component of the ISNCSCI published between 1982 and February 2013 was conducted. The electronic databases MEDLINE via Ovid, CINAHL, PEDro, and Scopus were searched for relevant articles. A secondary search of reference lists was also completed. Chosen articles were assessed according to the Oxford Centre for Evidence-Based Medicine hierarchy of evidence and critically appraised using the McMasters Critical Review Form. A statistical analysis was conducted to investigate the variability of the results given by reliability studies. Twelve studies were identified: 9 reviewed reliability and 3 reviewed validity. All studies demonstrated low levels of evidence and moderate critical appraisal scores. The majority of the articles (~67%; 6/9) assessing the reliability suggested that training was positively associated with better posttest results. The results of the 3 studies that assessed the validity of the ISNCSCI scale were confounding. Due to the low to moderate quality of the current literature, the sensory component of the ISNCSCI requires further revision and investigation if it is to be a useful tool in clinical trials.

  17. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  18. APT accelerator technology

    International Nuclear Information System (INIS)

    Schneider, J. David

    1996-01-01

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  19. Generic component reliability data for research reactors PSA. Final report of the CRP on data acquisition for research reactor PSA. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    The scope of this document is to provide the final reference generic component reliability database information for a variety of research reactor types. As noted in Section 2.1 and Table 3a, many years of component data are represented in the database so that it is expected that the report should provide representative data valid for a number of years. The database provides component failure rates on a time and/or a demand related basis according to the operational modes of the components. At the current time an update of the database is not planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available from the contributing research reactor facilities themselves. As noted in Section 1.2, the report does not include detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussion regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, tabs

  20. Generic component reliability data for research reactors PSA. Final report of the CRP on data acquisition for research reactor PSA. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The scope of this document is to provide the final reference generic component reliability database information for a variety of research reactor types. As noted in Section 2.1 and Table 3a, many years of component data are represented in the database so that it is expected that the report should provide representative data valid for a number of years. The database provides component failure rates on a time and/or a demand related basis according to the operational modes of the components. At the current time an update of the database is not planned. As a result of the implementation of data collection systems in the research reactors represented in these studies, updating of data from individual facilities could be made available from the contributing research reactor facilities themselves. As noted in Section 1.2, the report does not include detailed discussion of information regarding component classification and reliability parameter definitions. The report does provide some insights and discussion regarding the practicalities of the data collection process and some guidelines for database usage. 9 refs, tabs.

  1. Reliability Constrained Priority Load Shedding for Aerospace Power System Automation

    Science.gov (United States)

    Momoh, James A.; Zhu, Jizhong; Kaddah, Sahar S.; Dolce, James L. (Technical Monitor)

    2000-01-01

    The need for improving load shedding on board the space station is one of the goals of aerospace power system automation. To accelerate the optimum load-shedding functions, several constraints must be involved. These constraints include congestion margin determined by weighted probability contingency, component/system reliability index, generation rescheduling. The impact of different faults and indices for computing reliability were defined before optimization. The optimum load schedule is done based on priority, value and location of loads. An optimization strategy capable of handling discrete decision making, such as Everett optimization, is proposed. We extended Everett method to handle expected congestion margin and reliability index as constraints. To make it effective for real time load dispatch process, a rule-based scheme is presented in the optimization method. It assists in selecting which feeder load to be shed, the location of the load, the value, priority of the load and cost benefit analysis of the load profile is included in the scheme. The scheme is tested using a benchmark NASA system consisting of generators, loads and network.

  2. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  3. Reliability Data Handbook for Piping Components in Nordic Nuclear Power Plants - R Book, Phase 2

    International Nuclear Information System (INIS)

    Hedtjaern Swaling, Vidar; Olsson, Anders

    2011-02-01

    This report presents results of a long research and development project financed by the regulatory body Straalsaekerhetsmyndigheten (SSM) (former SKI), the Swedish nuclear power plant licensees. The report presents a harmonized method for estimating Reliability Data for Piping Components in ASME code class 1 and 2 piping components (R-Book). Data in the R-Book is measured based on 'data driven' strategy. This first version of the R-Book comprises rupture frequencies and failure rates for all systems where ASME Code Class 1 or 2 events could be found in the OECD OPDE database. Nordic and Non-Nordic data are presented separately. Worldwide experience data is used to set up the relevant calculation cases, i.e. intersections of attributes for which there are at least one event present

  4. Theoretical problems in accelerator physics

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following research on accelerators: computational methods; higher order mode suppression in accelerators structures; overmoded waveguide components and application to SLED II and power transport; rf sources; accelerator cavity design for a B factory asymmetric collider; and photonic band gap cavities

  5. Impedance of accelerator components

    International Nuclear Information System (INIS)

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed

  6. Parametric Mass Reliability Study

    Science.gov (United States)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  7. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  8. Working Group summary reports from the Advanced Photon Source reliability workshop

    International Nuclear Information System (INIS)

    1992-05-01

    A workshop was held at APS to address reliability goals for accelerator systems. Seventy-one individuals participated in the workshop, including 30 from other institutions. The goals of the workshop were to: (1) Give attendees an introduction to the basic concepts of reliability analysis. (2) Exchange information on operating experience at existing accelerator facilities and strategies for achieving reliability at facilities under design or in construction. (3) Discuss reliability goals for APS and the means of their achievement. This report contains the working group summary report an APS's following systems: RF Systems; Power Supplies; Magnet Systems; Interlock and Diagnostics; and Vacuum Systems

  9. Manufacturing of reliable actively cooled fusion components - a challenge for non-destructive inspections

    International Nuclear Information System (INIS)

    Reheis, N.; Zabernig, A.; Ploechl, L.

    1994-01-01

    Actively cooled in-vessel components like divertors or limiters require high quality and reliability to ensure safe operation during long term use. Such components are subjected to very severe thermal and mechanical cyclic loads and high power densities. Key requirements for materials in question are e.g. high melting point and thermal conductivity and low atomic mass number. Since no single material can simultaneously meet all of these requirements the selection of materials to be combined in composite components as well as of manufacturing and non-destructive inspection (NDI) methods is a particularly challenging task. Armour materials like graphite intended to face the plasma and help to maintain its desired properties, are bonded to metallic substrates like copper, molybdenum or stainless steel providing cooling and mechanical support. Several techniques such as brazing and active metal casting have been developed and successfully applied for joining materials with different thermophysical properties, pursuing the objective of sufficient heat dissipation from the hot, plasma facing surface to the coolant. NDI methods are an integral part of the manufacturing schedule of these components, starting in the design phase and ending in the final inspection. They apply all kinds of divertor types (monobloc and flat-tile concept). Particular focus is put on the feasibility of detecting small flaws and defects in complex interfaces and on the limits of these techniques. Special test pieces with defined defects acting as standards were inspected. Accompanying metallographic investigations were carried out to compare actual defects with results recorded during NDI

  10. Calculating system reliability with SRFYDO

    Energy Technology Data Exchange (ETDEWEB)

    Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory

    2010-01-01

    SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.

  11. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  12. Oak Ridge 25URC tandem accelerator 1994 SNEAP lab report

    International Nuclear Information System (INIS)

    Alton, G.D.; Dinehart, M.R.; Dowling, D.T.

    1994-01-01

    The 25URC tandem accelerator is still in shut-down mode until the facility is reconfigured to produce radioactive ion beams (RIBs). Again, the authors have operated approximately 200 hours for ion implantation studies in support of RIB development. Operation of the accelerator has been generally very reliable with most problems being associated with power supplies and components located outside the accelerator. The major operational problem this year was the development of internal shorts in the coils of the energy-analyzing magnet which caused beam instability. The major development activity for the tandem accelerator was the replacement of the corona-point voltage-grading system with resistors. Several milestones for the RIB project have been met since SNEAP 1993. The high-voltage platforms have been built and tested at the required 300 kV. Most equipment has been installed on the platforms so that the first beam can be developed using the Mark I target-ion source. This ion source was characterized on the ion source test facility before moving it to the platform. The second-stage mass-separator magnets have been specified and the contract has been awarded to Sigma Phi. The final optics design for the beam line from the second-stage separator to the tandem accelerator is being completed and equipment and controls are being procured

  13. New Wave of Component Reuse with Spring Framework - AP Case Study

    CERN Document Server

    Wozniak, J; Deghaye, S

    2009-01-01

    The myth of component reuse has always been the “holy grail” of software engineering. The motivation var-ies from less time, effort and money expenditure to higher system quality and reliability which is especially impor-tant in the domain of high energy physics and accelerator controls. Identified as an issue by D. McIlroy in 1968 [1], it has been generally addressed in many ways with vari-ous success rates. But only recently with the advent of fresh ideas like the Spring Framework with its powerful yet simple “Inversion of Control” paradigm the solution to the problem has started to be surprisingly uncompli-cated. Gathered over years of experience this document explains best practices and lessons learned applied at CERN for the design of the operational software used to control the accelerator complex and focuses on features of the Spring Framework that render the component reuse achievable in practice. It also provides real life use cases of mission-critical control systems developed by the Ap-plic...

  14. Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies

    International Nuclear Information System (INIS)

    Spentzouris, P.; Cary, J.; McInnes, L.C.; Mori, W.; Ng, C.; Ng, E.; Ryne, R.

    2008-01-01

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R and D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  15. Neutron double differential distributions, dose rates and specific activities from accelerator components irradiated by 50-400 MeV protons

    International Nuclear Information System (INIS)

    Cerutti, F.; Charitonidis, N.; Silari, M.; Charitonidis, N.

    2010-01-01

    Systematic Monte Carlo simulations with the FLUKA code were performed to estimate the induced radioactivity in five materials commonly used in particle accelerator structures: boron nitride and carbon (dumps and collimators), copper (RF cavities, coils and vacuum chambers), iron and stainless steel (magnets and vacuum chambers). Using a simplified geometry set-up, the five materials were bombarded with protons in the energy range from 50 to 400 MeV. This energy range is typical of intermediate-energy proton accelerators used as injectors to higher-energy machines, as research accelerators for nuclear physics, and in hadron therapy. Ambient dose equivalent rates were calculated at distances up to one meter around the target, for seven cooling times up to six months. A complete inventory of the radionuclides present in the target was calculated for all combinations of target, beam energy and cooling time. The influence of the target size and of self-absorption was investigated. The energy and angular distributions of neutrons escaping from the target were also scored for all materials and beam energies. The influence on the neutron spectra of the presence of concrete walls (the accelerator tunnel) around the target was also estimated. The results of the present study provide a simple database to be used for a first, approximate estimate of the radiological risk to be expected when intervening on activated accelerator components. (authors)

  16. Nuclear reactor component populations, reliability data bases, and their relationship to failure rate estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.

    1981-12-01

    Probabilistic risk analyses are used to assess the risks inherent in the operation of existing and proposed nuclear power reactors. In performing such risk analyses the failure rates of various components which are used in a variety of reactor systems must be estimated. These failure rate estimates serve as input to fault trees and event trees used in the analyses. Component failure rate estimation is often based on relevant field failure data from different reliability data sources such as LERs, NPRDS, and the In-Plant Data Program. Various statistical data analysis and estimation methods have been proposed over the years to provide the required estimates of the component failure rates. This report discusses the basis and extent to which statistical methods can be used to obtain component failure rate estimates. The report is expository in nature and focuses on the general philosophical basis for such statistical methods. Various terms and concepts are defined and illustrated by means of numerous simple examples

  17. 2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov (United States)

    Failure Field Imaging Inverter Reliability Thin Film Technologies Packaging Materials and Accelerated . Introduction and Plenary Welcome-Bill Tumas, National Renewable Energy Laboratory (NREL) Welcome-Shubhra Bansal Reliability Analysis of Microinverters-Paul Parker, SolarBridge Technologies Back to top Thin Film

  18. Metal and elastomer seal tests for accelerator applications

    International Nuclear Information System (INIS)

    Welch, K.M.; McIntyre, G.T.; Tuozzolo, J.E.; Skelton, R.; Pate, D.J.; Gill, S.M.

    1989-01-01

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs

  19. Study of the heat flux generated by accelerated electrons on the components near the plasma

    International Nuclear Information System (INIS)

    Laugier, J.

    2003-01-01

    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m 2 . In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: Φ (W/m 2 ) = 4.10 -4 x E -6 (10 5 V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  20. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  1. Dealing with post-accelerated electrons in the ITER SINGAP accelerator

    International Nuclear Information System (INIS)

    Esch, H. de; Hemsworth, R.S.

    2006-01-01

    Electrons formed by stripping of the negative deuterium beam can be accelerated up to 960 keV in the 1 MeV SINGAP 40 A negative ion accelerator proposed by Europe for the ITER neutral beam injectors. SINGAP accelerates 1280 pre-accelerated 40 keV deuterium beamlets to 1 MeV in a single 350 mm wide gap. At the expected gas pressure of 0.03 Pa inside the accelerator, 2.7 MW of electrons are calculated to leave the accelerator and strike various beamline components, especially the neutraliser. The accelerators of the ITER injectors are designed to produce 4 '' column '' beams which pass through the 4 vertical channels of the neutraliser. Unperturbed the accelerated electrons create small, high power density, 3.3 kW/cm 2 , spots on the leading edges of the neutraliser channels, which is far in excess of their power handling capability. The hot spots arise from the overlapping of beamlets due to the bending induced by the far field of the magnetic filter in the ion source. The proposed solution bends the electrons further downwards, redistributing the power over the neutraliser floor, a vertical electron dump perpendicular to the beam axis located below the neutraliser entrance, and the neutraliser entrance. The bending is to be effected by a magnetic field transverse to the beam direction at the exit of the post-acceleration grid. This field is created by vertical columns of permanent magnets either side of each column beam. After passing between the magnet columns, the electron beams reach the electron dump with a maximum power density of 2.1 kW/cm 2 . The peak power density on the neutraliser entrance is 1.35 kW/cm 2 and on the neutraliser floor 0.82 kW/cm 2 . Electron backscattering would reduce all the numbers by 20%. To further reduce the average power density seen by the beamline components it is proposed to sweep the electron beam in an oscillatory fashion. It is suggested that a failsafe, inexpensive, way is to use a power supply with a ripple of ± 10% to

  2. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  3. Reliability assessment of Wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2015-01-01

    Wind turbines can be considered as structures that are in between civil engineering structures and machines since they consist of structural components and many electrical and machine components together with a control system. Further, a wind turbine is not a one-of-a-kind structure...... but manufactured in series production based on many component tests, some prototype tests and zeroseries wind turbines. These characteristics influence the reliability assessment where focus in this paper is on the structural components. Levelized Cost Of Energy is very important for wind energy, especially when...... comparing to other energy sources. Therefore much focus is on cost reductions and improved reliability both for offshore and onshore wind turbines. The wind turbine components should be designed to have sufficient reliability level with respect to both extreme and fatigue loads but also not be too costly...

  4. Reliability Testing Beyond Qualification as a Key Component in Photovoltaic's Progress Toward Grid Parity: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wohlgemuth, J. H.; Kurtz, S.

    2011-02-01

    This paper discusses why it is necessary for new lower cost PV modules to be tested using a reliability test sequence that goes beyond the Qualification test sequence now utilized for modules. Today most PV modules are warranted for 25 years, but the Qualification Test Sequence does not test for 25-year life. There is no accepted test protocol to validate a 25-year lifetime. This paper recommends the use of long term accelerated testing to compare now designs directly with older designs that have achieved long lifetimes in outdoor exposure. If the new designs do as well or better than the older ones, then it is likely that they will survive an equivalent length of time in the field.

  5. Contribution to high voltage matrix switches reliability

    International Nuclear Information System (INIS)

    Lausenaz, Yvan

    2000-01-01

    Nowadays, power electronic equipment requirements are important, concerning performances, quality and reliability. On the other hand, costs have to be reduced in order to satisfy the market rules. To provide cheap, reliability and performances, many standard components with mass production are developed. But the construction of specific products must be considered following these two different points: in one band you can produce specific components, with delay, over-cost problems and eventuality quality and reliability problems, in the other and you can use standard components in a adapted topologies. The CEA of Pierrelatte has adopted this last technique of power electronic conception for the development of these high voltage pulsed power converters. The technique consists in using standard components and to associate them in series and in parallel. The matrix constitutes high voltage macro-switch where electrical parameters are distributed between the synchronized components. This study deals with the reliability of these structures. It brings up the high reliability aspect of MOSFETs matrix associations. Thanks to several homemade test facilities, we obtained lots of data concerning the components we use. The understanding of defects propagation mechanisms in matrix structures has allowed us to put forwards the necessity of robust drive system, adapted clamping voltage protection, and careful geometrical construction. All these reliability considerations in matrix associations have notably allowed the construction of a new matrix structure regrouping all solutions insuring reliability. Reliable and robust, this product has already reaches the industrial stage. (author) [fr

  6. Reliability physics and engineering time-to-failure modeling

    CERN Document Server

    McPherson, J W

    2013-01-01

    Reliability Physics and Engineering provides critically important information that is needed for designing and building reliable cost-effective products. Key features include:  ·       Materials/Device Degradation ·       Degradation Kinetics ·       Time-To-Failure Modeling ·       Statistical Tools ·       Failure-Rate Modeling ·       Accelerated Testing ·       Ramp-To-Failure Testing ·       Important Failure Mechanisms for Integrated Circuits ·       Important Failure Mechanisms for  Mechanical Components ·       Conversion of Dynamic  Stresses into Static Equivalents ·       Small Design Changes Producing Major Reliability Improvements ·       Screening Methods ·       Heat Generation and Dissipation ·       Sampling Plans and Confidence Intervals This textbook includes numerous example problems with solutions. Also, exercise problems along with the answers are included at the end of each chapter. Relia...

  7. Improvement of level-1 PSA computer code package - Modeling and analysis for dynamic reliability of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Baek, Sang Yeup; Shin, In Sup; Moon, Shin Myung; Moon, Jae Phil; Koo, Hoon Young; Kim, Ju Shin [Seoul National University, Seoul (Korea, Republic of); Hong, Jung Sik [Seoul National Polytechnology University, Seoul (Korea, Republic of); Lim, Tae Jin [Soongsil University, Seoul (Korea, Republic of)

    1996-08-01

    The objective of this project is to develop a methodology of the dynamic reliability analysis for NPP. The first year`s research was focused on developing a procedure for analyzing failure data of running components and a simulator for estimating the reliability of series-parallel structures. The second year`s research was concentrated on estimating the lifetime distribution and PM effect of a component from its failure data in various cases, and the lifetime distribution of a system with a particular structure. Computer codes for performing these jobs were also developed. The objectives of the third year`s research is to develop models for analyzing special failure types (CCFs, Standby redundant structure) that were nor considered in the first two years, and to complete a methodology of the dynamic reliability analysis for nuclear power plants. The analysis of failure data of components and related researches for supporting the simulator must be preceded for providing proper input to the simulator. Thus this research is divided into three major parts. 1. Analysis of the time dependent life distribution and the PM effect. 2. Development of a simulator for system reliability analysis. 3. Related researches for supporting the simulator : accelerated simulation analytic approach using PH-type distribution, analysis for dynamic repair effects. 154 refs., 5 tabs., 87 figs. (author)

  8. Optimization of the reliability of ADS accelerators in the framework of the EUROTRANS project; Optimisation de la fiabilite des accelerateurs ADS dans le cadre du projet EUROTRANS

    Energy Technology Data Exchange (ETDEWEB)

    Lucija, Lukovac

    2007-07-01

    In order to limit the number of thermal shocks in the spallation targets and in the core of an ADS (Accelerator Driven System), it is necessary to limit the number of failures of the beam accelerating system. This article presents the improvements in terms of reliability for 2 sub-systems of the ADS: the control system that is in charge of the RF power equipment that delivers the energy necessary to the accelerating system and the power coupler whose purpose is to transfer energy from RF generator to the accelerating cavities. The digitalization of the control system has allowed the application of a compensation method: if one of the cavities fails, the neighbouring cavities are regulated to limit the consequences of the failure on the beam. As for the power coupler, the ceramic window has been designed with great care. The improvements will be tested on 2 prototypes that are being built. (A.C.)

  9. An examination of reliability critical items in liquid metal reactors: An analysis by the Centralized Reliability Data Organization (CREDO)

    International Nuclear Information System (INIS)

    Humphrys, B.L.; Haire, M.J.; Koger, K.H.; Manneschmidt, J.F.; Setoguchi, K.; Nakai, R.; Okubo, Y.

    1987-01-01

    The Centralized Reliability Data Organization (CREDO) is the largest repository of liquid metal reactor (LMR) component reliability data in the world. It is jointly sponsored by the US Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. The CREDO data base contains information on a population of more than 21,000 components and approximately 1300 event records. A conservative estimation is that the total component operating hours is approaching 3.5 billion hours. Because data gathering for CREDO concentrates on event (failure) information, the work reported here focuses on the reliability information contained in CREDO and the development of reliability critical items lists. That is, components are ranked in prioritized lists from worst to best performers from a reliability standpoint. For the data contained in the CREDO data base, FFTF and JOYO show reliability growth; EBR-II reveals a slight unreliability growth for those components tracked by CREDO. However, tabulations of events which cause reactor shutdowns decrease with time at each site

  10. Embedded Sensors and Controls to Improve Component Performance and Reliability: Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger A [ORNL; Melin, Alexander M [ORNL; Burress, Timothy A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Wilgen, John B [ORNL; Miller, John M [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Whitlow, Lynsie J [ORNL; Peretz, Fred J [ORNL

    2012-10-01

    The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pump will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.

  11. IFMIF [International Fusion Materials Irradiation Facility], an accelerator-based neutron source for fusion components irradiation testing: Materials testing capabilities

    International Nuclear Information System (INIS)

    Mann, F.M.

    1988-08-01

    The International Fusion Materials Irradiation Facility (IFMIF) is proposed as an advanced accelerator-based neutron source for high-flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. At the extended facility, neutrons would be produced by a 0.1-A beam of 35-MeV deuterons incident upon a liquid lithium target. The volume available for high-flux (>10/sup 15/ n/cm/sup 2/-s) testing in IFMITF would be over a liter, a factor of about three larger than in the FMIT facility. This is because the effective beam current of 35-MeV deuterons on target can be increased by a factor of ten to 1A or more. Such an increase can be accomplished by funneling beams of deuterium ions from the radio-frequency quadruple into a linear accelerator and by taking advantage of recent developments in accelerator technology. Multiple beams and large total current allow great variety in available testing. For example, multiple simultaneous experiments, and great flexibility in tailoring spatial distributions of flux and spectra can be achieved. 5 refs., 2 figs., 1 tab

  12. Net Shape Manufacturing of Accelerator Components by High Pressure Combustion Driven Powder Compaction

    CERN Document Server

    Nagarathnam, Karthik

    2005-01-01

    We present an overview of the net shape and cost-effective manufacturing aspects of high density accelerator (normal and superconducting) components (e.g., NLC Copper disks) and materials behavior of copper, stainless steel, refractory materials (W, Mo and TZM), niobium and SiC by innovative high pressure Combustion Driven Compaction (CDC) technology. Some of the unique process advantages include high densities, net-shaping, improved surface finish/quality, suitability for simple/complex geometries, synthesis of single as well as multilayered materials, milliseconds of compaction process time, little or no post-machining, and process flexibility. Some of the key results of CDC fabricated sample geometries, process optimization, sintering responses and structure/property characteristics such as physical properties, surface roughness/quality, electrical conductivity, select microstructures and mechanical properties will be presented. Anticipated applications of CDC compaction include advanced x-ray targets, vac...

  13. Role of failure-mechanism identification in accelerated testing

    Science.gov (United States)

    Hu, J. M.; Barker, D.; Dasgupta, A.; Arora, A.

    1993-01-01

    Accelerated life testing techniques provide a short-cut method to investigate the reliability of electronic devices with respect to certain dominant failure mechanisms that occur under normal operating conditions. However, accelerated tests have often been conducted without knowledge of the failure mechanisms and without ensuring that the test accelerated the same mechanism as that observed under normal operating conditions. This paper summarizes common failure mechanisms in electronic devices and packages and investigates possible failure mechanism shifting during accelerated testing.

  14. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, especially for those isotopes that are routinely used and have a commercial market, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the US, therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the US, in particular, the various aspects of the prediction and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the US, and will compare and examine the existing infrastructure in other countries for this purpose

  15. Lifetime validation of high-reliability (>30,000hr) rotary cryocoolers for specific customer profiles

    Science.gov (United States)

    Cauquil, Jean-Marc; Seguineau, Cédric; Vasse, Christophe; Raynal, Gaetan; Benschop, Tonny

    2018-05-01

    The cooler reliability is a major performance requested by the customers, especially for 24h/24h applications, which are a growing market. Thales has built a reliability policy based on accelerate ageing and tests to establish a robust knowledge on acceleration factors. The current trend seems to prove that the RM2 mean time to failure is now higher than 30,000hr. Even with accelerate ageing; the reliability growth becomes hardly manageable for such large figures. The paper focuses on these figures and comments the robustness of such a method when projections over 30,000hr of MTTF are needed.

  16. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    Directory of Open Access Journals (Sweden)

    Zongyue Yu

    2014-01-01

    Full Text Available A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testing plan including both the high temperatures and low temperatures is designed, and a statistical analysis method is developed. The reliability function of the product with multiple failure modes under variable working conditions is given by the proposed statistical analysis method. Finally, a numerical example is studied to illustrate the proposed accelerated testing. The results show that the proposed accelerated testing is rather efficient.

  17. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  18. Method for a reliable activation calculation of core components; Methode zur zuverlaessigen Berechnung von Aktivierungen in Kernbauteilen

    Energy Technology Data Exchange (ETDEWEB)

    Mispagel, T.; Phlippen, P.W.; Rose, J. [Wissenschaftlich-Technische Ingenieurberatung GmbH (WTI), Juelich (Germany)

    2013-07-01

    During nuclear power plant operation components and materials are exposed to the neutron flux from the reactor core and radionuclides are produced. After removal of the fuel elements the radioactivity of these radionuclides in the reactor pressure vessel and the core internals provide more than 99% of the activity of the power plant. For the transport, the interim storage and the final disposal of these radioactive components the radioactive inventories have to be decoded with respect to radiation and nuclides. The declaration of the nuclide and activity inventories requires a reliable calculation of neutron induced activation of reactor components. These activation calculations describe the pile-up of nuclides due to irradiation and due to the decay of nuclides. For an optimum usage of the activity capacities of the repository Konrad it is necessary to have a qualified calculation procedure that keeps the conservatism as low as possible.

  19. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  20. Upgrading of the AMS facility at the Koffler 14UD Pelletron accelerator

    CERN Document Server

    Berkovits, D; Bordeanu, C; Ghelberg, S; Hass, M; Heber, O; Paul, M; Shahar, Y; Verri, G; 10.1016/j.nimb.2004.04.033

    2004-01-01

    The AMS facility based on a 14UD Pelletron tandem accelerator has been upgraded in recent years to support an active and diversified research program. A new dedicated AMS ion source beam line merging at 45 degrees with the existing injection line through a 45 degrees electrostatic deflector is in operation. The multi-sample high- intensity Cs sputter ion source stands on a separate 120 kV platform and is remote-controlled through a hybrid infrared-fiber-optics link operated either manually or by the accelerator-control computer, ensuring safe and reliable operation. Independent current preamplifiers are used in Faraday cup current readings down to the pA range. The accelerator computer-control system was upgraded to Lab View 6.1, allowing a PC server to control and read out all hardware components while one or more remote PC clients run the AMS software. Ad hoc sequences of commands, written in a script macro language, are run from a client computer to perform an automated AMS measurement. The present capabil...

  1. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    International Nuclear Information System (INIS)

    Chakravarti, B.

    1996-01-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ''like for like'' replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants

  2. Mechanical factors affecting reliability of pressure components (fatigue, cracking)

    International Nuclear Information System (INIS)

    Lebey, J.; Garnier, C.; Roche, R.; Barrachin, B.

    1978-01-01

    The reliability of a pressure component can be seriously affected by the formation and development of cracks. The experimental studies presented in this paper are devoted to three different aspects of crack propagation phenomena which have been relatively little described. In close connection with safety analyses of PWR, the authors study the influence of the environment by carrying out fatigue tests with samples bathed in hot pressurized water. Ferritic, austenitic and Incolloy 800 steels were used and the results are presented in the form of fatigue curves in the oligocyclic region. The second part of the paper relates to crack initiation cirteria in ductile steels weakened by notches. The CT samples used make it possible to study almost all types of fracture (ductile, intermediate and brittle). The use of two criteria based on the load limit and on the toughness of the material constitutes a practical way of evaluating crack propagation conditions. A series of tests carried out on notched spherical vessels of different size shows that large vessels are relatively brittle; fast unstable fracture is observed as size increases. Crack growth rate in PWR primary circuits (3/6 steel) is studied on piping elements (0.25 scale) subjected to cyclic stress variations (285 0 C and with pressure varying between 1 and 160 bar in each cycle). By calculating the stress intensity factor, correlation with results obtained in the laboratory on CT samples is possible. (author)

  3. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics

    Directory of Open Access Journals (Sweden)

    Kang Rui

    2016-06-01

    Full Text Available In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-based reliability metrics, possibility-theory-based reliability metrics (posbist reliability and uncertainty-theory-based reliability metrics (belief reliability. It is pointed out that a qualified reliability metric that is able to consider the effect of epistemic uncertainty needs to (1 compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2 satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.

  4. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  5. Reliability Engineering

    CERN Document Server

    Lazzaroni, Massimo

    2012-01-01

    This book gives a practical guide for designers and users in Information and Communication Technology context. In particular, in the first Section, the definition of the fundamental terms according to the international standards are given. Then, some theoretical concepts and reliability models are presented in Chapters 2 and 3: the aim is to evaluate performance for components and systems and reliability growth. Chapter 4, by introducing the laboratory tests, puts in evidence the reliability concept from the experimental point of view. In ICT context, the failure rate for a given system can be

  6. High power electron accelerators for flue gas treatment

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Flue gas treatment process based on electron beam application for SO 2 and NO x removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  7. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  8. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    International Nuclear Information System (INIS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki; Park, Hyung Dal; Lee, Seung Hyun

    2015-01-01

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation

  9. Development of an Automatic Frequency Control (AFC) System for RF Electron Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hyung Dal [Radiation Technology eXcellence, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-10-15

    In this paper, the design, fabrication, and RF power test of the AFC system for the X-band linac are presented. The main function of the AFC system is automatically matching of the resonance frequency of the accelerating structure and the RF frequency of the magnetron. For the frequency tuning, a fine tuning of 10 kHz is possible by rotating the tuning shaft with a rotation of 0.72 degree per pulse. Therefore, the frequency deviation is about 0.01%, and almost full RF power (2.1 MW) transmission was obtained because the reflected power is minimized. The Radiation Equipment Research Division of the Korea Atomic Energy Research Institute has been developing and upgrading a medical/industrial X-band RF electron linear accelerators. The medical compact RF electron linear accelerator consists of an electron gun, an acceleration tube (accelerating structure), two solenoid magnets, two steering magnets, a magnetron, modulator, an automatic frequency control (AFC) system, and an X-ray generating target. The accelerating structure of the component is composed of oxygen-free high-conductivity copper (OFHC). Therefore, the volume of the structure, hence, its resonance frequency can easily be changeable if the ambient temperature and pressure are changed. If the RF frequency of the 9300 MHz magnetron and the resonance frequency of accelerating structure are not matched, performance of the structure can be degraded. An AFC system is automatically matched with the RF frequency of the magnetron and resonance frequency of the accelerating structure, which obtained a high output power and reliable accelerator operation.

  10. Reliability of Circumplex Axes

    Directory of Open Access Journals (Sweden)

    Micha Strack

    2013-06-01

    Full Text Available We present a confirmatory factor analysis (CFA procedure for computing the reliability of circumplex axes. The tau-equivalent CFA variance decomposition model estimates five variance components: general factor, axes, scale-specificity, block-specificity, and item-specificity. Only the axes variance component is used for reliability estimation. We apply the model to six circumplex types and 13 instruments assessing interpersonal and motivational constructs—Interpersonal Adjective List (IAL, Interpersonal Adjective Scales (revised; IAS-R, Inventory of Interpersonal Problems (IIP, Impact Messages Inventory (IMI, Circumplex Scales of Interpersonal Values (CSIV, Support Action Scale Circumplex (SAS-C, Interaction Problems With Animals (IPI-A, Team Role Circle (TRC, Competing Values Leadership Instrument (CV-LI, Love Styles, Organizational Culture Assessment Instrument (OCAI, Customer Orientation Circle (COC, and System for Multi-Level Observation of Groups (behavioral adjectives; SYMLOG—in 17 German-speaking samples (29 subsamples, grouped by self-report, other report, and metaperception assessments. The general factor accounted for a proportion ranging from 1% to 48% of the item variance, the axes component for 2% to 30%; and scale specificity for 1% to 28%, respectively. Reliability estimates varied considerably from .13 to .92. An application of the Nunnally and Bernstein formula proposed by Markey, Markey, and Tinsley overestimated axes reliabilities in cases of large-scale specificities but otherwise works effectively. Contemporary circumplex evaluations such as Tracey’s RANDALL are sensitive to the ratio of the axes and scale-specificity components. In contrast, the proposed model isolates both components.

  11. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  12. Development of the accelerating system

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jiho; Kwon, H. J.; Kim, D. I.; Kim, H. S.; Ryu, J. Y.; Park, B. S.; Seol, K. T.; Yun, S. P.; Song, Y. G.; Cho, Y. S.

    2013-02-15

    One of the main purposes of the 'Development of the Accelerating System' is developing a 100-MeV proton linac which accelerate proton beams from 20 MeV to 100 MeV by using 7 DTL (drift tube linac) tanks. Two of them were finished in the 2-nd stage of the project. The remaining part was also successfully fabricated and installed at Gyeongju site of KAERI. The MEBT is an essential component to extract and supply 20-MeV proton beams to users, and to match proton beams to the next accelerating structure for 100-MeV acceleration. The development of the MEBT has successfully finished. The project also developed the digital LLRF (low level RF) system which control the accelerating field within 1% in magnitude and 1 degree in phase. This system has been successfully tested in the 20-MeV linac operation at Daejeon site of KAERI. The modified version of the digital LLRF system will be used in the 100-MeV linac operation. The project also developed the beam diagnostic system. They are the strip-line type beam position monitor (BPM), the beam current monitor (CT), the beam loss monitor (BLM), and the emittance measurement system. They are used to measure the characteristics of the 20-MeV proton beams. The project also developed the EPIC-based control system. It is used to monitor the status of the accelerator and components, and to remotely control accelerator components. It has been used and modified in the 20-MeV linac operation. The modified version of the LLRF, diagnostics and control systems will be used in 100-MeV linac operation.

  13. Reliability & availability of wind turbine electrical & electronic components

    NARCIS (Netherlands)

    Tavner, P.; Faulstich, S.; Hahn, B.; Bussel, van G.J.W.

    2010-01-01

    Recent analysis of European onshore wind turbine reliability data has shown that whilst wind turbine mechanical subassemblies tend to have relatively low failure rates but long downtimes, electrical and electronic subassemblies have relatively high failure rates and short downtimes. For onshore wind

  14. Test-retest reliability of cognitive EEG

    Science.gov (United States)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  15. Spallator - accelerator breeder

    International Nuclear Information System (INIS)

    Steinberg, M.

    1985-01-01

    The concept involves the use of spallation neutrons produced by interaction of a high energy proton (1 to 2 GeV) from a linear accelerator (LINAC) with a heavy metal target (uranium). The principal spallator concept is based on generating fissile fuel for use in LWR nuclear power plants. The spallator functions in conjunction with a reprocessing plant to regenerate and produce the Pu-239 or U-233 for fabrication into fresh LWR reactor fuel elements. Advances in proton accelerator technology has provided a solid base for predicting performance and optimizing the design of a reliable, continuous wave, high-current LINAC required by a fissile fuel production machine

  16. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  17. New Approaches to Reliability Assessment

    DEFF Research Database (Denmark)

    Ma, Ke; Wang, Huai; Blaabjerg, Frede

    2016-01-01

    of energy. New approaches for reliability assessment are being taken in the design phase of power electronics systems based on the physics-of-failure in components. In this approach, many new methods, such as multidisciplinary simulation tools, strength testing of components, translation of mission profiles......, and statistical analysis, are involved to enable better prediction and design of reliability for products. This article gives an overview of the new design flow in the reliability engineering of power electronics from the system-level point of view and discusses some of the emerging needs for the technology...

  18. Reliability improvements on Thales RM2 rotary Stirling coolers: analysis and methodology

    Science.gov (United States)

    Cauquil, J. M.; Seguineau, C.; Martin, J.-Y.; Benschop, T.

    2016-05-01

    The cooled IR detectors are used in a wide range of applications. Most of the time, the cryocoolers are one of the components dimensioning the lifetime of the system. The cooler reliability is thus one of its most important parameters. This parameter has to increase to answer market needs. To do this, the data for identifying the weakest element determining cooler reliability has to be collected. Yet, data collection based on field are hardly usable due to lack of informations. A method for identifying the improvement in reliability has then to be set up which can be used even without field return. This paper will describe the method followed by Thales Cryogénie SAS to reach such a result. First, a database was built from extensive expertizes of RM2 failures occurring in accelerate ageing. Failure modes have then been identified and corrective actions achieved. Besides this, a hierarchical organization of the functions of the cooler has been done with regard to the potential increase of its efficiency. Specific changes have been introduced on the functions most likely to impact efficiency. The link between efficiency and reliability will be described in this paper. The work on the two axes - weak spots for cooler reliability and efficiency - permitted us to increase in a drastic way the MTTF of the RM2 cooler. Huge improvements in RM2 reliability are actually proven by both field return and reliability monitoring. These figures will be discussed in the paper.

  19. Reliability and Validity of a New Test of Change-of-Direction Speed for Field-Based Sports: the Change-of-Direction and Acceleration Test (CODAT).

    Science.gov (United States)

    Lockie, Robert G; Schultz, Adrian B; Callaghan, Samuel J; Jeffriess, Matthew D; Berry, Simon P

    2013-01-01

    Field sport coaches must use reliable and valid tests to assess change-of-direction speed in their athletes. Few tests feature linear sprinting with acute change- of-direction maneuvers. The Change-of-Direction and Acceleration Test (CODAT) was designed to assess field sport change-of-direction speed, and includes a linear 5-meter (m) sprint, 45° and 90° cuts, 3- m sprints to the left and right, and a linear 10-m sprint. This study analyzed the reliability and validity of this test, through comparisons to 20-m sprint (0-5, 0-10, 0-20 m intervals) and Illinois agility run (IAR) performance. Eighteen Australian footballers (age = 23.83 ± 7.04 yrs; height = 1.79 ± 0.06 m; mass = 85.36 ± 13.21 kg) were recruited. Following familiarization, subjects completed the 20-m sprint, CODAT, and IAR in 2 sessions, 48 hours apart. Intra-class correlation coefficients (ICC) assessed relative reliability. Absolute reliability was analyzed through paired samples t-tests (p ≤ 0.05) determining between-session differences. Typical error (TE), coefficient of variation (CV), and differences between the TE and smallest worthwhile change (SWC), also assessed absolute reliability and test usefulness. For the validity analysis, Pearson's correlations (p ≤ 0.05) analyzed between-test relationships. Results showed no between-session differences for any test (p = 0.19-0.86). CODAT time averaged ~6 s, and the ICC and CV equaled 0.84 and 3.0%, respectively. The homogeneous sample of Australian footballers meant that the CODAT's TE (0.19 s) exceeded the usual 0.2 x standard deviation (SD) SWC (0.10 s). However, the CODAT is capable of detecting moderate performance changes (SWC calculated as 0.5 x SD = 0.25 s). There was a near perfect correlation between the CODAT and IAR (r = 0.92), and very large correlations with the 20-m sprint (r = 0.75-0.76), suggesting that the CODAT was a valid change-of-direction speed test. Due to movement specificity, the CODAT has value for field sport

  20. Systems reliability analysis: applications of the SPARCS System-Reliability Assessment Computer Program

    International Nuclear Information System (INIS)

    Locks, M.O.

    1978-01-01

    SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex Systems, Version 2) is a PL/1 computer program for assessing (establishing interval estimates for) the reliability and the MTBF of a large and complex s-coherent system of any modular configuration. The system can consist of a complex logical assembly of independently failing attribute (binomial-Bernoulli) and time-to-failure (Poisson-exponential) components, without regard to their placement. Alternatively, it can be a configuration of independently failing modules, where each module has either or both attribute and time-to-failure components. SPARCS-2 also has an improved super modularity feature. Modules with minimal-cut unreliabiliy calculations can be mixed with those having minimal-path reliability calculations. All output has been standardized to system reliability or probability of success, regardless of the form in which the input data is presented, and whatever the configuration of modules or elements within modules

  1. A possibilistic uncertainty model in classical reliability theory

    International Nuclear Information System (INIS)

    De Cooman, G.; Capelle, B.

    1994-01-01

    The authors argue that a possibilistic uncertainty model can be used to represent linguistic uncertainty about the states of a system and of its components. Furthermore, the basic properties of the application of this model to classical reliability theory are studied. The notion of the possibilistic reliability of a system or a component is defined. Based on the concept of a binary structure function, the important notion of a possibilistic function is introduced. It allows to calculate the possibilistic reliability of a system in terms of the possibilistic reliabilities of its components

  2. Failure database and tools for wind turbine availability and reliability analyses. The application of reliability data for selected wind turbines

    DEFF Research Database (Denmark)

    Kozine, Igor; Christensen, P.; Winther-Jensen, M.

    2000-01-01

    The objective of this project was to develop and establish a database for collecting reliability and reliability-related data, for assessing the reliability of wind turbine components and subsystems and wind turbines as a whole, as well as for assessingwind turbine availability while ranking the ...... similar safety systems. The database was established with Microsoft Access DatabaseManagement System, the software for reliability and availability assessments was created with Visual Basic....... the contributions at both the component and system levels. The project resulted in a software package combining a failure database with programs for predicting WTB availability and the reliability of all thecomponents and systems, especially the safety system. The report consists of a description of the theoretical......The objective of this project was to develop and establish a database for collecting reliability and reliability-related data, for assessing the reliability of wind turbine components and subsystems and wind turbines as a whole, as well as for assessingwind turbine availability while ranking...

  3. Physics and technical development of accelerators

    International Nuclear Information System (INIS)

    2000-03-01

    About 90 registered participants delivered more than 40 scientific papers. A great part of these presentations were of general interest about running projects such as CIME accelerator at Ganil, IPHI (high intensity proton injector), ESRF (European source of synchrotron radiation), LHC (large hadron collider), ELYSE accelerator at Orsay, AIRIX, and VIVITRON tandem accelerator. Other presentations highlighted the latest technological developments of accelerator components: superconducting cavities, power klystrons, high current injectors..

  4. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature...... swing in a short cycle period and to change the temperature cycle period easily. Thanks to a short temperature cycle period, test results can be obtained in a reasonable test time. A detailed explanation of apparatus such as configuration and control methods for the different functions of accelerated...

  5. SLAC accelerator operations report: 1995--1997

    International Nuclear Information System (INIS)

    Erickson, R.; Allen, C.W.; Anderson, S.; Linebarger, W.; Stanek, M.

    1997-05-01

    Operational statistics for the linear accelerator programs at SLAC are presented, including run-time records for SLC and the fixed-target programs. Also included are summaries of reliability and maintenance-related statistics

  6. Human Reliability Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  7. Preliminary tests of the electrostatic plasma accelerator

    Science.gov (United States)

    Aston, G.; Acker, T.

    1990-01-01

    This report describes the results of a program to verify an electrostatic plasma acceleration concept and to identify those parameters most important in optimizing an Electrostatic Plasma Accelerator (EPA) thruster based upon this thrust mechanism. Preliminary performance measurements of thrust, specific impulse and efficiency were obtained using a unique plasma exhaust momentum probe. Reliable EPA thruster operation was achieved using one power supply.

  8. How to Fill a Narrow 27 km Long Tube with a Huge Number of Accelerator Components?

    CERN Document Server

    Muttoni, Yvon; Valbuena, Roger

    2005-01-01

    As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies.This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available.It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.

  9. How to fill a narrow 27 KM long tube with a huge number of accelerator components?

    CERN Document Server

    Muttoni, Y; Valbuena, R

    2005-01-01

    As in large scale industrial projects, research projects, such as giant and complex particle accelerators, require intensive spatial integration studies using 3D CAD models, from the design to the installation phases. The future management of the LHC machine configuration during its operation will rely on the quality of the information, produced during these studies. This paper presents the powerful data-processing tools used in the project to ensure the spatial integration of several thousand different components in the limited space available. It describes how the documentation and information generated have been made available to a great number of users through a dedicated Web site and how installation nonconformities were handled.

  10. Reliability Analysis and Optimal Release Problem Considering Maintenance Time of Software Components for an Embedded OSS Porting Phase

    Science.gov (United States)

    Tamura, Yoshinobu; Yamada, Shigeru

    OSS (open source software) systems which serve as key components of critical infrastructures in our social life are still ever-expanding now. Especially, embedded OSS systems have been gaining a lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc. However, the poor handling of quality problem and customer support prohibit the progress of embedded OSS. Also, it is difficult for developers to assess the reliability and portability of embedded OSS on a single-board computer. In this paper, we propose a method of software reliability assessment based on flexible hazard rates for the embedded OSS. Also, we analyze actual data of software failure-occurrence time-intervals to show numerical examples of software reliability assessment for the embedded OSS. Moreover, we compare the proposed hazard rate model for the embedded OSS with the typical conventional hazard rate models by using the comparison criteria of goodness-of-fit. Furthermore, we discuss the optimal software release problem for the porting-phase based on the total expected software maintenance cost.

  11. High power electron accelerators for flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Flue gas treatment process based on electron beam application for SO{sub 2} and NO{sub x} removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  12. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  13. Reliable Design Versus Trust

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    This presentation focuses on reliability and trust for the users portion of the FPGA design flow. It is assumed that the manufacturer prior to hand-off to the user tests FPGA internal components. The objective is to present the challenges of creating reliable and trusted designs. The following will be addressed: What makes a design vulnerable to functional flaws (reliability) or attackers (trust)? What are the challenges for verifying a reliable design versus a trusted design?

  14. Accelerator business in Japan expanding

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  15. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    Energy Technology Data Exchange (ETDEWEB)

    Draper, J.V. [Oak Ridge National Lab., TN (United States); Handel, S. [Tennessee Univ., Knoxville, TN (United States). Dept. of Psychology

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.

  16. Periodic components of hand acceleration/deceleration impulses during telemanipulation

    International Nuclear Information System (INIS)

    Draper, J.V.; Handel, S.

    1994-01-01

    Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF's) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25 Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition

  17. Reliability data banks

    International Nuclear Information System (INIS)

    Cannon, A.G.; Bendell, A.

    1991-01-01

    Following an introductory chapter on Reliability, what is it, why it is needed, how it is achieved and measured, the principles of reliability data bases and analysis methodologies are the subject of the next two chapters. Achievements due to the development of data banks are mentioned for different industries in the next chapter, FACTS, a comprehensive information system for industrial safety and reliability data collection in process plants are covered next. CREDO, the Central Reliability Data Organization is described in the next chapter and is indexed separately, as is the chapter on DANTE, the fabrication reliability Data analysis system. Reliability data banks at Electricite de France and IAEA's experience in compiling a generic component reliability data base are also separately indexed. The European reliability data system, ERDS, and the development of a large data bank come next. The last three chapters look at 'Reliability data banks, - friend foe or a waste of time'? and future developments. (UK)

  18. The Seismic Reliability of Offshore Structures Based on Nonlinear Time History Analyses

    International Nuclear Information System (INIS)

    Hosseini, Mahmood; Karimiyani, Somayyeh; Ghafooripour, Amin; Jabbarzadeh, Mohammad Javad

    2008-01-01

    Regarding the past earthquakes damages to offshore structures, as vital structures in the oil and gas industries, it is important that their seismic design is performed by very high reliability. Accepting the Nonlinear Time History Analyses (NLTHA) as the most reliable seismic analysis method, in this paper an offshore platform of jacket type with the height of 304 feet, having a deck of 96 feet by 94 feet, and weighing 290 million pounds has been studied. At first, some Push-Over Analyses (POA) have been preformed to recognize the more critical members of the jacket, based on the range of their plastic deformations. Then NLTHA have been performed by using the 3-components accelerograms of 100 earthquakes, covering a wide range of frequency content, and normalized to three Peak Ground Acceleration (PGA) levels of 0.3 g, 0.65 g, and 1.0 g. By using the results of NLTHA the damage and rupture probabilities of critical member have been studied to assess the reliability of the jacket structure. Regarding that different structural members of the jacket have different effects on the stability of the platform, an ''importance factor'' has been considered for each critical member based on its location and orientation in the structure, and then the reliability of the whole structure has been obtained by combining the reliability of the critical members, each having its specific importance factor

  19. A review of prospects for an accelerator breeder

    International Nuclear Information System (INIS)

    Fraser, J.S.; Hoffman, C.R.; Schriber, S.O.; Garvey, P.M.; Townes, B.M.

    1981-12-01

    The scientific feasibility, engineering practicability and economic prospects for an Accelerator Breeder are reviewed. The scientific feasibiliity of high power accelerator components rests on a firm basis as a result of technical advances made in recent years but there is a need to combine all components in a demonstration model working under realistic conditions. The engineering practicability of Accelerator Breeder components should be tested in a staged development culminating in a full-scale demonstration plant. The economic assessment depends on calculations of allowed and estimated capital costs of an Accelerator Breeder for a CANDU system operating on the Th-U fuel cycle. The results indicate that the ratio of estimated to allowed capital cost is approximately 3.5 for a breeder with a 2% enriched uranium metal blanket and for separated U235 valued at 48 $/g

  20. Nuclear power plant reliability database management

    International Nuclear Information System (INIS)

    Meslin, Th.; Aufort, P.

    1996-04-01

    In the framework of the development of a probabilistic safety project on site (notion of living PSA), Saint Laurent des Eaux NPP implements a specific EDF reliability database. The main goals of this project at Saint Laurent des Eaux are: to expand risk analysis and to constitute an effective local basis of thinking about operating safety by requiring the participation of all departments of a power plant: analysis of all potential operating transients, unavailability consequences... that means to go further than a simple culture of applying operating rules; to involve nuclear power plant operators in experience feedback and its analysis, especially by following up behaviour of components and of safety functions; to allow plant safety managers to outline their decisions facing safety authorities for notwithstanding, preventive maintenance programme, operating incident evaluation. To hit these goals requires feedback data, tools, techniques and development of skills. The first step is to obtain specific reliability data on the site. Raw data come from plant maintenance management system which processes all maintenance activities and keeps in memory all the records of component failures and maintenance activities. Plant specific reliability data are estimated with a Bayesian model which combines these validated raw data with corporate generic data. This approach allow to provide reliability data for main components modelled in PSA, to check the consistency of the maintenance program (RCM), to verify hypothesis made at the design about component reliability. A number of studies, related to components reliability as well as decision making process of specific incident risk evaluation have been carried out. This paper provides also an overview of the process management set up on site from raw database to specific reliability database in compliance with established corporate objectives. (authors). 4 figs

  1. Nuclear power plant reliability database management

    Energy Technology Data Exchange (ETDEWEB)

    Meslin, Th [Electricite de France (EDF), 41 - Saint-Laurent-des-Eaux (France); Aufort, P

    1996-04-01

    In the framework of the development of a probabilistic safety project on site (notion of living PSA), Saint Laurent des Eaux NPP implements a specific EDF reliability database. The main goals of this project at Saint Laurent des Eaux are: to expand risk analysis and to constitute an effective local basis of thinking about operating safety by requiring the participation of all departments of a power plant: analysis of all potential operating transients, unavailability consequences... that means to go further than a simple culture of applying operating rules; to involve nuclear power plant operators in experience feedback and its analysis, especially by following up behaviour of components and of safety functions; to allow plant safety managers to outline their decisions facing safety authorities for notwithstanding, preventive maintenance programme, operating incident evaluation. To hit these goals requires feedback data, tools, techniques and development of skills. The first step is to obtain specific reliability data on the site. Raw data come from plant maintenance management system which processes all maintenance activities and keeps in memory all the records of component failures and maintenance activities. Plant specific reliability data are estimated with a Bayesian model which combines these validated raw data with corporate generic data. This approach allow to provide reliability data for main components modelled in PSA, to check the consistency of the maintenance program (RCM), to verify hypothesis made at the design about component reliability. A number of studies, related to components reliability as well as decision making process of specific incident risk evaluation have been carried out. This paper provides also an overview of the process management set up on site from raw database to specific reliability database in compliance with established corporate objectives. (authors). 4 figs.

  2. Reliability Data for Piping Components in Nordic Nuclear Power Plants 'R-Book'. Project Phase 1. Rev 1

    International Nuclear Information System (INIS)

    Lydell, Bengt; Olsson, Anders

    2008-01-01

    This report constitutes a planning document for a new RandD project to develop a piping component reliability parameter handbook for use in probabilistic safety assessment (PSA) and related activities. The Swedish acronym for this handbook is 'R-Book.' The objective of the project is to utilize the OECD Nuclear Energy Agency 'OECD Pipe Failure Data Exchange Project' (OPDE) database to derive piping component failure rates and rupture probabilities for input to internal flooding probabilistic safety assessment, high-energy line break' (HELB) analysis, risk-informed in-service inspection (RI-ISI) program development, and other activities related to PSA. This new RandD project is funded by member organizations of the Nordic PSA Group (NPSAG) - Forsmark AB, OKG AB, Ringhals AB, and the Swedish Nuclear Power Inspectorate (SKI). The history behind the current effort to produce a handbook of piping reliability parameters goes back to 1994 when SKI funded a 5-year RandD project to explore the viability of establishing an international database on the service experience with piping system components in commercial nuclear power plants. An underlying objective behind this 5-year program was to investigate the different options and possibilities for deriving pipe failure rates and rupture probabilities directly from service experience data as an alternative to probabilistic fracture mechanics. The RandD project culminated in an international piping reliability seminar held in the fall of 1997 in Sigtuna (Sweden) and a pilot project to demonstrate an application of the pipe failure database to the estimation of loss-of-coolant-accident (LOCA) frequency (SKI Report 98:30). A particularly important outcome of the 5-year project was a decision by SKI to transfer the pipe failure database including the lessons learned to an international cooperative effort under the auspices of the OECD Nuclear Energy Agency. Following on information exchange and planning meetings that were

  3. A COMPUTERIZED DIAGNOSTIC COMPLEX FOR RELIABILITY TESTING OF ELECTRIC MACHINES

    Directory of Open Access Journals (Sweden)

    O.О. Somka

    2015-06-01

    Full Text Available Purpose. To develop a diagnostic complex meeting the criteria and requirements for carrying out accelerated reliability test and realizing the basic modes of electric machines operation and performance of the posed problems necessary in the process of such test. Methodology. To determine and forecast the indices of electric machines reliability in accordance with the statistic data of repair plants we have conditionally divided them into structural parts that are most likely to fail. We have preliminarily assessed the state of each of these parts, which includes revelation of faults and deviations of technical and geometric parameters. We have determined the analyzed electric machine controlled parameters used for assessment of quantitative characteristics of reliability of these parts and electric machines on the whole. Results. As a result of the research, we have substantiated the structure of a computerized complex for electric machines reliability test. It allows us to change thermal and vibration actions without violation of the physics of the processes of aging and wearing of the basic structural parts and elements material. The above mentioned makes it possible to considerably reduce time spent on carrying out electric machines reliability tests and improve trustworthiness of the data obtained as a result of their performance. Originality. A special feature of determination of the controlled parameters consists in removal of vibration components in the idle mode and after disconnection of the analyzed electric machine from the power supply with the aim of singling out the vibration electromagnetic component, fixing the degree of sparking and bend of the shaft by means of phototechnique and local determination of structural parts temperature provided by corresponding location of thermal sensors. Practical value. We have offered a scheme of location of thermal and vibration sensors, which allows improvement of parameters measuring accuracy

  4. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  5. Reliability of IGBT-based power devices in the viewpoint of applications in future power supply systems

    International Nuclear Information System (INIS)

    Lutz, J.

    2011-01-01

    IGBT-based high-voltage power devices will be key components for future renewable energy base of the society. Windmills in the range up to 10 MW use converters with IGBTs. HVDC systems with IGBT-based voltage source converters have the advantage of a lower level of harmonics, less efforts for filters and more possibilities for control. The power devices need a lifetime expectation of several ten years. The lifetime is determined by the reliability of the packaging technology. IGBTs are offered packaged in presspacks and modules. The presentation will have the focus on IGBT high power modules. Accelerated power cycling tests for to determine the end-of-life at given conditions and their results are shown. models to calculate the lifetime, and actual work in research for systems with increased reliability.

  6. Production and supply of radioisotopes with high-energy particle accelerators current status and future directions

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Mausner, L.F.

    1994-01-01

    Although the production of radioisotopes in reactors or in low to medium energy cyclotrons appears to be relatively well established, certain isotopes can either be made only in high-energy particle accelerators or their production is more cost effective when made this way. These facilities are extremely expensive to build and operate, and isotope production is, in general, either not cost-effective or is in conflict with their primary mandate or missions which involve physics research. Isotope production using high-energy accelerators in the U.S., therefore, has been only an intermittent and parasitic activity. However, since a number of isotopes produced at higher energies are emerging as being potentially useful for medical and other applications, there is a renewed concern about their availability in a continuous and reliable fashion. In the U.S., in particular, the various aspects of the production and availability of radioisotopes from high-energy accelerators are presently undergoing a detailed scrutiny and review by various scientific and professional organizations as well as the Government. A number of new factors has complicated the supply/demand equation. These include considerations of cost versus needs, reliability factors, mission orientation, research and educational components, and commercial viability. This paper will focus on the present status and projected needs of radioisotope production with high-energy accelerators in the U.S., and will compare and examine the existing infrastructure in other countries for this purpose. The nature of the U.S. decisions to address many of the above-mentioned issues and an eventual plan of attack to resolve them are bound to have a world-wide impact in the radioisotope user communities. These will be discussed with a view to evaluating the best possible solutions in order to eliminate the shortage in the future supply of radioisotopes produced in high energy accelerators. (author)

  7. Seventh regular meeting of the International Working Group on Reliability of Reactor Pressure Components, Vienna, 3-5 September 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The seventh regular meeting of the IAEA International Working Group on Reliability of Reactor Pressure Components was held at the Agency's Headquarters in Vienna from 3 to 5 September 1985. The representatives of Member States and of the Commission of the European Communities reported the status of the research programmes in this field (12 presentations). A separate abstract was prepared for each of the presentations

  8. CAS CERN Accelerator School: Power converters for particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1990-01-01

    This volume presents the proceedings of the fifth specialized course organized by the CERN Accelerator School, the subject on this occasion being power converters for particle accelerators. The course started with lectures on the classification and topologies of converters and on the guidelines for achieving high performance. It then went on to cover the more detailed aspects of feedback theory, simulation, measurements, components, remote control, fault diagnosis and equipment protection as well as systems and grid-related problems. The important topics of converter specification, procurement contract management and the likely future developments in semiconductor components were also covered. Although the course was principally directed towards DC and slow-pulsed supplies, lectures were added on fast converters and resonant excitation. Finally the programme was rounded off with three seminars on the related fields of Tokamak converters, battery energy storage for electric vehicles, and the control of shaft generators in ships. (orig.)

  9. Grid Connected Power Supplies for Particle Accelerator Magnets

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Ørndrup

    Power supplies play a large role in particle accelerators, for creating, accelerating, steering and shaping the beam. This thesis covers the power supplies for steering and shaping the beam, namely the magnet power supplies. These power supplies have a special set of requirements regarding output...... on this topology is constructed using a single power module on the grid side of the transformer, consisting of a boost rectifier and a dual half-bridge isolated DC/DC converter. It is shown that it is possible to create a power supply using a single module and that this approach can lead to improved layout...... and smaller converter size. A high efficiency converter based on Silicon Carbide switching devices is also presented exhibiting above 96 % efficiency for the entire power range. Finally reliability issues are considered as the reliability of a particle accelerator supply is of utmost importance. Particle...

  10. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  11. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  12. Development of the heat sink structure of a beam dump for the proton accelerator

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Gil, C. S.; Kim, J. H.; Kim, D. H.

    2007-01-01

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  13. Electron accelerators for radiation processing: Criterions of selection and exploitation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew

    2001-01-01

    The progress in accelerator technology is tightly attached to the continuously advanced development in many branches of technical activity. Although the present level of accelerators development can satisfy most of the commercial requirements, this field continues to expand and improve quality by offering efficient, cheap, reliable, high average beam power commercial units. Accelerator construction must be a compromised between size, efficiency and cost with respect to the field of its application. High power accelerators have been developed to meet specific demands of flue gas treatment and other high throughput to increase the capacity of the progress and reduced unit cost of operation. Automatic control, reliability and reduced maintenance, adequate adoption to process conditions, suitable electron energy and beam power are the basic features of modern accelerator construction. Accelerators have the potential to serve as industrial radiation sources and eventually may replace the isotope sources in future. Electron beam plants can transfer much higher amounts of energy into the irradiated objects than other types of facilities including gamma plants. This provides the opportunity to construct technological lines with high capacity that are more technically and economically suitable with high throughputs, short evidence time and grate versatility

  14. Linear accelerator Dynaray-CH: a central component of the BBC radiotherapy system

    International Nuclear Information System (INIS)

    Vogt, H.

    1983-01-01

    The author describes the newly developed range of linear accelerators Dynaray-CH 4 to 20. These modern installations for radiotherapy are used to generate photon and electron beams. The accelerators employ the proven BBC control system PROCONTIC (registered trademark), innovatory systems for movement control and actual-value display as well as the new radiation monitor system. (Auth.)

  15. Aging management of major LWR components with nondestructive evaluation

    International Nuclear Information System (INIS)

    Shah, V.N.; MacDonald, P.E.; Akers, D.W.; Sellers, C.; Murty, K.L.; Miraglia, P.Q.; Mathew, M.D.; Haggag, F.M.

    1997-01-01

    Nondestructive evaluation of material damage can contribute to continued safe, reliable, and economical operation of nuclear power plants through their current and renewed license period. The aging mechanisms active in the major light water reactor components are radiation embrittlement, thermal aging, stress corrosion cracking, flow-accelerated corrosion, and fatigue, which reduce fracture toughness, structural strength, or fatigue resistance of the components and challenge structural integrity of the pressure boundary. This paper reviews four nondestructive evaluation methods with the potential for in situ assessment of damage caused by these mechanisms: stress-strain microprobe for determining mechanical properties of reactor pressure vessel and cast stainless materials, magnetic methods for estimating thermal aging damage in cast stainless steel, positron annihilation measurements for estimating early fatigue damage in reactor coolant system piping, and ultrasonic guided wave technique for detecting cracks and wall thinning in tubes and pipes and corrosion damage to embedded portion of metal containments

  16. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  17. Transit ridership, reliability, and retention.

    Science.gov (United States)

    2008-10-01

    This project explores two major components that affect transit ridership: travel time reliability and rider : retention. It has been recognized that transit travel time reliability may have a significant impact on : attractiveness of transit to many ...

  18. Effects of Shock and Turbulence Properties on Electron Acceleration

    Science.gov (United States)

    Qin, G.; Kong, F.-J.; Zhang, L.-H.

    2018-06-01

    Using test particle simulations, we study electron acceleration at collisionless shocks with a two-component model turbulent magnetic field with slab component including dissipation range. We investigate the importance of the shock-normal angle θ Bn, magnetic turbulence level {(b/{B}0)}2, and shock thickness on the acceleration efficiency of electrons. It is shown that at perpendicular shocks the electron acceleration efficiency is enhanced with the decrease of {(b/{B}0)}2, and at {(b/{B}0)}2=0.01 the acceleration becomes significant due to a strong drift electric field with long time particles staying near the shock front for shock drift acceleration (SDA). In addition, at parallel shocks the electron acceleration efficiency is increasing with the increase of {(b/{B}0)}2, and at {(b/{B}0)}2=10.0 the acceleration is very strong due to sufficient pitch-angle scattering for first-order Fermi acceleration, as well as due to the large local component of the magnetic field perpendicular to the shock-normal angle for SDA. On the other hand, the high perpendicular shock acceleration with {(b/{B}0)}2=0.01 is stronger than the high parallel shock acceleration with {(b/{B}0)}2=10.0, the reason might be the assumption that SDA is more efficient than first-order Fermi acceleration. Furthermore, for oblique shocks, the acceleration efficiency is small no matter whether the turbulence level is low or high. Moreover, for the effect of shock thickness on electron acceleration at perpendicular shocks, we show that there exists the bendover thickness, L diff,b. The acceleration efficiency does not noticeably change if the shock thickness is much smaller than L diff,b. However, if the shock thickness is much larger than L diff,b, the acceleration efficiency starts to drop abruptly.

  19. Reliability in maintenance and design of elastomer sealed closures

    International Nuclear Information System (INIS)

    Lake, W.H.

    1978-01-01

    The methods of reliability are considered for maintenance and design of elastomer sealed containment closures. Component reliability is used to establish a replacement schedule for system maintenance. Reliability data on elastomer seals is used to evaluate the common practice of annual replacement, and to calculate component reliability values for several typical shipment time periods. System reliability methods are used to examine the relative merits of typical closure designs. These include single component and redundant seal closure, with and without closure verification testing. The paper presents a general method of quantifying the merits of closure designs through the use of reliability analysis, which is a probabilistic technique. The reference list offers a general source of information in the field of reliability, and should offer the opportunity to extend the procedures discussed in this paper to other design safety applications

  20. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  1. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  2. Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR): Data manual. Part 3: Hardware component failure data; Volume 5, Revision 4

    International Nuclear Information System (INIS)

    Reece, W.J.; Gilbert, B.G.; Richards, R.E.

    1994-09-01

    This data manual contains a hard copy of the information in the Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) Version 3.5 database, which is sponsored by the US Nuclear Regulatory Commission. NUCLARR was designed as a tool for risk analysis. Many of the nuclear reactors in the US and several outside the US are represented in the NUCLARR database. NUCLARR includes both human error probability estimates for workers at the plants and hardware failure data for nuclear reactor equipment. Aggregations of these data yield valuable reliability estimates for probabilistic risk assessments and human reliability analyses. The data manual is organized to permit manual searches of the information if the computerized version is not available. Originally, the manual was published in three parts. In this revision the introductory material located in the original Part 1 has been incorporated into the text of Parts 2 and 3. The user can now find introductory material either in the original Part 1, or in Parts 2 and 3 as revised. Part 2 contains the human error probability data, and Part 3, the hardware component reliability data

  3. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    superconducting cavity RF power couplers. 18 MeV Electron Accelerator Stand with the linear accelerator - Saturn was prepared for experimental work, and can be used in neutron detectors investigation and for accelerating structures research. To increase the reliability of operation, upgrading of the computer control system is foreseen next year. The aim of the preliminary study of accelerating structures in C-band is the search for electron accelerator miniaturization. At higher frequencies, much higher accelerating fields can be applied and as the wavelength becomes shorter, the overall size of the structure and various components becomes smaller. In 2006 the main physical parameters of 5720 MHz SW side coupled structures were optimized. For that frequency there exist on the market suitable high power klystrons and a variety of necessary microwave equipment. Monte Carlo simulations using the BEAMnrc/EGSnrc were carried out to study the influence of possible errors in assigning of CT (coefficients of X ray attenuation in tissue) on calculated ion range in hadron therapy. This work was done in Heidelberg by A.Wysocka-Rabin in the frame of our collaboration with DKFZ. In ENEA-Frascati a linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy) is under realization. Basically it is a proton linac of modified Alvarez type working on 3000 MHz frequency and delivering a beam in the energy range from 65 MeV to 200 MeV. In 2005 the contract was signed between ENEA and IPJ-Swierk on the basis of which the Accelerator Physics Dpt. of IPJ will design, produce and deliver to Frascati the input section of the 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 17 MeV. The design is almost finished; many elements are manufactured and ready for assembling. This will take place in of 2007. (author)

  4. Design of PH-based accelerated life testing plans under multiple-stress-type

    International Nuclear Information System (INIS)

    Elsayed, E.A.; Zhang Hao

    2007-01-01

    Accelerated life testing (ALT) is used to obtain failure time data quickly under high stress levels in order to predict product life performance under design stress conditions. Most of the previous work on designing ALT plans is focused on the application of a single stress. However, as components or products become more reliable due to technological advances, it becomes more difficult to obtain significant amount of failure data within reasonable amount of time using single stress only. Multiple-stress-type ALTs have been employed as a means of overcoming such difficulties. In this paper, we design optimum multiple-stress-type ALT plans based on the proportional hazards model. The optimum combinations of stresses and their levels are determined such that the variance of the reliability estimate of the product over a specified period of time is minimized. The use of the model is illustrated using numerical example, and sensitivity analysis shows that the resultant optimum ALT plan is robust to the deviation in model parameters

  5. A LEGO paradigm for virtual accelerator concept

    International Nuclear Information System (INIS)

    Andrianov, S.; Ivanov, A.; Podzyvalov, E.

    2012-01-01

    The paper considers basic features of a Virtual Accelerator concept based on LEGO paradigm. This concept involves three types of components: different mathematical models for accelerator design problems, integrated beam simulation packages (i. e. COSY, MAD, OptiM and others), and a special class of virtual feedback instruments similar to real control systems (EPICS). All of these components should inter-operate for more complete analysis of control systems and increased fault tolerance. The Virtual Accelerator is an information and computing environment which provides a framework for analysis based on these components that can be combined in different ways. Corresponding distributed computing services establish interaction between mathematical models and low level control system. The general idea of the software implementation is based on the Service-Oriented Architecture (SOA) that allows using cloud computing technology and enables remote access to the information and computing resources. The Virtual Accelerator allows a designer to combine powerful instruments for modeling beam dynamics in a friendly way including both self-developed and well-known packages. In the scope of this concept the following is also proposed: the control system identification, analysis and result verification, visualization as well as virtual feedback for beam line operation. The architecture of the Virtual Accelerator system itself and results of beam dynamics studies are presented. (authors)

  6. Human factor reliability program

    International Nuclear Information System (INIS)

    Knoblochova, L.

    2017-01-01

    The human factor's reliability program was at Slovenske elektrarne, a.s. (SE) nuclear power plants. introduced as one of the components Initiatives of Excellent Performance in 2011. The initiative's goal was to increase the reliability of both people and facilities, in response to 3 major areas of improvement - Need for improvement of the results, Troubleshooting support, Supporting the achievement of the company's goals. The human agent's reliability program is in practice included: - Tools to prevent human error; - Managerial observation and coaching; - Human factor analysis; -Quick information about the event with a human agent; -Human reliability timeline and performance indicators; - Basic, periodic and extraordinary training in human factor reliability(authors)

  7. Prediction method of long-term reliability in improving residual stresses by means of surface finishing

    International Nuclear Information System (INIS)

    Sera, Takehiko; Hirano, Shinro; Chigusa, Naoki; Okano, Shigetaka; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi

    2012-01-01

    Surface finishing methods, such as Water Jet Peening (WJP), have been applied to welds in some major components of nuclear power plants as a counter measure to Primary Water Stress Corrosion Cracking (PWSCC). In addition, the methods of surface finishing (buffing treatment) is being standardized, and thus the buffing treatment has been also recognized as the well-established method of improving stress. On the other hand, the long-term stability of peening techniques has been confirmed by accelerated test. However, the effectiveness of stress improvement by surface treatment is limited to thin layers and the effect of complicated residual stress distribution in the weld metal beneath the surface is not strictly taken into account for long-term stability. This paper, therefore, describes the accelerated tests, which confirmed that the long-term stability of the layer subjected to buffing treatment was equal to that subjected to WJP. The long-term reliability of very thin stress improved layer was also confirmed through a trial evaluation by thermal elastic-plastic creep analysis, even if the effect of complicated residual stress distribution in the weld metal was excessively taken into account. Considering the above findings, an approach is proposed for constructing the prediction method of the long-term reliability of stress improvement by surface finishing. (author)

  8. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  9. Proposal for the Award of Two Contracts for the Technical Services for Work on Components of CERN Particle Accelerators and High Energy Physics Experiments

    CERN Document Server

    2003-01-01

    This document concerns the award of two contracts for the technical services for work on components of CERN particle accelerators and high energy physics experiments. Following a market survey carried out among 73 firms in fourteen Member States, a call for tenders (IT-3156/SPL) was sent on 4 November 2002 to three consortia in four Member States. By the closing date, CERN had received tenders from the three consortia. The Finance Committee is invited to agree to the negotiation of two contracts with: 1) the consortium SERCO FACILITIES MANAGEMENT (NL) - GERARD PERRIER INDUSTRIE (FR) - INEO ALPES (FR), the lowest bidder, for approximately 55% of the technical services for work on components of CERN particle accelerators and high energy physics experiments, for an initial period of five years and for a total amount not exceeding 37 435 270 euros (54 902 500 Swiss francs), subject to revision for inflation from 1 January 2005. The contract will include options for two one-year extensions beyond the initial five-...

  10. A Study on the Joint Reliability Importance with Applications to the Maintenance Policy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jung Sik; Kwon, Hong Je; Song, Mi Ja; Kim, Woong Kil; Yoong, Do Hwa [Seoul National Polytechnic University, Seoul (Korea, Republic of); Moon, Sin Myung; Cho, Bong Je; Moon, Jae Phil; Koo, Hoon Young; Lee, Jin Seung [Seoul National University, Seoul (Korea, Republic of)

    1997-09-01

    The objective of this project is to investigate the possibility of applying the Joint Reliability Importance(JRI) of two components to the establishment of system maintenance policy. Components are classified into reliability substitutes and reliability compliments. If the sign of JRI of two components is positive, they are called as reliability compliments. If the sign of JRI of two components is negative, they are called as reliability substitutes. In case of reliability compliments, one component becomes more important as the other one works and in case of reliability substitutes, one component becomes more important as the other one fails. Therefore, when the preventive maintenance is carried out, two components which are reliability substitutes should not be maintained at the same time. Also, when the corrective maintenance is carried out, we not only repair the failed components but pay attention to the functioning components which are reliability substitutes with respect to the failed components. The sign of JRI of any two components in series (parallel) system is positive (negative). Then, what is the sign of any two components in k-out-of-n:G system? This project presents an idea of characterizing the k-out-of-n:G system by calculating the JRI of two components in that system, assuming that reliability of all components are equal. In addition to the JRI of two components, JRI of two gates is introduced in this project. The algorithm to compute the JRI of two gates is presented. Bridge system is considered and the co-relation of two min cut sets is illustrated by using the cut-set representation of bridge system and calculating the JRI of two gates. 28 refs., 20 tabs., 32 figs. (author)

  11. The Los Alamos accelerator code group

    International Nuclear Information System (INIS)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-01-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG's activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET

  12. Introduction to quality and reliability engineering

    CERN Document Server

    Jiang, Renyan

    2015-01-01

    This book presents the state-of-the-art in quality and reliability engineering from a product life cycle standpoint. Topics in reliability include reliability models, life data analysis and modeling, design for reliability and accelerated life testing, while topics in quality include design for quality, acceptance sampling and supplier selection, statistical process control, production tests such as screening and burn-in, warranty and maintenance. The book provides comprehensive insights into two closely related subjects, and includes a wealth of examples and problems to enhance reader comprehension and link theory and practice. All numerical examples can be easily solved using Microsoft Excel. The book is intended for senior undergraduate and post-graduate students in related engineering and management programs such as mechanical engineering, manufacturing engineering, industrial engineering and engineering management programs, as well as for researchers and engineers in the quality and reliability fields. D...

  13. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure

    Science.gov (United States)

    Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  14. A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.

    Science.gov (United States)

    Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A

    2017-06-01

    A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.

  15. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  16. The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors

    Science.gov (United States)

    Hochberg, K.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-03-01

    Here, we show the possibility of analysing circular motion and acceleration using the acceleration sensors of smartphones. For instance, the known linear dependence of the radial acceleration on the distance to the centre (a constant angular frequency) can be shown using multiple smartphones attached to a revolving disc. As a second example, the decrease of the radial acceleration and the rotation frequency due to friction can be measured and fitted with a quadratic function, in accordance with theory. Finally, because the disc is not set up exactly horizontal, each smartphone measures a component of the gravitational acceleration that adds to the radial acceleration during one half of the period and subtracts from the radial acceleration during the other half. Hence, every graph shows a small modulation, which can be used to determine the rotation frequency, thus converting a ‘nuisance effect’ into a source of useful information, making additional measurements with stopwatches or the like unnecessary.

  17. Uncertainty propagation and sensitivity analysis in system reliability assessment via unscented transformation

    International Nuclear Information System (INIS)

    Rocco Sanseverino, Claudio M.; Ramirez-Marquez, José Emmanuel

    2014-01-01

    The reliability of a system, notwithstanding it intended function, can be significantly affected by the uncertainty in the reliability estimate of the components that define the system. This paper implements the Unscented Transformation to quantify the effects of the uncertainty of component reliability through two approaches. The first approach is based on the concept of uncertainty propagation, which is the assessment of the effect that the variability of the component reliabilities produces on the variance of the system reliability. This assessment based on UT has been previously considered in the literature but only for system represented through series/parallel configuration. In this paper the assessment is extended to systems whose reliability cannot be represented through analytical expressions and require, for example, Monte Carlo Simulation. The second approach consists on the evaluation of the importance of components, i.e., the evaluation of the components that most contribute to the variance of the system reliability. An extension of the UT is proposed to evaluate the so called “main effects” of each component, as well to assess high order component interaction. Several examples with excellent results illustrate the proposed approach. - Highlights: • Simulation based approach for computing reliability estimates. • Computation of reliability variance via 2n+1 points. • Immediate computation of component importance. • Application to network systems

  18. Challenges/issues of NIS used in particle accelerator facilities

    Science.gov (United States)

    Faircloth, Dan

    2013-09-01

    High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.

  19. Architecture of petawatt-class z-pinch accelerators

    Directory of Open Access Journals (Sweden)

    W. A. Stygar

    2007-03-01

    Full Text Available We have developed an accelerator architecture that can serve as the basis of the design of petawatt-class z-pinch drivers. The architecture has been applied to the design of two z-pinch accelerators, each of which can be contained within a 104-m-diameter cylindrical tank. One accelerator is driven by slow (∼1   μs Marx generators, which are a mature technology but which necessitate significant pulse compression to achieve the short pulses (≪1   μs required to drive z pinches. The other is powered by linear transformer drivers (LTDs, which are less mature but produce much shorter pulses than conventional Marxes. Consequently, an LTD-driven accelerator promises to be (at a given pinch current and implosion time more efficient and reliable. The Marx-driven accelerator produces a peak electrical power of 500 TW and includes the following components: (i 300 Marx generators that comprise a total of 1.8×10^{4} capacitors, store 98 MJ, and erect to 5 MV; (ii 600 water-dielectric triplate intermediate-store transmission lines, which also serve as pulse-forming lines; (iii 600 5-MV laser-triggered gas switches; (iv three monolithic radial-transmission-line impedance transformers, with triplate geometries and exponential impedance profiles; (v a 6-level 5.5-m-diameter 15-MV vacuum insulator stack; (vi six magnetically insulated vacuum transmission lines (MITLs; and (vii a triple-post-hole vacuum convolute that adds the output currents of the six MITLs, and delivers the combined current to a z-pinch load. The accelerator delivers an effective peak current of 52 MA to a 10-mm-length z pinch that implodes in 95 ns, and 57 MA to a pinch that implodes in 120 ns. The LTD-driven accelerator includes monolithic radial transformers and a MITL system similar to those described above, but does not include intermediate-store transmission lines, multimegavolt gas switches, or a laser trigger system. Instead, this accelerator is driven by 210

  20. OSS reliability measurement and assessment

    CERN Document Server

    Yamada, Shigeru

    2016-01-01

    This book analyses quantitative open source software (OSS) reliability assessment and its applications, focusing on three major topic areas: the Fundamentals of OSS Quality/Reliability Measurement and Assessment; the Practical Applications of OSS Reliability Modelling; and Recent Developments in OSS Reliability Modelling. Offering an ideal reference guide for graduate students and researchers in reliability for open source software (OSS) and modelling, the book introduces several methods of reliability assessment for OSS including component-oriented reliability analysis based on analytic hierarchy process (AHP), analytic network process (ANP), and non-homogeneous Poisson process (NHPP) models, the stochastic differential equation models and hazard rate models. These measurement and management technologies are essential to producing and maintaining quality/reliable systems using OSS.

  1. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy

    International Nuclear Information System (INIS)

    Cartelli, D.; Thatar Vento, V.; Castell, W.; Di Paolo, H.; Kesque, J.M.; Bergueiro, J.; Valda, A.A.

    2011-01-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected.

  2. Some approaches to system reliability improvement in engineering design

    International Nuclear Information System (INIS)

    Shen, Kecheng.

    1990-01-01

    In this thesis some approaches to system reliability improvement in engineering design are studied. In particular, the thesis aims at developing alternative methodologies for ranking of component importance which are more related to the design practice and which are more useful in system synthesis than the existing ones. It also aims at developing component reliability models by means of stress-strength interference which will enable both component reliability prediction and design for reliability. A new methodology for ranking of component importance is first developed based on the notion of the increase of the expected system yield. This methodology allows for incorporation of different improvement actions at the component level such as parallel redundancy, standby redundancy, burn-in, minimal repair and perfect replacement. For each of these improvement actions, the increase of system reliability is studied and used as the component importance measure. A possible connection between the commonly known models of component lifetimes and the stress-strength interference models is suggested. Under some general conditions the relationship between component failure rate and the stress and strength distribution characteristics is studied. A heuristic approach for obtaining bounds on failure probability through stress-strength interference is also presented. A case study and a worked example are presented, which illustrate and verify the developed importance measures and their applications in the analytical as well as synthetical work of engineering design. (author)

  3. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  4. Minimising the economic cost and risk to accelerator-driven subcritical reactor technology: The case of designing for flexibility: Part 1

    International Nuclear Information System (INIS)

    Steer, Steven J.; Cardin, Michel-Alexandre; Nuttall, William J.; Parks, Geoffrey T.; Gonçalves, Leonardo V.N.

    2012-01-01

    Highlights: ► Accelerator performance is a risk to ADSR reactor technology demonstration. ► Sensitivity of ADSR economic value to accelerator performance is assessed. ► Economic value of ADSRs with and without accelerator redundancy is tested. ► Real options identify design flexibility to accelerator performance uncertainty. ► Multiple ADSR “park” with a single integrated accelerator system is proposed. - Abstract: Demonstrating the generation of electricity for commercial markets with accelerator-driven subcritical reactor (ADSR) technology will incur substantial financial risk. This risk will arise from traditional uncertainties associated with the construction of nuclear power stations and also from new technology uncertainties such as the reliability of the required accelerator system. The sensitivity of the economic value of ADSRs to the reliability of the accelerator system is assessed. Using linear accelerators as an example of choice for the accelerator technology, the economic assessment considers an ADSR with either one or two accelerators driving it. The extent to which a second accelerator improves the accelerator system reliability is determined, as are the costs for that reliability improvement. Two flexible designs for the accelerator system are also considered, derived from the real options analysis technique. One seeks to achieve the benefits of both the single and dual accelerator ADSR configurations through initially planning to build a second accelerator, but only actually constructing it once it is determined to be economically beneficial to do so. The other builds and tests an accelerator before committing to constructing a reactor. Finally, a phased multiple-reactor park with an integrated system of accelerators is suggested and discussed. The park uses the principles of redundancy as for the Dual accelerator ADSR and flexibility as for the real options design, but for a lower cost per unit of electricity produced.

  5. Reliability data book

    International Nuclear Information System (INIS)

    Bento, J.P.; Boerje, S.; Ericsson, G.; Hasler, A.; Lyden, C.O.; Wallin, L.; Poern, K.; Aakerlund, O.

    1985-01-01

    The main objective for the report is to improve failure data for reliability calculations as parts of safety analyses for Swedish nuclear power plants. The work is based primarily on evaluations of failure reports as well as information provided by the operation and maintenance staff of each plant. In the report are presented charts of reliability data for: pumps, valves, control rods/rod drives, electrical components, and instruments. (L.E.)

  6. Effective flow-accelerated corrosion programs in nuclear facilities

    International Nuclear Information System (INIS)

    Esselman, Thomas C.; McBrine, William J.

    2004-01-01

    Piping Flow-Accelerated Corrosion Programs in nuclear power generation facilities are classically comprised of the selection of inspection locations with the assistance of a predictive methodology such as the Electric Power Research Institute computer codes CHECMATE or CHECWORKS, performing inspections, conducting structural evaluations on the inspected components, and implementing the appropriate sample expansion and corrective actions. Performing such a sequence of steps can be effective in identifying thinned components and implementing appropriate short term and long term actions necessary to resolve flow-accelerated corrosion related problems. A maximally effective flow-accelerated corrosion (FAC) program requires an understanding of many programmatic details. These include the procedural control of the program, effective use of historical information, managing the activities performed during a limited duration outage, allocating resources based on risk allocation, having an acute awareness of how the plant is operated, investigating components removed from the plant, and several others. This paper will describe such details and methods that will lead to a flow-accelerated corrosion program that effectively minimizes the risk of failure due to flow-accelerated corrosion and provide full and complete documentation of the program. (author)

  7. Reliability demonstration test planning using bayesian analysis

    International Nuclear Information System (INIS)

    Chandran, Senthil Kumar; Arul, John A.

    2003-01-01

    In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)

  8. Development of web-based reliability data base platform

    International Nuclear Information System (INIS)

    Hwang, Seok Won; Lee, Chang Ju; Sung, Key Yong

    2004-01-01

    Probabilistic safety assessment (PSA) is a systematic technique which estimates the degree of risk impacts to the public due to an accident scenario. Estimating the occurrence frequencies and consequences of potential scenarios requires a thorough analysis of the accident details and all fundamental parameters. The robustness of PSA to check weaknesses in a design and operation will allow a better informed and balanced decision to be reached. The fundamental parameters for PSA, such as the component failure rates, should be estimated under the condition of steady collection of the evidence throughout the operational period. However, since any single plant data does not sufficiently enough to provide an adequate PSA result, in actual, the whole operating data was commonly used to estimate the reliability parameters for the same type of components. The reliability data of any component type consists of two categories; the generic that is based on the operating experiences of whole plants, and the plant-specific that is based on the operation of a specific plant of interest. The generic data is highly essential for new or recently-built nuclear power plants (NPPs). Generally, the reliability data base may be categorized into the component reliability, initiating event frequencies, human performance, and so on. Among these data, the component reliability seems a key element because it has the most abundant population. Therefore, the component reliability data is essential for taking a part in the quantification of accident sequences because it becomes an input of various basic events which consists of the fault tree

  9. Reliability engineering theory and practice

    CERN Document Server

    Birolini, Alessandro

    2010-01-01

    Presenting a solid overview of reliability engineering, this volume enables readers to build and evaluate the reliability of various components, equipment and systems. Current applications are presented, and the text itself is based on the author's 30 years of experience in the field.

  10. The Los Alamos accelerator code group

    Energy Technology Data Exchange (ETDEWEB)

    Krawczyk, F.L.; Billen, J.H.; Ryne, R.D.; Takeda, Harunori; Young, L.M.

    1995-05-01

    The Los Alamos Accelerator Code Group (LAACG) is a national resource for members of the accelerator community who use and/or develop software for the design and analysis of particle accelerators, beam transport systems, light sources, storage rings, and components of these systems. Below the authors describe the LAACG`s activities in high performance computing, maintenance and enhancement of POISSON/SUPERFISH and related codes and the dissemination of information on the INTERNET.

  11. Overall Key Performance Indicator to Optimizing Operation of High-Pressure Homogenizers for a Reliable Quantification of Intracellular Components in Pichia pastoris.

    Science.gov (United States)

    Garcia-Ortega, Xavier; Reyes, Cecilia; Montesinos, José Luis; Valero, Francisco

    2015-01-01

    The most commonly used cell disruption procedures may present lack of reproducibility, which introduces significant errors in the quantification of intracellular components. In this work, an approach consisting in the definition of an overall key performance indicator (KPI) was implemented for a lab scale high-pressure homogenizer (HPH) in order to determine the disruption settings that allow the reliable quantification of a wide sort of intracellular components. This innovative KPI was based on the combination of three independent reporting indicators: decrease of absorbance, release of total protein, and release of alkaline phosphatase activity. The yeast Pichia pastoris growing on methanol was selected as model microorganism due to it presents an important widening of the cell wall needing more severe methods and operating conditions than Escherichia coli and Saccharomyces cerevisiae. From the outcome of the reporting indicators, the cell disruption efficiency achieved using HPH was about fourfold higher than other lab standard cell disruption methodologies, such bead milling cell permeabilization. This approach was also applied to a pilot plant scale HPH validating the methodology in a scale-up of the disruption process. This innovative non-complex approach developed to evaluate the efficacy of a disruption procedure or equipment can be easily applied to optimize the most common disruption processes, in order to reach not only reliable quantification but also recovery of intracellular components from cell factories of interest.

  12. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  13. CAS Accelerator Physics (RF for Accelerators) in Denmark

    CERN Multimedia

    Barbara Strasser

    2010-01-01

    The CERN Accelerator School (CAS) and Aarhus University jointly organised a specialised course on RF for Accelerators, at the Ebeltoft Strand Hotel, Denmark from 8 to 17 June 2010.   Caption The challenging programme focused on the introduction of the underlying theory, the study and the performance of the different components involved in RF systems, the RF gymnastics and RF measurements and diagnostics. This academic part was supplemented with three afternoons dedicated to practical hands-on exercises. The school was very successful, with 100 participants representing 25 nationalities. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and excellent quality of their lectures. In addition to the academic programme, the participants were able to visit a small industrial exhibition organised by Aarhus University and take part in a one-day excursion consisting of a visit of the accelerators operated ...

  14. User's guide to the Reliability Estimation System Testbed (REST)

    Science.gov (United States)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  15. Parametric study of emerging high power accelerator applications using Accelerator Systems Model (ASM)

    International Nuclear Information System (INIS)

    Berwald, D.H.; Mendelsohn, S.S.; Myers, T.J.; Paulson, C.C.; Peacock, M.A.; Piaszczyk, CM.; Rathke, J.W.; Piechowiak, E.M.

    1996-01-01

    Emerging applications for high power rf linacs include fusion materials testing, generation of intense spallation neutrons for neutron physics and materials studies, production of nuclear materials and destruction of nuclear waste. Each requires the selection of an optimal configuration and operating parameters for its accelerator, rf power system and other supporting subsystems. Because of the high cost associated with these facilities, economic considerations become paramount, dictating a full evaluation of the electrical and rf performance, system reliability/availability, and capital, operating, and life cycle costs. The Accelerator Systems Model (ASM), expanded and modified by Northrop Grumman during 1993-96, provides a unique capability for detailed layout and evaluation of a wide variety of normal and superconducting accelerator and rf power configurations. This paper will discuss the current capabilities of ASM, including the available models and data base, and types of trade studies that can be performed for the above applications. (author)

  16. RF linear accelerators for medical and industrial applications

    CERN Document Server

    Hanna, Samy

    2012-01-01

    This unique resource offers you a clear overview of medical and industrial accelerators. Using minimal mathematics, this book focuses on offering thorough explanations of basic concepts surrounding the operation of accelerators. you find well illustrated discussions designed to help you use accelerator-based systems in a safer, more productive, and more reliable manner.This practical book details the manufacturing process for producing accelerators for medical and industrial applications. You become knowledgeable about the commonly encountered real-world manufacturing issues and potential sources of defects which help you avoid costly production problems. From principles of operation and the role of accelerators in cancer radiation therapy, to manufacturing techniques and future trends in accelerator design and applications, this easy-to-comprehend volume quickly brings you up-to-speed with the critical concepts you need to understand for your work in the field.

  17. Remaining life prediction of I and C cables for reliability assessment of NPP systems

    International Nuclear Information System (INIS)

    Santhosh, T.V.; Ghosh, A.K.; Fernandes, B.G.

    2012-01-01

    Highlights: ► A framework for time dependent reliability prediction of I and C cables for use in PSA of NPP has been developed using stress–strength interference theory. ► The proposed methodology has been illustrated with the accelerated thermal aging data on a typical XLPE cable. ► The behavior of insulation resistance when the degradation process is linear or exponential has also been modeled. ► The reliability index or probability of failure obtained from this approach can be used in system reliability evaluation to account for cable aging for PSA of NPP. - Abstract: Instrumentation and control (I and C) cables are one of the most important components in nuclear power plants (NPPs) because they provide power to safety-related equipment and also to transmit signals to and from various controllers to perform safety operations. I and C cables in NPP are subjected to a variety of aging and degradation stressors that can produce immediate degradation or aging-related mechanisms causing the degradation of cable components over time. Although, there exits several life estimation techniques, currently there is no any standard methodology or an approach toward estimating the time dependent reliability of I and C cables that can be directly used in probabilistic safety assessment (PSA) applications. Hence, the objective of this study is to develop an approach to estimate and confirm the continued acceptable margin in cable insulation life over time subjected to aging. This paper presents a framework based on the structural reliability theory to quantify the life time of I and C cable subjecting to thermal aging. Since cross-linked polyethylene (XLPE) cables are extensively being used in Indian NPPs, the remaining life time evaluations have been carried out for a typical XLPE cable. However, the methodology can be extended to other cables such as polyvinyl chloride (PVC), ethylene propylene rubber (EPR), etc.

  18. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  19. Modeling the degradation of nuclear components

    International Nuclear Information System (INIS)

    Stock, D.; Samanta, P.; Vesely, W.

    1993-01-01

    This paper describes component level reliability models that use information on degradation to predict component reliability, and which have been used to evaluate different maintenance and testing policies. The models are based on continuous time Markov processes, and are a generalization of reliability models currently used in Probabilistic Risk Assessment. An explanation of the models, the model parameters, and an example of how these models can be used to evaluate maintenance policies are discussed

  20. Development of component failure data for seismic risk analysis

    International Nuclear Information System (INIS)

    Fray, R.R.; Moulia, T.A.

    1981-01-01

    This paper describes the quantification and utilization of seismic failure data used in the Diablo Canyon Seismic Risk Study. A single variable representation of earthquake severity that uses peak horizontal ground acceleration to characterize earthquake severity was employed. The use of a multiple variable representation would allow direct consideration of vertical accelerations and the spectral nature of earthquakes but would have added such complexity that the study would not have been feasible. Vertical accelerations and spectral nature were indirectly considered because component failure data were derived from design analyses, qualification tests and engineering judgment that did include such considerations. Two types of functions were used to describe component failure probabilities. Ramp functions were used for components, such as piping and structures, qualified by stress analysis. 'Anchor points' for ramp functions were selected by assuming a zero probability of failure at code allowable stress levels and unity probability of failure at ultimate stress levels. The accelerations corresponding to allowable and ultimate stress levels were determined by conservatively assuming a linear relationship between seismic stress and ground acceleration. Step functions were used for components, such as mechanical and electrical equipment, qualified by testing. Anchor points for step functions were selected by assuming a unity probability of failure above the qualification acceleration. (orig./HP)

  1. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  2. An injector system of a NDZ-20 medical electron linear accelerator

    International Nuclear Information System (INIS)

    Wang Houwen; Lai Qiji; Zhu Yizhang; Yang Fangxin

    1987-01-01

    The structure and characteristic of an injector system of a NDZ-20 medical electron linear accelerator are described. A bombarded type of Pierce electron gun is used. There are pre-focusing coil, deflecting coil, steering coil and beam pulse lead cutting coil in drift tube region. They control electron beam efficiently for ARC, ADC and BLC of the accelerator. ARC and ADC can increase stability and reliability of the accelerator operation, and BLC improves energy spectrum of the back feed accelerator

  3. Status and Future Developments in Large Accelerator Control Systems

    International Nuclear Information System (INIS)

    Karen S. White

    2006-01-01

    Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries

  4. A new efficient algorithm for computing the imprecise reliability of monotone systems

    International Nuclear Information System (INIS)

    Utkin, Lev V.

    2004-01-01

    Reliability analysis of complex systems by partial information about reliability of components and by different conditions of independence of components may be carried out by means of the imprecise probability theory which provides a unified framework (natural extension, lower and upper previsions) for computing the system reliability. However, the application of imprecise probabilities to reliability analysis meets with a complexity of optimization problems which have to be solved for obtaining the system reliability measures. Therefore, an efficient simplified algorithm to solve and decompose the optimization problems is proposed in the paper. This algorithm allows us to practically implement reliability analysis of monotone systems under partial and heterogeneous information about reliability of components and under conditions of the component independence or the lack of information about independence. A numerical example illustrates the algorithm

  5. Mission Reliability Estimation for Repairable Robot Teams

    Science.gov (United States)

    Trebi-Ollennu, Ashitey; Dolan, John; Stancliff, Stephen

    2010-01-01

    A mission reliability estimation method has been designed to translate mission requirements into choices of robot modules in order to configure a multi-robot team to have high reliability at minimal cost. In order to build cost-effective robot teams for long-term missions, one must be able to compare alternative design paradigms in a principled way by comparing the reliability of different robot models and robot team configurations. Core modules have been created including: a probabilistic module with reliability-cost characteristics, a method for combining the characteristics of multiple modules to determine an overall reliability-cost characteristic, and a method for the generation of legitimate module combinations based on mission specifications and the selection of the best of the resulting combinations from a cost-reliability standpoint. The developed methodology can be used to predict the probability of a mission being completed, given information about the components used to build the robots, as well as information about the mission tasks. In the research for this innovation, sample robot missions were examined and compared to the performance of robot teams with different numbers of robots and different numbers of spare components. Data that a mission designer would need was factored in, such as whether it would be better to have a spare robot versus an equivalent number of spare parts, or if mission cost can be reduced while maintaining reliability using spares. This analytical model was applied to an example robot mission, examining the cost-reliability tradeoffs among different team configurations. Particularly scrutinized were teams using either redundancy (spare robots) or repairability (spare components). Using conservative estimates of the cost-reliability relationship, results show that it is possible to significantly reduce the cost of a robotic mission by using cheaper, lower-reliability components and providing spares. This suggests that the

  6. Optimization of reliability centered predictive maintenance scheme for inertial navigation system

    International Nuclear Information System (INIS)

    Jiang, Xiuhong; Duan, Fuhai; Tian, Heng; Wei, Xuedong

    2015-01-01

    The goal of this study is to propose a reliability centered predictive maintenance scheme for a complex structure Inertial Navigation System (INS) with several redundant components. GO Methodology is applied to build the INS reliability analysis model—GO chart. Components Remaining Useful Life (RUL) and system reliability are updated dynamically based on the combination of components lifetime distribution function, stress samples, and the system GO chart. Considering the redundant design in INS, maintenance time is based not only on components RUL, but also (and mainly) on the timing of when system reliability fails to meet the set threshold. The definition of components maintenance priority balances three factors: components importance to system, risk degree, and detection difficulty. Maintenance Priority Number (MPN) is introduced, which may provide quantitative maintenance priority results for all components. A maintenance unit time cost model is built based on components MPN, components RUL predictive model and maintenance intervals for the optimization of maintenance scope. The proposed scheme can be applied to serve as the reference for INS maintenance. Finally, three numerical examples prove the proposed predictive maintenance scheme is feasible and effective. - Highlights: • A dynamic PdM with a rolling horizon is proposed for INS with redundant components. • GO Methodology is applied to build the system reliability analysis model. • A concept of MPN is proposed to quantify the maintenance sequence of components. • An optimization model is built to select the optimal group of maintenance components. • The optimization goal is minimizing the cost of maintaining system reliability

  7. Use of accelerators in the national economy

    International Nuclear Information System (INIS)

    Skrinskij, A.

    1984-01-01

    Accelerators generating beams of accelerated particles are the basic component of apparatus used in irradiation technologies. One of the basic trends in irradiation is the improvement of materials, mainly polyethylene and other plastics. Irradiation with accelerated electrons improves their mechanical properties and chemical and heat resistance. Accelerated beams are also used in cement production and in grain disinfestation. The use is being developed of synchrotron radiation for rapid analysis of mineral samples, the manufacture of integrated circuits and for other applications. (Ha)

  8. An improved charge transport system for the pelletron accelerator in Lund

    International Nuclear Information System (INIS)

    Hellborg, R.; Hakansson, K.

    1988-01-01

    Several improvements have been implemented in the chain charge transport system of a pelletron. The main new components are a modified support at ground for the chain accessories, a new power supply for the chain motor, including the possibility of variable chain speed, and pickup rings to monitor the relative amount of charge on individual cylinders of the chain. These modifications, together with the installation of a second chain, have resulted in improved operational reliability, a much smoother startup of the chain, and a doubled maximum chain current. The latter will simplify running the accelerator with heavy ions at maximum terminal voltage. The pickup rings have been found to be useful in diagnosing malfunctions in the charge transport system. (orig.)

  9. A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors

    Science.gov (United States)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The

  10. Prime implicants in dynamic reliability analysis

    International Nuclear Information System (INIS)

    Tyrväinen, Tero

    2016-01-01

    This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.

  11. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  12. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  13. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  14. Can Reliability of Multiple Component Measuring Instruments Depend on Response Option Presentation Mode?

    Science.gov (United States)

    Menold, Natalja; Raykov, Tenko

    2016-01-01

    This article examines the possible dependency of composite reliability on presentation format of the elements of a multi-item measuring instrument. Using empirical data and a recent method for interval estimation of group differences in reliability, we demonstrate that the reliability of an instrument need not be the same when polarity of the…

  15. High-brightness H/sup -/ accelerators

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1987-01-01

    Neutral particle beam (NPB) devices based on high-brightness H/sup -/ accelerators are an important component of proposed strategic defense systems. The basic rational and R and D program are outlined and examples given of the underlying technology thrusts toward advanced systems. Much of the research accomplished in the past year is applicable to accelerator systems in general; some of these activities are discussed

  16. Reliability of construction materials

    International Nuclear Information System (INIS)

    Merz, H.

    1976-01-01

    One can also speak of reliability with respect to materials. While for reliability of components the MTBF (mean time between failures) is regarded as the main criterium, this is replaced with regard to materials by possible failure mechanisms like physical/chemical reaction mechanisms, disturbances of physical or chemical equilibrium, or other interactions or changes of system. The main tasks of the reliability analysis of materials therefore is the prediction of the various failure reasons, the identification of interactions, and the development of nondestructive testing methods. (RW) [de

  17. Accelerator tube construction and characterization for a tandem-electrostatic-quadrupole for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Cartelli, D; Vento, V Thatar; Castell, W; Di Paolo, H; Kesque, J M; Bergueiro, J; Valda, A A; Erhardt, J; Kreiner, A J

    2011-12-01

    The accelerator tubes are essential components of the accelerator. Their function is to transport and accelerate a very intense proton or deuteron beam through the machine, from the ion source to the neutron production target, without significant losses. In this contribution, we discuss materials selected for the tube construction, the procedures used for their assembly and the testing performed to meet the stringent requirements to which it is subjected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The project SPES at LNL: Accelerator challenges

    Indian Academy of Sciences (India)

    accelerator driven system for waste transmutation. .... a 30 mA (equivalent to 3 MW power), cw proton beam, with high reliability required by the ADS .... maximum achievable surface electric field, related to the onset of field emission, and since.

  19. Accelerator-Driven Thorium Cycle: New Technology Makes It Feasible

    International Nuclear Information System (INIS)

    Adams, Marvin; Best, Fred; Kurwitz, Cable; McInturff, Al; McIntyre, Peter; Rogers, Bob; Sattarov, Akhdior; Wu Zeyun; Yavuz, Mustafa; Meitzler, Charles

    2002-01-01

    We have developed a conceptual design for an accelerator-driven thorium cycle power reactor which addresses the issues of accelerator performance, reliability, and neutronics that limited earlier designs. The proton drive beam is provided by a flux-coupled stack of isochronous cyclotrons, occupying the same footprint as a single cyclotron but providing 7 independent beams from 7 separate accelerating structures within a common magnetic envelope. The core is arranged in a hexagonal lattice, and the 7 beams are used to provide a hexagonal drive beam pattern so that the effective neutron gain is relatively uniform over the entire core volume. Reliability is achieved by redundancy: if any drive beam is interrupted, the other 6 suffice to maintain reactor operation. A new approach to fuel cladding should make it possible to operate with lead moderator at temperatures ∼ 800 C, enabling access to advanced heat cycles and perhaps to a Brayton cycle for hydrogen production. (authors)

  20. Accelerated Testing with Multiple Failure Modes under Several Temperature Conditions

    OpenAIRE

    Zongyue Yu; Zhiqian Ren; Junyong Tao; Xun Chen

    2014-01-01

    A complicated device may have multiple failure modes, and some of the failure modes are sensitive to low temperatures. To assess the reliability of a product with multiple failure modes, this paper presents an accelerated testing in which both of the high temperatures and the low temperatures are applied. Firstly, an acceleration model based on the Arrhenius model but accounting for the influence of both the high temperatures and low temperatures is proposed. Accordingly, an accelerated testi...

  1. Reliability Estimation for Digital Instrument/Control System

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yaguang; Sydnor, Russell [U.S. Nuclear Regulatory Commission, Washington, D.C. (United States)

    2011-08-15

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method.

  2. Reliability Estimation for Digital Instrument/Control System

    International Nuclear Information System (INIS)

    Yang, Yaguang; Sydnor, Russell

    2011-01-01

    Digital instrumentation and controls (DI and C) systems are widely adopted in various industries because of their flexibility and ability to implement various functions that can be used to automatically monitor, analyze, and control complicated systems. It is anticipated that the DI and C will replace the traditional analog instrumentation and controls (AI and C) systems in all future nuclear reactor designs. There is an increasing interest for reliability and risk analyses for safety critical DI and C systems in regulatory organizations, such as The United States Nuclear Regulatory Commission. Developing reliability models and reliability estimation methods for digital reactor control and protection systems will involve every part of the DI and C system, such as sensors, signal conditioning and processing components, transmission lines and digital communication systems, D/A and A/D converters, computer system, signal processing software, control and protection software, power supply system, and actuators. Some of these components are hardware, such as sensors and actuators, their failure mechanisms are well understood, and the traditional reliability model and estimation methods can be directly applied. But many of these components are firmware which has software embedded in the hardware, and software needs special consideration because its failure mechanism is unique, and the reliability estimation method for a software system will be different from the ones used for hardware systems. In this paper, we will propose a reliability estimation method for the entire DI and C system reliability using a recently developed software reliability estimation method and a traditional hardware reliability estimation method

  3. MEMS-based, RF-driven, compact accelerators

    Science.gov (United States)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  4. Software reliability prediction using SPN | Abbasabadee | Journal of ...

    African Journals Online (AJOL)

    Software reliability prediction using SPN. ... In this research for computation of software reliability, component reliability model based on SPN would be proposed. An isomorphic markov ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  5. Validity and reliability of tests determining performance-related components of wheelchair basketball

    NARCIS (Netherlands)

    De Groot, Sonja; Balvers, Inge J. M.; Kouwenhoven, Sanne M.; Janssen, Thomas W. J.

    2012-01-01

    The purpose of this study was to investigate the reliability and validity of wheelchair basketball field tests. Nineteen wheelchair basketball players performed 10 test items twice to determine the reliability. The validity of the tests was assessed by relating the scores to the players'

  6. Validity and reliability of tests determining performance-related components of wheelchair basketball

    NARCIS (Netherlands)

    de Groot, Sonja; Balvers, Inge J.M.; Kouwenhoven, Sanne M.; Janssen, Thomas W.J.

    The purpose of this study was to investigate the reliability and validity of wheelchair basketball field tests. Nineteen wheelchair basketball players performed 10 test items twice to determine the reliability. The validity of the tests was assessed by relating the scores to the players'

  7. The use of particle accelerators for space projects

    International Nuclear Information System (INIS)

    Virtanen, Ari

    2006-01-01

    With the introduction of CMOS technology radiation effects in components became an important issue in satellite and space mission projects. At the end of the cold war, the market of radiation hard (RadHard) components crashed and during the 90's their fabrication practically stopped. The use of 'commercial-off-the-shelf' (COTS) components became more common but required increased evaluation activities at radiation test sites. Component manufacturers and space project engineers were directed towards these test sites, in particular, towards particle accelerators. Many accelerator laboratories developed special beam lines and constructed dedicated test areas for component evaluations. The space environment was simulated at these test sites and components were tested to levels often exceeding mission requirements. In general, space projects environments were predicted in respects to particle mass and energy distributions with the expected fluxes and fluences. In order to validate this information in tests, concepts like stopping power, linear energy transfer, ion penetration ranges etc. have to be understood. The knowledge from the component structure also defines the way of irradiation. For example, the higher ion energies resulting in much deeper ion penetration ranges allow successful reverse side irradiation of thinned Integrated Circuits (ICs). So overall increased demands for radiation testing attracted the European Space Agency (ESA) to the JYFL-accelerator laboratory of the University of Jyvaeskylae, Finland. A contract was signed between ESA and JYFL for the development of a 'High Penetrating Heavy Ion Test Site'. Following one year development, this test site was commissioned in May 2005. This paper addresses the various issues around the JYFL laboratory with its accelerator and radiation effects facility as the focal point in service of component evaluations for the space community

  8. A review of the progress with statistical models of passive component reliability

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, Bengt O. Y. [Sigma-Phase Inc., Vail (United States)

    2017-03-15

    During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

  9. A Review of the Progress with Statistical Models of Passive Component Reliability

    Directory of Open Access Journals (Sweden)

    Bengt O.Y. Lydell

    2017-03-01

    Full Text Available During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models.

  10. A review of the progress with statistical models of passive component reliability

    International Nuclear Information System (INIS)

    Lydell, Bengt O. Y.

    2017-01-01

    During the past 25 years, in the context of probabilistic safety assessment, efforts have been directed towards establishment of comprehensive pipe failure event databases as a foundation for exploratory research to better understand how to effectively organize a piping reliability analysis task. The focused pipe failure database development efforts have progressed well with the development of piping reliability analysis frameworks that utilize the full body of service experience data, fracture mechanics analysis insights, expert elicitation results that are rolled into an integrated and risk-informed approach to the estimation of piping reliability parameters with full recognition of the embedded uncertainties. The discussion in this paper builds on a major collection of operating experience data (more than 11,000 pipe failure records) and the associated lessons learned from data analysis and data applications spanning three decades. The piping reliability analysis lessons learned have been obtained from the derivation of pipe leak and rupture frequencies for corrosion resistant piping in a raw water environment, loss-of-coolant-accident frequencies given degradation mitigation, high-energy pipe break analysis, moderate-energy pipe break analysis, and numerous plant-specific applications of a statistical piping reliability model framework. Conclusions are presented regarding the feasibility of determining and incorporating aging effects into probabilistic safety assessment models

  11. Linear accelerator accelerating module to suppress back-acceleration of field-emitted particles

    Science.gov (United States)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.; Ament, Lucas J. P.

    2017-12-05

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.

  12. Isotopic Tracing of Fuel Components in Particulate Emissions from Diesel Engines using Accelerator Mass Spectrometry (AMS)

    International Nuclear Information System (INIS)

    Buchholz, B A; Mueller, C J; Garbak, J.

    2001-01-01

    Accelerator mass spectrometry (AMS) is an isotope-ratio measurement technique developed in the late 1970s for tracing long-lived radioisotopes (e.g., 14 C half life = 5760 y). The technique counts individual nuclei rather than waiting for their radioactive decay, allowing measurement of more than 100 low-level 14 C samples per day (Vogel et al, 1995). The LLNL AMS system is shown in Fig.1. The contemporary quantity of 14 C in living things ( 14 C/C = 1.2 x 10 -12 or 110 fmol 14 C/ g C) is highly elevated compared to the quantity of 14 C in petroleum-derived products. This isotopic elevation is sufficient to trace the fate of bio-derived fuel components in the emissions of an engine without the use of radioactive materials. If synthesis of a fuel component from biologically-derived source material is not feasible, another approach is to purchase 14 C-labeled material (e.g., dibutyl maleate (DBM)) and dilute it with petroleum-derived material to yield a contemporary level of 14 C. In each case, the virtual absence of 14 C in petroleum based fuels gives a very low 14 C background that makes this approach to tracing fuel components practical. Regulatory pressure to significantly reduce the particulate emissions from diesel engines is driving research into understanding mechanisms of soot formation. If mechanisms are understood, then combustion modeling can be used to evaluate possible changes in fuel formulation and suggest possible fuel components that can improve combustion and reduce PM emissions. The combustion paradigm assumes that large molecules break down into small components and then build up again during soot formation. AMS allows us to label specific fuel components, including oxygenates, trace the carbon atoms, and test this combustion modeling paradigm. Volatile and non-volatile organic fractions (VOF, NVOF) in the PM can be further separated. The VOF of the PM can be oxidized with catalysts in the exhaust stream to further decrease PM. The effectiveness

  13. Experimental Studies of W-Band Accelerator Structures at High Field

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Marc E

    2001-02-09

    A high-gradient electron accelerator is desired for high-energy physics research, where frequency scalings of breakdown and trapping of itinerant beamline particles dictates operation of the accelerator at short wavelengths. The first results of design and test of a high-gradient mm-wave linac with an operating frequency at 91.392 GHz (W-band) are presented. A novel approach to particle acceleration is presented employing a planar, dielectric lined waveguide used for particle acceleration. The traveling wave fields in the planar dielectric accelerator (PDA) are analyzed for an idealized structure, along with a circuit equivalent model used for understanding the structure as a microwave circuit. Along with the W-band accelerator structures, other components designed and tested are high power rf windows, high power attenuators, and a high power squeeze-type phase shifter. The design of the accelerator and its components where eased with the aide of numerical simulations using a finite-difference electromagnetic field solver. Manufacturing considerations of the small, delicate mm-wave components and the steps taken to reach a robust fabrication process are detailed. These devices were characterized under low power using a two-port vector network analyzer to verify tune and match, including measurements of the structures' fields using a bead-pull. The measurements are compared with theory throughout. Addition studies of the W-band structures were performed under high power utilizing a 11.424 GHz electron linac as a current source. Test results include W-band power levels of 200 kW, corresponding to fields in the PDA of over 20 MV/m, a higher gradient than any collider. Planar accelerator devices naturally have an rf quadrupole component of the accelerating field. Presented for the first time are the measurements of this effect.

  14. Accelerator and RF system development for NLC

    International Nuclear Information System (INIS)

    Vlieks, A.E.; Callin, R.; Deruyter, H.; Early, R.; Fant, K.S.; Farkas, Z.D.; Fowkes, W.R.; Galloway, C.; Hoag, H.A.; Koontz, R.

    1993-01-01

    An experimental station for an X-band Next Linear Collider has been constructed at SLAC. This station consists of a klystron and modulator, a low-loss waveguide system for rf power distribution, a SLED II pulse-compression and peak-power multiplication system, acceleration sections and beam-line components (gun, pre-buncher, pre-accelerator, focussing elements, and spectrometer). An extensive program of experiments to evaluate the performance of all components is underway. The station is described in detail in this paper, and results to date are presented

  15. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  16. Ion sources for medical accelerators

    Science.gov (United States)

    Barletta, W. A.; Chu, W. T.; Leung, K. N.

    1998-02-01

    Advanced injector systems for proton synchrotrons and accelerator-based boron neutron capture therapy systems are being developed at the Lawrence Berkeley National Laboratory. Multicusp ion sources, particularly those driven by radio frequency, have been tested for these applications. The use of a radio frequency induction discharge provides clean, reliable, and long-life source operation. It has been demonstrated that the multicusp ion source can provide good-quality positive hydrogen ion beams with a monatomic ion fraction higher than 90%. The extractable ion current densities from this type of source can meet the injector requirements for both proton synchrotron and accelerator-based boron neutron capture therapy projects.

  17. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  18. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approach 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  19. Optimization of Reliability and Power Consumption in Systems on a Chip

    OpenAIRE

    Simunic, Tajana; Mihic, Kresimir; De Micheli, Giovanni

    2005-01-01

    Aggressive transistor scaling, decreased voltage margins and increased processor power and temperature, have made reliability assessment a much more significant issue in design. Although reliability of devices and interconnect has been broadly studied, here we characterize reliability at the system level. Thus we consider component-based System on Chip designs. Reliability is strongly affected by system temperature, which is in turn driven by power consumption. Thus, component reliability and...

  20. Failure trend analysis for safety related components of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Han, Sang Hoon

    2005-01-01

    The component reliability data of Korean NPP that reflects the plant specific characteristics is required necessarily for PSA of Korean nuclear power plants. We have performed a project to develop the component reliability database (KIND, Korea Integrated Nuclear Reliability Database) and S/W for database management and component reliability analysis. Based on the system, we have collected the component operation data and failure/repair data during from plant operation date to 2002 for YGN 3, 4 and UCN 3, 4 plants. Recently, we provided the component failure rate data for UCN 3, 4 standard PSA model from the KIND. We evaluated the components that have high-ranking failure rates with the component reliability data from plant operation date to 1998 and 2000 for YGN 3,4 and UCN 3, 4 respectively. We also identified their failure mode that occurred frequently. In this study, we analyze the component failure trend and perform site comparison based on the generic data by using the component reliability data which is extended to 2002 for UCN 3, 4 and YGN 3, 4 respectively. We focus on the major safety related rotating components such as pump, EDG etc

  1. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  2. Statistical Bayesian method for reliability evaluation based on ADT data

    Science.gov (United States)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  3. Comparison of accelerator technologies for use in ADSS

    International Nuclear Information System (INIS)

    Weng, W.T.; Ludewig, H.; Raparia, D.; Trbojevic, D.; Todosow, M.; McIntyre, P.; Sattarov, A.

    2011-01-01

    Accelerator Driven Subcritical (ADS) fission is an interesting candidate basis for nuclear waste transmutation and for nuclear power generation. ADS can use either thorium or depleted uranium as fuel, operate below criticality, and consume rather than produce long-lived actinides. A case study with a hypothetical, but realistic nuclear core configuration is used to evaluate the performance requirements of the driver proton accelerator in terms of beam energy, beam current, duty factor, beam distribution delivered to the fission core, reliability, and capital and operating cost. Comparison between a CW IC and that of a SRF proton linac is evaluated. Future accelerator R and D required to improve each candidate accelerator design is discussed. ADS fission has interesting potential for electric power generation and also for destruction of long-lived actinide waste produced by conventional critical reactors. ADS systems offer several interesting advantages in comparison to critical reactors: (1) ADS provides greater flexibility for the composition and placement of fissile, fertile, or fission product waste within the core, and require less enrichment of fissile content; (2) The core can be operated with a reactivity k eff that cannot reach criticality by any failure mode; (3) When the beam is shut off fission ceases in the core; (4) Coupling the fast neutron spectrum of the spallation drive to fast core neutronics offers a basis for more complete burning of long-lived actinides; and (5) ADS designs can provide sufficient thermal mass that meltdown cannot occur from radioactive heat after fission is stopped. In order to drive a ∼GW e fission core a CW proton beam of >700 MeV and ∼15 MW beam power is required. A previous study of the accelerator performance required for ADS systems concluded that present accelerator performance is approaching those requirements, but accelerator system cost and reliability remain particular concerns. The obvious candidates for

  4. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  5. Accelerator waste, what to do?

    International Nuclear Information System (INIS)

    Beer, H.-F.

    2001-01-01

    problem of accelerator waste is complicated by the fact that within the large time span of running the accelerator the experiments wore changed and the beam times, beam currents and materials were changed too. These changes are only poorly recorded. In addition the suppliers of the construction materials changed over the years, each of whom was free to use different material sources. This means that the material composition is untraceable. In these circumstances it is difficult to get a reliable nuclide inventory. To solve the described problems a multi-step approach was chosen. At the management level a steering committee with was formed. Within this group representatives of practical waste management, radiation protection, documentation, modelling and chemical analysis discuss and co-ordinate their tasks. In the field of modelling a user-friendly calculation program is established to estimate reliably the nuclide inventory of real waste. In the field of radioanalysis a group has been formed to determine quantitatively radionuclides that cannot be measured by γ-emission. The analytical results will be used to validate the results of the modelling. In addition a documentation system is being built up to specie the resulting waste streams according to the needs of the Swiss authorities and the final disposer. In parallel the waste is conditioned. For this purpose a system of concrete containers has been developed to condition radioactive accelerator waste in a geometrical form to allow its integration into the shielding system of the accelerator. The containers fulfil IP III demands and are accepted for final disposal. Large components have to be dismounted in a hot cell. During the dismounting activated aluminium is removed for separate conditioning. Every year 5 containers are produced on average, each with an overall volume of 4.5 m 3 . In the past most of them were used as shielding. Containers not used as shielding go into interim storage at PSI. The total amount of

  6. Charged particle accelerators for practice

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1988-01-01

    Characteristics of some accelerators operating in the world are given, capabilities of accelerator technique are demonstrated. Examples of wide application of accelerators in radiation-chemical technology as well as for defectoscopy of massive metal products and impurity ion implantation when producing semiconductor elements are presented. Works on nuclear filter production are characterized by high efficiency. Wide application of synchrotron radiation is described. Various accelerators can be applied during element analysis in geology, metallurgy, ecology. Application of accelerators ''in particular, cyclotrons for radioisotope production as well as in radiotherapy in medicine appears to be important. An isochronous cyclotron with controlled ion energy, at which applied works concerning a number of considered trends in the field of radiation physics and radiation physical metallurgy, element analysis, radiation resistance of electronic circuits and components are conducted, is in operation at the IYaPh of the Kazakh Academy of Sciences. Production of tallium-201 for cardiologic invstigations deserves a special attention. An electrostatic heavy ion accelerator which allows one to produce the beams of accelerated ions of elements from hydrogen to uranium is under commissioning

  7. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  8. Generation of monoenergetic ion beams with a laser accelerator

    International Nuclear Information System (INIS)

    Pfotenhauer, Sebastian M.

    2009-01-01

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  9. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  10. Proton beam therapy: reliability of the synchrocyclotron at the Harvard Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Sisterson, J.M.; Cascio, E.; Koehler, A.M.; Johnson, K.N.

    1991-01-01

    The reliability of the synchrocyclotron at Harvard Cyclotron Laboratory has been studied over the period 1980-1989 to see if proton beam therapy can compare in reliability to linear accelerators used in radiation therapy departments. Breakdowns in relation to patient load are reviewed in outline. (U.K.)

  11. Development of Flow Accelerated Corrosion Reduction Technology

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Min Bum; Choi, Won Yeol; Lee, Jong Chan; Lim, Dong Seok; Kwon, Byung Il; Ku, Hee Kwon; Kim, Jong Uk [FNC Tech, Yongin (Korea, Republic of)

    2015-10-15

    Development of flow accelerated corrosion reduction technology is necessary for prevent this kind of accidents. This study deals with development of flow accelerated corrosion reduction technology through platinum injection and developed of flow accelerated corrosion reduction technology by imitating water chemical condition in PWR secondary system in practice. In addition, in order to get reliability of water chemical simulator in PWR secondary system, analyzed and compared with test result through CFD analysis. This study composed test device that can simulate water chemical environment in PWR secondary system, in order to develop flow accelerated corrosion reduction , and evaluated the ratio of corrosion in water chemical environment in PWR secondary system. In conclusion, corrosion ratio of low alloy steel material that includes more Cr and Mo was lower. And the results were confirmed to be the maximum corrosion rate in the case that replicate the 90 elbow. Additionally, inserted Pt nano particle for developing flow accelerated corrosion rate reduction technology, the test results, it was confirmed for about 80% of the flow accelerated corrosion rate reduction than before input.

  12. Alignment of Ion Accelerator for Surface Analysis using Theodolite and Laser Tracker

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae Sung; Seo, Dong Hyuk; Kim, Dae Il; Kim, Han Sung; Kwon, Hyeok Jung; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The method of ion accelerator alignment is used two ways which are a theodolite and laser tracker. For the alignment and maintenance of the proton linear accelerator, the laser tracker is typically used at KOMAC. While the device for alignment by using laser tracker is not installed in all ion accelerator components, it was used in parallel in two methods. In this paper, alignment methods are introduced and the result and comparison of each alignment method are presented. The ion accelerator for surface analysis has aligned using theodolite and laser tracker. The two ways for alignment have advantage as well as weakness. But alignment using laser tracker is stronger than using theodolite. Because it is based on alignment and position data and it is more detailed. Also since the beam distribution is smaller than accelerator component that is direction of beam progress, main component (ex. Magnet, Chamber, Pelletron tank, etc.) alignment using laser tracker is enough to align the ion accelerator.

  13. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R; Erixon, S; Tomic, B; Lydell, B

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs.

  14. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs

  15. Some practical observations on the accelerated testing of Nickel-Cadmium Cells

    Science.gov (United States)

    Mcdermott, P. P.

    1979-01-01

    A large scale test of 6.0 Ah Nickel-Cadmium Cells conducted at the Naval Weapons Support Center, Crane, Indiana has demonstrated a methodology for predicting battery life based on failure data from cells cycled in an accelerated mode. After examining eight variables used to accelerate failure, it was determined that temperature and depth of discharge were the most reliable and efficient parameters for use in accelerating failure and for predicting life.

  16. Towards early software reliability prediction for computer forensic tools (case study).

    Science.gov (United States)

    Abu Talib, Manar

    2016-01-01

    Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.

  17. SLAC accelerator operations report: 1992-1995

    International Nuclear Information System (INIS)

    Erickson, R.; Allen, C.W.; Inman, T.K.; Linebarger, W.; Stanek, M.

    1995-05-01

    Operational statistics for the linear accelerator programs at SLAC are presented, including run-time records for the SLC, FFTB, and fixed target programs. Also included are summaries of reliability and maintenance-related statistics and a discussion of the analysis tools used to study error messages generated by the control system

  18. Reliability And Maintainability Issues for the Next Linear Collider

    International Nuclear Information System (INIS)

    Wilson, Zane J.; Gold, Saul L.; Koontz, Ron F.; Lavine, Ted L.

    2011-01-01

    Large accelerators for high energy physics research traditionally have been designed using informal best design, engineering, and management practices to achieve acceptable levels of operational availability. However, the Next Linear Collider(NLC) project presents a particular challenge for operational availability due to the unprecedented size and complexity of the accelerator systems required to achieve the physics goals of high center-of-mass energy and high luminosity. Formal reliability and maintainability analysis, design, and implementation will be required to achieve acceptable operational availability for the high energy physics research program. This paper introduces some of the basic concepts of reliability analysis and applies them to the 2.6-cm microwave power system of the two 10-km-long, 250-GeV linacs that are currently proposed for the NLC design.

  19. Software for virtual accelerator designing

    International Nuclear Information System (INIS)

    Kulabukhova, N.; Ivanov, A.; Korkhov, V.; Lazarev, A.

    2012-01-01

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  20. How to measure distinct components of visual attention fast and reliably

    DEFF Research Database (Denmark)

    Vangkilde, Signe Allerup; Kyllingsbæk, Søren; Habekost, Thomas

    2009-01-01

    Measuring different attentional processes in a fast and reliable way is important in both clinical and experimental settings. However, most tests of visual attention are either lengthy or lack sensitivity, specificity, and reliability. To address this we developed a ten minute test procedure...... for the Swedish Betula-project, a longitudinal study investigating changes in cognitive functions over the adult life span (Nilsson et al., 2004). The test consists of a computer-based letter recognition task with stimulus displays of varied durations followed by pattern masks or a blank screen. The temporal...