WorldWideScience

Sample records for reliability comparative analysis

  1. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    Science.gov (United States)

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  2. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  3. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    Bonfietti, Gerson

    2003-01-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  4. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  5. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  6. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  7. Component reliability analysis for development of component reliability DB of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.; Kim, S. H.

    2002-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA and Risk Informed Application. We have performed a project to develop the component reliability DB and calculate the component reliability such as failure rate and unavailability. We have collected the component operation data and failure/repair data of Korean standard NPPs. We have analyzed failure data by developing a data analysis method which incorporates the domestic data situation. And then we have compared the reliability results with the generic data for the foreign NPPs

  8. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  9. Application of SAW method for multiple-criteria comparative analysis of the reliability of heat supply organizations

    Science.gov (United States)

    Akhmetova, I. G.; Chichirova, N. D.

    2016-12-01

    and the analysis of heat-supply organizations is performed by the example of the Republic of Tatarstan. The assessment system is based on construction of comparative ratings of heat-supply organizations. A rating is the assessment of reliability of the organization, is characterized by a numerical value, and makes it possible to compare organizations engaged in the same kind of activity between each other.

  10. Electric propulsion reliability: Statistical analysis of on-orbit anomalies and comparative analysis of electric versus chemical propulsion failure rates

    Science.gov (United States)

    Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.

    2017-10-01

    With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both

  11. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  12. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  13. Analysis of the reliability and reproducibility of goniometry compared to hand photogrammetry

    Science.gov (United States)

    de Carvalho, Rosana Martins Ferreira; Mazzer, Nilton; Barbieri, Claudio Henrique

    2012-01-01

    Objective: To evaluate the intra- and inter-examiner reliability and reproducibility of goniometry in relation to photogrammetry of hand, comparing the angles of thumb abduction, PIP joint flexion of the II finger and MCP joint flexion of the V finger. Methods: The study included 30 volunteers, who were divided into three groups: one group of 10 physiotherapy students, one group of 10 physiotherapists, and a third group of 10 therapists of the hand. Each examiner performed the measurements on the same hand mold, using the goniometer followed by two photogrammetry software programs; CorelDraw® and ALCimagem®. Results: The results revealed that the groups and the methods proposed presented inter-examiner reliability, generally rated as excellent (ICC 0.998 I.C. 95% 0.995 - 0.999). In the intra-examiner evaluation, an excellent level of reliability was found between the three groups. In the comparison between groups for each angle and each method, no significant differences were found between the groups for most of the measurements. Conclusion: Goniometry and photogrammetry are reliable and reproducible methods for evaluating measurements of the hand. However, due to the lack of similar references, detailed studies are needed to define the normal parameters between the methods in the joints of the hand. Level of Evidence II, Diagnostic Study. PMID:24453594

  14. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  15. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  16. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  17. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  18. RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...

    African Journals Online (AJOL)

    eobe

    Reliability analysis of the safety levels of the criteria slabs, have been .... was also noted [2] that if the risk level or β < 3.1), the ... reliability analysis. A study [6] has shown that all geometric variables, ..... Germany, 1988. 12. Hasofer, A. M and ...

  19. Erratum: Comparative Analysis of Some Reliability Characteristics of ...

    African Journals Online (AJOL)

    ... are analyzed using kolmogorov's forward equation method. Comparisons are performed for specific values of system parameters. Finally, the configurations are ranked based on MTSF and ( AV(∞)) and the results show that configuration 3 is optimal. Keywords: Reliability, Availability, Deterioration, Repair, Replacement.

  20. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  1. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  2. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  3. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  4. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  5. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  6. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  7. Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application

    International Nuclear Information System (INIS)

    Baraldi, Piero; Podofillini, Luca; Mkrtchyan, Lusine; Zio, Enrico; Dang, Vinh N.

    2015-01-01

    The use of expert systems can be helpful to improve the transparency and repeatability of assessments in areas of risk analysis with limited data available. In this field, human reliability analysis (HRA) is no exception, and, in particular, dependence analysis is an HRA task strongly based on analyst judgement. The analysis of dependence among Human Failure Events refers to the assessment of the effect of an earlier human failure on the probability of the subsequent ones. This paper analyses and compares two expert systems, based on Bayesian Belief Networks and Fuzzy Logic (a Fuzzy Expert System, FES), respectively. The comparison shows that a BBN approach should be preferred in all the cases characterized by quantifiable uncertainty in the input (i.e. when probability distributions can be assigned to describe the input parameters uncertainty), since it provides a satisfactory representation of the uncertainty and its output is directly interpretable for use within PSA. On the other hand, in cases characterized by very limited knowledge, an analyst may feel constrained by the probabilistic framework, which requires assigning probability distributions for describing uncertainty. In these cases, the FES seems to lead to a more transparent representation of the input and output uncertainty. - Highlights: • We analyse treatment of uncertainty in two expert systems. • We compare a Bayesian Belief Network (BBN) and a Fuzzy Expert System (FES). • We focus on the input assessment, inference engines and output assessment. • We focus on an application problem of interest for human reliability analysis. • We emphasize the application rather than math to reach non-BBN or FES specialists

  8. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  9. Comparative analysis of different configurations of PLC-based safety systems from reliability point of view

    Science.gov (United States)

    Tapia, Moiez A.

    1993-01-01

    The study of a comparative analysis of distinct multiplex and fault-tolerant configurations for a PLC-based safety system from a reliability point of view is presented. It considers simplex, duplex and fault-tolerant triple redundancy configurations. The standby unit in case of a duplex configuration has a failure rate which is k times the failure rate of the standby unit, the value of k varying from 0 to 1. For distinct values of MTTR and MTTF of the main unit, MTBF and availability for these configurations are calculated. The effect of duplexing only the PLC module or only the sensors and the actuators module, on the MTBF of the configuration, is also presented. The results are summarized and merits and demerits of various configurations under distinct environments are discussed.

  10. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  11. Reliability of the Emergency Severity Index: Meta-analysis

    Directory of Open Access Journals (Sweden)

    Amir Mirhaghi

    2015-01-01

    Full Text Available Objectives: Although triage systems based on the Emergency Severity Index (ESI have many advantages in terms of simplicity and clarity, previous research has questioned their reliability in practice. Therefore, the aim of this meta-analysis was to determine the reliability of ESI triage scales. Methods: This metaanalysis was performed in March 2014. Electronic research databases were searched and articles conforming to the Guidelines for Reporting Reliability and Agreement Studies were selected. Two researchers independently examined selected abstracts. Data were extracted in the following categories: version of scale (latest/older, participants (adult/paediatric, raters (nurse, physician or expert, method of reliability (intra/inter-rater, reliability statistics (weighted/unweighted kappa and the origin and publication year of the study. The effect size was obtained by the Z-transformation of reliability coefficients. Data were pooled with random-effects models and a meta-regression was performed based on the method of moments estimator. Results: A total of 19 studies from six countries were included in the analysis. The pooled coefficient for the ESI triage scales was substantial at 0.791 (95% confidence interval: 0.787‒0.795. Agreement was higher with the latest and adult versions of the scale and among expert raters, compared to agreement with older and paediatric versions of the scales and with other groups of raters, respectively. Conclusion: ESI triage scales showed an acceptable level of overall reliability. However, ESI scales require more development in order to see full agreement from all rater groups. Further studies concentrating on other aspects of reliability assessment are needed.

  12. Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Nacef Tazi

    2017-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been proven to be an effective methodology to improve system design reliability. However, the standard approach reveals some weaknesses when applied to wind turbine systems. The conventional criticality assessment method has been criticized as having many limitations such as the weighting of severity and detection factors. In this paper, we aim to overcome these drawbacks and develop a hybrid cost-FMEA by integrating cost factors to assess the criticality, these costs vary from replacement costs to expected failure costs. Then, a quantitative comparative study is carried out to point out average failure rate, main cause of failure, expected failure costs and failure detection techniques. A special reliability analysis of gearbox and rotor-blades are presented.

  13. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  14. Comparison of methods for dependency determination between human failure events within human reliability analysis

    International Nuclear Information System (INIS)

    Cepis, M.

    2007-01-01

    The Human Reliability Analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease of subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan - Human Reliability Analysis (IJS-HRA) and Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance. (author)

  15. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    International Nuclear Information System (INIS)

    Cepin, M.

    2008-01-01

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan human reliability analysis (IJS-HRA) and standardized plant analysis risk human reliability analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance

  16. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  17. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  18. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    Kondakci, Suleyman

    2015-01-01

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  19. A comparative reliability analysis of ETCS train radio communications

    NARCIS (Netherlands)

    Hermanns, H.; Becker, B.; Jansen, D.N.; Damm, W.; Usenko, Y.S.; Fränzle, M.; Olderog, E.-R.; Podelski, A.; Wilhelm, R.

    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and were applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility

  20. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  1. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  2. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  3. Test-retest reliability of schizoaffective disorder compared with schizophrenia, bipolar disorder, and unipolar depression--a systematic review and meta-analysis.

    Science.gov (United States)

    Santelmann, Hanno; Franklin, Jeremy; Bußhoff, Jana; Baethge, Christopher

    2015-11-01

    Schizoaffective disorder is a frequent diagnosis, and its reliability is subject to ongoing discussion. We compared the diagnostic reliability of schizoaffective disorder with its main differential diagnoses. We systematically searched Medline, Embase, and PsycInfo for all studies on the test-retest reliability of the diagnosis of schizoaffective disorder as compared with schizophrenia, bipolar disorder, and unipolar depression. We used meta-analytic methods to describe and compare Cohen's kappa as well as positive and negative agreement. In addition, multiple pre-specified and post hoc subgroup and sensitivity analyses were carried out. Out of 4,415 studies screened, 49 studies were included. Test-retest reliability of schizoaffective disorder was consistently lower than that of schizophrenia (in 39 out of 42 studies), bipolar disorder (27/33), and unipolar depression (29/35). The mean difference in kappa between schizoaffective disorder and the other diagnoses was approximately 0.2, and mean Cohen's kappa for schizoaffective disorder was 0.50 (95% confidence interval: 0.40-0.59). While findings were unequivocal and homogeneous for schizoaffective disorder's diagnostic reliability relative to its three main differential diagnoses (dichotomous: smaller versus larger), heterogeneity was substantial for continuous measures, even after subgroup and sensitivity analyses. In clinical practice and research, schizoaffective disorder's comparatively low diagnostic reliability should lead to increased efforts to correctly diagnose the disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comparative availability and reliability assessment of design options for the secondary sodium loops of the EFR

    International Nuclear Information System (INIS)

    Pamme, H.

    1989-01-01

    The EFR (European Fast Reactor) project has entered a conceptual study period where different design alternatives are compared concerning feasibility, safety and economic aspects. This paper describes a comparative probabilistic availability and reliability assessment of alternative design options for the secondary sodium loops. These loops will provide heat transfer from the reactor pool to the water-steam (power generating) side. So a high operational availability of the secondary loops during plant lifetime is essential for economic power generation. Additionally a high reliability is required to fulfill the operational decay heat removal function in case of a reactor trip. Availabilities and reliabilities of the different options were assessed using failure mode and effect analysis and the fault tree method. (orig.)

  5. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  6. Reliability Analysis of a Steel Frame

    Directory of Open Access Journals (Sweden)

    M. Sýkora

    2002-01-01

    Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.

  7. A comparative study on the HW reliability assessment methods for digital I and C equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Lee, G. Y. [Korea Atomic Energy Research Institute, Taejeon (Korea); Kim, M. C. [Korea Advanced Institute of Science and Technology, Taejeon (Korea); Jun, S. T. [KHNP, Taejeon (Korea)

    2002-03-01

    It is necessary to predict or to evaluate the reliability of electronic equipment for the probabilistic safety analysis of digital instrument and control equipment. But most databases for the reliability prediction have no data for the up-to-date equipment and the failure modes are not classified. The prediction results for the specific component show different values according to the methods and databases. For boards and systems each method shows different values than others also. This study is for reliability prediction of PDC system for Wolsong NPP1 as a digital I and C equipment. Various reliability prediction methods and failure databases are used in calculation of the reliability to compare the effects of sensitivity and accuracy of each model and database. Many considerations for the reliability assessment of digital systems are derived with the results of this study. 14 refs., 19 figs., 15 tabs. (Author)

  8. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  9. Comparing two reliability upper bounds for multistate systems

    International Nuclear Information System (INIS)

    Meng, Fan C.

    2005-01-01

    The path-cut reliability bound due to Esary and Proschan [J. Am. Stat. Assoc. 65 (1970) 329] and the minimax reliability bound due to Barlow and Proschan [Statistical Theory of Reliability and Life Testing: Probability Models, 1981] for binary systems have been generalized to multistate systems by Block and Savits [J. Appl. Probab. 19 (1982) 391]. Some comparison results concerning the two multistate lower bounds for various types of multistate systems are given by Meng [Probab. Eng. Inform. Sci. 16 (2002) 485]. In this note we compare the two multistate upper bounds and present results which generalize some previous ones obtained by Maymin [J. Stat. Plan. Inference 16 (1987) 337] for binary systems. Examples are given to illustrate our results

  10. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  11. Reliability and validity of risk analysis

    International Nuclear Information System (INIS)

    Aven, Terje; Heide, Bjornar

    2009-01-01

    In this paper we investigate to what extent risk analysis meets the scientific quality requirements of reliability and validity. We distinguish between two types of approaches within risk analysis, relative frequency-based approaches and Bayesian approaches. The former category includes both traditional statistical inference methods and the so-called probability of frequency approach. Depending on the risk analysis approach, the aim of the analysis is different, the results are presented in different ways and consequently the meaning of the concepts reliability and validity are not the same.

  12. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  13. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  14. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  15. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  16. Interrater reliability of schizoaffective disorder compared with schizophrenia, bipolar disorder, and unipolar depression - A systematic review and meta-analysis.

    Science.gov (United States)

    Santelmann, Hanno; Franklin, Jeremy; Bußhoff, Jana; Baethge, Christopher

    2016-10-01

    Schizoaffective disorder is a common diagnosis in clinical practice but its nosological status has been subject to debate ever since it was conceptualized. Although it is key that diagnostic reliability is sufficient, schizoaffective disorder has been reported to have low interrater reliability. Evidence based on systematic review and meta-analysis methods, however, is lacking. Using a highly sensitive literature search in Medline, Embase, and PsycInfo we identified studies measuring the interrater reliability of schizoaffective disorder in comparison to schizophrenia, bipolar disorder, and unipolar disorder. Out of 4126 records screened we included 25 studies reporting on 7912 patients diagnosed by different raters. The interrater reliability of schizoaffective disorder was moderate (meta-analytic estimate of Cohen's kappa 0.57 [95% CI: 0.41-0.73]), and substantially lower than that of its main differential diagnoses (difference in kappa between 0.22 and 0.19). Although there was considerable heterogeneity, analyses revealed that the interrater reliability of schizoaffective disorder was consistently lower in the overwhelming majority of studies. The results remained robust in subgroup and sensitivity analyses (e.g., diagnostic manual used) as well as in meta-regressions (e.g., publication year) and analyses of publication bias. Clinically, the results highlight the particular importance of diagnostic re-evaluation in patients diagnosed with schizoaffective disorder. They also quantify a widely held clinical impression of lower interrater reliability and agree with earlier meta-analysis reporting low test-retest reliability. Copyright © 2016. Published by Elsevier B.V.

  17. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  18. Comparative analysis among deterministic and stochastic collision damage models for oil tanker and bulk carrier reliability

    Directory of Open Access Journals (Sweden)

    A. Campanile

    2018-01-01

    Full Text Available The incidence of collision damage models on oil tanker and bulk carrier reliability is investigated considering the IACS deterministic model against GOALDS/IMO database statistics for collision events, substantiating the probabilistic model. Statistical properties of hull girder residual strength are determined by Monte Carlo simulation, based on random generation of damage dimensions and a modified form of incremental-iterative method, to account for neutral axis rotation and equilibrium of horizontal bending moment, due to cross-section asymmetry after collision events. Reliability analysis is performed, to investigate the incidence of collision penetration depth and height statistical properties on hull girder sagging/hogging failure probabilities. Besides, the incidence of corrosion on hull girder residual strength and reliability is also discussed, focussing on gross, hull girder net and local net scantlings, respectively. The ISSC double hull oil tanker and single side bulk carrier, assumed as test cases in the ISSC 2012 report, are taken as reference ships.

  19. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  20. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  1. How to assess and compare inter-rater reliability, agreement and correlation of ratings: an exemplary analysis of mother-father and parent-teacher expressive vocabulary rating pairs.

    Science.gov (United States)

    Stolarova, Margarita; Wolf, Corinna; Rinker, Tanja; Brielmann, Aenne

    2014-01-01

    This report has two main purposes. First, we combine well-known analytical approaches to conduct a comprehensive assessment of agreement and correlation of rating-pairs and to dis-entangle these often confused concepts, providing a best-practice example on concrete data and a tutorial for future reference. Second, we explore whether a screening questionnaire developed for use with parents can be reliably employed with daycare teachers when assessing early expressive vocabulary. A total of 53 vocabulary rating pairs (34 parent-teacher and 19 mother-father pairs) collected for two-year-old children (12 bilingual) are evaluated. First, inter-rater reliability both within and across subgroups is assessed using the intra-class correlation coefficient (ICC). Next, based on this analysis of reliability and on the test-retest reliability of the employed tool, inter-rater agreement is analyzed, magnitude and direction of rating differences are considered. Finally, Pearson correlation coefficients of standardized vocabulary scores are calculated and compared across subgroups. The results underline the necessity to distinguish between reliability measures, agreement and correlation. They also demonstrate the impact of the employed reliability on agreement evaluations. This study provides evidence that parent-teacher ratings of children's early vocabulary can achieve agreement and correlation comparable to those of mother-father ratings on the assessed vocabulary scale. Bilingualism of the evaluated child decreased the likelihood of raters' agreement. We conclude that future reports of agreement, correlation and reliability of ratings will benefit from better definition of terms and stricter methodological approaches. The methodological tutorial provided here holds the potential to increase comparability across empirical reports and can help improve research practices and knowledge transfer to educational and therapeutic settings.

  2. How to assess and compare inter-rater reliability, agreement and correlation of ratings: an exemplary analysis of mother-father and parent-teacher expressive vocabulary rating pairs

    Science.gov (United States)

    Stolarova, Margarita; Wolf, Corinna; Rinker, Tanja; Brielmann, Aenne

    2014-01-01

    This report has two main purposes. First, we combine well-known analytical approaches to conduct a comprehensive assessment of agreement and correlation of rating-pairs and to dis-entangle these often confused concepts, providing a best-practice example on concrete data and a tutorial for future reference. Second, we explore whether a screening questionnaire developed for use with parents can be reliably employed with daycare teachers when assessing early expressive vocabulary. A total of 53 vocabulary rating pairs (34 parent–teacher and 19 mother–father pairs) collected for two-year-old children (12 bilingual) are evaluated. First, inter-rater reliability both within and across subgroups is assessed using the intra-class correlation coefficient (ICC). Next, based on this analysis of reliability and on the test-retest reliability of the employed tool, inter-rater agreement is analyzed, magnitude and direction of rating differences are considered. Finally, Pearson correlation coefficients of standardized vocabulary scores are calculated and compared across subgroups. The results underline the necessity to distinguish between reliability measures, agreement and correlation. They also demonstrate the impact of the employed reliability on agreement evaluations. This study provides evidence that parent–teacher ratings of children's early vocabulary can achieve agreement and correlation comparable to those of mother–father ratings on the assessed vocabulary scale. Bilingualism of the evaluated child decreased the likelihood of raters' agreement. We conclude that future reports of agreement, correlation and reliability of ratings will benefit from better definition of terms and stricter methodological approaches. The methodological tutorial provided here holds the potential to increase comparability across empirical reports and can help improve research practices and knowledge transfer to educational and therapeutic settings. PMID:24994985

  3. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance

  4. Dynamic decision-making for reliability and maintenance analysis of manufacturing systems based on failure effects

    Science.gov (United States)

    Zhang, Ding; Zhang, Yingjie

    2017-09-01

    A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.

  5. Reliability analysis of reactor inspection robot(RIROB)

    International Nuclear Information System (INIS)

    Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.

    2002-05-01

    This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)

  6. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  7. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  8. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  9. How to assess and compare inter-rater reliability, agreement and correlation of ratings: an exemplary analysis of mother-father and parent-teacher expressive vocabulary rating pairs

    Directory of Open Access Journals (Sweden)

    Margarita eStolarova

    2014-06-01

    Full Text Available This report has two main purposes. First, we combine well-known analytical approaches to conduct a comprehensive assessment of agreement and correlation of rating-pairs and to dis-entangle these often confused concepts, providing a best-practice example on concrete data and a tutorial for future reference. Second, we explore whether a screening questionnaire deve-loped for use with parents can be reliably employed with daycare teachers when assessing early expressive vocabulary. A total of 53 vocabulary rating pairs (34 parent-teacher and 19 mother-father pairs collected for two-year-old children (12 bilingual are evaluated. First, inter-rater reliability both within and across subgroups is assessed using the intra-class correlation coefficient (ICC. Next, based on this analysis of reliability and on the test-retest reliability of the employed tool, inter-rater agreement is analyzed, magnitude and direction of rating differences are considered. Finally, Pearson correlation coefficients of standardized vocabulary scores are calculated and compared across subgroups. The results underline the necessity to distinguish between reliability measures, agreement and correlation. They also demonstrate the impact of the employed reliability on agreement evaluations. This study provides evidence that parent-teacher ratings of children’s early vocabulary can achieve agreement and correlation comparable to those of mother-father ratings on the assessed vocabulary scale. Bilingualism of the evaluated child decreased the likelihood of raters’ agreement. We conclude that future reports of agree-ment, correlation and reliability of ratings will benefit from better definition of terms and stricter methodological approaches. The methodological tutorial provided here holds the potential to increase comparability across empirical reports and can help improve research practices and knowledge transfer to educational and therapeutic settings.

  10. Optimizing the design and operation of reactor emergency systems using reliability analysis techniques

    International Nuclear Information System (INIS)

    Snaith, E.R.

    1975-01-01

    Following a reactor trip various reactor emergency systems, e.g. essential power supplies, emergency core cooling and boiler feed water arrangements are required to operate with a high degree of reliability. These systems must therefore be critically assessed to confirm their capability of operation and determine their reliability of performance. The use of probability analysis techniques enables the potential operating reliability of the systems to be calculated and this can then be compared with the overall reliability requirements. However, a system reliability analysis does much more than calculate an overall reliability value for the system. It establishes the reliability of all parts of the system and thus identifies the most sensitive areas of unreliability. This indicates the areas where any required improvements should be made and enables the overall systems' designs and modes of operation to be optimized, to meet the system and hence the overall reactor safety criteria. This paper gives specific examples of sensitive areas of unreliability that were identified as a result of a reliability analysis that was carried out on a reactor emergency core cooling system. Details are given of modifications to design and operation that were implemented with a resulting improvement in reliability of various reactor sub-systems. The report concludes that an initial calculation of system reliability should represent only the beginning of continuing process of system assessment. Data on equipment and system performance, particularly in those areas shown to be sensitive in their effect on the overall nuclear power plant reliability, should be collected and processed to give reliability data. These data should then be applied in further probabilistic analyses and the results correlated with the original analysis. This will demonstrate whether the required and the originally predicted system reliability is likely to be achieved, in the light of the actual history to date of

  11. Comparative reliability of structured versus unstructured interviews in the admission process of a residency program.

    Science.gov (United States)

    Blouin, Danielle; Day, Andrew G; Pavlov, Andrey

    2011-12-01

    Although never directly compared, structured interviews are reported as being more reliable than unstructured interviews. This study compared the reliability of both types of interview when applied to a common pool of applicants for positions in an emergency medicine residency program. In 2008, one structured interview was added to the two unstructured interviews traditionally used in our resident selection process. A formal job analysis using the critical incident technique guided the development of the structured interview tool. This tool consisted of 7 scenarios assessing 4 of the domains deemed essential for success as a resident in this program. The traditional interview tool assessed 5 general criteria. In addition to these criteria, the unstructured panel members were asked to rate each candidate on the same 4 essential domains rated by the structured panel members. All 3 panels interviewed all candidates. Main outcomes were the overall, interitem, and interrater reliabilities, the correlations between interview panels, and the dimensionality of each interview tool. Thirty candidates were interviewed. The overall reliability reached 0.43 for the structured interview, and 0.81 and 0.71 for the unstructured interviews. Analyses of the variance components showed a high interrater, low interitem reliability for the structured interview, and a high interrater, high interitem reliability for the unstructured interviews. The summary measures from the 2 unstructured interviews were significantly correlated, but neither was correlated with the structured interview. Only the structured interview was multidimensional. A structured interview did not yield a higher overall reliability than both unstructured interviews. The lower reliability is explained by a lower interitem reliability, which in turn is due to the multidimensionality of the interview tool. Both unstructured panels consistently rated a single dimension, even when prompted to assess the 4 specific domains

  12. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  13. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    -1, where partial safety factors are introduced together with characteristic values. Asymptotic sampling is used to estimate the reliability with support points generated by randomized Sobol sequences. The predicted reliability level is compared with the implicitly required target reliability level defined......This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  14. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  15. Mechanical reliability analysis of tubes intended for hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nahal, Mourad; Khelif, Rabia [Badji Mokhtar University, Annaba (Algeria)

    2013-02-15

    Reliability analysis constitutes an essential phase in any study concerning reliability. Many industrialists evaluate and improve the reliability of their products during the development cycle - from design to startup (design, manufacture, and exploitation) - to develop their knowledge on cost/reliability ratio and to control sources of failure. In this study, we obtain results for hardness, tensile, and hydrostatic tests carried out on steel tubes for transporting hydrocarbons followed by statistical analysis. Results obtained allow us to conduct a reliability study based on resistance request. Thus, index of reliability is calculated and the importance of the variables related to the tube is presented. Reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. Residual stress has been found to greatly increase probability of failure, especially in the early stages of pipe lifetime.

  16. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  17. Cost analysis of reliability investigations

    International Nuclear Information System (INIS)

    Schmidt, F.

    1981-01-01

    Taking Epsteins testing theory as a basis, premisses are formulated for the selection of cost-optimized reliability inspection plans. Using an example, the expected testing costs and inspection time periods of various inspection plan types, standardized on the basis of the exponential distribution, are compared. It can be shown that sequential reliability tests usually involve lower costs than failure or time-fixed tests. The most 'costly' test is to be expected with the inspection plan type NOt. (orig.) [de

  18. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  19. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  20. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics

    Directory of Open Access Journals (Sweden)

    Kang Rui

    2016-06-01

    Full Text Available In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-based reliability metrics, possibility-theory-based reliability metrics (posbist reliability and uncertainty-theory-based reliability metrics (belief reliability. It is pointed out that a qualified reliability metric that is able to consider the effect of epistemic uncertainty needs to (1 compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2 satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.

  1. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  2. ZERBERUS - the code for reliability analysis of crack containing structures

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.

    1992-04-01

    Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP) [de

  3. Weibull distribution in reliability data analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang

    2015-01-01

    Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)

  4. Comparability and Reliability Considerations of Adequate Yearly Progress

    Science.gov (United States)

    Maier, Kimberly S.; Maiti, Tapabrata; Dass, Sarat C.; Lim, Chae Young

    2012-01-01

    The purpose of this study is to develop an estimate of Adequate Yearly Progress (AYP) that will allow for reliable and valid comparisons among student subgroups, schools, and districts. A shrinkage-type estimator of AYP using the Bayesian framework is described. Using simulated data, the performance of the Bayes estimator will be compared to…

  5. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  6. Waste package reliability analysis

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table

  7. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  8. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  9. Study on reliability analysis based on multilevel flow models and fault tree method

    International Nuclear Information System (INIS)

    Chen Qiang; Yang Ming

    2014-01-01

    Multilevel flow models (MFM) and fault tree method describe the system knowledge in different forms, so the two methods express an equivalent logic of the system reliability under the same boundary conditions and assumptions. Based on this and combined with the characteristics of MFM, a method mapping MFM to fault tree was put forward, thus providing a way to establish fault tree rapidly and realizing qualitative reliability analysis based on MFM. Taking the safety injection system of pressurized water reactor nuclear power plant as an example, its MFM was established and its reliability was analyzed qualitatively. The analysis result shows that the logic of mapping MFM to fault tree is correct. The MFM is easily understood, created and modified. Compared with the traditional fault tree analysis, the workload is greatly reduced and the modeling time is saved. (authors)

  10. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    Heslinga, G.

    1983-01-01

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  11. Application of Metric-based Software Reliability Analysis to Example Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Smidts, Carol

    2008-07-01

    The software reliability of TELLERFAST ATM software is analyzed by using two metric-based software reliability analysis methods, a state transition diagram-based method and a test coverage-based method. The procedures for the software reliability analysis by using the two methods and the analysis results are provided in this report. It is found that the two methods have a relation of complementary cooperation, and therefore further researches on combining the two methods to reflect the benefit of the complementary cooperative effect to the software reliability analysis are recommended

  12. Parametric statistical techniques for the comparative analysis of censored reliability data: a review

    International Nuclear Information System (INIS)

    Bohoris, George A.

    1995-01-01

    This paper summarizes part of the work carried out to date on seeking analytical solutions to the two-sample problem with censored data in the context of reliability and maintenance optimization applications. For this purpose, parametric two-sample tests for failure and censored reliability data are introduced and their applicability/effectiveness in common engineering problems is reviewed

  13. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  14. Prime implicants in dynamic reliability analysis

    International Nuclear Information System (INIS)

    Tyrväinen, Tero

    2016-01-01

    This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.

  15. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...

  16. Bearing Procurement Analysis Method by Total Cost of Ownership Analysis and Reliability Prediction

    Science.gov (United States)

    Trusaji, Wildan; Akbar, Muhammad; Sukoyo; Irianto, Dradjad

    2018-03-01

    In making bearing procurement analysis, price and its reliability must be considered as decision criteria, since price determines the direct cost as acquisition cost and reliability of bearing determine the indirect cost such as maintenance cost. Despite the indirect cost is hard to identify and measured, it has high contribution to overall cost that will be incurred. So, the indirect cost of reliability must be considered when making bearing procurement analysis. This paper tries to explain bearing evaluation method with the total cost of ownership analysis to consider price and maintenance cost as decision criteria. Furthermore, since there is a lack of failure data when bearing evaluation phase is conducted, reliability prediction method is used to predict bearing reliability from its dynamic load rating parameter. With this method, bearing with a higher price but has higher reliability is preferable for long-term planning. But for short-term planning the cheaper one but has lower reliability is preferable. This contextuality can give rise to conflict between stakeholders. Thus, the planning horizon needs to be agreed by all stakeholder before making a procurement decision.

  17. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  18. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    Science.gov (United States)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  19. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  20. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  1. Analysis of operating reliability of WWER-1000 unit

    International Nuclear Information System (INIS)

    Bortlik, J.

    1985-01-01

    The nuclear power unit was divided into 33 technological units. Input data for reliability analysis were surveys of operating results obtained from the IAEA information system and certain indexes of the reliability of technological equipment determined using the Bayes formula. The missing reliability data for technological equipment were used from the basic variant. The fault tree of the WWER-1000 unit was determined for the peak event defined as the impossibility of reaching 100%, 75% and 50% of rated power. The period was observed of the nuclear power plant operation with reduced output owing to defect and the respective time needed for a repair of the equipment. The calculation of the availability of the WWER-1000 unit was made for different variant situations. Certain indexes of the operating reliability of the WWER-1000 unit which are the result of a detailed reliability analysis are tabulated for selected variants. (E.S.)

  2. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  3. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  4. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  5. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  6. Cost analysis of the Hemodialysis Reliable Outflow (HeRO) Graft compared to the tunneled dialysis catheter.

    Science.gov (United States)

    Al Shakarchi, Julien; Inston, Nicholas; Jones, Robert G; Maclaine, Grant; Hollinworth, David

    2016-04-01

    In end-stage renal disease patients with central venous obstruction, who have limited vascular access options, the Hemodialysis Reliable Outflow (HeRO) Graft is a new alternative with a lower incidence of complications and longer effective device life compared to tunneled dialysis catheters (TDCs). We undertook an economic analysis of introducing the HeRO Graft in the UK. A 1-year cost-consequence decision analytic model was developed comparing management with the HeRO Graft to TDCs from the perspective of the National Health Service in England. The model comprises four 3-month cycles during which the vascular access option either remains functional for hemodialysis or fails, patients can experience access-related infection and device thrombosis, and they can also accrue associated costs. Clinical input data were sourced from published studies and unit cost data from National Health Service 2014-15 Reference Costs. In the base case, a 100-patient cohort managed with the HeRO Graft experienced 6 fewer failed devices, 53 fewer access-related infections, and 67 fewer device thromboses compared to patients managed with TDCs. Although the initial device and placement costs for the HeRO Graft are greater than those for TDCs, savings from the lower incidence of device complications and longer effective device patency reduces these costs. Overall net annual costs are £2600 for each HeRO Graft-managed patient compared to TDC-managed patients. If the National Health Service were to reimburse hemodialysis at a uniform rate regardless of the type of vascular access, net 1-year savings of £1200 per patient are estimated for individuals managed with the HeRO Graft. The base case results showed a marginal net positive cost associated with vascular access with the HeRO Graft compared with TDCs for the incremental clinical benefit of reductions in patency failures, device-related thrombosis, and access-related infection events in a patient population with limited options for

  7. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    International Nuclear Information System (INIS)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-01-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading

  8. Reliability analysis of digital based I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)

    1999-10-01

    Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.

  9. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  10. Development of RBDGG Solver and Its Application to System Reliability Analysis

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2010-01-01

    For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis

  11. Nuclear plant reliability data system. 1979 annual reports of cumulative system and component reliability

    International Nuclear Information System (INIS)

    1979-01-01

    The primary purposes of the information in these reports are the following: to provide operating statistics of safety-related systems within a unit which may be used to compare and evaluate reliability performance and to provide failure mode and failure rate statistics on components which may be used in failure mode effects analysis, fault hazard analysis, probabilistic reliability analysis, and so forth

  12. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  13. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  14. Using the Reliability Theory for Assessing the Decision Confidence Probability for Comparative Life Cycle Assessments.

    Science.gov (United States)

    Wei, Wei; Larrey-Lassalle, Pyrène; Faure, Thierry; Dumoulin, Nicolas; Roux, Philippe; Mathias, Jean-Denis

    2016-03-01

    Comparative decision making process is widely used to identify which option (system, product, service, etc.) has smaller environmental footprints and for providing recommendations that help stakeholders take future decisions. However, the uncertainty problem complicates the comparison and the decision making. Probability-based decision support in LCA is a way to help stakeholders in their decision-making process. It calculates the decision confidence probability which expresses the probability of a option to have a smaller environmental impact than the one of another option. Here we apply the reliability theory to approximate the decision confidence probability. We compare the traditional Monte Carlo method with a reliability method called FORM method. The Monte Carlo method needs high computational time to calculate the decision confidence probability. The FORM method enables us to approximate the decision confidence probability with fewer simulations than the Monte Carlo method by approximating the response surface. Moreover, the FORM method calculates the associated importance factors that correspond to a sensitivity analysis in relation to the probability. The importance factors allow stakeholders to determine which factors influence their decision. Our results clearly show that the reliability method provides additional useful information to stakeholders as well as it reduces the computational time.

  15. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

    CERN Document Server

    Huber, Catherine; Mesbah, Mounir

    2008-01-01

    Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

  16. Reliability of Computerized Neurocognitive Tests for Concussion Assessment: A Meta-Analysis.

    Science.gov (United States)

    Farnsworth, James L; Dargo, Lucas; Ragan, Brian G; Kang, Minsoo

    2017-09-01

      Although widely used, computerized neurocognitive tests (CNTs) have been criticized because of low reliability and poor sensitivity. A systematic review was published summarizing the reliability of Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores; however, this was limited to a single CNT. Expansion of the previous review to include additional CNTs and a meta-analysis is needed. Therefore, our purpose was to analyze reliability data for CNTs using meta-analysis and examine moderating factors that may influence reliability.   A systematic literature search (key terms: reliability, computerized neurocognitive test, concussion) of electronic databases (MEDLINE, PubMed, Google Scholar, and SPORTDiscus) was conducted to identify relevant studies.   Studies were included if they met all of the following criteria: used a test-retest design, involved at least 1 CNT, provided sufficient statistical data to allow for effect-size calculation, and were published in English.   Two independent reviewers investigated each article to assess inclusion criteria. Eighteen studies involving 2674 participants were retained. Intraclass correlation coefficients were extracted to calculate effect sizes and determine overall reliability. The Fisher Z transformation adjusted for sampling error associated with averaging correlations. Moderator analyses were conducted to evaluate the effects of the length of the test-retest interval, intraclass correlation coefficient model selection, participant demographics, and study design on reliability. Heterogeneity was evaluated using the Cochran Q statistic.   The proportion of acceptable outcomes was greatest for the Axon Sports CogState Test (75%) and lowest for the ImPACT (25%). Moderator analyses indicated that the type of intraclass correlation coefficient model used significantly influenced effect-size estimates, accounting for 17% of the variation in reliability.   The Axon Sports CogState Test, which

  17. Reliability analysis - systematic approach based on limited data

    International Nuclear Information System (INIS)

    Bourne, A.J.

    1975-11-01

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)

  18. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  19. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  20. Reliability analysis of offshore structures using OMA based fatigue stresses

    DEFF Research Database (Denmark)

    Silva Nabuco, Bruna; Aissani, Amina; Glindtvad Tarpø, Marius

    2017-01-01

    focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known...... points of the structure, the stress history can be calculated in any arbitrary point of the structure. The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue...... stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies....

  1. Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2016-01-01

    As infrastructure systems evolve, their design, maintenance, and optimal performance require mature tools from system reliability theory, as well as principles to handle emerging system features, such as controllability. This paper conducts a comparative study of the connectivity reliability (CR) and topological controllability (TC) of infrastructure systems in terms of three aspects: topology, robustness, and node importance. Taking eight city-level power transmission networks and thousands of artificial networks as examples, this paper reveals that a dense and homogeneous network topology is better to satisfy CR and TC requirements, than more common sparse and heterogeneous networks when node attributes are generic. It is observed that the average degree's impact on CR is more significant than on TC, while degree heterogeneity is more significant on TC. When node attributes are accounted for, for generators the reliability-based node importance measure may underestimate some important nodes in terms of TC, and vice versa—an issue not observed for substation nodes. The findings in this paper suggest a potential new direction to enhance reliability-based design by integrating it with emerging controllability-based measures relevant in the future as infrastructure networks increase reliance on information systems. - Highlights: • Compares connectivity reliability (CR) and topological controllability (TC) metrics. • Develops a controllability index and a controllability-based node importance metric. • CR is more sensitive to degree while TC is more sensitive to degree heterogeneity. • CR-based importance measures match TC-based measures for substation nodes. • CR- and TC-based measures are complementary to identify important generator nodes.

  2. Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.

    Science.gov (United States)

    1981-09-01

    overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.

  3. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2013-01-01

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  4. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  5. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  6. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  7. Interactive reliability analysis project. FY 80 progress report

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.

    1981-03-01

    This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system

  8. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  9. 78 FR 45447 - Revisions to Modeling, Data, and Analysis Reliability Standard

    Science.gov (United States)

    2013-07-29

    ...; Order No. 782] Revisions to Modeling, Data, and Analysis Reliability Standard AGENCY: Federal Energy... Analysis (MOD) Reliability Standard MOD- 028-2, submitted to the Commission for approval by the North... Organization. The Commission finds that the proposed Reliability Standard represents an improvement over the...

  10. State of the art report on aging reliability analysis

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon; Han, Sang Hoon; Ha, Jae Joo

    2002-03-01

    The goal of this report is to describe the state of the art on aging analysis methods to calculate the effects of component aging quantitatively. In this report, we described some aging analysis methods which calculate the increase of Core Damage Frequency (CDF) due to aging by including the influence of aging into PSA. We also described several research topics required for aging analysis for components of domestic NPPs. We have described a statistical model and reliability physics model which calculate the effect of aging quantitatively by using PSA method. It is expected that the practical use of the reliability-physics model will be increased though the process with the reliability-physics model is more complicated than statistical model

  11. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  12. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G.; Balan, I. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safetly, Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  13. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Balan, I.; Ionescu-Bujor, M.

    2008-01-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  14. A reliability simulation language for reliability analysis

    International Nuclear Information System (INIS)

    Deans, N.D.; Miller, A.J.; Mann, D.P.

    1986-01-01

    The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)

  15. Comparative measurement of collagen bundle orientation by Fourier analysis and semiquantitative evaluation: reliability and agreement in Masson's trichrome, Picrosirius red and confocal microscopy techniques.

    Science.gov (United States)

    Marcos-Garcés, V; Harvat, M; Molina Aguilar, P; Ferrández Izquierdo, A; Ruiz-Saurí, A

    2017-08-01

    Measurement of collagen bundle orientation in histopathological samples is a widely used and useful technique in many research and clinical scenarios. Fourier analysis is the preferred method for performing this measurement, but the most appropriate staining and microscopy technique remains unclear. Some authors advocate the use of Haematoxylin-Eosin (H&E) and confocal microscopy, but there are no studies comparing this technique with other classical collagen stainings. In our study, 46 human skin samples were collected, processed for histological analysis and stained with Masson's trichrome, Picrosirius red and H&E. Five microphotographs of the reticular dermis were taken with a 200× magnification with light microscopy, polarized microscopy and confocal microscopy, respectively. Two independent observers measured collagen bundle orientation with semiautomated Fourier analysis with the Image-Pro Plus 7.0 software and three independent observers performed a semiquantitative evaluation of the same parameter. The average orientation for each case was calculated with the values of the five pictures. We analyzed the interrater reliability, the consistency between Fourier analysis and average semiquantitative evaluation and the consistency between measurements in Masson's trichrome, Picrosirius red and H&E-confocal. Statistical analysis for reliability and agreement was performed with the SPSS 22.0 software and consisted of intraclass correlation coefficient (ICC), Bland-Altman plots and limits of agreement and coefficient of variation. Interrater reliability was almost perfect (ICC > 0.8) with all three histological and microscopy techniques and always superior in Fourier analysis than in average semiquantitative evaluation. Measurements were consistent between Fourier analysis by one observer and average semiquantitative evaluation by three observers, with an almost perfect agreement with Masson's trichrome and Picrosirius red techniques (ICC > 0.8) and a strong

  16. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  17. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  18. Assessment of modern methods of human factor reliability analysis in PSA studies

    International Nuclear Information System (INIS)

    Holy, J.

    2001-12-01

    The report is structured as follows: Classical terms and objects (Probabilistic safety assessment as a framework for human reliability assessment; Human failure within the PSA model; Basic types of operator failure modelled in a PSA study and analyzed by HRA methods; Qualitative analysis of human reliability; Quantitative analysis of human reliability used; Process of analysis of nuclear reactor operator reliability in a PSA study); New terms and objects (Analysis of dependences; Errors of omission; Errors of commission; Error forcing context); and Overview and brief assessment of human reliability analysis (Basic characteristics of the methods; Assets and drawbacks of the use of each of HRA method; History and prospects of the use of the methods). (P.A.)

  19. Reliability Analysis of Sealing Structure of Electromechanical System Based on Kriging Model

    Science.gov (United States)

    Zhang, F.; Wang, Y. M.; Chen, R. W.; Deng, W. W.; Gao, Y.

    2018-05-01

    The sealing performance of aircraft electromechanical system has a great influence on flight safety, and the reliability of its typical seal structure is analyzed by researcher. In this paper, we regard reciprocating seal structure as a research object to study structural reliability. Having been based on the finite element numerical simulation method, the contact stress between the rubber sealing ring and the cylinder wall is calculated, and the relationship between the contact stress and the pressure of the hydraulic medium is built, and the friction force on different working conditions are compared. Through the co-simulation, the adaptive Kriging model obtained by EFF learning mechanism is used to describe the failure probability of the seal ring, so as to evaluate the reliability of the sealing structure. This article proposes a new idea of numerical evaluation for the reliability analysis of sealing structure, and also provides a theoretical basis for the optimal design of sealing structure.

  20. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  1. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  2. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  3. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  4. Sensitivity analysis in a structural reliability context

    International Nuclear Information System (INIS)

    Lemaitre, Paul

    2014-01-01

    This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)

  5. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  6. Analyzing the reliability of shuffle-exchange networks using reliability block diagrams

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2014-01-01

    Supercomputers and multi-processor systems are comprised of thousands of processors that need to communicate in an efficient way. One reasonable solution would be the utilization of multistage interconnection networks (MINs), where the challenge is to analyze the reliability of such networks. One of the methods to increase the reliability and fault-tolerance of the MINs is use of various switching stages. Therefore, recently, the reliability of one of the most common MINs namely shuffle-exchange network (SEN) has been evaluated through the investigation on the impact of increasing the number of switching stage. Also, it is concluded that the reliability of SEN with one additional stage (SEN+) is better than SEN or SEN with two additional stages (SEN+2), even so, the reliability of SEN is better compared to SEN with two additional stages (SEN+2). Here we re-evaluate the reliability of these networks where the results of the terminal, broadcast, and network reliability analysis demonstrate that SEN+ and SEN+2 continuously outperform SEN and are very alike in terms of reliability. - Highlights: • The impact of increasing the number of stages on reliability of MINs is investigated. • The RBD method as an accurate method is used for the reliability analysis of MINs. • Complex series–parallel RBDs are used to determine the reliability of the MINs. • All measures of the reliability (i.e. terminal, broadcast, and network reliability) are analyzed. • All reliability equations will be calculated for different size N×N

  7. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    1984-10-01

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  8. Representative Sampling for reliable data analysis

    DEFF Research Database (Denmark)

    Petersen, Lars; Esbensen, Kim Harry

    2005-01-01

    regime in order to secure the necessary reliability of: samples (which must be representative, from the primary sampling onwards), analysis (which will not mean anything outside the miniscule analytical volume without representativity ruling all mass reductions involved, also in the laboratory) and data...

  9. A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2015-01-01

    Dynamic reliability measures reliability of an engineered system considering time-variant operation condition and component deterioration. Due to high computational costs, conducting dynamic reliability analysis at an early system design stage remains challenging. This paper presents a confidence-based meta-modeling approach, referred to as double-loop adaptive sampling (DLAS), for efficient sensitivity-free dynamic reliability analysis. The DLAS builds a Gaussian process (GP) model sequentially to approximate extreme system responses over time, so that Monte Carlo simulation (MCS) can be employed directly to estimate dynamic reliability. A generic confidence measure is developed to evaluate the accuracy of dynamic reliability estimation while using the MCS approach based on developed GP models. A double-loop adaptive sampling scheme is developed to efficiently update the GP model in a sequential manner, by considering system input variables and time concurrently in two sampling loops. The model updating process using the developed sampling scheme can be terminated once the user defined confidence target is satisfied. The developed DLAS approach eliminates computationally expensive sensitivity analysis process, thus substantially improves the efficiency of dynamic reliability analysis. Three case studies are used to demonstrate the efficacy of DLAS for dynamic reliability analysis. - Highlights: • Developed a novel adaptive sampling approach for dynamic reliability analysis. • POD Developed a new metric to quantify the accuracy of dynamic reliability estimation. • Developed a new sequential sampling scheme to efficiently update surrogate models. • Three case studies were used to demonstrate the efficacy of the new approach. • Case study results showed substantially enhanced efficiency with high accuracy

  10. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  11. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  12. A Review: Passive System Reliability Analysis – Accomplishments and Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun Kumar, E-mail: arunths@barc.gov.in [Reactor Engineering Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India); Chandrakar, Amit [Homi Bhabha National Institute, Mumbai (India); Vinod, Gopika [Reactor Safety Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India)

    2014-10-10

    Reliability assessment of passive safety systems is one of the important issues, since safety of advanced nuclear reactors rely on several passive features. In this context, a few methodologies such as reliability evaluation of passive safety system (REPAS), reliability methods for passive safety functions (RMPS), and analysis of passive systems reliability (APSRA) have been developed in the past. These methodologies have been used to assess reliability of various passive safety systems. While these methodologies have certain features in common, but they differ in considering certain issues; for example, treatment of model uncertainties, deviation of geometric, and process parameters from their nominal values. This paper presents the state of the art on passive system reliability assessment methodologies, the accomplishments, and remaining issues. In this review, three critical issues pertaining to passive systems performance and reliability have been identified. The first issue is applicability of best estimate codes and model uncertainty. The best estimate codes based phenomenological simulations of natural convection passive systems could have significant amount of uncertainties, these uncertainties must be incorporated in appropriate manner in the performance and reliability analysis of such systems. The second issue is the treatment of dynamic failure characteristics of components of passive systems. REPAS, RMPS, and APSRA methodologies do not consider dynamic failures of components or process, which may have strong influence on the failure of passive systems. The influence of dynamic failure characteristics of components on system failure probability is presented with the help of a dynamic reliability methodology based on Monte Carlo simulation. The analysis of a benchmark problem of Hold-up tank shows the error in failure probability estimation by not considering the dynamism of components. It is thus suggested that dynamic reliability methodologies must be

  13. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  14. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  15. Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems

    International Nuclear Information System (INIS)

    Johansson, Jonas; Hassel, Henrik; Zio, Enrico

    2013-01-01

    Society depends on services provided by critical infrastructures, and hence it is important that they are reliable and robust. Two main approaches for gaining knowledge required for designing and improving critical infrastructures are reliability analysis and vulnerability analysis. The former analyses the ability of the system to perform its intended function; the latter analyses its inability to withstand strains and the effects of the consequent failures. The two approaches have similarities but also some differences with respect to what type of information they generate about the system. In this view, the main purpose of this paper is to discuss and contrast these approaches. To strengthen the discussion and exemplify its findings, a Monte Carlo-based reliability analysis and a vulnerability analysis are considered in their application to a relatively simple, but representative, system the IEEE RTS96 electric power test system. The exemplification reveals that reliability analysis provides a good picture of the system likely behaviour, but fails to capture a large portion of the high consequence scenarios, which are instead captured in the vulnerability analysis. Although these scenarios might be estimated to have small probabilities of occurrence, they should be identified, considered and treated cautiously, as probabilistic analyses should not be the only input to decision-making for the design and protection of critical infrastructures. The general conclusion that can be drawn from the findings of the example is that vulnerability analysis should be used to complement reliability studies, as well as other forms of probabilistic risk analysis. Measures should be sought for reducing both the vulnerability, i.e. improving the system ability to withstand strains and stresses, and the reliability, i.e. improving the likely behaviour

  16. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Kumar, Sachin; Mishra, Vivek; Joshi, N.S.; Varde, P.V.

    2014-01-01

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  17. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  18. ANALYSIS OF RELIABILITY OF RESERVED AUTOMATIC CONTROL SYSTEMS OF INDUSTRIAL POWER PROCESSES

    Directory of Open Access Journals (Sweden)

    V. A. Anishchenko

    2014-01-01

    Full Text Available This paper describes the comparative analysis of the main structural schemes for reserved automatic control and regulation devices of important objects of power supply with increased reliability requirements. There were analyzed schemes of passive and active doubling with control device, passive and active tripling, combined redundancy and majority redundancy according to schemes: “two from three” and “three from five”. On the results of calculations fulfilled there was made comparison of these schemes for ideal devices of built-in control and ideal majority elements. Scales of preferences of systems according to criterion of average time maximum and average probability of no-failure operation were built. These scales have variable character, depending on intervals in which there is a parameter obtained by multiplication of failure rate and time. The sequence of systems’ preferences is changing and is depending on each system failures and in moments of curves crossing of average probability of no-failure operation of systems. Analysis of calculation results showed the advantages of tripling systems and combined redundancy in reliability and this is achieved by a great amount of expenses for these systems creation. Under definite conditions the reliability of system of passive tripling is higher compared to system of active doubling. The majority schemes allow determining not only the full but also single (metrological failures. Boundary value of unreliability of built-in control device is determined, and this allows making a perfect choice between systems of active and passive redundancy.

  19. The development of a reliable amateur boxing performance analysis template.

    Science.gov (United States)

    Thomson, Edward; Lamb, Kevin; Nicholas, Ceri

    2013-01-01

    The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.

  20. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  1. Reliability Worth Analysis of Distribution Systems Using Cascade Correlation Neural Networks

    DEFF Research Database (Denmark)

    Heidari, Alireza; Agelidis, Vassilios; Pou, Josep

    2018-01-01

    Reliability worth analysis is of great importance in the area of distribution network planning and operation. The reliability worth's precision can be affected greatly by the customer interruption cost model used. The choice of the cost models can change system and load point reliability indices....... In this study, a cascade correlation neural network is adopted to further develop two cost models comprising a probabilistic distribution model and an average or aggregate model. A contingency-based analytical technique is adopted to conduct the reliability worth analysis. Furthermore, the possible effects...

  2. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  3. Development of Markov model of emergency diesel generator for dynamic reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young Ho; Choi, Sun Yeong; Yang, Joon Eon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    The EDG (Emergency Diesal Generator) of nuclear power plant is one of the most important equipments in mitigating accidents. The FT (Fault Tree) method is widely used to assess the reliability of safety systems like an EDG in nuclear power plant. This method, however, has limitations in modeling dynamic features of safety systems exactly. We, hence, have developed a Markov model to represent the stochastic process of dynamic systems whose states change as time moves on. The Markov model enables us to develop a dynamic reliability model of EDG. This model can represent all possible states of EDG comparing to the FRANTIC code developed by U.S. NRC for the reliability analysis of standby systems. to access the regulation policy for test interval, we performed two simulations based on the generic data and plant specific data of YGN 3, respectively by using the developed model. We also estimate the effects of various repair rates and the fractions of starting failures by demand shock to the reliability of EDG. And finally, Aging effect is analyzed. (author). 23 refs., 19 figs., 9 tabs.

  4. A new approach for reliability analysis with time-variant performance characteristics

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2013-01-01

    Reliability represents safety level in industry practice and may variant due to time-variant operation condition and components deterioration throughout a product life-cycle. Thus, the capability to perform time-variant reliability analysis is of vital importance in practical engineering applications. This paper presents a new approach, referred to as nested extreme response surface (NERS), that can efficiently tackle time dependency issue in time-variant reliability analysis and enable to solve such problem by easily integrating with advanced time-independent tools. The key of the NERS approach is to build a nested response surface of time corresponding to the extreme value of the limit state function by employing Kriging model. To obtain the data for the Kriging model, the efficient global optimization technique is integrated with the NERS to extract the extreme time responses of the limit state function for any given system input. An adaptive response prediction and model maturation mechanism is developed based on mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-variant reliability analysis can be converted into the time-independent reliability analysis and existing advanced reliability analysis methods can be used. Three case studies are used to demonstrate the efficiency and accuracy of NERS approach

  5. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  6. Reliability analysis and component functional allocations for the ESF multi-loop controller design

    International Nuclear Information System (INIS)

    Hur, Seop; Kim, D.H.; Choi, J.K.; Park, J.C.; Seong, S.H.; Lee, D.Y.

    2006-01-01

    This paper deals with the reliability analysis and component functional allocations to ensure the enhanced system reliability and availability. In the Engineered Safety Features, functionally dependent components are controlled by a multi-loop controller. The system reliability of the Engineered Safety Features-Component Control System, especially, the multi-loop controller which is changed comparing to the conventional controllers is an important factor for the Probability Safety Assessment in the nuclear field. To evaluate the multi-loop controller's failure rate of the k-out-of-m redundant system, the binomial process is used. In addition, the component functional allocation is performed to tolerate a single multi-loop controller failure without the loss of vital operation within the constraints of the piping and component configuration, and ensure that mechanically redundant components remain functional. (author)

  7. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.

    2003-04-01

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  8. Reliability, Validity, Comparability and Practical Utility of Cybercrime-Related Data, Metrics, and Information

    Directory of Open Access Journals (Sweden)

    Nir Kshetri

    2013-02-01

    Full Text Available With an increasing pervasiveness, prevalence and severity of cybercrimes, various metrics, measures and statistics have been developed and used to measure various aspects of this phenomenon. Cybercrime-related data, metrics, and information, however, pose important and difficult dilemmas regarding the issues of reliability, validity, comparability and practical utility. While many of the issues of the cybercrime economy are similar to other underground and underworld industries, this economy also has various unique aspects. For one thing, this industry also suffers from a problem partly rooted in the incredibly broad definition of the term “cybercrime”. This article seeks to provide insights and analysis into this phenomenon, which is expected to advance our understanding into cybercrime-related information.

  9. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  10. Reliability analysis of safety systems of nuclear power plant and utility experience with reliability safeguarding of systems during specified normal operation

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1989-01-01

    The paper gives an outline of the methods applied for reliability analysis of safety systems in nuclear power plant. The main tasks are to check the system design for detection of weak points, and to find possibilities of optimizing the strategies for inspection, inspection intervals, maintenance periods. Reliability safeguarding measures include the determination and verification of the broundary conditions of the analysis with regard to the reliability parameters and maintenance parameters used in the analysis, and the analysis of data feedback reflecting the plant response during operation. (orig.) [de

  11. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  12. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  13. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  14. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  15. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  16. Reliability analysis for thermal cutting method based non-explosive separation device

    International Nuclear Information System (INIS)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu

    2016-01-01

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils

  17. Reliability analysis for thermal cutting method based non-explosive separation device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu [Korea Aerospace University, Goyang (Korea, Republic of)

    2016-12-15

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils.

  18. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  19. Validity and reliability of acoustic analysis of respiratory sounds in infants

    Science.gov (United States)

    Elphick, H; Lancaster, G; Solis, A; Majumdar, A; Gupta, R; Smyth, R

    2004-01-01

    Objective: To investigate the validity and reliability of computerised acoustic analysis in the detection of abnormal respiratory noises in infants. Methods: Blinded, prospective comparison of acoustic analysis with stethoscope examination. Validity and reliability of acoustic analysis were assessed by calculating the degree of observer agreement using the κ statistic with 95% confidence intervals (CI). Results: 102 infants under 18 months were recruited. Convergent validity for agreement between stethoscope examination and acoustic analysis was poor for wheeze (κ = 0.07 (95% CI, –0.13 to 0.26)) and rattles (κ = 0.11 (–0.05 to 0.27)) and fair for crackles (κ = 0.36 (0.18 to 0.54)). Both the stethoscope and acoustic analysis distinguished well between sounds (discriminant validity). Agreement between observers for the presence of wheeze was poor for both stethoscope examination and acoustic analysis. Agreement for rattles was moderate for the stethoscope but poor for acoustic analysis. Agreement for crackles was moderate using both techniques. Within-observer reliability for all sounds using acoustic analysis was moderate to good. Conclusions: The stethoscope is unreliable for assessing respiratory sounds in infants. This has important implications for its use as a diagnostic tool for lung disorders in infants, and confirms that it cannot be used as a gold standard. Because of the unreliability of the stethoscope, the validity of acoustic analysis could not be demonstrated, although it could discriminate between sounds well and showed good within-observer reliability. For acoustic analysis, targeted training and the development of computerised pattern recognition systems may improve reliability so that it can be used in clinical practice. PMID:15499065

  20. Comparing the Psychometric Properties of Two Physical Activity Self-Efficacy Instruments in Urban, Adolescent Girls: Validity, Measurement Invariance, and Reliability

    Science.gov (United States)

    Voskuil, Vicki R.; Pierce, Steven J.; Robbins, Lorraine B.

    2017-01-01

    Aims: This study compared the psychometric properties of two self-efficacy instruments related to physical activity. Factorial validity, cross-group and longitudinal invariance, and composite reliability were examined. Methods: Secondary analysis was conducted on data from a group randomized controlled trial investigating the effect of a 17-week intervention on increasing moderate to vigorous physical activity among 5th–8th grade girls (N = 1,012). Participants completed a 6-item Physical Activity Self-Efficacy Scale (PASE) and a 7-item Self-Efficacy for Exercise Behaviors Scale (SEEB) at baseline and post-intervention. Confirmatory factor analyses for intervention and control groups were conducted with Mplus Version 7.4 using robust weighted least squares estimation. Model fit was evaluated with the chi-square index, comparative fit index, and root mean square error of approximation. Composite reliability for latent factors with ordinal indicators was computed from Mplus output using SAS 9.3. Results: Mean age of the girls was 12.2 years (SD = 0.96). One-third of the girls were obese. Girls represented a diverse sample with over 50% indicating black race and an additional 19% identifying as mixed or other race. Both instruments demonstrated configural invariance for simultaneous analysis of cross-group and longitudinal invariance based on alternative fit indices. However, simultaneous metric invariance was not met for the PASE or the SEEB instruments. Partial metric invariance for the simultaneous analysis was achieved for the PASE with one factor loading identified as non-invariant. Partial metric invariance was not met for the SEEB. Longitudinal scalar invariance was achieved for both instruments in the control group but not the intervention group. Composite reliability for the PASE ranged from 0.772 to 0.842. Reliability for the SEEB ranged from 0.719 to 0.800 indicating higher reliability for the PASE. Reliability was more stable over time in the control

  1. Creation and Reliability Analysis of Vehicle Dynamic Weighing Model

    Directory of Open Access Journals (Sweden)

    Zhi-Ling XU

    2014-08-01

    Full Text Available In this paper, it is modeled by using ADAMS to portable axle load meter of dynamic weighing system, controlling a single variable simulation weighing process, getting the simulation weighing data under the different speed and weight; simultaneously using portable weighing system with the same parameters to achieve the actual measurement, comparative analysis the simulation results under the same conditions, at 30 km/h or less, the simulation value and the measured value do not differ by more than 5 %, it is not only to verify the reliability of dynamic weighing model, but also to create possible for improving algorithm study efficiency by using dynamic weighing model simulation.

  2. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  3. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  4. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)

    2008-11-15

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

  5. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    International Nuclear Information System (INIS)

    Phuc Do Van; Barros, Anne; Berenguer, Christophe

    2008-01-01

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies

  6. A study of operational and testing reliability in software reliability analysis

    International Nuclear Information System (INIS)

    Yang, B.; Xie, M.

    2000-01-01

    Software reliability is an important aspect of any complex equipment today. Software reliability is usually estimated based on reliability models such as nonhomogeneous Poisson process (NHPP) models. Software systems are improving in testing phase, while it normally does not change in operational phase. Depending on whether the reliability is to be predicted for testing phase or operation phase, different measure should be used. In this paper, two different reliability concepts, namely, the operational reliability and the testing reliability, are clarified and studied in detail. These concepts have been mixed up or even misused in some existing literature. Using different reliability concept will lead to different reliability values obtained and it will further lead to different reliability-based decisions made. The difference of the estimated reliabilities is studied and the effect on the optimal release time is investigated

  7. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  8. Mapping Green Spaces in Bishkek—How Reliable can Spatial Analysis Be?

    Directory of Open Access Journals (Sweden)

    Peter Hofmann

    2011-05-01

    Full Text Available Within urban areas, green spaces play a critically important role in the quality of life. They have remarkable impact on the local microclimate and the regional climate of the city. Quantifying the ‘greenness’ of urban areas allows comparing urban areas at several levels, as well as monitoring the evolution of green spaces in urban areas, thus serving as a tool for urban and developmental planning. Different categories of vegetation have different impacts on recreation potential and microclimate, as well as on the individual perception of green spaces. However, when quantifying the ‘greenness’ of urban areas the reliability of the underlying information is important in order to qualify analysis results. The reliability of geo-information derived from remote sensing data is usually assessed by ground truth validation or by comparison with other reference data. When applying methods of object based image analysis (OBIA and fuzzy classification, the degrees of fuzzy membership per object in general describe to what degree an object fits (prototypical class descriptions. Thus, analyzing the fuzzy membership degrees can contribute to the estimation of reliability and stability of classification results, even when no reference data are available. This paper presents an object based method using fuzzy class assignments to outline and classify three different classes of vegetation from GeoEye imagery. The classification result, its reliability and stability are evaluated using the reference-free parameters Best Classification Result and Classification Stability as introduced by Benz et al. in 2004 and implemented in the software package eCognition (www.ecognition.com. To demonstrate the application potentials of results a scenario for quantifying urban ‘greenness’ is presented.

  9. Reliability analysis of the automatic control and power supply of reactor equipment

    International Nuclear Information System (INIS)

    Monori, Pal; Nagy, J.A.; Meszaros, Zoltan; Konkoly, Laszlo; Szabo, Antal; Nagy, Laszlo

    1988-01-01

    Based on reliability analysis the shortcomings of nuclear facilities are discovered. Fault tree types constructed for the technology of automatic control and for power supply serve as input data of the ORCHARD 2 computer code. In order to charaterize the reliability of the system, availability, failure rates and time intervals between failures are calculated. The results of the reliability analysis of the feedwater system of the Paks Nuclear Power Plant showed that the system consisted of elements of similar reliabilities. (V.N.) 8 figs.; 3 tabs

  10. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  11. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  12. Structural reliability analysis applied to pipeline risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, M. [GL Industrial Services, Loughborough (United Kingdom); Mendes, Renato F.; Donato, Guilherme V.P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Quantitative Risk Assessment (QRA) of pipelines requires two main components to be provided. These are models of the consequences that follow from some loss of containment incident, and models for the likelihood of such incidents occurring. This paper describes how PETROBRAS have used Structural Reliability Analysis for the second of these, to provide pipeline- and location-specific predictions of failure frequency for a number of pipeline assets. This paper presents an approach to estimating failure rates for liquid and gas pipelines, using Structural Reliability Analysis (SRA) to analyze the credible basic mechanisms of failure such as corrosion and mechanical damage. SRA is a probabilistic limit state method: for a given failure mechanism it quantifies the uncertainty in parameters to mathematical models of the load-resistance state of a structure and then evaluates the probability of load exceeding resistance. SRA can be used to benefit the pipeline risk management process by optimizing in-line inspection schedules, and as part of the design process for new construction in pipeline rights of way that already contain multiple lines. A case study is presented to show how the SRA approach has recently been used on PETROBRAS pipelines and the benefits obtained from it. (author)

  13. Suitability review of FMEA and reliability analysis for digital plant protection system and digital engineered safety features actuation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)

    2000-11-15

    Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the

  14. Test-retest reliability of computer-based video analysis of general movements in healthy term-born infants.

    Science.gov (United States)

    Valle, Susanne Collier; Støen, Ragnhild; Sæther, Rannei; Jensenius, Alexander Refsum; Adde, Lars

    2015-10-01

    A computer-based video analysis has recently been presented for quantitative assessment of general movements (GMs). This method's test-retest reliability, however, has not yet been evaluated. The aim of the current study was to evaluate the test-retest reliability of computer-based video analysis of GMs, and to explore the association between computer-based video analysis and the temporal organization of fidgety movements (FMs). Test-retest reliability study. 75 healthy, term-born infants were recorded twice the same day during the FMs period using a standardized video set-up. The computer-based movement variables "quantity of motion mean" (Qmean), "quantity of motion standard deviation" (QSD) and "centroid of motion standard deviation" (CSD) were analyzed, reflecting the amount of motion and the variability of the spatial center of motion of the infant, respectively. In addition, the association between the variable CSD and the temporal organization of FMs was explored. Intraclass correlation coefficients (ICC 1.1 and ICC 3.1) were calculated to assess test-retest reliability. The ICC values for the variables CSD, Qmean and QSD were 0.80, 0.80 and 0.86 for ICC (1.1), respectively; and 0.80, 0.86 and 0.90 for ICC (3.1), respectively. There were significantly lower CSD values in the recordings with continual FMs compared to the recordings with intermittent FMs (ptest-retest reliability of computer-based video analysis of GMs, and a significant association between our computer-based video analysis and the temporal organization of FMs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  16. Analysis of sodium valve reliability data at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF

  17. Reliability analysis of hydrologic containment of liquefied petroleum gas within unlined rock caverns.

    Science.gov (United States)

    Gao, X.; Yan, E. C.; Yeh, T. C. J.; Wang, Y.; Liang, Y.; Hao, Y.

    2017-12-01

    Notice that most of the underground liquefied petroleum gas (LPG) storage caverns are constructed in unlined rock caverns (URCs), where the variability of hydraulic properties (in particular, hydraulic conductivity) has significant impacts on hydrologic containment performance. However, it is practically impossible to characterize the spatial distribution of these properties in detail at the site of URCs. This dilemma forces us to cope with uncertainty in our evaluations of gas containment. As a consequence, the uncertainty-based analysis is deemed more appropriate than the traditional deterministic analysis. The objectives of this paper are 1) to introduce a numerical first order method to calculate the gas containment reliability within a heterogeneous, two-dimensional unlined rock caverns, and 2) to suggest a strategy for improving the gas containment reliability. In order to achieve these goals, we first introduced the stochastic continuum representation of saturated hydraulic conductivity (Ks) of fractured rock and analyzed the spatial variability of Ks at a field site. We then conducted deterministic simulations to demonstrate the importance of heterogeneity of Ks in the analysis of gas tightness performance of URCs. Considering the uncertainty of the heterogeneity in the real world situations, we subsequently developed a numerical first order method (NFOM) to determine the gas tightness reliability at crucial locations of URCs. Using the NFOM, the effect of spatial variability of Ks on gas tightness reliability was investigated. Results show that as variance or spatial structure anisotropy of Ks increases, most of the gas tightness reliability at crucial locations reduces. Meanwhile, we compare the results of NFOM with those of Monte Carlo simulation, and we find the accuracy of NFOM is mainly affected by the magnitude of the variance of Ks. At last, for improving gas containment reliability at crucial locations at this study site, we suggest that vertical

  18. Interrater reliability of videotaped observational gait-analysis assessments.

    Science.gov (United States)

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  19. The relationship between cost estimates reliability and BIM adoption: SEM analysis

    Science.gov (United States)

    Ismail, N. A. A.; Idris, N. H.; Ramli, H.; Rooshdi, R. R. Raja Muhammad; Sahamir, S. R.

    2018-02-01

    This paper presents the usage of Structural Equation Modelling (SEM) approach in analysing the effects of Building Information Modelling (BIM) technology adoption in improving the reliability of cost estimates. Based on the questionnaire survey results, SEM analysis using SPSS-AMOS application examined the relationships between BIM-improved information and cost estimates reliability factors, leading to BIM technology adoption. Six hypotheses were established prior to SEM analysis employing two types of SEM models, namely the Confirmatory Factor Analysis (CFA) model and full structural model. The SEM models were then validated through the assessment on their uni-dimensionality, validity, reliability, and fitness index, in line with the hypotheses tested. The final SEM model fit measures are: P-value=0.000, RMSEA=0.0790.90, TLI=0.956>0.90, NFI=0.935>0.90 and ChiSq/df=2.259; indicating that the overall index values achieved the required level of model fitness. The model supports all the hypotheses evaluated, confirming that all relationship exists amongst the constructs are positive and significant. Ultimately, the analysis verified that most of the respondents foresee better understanding of project input information through BIM visualization, its reliable database and coordinated data, in developing more reliable cost estimates. They also perceive to accelerate their cost estimating task through BIM adoption.

  20. A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability

    International Nuclear Information System (INIS)

    Wen, Zhixun; Pei, Haiqing; Liu, Hai; Yue, Zhufeng

    2016-01-01

    The sequential Kriging reliability analysis (SKRA) method has been developed in recent years for nonlinear implicit response functions which are expensive to evaluate. This type of method includes EGRA: the efficient reliability analysis method, and AK-MCS: the active learning reliability method combining Kriging model and Monte Carlo simulation. The purpose of this paper is to improve SKRA by adaptive sampling regions and parallelizability. The adaptive sampling regions strategy is proposed to avoid selecting samples in regions where the probability density is so low that the accuracy of these regions has negligible effects on the results. The size of the sampling regions is adapted according to the failure probability calculated by last iteration. Two parallel strategies are introduced and compared, aimed at selecting multiple sample points at a time. The improvement is verified through several troublesome examples. - Highlights: • The ISKRA method improves the efficiency of SKRA. • Adaptive sampling regions strategy reduces the number of needed samples. • The two parallel strategies reduce the number of needed iterations. • The accuracy of the optimal value impacts the number of samples significantly.

  1. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.

    2007-01-01

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional

  2. A taxonomy for human reliability analysis

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.

    1984-01-01

    A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized

  3. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  4. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  5. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  6. Comparing the Reliability of Regular Topologies on a Backbone Network. A Case Study

    DEFF Research Database (Denmark)

    Cecilio, Sergio Labeage; Gutierrez Lopez, Jose Manuel; Riaz, M. Tahir

    2009-01-01

    The aim of this paper is to compare the reliability of regular topologies on a backbone network. The study is focused on a large-scale fiberoptic network. Different regular topological solutions as single ring, double ring or 4-Regular grid are applied to the case study, and compared in terms...

  7. Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis

    International Nuclear Information System (INIS)

    Bedford, Tim; Bayley, Clare; Revie, Matthew

    2013-01-01

    This paper reports a sensitivity analysis of the Cognitive Reliability and Error Analysis Method for Human Reliability Analysis. We consider three different aspects: the difference between the outputs of the Basic and Extended methods, on the same HRA scenario; the variability in outputs through the choices made for common performance conditions (CPCs); and the variability in outputs through the assignment of choices for cognitive function failures (CFFs). We discuss the problem of interpreting categories when applying the method, compare its quantitative structure to that of first generation methods and discuss also how dependence is modelled with the approach. We show that the control mode intervals used in the Basic method are too narrow to be consistent with the Extended method. This motivates a new screening method that gives improved accuracy with respect to the Basic method, in the sense that (on average) halves the uncertainty associated with the Basic method. We make some observations on the design of a screening method that are generally applicable in Risk Analysis. Finally, we propose a new method of combining CPC weights with nominal probabilities so that the calculated probabilities are always in range (i.e. between 0 and 1), while satisfying sensible properties that are consistent with the overall CREAM method

  8. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  9. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  10. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  11. Reliability Analysis Study of Digital Reactor Protection System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Guo, Xiao Ming; Liu, Tao; Tong, Jie Juan; Zhao, Jun

    2011-01-01

    The Digital I and C systems are believed to improve a plants safety and reliability generally. The reliability analysis of digital I and C system has become one research hotspot. Traditional fault tree method is one of means to quantify the digital I and C system reliability. Review of advanced nuclear power plant AP1000 digital protection system evaluation makes clear both the fault tree application and analysis process to the digital system reliability. One typical digital protection system special for advanced reactor has been developed, which reliability evaluation is necessary for design demonstration. The typical digital protection system construction is introduced in the paper, and the process of FMEA and fault tree application to the digital protection system reliability evaluation are described. Reliability data and bypass logic modeling are two points giving special attention in the paper. Because the factors about time sequence and feedback not exist in reactor protection system obviously, the dynamic feature of digital system is not discussed

  12. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  13. Exploratory factor analysis and reliability analysis with missing data: A simple method for SPSS users

    Directory of Open Access Journals (Sweden)

    Bruce Weaver

    2014-09-01

    Full Text Available Missing data is a frequent problem for researchers conducting exploratory factor analysis (EFA or reliability analysis. The SPSS FACTOR procedure allows users to select listwise deletion, pairwise deletion or mean substitution as a method for dealing with missing data. The shortcomings of these methods are well-known. Graham (2009 argues that a much better way to deal with missing data in this context is to use a matrix of expectation maximization (EM covariances(or correlations as input for the analysis. SPSS users who have the Missing Values Analysis add-on module can obtain vectors ofEM means and standard deviations plus EM correlation and covariance matrices via the MVA procedure. But unfortunately, MVA has no /MATRIX subcommand, and therefore cannot write the EM correlations directly to a matrix dataset of the type needed as input to the FACTOR and RELIABILITY procedures. We describe two macros that (in conjunction with an intervening MVA command carry out the data management steps needed to create two matrix datasets, one containing EM correlations and the other EM covariances. Either of those matrix datasets can then be used asinput to the FACTOR procedure, and the EM correlations can also be used as input to RELIABILITY. We provide an example that illustrates the use of the two macros to generate the matrix datasets and how to use those datasets as input to the FACTOR and RELIABILITY procedures. We hope that this simple method for handling missing data will prove useful to both students andresearchers who are conducting EFA or reliability analysis.

  14. Reliability analysis of the solar array based on Fault Tree Analysis

    International Nuclear Information System (INIS)

    Wu Jianing; Yan Shaoze

    2011-01-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  15. Reliability analysis of the solar array based on Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jianing; Yan Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University,Beijing 100084 (China)

    2011-07-19

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  16. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    Science.gov (United States)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  17. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  18. A comparative study on the reliability criteria determination

    International Nuclear Information System (INIS)

    Jerng, Dong Wook; Ju, Tae Young

    2009-01-01

    There are two methods to determine the reliability criteria for maintenance effectiveness monitoring; using the failure probability, and the importance from PRA. Comparisons of the results from these two methods provides an insight on the relevancy of setting the reliability criteria to improve the maintenance effectiveness. (author)

  19. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  20. Reliability analysis of maintenance operations for railway tracks

    International Nuclear Information System (INIS)

    Rhayma, N.; Bressolette, Ph.; Breul, P.; Fogli, M.; Saussine, G.

    2013-01-01

    Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis

  1. Distribution System Reliability Analysis for Smart Grid Applications

    Science.gov (United States)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  2. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  3. 1991 comparative analysis of tritium in water

    International Nuclear Information System (INIS)

    Krause, W.J.; Mundschenk, H.

    1992-06-01

    For environmental monitoring of radioactive materials, the competent authorities of the States and Federal Government of Germany continuously perform measurements and make their results accessible to the public in an appropriate way. In order to guarantee the comparability of measured values and a high degree of reliability of the applied methods, the authorities in charge of carrying out such tasks are obliged to take part in the comparative analyses (ring tests) organized by the central offices of the Federal Government. Therefore, the aim of this comparative analysis performed by order of the Federal Ministry of the Environment, Nature Protection and Reactor Safety consists mainly in providing the measuring offices in charge of monitoring waters, with samples with known tritium contents in order to get an overview of the accuracy of currently used processes; check the accuracy of the determinations performed, and, if necessary, detect and eliminate systematic errors; check, in particular by means of the samples T2 and T3, the calibration of the measuring devices and, if necessary, make corrections. To this effect, the comparative analysis fulfills the function of quality control of the processes used in environmental monitoring. (orig./BBR) [de

  4. Reliability analysis for new technology-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Charpentier, Dominique [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2011-02-15

    The reliability analysis of new technology-based transmitters has to deal with specific issues: various interactions between both material elements and functions, undefined behaviours under faulty conditions, several transmitted data, and little reliability feedback. To handle these particularities, a '3-step' model is proposed, based on goal tree-success tree (GTST) approaches to represent both the functional and material aspects, and includes the faults and failures as a third part for supporting reliability analyses. The behavioural aspects are provided by relationship matrices, also denoted master logic diagrams (MLD), with stochastic values which represent direct relationships between system elements. Relationship analyses are then proposed to assess the effect of any fault or failure on any material element or function. Taking these relationships into account, the probabilities of malfunction and failure modes are evaluated according to time. Furthermore, uncertainty analyses tend to show that even if the input data and system behaviour are not well known, these previous results can be obtained in a relatively precise way. An illustration is provided by a case study on an infrared gas transmitter. These properties make the proposed model and corresponding reliability analyses especially suitable for intelligent transmitters (or 'smart sensors').

  5. Construct validity and reliability of a checklist for volleyball serve analysis

    Directory of Open Access Journals (Sweden)

    Cicero Luciano Alves Costa

    2018-03-01

    Full Text Available This study aims to investigate the construct validity and reliability of the checklist for qualitative analysis of the overhand serve in Volleyball. Fifty-five male subjects aged 13-17 years participated in the study. The overhand serve was analyzed using the checklist proposed by Meira Junior (2003, which analyzes the pattern of serve movement in four phases: (I initial position, (II ball lifting, (III ball attacking, and (IV finalization. Construct validity was analyzed using confirmatory factorial analysis and reliability through the Cronbach’s alpha coefficient. The construct validity was supported by confirmatory factor analysis with the RMSEA results (0.037 [confidence interval 90% = 0.020-0.040], CFI (0.970 and TLI (0.950 indicating good fit of the model. In relation to reliability, Cronbach’s alpha coefficient was 0.661, being this value considered acceptable. Among the items on the checklist, ball lifting and attacking showed higher factor loadings, 0.69 and 0.99, respectively. In summary, the checklist for the qualitative analysis of the overhand serve of Meira Junior (2003 can be considered a valid and reliable instrument for use in research in the field of Sports Sciences.

  6. Reliability and accuracy of a video analysis protocol to assess core ability.

    Science.gov (United States)

    McDonald, Dawn A; Delgadillo, James Q; Fredericson, Michael; McConnell, Jennifer; Hodgins, Melissa; Besier, Thor F

    2011-03-01

    To develop and test a method to measure core ability in healthy athletes with 2-dimensional video analysis software (SiliconCOACH). Specific objectives were to: (1) develop a standardized exercise battery with progressions of increasing difficulty to evaluate areas of core ability in elite athletes; (2) develop an objective and quantitative grading rubric with the use of video analysis software; (3) assess the test-retest reliability of the exercise battery; (4) assess the interrater and intrarater reliability of the video analysis system; and (5) assess the accuracy of the assessment. Test-retest repeatability and accuracy. Testing was conducted in the Stanford Human Performance Laboratory, Stanford University, Stanford, CA. Nine female gymnasts currently training with the Stanford Varsity Women's Gymnastics Team participated in testing. Participants completed a test battery composed of planks, side planks, and leg bridges of increasing difficulty. Subjects completed two 20-minute testing sessions within a 4- to 10-day period. Two-dimensional sagittal-plane video was captured simultaneously with 3-dimensional motion capture. The main outcome measures were pelvic displacement and time that elapsed until failure occurred, as measured with SiliconCOACH video analysis software. Test-retest and interrater and intrarater reliability of the video analysis measures was assessed. Accuracy as compared with 3-dimensional motion capture also was assessed. Levels reached during the side planks and leg bridges had an excellent test-retest correlation (r(2) = 0.84, r(2) = 0.95). Pelvis displacements measured by examiner 1 and examiner 2 had an excellent correlation (r(2) = 0.86, intraclass correlation coefficient = 0.92). Pelvis displacements measured by examiner 1 during independent grading sessions had an excellent correlation (r(2) = 0.92). Pelvis displacements from the plank and from a set of combined plank and side plank exercises both had an excellent correlation with 3

  7. Reliability analysis of nuclear containment without metallic liners against jet aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, N.A.; Iqbal, M.A.; Abbas, H. E-mail: abbas_husain@hotmail.com; Paul, D.K

    2003-09-01

    The present study presents a methodology for detailed reliability analysis of nuclear containment without metallic liners against aircraft crash. For this purpose, a nonlinear limit state function has been derived using violation of tolerable crack width as failure criterion. This criterion has been considered as failure criterion because radioactive radiations may come out if size of crack becomes more than the tolerable crack width. The derived limit state uses the response of containment that has been obtained from a detailed dynamic analysis of nuclear containment under an impact of a large size Boeing jet aircraft. Using this response in conjunction with limit state function, the reliabilities and probabilities of failures are obtained at a number of vulnerable locations employing an efficient first-order reliability method (FORM). These values of reliability and probability of failure at various vulnerable locations are then used for the estimation of conditional and annual reliabilities of nuclear containment as a function of its location from the airport. To study the influence of the various random variables on containment reliability the sensitivity analysis has been performed. Some parametric studies have also been included to obtain the results of field and academic interest.

  8. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    Science.gov (United States)

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  9. Application of Fault Tree Analysis for Estimating Temperature Alarm Circuit Reliability

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.; El-Shanshoury, G.I.

    2011-01-01

    Fault Tree Analysis (FTA) is one of the most widely-used methods in system reliability analysis. It is a graphical technique that provides a systematic description of the combinations of possible occurrences in a system, which can result in an undesirable outcome. The presented paper deals with the application of FTA method in analyzing temperature alarm circuit. The criticality failure of this circuit comes from failing to alarm when temperature exceeds a certain limit. In order for a circuit to be safe, a detailed analysis of the faults causing circuit failure is performed by configuring fault tree diagram (qualitative analysis). Calculations of circuit quantitative reliability parameters such as Failure Rate (FR) and Mean Time between Failures (MTBF) are also done by using Relex 2009 computer program. Benefits of FTA are assessing system reliability or safety during operation, improving understanding of the system, and identifying root causes of equipment failures

  10. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  11. ERP Reliability Analysis (ERA) Toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials.

    Science.gov (United States)

    Clayson, Peter E; Miller, Gregory A

    2017-01-01

    Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. THE RELIABILITY ANALYSIS OF EXISTING REINFORCED CONCRETE PILES IN PERMAFROST REGIONS

    Directory of Open Access Journals (Sweden)

    Vladimir S. Utkin

    2017-06-01

    Full Text Available The article describes the general problem of safe operation of buildings and structures with the dynamics of permafrost in Russia and other countries. The global warming on Earth will lead to global disasters such as failures of buildings and structures. The main reason of these failures will be a reduction of bearing capacity and the reliability of foundations. It is necessary to organize the observations (monitoring for the process of reducing the bearing capacity of foundations to prevent such accidents and reduce negative consequences, to development of preventive measures and operational methods for the piles reliability analysis. The main load-bearing elements of the foundation are reinforced concrete piles and frozen ground. Reinforced concrete piles have a tendency to decrease the bearing capacity and reliability of the upper (aerial part and the part in the soil. The article discusses the problem of reliability analysis of existing reinforced concrete piles in upper part in permafrost regions by the reason of pile degradation in the contact zone of seasonal thawing and freezing soil. The evaluation of the probability of failure is important in itself, but also it important for the reliability of foundation: consisting of piles and frozen soil. Authors offers the methods for reliability analysis of upper part of reinforced concrete piles in the contact zone with seasonally thawed soil under different number of random variables (fuzzy variables in the design mathematical model of a limit state by the strength criterion.

  13. A comparative study on the reliability of co-authorship networks with emphases on edges and nodes

    Directory of Open Access Journals (Sweden)

    Sandra Cristina de Oliveira

    2016-06-01

    Full Text Available A scientific co-authorship network may be modeled by a graph G composed of k nodes and m edges. Researchers that make up this network may be interpreted as its nodes and the link between these agents (co-authored papers as its edges. Current work evaluated and compared the reliability measure of networks with two emphases: 1 On nodes (perfectly reliable edges and 2 On edges (perfectly reliable nodes. Specifically, the reliability of a fictitious co-authorship network at a given time t was analyzed taking into account, first, the reliability of nodes (researchers equal and different, and, second, the reliability of edges (co-authorship relations, equal and different. Additionally, centrality measures of nodes were obtained to identify situations where the insertion of an edge significantly increased the reliability of the network. Results showed that the reliability of the co-authorship network focusing on edges is more sensitive to changes in individual reliabilities than the reliability of the network focusing on nodes. Additionally, the use of centrality measures was viable to identify possible insertions of edges or co-authorship relations to increase the reliability of the network in the two approaches.

  14. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    Tayt-Sohn, L.C.; Oliveira, L.F.S. de.

    1984-01-01

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the Component Cooling System (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt

  15. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the component cooling system (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt

  16. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Pua, Yong-Hao; Clark, Ross A

    2015-05-01

    Traditional methods of assessing joint range of motion (ROM) involve specialized tools that may not be widely available to clinicians. This study assesses the reliability and validity of a custom Smartphone application for assessing hip joint range of motion. Intra-tester reliability with concurrent validity. Passive hip joint range of motion was recorded for seven different movements in 20 males on two separate occasions. Data from a Smartphone, bubble inclinometer and a three dimensional motion analysis (3DMA) system were collected simultaneously. Intraclass correlation coefficients (ICCs), coefficients of variation (CV) and standard error of measurement (SEM) were used to assess reliability. To assess validity of the Smartphone application and the bubble inclinometer against the three dimensional motion analysis system, intraclass correlation coefficients and fixed and proportional biases were used. The Smartphone demonstrated good to excellent reliability (ICCs>0.75) for four out of the seven movements, and moderate to good reliability for the remaining three movements (ICC=0.63-0.68). Additionally, the Smartphone application displayed comparable reliability to the bubble inclinometer. The Smartphone application displayed excellent validity when compared to the three dimensional motion analysis system for all movements (ICCs>0.88) except one, which displayed moderate to good validity (ICC=0.71). Smartphones are portable and widely available tools that are mostly reliable and valid for assessing passive hip range of motion, with potential for large-scale use when a bubble inclinometer is not available. However, caution must be taken in its implementation as some movement axes demonstrated only moderate reliability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. A study in the reliability analysis method for nuclear power plant structures (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Choi, Seong Cheol; Shin, Ho Sang; Yang, In Hwan; Kim, Yi Sung; Yu, Young; Kim, Se Hun [Seoul, Nationl Univ., Seoul (Korea, Republic of)

    1999-03-15

    Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service life. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established. The influence of design variables to reliability and the relation between the reliability and service life will be continued second year research.

  18. Reliability Analysis of Free Jet Scour Below Dams

    Directory of Open Access Journals (Sweden)

    Chuanqi Li

    2012-12-01

    Full Text Available Current formulas for calculating scour depth below of a free over fall are mostly deterministic in nature and do not adequately consider the uncertainties of various scouring parameters. A reliability-based assessment of scour, taking into account uncertainties of parameters and coefficients involved, should be performed. This paper studies the reliability of a dam foundation under the threat of scour. A model for calculating the reliability of scour and estimating the probability of failure of the dam foundation subjected to scour is presented. The Maximum Entropy Method is applied to construct the probability density function (PDF of the performance function subject to the moment constraints. Monte Carlo simulation (MCS is applied for uncertainty analysis. An example is considered, and there liability of its scour is computed, the influence of various random variables on the probability failure is analyzed.

  19. Reliability model analysis and primary experimental evaluation of laser triggered pulse trigger

    International Nuclear Information System (INIS)

    Chen Debiao; Yang Xinglin; Li Yuan; Li Jin

    2012-01-01

    High performance pulse trigger can enhance performance and stability of the PPS. It is necessary to evaluate the reliability of the LTGS pulse trigger, so we establish the reliability analysis model of this pulse trigger based on CARMES software, the reliability evaluation is accord with the statistical results. (authors)

  20. Design and Analysis of Transport Protocols for Reliable High-Speed Communications

    NARCIS (Netherlands)

    Oláh, A.

    1997-01-01

    The design and analysis of transport protocols for reliable communications constitutes the topic of this dissertation. These transport protocols guarantee the sequenced and complete delivery of user data over networks which may lose, duplicate and reorder packets. Reliable transport services are

  1. System Reliability Engineering

    International Nuclear Information System (INIS)

    Lim, Tae Jin

    2005-02-01

    This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.

  2. Stochastic Petri nets for the reliability analysis of communication network applications with alternate-routing

    International Nuclear Information System (INIS)

    Balakrishnan, Meera; Trivedi, Kishor S.

    1996-01-01

    In this paper, we present a comparative reliability analysis of an application on a corporate B-ISDN network under various alternate-routing protocols. For simple cases, the reliability problem can be cast into fault-tree models and solved rapidly by means of known methods. For more complex scenarios, state space (Markov) models are required. However, generation of large state space models can get very labor intensive and error prone. We advocate the use of stochastic reward nets (a variant of stochastic Petri nets) for the concise specification, automated generation and solution of alternate-routing protocols in networks. This paper is written in a tutorial style so as to make it accessible to a large audience

  3. Reliability Analysis of Operation for Cableways by FTA (Fault Tree Analysis Method

    Directory of Open Access Journals (Sweden)

    Sergej Težak

    2010-05-01

    Full Text Available This paper examines the reliability of the operation of cableway systems in Slovenia, which has major impact on the quality of service in the mountain tourism, mainly in wintertime. Different types of cableway installations in Slovenia were captured in a sample and fault tree analysis (FTA was made on the basis of the obtained data. The paper presents the results of the analysis. With these results it is possible to determine the probability of faults of different types of cableways, which types of faults have the greatest impact on the termination of operation, which components of cableways fail most, what is the impact of age of cableways on the occurrence of the faults. Finally, an attempt was made to find if occurrence of faults on individual cableway installation has also impact on traffic on this cableway due to reduced quality of service. KEYWORDS: cableways, aerial ropeways, chairlifts, ski-tows, quality, faults, fault tree analysis, reliability, service quality, winter tourism, mountain tourist centre

  4. Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method

    International Nuclear Information System (INIS)

    Sony T, D.T.; Situmorang, Johnny; Ismu W, Puradwi; Demon H; Mulyanto, Dwijo; Kusmono, Slamet; Santa, Sigit Asmara

    2000-01-01

    FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc

  5. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  6. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  7. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  8. The effect of loss functions on empirical Bayes reliability analysis

    Directory of Open Access Journals (Sweden)

    Camara Vincent A. R.

    1998-01-01

    Full Text Available The aim of the present study is to investigate the sensitivity of empirical Bayes estimates of the reliability function with respect to changing of the loss function. In addition to applying some of the basic analytical results on empirical Bayes reliability obtained with the use of the “popular” squared error loss function, we shall derive some expressions corresponding to empirical Bayes reliability estimates obtained with the Higgins–Tsokos, the Harris and our proposed logarithmic loss functions. The concept of efficiency, along with the notion of integrated mean square error, will be used as a criterion to numerically compare our results. It is shown that empirical Bayes reliability functions are in general sensitive to the choice of the loss function, and that the squared error loss does not always yield the best empirical Bayes reliability estimate.

  9. Damage tolerance reliability analysis of automotive spot-welded joints

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Ni Kan

    2003-01-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture

  10. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  11. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  12. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  13. Hybrid Structural Reliability Analysis under Multisource Uncertainties Based on Universal Grey Numbers

    Directory of Open Access Journals (Sweden)

    Xingfa Yang

    2018-01-01

    Full Text Available Nondeterministic parameters of certain distribution are employed to model structural uncertainties, which are usually assumed as stochastic factors. However, model parameters may not be precisely represented due to some factors in engineering practices, such as lack of sufficient data, data with fuzziness, and unknown-but-bounded conditions. To this end, interval and fuzzy parameters are implemented and an efficient approach to structural reliability analysis with random-interval-fuzzy hybrid parameters is proposed in this study. Fuzzy parameters are first converted to equivalent random ones based on the equal entropy principle. 3σ criterion is then employed to transform the equivalent random and the original random parameters to interval variables. In doing this, the hybrid reliability problem is transformed into the one only with interval variables, in other words, nonprobabilistic reliability analysis problem. Nevertheless, the problem of interval extension existed in interval arithmetic, especially for the nonlinear systems. Therefore, universal grey mathematics, which can tackle the issue of interval extension, is employed to solve the nonprobabilistic reliability analysis problem. The results show that the proposed method can obtain more conservative results of the hybrid structural reliability.

  14. To what extent Fair Value is Fair, an Analysis of Reliability and Relevance of the Fair Value Accounting Paradigm.

    OpenAIRE

    Dugarte, Rafael

    2006-01-01

    To what extent Fair Value is Fair, an Analysis of Reliability and Relevance of the Fair Value Accounting Paradigm. Rafael Dugarte Escalante September, 2006 Fair value accounting is fair and important for financial reporting in providing relevant, reliable, comparable and understandable information to the users depending on what kind of information is expected from it, and the way in which fair value is actually found. This study complemen...

  15. Inclusion of task dependence in human reliability analysis

    International Nuclear Information System (INIS)

    Su, Xiaoyan; Mahadevan, Sankaran; Xu, Peida; Deng, Yong

    2014-01-01

    Dependence assessment among human errors in human reliability analysis (HRA) is an important issue, which includes the evaluation of the dependence among human tasks and the effect of the dependence on the final human error probability (HEP). This paper represents a computational model to handle dependence in human reliability analysis. The aim of the study is to automatically provide conclusions on the overall degree of dependence and calculate the conditional human error probability (CHEP) once the judgments of the input factors are given. The dependence influencing factors are first identified by the experts and the priorities of these factors are also taken into consideration. Anchors and qualitative labels are provided as guidance for the HRA analyst's judgment of the input factors. The overall degree of dependence between human failure events is calculated based on the input values and the weights of the input factors. Finally, the CHEP is obtained according to a computing formula derived from the technique for human error rate prediction (THERP) method. The proposed method is able to quantify the subjective judgment from the experts and improve the transparency in the HEP evaluation process. Two examples are illustrated to show the effectiveness and the flexibility of the proposed method. - Highlights: • We propose a computational model to handle dependence in human reliability analysis. • The priorities of the dependence influencing factors are taken into consideration. • The overall dependence degree is determined by input judgments and the weights of factors. • The CHEP is obtained according to a computing formula derived from THERP

  16. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  17. Architecture for interlock systems: reliability analysis with regard to safety and availability

    International Nuclear Information System (INIS)

    Wagner, S.; Apollonio, A.; Schmidt, R.; Zerlauth, M.; Vergara-Fernandez, A.

    2012-01-01

    For particle accelerators like LHC and other large experimental physics facilities like ITER, the machine protection relies on complex interlock systems. In the design of interlock loops for the signal exchange in machine protection systems, the choice of the hardware architecture impacts on machine safety and availability. The reliable performance of a machine stop (leaving the machine in a safe state) in case of an emergency, is an inherent requirement. The constraints in terms of machine availability on the other hand may differ from one facility to another. Spurious machine stops, lowering machine availability, may to a certain extent be tolerated in facilities where they do not cause undue equipment wear-out. In order to compare various interlock loop architectures in terms of safety and availability, the occurrence frequencies of related scenarios have been calculated in a reliability analysis, using a generic analytical model. This paper presents the results and illustrates the potential of the analysis method for supporting the choice of interlock system architectures. The results show the advantages of a 2003 (3 redundant lines with 2-out-of-3 voting) over the 6 architectures under consideration for systems with high requirements in both safety and availability

  18. Aviation Fuel System Reliability and Fail-Safety Analysis. Promising Alternative Ways for Improving the Fuel System Reliability

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2017-01-01

    Full Text Available The paper deals with design requirements for an aviation fuel system (AFS, AFS basic design requirements, reliability, and design precautions to avoid AFS failure. Compares the reliability and fail-safety of AFS and aircraft hydraulic system (AHS, considers the promising alternative ways to raise reliability of fuel systems, as well as elaborates recommendations to improve reliability of the pipeline system components and pipeline systems, in general, based on the selection of design solutions.It is extremely advisable to design the AFS and AHS in accordance with Aviation Regulations АП25 and Accident Prevention Guidelines, ICAO (International Civil Aviation Association, which will reduce risk of emergency situations, and in some cases even avoid heavy disasters.ATS and AHS designs should be based on the uniform principles to ensure the highest reliability and safety. However, currently, this principle is not enough kept, and AFS looses in reliability and fail-safety as compared with AHS. When there are the examined failures (single and their combinations the guidelines to ensure the AFS efficiency should be the same as those of norm-adopted in the Regulations АП25 for AHS. This will significantly increase reliability and fail-safety of the fuel systems and aircraft flights, in general, despite a slight increase in AFS mass.The proposed improvements through the use of components redundancy of the fuel system will greatly raise reliability of the fuel system of a passenger aircraft, which will, without serious consequences for the flight, withstand up to 2 failures, its reliability and fail-safety design will be similar to those of the AHS, however, above improvement measures will lead to a slightly increasing total mass of the fuel system.It is advisable to set a second pump on the engine in parallel with the first one. It will run in case the first one fails for some reasons. The second pump, like the first pump, can be driven from the

  19. Multidisciplinary Inverse Reliability Analysis Based on Collaborative Optimization with Combination of Linear Approximations

    Directory of Open Access Journals (Sweden)

    Xin-Jia Meng

    2015-01-01

    Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.

  20. Comparative analysis of minor histocompatibility antigens genotyping methods

    Directory of Open Access Journals (Sweden)

    A. S. Vdovin

    2016-01-01

    Full Text Available The wide range of techniques could be employed to find mismatches in minor histocompatibility antigens between transplant recipients and their donors. In the current study we compared three genotyping methods based on polymerase chain reaction (PCR for four minor antigens. Three of the tested methods: allele-specific PCR, restriction fragment length polymorphism and real-time PCR with TaqMan probes demonstrated 100% reliability when compared to Sanger sequencing for all of the studied polymorphisms. High resolution melting analysis was unsuitable for genotyping of one of the tested minor antigens (HA-1 as it has linked synonymous polymorphism. Obtained data could be used to select the strategy for large-scale clinical genotyping.

  1. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    Science.gov (United States)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  2. Small nuclear power reactor emergency electric power supply system reliability comparative analysis; Analise da confiabilidade do sistema de suprimento de energia eletrica de emergencia de um reator nuclear de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Bonfietti, Gerson

    2003-07-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  3. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  4. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    Science.gov (United States)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  5. Analysis of NPP protection structure reliability under impact of a falling aircraft

    International Nuclear Information System (INIS)

    Shul'man, G.S.

    1996-01-01

    Methodology for evaluation of NPP protection structure reliability by impact of aircraft fall down is considered. The methodology is base on the probabilistic analysis of all potential events. The problem is solved in three stages: determination of loads on structural units, calculation of local reliability of protection structures by assigned loads and estimation of the structure reliability. The methodology proposed may be applied at the NPP design stage and by determination of reliability of already available structures

  6. Development of a Conservative Model Validation Approach for Reliable Analysis

    Science.gov (United States)

    2015-01-01

    CIE 2015 August 2-5, 2015, Boston, Massachusetts, USA [DRAFT] DETC2015-46982 DEVELOPMENT OF A CONSERVATIVE MODEL VALIDATION APPROACH FOR RELIABLE...obtain a conservative simulation model for reliable design even with limited experimental data. Very little research has taken into account the...3, the proposed conservative model validation is briefly compared to the conventional model validation approach. Section 4 describes how to account

  7. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    Science.gov (United States)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  8. Reliability Engineering

    International Nuclear Information System (INIS)

    Lee, Sang Yong

    1992-07-01

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  9. Decision theory, the context for risk and reliability analysis

    International Nuclear Information System (INIS)

    Kaplan, S.

    1985-01-01

    According to this model of the decision process then, the optimum decision is that option having the largest expected utility. This is the fundamental model of a decision situation. It is necessary to remark that in order for the model to represent a real-life decision situation, it must include all the options present in that situation, including, for example, the option of not deciding--which is itself a decision, although usually not the optimum one. Similarly, it should include the option of delaying the decision while the authors gather further information. Both of these options have probabilities, outcomes, impacts, and utilities like any option and should be included explicitly in the decision diagram. The reason for doing a quantitative risk or reliability analysis is always that, somewhere underlying there is a decision to be made. The decision analysis therefore always forms the context for the risk or reliability analysis, and this context shapes the form and language of that analysis. Therefore, they give in this section a brief review of the well-known decision theory diagram

  10. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  11. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  12. Distribution-level electricity reliability: Temporal trends using statistical analysis

    International Nuclear Information System (INIS)

    Eto, Joseph H.; LaCommare, Kristina H.; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-01

    This paper helps to address the lack of comprehensive, national-scale information on the reliability of the U.S. electric power system by assessing trends in U.S. electricity reliability based on the information reported by the electric utilities on power interruptions experienced by their customers. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. We find that reported annual average duration and annual average frequency of power interruptions have been increasing over time at a rate of approximately 2% annually. We find that, independent of this trend, installation or upgrade of an automated outage management system is correlated with an increase in the reported annual average duration of power interruptions. We also find that reliance on IEEE Standard 1366-2003 is correlated with higher reported reliability compared to reported reliability not using the IEEE standard. However, we caution that we cannot attribute reliance on the IEEE standard as having caused or led to higher reported reliability because we could not separate the effect of reliance on the IEEE standard from other utility-specific factors that may be correlated with reliance on the IEEE standard. - Highlights: ► We assess trends in electricity reliability based on the information reported by the electric utilities. ► We use rigorous statistical techniques to account for utility-specific differences. ► We find modest declines in reliability analyzing interruption duration and frequency experienced by utility customers. ► Installation or upgrade of an OMS is correlated to an increase in reported duration of power interruptions. ► We find reliance in IEEE Standard 1366 is correlated with higher reported reliability.

  13. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  14. Modeling and reliability analysis of three phase z-source AC-AC converter

    Directory of Open Access Journals (Sweden)

    Prasad Hanuman

    2017-12-01

    Full Text Available This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL, making it versatile and moveable. Hardware-in-the-loop (HIL simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.

  15. DEPEND-HRA-A method for consideration of dependency in human reliability analysis

    International Nuclear Information System (INIS)

    Cepin, Marko

    2008-01-01

    A consideration of dependencies between human actions is an important issue within the human reliability analysis. A method was developed, which integrates the features of existing methods and the experience from a full scope plant simulator. The method is used on real plant-specific human reliability analysis as a part of the probabilistic safety assessment of a nuclear power plant. The method distinguishes dependency for pre-initiator events from dependency for initiator and post-initiator events. The method identifies dependencies based on scenarios, where consecutive human actions are modeled, and based on a list of minimal cut sets, which is obtained by running the minimal cut set analysis considering high values of human error probabilities in the evaluation. A large example study, which consisted of a large number of human failure events, demonstrated the applicability of the method. Comparative analyses that were performed show that both selection of dependency method and selection of dependency levels within the method largely impact the results of probabilistic safety assessment. If the core damage frequency is not impacted much, the listings of important basic events in terms of risk increase and risk decrease factors may change considerably. More efforts are needed on the subject, which will prepare the background for more detailed guidelines, which will remove the subjectivity from the evaluations as much as it is possible

  16. Reliability analysis of multi-trigger binary systems subject to competing failures

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Levitin, Gregory

    2013-01-01

    This paper suggests two combinatorial algorithms for the reliability analysis of multi-trigger binary systems subject to competing failure propagation and failure isolation effects. Propagated failure with global effect (PFGE) is referred to as a failure that not only causes outage to the component from which the failure originates, but also propagates through all other system components causing the entire system failure. However, the propagation effect from the PFGE can be isolated in systems with functional dependence (FDEP) behavior. This paper studies two distinct consequences of PFGE resulting from a competition in the time domain between the failure isolation and failure propagation effects. As compared to existing works on competing failures that are limited to systems with a single FDEP group, this paper considers more complicated cases where the systems have multiple dependent FDEP groups. Analysis of such systems is more challenging because both the occurrence order between the trigger failure event and PFGE from the dependent components and the occurrence order among the multiple trigger failure events have to be considered. Two combinatorial and analytical algorithms are proposed. Both of them have no limitation on the type of time-to-failure distributions for the system components. Their correctness is verified using a Markov-based method. An example of memory systems is analyzed to demonstrate and compare the applications and advantages of the two proposed algorithms. - Highlights: ► Reliability of binary systems with multiple dependent functional dependence groups is analyzed. ► Competing failure propagation and failure isolation effect is considered. ► The proposed algorithms are combinatorial and applicable to any arbitrary type of time-to-failure distributions for system components.

  17. Human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1989-08-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim of assessing the state of the art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participated in the HF-RBE. The HF-RBE was organised around two study cases: (1) analysis of routine functional Test and Maintenance (TPM) procedures: with the aim of assessing the probability of test induced failures, the probability of failures to remain unrevealed and the potential to initiate transients because of errors performed in the test; (2) analysis of human actions during an operational transient: with the aim of assessing the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. This report summarises the contributions received from the participants and analyses these contributions on a comparative basis. The aim of this analysis was to compare the procedures, modelling techniques and quantification methods used, to obtain insight in the causes and magnitude of the variability observed in the results, to try to identify preferred human reliability assessment approaches and to get an understanding of the current state of the art in the field identifying the limitations that are still inherent to the different approaches

  18. reliability analysis of a two span floor designed according

    African Journals Online (AJOL)

    user

    deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor ... loading, strength and stiffness parameters, dimensions .... to show that there is a direct relation between the failure probability (Pf) ...

  19. Reliability analysis and updating of deteriorating systems with subset simulation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Straub, Daniel

    2017-01-01

    An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....

  20. Use of COMCAN III in system design and reliability analysis

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.

    1982-03-01

    This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis

  1. Validation of Land Cover Products Using Reliability Evaluation Methods

    Directory of Open Access Journals (Sweden)

    Wenzhong Shi

    2015-06-01

    Full Text Available Validation of land cover products is a fundamental task prior to data applications. Current validation schemes and methods are, however, suited only for assessing classification accuracy and disregard the reliability of land cover products. The reliability evaluation of land cover products should be undertaken to provide reliable land cover information. In addition, the lack of high-quality reference data often constrains validation and affects the reliability results of land cover products. This study proposes a validation schema to evaluate the reliability of land cover products, including two methods, namely, result reliability evaluation and process reliability evaluation. Result reliability evaluation computes the reliability of land cover products using seven reliability indicators. Process reliability evaluation analyzes the reliability propagation in the data production process to obtain the reliability of land cover products. Fuzzy fault tree analysis is introduced and improved in the reliability analysis of a data production process. Research results show that the proposed reliability evaluation scheme is reasonable and can be applied to validate land cover products. Through the analysis of the seven indicators of result reliability evaluation, more information on land cover can be obtained for strategic decision-making and planning, compared with traditional accuracy assessment methods. Process reliability evaluation without the need for reference data can facilitate the validation and reflect the change trends of reliabilities to some extent.

  2. Structural systems reliability analysis

    International Nuclear Information System (INIS)

    Frangopol, D.

    1975-01-01

    For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de

  3. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Ames, K.R.; Gallucci, R.H.

    1985-06-01

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report

  4. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    Castillo, Enrique; Minguez, Roberto; Castillo, Carmen

    2008-01-01

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  5. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  6. Inter- and Intrarater Reliability Using Different Software Versions of E4D Compare in Dental Education.

    Science.gov (United States)

    Callan, Richard S; Cooper, Jeril R; Young, Nancy B; Mollica, Anthony G; Furness, Alan R; Looney, Stephen W

    2015-06-01

    The problems associated with intra- and interexaminer reliability when assessing preclinical performance continue to hinder dental educators' ability to provide accurate and meaningful feedback to students. Many studies have been conducted to evaluate the validity of utilizing various technologies to assist educators in achieving that goal. The purpose of this study was to compare two different versions of E4D Compare software to determine if either could be expected to deliver consistent and reliable comparative results, independent of the individual utilizing the technology. Five faculty members obtained E4D digital images of students' attempts (sample model) at ideal gold crown preparations for tooth #30 performed on typodont teeth. These images were compared to an ideal (master model) preparation utilizing two versions of E4D Compare software. The percent correlations between and within these faculty members were recorded and averaged. The intraclass correlation coefficient was used to measure both inter- and intrarater agreement among the examiners. The study found that using the older version of E4D Compare did not result in acceptable intra- or interrater agreement among the examiners. However, the newer version of E4D Compare, when combined with the Nevo scanner, resulted in a remarkable degree of agreement both between and within the examiners. These results suggest that consistent and reliable results can be expected when utilizing this technology under the protocol described in this study.

  7. Development and Reliability Analysis of HTR-PM Reactor Protection System

    International Nuclear Information System (INIS)

    Li Duo; Guo Chao; Xiong Huasheng

    2014-01-01

    High Temperature Gas-Cooled Reactor-Pebble bed Module (HTR-PM) digital Reactor Protection System (RPS) is a dedicated system, which is designed and developed according to HTR-PM NPP protection specifications. To decrease the probability of accident trips and increase the system reliability, HTR-PM RPS has such features as a framework of four redundant channels, two diverse sub-systems in each channel, and two level two-out-of-four logic voters. Reliability analysis of HTR-PM RPS is based on fault tree model. A fault tree is built based on HTR-PM RPS Failure Modes and Effects Analysis (FMEA), and special analysis is focused on the sub-tree of redundant channel ''2-out-of-4'' logic and the fault tree under one channel is bypassed. The qualitative analysis of fault tree, such as RPS weakness according to minimal cut sets, is summarized in the paper. (author)

  8. Method of reliability allocation based on fault tree analysis and fuzzy math in nuclear power plants

    International Nuclear Information System (INIS)

    Chen Zhaobing; Deng Jian; Cao Xuewu

    2005-01-01

    Reliability allocation is a kind of a difficult multi-objective optimization problem. It can not only be applied to determine the reliability characteristic of reactor systems, subsystem and main components but also be performed to improve the design, operation and maintenance of nuclear plants. The fuzzy math known as one of the powerful tools for fuzzy optimization and the fault analysis deemed to be one of the effective methods of reliability analysis can be applied to the reliability allocation model so as to work out the problems of fuzzy characteristic of some factors and subsystem's choice respectively in this paper. Thus we develop a failure rate allocation model on the basis of the fault tree analysis and fuzzy math. For the choice of the reliability constraint factors, we choose the six important ones according to practical need for conducting the reliability allocation. The subsystem selected by the top-level fault tree analysis is to avoid allocating reliability for all the equipment and components including the unnecessary parts. During the reliability process, some factors can be calculated or measured quantitatively while others only can be assessed qualitatively by the expert rating method. So we adopt fuzzy decision and dualistic contrast to realize the reliability allocation with the help of fault tree analysis. Finally the example of the emergency diesel generator's reliability allocation is used to illustrate reliability allocation model and improve this model simple and applicable. (authors)

  9. The effect of loss functions on empirical Bayes reliability analysis

    Directory of Open Access Journals (Sweden)

    Vincent A. R. Camara

    1999-01-01

    Full Text Available The aim of the present study is to investigate the sensitivity of empirical Bayes estimates of the reliability function with respect to changing of the loss function. In addition to applying some of the basic analytical results on empirical Bayes reliability obtained with the use of the “popular” squared error loss function, we shall derive some expressions corresponding to empirical Bayes reliability estimates obtained with the Higgins–Tsokos, the Harris and our proposed logarithmic loss functions. The concept of efficiency, along with the notion of integrated mean square error, will be used as a criterion to numerically compare our results.

  10. Diesel-generator reliability at nuclear power plants: data and preliminary analysis. Interim report

    International Nuclear Information System (INIS)

    McClymont, A.; McLagan, G.

    1982-06-01

    This report summarizes work performed under RP1233-1 relating to the collection and analysis of data pertaining to diesel generator reliability in nuclear power plants. Drawing from data collected on-site at plants, data supplied by utilites, and data from Licensee Event Reports (LERs), the report describes methods of deriving reliability estimates from data for use in probabilistic risk assessment and presents results when these methods are applied to data collected from 14 plants. Specifically, data are used to estimate diesel failure probabilities for failures to start and failure rates for failures to continue to run. A sampling theory approach and a Bayesian approach to failure probability estimation are compared. The data are used to derive estimates of diesel repair time for some plants, maintenance outages, and multiple diesel failure rates. In addition, a section is included that presents suggestions for failure-rate estimation when an accurate count of diesel start attempts at a plant is not available. The final section presents an analysis of diesel failures based on data from LERs, including a breakdown of failure event by subsystem, failure mode, and failure cause. Appendixes include detailed summaries of the data used in the analysis of previous sections

  11. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  12. LIF: A new Kriging based learning function and its application to structural reliability analysis

    International Nuclear Information System (INIS)

    Sun, Zhili; Wang, Jian; Li, Rui; Tong, Cao

    2017-01-01

    The main task of structural reliability analysis is to estimate failure probability of a studied structure taking randomness of input variables into account. To consider structural behavior practically, numerical models become more and more complicated and time-consuming, which increases the difficulty of reliability analysis. Therefore, sequential strategies of design of experiment (DoE) are raised. In this research, a new learning function, named least improvement function (LIF), is proposed to update DoE of Kriging based reliability analysis method. LIF values how much the accuracy of estimated failure probability will be improved if adding a given point into DoE. It takes both statistical information provided by the Kriging model and the joint probability density function of input variables into account, which is the most important difference from the existing learning functions. Maximum point of LIF is approximately determined with Markov Chain Monte Carlo(MCMC) simulation. A new reliability analysis method is developed based on the Kriging model, in which LIF, MCMC and Monte Carlo(MC) simulation are employed. Three examples are analyzed. Results show that LIF and the new method proposed in this research are very efficient when dealing with nonlinear performance function, small probability, complicated limit state and engineering problems with high dimension. - Highlights: • Least improvement function (LIF) is proposed for structural reliability analysis. • LIF takes both Kriging based statistical information and joint PDF into account. • A reliability analysis method is constructed based on Kriging, MCS and LIF.

  13. Using reliability analysis to support decision making\\ud in phased mission systems

    OpenAIRE

    Zhang, Yang; Prescott, Darren

    2017-01-01

    Due to the environments in which they will operate, future autonomous systems must be capable of reconfiguring quickly and safely following faults or environmental changes. Past research has shown how, by considering autonomous systems to perform phased missions, reliability analysis can support decision making by allowing comparison of the probability of success of different missions following reconfiguration. Binary Decision Diagrams (BDDs) offer fast, accurate reliability analysis that cou...

  14. Human Reliability Analysis in Support of Risk Assessment for Positive Train Control

    Science.gov (United States)

    2003-06-01

    This report describes an approach to evaluating the reliability of human actions that are modeled in a probabilistic risk assessment : (PRA) of train control operations. This approach to human reliability analysis (HRA) has been applied in the case o...

  15. Adjoint sensitivity analysis procedure of Markov chains with applications on reliability of IFMIF accelerator-system facilities

    Energy Technology Data Exchange (ETDEWEB)

    Balan, I.

    2005-05-01

    This work presents the implementation of the Adjoint Sensitivity Analysis Procedure (ASAP) for the Continuous Time, Discrete Space Markov chains (CTMC), as an alternative to the other computational expensive methods. In order to develop this procedure as an end product in reliability studies, the reliability of the physical systems is analyzed using a coupled Fault-Tree - Markov chain technique, i.e. the abstraction of the physical system is performed using as the high level interface the Fault-Tree and afterwards this one is automatically converted into a Markov chain. The resulting differential equations based on the Markov chain model are solved in order to evaluate the system reliability. Further sensitivity analyses using ASAP applied to CTMC equations are performed to study the influence of uncertainties in input data to the reliability measures and to get the confidence in the final reliability results. The methods to generate the Markov chain and the ASAP for the Markov chain equations have been implemented into the new computer code system QUEFT/MARKOMAGS/MCADJSEN for reliability and sensitivity analysis of physical systems. The validation of this code system has been carried out by using simple problems for which analytical solutions can be obtained. Typical sensitivity results show that the numerical solution using ASAP is robust, stable and accurate. The method and the code system developed during this work can be used further as an efficient and flexible tool to evaluate the sensitivities of reliability measures for any physical system analyzed using the Markov chain. Reliability and sensitivity analyses using these methods have been performed during this work for the IFMIF Accelerator System Facilities. The reliability studies using Markov chain have been concentrated around the availability of the main subsystems of this complex physical system for a typical mission time. The sensitivity studies for two typical responses using ASAP have been

  16. Reliability analysis of production ships with emphasis on load combination and ultimate strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhi

    1995-05-01

    This thesis deals with ultimate strength and reliability analysis of offshore production ships, accounting for stochastic load combinations, using a typical North Sea production ship for reference. A review of methods for structural reliability analysis is presented. Probabilistic methods are established for the still water and vertical wave bending moments. Linear stress analysis of a midships transverse frame is carried out, four different finite element models are assessed. Upon verification of the general finite element code ABAQUS with a typical ship transverse girder example, for which test results are available, ultimate strength analysis of the reference transverse frame is made to obtain the ultimate load factors associated with the specified pressure loads in Det norske Veritas Classification rules for ships and rules for production vessels. Reliability analysis is performed to develop appropriate design criteria for the transverse structure. It is found that the transverse frame failure mode does not seem to contribute to the system collapse. Ultimate strength analysis of the longitudinally stiffened panels is performed, accounting for the combined biaxial and lateral loading. Reliability based design of the longitudinally stiffened bottom and deck panels is accomplished regarding the collapse mode under combined biaxial and lateral loads. 107 refs., 76 refs., 37 tabs.

  17. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    Science.gov (United States)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  18. Systems reliability/structural reliability

    International Nuclear Information System (INIS)

    Green, A.E.

    1980-01-01

    The question of reliability technology using quantified techniques is considered for systems and structures. Systems reliability analysis has progressed to a viable and proven methodology whereas this has yet to be fully achieved for large scale structures. Structural loading variants over the half-time of the plant are considered to be more difficult to analyse than for systems, even though a relatively crude model may be a necessary starting point. Various reliability characteristics and environmental conditions are considered which enter this problem. The rare event situation is briefly mentioned together with aspects of proof testing and normal and upset loading conditions. (orig.)

  19. Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...

    African Journals Online (AJOL)

    (2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.

  20. Quantitative characterization of the reliability of simplex buses and stars to compare their benefits in fieldbuses

    International Nuclear Information System (INIS)

    Barranco, Manuel; Proenza, Julián; Almeida, Luís

    2015-01-01

    Fieldbuses targeted to highly dependable distributed embedded systems are shifting from bus to star topologies. Surprisingly, despite the efforts into this direction, engineers lack of analyses that quantitatively characterize the system reliability achievable by buses and stars. Thus, to guide engineers in developing adequate bus and star fieldbuses, this work models, quantifies and compares the system reliability provided by simplex buses and stars for the case of the Controller Area Network (CAN). It clarifies how relevant dependability-related aspects affect reliability, refuting some intuitive ideas, and revealing some previously unknown bus and star benefits. - Highlights: • SANs models that quantify the reliability of simplex buses/stars in fieldbuses. • Models cover system relevant dependability-related features abstracted in the literature. • Results refute intuitive ideas about buses and stars and show some unexpected effects. • Models and results can guide the design of reliable simplex bus/stars fieldbuses

  1. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  2. Application of Reliability Analysis for Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard; Christiani, E.

    1995-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of some of the most important failure modes are described. The failures are sliding and slip surface failure of a rubble mound and a clay foundation. Relevant design...

  3. Reliability Analysis of the CERN Radiation Monitoring Electronic System CROME

    CERN Document Server

    AUTHOR|(CDS)2126870

    For the new in-house developed CERN Radiation Monitoring Electronic System (CROME) a reliability analysis is necessary to ensure compliance with the statu-tory requirements regarding the Safety Integrity Level. The required Safety Integrity Level by IEC 60532 standard is SIL 2 (for the Safety Integrated Functions Measurement, Alarm Triggering and Interlock Triggering). The first step of the reliability analysis was a system and functional analysis which served as basis for the implementation of the CROME system in the software “Iso-graph”. In the “Prediction” module of Isograph the failure rates of all components were calculated. Failure rates for passive components were calculated by the Military Standard 217 and failure rates for active components were obtained from lifetime tests by the manufacturers. The FMEA was carried out together with the board designers and implemented in the “FMECA” module of Isograph. The FMEA served as basis for the Fault Tree Analysis and the detection of weak points...

  4. Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations

    International Nuclear Information System (INIS)

    Shalev, Dan M.; Tiran, Joseph

    2007-01-01

    Condition-based maintenance methods have changed systems reliability in general and individual systems in particular. Yet, this change does not affect system reliability analysis. System fault tree analysis (FTA) is performed during the design phase. It uses components failure rates derived from available sources as handbooks, etc. Condition-based fault tree analysis (CBFTA) starts with the known FTA. Condition monitoring (CM) methods applied to systems (e.g. vibration analysis, oil analysis, electric current analysis, bearing CM, electric motor CM, and so forth) are used to determine updated failure rate values of sensitive components. The CBFTA method accepts updated failure rates and applies them to the FTA. The CBFTA recalculates periodically the top event (TE) failure rate (λ TE ) thus determining the probability of system failure and the probability of successful system operation-i.e. the system's reliability. FTA is a tool for enhancing system reliability during the design stages. But, it has disadvantages, mainly it does not relate to a specific system undergoing maintenance. CBFTA is tool for updating reliability values of a specific system and for calculating the residual life according to the system's monitored conditions. Using CBFTA, the original FTA is ameliorated to a practical tool for use during the system's field life phase, not just during system design phase. This paper describes the CBFTA method and its advantages are demonstrated by an example

  5. Comparative reliability of cheiloscopy and palatoscopy in human identification

    Directory of Open Access Journals (Sweden)

    Sharma Preeti

    2009-01-01

    Full Text Available Background: Establishing a person′s identity in postmortem scenarios can be a very difficult process. Dental records, fingerprint and DNA comparisons are probably the most common techniques used in this context, allowing fast and reliable identification processes. However, under certain circumstances they cannot always be used; sometimes it is necessary to apply different and less known techniques. In forensic identification, lip prints and palatal rugae patterns can lead us to important information and help in a person′s identification. This study aims to ascertain the use of lip prints and palatal rugae pattern in identification and sex differentiation. Materials and Methods: A total of 100 subjects, 50 males and 50 females were selected from among the students of Subharti Dental College, Meerut. The materials used to record lip prints were lipstick, bond paper, cellophane tape, a brush for applying the lipstick, and a magnifying lens. To study palatal rugae, alginate impressions were taken and the dental casts analyzed for their various patterns. Results: Statistical analysis (applying Z-test for proportion showed significant difference for type I, I′, IV and V lip patterns (P < 0.05 in males and females, while no significant difference was observed for the same in the palatal rugae patterns (P > 0.05. Conclusion: This study not only showed that palatal rugae and lip prints are unique to an individual, but also that lip prints is more reliable for recognition of the sex of an individual.

  6. Problems Related to Use of Some Terms in System Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Nadezda Hanusova

    2004-01-01

    Full Text Available The paper deals with problems of using dependability terms, defined in actual standard STN IEC 50 (191: International electrotechnical dictionary, chap. 191: Dependability and quality of service (1993, in a technical systems dependability analysis. The goal of the paper is to find a relation between terms introduced in the mentioned standard and used in the technical systems dependability analysis and rules and practices used in a system analysis of the system theory. Description of a part of the system life cycle related to reliability is used as a starting point. The part of a system life cycle is described by the state diagram and reliability relevant therms are assigned.

  7. Reliability Analysis on NPP's Safety-Related Control Module with Field Data

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Seong Hun

    2006-01-01

    The automatic control systems used in nuclear power plant (NPP) consists of numerous control modules that can be considered to be a network of components various complex ways. The control modules require relatively high reliability than industrial electronic products. Reliability prediction provides the rational basis of system designs and also provides the safety significance of system operations. The aim of this paper is to minimize the deficiencies of the traditional reliability prediction method calculation using the available field return data. This way is possible to do more realistic reliability assessment. SAMCHANG Enterprise Company (SEC) has established database containing high quality data at the module and component level from module maintenance in NPP. On the basis of these, this paper compares results that add failure record (field data) to Telcordia-SR-332 reliability prediction model with MIL-HDBK-217F prediction results

  8. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  9. Subset simulation for structural reliability sensitivity analysis

    International Nuclear Information System (INIS)

    Song Shufang; Lu Zhenzhou; Qiao Hongwei

    2009-01-01

    Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes

  10. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  11. From StoCharts to MoDeST: a comparative reliability analysis of train radio communications

    NARCIS (Netherlands)

    Hermanns, H.; Jansen, D.N.; Usenko, Y.S.

    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and have been applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare

  12. Application of objective clinical human reliability analysis (OCHRA) in assessment of technical performance in laparoscopic rectal cancer surgery.

    Science.gov (United States)

    Foster, J D; Miskovic, D; Allison, A S; Conti, J A; Ockrim, J; Cooper, E J; Hanna, G B; Francis, N K

    2016-06-01

    Laparoscopic rectal resection is technically challenging, with outcomes dependent upon technical performance. No robust objective assessment tool exists for laparoscopic rectal resection surgery. This study aimed to investigate the application of the objective clinical human reliability analysis (OCHRA) technique for assessing technical performance of laparoscopic rectal surgery and explore the validity and reliability of this technique. Laparoscopic rectal cancer resection operations were described in the format of a hierarchical task analysis. Potential technical errors were defined. The OCHRA technique was used to identify technical errors enacted in videos of twenty consecutive laparoscopic rectal cancer resection operations from a single site. The procedural task, spatial location, and circumstances of all identified errors were logged. Clinical validity was assessed through correlation with clinical outcomes; reliability was assessed by test-retest. A total of 335 execution errors identified, with a median 15 per operation. More errors were observed during pelvic tasks compared with abdominal tasks (p technical performance of laparoscopic rectal surgery.

  13. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2011-01-01

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: →We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. → We discuss the difficulties in defining and measuring fatigue. → We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  14. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    Science.gov (United States)

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  15. Reliability Approach of a Compressor System using Reliability Block ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... This paper presents a reliability analysis of such a system using reliability ... Keywords-compressor system, reliability, reliability block diagram, RBD .... the same structure has been kept with the three subsystems: air flow, oil flow and .... and Safety in Engineering Design", Springer, 2009. [3] P. O'Connor ...

  16. Qualitative analysis in reliability and safety studies

    International Nuclear Information System (INIS)

    Worrell, R.B.; Burdick, G.R.

    1976-01-01

    The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs

  17. A discrete-time Bayesian network reliability modeling and analysis framework

    International Nuclear Information System (INIS)

    Boudali, H.; Dugan, J.B.

    2005-01-01

    Dependability tools are becoming an indispensable tool for modeling and analyzing (critical) systems. However the growing complexity of such systems calls for increasing sophistication of these tools. Dependability tools need to not only capture the complex dynamic behavior of the system components, but they must be also easy to use, intuitive, and computationally efficient. In general, current tools have a number of shortcomings including lack of modeling power, incapacity to efficiently handle general component failure distributions, and ineffectiveness in solving large models that exhibit complex dependencies between their components. We propose a novel reliability modeling and analysis framework based on the Bayesian network (BN) formalism. The overall approach is to investigate timed Bayesian networks and to find a suitable reliability framework for dynamic systems. We have applied our methodology to two example systems and preliminary results are promising. We have defined a discrete-time BN reliability formalism and demonstrated its capabilities from a modeling and analysis point of view. This research shows that a BN based reliability formalism is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, being based on the BN formalism, the framework is easy to use and intuitive for non-experts, and provides a basis for more advanced and useful analyses such as system diagnosis

  18. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  19. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  20. Simulation Approach to Mission Risk and Reliability Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...

  1. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  2. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  3. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  4. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  5. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  6. PSA applications and piping reliability analysis: where do we stand?

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    1997-01-01

    This reviews a recently proposed framework for piping reliability analysis. The framework was developed to promote critical interpretations of operational data on pipe failures, and to support application-specific-parameter estimation

  7. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Ionescu-Bujor, M.

    2008-01-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  8. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safety, D-76021 Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  9. Risk and reliability analysis theory and applications : in honor of Prof. Armen Der Kiureghian

    CERN Document Server

    2017-01-01

    This book presents a unique collection of contributions from some of the foremost scholars in the field of risk and reliability analysis. Combining the most advanced analysis techniques with practical applications, it is one of the most comprehensive and up-to-date books available on risk-based engineering. All the fundamental concepts needed to conduct risk and reliability assessments are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students and researchers alike. This book was prepared in honor of Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis.

  10. A data-informed PIF hierarchy for model-based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Groth, Katrina M.; Mosleh, Ali

    2012-01-01

    This paper addresses three problems associated with the use of Performance Shaping Factors in Human Reliability Analysis. (1) There are more than a dozen Human Reliability Analysis (HRA) methods that use Performance Influencing Factors (PIFs) or Performance Shaping Factors (PSFs) to model human performance, but there is not a standard set of PIFs used among the methods, nor is there a framework available to compare the PIFs used in various methods. (2) The PIFs currently in use are not defined specifically enough to ensure consistent interpretation of similar PIFs across methods. (3) There are few rules governing the creation, definition, and usage of PIF sets. This paper introduces a hierarchical set of PIFs that can be used for both qualitative and quantitative HRA. The proposed PIF set is arranged in a hierarchy that can be collapsed or expanded to meet multiple objectives. The PIF hierarchy has been developed with respect to a set fundamental principles necessary for PIF sets, which are also introduced in this paper. This paper includes definitions of the PIFs to allow analysts to map the proposed PIFs onto current and future HRA methods. The standardized PIF hierarchy will allow analysts to combine different types of data and will therefore make the best use of the limited data in HRA. The collapsible hierarchy provides the structure necessary to combine multiple types of information without reducing the quality of the information.

  11. Summary of the preparation of methodology for digital system reliability analysis for PSA purposes

    International Nuclear Information System (INIS)

    Hustak, S.; Babic, P.

    2001-12-01

    The report is structured as follows: Specific features of and requirements for the digital part of NPP Instrumentation and Control (I and C) systems (Computer-controlled digital technologies and systems of the NPP I and C system; Specific types of digital technology failures and preventive provisions; Reliability requirements for the digital parts of I and C systems; Safety requirements for the digital parts of I and C systems; Defence-in-depth). Qualitative analyses of NPP I and C system reliability and safety (Introductory system analysis; Qualitative requirements for and proof of NPP I and C system reliability and safety). Quantitative reliability analyses of the digital parts of I and C systems (Selection of a suitable quantitative measure of digital system reliability; Selected qualitative and quantitative findings regarding digital system reliability; Use of relations among the occurrences of the various types of failure). Mathematical section in support of the calculation of the various types of indices (Boolean reliability models, Markovian reliability models). Example of digital system analysis (Description of a selected protective function and the relevant digital part of the I and C system; Functional chain examined, its components and fault tree). (P.A.)

  12. Data collection on the unit control room simulator as a method of operator reliability analysis

    International Nuclear Information System (INIS)

    Holy, J.

    1998-01-01

    The report consists of the following chapters: (1) Probabilistic assessment of nuclear power plant operation safety and human factor reliability analysis; (2) Simulators and simulations as human reliability analysis tools; (3) DOE project for using the collection and analysis of data from the unit control room simulator in human factor reliability analysis at the Paks nuclear power plant; (4) General requirements for the organization of the simulator data collection project; (5) Full-scale simulator at the Nuclear Power Plants Research Institute in Trnava, Slovakia, used as a training means for operators of the Dukovany NPP; (6) Assessment of the feasibility of quantification of important human actions modelled within a PSA study by employing simulator data analysis; (7) Assessment of the feasibility of using the various exercise topics for the quantification of the PSA model; (8) Assessment of the feasibility of employing the simulator in the analysis of the individual factors affecting the operator's activity; and (9) Examples of application of statistical methods in the analysis of the human reliability factor. (P.A.)

  13. RADYBAN: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks

    International Nuclear Information System (INIS)

    Montani, S.; Portinale, L.; Bobbio, A.; Codetta-Raiteri, D.

    2008-01-01

    In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained

  14. The design and use of reliability data base with analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst`s current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs.

  15. The design and use of reliability data base with analysis tool

    International Nuclear Information System (INIS)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst's current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs

  16. Application of reliability analysis methods to the comparison of two safety circuits

    International Nuclear Information System (INIS)

    Signoret, J.-P.

    1975-01-01

    Two circuits of different design, intended for assuming the ''Low Pressure Safety Injection'' function in PWR reactors are analyzed using reliability methods. The reliability analysis of these circuits allows the failure trees to be established and the failure probability derived. The dependence of these results on test use and maintenance is emphasized as well as critical paths. The great number of results obtained may allow a well-informed choice taking account of the reliability wanted for the type of circuits [fr

  17. Signal Quality Outage Analysis for Ultra-Reliable Communications in Cellular Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Alvarez, Beatriz Soret; Lauridsen, Mads

    2015-01-01

    Ultra-reliable communications over wireless will open the possibility for a wide range of novel use cases and applications. In cellular networks, achieving reliable communication is challenging due to many factors, particularly the fading of the desired signal and the interference. In this regard......, we investigate the potential of several techniques to combat these main threats. The analysis shows that traditional microscopic multiple-input multiple-output schemes with 2x2 or 4x4 antenna configurations are not enough to fulfil stringent reliability requirements. It is revealed how such antenna...... schemes must be complemented with macroscopic diversity as well as interference management techniques in order to ensure the necessary SINR outage performance. Based on the obtained performance results, it is discussed which of the feasible options fulfilling the ultra-reliable criteria are most promising...

  18. Cooperative Strategies for Maximum-Flow Problem in Uncertain Decentralized Systems Using Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Hadi Heidari Gharehbolagh

    2016-01-01

    Full Text Available This study investigates a multiowner maximum-flow network problem, which suffers from risky events. Uncertain conditions effect on proper estimation and ignoring them may mislead decision makers by overestimation. A key question is how self-governing owners in the network can cooperate with each other to maintain a reliable flow. Hence, the question is answered by providing a mathematical programming model based on applying the triangular reliability function in the decentralized networks. The proposed method concentrates on multiowner networks which suffer from risky time, cost, and capacity parameters for each network’s arcs. Some cooperative game methods such as τ-value, Shapley, and core center are presented to fairly distribute extra profit of cooperation. A numerical example including sensitivity analysis and the results of comparisons are presented. Indeed, the proposed method provides more reality in decision-making for risky systems, hence leading to significant profits in terms of real cost estimation when compared with unforeseen effects.

  19. An application of the fault tree analysis for the power system reliability estimation

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2007-01-01

    The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)

  20. Evaluation of aortic valve stenosis by cardiac multislice computed tomography compared with echocardiography: a systematic review and meta-analysis

    DEFF Research Database (Denmark)

    Abdulla, Jawdat; Sivertsen, Jacob; Kofoed, Klaus Fuglsang

    2009-01-01

    a systematic literature review and meta-analysis, was to explore whether MSCT is a reliable method for AVA quantification, and simultaneously to assess the coronary anatomy in patients with AVS. METHODS: A comprehensive systematic literature search and meta-analysis was conducted that included 14 studies...... totaling 470 patients. The meta-analysis was carried out to examine the reliability of MSCT compared to transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE). Seven studies including 266 patients with AVS were also eligible for a secondary analysis to compare the accuracy of MSCT...... was concordant with planimetry by TEE, with a small bias of -0.02 (95% CI -0.16, 0.11) cm2 (p = 0.71). MSCT, when compared to invasive angiography for the detection of significant coronary stenosis, showed sensitivity, specificity and diagnostic odds ratio of 95.5% (95% CI 88-99), 81% (95% CI 75-86)%, and 53 (95...

  1. Maintenance management of railway infrastructures based on reliability analysis

    International Nuclear Information System (INIS)

    Macchi, Marco; Garetti, Marco; Centrone, Domenico; Fumagalli, Luca; Piero Pavirani, Gian

    2012-01-01

    Railway infrastructure maintenance plays a crucial role for rail transport. It aims at guaranteeing safety of operations and availability of railway tracks and related equipment for traffic regulation. Moreover, it is one major cost for rail transport operations. Thus, the increased competition in traffic market is asking for maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations. This issue is addressed by the methodology presented in the paper. The first step of the methodology consists of a family-based approach for the equipment reliability analysis; its purpose is the identification of families of railway items which can be given the same reliability targets. The second step builds the reliability model of the railway system for identifying the most critical items, given a required service level for the transportation system. The two methods have been implemented and tested in practical case studies, in the context of Rete Ferroviaria Italiana, the Italian public limited company for railway transportation.

  2. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  3. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  4. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  5. Intra-observer reliability and agreement of manual and digital orthodontic model analysis.

    Science.gov (United States)

    Koretsi, Vasiliki; Tingelhoff, Linda; Proff, Peter; Kirschneck, Christian

    2018-01-23

    Digital orthodontic model analysis is gaining acceptance in orthodontics, but its reliability is dependent on the digitalisation hardware and software used. We thus investigated intra-observer reliability and agreement / conformity of a particular digital model analysis work-flow in relation to traditional manual plaster model analysis. Forty-eight plaster casts of the upper/lower dentition were collected. Virtual models were obtained with orthoX®scan (Dentaurum) and analysed with ivoris®analyze3D (Computer konkret). Manual model analyses were done with a dial caliper (0.1 mm). Common parameters were measured on each plaster cast and its virtual counterpart five times each by an experienced observer. We assessed intra-observer reliability within method (ICC), agreement/conformity between methods (Bland-Altman analyses and Lin's concordance correlation), and changing bias (regression analyses). Intra-observer reliability was substantial within each method (ICC ≥ 0.7), except for five manual outcomes (12.8 per cent). Bias between methods was statistically significant, but less than 0.5 mm for 87.2 per cent of the outcomes. In general, larger tooth sizes were measured digitally. Total difference maxilla and mandible had wide limits of agreement (-3.25/6.15 and -2.31/4.57 mm), but bias between methods was mostly smaller than intra-observer variation within each method with substantial conformity of manual and digital measurements in general. No changing bias was detected. Although both work-flows were reliable, the investigated digital work-flow proved to be more reliable and yielded on average larger tooth sizes. Averaged differences between methods were within 0.5 mm for directly measured outcomes but wide ranges are expected for some computed space parameters due to cumulative error. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  6. A fast approximation method for reliability analysis of cold-standby systems

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Amari, Suprasad V.

    2012-01-01

    Analyzing reliability of large cold-standby systems has been a complicated and time-consuming task, especially for systems with components having non-exponential time-to-failure distributions. In this paper, an approximation model, which is based on the central limit theorem, is presented for the reliability analysis of binary cold-standby systems. The proposed model can estimate the reliability of large cold-standby systems with binary-state components having arbitrary time-to-failure distributions in an efficient and easy way. The accuracy and efficiency of the proposed method are illustrated using several different types of distributions for both 1-out-of-n and k-out-of-n cold-standby systems.

  7. Reliability data banks

    International Nuclear Information System (INIS)

    Cannon, A.G.; Bendell, A.

    1991-01-01

    Following an introductory chapter on Reliability, what is it, why it is needed, how it is achieved and measured, the principles of reliability data bases and analysis methodologies are the subject of the next two chapters. Achievements due to the development of data banks are mentioned for different industries in the next chapter, FACTS, a comprehensive information system for industrial safety and reliability data collection in process plants are covered next. CREDO, the Central Reliability Data Organization is described in the next chapter and is indexed separately, as is the chapter on DANTE, the fabrication reliability Data analysis system. Reliability data banks at Electricite de France and IAEA's experience in compiling a generic component reliability data base are also separately indexed. The European reliability data system, ERDS, and the development of a large data bank come next. The last three chapters look at 'Reliability data banks, - friend foe or a waste of time'? and future developments. (UK)

  8. A framework for intelligent reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    Cheng Zhonghua; Jia Xisheng; Gao Ping; Wu Su; Wang Jianzhao

    2008-01-01

    To improve the efficiency of reliability-centered maintenance (RCM) analysis, case-based reasoning (CBR), as a kind of artificial intelligence (AI) technology, was successfully introduced into RCM analysis process, and a framework for intelligent RCM analysis (IRCMA) was studied. The idea for IRCMA is based on the fact that the historical records of RCM analysis on similar items can be referenced and used for the current RCM analysis of a new item. Because many common or similar items may exist in the analyzed equipment, the repeated tasks of RCM analysis can be considerably simplified or avoided by revising the similar cases in conducting RCM analysis. Based on the previous theory studies, an intelligent RCM analysis system (IRCMAS) prototype was developed. This research has focused on the description of the definition, basic principles as well as a framework of IRCMA, and discussion of critical techniques in the IRCMA. Finally, IRCMAS prototype is presented based on a case study

  9. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Sopira Vladimir; Kovacs, Zoltan

    2015-01-01

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  10. Reliability analysis of protection systems in NPP applying fault-tree analysis method

    International Nuclear Information System (INIS)

    Bokor, J.; Gaspar, P.; Hetthessy, J.; Szabo, G.

    1998-01-01

    This paper demonstrates the applicability and limits of dependability analysis in nuclear power plants (NPPS) based on the reactor protection refurbishment project (RRP) in NPP Paks. This paper illustrates case studies from the reliability analysis for NPP Paks. It also investigates the solutions for the connection between the data acquisition and subsystem control units (TSs) and the voter units (VTs), it analyzes the influence of the voting in the VT computer level, it studies the effects of the testing procedures to the dependability parameters. (author)

  11. A comparison between fault tree analysis and reliability graph with general gates

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun; Jung, Woo Sik

    2004-01-01

    Currently, level-1 probabilistic safety assessment (PSA) is performed on the basis of event tree analysis and fault tree analysis. Kim and Seong developed a new method for system reliability analysis named reliability graph with general gates (RGGG). The RGGG is an extension of conventional reliability graph, and it utilizes the transformation of system structures to equivalent Bayesian networks for quantitative calculation. The RGGG is considered to be intuitive and easy-to-use while as powerful as fault tree analysis. As an example, Kim and Seong already showed that the Bayesian network model for digital plant protection system (DPPS), which is transformed from the RGGG model for DPPS, can be shown in 1 page, while the fault tree model for DPPS consists of 64 pages of fault trees. Kim and Seong also insisted that Bayesian network model for DPPS is more intuitive because the one-to-one matching between each node in the Bayesian network model and an actual component of DPPS is possible. In this paper, we are going to give a comparison between fault tree analysis and the RGGG method with two example systems. The two example systems are the recirculation of in Korean standard nuclear power plants (KSNP) and the fault tree model developed by Rauzy

  12. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Counts, C.A.

    1984-06-01

    The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references

  13. Reliability analysis of pipelines and pressure vessels at nuclear power plants

    International Nuclear Information System (INIS)

    Klemin, A.I.; Shiverskij, E.A.

    1979-01-01

    Reliability analysis of pipelines and pressure vessels at NPP is given. The main causes and failure mechanisms of these elements, the ways of reliability improvement and preventing of great damages are considered. The reliability estimation methods both according to the statistical operation data and under the conditions of absence of failure statistics are given. The main characteristics and actual reliability factors of pipelines and pressure vessels of three home NPP: the first in the world NPP, VK-50 and Beloyarsk NPP, are presented. From the start-up there were practically no failures of the pipelines and pressure vessels at the VK-50 pilot installation. The analysis of the operation experience of the first and second blocks of the Beloyarsk NPP, as well as the first in the world NPP, shows that the most part of failures of the pipelines and pressure vessels of these energy blocks with the channel reactors is connected with the coolant leakage at minority pipelines of a small diameter. The most part of failures at individual pipelines of the first and second blocks of the Beloyarsk NPP are connected with the leakages of stuffing boxes of switching off devices. It is noted that serious failures of large pipelines and pressure vessels at all home NPP under operation have not been observed

  14. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  15. Spatial reliability analysis of a wind turbine blade cross section subjected to multi-axial extreme loading

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral

    2017-01-01

    This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between material...... properties, progressive material failure, and system reliability effects. An example analysis of reliability against material failure is demonstrated for a blade cross section. Based on the study we discuss the implications of using a system reliability approach, the effect of spatial correlation length......, type of material degradation algorithm, and reliability methods on the system failure probability, as well as the main factors that have an influence on the reliability. (C) 2017 Elsevier Ltd. All rights reserved....

  16. Reliability Information Analysis Center 1st Quarter 2007, Technical Area Task (TAT) Report

    Science.gov (United States)

    2007-02-05

    Library or [twField/Test 217Plus Ally w/ a.romtu DAAData Experience Data Need t( rdito Trqnd • s aa(Model) develol analisis Mappng & ANLED217Plu...of collected reliability data and have discovered that even with sparse data, analysis of the data shows clustering of reliability data by equipment...intended search target. Conceptually cluster discovered data to allow more detailed analysis by equipment type. For example, it may be useful to

  17. Fiber Access Networks: Reliability Analysis and Swedish Broadband Market

    Science.gov (United States)

    Wosinska, Lena; Chen, Jiajia; Larsen, Claus Popp

    Fiber access network architectures such as active optical networks (AONs) and passive optical networks (PONs) have been developed to support the growing bandwidth demand. Whereas particularly Swedish operators prefer AON, this may not be the case for operators in other countries. The choice depends on a combination of technical requirements, practical constraints, business models, and cost. Due to the increasing importance of reliable access to the network services, connection availability is becoming one of the most crucial issues for access networks, which should be reflected in the network owner's architecture decision. In many cases protection against failures is realized by adding backup resources. However, there is a trade off between the cost of protection and the level of service reliability since improving reliability performance by duplication of network resources (and capital expenditures CAPEX) may be too expensive. In this paper we present the evolution of fiber access networks and compare reliability performance in relation to investment and management cost for some representative cases. We consider both standard and novel architectures for deployment in both sparsely and densely populated areas. While some recent works focused on PON protection schemes with reduced CAPEX the current and future effort should be put on minimizing the operational expenditures (OPEX) during the access network lifetime.

  18. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  19. Reliability model of SNS linac (spallation neutron source-ORNL)

    International Nuclear Information System (INIS)

    Pitigoi, A.; Fernandez, P.

    2015-01-01

    A reliability model of SNS LINAC (Spallation Neutron Source at Oak Ridge National Laboratory) has been developed using risk spectrum reliability analysis software and the analysis of the accelerator system's reliability has been performed. The analysis results have been evaluated by comparing them with the SNS operational data. This paper presents the main results and conclusions focusing on the definition of design weaknesses and provides recommendations to improve reliability of the MYRRHA ( linear accelerator. The reliability results show that the most affected SNS LINAC parts/systems are: 1) SCL (superconducting linac), front-end systems: IS, LEBT (low-energy beam transport line), MEBT (medium-energy beam transport line), diagnostics and controls; 2) RF systems (especially the SCL RF system); 3) power supplies and PS controllers. These results are in line with the records in the SNS logbook. The reliability issue that needs to be enforced in the linac design is the redundancy of the systems, subsystems and components most affected by failures. For compensation purposes, there is a need for intelligent fail-over redundancy implementation in controllers. Enough diagnostics has to be implemented to allow reliable functioning of the redundant solutions and to ensure the compensation function

  20. Reliability, Validity, Comparability and Practical Utility of Cybercrime-Related Data, Metrics, and Information

    OpenAIRE

    Nir Kshetri

    2013-01-01

    With an increasing pervasiveness, prevalence and severity of cybercrimes, various metrics, measures and statistics have been developed and used to measure various aspects of this phenomenon. Cybercrime-related data, metrics, and information, however, pose important and difficult dilemmas regarding the issues of reliability, validity, comparability and practical utility. While many of the issues of the cybercrime economy are similar to other underground and underworld industries, this economy ...

  1. A comparative evaluation of five human reliability assessment techniques

    International Nuclear Information System (INIS)

    Kirwan, B.

    1988-01-01

    A field experiment was undertaken to evaluate the accuracy, usefulness, and resources requirements of five human reliability quantification techniques (Techniques for Human Error Rate Prediction (THERP); Paired Comparisons, Human Error Assessment and Reduction Technique (HEART), Success Liklihood Index Method (SLIM)-Multi Attribute Utility Decomposition (MAUD), and Absolute Probability Judgement). This was achieved by assessing technique predictions against a set of known human error probabilities, and by comparing their predictions on a set of five realistic Probabilisitc Risk Assessment (PRA) human error. On a combined measure of accuracy THERP and Absolute Probability Judgement performed best, whilst HEART showed indications of accuracy and was lower in resources usage than other techniques. HEART and THERP both appear to benefit from using trained assessors in order to obtain the best results. SLIM and Paired Comparisons require further research on achieving a robust calibration relationship between their scale values and absolute probabilities. (author)

  2. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  3. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  4. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    Hall, R.E.

    1985-01-01

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  5. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Kobayashi, Michiyuki

    1994-01-01

    Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs

  6. Analysis of the reliability of the active injection safety systems of Angra I

    International Nuclear Information System (INIS)

    Frutuoso e Melo, P.F.F.

    1981-01-01

    The reliability of the active emergency core cooling systems of Angra I nuclear power plant is evaluated. The fault tree analysis is employed. The unavailability of the above cited systems, is calculated. A parametric sensitivity analysis has been performed, due to the existing scattering in the failure and repair rate data of these system's components. The minimal cut sets were determined and, as a final step, a reliability importance analysis has been performed. This final step has required the development of a computer program. The methodology and data from the 'Reactor Safety Study' (Wash-1400) (in which the reliability of safety systems of a tipical PWR plant is calculated), is employed. The unavailability values for the safety systems analysed are too low, thus showing that in most cases the systems analysed are available to mitigate the effects of a loss-of-coolant accident. (Author) [pt

  7. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    Science.gov (United States)

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  8. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  9. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  10. IEEE guide for general principles of reliability analysis of nuclear power generating station protection systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals

  11. Reliability analysis of microcomputer boards and computer based systems important to safety of nuclear plants

    International Nuclear Information System (INIS)

    Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.

    2010-01-01

    Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)

  12. Analysis of Statistical Distributions Used for Modeling Reliability and Failure Rate of Temperature Alarm Circuit

    International Nuclear Information System (INIS)

    EI-Shanshoury, G.I.

    2011-01-01

    Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate

  13. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  14. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  15. A reliability study of the new sensors for movement analysis (SHARIF-HMIS).

    Science.gov (United States)

    Abedi, Mohen; Manshadi, Farideh Dehghan; Zavieh, Minoo Khalkhali; Ashouri, Sajad; Azimi, Hadi; Parnanpour, Mohamad

    2016-04-01

    SHARIF-HMIS is a new inertial sensor designed for movement analysis. The aim of the present study was to assess the inter-tester and intra-tester reliability of some kinematic parameters in different lumbar motions making use of this sensor. 24 healthy persons and 28 patients with low back pain participated in the current reliability study. The test was performed in five different lumbar motions consisting of lumbar flexion in 0, 15, and 30° in the right and left directions. For measuring inter-tester reliability, all the tests were carried out twice on the same day separately by two physiotherapists. Intra-tester reliability was assessed by reproducing the tests after 3 days by the same physiotherapist. The present study revealed satisfactory inter- and intra-tester reliability indices in different positions. ICCs for intra-tester reliability ranged from 0.65 to 0.98 and 0.59 to 0.81 for healthy and patient participants, respectively. Also, ICCs for inter-tester reliability ranged from 0.65 to 0.92 for the healthy and 0.65 to 0.87 for patient participants. In general, it can be inferred from the results that measuring the kinematic parameters in lumbar movements using inertial sensors enjoys acceptable reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analysis of performance reliability of electrical and electronic equipment of car-tractor

    Directory of Open Access Journals (Sweden)

    Kravchenko О.Р.

    2016-08-01

    Full Text Available The analysis of the operational reliability of electrical and electronic equipment of vehicles, trucks Mercedes-Benz Actros 1844 LS and Volvo FH 1242, conducting international cargo transportation is performed. It is established that the equipment is reliable, which meets modern requirements, but where there is a violation of the resolution. The reason for repair work is constructive and operational factors. Distribution of efficiency and overall performance of operational reliability is retrieved. Items with more bounce are found. Common factors of violation of efficiency cars, trucks in operation, are largely different stages in warranty runs are obtained.

  17. A Comparison of Three Methods for the Analysis of Skin Flap Viability: Reliability and Validity.

    Science.gov (United States)

    Tim, Carla Roberta; Martignago, Cintia Cristina Santi; da Silva, Viviane Ribeiro; Dos Santos, Estefany Camila Bonfim; Vieira, Fabiana Nascimento; Parizotto, Nivaldo Antonio; Liebano, Richard Eloin

    2018-05-01

    Objective: Technological advances have provided new alternatives to the analysis of skin flap viability in animal models; however, the interrater validity and reliability of these techniques have yet to be analyzed. The present study aimed to evaluate the interrater validity and reliability of three different methods: weight of paper template (WPT), paper template area (PTA), and photographic analysis. Approach: Sixteen male Wistar rats had their cranially based dorsal skin flap elevated. On the seventh postoperative day, the viable tissue area and the necrotic area of the skin flap were recorded using the paper template method and photo image. The evaluation of the percentage of viable tissue was performed using three methods, simultaneously and independently by two raters. The analysis of interrater reliability and viability was performed using the intraclass correlation coefficient and Bland Altman Plot Analysis was used to visualize the presence or absence of systematic bias in the evaluations of data validity. Results: The results showed that interrater reliability for WPT, measurement of PTA, and photographic analysis were 0.995, 0.990, and 0.982, respectively. For data validity, a correlation >0.90 was observed for all comparisons made between the three methods. In addition, Bland Altman Plot Analysis showed agreement between the comparisons of the methods and the presence of systematic bias was not observed. Innovation: Digital methods are an excellent choice for assessing skin flap viability; moreover, they make data use and storage easier. Conclusion: Independently from the method used, the interrater reliability and validity proved to be excellent for the analysis of skin flaps' viability.

  18. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  19. Technology development of maintenance optimization and reliability analysis for safety features in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Choi, Seong Soo; Lee, Dong Gue; Kim, Young Il

    1999-12-01

    The reliability data management system (RDMS) for safety systems of PHWR type plants has been developed and utilized in the reliability analysis of the special safety systems of Wolsong Unit 1,2 with plant overhaul period lengthened. The RDMS is developed for the periodic efficient reliability analysis of the safety systems of Wolsong Unit 1,2. In addition, this system provides the function of analyzing the effects on safety system unavailability if the test period of a test procedure changes as well as the function of optimizing the test periods of safety-related test procedures. The RDMS can be utilized in handling the requests of the regulatory institute actively with regard to the reliability validation of safety systems. (author)

  20. An Introduction To Reliability

    International Nuclear Information System (INIS)

    Park, Kyoung Su

    1993-08-01

    This book introduces reliability with definition of reliability, requirement of reliability, system of life cycle and reliability, reliability and failure rate such as summary, reliability characteristic, chance failure, failure rate which changes over time, failure mode, replacement, reliability in engineering design, reliability test over assumption of failure rate, and drawing of reliability data, prediction of system reliability, conservation of system, failure such as summary and failure relay and analysis of system safety.

  1. Reliability analysis of the recirculation phase of the safety injection system of Angra-1

    International Nuclear Information System (INIS)

    Rivera, R.R.J.M.

    1981-09-01

    The calculation of several reliability parameters-failure probability, unavailability and unreliability - of the recirculation phase of the safety injection system of Angra-1, was done. This system has two distinct modes of operation (short term and long term) which were fault tree analysed both separately and as a whole. To obtain quantitative results the computer codes SAMPLE and PRET-KITT were utilized. The former was used to consider the uncertainties in the failure data (drawn integrally from WASH-1400) and the latter to obtain time dependent unreliability values. Hardware failures and common-mode failures were considered. Altough the analysis methods employed here differ somewhat from those used in WASH-1400, the results which could be compared were found to have the order of magnitude. A viability study of some suggestions of system's modifications was performed, and it has shown that some significant reliability improvements can be achieved with reasonably simple changes. (Author) [pt

  2. Multi-Level Simulated Fault Injection for Data Dependent Reliability Analysis of RTL Circuit Descriptions

    Directory of Open Access Journals (Sweden)

    NIMARA, S.

    2016-02-01

    Full Text Available This paper proposes data-dependent reliability evaluation methodology for digital systems described at Register Transfer Level (RTL. It uses a hybrid hierarchical approach, combining the accuracy provided by Gate Level (GL Simulated Fault Injection (SFI and the low simulation overhead required by RTL fault injection. The methodology comprises the following steps: the correct simulation of the RTL system, according to a set of input vectors, hierarchical decomposition of the system into basic RTL blocks, logic synthesis of basic RTL blocks, data-dependent SFI for the GL netlists, and RTL SFI. The proposed methodology has been validated in terms of accuracy on a medium sized circuit – the parallel comparator used in Check Node Unit (CNU of the Low-Density Parity-Check (LDPC decoders. The methodology has been applied for the reliability analysis of a 128-bit Advanced Encryption Standard (AES crypto-core, for which the GL simulation was prohibitive in terms of required computational resources.

  3. Development of the integrated system reliability analysis code MODULE

    International Nuclear Information System (INIS)

    Han, S.H.; Yoo, K.J.; Kim, T.W.

    1987-01-01

    The major components in a system reliability analysis are the determination of cut sets, importance measure, and uncertainty analysis. Various computer codes have been used for these purposes. For example, SETS and FTAP are used to determine cut sets; Importance for importance calculations; and Sample, CONINT, and MOCUP for uncertainty analysis. There have been problems when the codes run each other and the input and output are not linked, which could result in errors when preparing input for each code. The code MODULE was developed to carry out the above calculations simultaneously without linking input and outputs to other codes. MODULE can also prepare input for SETS for the case of a large fault tree that cannot be handled by MODULE. The flow diagram of the MODULE code is shown. To verify the MODULE code, two examples are selected and the results and computation times are compared with those of SETS, FTAP, CONINT, and MOCUP on both Cyber 170-875 and IBM PC/AT. Two examples are fault trees of the auxiliary feedwater system (AFWS) of Korea Nuclear Units (KNU)-1 and -2, which have 54 gates and 115 events, 39 gates and 92 events, respectively. The MODULE code has the advantage that it can calculate the cut sets, importances, and uncertainties in a single run with little increase in computing time over other codes and that it can be used in personal computers

  4. Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Aksit, Mehmet; de Lemos, Rogerio; Gacek, Cristina

    2007-01-01

    Several reliability engineering approaches have been proposed to identify and recover from failures. A well-known and mature approach is the Failure Mode and Effect Analysis (FMEA) method that is usually utilized together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of failures.

  5. Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life

    CERN Document Server

    Nikulin, M; Mesbah, M; Limnios, N

    2004-01-01

    Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields.

  6. Reliability Analysis of Safety Grade PLC(POSAFE-Q) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lyou, J.; Lee, D. Y.; Choi, J. G.; Park, W. M.

    2006-01-01

    The Part Count Method of the military standard MILHDK- 217F has been used for the reliability prediction of the nuclear field. This handbook determines the Programmable Logic Controller (PLC) failure rate by summing the failure rates of the individual component included in the PLC. Normally it is easily predictable that the components added for the fault detection improve the reliability of the PLC. But the application of this handbook is estimated with poor reliability because of the increased component number for the fault detection. To compensate this discrepancy, the quantitative reliability analysis method is suggested using the functional separation model in this paper. And it is applied to the Reactor Protection System (RPS) being developed in Korea to identify any design weak points from a safety point of view

  7. Survey of methods used to asses human reliability in the human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1988-01-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim to assess the state-of-the-art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participate in the HF-RBE, which is organised around two study cases: (1) analysis of routine functional test and maintenance procedures, with the aim to assess the probability of test-induced failures, the probability of failures to remain unrevealed, and the potential to initiate transients because of errors performed in the test; and (2) analysis of human actions during an operational transient, with the aim to assess the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. The paper briefly reports how the HF-RBE was structured and gives an overview of the methods that have been used for predicting human reliability in both study cases. The experience in applying these methods is discussed and the results obtained are compared. (author)

  8. Structural reliability analysis under evidence theory using the active learning kriging model

    Science.gov (United States)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  9. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  10. Structural system reliability calculation using a probabilistic fault tree analysis method

    Science.gov (United States)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  11. Multinomial-exponential reliability function: a software reliability model

    International Nuclear Information System (INIS)

    Saiz de Bustamante, Amalio; Saiz de Bustamante, Barbara

    2003-01-01

    The multinomial-exponential reliability function (MERF) was developed during a detailed study of the software failure/correction processes. Later on MERF was approximated by a much simpler exponential reliability function (EARF), which keeps most of MERF mathematical properties, so the two functions together makes up a single reliability model. The reliability model MERF/EARF considers the software failure process as a non-homogeneous Poisson process (NHPP), and the repair (correction) process, a multinomial distribution. The model supposes that both processes are statistically independent. The paper discusses the model's theoretical basis, its mathematical properties and its application to software reliability. Nevertheless it is foreseen model applications to inspection and maintenance of physical systems. The paper includes a complete numerical example of the model application to a software reliability analysis

  12. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Systems reliability analysis: applications of the SPARCS System-Reliability Assessment Computer Program

    International Nuclear Information System (INIS)

    Locks, M.O.

    1978-01-01

    SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex Systems, Version 2) is a PL/1 computer program for assessing (establishing interval estimates for) the reliability and the MTBF of a large and complex s-coherent system of any modular configuration. The system can consist of a complex logical assembly of independently failing attribute (binomial-Bernoulli) and time-to-failure (Poisson-exponential) components, without regard to their placement. Alternatively, it can be a configuration of independently failing modules, where each module has either or both attribute and time-to-failure components. SPARCS-2 also has an improved super modularity feature. Modules with minimal-cut unreliabiliy calculations can be mixed with those having minimal-path reliability calculations. All output has been standardized to system reliability or probability of success, regardless of the form in which the input data is presented, and whatever the configuration of modules or elements within modules

  14. Human reliability analysis in Loviisa probabilistic safety analysis

    International Nuclear Information System (INIS)

    Illman, L.; Isaksson, J.; Makkonen, L.; Vaurio, J.K.; Vuorio, U.

    1986-01-01

    The human reliability analysis in the Loviisa PSA project is carried out for three major groups of errors in human actions: (A) errors made before an initiating event, (B) errors that initiate a transient and (C) errors made during transients. Recovery possibilities are also included in each group. The methods used or planned for each group are described. A simplified THERP approach is used for group A, with emphasis on test and maintenance error recovery aspects and dependencies between redundancies. For group B, task analyses and human factors assessments are made for startup, shutdown and operational transients, with emphasis on potential common cause initiators. For group C, both misdiagnosis and slow decision making are analyzed, as well as errors made in carrying out necessary or backup actions. New or advanced features of the methodology are described

  15. Inter- and intra-observer reliability of masking in plantar pressure measurement analysis.

    Science.gov (United States)

    Deschamps, K; Birch, I; Mc Innes, J; Desloovere, K; Matricali, G A

    2009-10-01

    Plantar pressure measurement is an important tool in gait analysis. Manual placement of small masks (masking) is increasingly used to calculate plantar pressure characteristics. Little is known concerning the reliability of manual masking. The aim of this study was to determine the reliability of masking on 2D plantar pressure footprints, in a population with forefoot deformity (i.e. hallux valgus). Using a random repeated-measure design, four observers identified the third metatarsal head on a peak-pressure barefoot footprint, using a small mask. Subsequently, the location of all five metatarsal heads was identified, using the same size of masks and the same protocol. The 2D positional variation of the masks and the peak pressure (PP) and pressure time integral (PTI) values of each mask were calculated. For single-masking the lowest inter-observer reliability was found for the distal-proximal direction, causing a clear, adverse impact on the reliability of the pressure characteristics (PP and PTI). In the medial-lateral direction the inter-observer reliability could be scored as high. Intra-observer reliability was better and could be scored as high or good for both directions, with a correlated improved reliability of the pressure characteristics. Reliability of multi-masking showed a similar pattern, but overall values tended to be lower. Therefore, small sized masking in order to define pressure characteristics in the forefoot should be done with care.

  16. Features of an advanced human reliability analysis method, AGAPE-ET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided.

  17. Features of an advanced human reliability analysis method, AGAPE-ET

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2005-01-01

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided

  18. Guidelines for reliability analysis of digital systems in PSA context. Phase 1 status report

    International Nuclear Information System (INIS)

    Authen, S.; Larsson, J.; Bjoerkman, K.; Holmberg, J.-E.

    2010-12-01

    Digital protection and control systems are appearing as upgrades in older nuclear power plants (NPPs) and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital system upgrades on NPPs, quantitative reliability models are needed for digital systems. Due to the many unique attributes of these systems, challenges exist in systems analysis, modeling and in data collection. Currently there is no consensus on reliability analysis approaches. Traditional methods have clearly limitations, but more dynamic approaches are still in trial stage and can be difficult to apply in full scale probabilistic safety assessments (PSA). The number of PSAs worldwide including reliability models of digital I and C systems are few. A comparison of Nordic experiences and a literature review on main international references have been performed in this pre-study project. The study shows a wide range of approaches, and also indicates that no state-of-the-art currently exists. The study shows areas where the different PSAs agree and gives the basis for development of a common taxonomy for reliability analysis of digital systems. It is still an open matter whether software reliability needs to be explicitly modelled in the PSA. The most important issue concerning software reliability is proper descriptions of the impact that software-based systems has on the dependence between the safety functions and the structure of accident sequences. In general the conventional fault tree approach seems to be sufficient for modelling reactor protection system kind of functions. The following focus areas have been identified for further activities: 1. Common taxonomy of hardware and software failure modes of digital components for common use 2. Guidelines regarding level of detail in system analysis and screening of components, failure modes and dependencies 3. Approach for modelling of CCF between components (including software). (Author)

  19. Guidelines for reliability analysis of digital systems in PSA context. Phase 1 status report

    Energy Technology Data Exchange (ETDEWEB)

    Authen, S.; Larsson, J. (Risk Pilot AB, Stockholm (Sweden)); Bjoerkman, K.; Holmberg, J.-E. (VTT, Helsingfors (Finland))

    2010-12-15

    Digital protection and control systems are appearing as upgrades in older nuclear power plants (NPPs) and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital system upgrades on NPPs, quantitative reliability models are needed for digital systems. Due to the many unique attributes of these systems, challenges exist in systems analysis, modeling and in data collection. Currently there is no consensus on reliability analysis approaches. Traditional methods have clearly limitations, but more dynamic approaches are still in trial stage and can be difficult to apply in full scale probabilistic safety assessments (PSA). The number of PSAs worldwide including reliability models of digital I and C systems are few. A comparison of Nordic experiences and a literature review on main international references have been performed in this pre-study project. The study shows a wide range of approaches, and also indicates that no state-of-the-art currently exists. The study shows areas where the different PSAs agree and gives the basis for development of a common taxonomy for reliability analysis of digital systems. It is still an open matter whether software reliability needs to be explicitly modelled in the PSA. The most important issue concerning software reliability is proper descriptions of the impact that software-based systems has on the dependence between the safety functions and the structure of accident sequences. In general the conventional fault tree approach seems to be sufficient for modelling reactor protection system kind of functions. The following focus areas have been identified for further activities: 1. Common taxonomy of hardware and software failure modes of digital components for common use 2. Guidelines regarding level of detail in system analysis and screening of components, failure modes and dependencies 3. Approach for modelling of CCF between components (including software). (Author)

  20. Application of GO methodology in reliability analysis of offsite power supply of Daya Bay NPP

    International Nuclear Information System (INIS)

    Shen Zupei; Li Xiaodong; Huang Xiangrui

    2003-01-01

    The author applies the GO methodology to reliability analysis of the offsite power supply system of Daya Bay NPP. The direct quantitative calculation formulas of the stable reliability target of the system with shared signals and the dynamic calculation formulas of the state probability for the unit with two states are derived. The method to solve the fault event sets of the system is also presented and all the fault event sets of the outer power supply system and their failure probability are obtained. The resumption reliability of the offsite power supply system after the stability failure of the power net is also calculated. The result shows that the GO methodology is very simple and useful in the stable and dynamic reliability analysis of the repairable system

  1. Human Reliability Analysis For Computerized Procedures

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Gertman, David I.; Le Blanc, Katya

    2011-01-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  2. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  3. Reliability analysis of the automatic control of the A-1 power plant coolant temperature

    International Nuclear Information System (INIS)

    Kuklik, B.; Semerad, V.; Chylek, Z.

    Reliability analysis of the automatic control of the A-1 reactor coolant temperature is performed taking into account the effect of both the dependent failures and the routine maintenance of control system components. In a separate supplement, reliability analysis is reported of coincidence systems of the A-1 power plant reactor. Both safe and unsafe failures are taken into consideration as well as the effect of maintenance of the respective branch elements

  4. Inter comparison of REPAS and APSRA methodologies for passive system reliability analysis

    International Nuclear Information System (INIS)

    Solanki, R.B.; Krishnamurthy, P.R.; Singh, Suneet; Varde, P.V.; Verma, A.K.

    2014-01-01

    The increasing use of passive systems in the innovative nuclear reactors puts demand on the estimation of the reliability assessment of these passive systems. The passive systems operate on the driving forces such as natural circulation, gravity, internal stored energy etc. which are moderately weaker than that of active components. Hence, phenomenological failures (virtual components) are equally important as that of equipment failures (real components) in the evaluation of passive systems reliability. The contribution of the mechanical components to the passive system reliability can be evaluated in a classical way using the available component reliability database and well known methods. On the other hand, different methods are required to evaluate the reliability of processes like thermohydraulics due to lack of adequate failure data. The research is ongoing worldwide on the reliability assessment of the passive systems and their integration into PSA, however consensus is not reached. Two of the most widely used methods are Reliability Evaluation of Passive Systems (REPAS) and Assessment of Passive System Reliability (APSRA). Both these methods characterize the uncertainties involved in the design and process parameters governing the function of the passive system. However, these methods differ in the quantification of passive system reliability. Inter comparison among different available methods provides useful insights into the strength and weakness of different methods. This paper highlights the results of the thermal hydraulic analysis of a typical passive isolation condenser system carried out using RELAP mode 3.2 computer code applying REPAS and APSRA methodologies. The failure surface is established for the passive system under consideration and system reliability has also been evaluated using these methods. Challenges involved in passive system reliabilities are identified, which require further attention in order to overcome the shortcomings of these

  5. Human Factors Reliability Analysis for Assuring Nuclear Safety Using Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Eisawy, E.A.-F. I.; Sallam, H.

    2016-01-01

    In order to ensure effective prevention of harmful events, the risk assessment process cannot ignore the role of humans in the dynamics of accidental events and thus the seriousness of the consequences that may derive from them. Human reliability analysis (HRA) involves the use of qualitative and quantitative methods to assess the human contribution to risk. HRA techniques have been developed in order to provide human error probability values associated with operators’ tasks to be included within the broader context of system risk assessment, and are aimed at reducing the probability of accidental events. Fault tree analysis (FTA) is a graphical model that displays the various combinations of equipment failures and human errors that can result in the main system failure of interest. FTA is a risk analysis technique to assess likelihood (in a probabilistic context) of an event. The objective data available to estimate the likelihood is often missing, and even if available, is subject to incompleteness and imprecision or vagueness. Without addressing incompleteness and imprecision in the available data, FTA and subsequent risk analysis give a false impression of precision and correctness that undermines the overall credibility of the process. To solve this problem, qualitative justification in the context of failure possibilities can be used as alternative for quantitative justification. In this paper, we introduce the approach of fuzzy reliability as solution for fault tree analysis drawbacks. A new fuzzy fault tree method is proposed for the analysis of human reliability based on fuzzy sets and fuzzy operations t-norms, co-norms, defuzzification, and fuzzy failure probability. (author)

  6. Role of frameworks, models, data, and judgment in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W

    1986-05-01

    Many advancements in the methods for treating human interactions in PRA studies have occurred in the last decade. These advancements appear to increase the capability of PRAs to extend beyond just the assessment of the human's importance to safety. However, variations in the application of these advanced models, data, and judgements in recent PRAs make quantitative comparisons among studies extremely difficult. This uncertainty in the analysis diminishes the usefulness of the PRA study for upgrading procedures, enhancing traning, simulator design, technical specification guidance, and for aid in designing the man-machine interface. Hence, there is a need for a framework to guide analysts in incorporating human interactions into the PRA systems analyses so that future users of a PRA study will have a clear understanding of the approaches, models, data, and assumptions which were employed in the initial study. This paper describes the role of the systematic human action reliability procedure (SHARP) in providing a road map through the complex terrain of human reliability that promises to improve the reproducibility of such analysis in the areas of selecting the models, data, representations, and assumptions. Also described is the role that a human cognitive reliability model can have in collecting data from simulators and helping analysts assign human reliability parameters in a PRA study. Use of these systematic approaches to perform or upgrade existing PRAs promises to make PRA studies more useful as risk management tools.

  7. Case study on the use of PSA methods: Human reliability analysis

    International Nuclear Information System (INIS)

    1991-04-01

    The overall objective of treating human reliability in a probabilistic safety analysis is to ensure that the key human interactions of typical crews are accurately and systematically incorporated into the study in a traceable manner. An additional objective is to make the human reliability analysis (HRA) as realistic as possible, taking into account the emergency procedures, the man-machine interface, the focus of training process, and the knowledge and experience of the crews. Section 3 of the paper describes an overview of this analytical process which leads to three more detailed example problems described in Section 4. Section 5 discusses a peer review process. References are presented that are useful in performing HRAs. In addition appendices are provided for definitions, selected data and a generic list of performance shaping factors. 35 refs, figs and tabs

  8. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  9. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0: Integrated Reliability and Risk Analysis System (IRRAS) reference manual. Volume 2

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the use the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification to report generation. Version 1.0 of the IRRAS program was released in February of 1987. Since then, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 5.0 and is the subject of this Reference Manual. Version 5.0 of IRRAS provides the same capabilities as earlier versions and ads the ability to perform location transformations, seismic analysis, and provides enhancements to the user interface as well as improved algorithm performance. Additionally, version 5.0 contains new alphanumeric fault tree and event used for event tree rules, recovery rules, and end state partitioning

  10. Reliability and mechanical design

    International Nuclear Information System (INIS)

    Lemaire, Maurice

    1997-01-01

    A lot of results in mechanical design are obtained from a modelisation of physical reality and from a numerical solution which would lead to the evaluation of needs and resources. The goal of the reliability analysis is to evaluate the confidence which it is possible to grant to the chosen design through the calculation of a probability of failure linked to the retained scenario. Two types of analysis are proposed: the sensitivity analysis and the reliability analysis. Approximate methods are applicable to problems related to reliability, availability, maintainability and safety (RAMS)

  11. Reliability and accuracy analysis of a new semiautomatic radiographic measurement software in adult scoliosis.

    Science.gov (United States)

    Aubin, Carl-Eric; Bellefleur, Christian; Joncas, Julie; de Lanauze, Dominic; Kadoury, Samuel; Blanke, Kathy; Parent, Stefan; Labelle, Hubert

    2011-05-20

    Radiographic software measurement analysis in adult scoliosis. To assess the accuracy as well as the intra- and interobserver reliability of measuring different indices on preoperative adult scoliosis radiographs using a novel measurement software that includes a calibration procedure and semiautomatic features to facilitate the measurement process. Scoliosis requires a careful radiographic evaluation to assess the deformity. Manual and computer radiographic process measures have been studied extensively to determine the reliability and reproducibility in adolescent idiopathic scoliosis. Most studies rely on comparing given measurements, which are repeated by the same user or by an expert user. A given measure with a small intra- or interobserver error might be deemed as good repeatability, but all measurements might not be truly accurate because the ground-truth value is often unknown. Thorough accuracy assessment of radiographic measures is necessary to assess scoliotic deformities, compare these measures at different stages or to permit valid multicenter studies. Thirty-four sets of adult scoliosis digital radiographs were measured two times by three independent observers using a novel radiographic measurement software that includes semiautomatic features to facilitate the measurement process. Twenty different measures taken from the Spinal Deformity Study Group radiographic measurement manual were performed on the coronal and sagittal images. Intra- and intermeasurer reliability for each measure was assessed. The accuracy of the measurement software was also assessed using a physical spine model in six different scoliotic configurations as a true reference. The majority of the measures demonstrated good to excellent intra- and intermeasurer reliability, except for sacral obliquity. The standard variation of all the measures was very small: ≤ 4.2° for Cobb angles, ≤ 4.2° for the kyphosis, ≤ 5.7° for the lordosis, ≤ 3.9° for the pelvic angles, and

  12. FFTF [Fast Flux Test Facility] reactor shutdown system reliability reevaluation

    International Nuclear Information System (INIS)

    Pierce, B.F.

    1986-07-01

    The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations

  13. Inter- and intra-examiner reliability of footprint pattern analysis obtained from diabetics using the Harris mat.

    Science.gov (United States)

    Cisneros, Lígia de Loiola; Fonseca, Tiago H S; Abreu, Vivianni C

    2010-01-01

    High plantar pressure is a proven risk factor for ulceration among individuals with diabetes mellitus. The Harris and Beath footprinting mat is one of the tools used in screening for foot ulceration risk among these subjects. There are no reports in the literature on the reliability of footprint analysis using print pattern criteria. The aim of this study was to evaluate the inter- and intra-examiner reliability of the analysis of footprint patterns obtained using the Harris and Beath footprinting mat. Footprints were taken from 41 subjects using the footprinting mat. The images were subjected to analysis by three independent examiners. To investigate the intra-examiner reliability, the analysis was repeated by one of the examiners one week later. The weighted kappa coefficient was excellent (K(w) > 0.80) for the inter- and intra-examiner analyses for most of the points studied on both feet. The criteria for analyzing footprint patterns obtained using the Harris and Beath footprinting mat presented good reliability and high to excellent inter- and intra-examiner agreement. This method is reliable for analyses involving one or more examiners. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12609000693224.

  14. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  15. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

    International Nuclear Information System (INIS)

    Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

    2014-01-01

    This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

  16. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  17. Modelling of nuclear power plant control and instrumentation elements for automatic disturbance and reliability analysis

    International Nuclear Information System (INIS)

    Hollo, E.

    1985-08-01

    Present Final Report summarizes results of R/D work done within IAEA-VEIKI (Institute for Electrical Power Research, Budapest, Hungary) Research Contract No. 3210 during 3 years' period of 01.08.1982 - 31.08.1985. Chapter 1 lists main research objectives of the project. Main results obtained are summarized in Chapters 2 and 3. Outcomes from development of failure modelling methodologies and their application for C/I components of WWER-440 units are as follows (Chapter 2): improvement of available ''failure mode and effect analysis'' methods and mini-fault tree structures usable for automatic disturbance (DAS) and reliability (RAS) analysis; general classification and determination of functional failure modes of WWER-440 NPP C/I components; set up of logic models for motor operated control valves and rod control/drive mechanism. Results of development of methods and their application for reliability modelling of NPP components and systems cover (Chapter 3): development of an algorithm (computer code COMPREL) for component-related failure and reliability parameter calculation; reliability analysis of PAKS II NPP diesel system; definition of functional requirements for reliability data bank (RDB) in WWER-440 units. Determination of RDB input/output data structure and data manipulation services. Methods used are a-priori failure mode and effect analysis, combined fault tree/event tree modelling technique, structural computer programming, probability theory application to nuclear field

  18. Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran

    International Nuclear Information System (INIS)

    Barabady, Javad; Kumar, Uday

    2008-01-01

    The performance of mining machines depends on the reliability of the equipment used, the operating environment, the maintenance efficiency, the operation process, the technical expertise of the miners, etc. As the size and complexity of mining equipments continue to increase, the implications of equipment failure become ever more critical. Therefore, reliability analysis is required to identify the bottlenecks in the system and to find the components or subsystems with low reliability for a given designed performance. It is important to select a suitable method for data collection as well as for reliability analysis. This paper presents a case study describing reliability and availability analysis of the crushing plant number 3 at Jajarm Bauxite Mine in Iran. In this study, the crushing plant number 3 is divided into six subsystems. The parameters of some probability distributions, such as Weibull, Exponential, and Lognormal distributions have been estimated by using ReliaSoft's Weibull++6 software. The results of the analysis show that the conveyer subsystem and secondary screen subsystem are critical from a reliability point of view, and the secondary crusher subsystem and conveyer subsystem are critical from an availability point of view. The study also shows that the reliability analysis is very useful for deciding maintenance intervals

  19. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  20. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  1. Reliability analysis of reactor systems by applying probability method; Analiza pouzdanosti reaktorskih sistema primenom metoda verovatnoce

    Energy Technology Data Exchange (ETDEWEB)

    Milivojevic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1974-12-15

    Probability method was chosen for analysing the reactor system reliability is considered realistic since it is based on verified experimental data. In fact this is a statistical method. The probability method developed takes into account the probability distribution of permitted levels of relevant parameters and their particular influence on the reliability of the system as a whole. The proposed method is rather general, and was used for problem of thermal safety analysis of reactor system. This analysis enables to analyze basic properties of the system under different operation conditions, expressed in form of probability they show the reliability of the system on the whole as well as reliability of each component.

  2. Factorial validation and reliability analysis of the brain fag syndrome ...

    African Journals Online (AJOL)

    Results: Two valid factors emerged with items 1-3 and items 4, 5 & 7 loading on respectively, making the BFSS a twodimensional (multidimensional) scale which measures 2 aspects of brain fag [labeled burning sensation and crawling sensation respectively]. The reliability analysis yielded a Cronbach Alpha coefficient of ...

  3. Metrological Reliability of Medical Devices

    Science.gov (United States)

    Costa Monteiro, E.; Leon, L. F.

    2015-02-01

    The prominent development of health technologies of the 20th century triggered demands for metrological reliability of physiological measurements comprising physical, chemical and biological quantities, essential to ensure accurate and comparable results of clinical measurements. In the present work, aspects concerning metrological reliability in premarket and postmarket assessments of medical devices are discussed, pointing out challenges to be overcome. In addition, considering the social relevance of the biomeasurements results, Biometrological Principles to be pursued by research and innovation aimed at biomedical applications are proposed, along with the analysis of their contributions to guarantee the innovative health technologies compliance with the main ethical pillars of Bioethics.

  4. Reliability analysis of the epidural spinal cord compression scale.

    Science.gov (United States)

    Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R

    2010-09-01

    The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.

  5. A review of the reliability analysis of LPRS including the components repairs

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    The reliability analysis of low pressure recirculation system in its long-term recicurlation phase before 24hs is presented. The possibility of repairing the components out of the containment is included. A general revision of analysis of the short-term recirculation phase is done. (author) [pt

  6. Development of the design and reliability analysis of a seabed repository system

    International Nuclear Information System (INIS)

    1987-06-01

    This study examines the seabed repository scheme proposed in 1979 for the long term disposal of heat generating radio-active waste and develops it to a standard sufficient to compare its reliability with the drilled emplacement and penetrator schemes. The reinforced concrete repositories contain 324 waste canisters and weigh 982 tonnes fully loaded in water. The repositories are transported up to 6000 km to the disposal area by a special purpose ship and lowered 5.5 km to the seabed on six braided nylon ropes by traction winches. Reliability of the seabed repository system, measured in terms of accidents per year involving loss of one or more canisters, was comparable with the other systems. (author)

  7. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  8. Reliability evaluation and analysis of sugarcane 7000 series harvesters in sugarcane harvesting

    Directory of Open Access Journals (Sweden)

    P Najafi

    2015-09-01

    hours were used. Usually, two methods are usedfor machine reliability modeling. The first is Pareto analysis and the second is statistical modeling of failure distributions (Barabadi and Kumar, 2007. For failures distribution modeling data need to be found, that are independent and identically (iid distributed or not. For this, trend test and serial correlation tests are used. If the data has a trend, those are not iid and its parameters are computed from the power law process. For the data that does not havea trend, serial correlation testare performed. If the correlation coefficient is less than 0.05 the data is not iid. Therefore, its parameters reach via branching poison process or other similar methods; if the correlation coefficient is more than 0.05, the data are iid. Therefore, the classical statistical methods will be used for reliability modeling. Trend test results are compared with statistical parameter. A test for serial correlation was also done by plotting the ith TBF against the (i-1th TBF, i ¼ 1; 2; . . . ; n: If the plotted points are randomly scattered without any pattern, it can be interpreted that there is no correlation in general among the TBFs data and the data is independent. To continue, one must choose as the best fit distribution for TBF data. Few tests can be used for best fit distribution that include chi squared test and Kolmogorov–Smirnov (K-S test. Chi squared test is not valid when the data are less than 50. Therefore, when the TBF data are less than 50, K-S test must be used. Hence, the K-S test can be used for each TBF data numbers. When the failure distribution has been determined, the reliability model may be computed by equation (2.Results and discussion: Results of trend analysis for TBF data of sugarcane harvester machines showed that the calculated statistics U for all machines was more than chi squared value that was extracted fromthe chi square table with 2 (n-1 degrees of freedom and 5 percent level of significance. Hence

  9. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    Directory of Open Access Journals (Sweden)

    Matthew Bucknor

    2017-03-01

    Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.

  10. Advanced reactor passive system reliability demonstration analysis for an external event

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)

    2017-03-15

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

  11. Advanced reactor passive system reliability demonstration analysis for an external event

    International Nuclear Information System (INIS)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin

    2017-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event

  12. Development of web-based reliability data analysis algorithm model and its application

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae

    2010-01-01

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  13. Development of web-based reliability data analysis algorithm model and its application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)

    2010-02-15

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  14. The Impact Analysis of Psychological Reliability of Population Pilot Study For Selection of Particular Reliable Multi-Choice Item Test in Foreign Language Research Work

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Fazeli

    2010-10-01

    Full Text Available The purpose of research described in the current study is the psychological reliability, its’ importance, application, and more to investigate on the impact analysis of psychological reliability of population pilot study for selection of particular reliable multi-choice item test in foreign language research work. The population for subject recruitment was all under graduated students from second semester at large university in Iran (both male and female that study English as a compulsory paper. In Iran, English is taught as a foreign language.

  15. Practical applications of age-dependent reliability models and analysis of operational data

    Energy Technology Data Exchange (ETDEWEB)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L

    2005-07-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.

  16. Practical applications of age-dependent reliability models and analysis of operational data

    International Nuclear Information System (INIS)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L.

    2005-01-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems

  17. A probabilistic capacity spectrum strategy for the reliability analysis of bridge pile shafts considering soil structure interaction

    Directory of Open Access Journals (Sweden)

    Dookie Kim

    Full Text Available This paper presents a probabilistic capacity spectrum strategy for the reliability analysis of a bridge pile shaft, accounting for uncertainties in design factors in the analysis and the soil-structure interaction (SSI. Monte Carlo simulation method (MCS is adopted to determine the probabilities of failure by comparing the responses with defined limit states. The analysis considers the soil structure interaction together with the probabilistic application of the capacity spectrum method for different types of limit states. A cast-in-drilledhole (CIDH extended reinforced concrete pile shaft of a bridge is analysed using the proposed strategy. The results of the analysis show that the SSI can lead to increase or decrease of the structure's probability of failure depending on the definition of the limit states.

  18. Go-flow: a reliability analysis methodology applicable to piping system

    International Nuclear Information System (INIS)

    Matsuoka, T.; Kobayashi, M.

    1985-01-01

    Since the completion of the Reactor Safety Study, the use of probabilistic risk assessment technique has been becoming more widespread in the nuclear community. Several analytical methods are used for the reliability analysis of nuclear power plants. The GO methodology is one of these methods. Using the GO methodology, the authors performed a reliability analysis of the emergency decay heat removal system of the nuclear ship Mutsu, in order to examine its applicability to piping systems. By this analysis, the authors have found out some disadvantages of the GO methodology. In the GO methodology, the signal is on-to-off or off-to-on signal, therefore the GO finds out the time point at which the state of a system changes, and can not treat a system which state changes as off-on-off. Several computer runs are required to obtain the time dependent failure probability of a system. In order to overcome these disadvantages, the authors propose a new analytical methodology: GO-FLOW. In GO-FLOW, the modeling method (chart) and the calculation procedure are similar to those in the GO methodology, but the meaning of signal and time point, and the definitions of operators are essentially different. In the paper, the GO-FLOW methodology is explained and two examples of the analysis by GO-FLOW are given

  19. Improving fMRI reliability in presurgical mapping for brain tumours.

    Science.gov (United States)

    Stevens, M Tynan R; Clarke, David B; Stroink, Gerhard; Beyea, Steven D; D'Arcy, Ryan Cn

    2016-03-01

    Functional MRI (fMRI) is becoming increasingly integrated into clinical practice for presurgical mapping. Current efforts are focused on validating data quality, with reliability being a major factor. In this paper, we demonstrate the utility of a recently developed approach that uses receiver operating characteristic-reliability (ROC-r) to: (1) identify reliable versus unreliable data sets; (2) automatically select processing options to enhance data quality; and (3) automatically select individualised thresholds for activation maps. Presurgical fMRI was conducted in 16 patients undergoing surgical treatment for brain tumours. Within-session test-retest fMRI was conducted, and ROC-reliability of the patient group was compared to a previous healthy control cohort. Individually optimised preprocessing pipelines were determined to improve reliability. Spatial correspondence was assessed by comparing the fMRI results to intraoperative cortical stimulation mapping, in terms of the distance to the nearest active fMRI voxel. The average ROC-r reliability for the patients was 0.58±0.03, as compared to 0.72±0.02 in healthy controls. For the patient group, this increased significantly to 0.65±0.02 by adopting optimised preprocessing pipelines. Co-localisation of the fMRI maps with cortical stimulation was significantly better for more reliable versus less reliable data sets (8.3±0.9 vs 29±3 mm, respectively). We demonstrated ROC-r analysis for identifying reliable fMRI data sets, choosing optimal postprocessing pipelines, and selecting patient-specific thresholds. Data sets with higher reliability also showed closer spatial correspondence to cortical stimulation. ROC-r can thus identify poor fMRI data at time of scanning, allowing for repeat scans when necessary. ROC-r analysis provides optimised and automated fMRI processing for improved presurgical mapping. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence

  20. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    Science.gov (United States)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  1. Scyllac equipment reliability analysis

    International Nuclear Information System (INIS)

    Gutscher, W.D.; Johnson, K.J.

    1975-01-01

    Most of the failures in Scyllac can be related to crowbar trigger cable faults. A new cable has been designed, procured, and is currently undergoing evaluation. When the new cable has been proven, it will be worked into the system as quickly as possible without causing too much additional down time. The cable-tip problem may not be easy or even desirable to solve. A tightly fastened permanent connection that maximizes contact area would be more reliable than the plug-in type of connection in use now, but it would make system changes and repairs much more difficult. The balance of the failures have such a low occurrence rate that they do not cause much down time and no major effort is underway to eliminate them. Even though Scyllac was built as an experimental system and has many thousands of components, its reliability is very good. Because of this the experiment has been able to progress at a reasonable pace

  2. Current activities and future trends in reliability analysis and probabilistic safety assessment in Hungary

    International Nuclear Information System (INIS)

    Hollo, E.; Toth, J.

    1986-01-01

    In Hungary reliability analysis (RA) and probabilistic safety assessment (PSA) of nuclear power plants was initiated 3 years ago. First, computer codes for automatic fault tree analysis (CAT, PREP) and numerical evaluation (REMO, KITT1,2) were adapted. Two main case studies - detailed availability/reliability calculation of diesel sets and analysis of safety systems influencing event sequences induced by large LOCA - were performed. Input failure data were taken from publications, a need for failure and reliability data bank was revealed. Current and future activities involves: setup of national data bank for WWER-440 units; full-scope level-I PSA of PAKS NPP in Hungary; operational safety assessment of particular problems at PAKS NPP. In the present article the state of RA and PSA activities in Hungary, as well as the main objectives of ongoing work are described. A need for international cooperation (for unified data collection of WWER-440 units) and for IAEA support (within Interregional Program INT/9/063) is emphasized. (author)

  3. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  4. Rater reliability and construct validity of a mobile application for posture analysis.

    Science.gov (United States)

    Szucs, Kimberly A; Brown, Elena V Donoso

    2018-01-01

    [Purpose] Measurement of posture is important for those with a clinical diagnosis as well as researchers aiming to understand the impact of faulty postures on the development of musculoskeletal disorders. A reliable, cost-effective and low tech posture measure may be beneficial for research and clinical applications. The purpose of this study was to determine rater reliability and construct validity of a posture screening mobile application in healthy young adults. [Subjects and Methods] Pictures of subjects were taken in three standing positions. Two raters independently digitized the static standing posture image twice. The app calculated posture variables, including sagittal and coronal plane translations and angulations. Intra- and inter-rater reliability were calculated using the appropriate ICC models for complete agreement. Construct validity was determined through comparison of known groups using repeated measures ANOVA. [Results] Intra-rater reliability ranged from 0.71 to 0.99. Inter-rater reliability was good to excellent for all translations. ICCs were stronger for translations versus angulations. The construct validity analysis found that the app was able to detect the change in the four variables selected. [Conclusion] The posture mobile application has demonstrated strong rater reliability and preliminary evidence of construct validity. This application may have utility in clinical and research settings.

  5. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. INTER-RATER RELIABILITY FOR MOVEMENT PATTERN ANALYSIS (MPA: MEASURING PATTERNING OF BEHAVIORS VERSUS DISCRETE BEHAVIOR COUNTS AS INDICATORS OF DECISION-MAKING STYLE

    Directory of Open Access Journals (Sweden)

    Brenda L Connors

    2014-06-01

    Full Text Available The unique yield of collecting observational data on human movement has received increasing attention in a number of domains, including the study of decision-making style. As such, interest has grown in the nuances of core methodological issues, including the best ways of assessing inter-rater reliability. In this paper we focus on one key topic – the distinction between establishing reliability for the patterning of behaviors as opposed to the computation of raw counts – and suggest that reliability for each be compared empirically rather than determined a priori. We illustrate by assessing inter-rater reliability for key outcome measures derived from Movement Pattern Analysis (MPA, an observational methodology that records body movements as indicators of decision-making style with demonstrated predictive validity. While reliability ranged from moderate to good for raw counts of behaviors reflecting each of two Overall Factors generated within MPA (Assertion and Perspective, inter-rater reliability for patterning (proportional indicators of each factor was significantly higher and excellent (ICC = .89. Furthermore, patterning, as compared to raw counts, provided better prediction of observable decision-making process assessed in the laboratory. These analyses support the utility of using an empirical approach to inform the consideration of measuring discrete behavioral counts versus patterning of behaviors when determining inter-rater reliability of observable behavior. They also speak to the substantial reliability that may be achieved via application of theoretically grounded observational systems such as MPA that reveal thinking and action motivations via visible movement patterns.

  7. A reliability analysis of the revised competitiveness index.

    Science.gov (United States)

    Harris, Paul B; Houston, John M

    2010-06-01

    This study examined the reliability of the Revised Competitiveness Index by investigating the test-retest reliability, interitem reliability, and factor structure of the measure based on a sample of 280 undergraduates (200 women, 80 men) ranging in age from 18 to 28 years (M = 20.1, SD = 2.1). The findings indicate that the Revised Competitiveness Index has high test-retest reliability, high inter-item reliability, and a stable factor structure. The results support the assertion that the Revised Competitiveness Index assesses competitiveness as a stable trait rather than a dynamic state.

  8. Failure and Reliability Analysis for the Master Pump Shutdown System

    International Nuclear Information System (INIS)

    BEVINS, R.R.

    2000-01-01

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function

  9. Limitations in simulator time-based human reliability analysis methods

    International Nuclear Information System (INIS)

    Wreathall, J.

    1989-01-01

    Developments in human reliability analysis (HRA) methods have evolved slowly. Current methods are little changed from those of almost a decade ago, particularly in the use of time-reliability relationships. While these methods were suitable as an interim step, the time (and the need) has come to specify the next evolution of HRA methods. As with any performance-oriented data source, power plant simulator data have no direct connection to HRA models. Errors reported in data are normal deficiencies observed in human performance; failures are events modeled in probabilistic risk assessments (PRAs). Not all errors cause failures; not all failures are caused by errors. Second, the times at which actions are taken provide no measure of the likelihood of failures to act correctly within an accident scenario. Inferences can be made about human reliability, but they must be made with great care. Specific limitations are discussed. Simulator performance data are useful in providing qualitative evidence of the variety of error types and their potential influences on operating systems. More work is required to combine recent developments in the psychology of error with the qualitative data collected at stimulators. Until data become openly available, however, such an advance will not be practical

  10. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Parry; J.A Forester; V.N. Dang; S. M. L. Hendrickson; M. Presley; E. Lois; J. Xing

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.

  11. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    International Nuclear Information System (INIS)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective

  12. Evidential Analytic Hierarchy Process Dependence Assessment Methodology in Human Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2017-02-01

    Full Text Available In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster–Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  13. Evidential analytic hierarchy process dependence assessment methodology in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lu Yuan; Zhou, Xinyi; Xiao, Fuyuan; Deng, Yong [School of Computer and Information Science, Southwest University, Chongqing (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville (United States)

    2017-02-15

    In human reliability analysis, dependence assessment is an important issue in risky large complex systems, such as operation of a nuclear power plant. Many existing methods depend on an expert's judgment, which contributes to the subjectivity and restrictions of results. Recently, a computational method, based on the Dempster-Shafer evidence theory and analytic hierarchy process, has been proposed to handle the dependence in human reliability analysis. The model can deal with uncertainty in an analyst's judgment and reduce the subjectivity in the evaluation process. However, the computation is heavy and complicated to some degree. The most important issue is that the existing method is in a positive aspect, which may cause an underestimation of the risk. In this study, a new evidential analytic hierarchy process dependence assessment methodology, based on the improvement of existing methods, has been proposed, which is expected to be easier and more effective.

  14. Comparative analysis of design codes for timber bridges in Canada, the United States, and Europe

    Science.gov (United States)

    James Wacker; James (Scott) Groenier

    2010-01-01

    The United States recently completed its transition from the allowable stress design code to the load and resistance factor design (LRFD) reliability-based code for the design of most highway bridges. For an international perspective on the LRFD-based bridge codes, a comparative analysis is presented: a study addressed national codes of the United States, Canada, and...

  15. Reliability of muscle strength assessment in chronic post-stroke hemiparesis: a systematic review and meta-analysis.

    Science.gov (United States)

    Rabelo, Michelle; Nunes, Guilherme S; da Costa Amante, Natália Menezes; de Noronha, Marcos; Fachin-Martins, Emerson

    2016-02-01

    Muscle weakness is the main cause of motor impairment among stroke survivors and is associated with reduced peak muscle torque. To systematically investigate and organize the evidence of the reliability of muscle strength evaluation measures in post-stroke survivors with chronic hemiparesis. Two assessors independently searched four electronic databases in January 2014 (Medline, Scielo, CINAHL, Embase). Inclusion criteria comprised studies on reliability on muscle strength assessment in adult post-stroke patients with chronic hemiparesis. We extracted outcomes from included studies about reliability data, measured by intraclass correlation coefficient (ICC) and/or similar. The meta-analyses were conducted only with isokinetic data. Of 450 articles, eight articles were included for this review. After quality analysis, two studies were considered of high quality. Five different joints were analyzed within the included studies (knee, hip, ankle, shoulder, and elbow). Their reliability results varying from low to very high reliability (ICCs from 0.48 to 0.99). Results of meta-analysis for knee extension varying from high to very high reliability (pooled ICCs from 0.89 to 0.97), for knee flexion varying from high to very high reliability (pooled ICCs from 0.84 to 0.91) and for ankle plantar flexion showed high reliability (pooled ICC = 0.85). Objective muscle strength assessment can be reliably used in lower and upper extremities in post-stroke patients with chronic hemiparesis.

  16. Reliability analysis based on a novel density estimation method for structures with correlations

    Directory of Open Access Journals (Sweden)

    Baoyu LI

    2017-06-01

    Full Text Available Estimating the Probability Density Function (PDF of the performance function is a direct way for structural reliability analysis, and the failure probability can be easily obtained by integration in the failure domain. However, efficiently estimating the PDF is still an urgent problem to be solved. The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation, whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs. While in fact, structures with correlated inputs always exist in engineering, thus this paper improves the maximum entropy method, and applies the Unscented Transformation (UT technique to compute the fractional moments of the performance function for structures with correlations, which is a very efficient moment estimation method for models with any inputs. The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations. Besides, the number of function evaluations of the proposed method in reliability analysis, which is determined by UT, is really small. Several examples are employed to illustrate the accuracy and advantages of the proposed method.

  17. Integrated Reliability and Risk Analysis System (IRRAS)

    International Nuclear Information System (INIS)

    Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1992-01-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance

  18. The reliability of language performance measurement in language sample analysis of children aged 5-6 years

    Directory of Open Access Journals (Sweden)

    Zahra Soleymani

    2014-04-01

    Full Text Available Background and Aim: The language sample analysis (LSA is more common in other languages than Persian to study language development and assess language pathology. We studied some psychometric properties of language sample analysis in this research such as content validity of written story and its pictures, test-retest reliability, and inter-rater reliability.Methods: We wrote a story based on Persian culture from Schneider’s study. The validity of written story and drawn pictures was approved by experts. To study test-retest reliability, 30 children looked at the pictures and told their own story twice with 7-10 days interval. Children generated the story themselves and tester did not give any cue about the story. Their audio-taped story was transcribed and analyzed. Sentence and word structures were detected in the analysis.Results: Mean of experts' agreement with the validity of written story was 92.28 percent. Experts scored the quality of pictures high and excellent. There was correlation between variables in sentence and word structure (p<0.05 in test-retest, except complex sentences (p=0.137. The agreement rate was 97.1 percent in inter-rater reliability assessment of transcription. The results of inter-rater reliability of language analysis showed that correlation coefficients were significant.Conclusion: The results confirmed that the tool was valid for eliciting language sample. The consistency of language performance in repeated measurement varied from mild to high in language sample analysis approach.

  19. Reliability Analysis of Structural Timber Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hoffmeyer, P.

    2000-01-01

    Structural systems like timber trussed rafters and roof elements made of timber can be expected to have some degree of redundancy and nonlinear/plastic behaviour when the loading consists of for example snow or imposed load. In this paper this system effect is modelled and the statistic...... of variation. In the paper a stochastic model is described for the strength of a single piece of timber taking into account the stochastic variation of the strength and stiffness with length. Also stochastic models for different types of loads are formulated. First, simple representative systems with different...... types of redundancy and non-linearity are considered. The statistical characteristics of the load bearing capacity are determined by reliability analysis. Next, more complex systems are considered modelling the mechanical behaviour of timber roof elements I stressed skin panels made of timber. Using...

  20. Human reliability analysis of dependent events

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1977-01-01

    In the human reliability analysis in WASH-1400, the continuous variable of degree of interaction among human events was approximated by selecting four points on this continuum to represent the entire continuum. The four points selected were identified as zero coupling (i.e., zero dependence), complete coupling (i.e., complete dependence), and two intermediate points--loose coupling (a moderate level of dependence) and tight coupling (a high level of dependence). The paper expands the WASH-1400 treatment of common mode failure due to the interaction of human activities. Mathematical expressions for the above four levels of dependence are derived for parallel and series systems. The psychological meaning of each level of dependence is illustrated by examples, with probability tree diagrams to illustrate the use of conditional probabilities resulting from the interaction of human actions in nuclear power plant tasks

  1. Review of the human reliability analysis performed for Empire State Electric Energy Research Corporation

    International Nuclear Information System (INIS)

    Swart, D.; Banz, I.

    1985-01-01

    The Empire State Electric Energy Research Corporation (ESEERCO) commissioned Westinghouse to conduct a human reliability analysis to identify and quantify human error probabilities associated with operator actions for four specific events which may occur in light water reactors: loss of coolant accident, steam generator tube rupture, steam/feed line break, and stuck open pressurizer spray valve. Human Error Probabilities (HEPs) derived from Swain's Technique for Human Error Rate Prediction (THERP) were compared to data obtained from simulator exercises. A correlation was found between the HEPs derived from Swain and the results of the simulator data. The results of this study provide a unique insight into human factors analysis. The HEPs obtained from such probabilistic studies can be used to prioritize scenarios for operator training situations, and thus improve the correlation between simulator exercises and real control room experiences

  2. Some developments in human reliability analysis approaches and tools

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W; Worledge, D H

    1988-01-01

    Since human actions have been recognized as an important contributor to safety of operating plants in most industries, research has been performed to better understand and account for the way operators interact during accidents through the control room and equipment interface. This paper describes the integration of a series of research projects sponsored by the Electric Power Research Institute to strengthen the methods for performing the human reliability analysis portion of the probabilistic safety studies. It focuses on the analytical framework used to guide the analysis, the development of the models for quantifying time-dependent actions, and simulator experiments used to validate the models.

  3. [Systematic umbilical cord blood analysis at birth: feasibility and reliability in a French labour ward].

    Science.gov (United States)

    Ernst, D; Clerc, J; Decullier, E; Gavanier, G; Dupuis, O

    2012-10-01

    At birth, evaluation of neonatal well-being is crucial. It is though important to perform umbilical cord blood gas analysis, and then to analyze the samples. We wanted to establish the feasibility and reliability of systematic umbilical cord blood sampling in a French labour ward. Study of systematic umbilical cord blood gas analysis was realized retrospectively from 1000 consecutive deliveries. We first established the feasibility of the samples. Feasibility was defined by the ratio of complete cord acid-base data on the number of deliveries from alive newborns. Afterwards, we established the reliability on the remaining cord samples. Reliability was the ratio of samples that fulfilled quality criteria defined by Westgate et al. and revised by Kro et al., on the number of complete samples from alive newborns. At last, we looked for factors that would influence these results. The systematic umbilical cord blood sample feasibility reached 91.6%, and the reliability reached 80.7%. About the delivery mode, 38.6% of emergency caesarians (IC 95% [30.8-46.3]; Panalysis were significantly less validated during emergency caesarians. Realization of systematic cord blood gas analysis was followed by 8.4% of incomplete samples, and by 19.3% that were uninterpretable. Training sessions should be organized to improve the feasibility and reliability, especially during emergency caesarians. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  4. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  5. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    Science.gov (United States)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  6. SIMON. A computer program for reliability and statistical analysis using Monte Carlo simulation. Program description and manual

    International Nuclear Information System (INIS)

    Kongsoe, H.E.; Lauridsen, K.

    1993-09-01

    SIMON is a program for calculation of reliability and statistical analysis. The program is of the Monte Carlo type, and it is designed with high flexibility, and has a large potential for application to complex problems like reliability analyses of very large systems and of systems, where complex modelling or knowledge of special details are required. Examples of application of the program, including input and output, for reliability and statistical analysis are presented. (au) (3 tabs., 3 ills., 5 refs.)

  7. Reliability analysis of an LCL tuned track segmented bi-directional inductive power transfer system

    DEFF Research Database (Denmark)

    Asif Iqbal, S. M.; Madawala, U. K.; Thrimawithana, D. J.

    2013-01-01

    Bi-directional Inductive Power Transfer (BDIPT) technique is suitable for renewable energy based applications such as electric vehicles (EVs), for the implementation of vehicle-to-grid (V2G) systems. Recently, more efforts have been made by researchers to improve both efficiency and reliability...... of renewable energy systems to further enhance their economical sustainability. This paper presents a comparative reliability study between a typical BDIPT system and an individually controlled segmented BDIPT system. Steady state thermal simulation results are provided for different output power levels...... for a 1.5 kW BDIPT system in a MATLAB/Simulink environment. Reliability parameters such as failure rate and mean time between failures (MTBF) are compared between the two systems. A nonlinear programming (NP) model is developed for optimizing charging schedule for a stationery EV. A case study of EV...

  8. Reliability of fully automated versus visually controlled pre- and post-processing of resting-state EEG.

    Science.gov (United States)

    Hatz, F; Hardmeier, M; Bousleiman, H; Rüegg, S; Schindler, C; Fuhr, P

    2015-02-01

    To compare the reliability of a newly developed Matlab® toolbox for the fully automated, pre- and post-processing of resting state EEG (automated analysis, AA) with the reliability of analysis involving visually controlled pre- and post-processing (VA). 34 healthy volunteers (age: median 38.2 (20-49), 82% female) had three consecutive 256-channel resting-state EEG at one year intervals. Results of frequency analysis of AA and VA were compared with Pearson correlation coefficients, and reliability over time was assessed with intraclass correlation coefficients (ICC). Mean correlation coefficient between AA and VA was 0.94±0.07, mean ICC for AA 0.83±0.05 and for VA 0.84±0.07. AA and VA yield very similar results for spectral EEG analysis and are equally reliable. AA is less time-consuming, completely standardized, and independent of raters and their training. Automated processing of EEG facilitates workflow in quantitative EEG analysis. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  10. The Barthel Index: comparing inter-rater reliability between nurses and doctors in an older adult rehabilitation unit.

    LENUS (Irish Health Repository)

    Hartigan, Irene

    2011-02-01

    To ensure accuracy in recording the Barthel Index (BI) in older people, it is essential to determine who is best placed to administer the index. The aim of this study was to compare doctors\\' and nurses\\' reliability in scoring the BI.

  11. Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

    International Nuclear Information System (INIS)

    Lee, Seokje; Kim, Ingul; Jang, Moonho; Kim, Jaeki; Moon, Jungwon

    2013-01-01

    Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using Callosum and Meatball interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle

  12. Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokje; Kim, Ingul [Chungnam National Univ., Daejeon (Korea, Republic of); Jang, Moonho; Kim, Jaeki; Moon, Jungwon [LIG Nex1, Yongin (Korea, Republic of)

    2013-04-15

    Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using Callosum and Meatball interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle.

  13. Reliability demonstration test planning using bayesian analysis

    International Nuclear Information System (INIS)

    Chandran, Senthil Kumar; Arul, John A.

    2003-01-01

    In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)

  14. German risk study on nuclear power plants. Appendix 2. Reliability analysis. Deutsche Risikostudie Kernkraftwerke. Fachband 2: Zuverlaessigkeitsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Dietlmeier, W.; Gossner, S.; Gueldner, W.; Hoertner, H.; von Linden, J.; Preischl, W.; Reichart, G.; Spindler, H.; Volmer, G.; Zipf, G.

    1981-01-01

    Based on the event tree analysis as documented in the Appendix 1, the failure probabilities of the system functions required to control the initiating events are evaluated in this Appendix 2. The reliability investigations necessary for the evaluation of the event sequences are performed mostly by means of the fault tree analysis. The methods of the reliability analysis, the composition and function of the systems important to safety and the functional tests performed on these systems are dealt with in detail. The comprehensive documentation of the reliability analyses as performed for the internal events necessitated a division of this Appendix 2 into two volumes.

  15. Techniques and applications of the human reliability analysis in nuclear facilities

    International Nuclear Information System (INIS)

    Pinto, Fausto C.

    1995-01-01

    The analysis and prediction of the man-machine interaction are the objectives of human reliability analysis. In this work is presented in a manner that could be used by experts in the field of Probabilistic Safety Assessment, considering primarily the aspects of human errors. The Technique of Human Error Rate Prediction (THERP) is used in large scale to obtain data on human error. Applications of this technique are presented, as well as aspects of the state-of-art and of research and development of this particular field of work, where the construction of a reliable data bank is considered essential. In this work is also developed an application of the THERP for the TRIGA Mark 1 IPR R-1 Reactor of the Centro de Desenvolvimento de Tecnologia Nuclear, Brazilian research institute of nuclear technology. The results indicate that some changes must be made in the emergency procedures of the reactor, in order to achieve a higher level of safety

  16. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  17. Comparative analysis through probability distributions of a data set

    Science.gov (United States)

    Cristea, Gabriel; Constantinescu, Dan Mihai

    2018-02-01

    In practice, probability distributions are applied in such diverse fields as risk analysis, reliability engineering, chemical engineering, hydrology, image processing, physics, market research, business and economic research, customer support, medicine, sociology, demography etc. This article highlights important aspects of fitting probability distributions to data and applying the analysis results to make informed decisions. There are a number of statistical methods available which can help us to select the best fitting model. Some of the graphs display both input data and fitted distributions at the same time, as probability density and cumulative distribution. The goodness of fit tests can be used to determine whether a certain distribution is a good fit. The main used idea is to measure the "distance" between the data and the tested distribution, and compare that distance to some threshold values. Calculating the goodness of fit statistics also enables us to order the fitted distributions accordingly to how good they fit to data. This particular feature is very helpful for comparing the fitted models. The paper presents a comparison of most commonly used goodness of fit tests as: Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared. A large set of data is analyzed and conclusions are drawn by visualizing the data, comparing multiple fitted distributions and selecting the best model. These graphs should be viewed as an addition to the goodness of fit tests.

  18. Risk analysis and reliability

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1979-01-01

    Mathematical foundations of risk analysis are addressed. The importance of having the same probability space in order to compare different experiments is pointed out. Then the following topics are discussed: consequences as random variables with infinite expectations; the phenomenon of rare events; series-parallel systems and different kinds of randomness that could be imposed on such systems; and the problem of consensus of estimates of expert opinion

  19. Reliability analysis of Markov history-dependent repairable systems with neglected failures

    International Nuclear Information System (INIS)

    Du, Shijia; Zeng, Zhiguo; Cui, Lirong; Kang, Rui

    2017-01-01

    Markov history-dependent repairable systems refer to the Markov repairable systems in which some states are changeable and dependent on recent evolutional history of the system. In practice, many Markov history-dependent repairable systems are subjected to neglected failures, i.e., some failures do not affect system performances if they can be repaired promptly. In this paper, we develop a model based on the theory of aggregated stochastic processes to describe the history-dependent behavior and the effect of neglected failures on the Markov history-dependent repairable systems. Based on the developed model, instantaneous and steady-state availabilities are derived to characterize the reliability of the system. Four reliability-related time distributions, i.e., distribution for the k th working period, distribution for the k th failure period, distribution for the real working time in an effective working period, distribution for the neglected failure time in an effective working period, are also derived to provide a more comprehensive description of the system's reliability. Thanks to the power of the theory of aggregated stochastic processes, closed-form expressions are obtained for all the reliability indexes and time distributions. Finally, the developed indexes and analysis methods are demonstrated by a numerical example. - Highlights: • Markovian history-dependent repairable systems with neglected failures is modeled. • Aggregated stochastic processes are used to derive reliability indexes and time distributions. • Closed-form expressions are derived for the considered indexes and distributions.

  20. Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis

    International Nuclear Information System (INIS)

    Mo, Yuchang; Xing, Liudong; Zhong, Farong; Pan, Zhusheng; Chen, Zhongyu

    2014-01-01

    In the Binary Decision Diagram (BDD)-based network reliability analysis, heuristics have been widely used to obtain a reasonably good ordering of edge variables. Orderings generated using different heuristics can lead to dramatically different sizes of BDDs, and thus dramatically different running times and memory usages for the analysis of the same network. Unfortunately, due to the nature of the ordering problem (i.e., being an NP-complete problem) no formal guidelines or rules are available for choosing a good heuristic or for choosing a high-performance root node to perform edge searching using a particular heuristic. In this work, we make novel contributions by proposing heuristic and root node selection methods based on the concept of boundary sets for the BDD-based network reliability analysis. Empirical studies show that the proposed selection methods can help to generate high-performance edge ordering for most of studied cases, enabling the efficient BDD-based reliability analysis of large-scale networks. The proposed methods are demonstrated on different types of networks, including square lattice networks, torus lattice networks and de Bruijn networks

  1. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  2. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  3. Comparation studies of uranium analysis method using spectrophotometer and voltammeter

    International Nuclear Information System (INIS)

    Sugeng Pomomo

    2013-01-01

    Comparation studies of uranium analysis method by spectrophotometer and voltammeter had been done. The objective of experiment is to examine the reliability of analysis method and instrument performance by evaluate parameters; linearity, accuracy, precision and detection limit. Uranyl nitrate hexahydrate is used as standard, and the sample is solvent mixture of tributyl phosphate and kerosene containing uranium (from phosphoric acid purification unit Petrokimia Gresik). Uranium (U) stripping in the sample use HN0 3 0,5 N and then was analyzed by using of both instrument. Analysis of standard show that both methods give a good linearity by correlation coefficient > 0,999. Spectrophotometry give accuration 99,34 - 101,05 % with ratio standard deviation (RSD) 1,03 %; detection limit (DL) 0,05 ppm. Voltammetry give accuration 95,63 -101,49 % with RSD 3,91 %; detection limit (DL) 0,509 ppm. On the analysis of sludge samples were given the significantly different in result; spectrophotometry give U concentration 4,445 ppm by RSD 6,74 % and voltammetry give U concentration 7,693 by RSD 19,53%. (author)

  4. Failure analysis – basic step of applying Reliability Centered Maintenance in general aviation

    Directory of Open Access Journals (Sweden)

    Martin BUGAJ

    2012-01-01

    Full Text Available Performing a reliability analysis on a product or system can actually include a number of different analyses to determine how reliable the product or system is. A reliability centered maintenance program consists of a set of scheduled tasks generated on the basis of specific reliability characteristics of the equipment they are designed to protect. Complex equipment is composed of a vast number of parts and assemblies. All these items can be expected to fail at one time or another, but some of the failures have more serious consequences than others. Certain kinds of failures have a direct effect on operating safety, and others affect the operational capability of the equipment. The consequences of a particular failure depend on the design of the item and the equipment in which it is installed. Although the environment in which the equipment is operated is sometimes an additional factor, the impact of failures on the equipment, and hence their consequences for the operating organization, are established primarily by the equipment designer. Failure consequences are therefore a primary inherent reliability characteristic.

  5. The performance shaping factors influence analysis on the human reliability for NPP operation

    International Nuclear Information System (INIS)

    Farcasiu, M.; Nitoi, M.; Apostol, M.; Florescu, G.

    2008-01-01

    The Human Reliability Analysis (HRA) is an important step in Probabilistic Safety Assessment (PSA) studies and offers an advisability for concrete improvement of the man - machine - organization interfaces, reliability and safety. The goals of this analysis are to obtain sufficient details in order to understand and document all-important factors that affect human performance. The purpose of this paper is to estimate the human errors probabilities in view of the negative or positive effect of the human performance shaping factors (PSFs) for the mitigation of the initiating events which could occur in Nuclear Power Plant (NPP). Using THERP and SPAR-H methods, an analysis model of PSFs influence on the human reliability is performed. This model is applied to more important activities, that are necessary to mitigate 'one steam generator tube failure' event at Cernavoda NPP. The results are joint human error probabilities (JHEP) values estimated for the following situations: without regarding to PSFs influence; with PSFs in specific conditions; with PSFs which could have only positive influence and with PSFs which could have only negative influence. In addition, PSFs with negative influence were identified and using the DOE method, the necessary activities for changing negative influence were assigned. (authors)

  6. Uncertainty analysis of nonlinear systems employing the first-order reliability method

    International Nuclear Information System (INIS)

    Choi, Chan Kyu; Yoo, Hong Hee

    2012-01-01

    In most mechanical systems, properties of the system elements have uncertainties due to several reasons. For example, mass, stiffness coefficient of a spring, damping coefficient of a damper or friction coefficients have uncertain characteristics. The uncertain characteristics of the elements have a direct effect on the system performance uncertainty. It is very important to estimate the performance uncertainty since the performance uncertainty is directly related to manufacturing yield and consumer satisfaction. Due to this reason, the performance uncertainty should be estimated accurately and considered in the system design. In this paper, performance measures are defined for nonlinear vibration systems and the performance measure uncertainties are estimated employing the first order reliability method (FORM). It was found that the FORM could provide good results in spite of the system nonlinear characteristics. Comparing to the results obtained by Monte Carlo Simulation (MCS), the accuracy of the uncertainty analysis results obtained by the FORM is validated

  7. Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    Science.gov (United States)

    Nemeth, Noel N.; Manderscheid, Jane M.; Gyekenyesi, John P.

    1990-01-01

    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program.

  8. System reliability assessment via sensitivity analysis in the Markov chain scheme

    International Nuclear Information System (INIS)

    Gandini, A.

    1988-01-01

    Methods for reliability sensitivity analysis in the Markov chain scheme are presented, together with a new formulation which makes use of Generalized Perturbation Theory (GPT) methods. As well known, sensitivity methods are fundamental in system risk analysis, since they allow to identify important components, so to assist the analyst in finding weaknesses in design and operation and in suggesting optimal modifications for system upgrade. The relationship between the GPT sensitivity expression and the Birnbaum importance is also given [fr

  9. Knowledge-base for the new human reliability analysis method, A Technique for Human Error Analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.

    1996-01-01

    This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst

  10. Developments in Levee Reliability and Flood Risk Analysis in the Netherlands

    NARCIS (Netherlands)

    Jonkman, S.N.; Schweckendiek, T.

    2015-01-01

    This paper presents and overview of advances in flood risk and levee reliability analysis in the Netherlands. It is described how new safety standards – in the form of a target failure probability – have been derived on the basis of nationwide flood risk assessments which taken into account both

  11. Pocket Handbook on Reliability

    Science.gov (United States)

    1975-09-01

    exponencial distributions Weibull distribution, -xtimating reliability, confidence intervals, relia- bility growth, 0. P- curves, Bayesian analysis. 20 A S...introduction for those not familiar with reliability and a good refresher for those who are currently working in the area. LEWIS NERI, CHIEF...includes one or both of the following objectives: a) prediction of the current system reliability, b) projection on the system reliability for someI future

  12. Reliability analysis of 2400 MWth gas-cooled fast reactor natural circulation decay heat removal system

    International Nuclear Information System (INIS)

    Marques, M.; Bassi, C.; Bentivoglio, F.

    2012-01-01

    In support to a PSA (Probability Safety Assessment) performed at the design level on the 2400 MWth Gas-cooled Fast Reactor, the functional reliability of the decay heat removal system (DHR) working in natural circulation has been estimated in two transient situations corresponding to an 'aggravated' Loss of Flow Accident (LOFA) and a Loss of Coolant Accident (LOCA). The reliability analysis was based on the RMPS methodology. Reliability and global sensitivity analyses use uncertainty propagation by Monte Carlo techniques. The DHR system consists of 1) 3 dedicated DHR loops: the choice of 3 loops (3*100% redundancy) is made in assuming that one could be lost due to the accident initiating event (break for example) and that another one must be supposed unavailable (single failure criterion); 2) a metallic guard containment enclosing the primary system (referred as close containment), not pressurized in normal operation, having a free volume such as the fast primary helium expansion gives an equilibrium pressure of 1.0 MPa, in the first part of the transient (few hours). Each dedicated DHR loop designed to work in forced circulation with blowers or in natural circulation, is composed of 1) a primary loop (cross-duct connected to the core vessel), with a driving height of 10 meters between core and DHX mid-plan; 2) a secondary circuit filled with pressurized water at 1.0 MPa (driving height of 5 meters for natural circulation DHR); 3) a ternary pool, initially at 50 C. degrees, whose volume is determined to handle one day heat extraction (after this time delay, additional measures are foreseen to fill up the pool). The results obtained on the reliability of the DHR system and on the most important input parameters are very different from one scenario to the other showing the necessity for the PSA to perform specific reliability analysis of the passive system for each considered scenario. The analysis shows that the DHR system working in natural circulation is

  13. Human factors reliability benchmark exercise: a review

    International Nuclear Information System (INIS)

    Humphreys, P.

    1990-01-01

    The Human Factors Reliability Benchmark Exercise has addressed the issues of identification, analysis, representation and quantification of Human Error in order to identify the strengths and weaknesses of available techniques. Using a German PWR nuclear powerplant as the basis for the studies, fifteen teams undertook evaluations of a routine functional Test and Maintenance procedure plus an analysis of human actions during an operational transient. The techniques employed by the teams are discussed and reviewed on a comparative basis. The qualitative assessments performed by each team compare well, but at the quantification stage there is much less agreement. (author)

  14. Operator reliability study for Probabilistic Safety Analysis of an operating research reactor

    International Nuclear Information System (INIS)

    Mohamed, F.; Hassan, A.; Yahaya, R.; Rahman, I.; Maskin, M.; Praktom, P.; Charlie, F.

    2015-01-01

    Highlights: • Human Reliability Analysis (HRA) for Level 1 Probabilistic Safety Analysis (PSA) is performed on research nuclear reactor. • Implemented qualitative HRA framework is addressed. • Human Failure Events of significant impact to the reactor safety are derived. - Abstract: A Level 1 Probabilistic Safety Analysis (PSA) for the TRIGA Mark II research reactor of Malaysian Nuclear Agency has been developed to evaluate the potential risk in its operation. In conjunction to this PSA development, Human Reliability Analysis (HRA) is performed in order to determine human contribution to the risk. The aim of this study is to qualitatively analyze human actions (HAs) involved in the operation of this reactor according to the qualitative part of the HRA framework for PSA which is namely the identification, qualitative screening and modeling of HAs. By performing this framework, Human Failure Events (HFEs) of significant impact to the reactor safety are systematically analyzed and incorporated into the PSA structure. A part of the findings in this study will become the input for the subsequent quantitative part of the HRA framework, i.e. the Human Error Probability (HEP) quantification

  15. A comparative study of the probabilistic fracture mechanics and the stochastic Markovian process approaches for structural reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stavrakakis, G.; Lucia, A.C.; Solomos, G. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1990-01-01

    The two computer codes COVASTOL and RELIEF, developed for the modeling of cumulative damage processes in the framework of probabilistic structural reliability, are compared. They are based respectively on the randomisation of a differential crack growth law and on the theory of discrete Markov processes. The codes are applied for fatigue crack growth predictions using two sets of data of crack propagation curves from specimens. The results are critically analyzed and an extensive discussion follows on the merits and limitations of each code. Their transferability for the reliability assessment of real structures is investigated. (author).

  16. The Modified Femoral Neck-Shaft Angle: Age- and Sex-Dependent Reference Values and Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Christoph Kolja Boese

    2016-01-01

    Full Text Available Background. The femoral neck-shaft angle (NSA is of high importance for the diagnostics and treatment of various conditions of the hip. However, rotational effects limit its precision and applicability using plain radiographs. This study introduces a novel method to measure the femoral NSA: the modified NSA (mNSA, possibly being less susceptible against rotational effects compared to the conventional NSA. Patients and Methods. The method of measurement is described and its applicability was tested in 400 pelvis computed tomography scans (800 hips. Age- and gender-dependent reference values are given and intra- and interrater reliability are analyzed. Results. The mean age of all 400 patients (800 hips was 54.32 years (18–100, SD 22.05 years. The mean mNSA was 147.0° and the 95% confidence interval was 146.7°–147.4°. Differences of the mNSA between sexes, age groups, and sides were nonsignificant. The absolute difference between NSA and mNSA was 16.3° (range 3–31°; SD 4.4°; the correlation was high (0.738; p<0.001. Overall, the intra- and interrater reliability were excellent for the mNSA. Interpretation. We introduced a novel concept for the analysis of the neck-shaft angle. The high reliability of the measurement has been proven and its robustness to hip rotation was demonstrated.

  17. Reliability of segmental accelerations measured using a new wireless gait analysis system.

    Science.gov (United States)

    Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod

    2006-01-01

    The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.

  18. Advances in human reliability analysis in Mexico

    International Nuclear Information System (INIS)

    Nelson, Pamela F.; Gonzalez C, M.; Ruiz S, T.; Guillen M, D.; Contreras V, A.

    2010-10-01

    Human Reliability Analysis (HRA) is a very important part of Probabilistic Risk Analysis (PRA), and constant work is dedicated to improving methods, guidance and data in order to approach realism in the results as well as looking for ways to use these to reduce accident frequency at plants. Further, in order to advance in these areas, several HRA studies are being performed globally. Mexico has participated in the International HRA Empirical study with the objective of -benchmarking- HRA methods by comparing HRA predictions to actual crew performance in a simulator, as well as in the empirical study on a US nuclear power plant currently in progress. The focus of the first study was the development of an understanding of how methods are applied by various analysts, and characterize the methods for their capability to guide the analysts to identify potential human failures, and associated causes and performance shaping factors. The HRA benchmarking study has been performed by using the Halden simulator, 14 European crews, and 15 HRA equipment s (NRC, EPRI, and foreign HRA equipment s using different HRA methods). This effort in Mexico is reflected through the work being performed on updating the Laguna Verde PRA to comply with the ASME PRA standard. In order to be considered an HRA with technical adequacy, that is, be considered as a capability category II, for risk-informed applications, the methodology used for the HRA in the original PRA is not considered sufficiently detailed, and the methodology had to upgraded. The HCR/CBDT/THERP method was chosen, since this is used in many nuclear plants with similar design. The HRA update includes identification and evaluation of human errors that can occur during testing and maintenance, as well as human errors that can occur during an accident using the Emergency Operating Procedures. The review of procedures for maintenance, surveillance and operation is a necessary step in HRA and provides insight into the possible

  19. Single versus mixture Weibull distributions for nonparametric satellite reliability

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Long recognized as a critical design attribute for space systems, satellite reliability has not yet received the proper attention as limited on-orbit failure data and statistical analyses can be found in the technical literature. To fill this gap, we recently conducted a nonparametric analysis of satellite reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we provide an advanced parametric fit, based on mixture of Weibull distributions, and compare it with the single Weibull distribution model obtained with the Maximum Likelihood Estimation (MLE) method. We demonstrate that both parametric fits are good approximations of the nonparametric satellite reliability, but that the mixture Weibull distribution provides significant accuracy in capturing all the failure trends in the failure data, as evidenced by the analysis of the residuals and their quasi-normal dispersion.

  20. Reliability analysis and optimisation of subsea compression system facing operational covariate stresses

    International Nuclear Information System (INIS)

    Okaro, Ikenna Anthony; Tao, Longbin

    2016-01-01

    This paper proposes an enhanced Weibull-Corrosion Covariate model for reliability assessment of a system facing operational stresses. The newly developed model is applied to a Subsea Gas Compression System planned for offshore West Africa to predict its reliability index. System technical failure was modelled by developing a Weibull failure model incorporating a physically tested corrosion profile as stress in order to quantify the survival rate of the system under additional operational covariates including marine pH, temperature and pressure. Using Reliability Block Diagrams and enhanced Fusell-Vesely formulations, the whole system was systematically decomposed to sub-systems to analyse the criticality of each component and optimise them. Human reliability was addressed using an enhanced barrier weighting method. A rapid degradation curve is obtained on a subsea system relative to the base case subjected to a time-dependent corrosion stress factor. It reveals that subsea system components failed faster than their Mean time to failure specifications from Offshore Reliability Database as a result of cumulative marine stresses exertion. The case study demonstrated that the reliability of a subsea system can be systematically optimised by modelling the system under higher technical and organisational stresses, prioritising the critical sub-systems and making befitting provisions for redundancy and tolerances. - Highlights: • Novel Weibull Corrosion-Covariate model for reliability analysis of subsea assets. • Predict the accelerated degradation profile of a subsea gas compression. • An enhanced optimisation method based on Fusell-Vesely decomposition process. • New optimisation approach for smoothening of over- and under-designed components. • Demonstrated a significant improvement in producing more realistic failure rate.