WorldWideScience

Sample records for reliability analysis methods

  1. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    1984-10-01

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  2. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

    CERN Document Server

    Huber, Catherine; Mesbah, Mounir

    2008-01-01

    Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

  3. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  4. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  5. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  6. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  7. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  8. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  9. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  10. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  11. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  12. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  13. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  14. Limitations in simulator time-based human reliability analysis methods

    International Nuclear Information System (INIS)

    Wreathall, J.

    1989-01-01

    Developments in human reliability analysis (HRA) methods have evolved slowly. Current methods are little changed from those of almost a decade ago, particularly in the use of time-reliability relationships. While these methods were suitable as an interim step, the time (and the need) has come to specify the next evolution of HRA methods. As with any performance-oriented data source, power plant simulator data have no direct connection to HRA models. Errors reported in data are normal deficiencies observed in human performance; failures are events modeled in probabilistic risk assessments (PRAs). Not all errors cause failures; not all failures are caused by errors. Second, the times at which actions are taken provide no measure of the likelihood of failures to act correctly within an accident scenario. Inferences can be made about human reliability, but they must be made with great care. Specific limitations are discussed. Simulator performance data are useful in providing qualitative evidence of the variety of error types and their potential influences on operating systems. More work is required to combine recent developments in the psychology of error with the qualitative data collected at stimulators. Until data become openly available, however, such an advance will not be practical

  15. Applicability of simplified human reliability analysis methods for severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Boring, R.; St Germain, S. [Idaho National Lab., Idaho Falls, Idaho (United States); Banaseanu, G.; Chatri, H.; Akl, Y. [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2016-03-15

    Most contemporary human reliability analysis (HRA) methods were created to analyse design-basis accidents at nuclear power plants. As part of a comprehensive expansion of risk assessments at many plants internationally, HRAs will begin considering severe accident scenarios. Severe accidents, while extremely rare, constitute high consequence events that significantly challenge successful operations and recovery. Challenges during severe accidents include degraded and hazardous operating conditions at the plant, the shift in control from the main control room to the technical support center, the unavailability of plant instrumentation, and the need to use different types of operating procedures. Such shifts in operations may also test key assumptions in existing HRA methods. This paper discusses key differences between design basis and severe accidents, reviews efforts to date to create customized HRA methods suitable for severe accidents, and recommends practices for adapting existing HRA methods that are already being used for HRAs at the plants. (author)

  16. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  17. Improvement of human reliability analysis method for PRA

    International Nuclear Information System (INIS)

    Tanji, Junichi; Fujimoto, Haruo

    2013-09-01

    It is required to refine human reliability analysis (HRA) method by, for example, incorporating consideration for the cognitive process of operator into the evaluation of diagnosis errors and decision-making errors, as a part of the development and improvement of methods used in probabilistic risk assessments (PRAs). JNES has been developed a HRA method based on ATHENA which is suitable to handle the structured relationship among diagnosis errors, decision-making errors and operator cognition process. This report summarizes outcomes obtained from the improvement of HRA method, in which enhancement to evaluate how the plant degraded condition affects operator cognitive process and to evaluate human error probabilities (HEPs) which correspond to the contents of operator tasks is made. In addition, this report describes the results of case studies on the representative accident sequences to investigate the applicability of HRA method developed. HEPs of the same accident sequences are also estimated using THERP method, which is most popularly used HRA method, and comparisons of the results obtained using these two methods are made to depict the differences of these methods and issues to be solved. Important conclusions obtained are as follows: (1) Improvement of HRA method using operator cognitive action model. Clarification of factors to be considered in the evaluation of human errors, incorporation of degraded plant safety condition into HRA and investigation of HEPs which are affected by the contents of operator tasks were made to improve the HRA method which can integrate operator cognitive action model into ATHENA method. In addition, the detail of procedures of the improved method was delineated in the form of flowchart. (2) Case studies and comparison with the results evaluated by THERP method. Four operator actions modeled in the PRAs of representative BWR5 and 4-loop PWR plants were selected and evaluated as case studies. These cases were also evaluated using

  18. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  19. Monte Carlo methods for the reliability analysis of Markov systems

    International Nuclear Information System (INIS)

    Buslik, A.J.

    1985-01-01

    This paper presents Monte Carlo methods for the reliability analysis of Markov systems. Markov models are useful in treating dependencies between components. The present paper shows how the adjoint Monte Carlo method for the continuous time Markov process can be derived from the method for the discrete-time Markov process by a limiting process. The straightforward extensions to the treatment of mean unavailability (over a time interval) are given. System unavailabilities can also be estimated; this is done by making the system failed states absorbing, and not permitting repair from them. A forward Monte Carlo method is presented in which the weighting functions are related to the adjoint function. In particular, if the exact adjoint function is known then weighting factors can be constructed such that the exact answer can be obtained with a single Monte Carlo trial. Of course, if the exact adjoint function is known, there is no need to perform the Monte Carlo calculation. However, the formulation is useful since it gives insight into choices of the weight factors which will reduce the variance of the estimator

  20. A reliable method for the stability analysis of structures ...

    African Journals Online (AJOL)

    The detection of structural configurations with singular tangent stiffness matrix is essential because they can be unstable. The secondary paths, especially in unstable buckling, can play the most important role in the loss of stability and collapse of the structure. A new method for reliable detection and accurate computation of ...

  1. Bearing Procurement Analysis Method by Total Cost of Ownership Analysis and Reliability Prediction

    Science.gov (United States)

    Trusaji, Wildan; Akbar, Muhammad; Sukoyo; Irianto, Dradjad

    2018-03-01

    In making bearing procurement analysis, price and its reliability must be considered as decision criteria, since price determines the direct cost as acquisition cost and reliability of bearing determine the indirect cost such as maintenance cost. Despite the indirect cost is hard to identify and measured, it has high contribution to overall cost that will be incurred. So, the indirect cost of reliability must be considered when making bearing procurement analysis. This paper tries to explain bearing evaluation method with the total cost of ownership analysis to consider price and maintenance cost as decision criteria. Furthermore, since there is a lack of failure data when bearing evaluation phase is conducted, reliability prediction method is used to predict bearing reliability from its dynamic load rating parameter. With this method, bearing with a higher price but has higher reliability is preferable for long-term planning. But for short-term planning the cheaper one but has lower reliability is preferable. This contextuality can give rise to conflict between stakeholders. Thus, the planning horizon needs to be agreed by all stakeholder before making a procurement decision.

  2. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    International Nuclear Information System (INIS)

    Cepin, M.

    2008-01-01

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan human reliability analysis (IJS-HRA) and standardized plant analysis risk human reliability analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance

  3. Comparison of methods for dependency determination between human failure events within human reliability analysis

    International Nuclear Information System (INIS)

    Cepis, M.

    2007-01-01

    The Human Reliability Analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease of subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan - Human Reliability Analysis (IJS-HRA) and Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance. (author)

  4. Reliability analysis of reactor systems by applying probability method; Analiza pouzdanosti reaktorskih sistema primenom metoda verovatnoce

    Energy Technology Data Exchange (ETDEWEB)

    Milivojevic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1974-12-15

    Probability method was chosen for analysing the reactor system reliability is considered realistic since it is based on verified experimental data. In fact this is a statistical method. The probability method developed takes into account the probability distribution of permitted levels of relevant parameters and their particular influence on the reliability of the system as a whole. The proposed method is rather general, and was used for problem of thermal safety analysis of reactor system. This analysis enables to analyze basic properties of the system under different operation conditions, expressed in form of probability they show the reliability of the system on the whole as well as reliability of each component.

  5. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  6. A Reliable Method for Rhythm Analysis during Cardiopulmonary Resuscitation

    Directory of Open Access Journals (Sweden)

    U. Ayala

    2014-01-01

    Full Text Available Interruptions in cardiopulmonary resuscitation (CPR compromise defibrillation success. However, CPR must be interrupted to analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms, the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA designed to optimally classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach shows an important increase in specificity without compromising the sensitivity when compared to previous studies.

  7. Assessment of modern methods of human factor reliability analysis in PSA studies

    International Nuclear Information System (INIS)

    Holy, J.

    2001-12-01

    The report is structured as follows: Classical terms and objects (Probabilistic safety assessment as a framework for human reliability assessment; Human failure within the PSA model; Basic types of operator failure modelled in a PSA study and analyzed by HRA methods; Qualitative analysis of human reliability; Quantitative analysis of human reliability used; Process of analysis of nuclear reactor operator reliability in a PSA study); New terms and objects (Analysis of dependences; Errors of omission; Errors of commission; Error forcing context); and Overview and brief assessment of human reliability analysis (Basic characteristics of the methods; Assets and drawbacks of the use of each of HRA method; History and prospects of the use of the methods). (P.A.)

  8. Method of reliability allocation based on fault tree analysis and fuzzy math in nuclear power plants

    International Nuclear Information System (INIS)

    Chen Zhaobing; Deng Jian; Cao Xuewu

    2005-01-01

    Reliability allocation is a kind of a difficult multi-objective optimization problem. It can not only be applied to determine the reliability characteristic of reactor systems, subsystem and main components but also be performed to improve the design, operation and maintenance of nuclear plants. The fuzzy math known as one of the powerful tools for fuzzy optimization and the fault analysis deemed to be one of the effective methods of reliability analysis can be applied to the reliability allocation model so as to work out the problems of fuzzy characteristic of some factors and subsystem's choice respectively in this paper. Thus we develop a failure rate allocation model on the basis of the fault tree analysis and fuzzy math. For the choice of the reliability constraint factors, we choose the six important ones according to practical need for conducting the reliability allocation. The subsystem selected by the top-level fault tree analysis is to avoid allocating reliability for all the equipment and components including the unnecessary parts. During the reliability process, some factors can be calculated or measured quantitatively while others only can be assessed qualitatively by the expert rating method. So we adopt fuzzy decision and dualistic contrast to realize the reliability allocation with the help of fault tree analysis. Finally the example of the emergency diesel generator's reliability allocation is used to illustrate reliability allocation model and improve this model simple and applicable. (authors)

  9. Exploratory factor analysis and reliability analysis with missing data: A simple method for SPSS users

    Directory of Open Access Journals (Sweden)

    Bruce Weaver

    2014-09-01

    Full Text Available Missing data is a frequent problem for researchers conducting exploratory factor analysis (EFA or reliability analysis. The SPSS FACTOR procedure allows users to select listwise deletion, pairwise deletion or mean substitution as a method for dealing with missing data. The shortcomings of these methods are well-known. Graham (2009 argues that a much better way to deal with missing data in this context is to use a matrix of expectation maximization (EM covariances(or correlations as input for the analysis. SPSS users who have the Missing Values Analysis add-on module can obtain vectors ofEM means and standard deviations plus EM correlation and covariance matrices via the MVA procedure. But unfortunately, MVA has no /MATRIX subcommand, and therefore cannot write the EM correlations directly to a matrix dataset of the type needed as input to the FACTOR and RELIABILITY procedures. We describe two macros that (in conjunction with an intervening MVA command carry out the data management steps needed to create two matrix datasets, one containing EM correlations and the other EM covariances. Either of those matrix datasets can then be used asinput to the FACTOR procedure, and the EM correlations can also be used as input to RELIABILITY. We provide an example that illustrates the use of the two macros to generate the matrix datasets and how to use those datasets as input to the FACTOR and RELIABILITY procedures. We hope that this simple method for handling missing data will prove useful to both students andresearchers who are conducting EFA or reliability analysis.

  10. Development of an analysis rule of diagnosis error for standard method of human reliability analysis

    International Nuclear Information System (INIS)

    Jeong, W. D.; Kang, D. I.; Jeong, K. S.

    2003-01-01

    This paper presents the status of development of Korea standard method for Human Reliability Analysis (HRA), and proposed a standard procedure and rules for the evaluation of diagnosis error probability. The quality of KSNP HRA was evaluated using the requirement of ASME PRA standard guideline, and the design requirement for the standard HRA method was defined. Analysis procedure and rules, developed so far, to analyze diagnosis error probability was suggested as a part of the standard method. And also a study of comprehensive application was performed to evaluate the suitability of the proposed rules

  11. Analysis methods for structure reliability of piping components

    International Nuclear Information System (INIS)

    Schimpfke, T.; Grebner, H.; Sievers, J.

    2004-01-01

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour (BMWA) GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The long-term objective of this development is to provide failure probabilities of passive components for probabilistic safety analysis of nuclear power plants. Up to now the code can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents some of the results of a benchmark analysis in the frame of the European project NURBIM (Nuclear Risk Based Inspection Methodologies for Passive Components). (orig.)

  12. Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method

    International Nuclear Information System (INIS)

    Sony T, D.T.; Situmorang, Johnny; Ismu W, Puradwi; Demon H; Mulyanto, Dwijo; Kusmono, Slamet; Santa, Sigit Asmara

    2000-01-01

    FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc

  13. Application of reliability analysis methods to the comparison of two safety circuits

    International Nuclear Information System (INIS)

    Signoret, J.-P.

    1975-01-01

    Two circuits of different design, intended for assuming the ''Low Pressure Safety Injection'' function in PWR reactors are analyzed using reliability methods. The reliability analysis of these circuits allows the failure trees to be established and the failure probability derived. The dependence of these results on test use and maintenance is emphasized as well as critical paths. The great number of results obtained may allow a well-informed choice taking account of the reliability wanted for the type of circuits [fr

  14. A study in the reliability analysis method for nuclear power plant structures (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Choi, Seong Cheol; Shin, Ho Sang; Yang, In Hwan; Kim, Yi Sung; Yu, Young; Kim, Se Hun [Seoul, Nationl Univ., Seoul (Korea, Republic of)

    1999-03-15

    Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service life. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established. The influence of design variables to reliability and the relation between the reliability and service life will be continued second year research.

  15. Reliability analysis for thermal cutting method based non-explosive separation device

    International Nuclear Information System (INIS)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu

    2016-01-01

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils

  16. Reliability analysis for thermal cutting method based non-explosive separation device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu [Korea Aerospace University, Goyang (Korea, Republic of)

    2016-12-15

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils.

  17. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  18. Study on reliability analysis based on multilevel flow models and fault tree method

    International Nuclear Information System (INIS)

    Chen Qiang; Yang Ming

    2014-01-01

    Multilevel flow models (MFM) and fault tree method describe the system knowledge in different forms, so the two methods express an equivalent logic of the system reliability under the same boundary conditions and assumptions. Based on this and combined with the characteristics of MFM, a method mapping MFM to fault tree was put forward, thus providing a way to establish fault tree rapidly and realizing qualitative reliability analysis based on MFM. Taking the safety injection system of pressurized water reactor nuclear power plant as an example, its MFM was established and its reliability was analyzed qualitatively. The analysis result shows that the logic of mapping MFM to fault tree is correct. The MFM is easily understood, created and modified. Compared with the traditional fault tree analysis, the workload is greatly reduced and the modeling time is saved. (authors)

  19. A Comparison of Three Methods for the Analysis of Skin Flap Viability: Reliability and Validity.

    Science.gov (United States)

    Tim, Carla Roberta; Martignago, Cintia Cristina Santi; da Silva, Viviane Ribeiro; Dos Santos, Estefany Camila Bonfim; Vieira, Fabiana Nascimento; Parizotto, Nivaldo Antonio; Liebano, Richard Eloin

    2018-05-01

    Objective: Technological advances have provided new alternatives to the analysis of skin flap viability in animal models; however, the interrater validity and reliability of these techniques have yet to be analyzed. The present study aimed to evaluate the interrater validity and reliability of three different methods: weight of paper template (WPT), paper template area (PTA), and photographic analysis. Approach: Sixteen male Wistar rats had their cranially based dorsal skin flap elevated. On the seventh postoperative day, the viable tissue area and the necrotic area of the skin flap were recorded using the paper template method and photo image. The evaluation of the percentage of viable tissue was performed using three methods, simultaneously and independently by two raters. The analysis of interrater reliability and viability was performed using the intraclass correlation coefficient and Bland Altman Plot Analysis was used to visualize the presence or absence of systematic bias in the evaluations of data validity. Results: The results showed that interrater reliability for WPT, measurement of PTA, and photographic analysis were 0.995, 0.990, and 0.982, respectively. For data validity, a correlation >0.90 was observed for all comparisons made between the three methods. In addition, Bland Altman Plot Analysis showed agreement between the comparisons of the methods and the presence of systematic bias was not observed. Innovation: Digital methods are an excellent choice for assessing skin flap viability; moreover, they make data use and storage easier. Conclusion: Independently from the method used, the interrater reliability and validity proved to be excellent for the analysis of skin flaps' viability.

  20. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  1. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  2. Bayesian methods in reliability

    Science.gov (United States)

    Sander, P.; Badoux, R.

    1991-11-01

    The present proceedings from a course on Bayesian methods in reliability encompasses Bayesian statistical methods and their computational implementation, models for analyzing censored data from nonrepairable systems, the traits of repairable systems and growth models, the use of expert judgment, and a review of the problem of forecasting software reliability. Specific issues addressed include the use of Bayesian methods to estimate the leak rate of a gas pipeline, approximate analyses under great prior uncertainty, reliability estimation techniques, and a nonhomogeneous Poisson process. Also addressed are the calibration sets and seed variables of expert judgment systems for risk assessment, experimental illustrations of the use of expert judgment for reliability testing, and analyses of the predictive quality of software-reliability growth models such as the Weibull order statistics.

  3. Structural Reliability Methods

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Madsen, H. O.

    The structural reliability methods quantitatively treat the uncertainty of predicting the behaviour and properties of a structure given the uncertain properties of its geometry, materials, and the actions it is supposed to withstand. This book addresses the probabilistic methods for evaluation...... of structural reliability, including the theoretical basis for these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature...... of the uncertainties and their interplay is the developed, step-by-step. The concepts presented are illustrated by numerous examples throughout the text....

  4. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    Science.gov (United States)

    Gharouni-Nik, Morteza; Naeimi, Meysam; Ahadi, Sodayf; Alimoradi, Zahra

    2014-06-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute to stability of the tunnel structure are recognized owing to identify various aspects of reliability and sustainability in the system. The selection of efficient support methods for rock tunneling is a key factor in order to reduce the number of problems during construction and maintain the project cost and time within the limited budget and planned schedule. This paper introduces a smart approach by which decision-makers will be able to find the overall reliability of tunnel support system before selecting the final scheme of the lining system. Due to this research focus, engineering reliability which is a branch of statistics and probability is being appropriately applied to the field and much effort has been made to use it in tunneling while investigating the reliability of the lining support system for the tunnel structure. Therefore, reliability analysis for evaluating the tunnel support performance is the main idea used in this research. Decomposition approaches are used for producing system block diagram and determining the failure probability of the whole system. Effectiveness of the proposed reliability model of tunnel lining together with the recommended approaches is examined using several case studies and the final value of reliability obtained for different designing scenarios. Considering the idea of linear correlation between safety factors and reliability parameters, the values of isolated reliabilities determined for different structural components of tunnel support system. In order to determine individual safety factors, finite element modeling is employed for different structural subsystems and the results of numerical analyses are obtained in

  5. Structural system reliability calculation using a probabilistic fault tree analysis method

    Science.gov (United States)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  6. Screening, sensitivity, and uncertainty for the CREAM method of Human Reliability Analysis

    International Nuclear Information System (INIS)

    Bedford, Tim; Bayley, Clare; Revie, Matthew

    2013-01-01

    This paper reports a sensitivity analysis of the Cognitive Reliability and Error Analysis Method for Human Reliability Analysis. We consider three different aspects: the difference between the outputs of the Basic and Extended methods, on the same HRA scenario; the variability in outputs through the choices made for common performance conditions (CPCs); and the variability in outputs through the assignment of choices for cognitive function failures (CFFs). We discuss the problem of interpreting categories when applying the method, compare its quantitative structure to that of first generation methods and discuss also how dependence is modelled with the approach. We show that the control mode intervals used in the Basic method are too narrow to be consistent with the Extended method. This motivates a new screening method that gives improved accuracy with respect to the Basic method, in the sense that (on average) halves the uncertainty associated with the Basic method. We make some observations on the design of a screening method that are generally applicable in Risk Analysis. Finally, we propose a new method of combining CPC weights with nominal probabilities so that the calculated probabilities are always in range (i.e. between 0 and 1), while satisfying sensible properties that are consistent with the overall CREAM method

  7. Features of an advanced human reliability analysis method, AGAPE-ET

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2005-01-01

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided

  8. Features of an advanced human reliability analysis method, AGAPE-ET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided.

  9. Data collection on the unit control room simulator as a method of operator reliability analysis

    International Nuclear Information System (INIS)

    Holy, J.

    1998-01-01

    The report consists of the following chapters: (1) Probabilistic assessment of nuclear power plant operation safety and human factor reliability analysis; (2) Simulators and simulations as human reliability analysis tools; (3) DOE project for using the collection and analysis of data from the unit control room simulator in human factor reliability analysis at the Paks nuclear power plant; (4) General requirements for the organization of the simulator data collection project; (5) Full-scale simulator at the Nuclear Power Plants Research Institute in Trnava, Slovakia, used as a training means for operators of the Dukovany NPP; (6) Assessment of the feasibility of quantification of important human actions modelled within a PSA study by employing simulator data analysis; (7) Assessment of the feasibility of using the various exercise topics for the quantification of the PSA model; (8) Assessment of the feasibility of employing the simulator in the analysis of the individual factors affecting the operator's activity; and (9) Examples of application of statistical methods in the analysis of the human reliability factor. (P.A.)

  10. Reliability analysis based on a novel density estimation method for structures with correlations

    Directory of Open Access Journals (Sweden)

    Baoyu LI

    2017-06-01

    Full Text Available Estimating the Probability Density Function (PDF of the performance function is a direct way for structural reliability analysis, and the failure probability can be easily obtained by integration in the failure domain. However, efficiently estimating the PDF is still an urgent problem to be solved. The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation, whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs. While in fact, structures with correlated inputs always exist in engineering, thus this paper improves the maximum entropy method, and applies the Unscented Transformation (UT technique to compute the fractional moments of the performance function for structures with correlations, which is a very efficient moment estimation method for models with any inputs. The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations. Besides, the number of function evaluations of the proposed method in reliability analysis, which is determined by UT, is really small. Several examples are employed to illustrate the accuracy and advantages of the proposed method.

  11. PROOF OF CONCEPT FOR A HUMAN RELIABILITY ANALYSIS METHOD FOR HEURISTIC USABILITY EVALUATION OF SOFTWARE

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman; Jeffrey C. Joe; Julie L. Marble

    2005-01-01

    An ongoing issue within human-computer interaction (HCI) is the need for simplified or ''discount'' methods. The current economic slowdown has necessitated innovative methods that are results driven and cost effective. The myriad methods of design and usability are currently being cost-justified, and new techniques are actively being explored that meet current budgets and needs. Recent efforts in human reliability analysis (HRA) are highlighted by the ten-year development of the Standardized Plant Analysis Risk HRA (SPAR-H) method. The SPAR-H method has been used primarily for determining human centered risk at nuclear power plants. The SPAR-H method, however, shares task analysis underpinnings with HCI. Despite this methodological overlap, there is currently no HRA approach deployed in heuristic usability evaluation. This paper presents an extension of the existing SPAR-H method to be used as part of heuristic usability evaluation in HCI

  12. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  13. A fast approximation method for reliability analysis of cold-standby systems

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Amari, Suprasad V.

    2012-01-01

    Analyzing reliability of large cold-standby systems has been a complicated and time-consuming task, especially for systems with components having non-exponential time-to-failure distributions. In this paper, an approximation model, which is based on the central limit theorem, is presented for the reliability analysis of binary cold-standby systems. The proposed model can estimate the reliability of large cold-standby systems with binary-state components having arbitrary time-to-failure distributions in an efficient and easy way. The accuracy and efficiency of the proposed method are illustrated using several different types of distributions for both 1-out-of-n and k-out-of-n cold-standby systems.

  14. DEPEND-HRA-A method for consideration of dependency in human reliability analysis

    International Nuclear Information System (INIS)

    Cepin, Marko

    2008-01-01

    A consideration of dependencies between human actions is an important issue within the human reliability analysis. A method was developed, which integrates the features of existing methods and the experience from a full scope plant simulator. The method is used on real plant-specific human reliability analysis as a part of the probabilistic safety assessment of a nuclear power plant. The method distinguishes dependency for pre-initiator events from dependency for initiator and post-initiator events. The method identifies dependencies based on scenarios, where consecutive human actions are modeled, and based on a list of minimal cut sets, which is obtained by running the minimal cut set analysis considering high values of human error probabilities in the evaluation. A large example study, which consisted of a large number of human failure events, demonstrated the applicability of the method. Comparative analyses that were performed show that both selection of dependency method and selection of dependency levels within the method largely impact the results of probabilistic safety assessment. If the core damage frequency is not impacted much, the listings of important basic events in terms of risk increase and risk decrease factors may change considerably. More efforts are needed on the subject, which will prepare the background for more detailed guidelines, which will remove the subjectivity from the evaluations as much as it is possible

  15. Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

    International Nuclear Information System (INIS)

    Lee, Seokje; Kim, Ingul; Jang, Moonho; Kim, Jaeki; Moon, Jungwon

    2013-01-01

    Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using Callosum and Meatball interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle

  16. Reliability and Sensitivity Analysis for Laminated Composite Plate Using Response Surface Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seokje; Kim, Ingul [Chungnam National Univ., Daejeon (Korea, Republic of); Jang, Moonho; Kim, Jaeki; Moon, Jungwon [LIG Nex1, Yongin (Korea, Republic of)

    2013-04-15

    Advanced fiber-reinforced laminated composites are widely used in various fields of engineering to reduce weight. The material property of each ply is well known; specifically, it is known that ply is less reliable than metallic materials and very sensitive to the loading direction. Therefore, it is important to consider this uncertainty in the design of laminated composites. In this study, reliability analysis is conducted using Callosum and Meatball interactions for a laminated composite plate for the case in which the tip deflection is the design requirement and the material property is a random variable. Furthermore, the efficiency and accuracy of the approximation method is identified, and a probabilistic sensitivity analysis is conducted. As a result, we can prove the applicability of the advanced design method for the stabilizer of an underwater vehicle.

  17. A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability

    International Nuclear Information System (INIS)

    Wen, Zhixun; Pei, Haiqing; Liu, Hai; Yue, Zhufeng

    2016-01-01

    The sequential Kriging reliability analysis (SKRA) method has been developed in recent years for nonlinear implicit response functions which are expensive to evaluate. This type of method includes EGRA: the efficient reliability analysis method, and AK-MCS: the active learning reliability method combining Kriging model and Monte Carlo simulation. The purpose of this paper is to improve SKRA by adaptive sampling regions and parallelizability. The adaptive sampling regions strategy is proposed to avoid selecting samples in regions where the probability density is so low that the accuracy of these regions has negligible effects on the results. The size of the sampling regions is adapted according to the failure probability calculated by last iteration. Two parallel strategies are introduced and compared, aimed at selecting multiple sample points at a time. The improvement is verified through several troublesome examples. - Highlights: • The ISKRA method improves the efficiency of SKRA. • Adaptive sampling regions strategy reduces the number of needed samples. • The two parallel strategies reduce the number of needed iterations. • The accuracy of the optimal value impacts the number of samples significantly.

  18. Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations

    International Nuclear Information System (INIS)

    Shalev, Dan M.; Tiran, Joseph

    2007-01-01

    Condition-based maintenance methods have changed systems reliability in general and individual systems in particular. Yet, this change does not affect system reliability analysis. System fault tree analysis (FTA) is performed during the design phase. It uses components failure rates derived from available sources as handbooks, etc. Condition-based fault tree analysis (CBFTA) starts with the known FTA. Condition monitoring (CM) methods applied to systems (e.g. vibration analysis, oil analysis, electric current analysis, bearing CM, electric motor CM, and so forth) are used to determine updated failure rate values of sensitive components. The CBFTA method accepts updated failure rates and applies them to the FTA. The CBFTA recalculates periodically the top event (TE) failure rate (λ TE ) thus determining the probability of system failure and the probability of successful system operation-i.e. the system's reliability. FTA is a tool for enhancing system reliability during the design stages. But, it has disadvantages, mainly it does not relate to a specific system undergoing maintenance. CBFTA is tool for updating reliability values of a specific system and for calculating the residual life according to the system's monitored conditions. Using CBFTA, the original FTA is ameliorated to a practical tool for use during the system's field life phase, not just during system design phase. This paper describes the CBFTA method and its advantages are demonstrated by an example

  19. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  20. Development of A Standard Method for Human Reliability Analysis (HRA) of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kang, Dae Il; Jung, Won Dea; Kim, Jae Whan

    2005-12-01

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME and ANS PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME and ANS HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method

  1. Development of A Standard Method for Human Reliability Analysis of Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jung, Won Dea; Kang, Dae Il; Kim, Jae Whan

    2005-12-01

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method

  2. Development of A Standard Method for Human Reliability Analysis of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Dea; Kang, Dae Il; Kim, Jae Whan

    2005-12-15

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method.

  3. Development of A Standard Method for Human Reliability Analysis (HRA) of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Jung, Won Dea; Kim, Jae Whan

    2005-12-15

    According as the demand of risk-informed regulation and applications increase, the quality and reliability of a probabilistic safety assessment (PSA) has been more important. KAERI started a study to standardize the process and the rules of HRA (Human Reliability Analysis) which was known as a major contributor to the uncertainty of PSA. The study made progress as follows; assessing the level of quality of the HRAs in Korea and identifying the weaknesses of the HRAs, determining the requirements for developing a standard HRA method, developing the process and rules for quantifying human error probability. Since the risk-informed applications use the ASME and ANS PSA standard to ensure PSA quality, the standard HRA method was developed to meet the ASME and ANS HRA requirements with level of category II. The standard method was based on THERP and ASEP HRA that are widely used for conventional HRA. However, the method focuses on standardizing and specifying the analysis process, quantification rules and criteria to minimize the deviation of the analysis results caused by different analysts. Several HRA experts from different organizations in Korea participated in developing the standard method. Several case studies were interactively undertaken to verify the usability and applicability of the standard method.

  4. Reliability analysis of protection systems in NPP applying fault-tree analysis method

    International Nuclear Information System (INIS)

    Bokor, J.; Gaspar, P.; Hetthessy, J.; Szabo, G.

    1998-01-01

    This paper demonstrates the applicability and limits of dependability analysis in nuclear power plants (NPPS) based on the reactor protection refurbishment project (RRP) in NPP Paks. This paper illustrates case studies from the reliability analysis for NPP Paks. It also investigates the solutions for the connection between the data acquisition and subsystem control units (TSs) and the voter units (VTs), it analyzes the influence of the voting in the VT computer level, it studies the effects of the testing procedures to the dependability parameters. (author)

  5. A review of the evolution of human reliability analysis methods at nuclear industry

    International Nuclear Information System (INIS)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R.

    2017-01-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  6. A review of the evolution of human reliability analysis methods at nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lécio N. de; Santos, Isaac José A. Luquetti dos; Carvalho, Paulo V.R., E-mail: lecionoliveira@gmail.com, E-mail: luquetti@ien.gov.br, E-mail: paulov@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-11-01

    This paper reviews the status of researches on the application of human reliability analysis methods at nuclear industry and its evolution along the years. Human reliability analysis (HRA) is one of the elements used in Probabilistic Safety Analysis (PSA) and is performed as part of PSAs to quantify the likelihood that people will fail to take action, such as errors of omission and errors of commission. Although HRA may be used at lots of areas, the focus of this paper is to review the applicability of HRA methods along the years at nuclear industry, especially in Nuclear Power Plants (NPP). An electronic search on CAPES Portal of Journals (A bibliographic database) was performed. This literature review covers original papers published since the first generation of HRA methods until the ones published on March 2017. A total of 94 papers were retrieved by the initial search and 13 were selected to be fully reviewed and for data extraction after the application of inclusion and exclusion criteria, quality and suitability evaluation according to applicability at nuclear industry. Results point out that the methods from first generation are more used in practice than methods from second generation. This occurs because it is more concentrated towards quantification, in terms of success or failure of human action what make them useful for quantitative risk assessment to PSA. Although the second generation considers context and error of commission in human error prediction, they are not wider used in practice at nuclear industry to PSA. (author)

  7. Reliability Analysis of a Composite Wind Turbine Blade Section Using the Model Correction Factor Method: Numerical Study and Validation

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Friis-Hansen, Peter; Berggreen, Christian

    2013-01-01

    by the composite failure criteria. Each failure mode has been considered in a separate component reliability analysis, followed by a system analysis which gives the total probability of failure of the structure. The Model Correction Factor method used in connection with FORM (First-Order Reliability Method) proved...

  8. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  9. Reliability Analysis of Operation for Cableways by FTA (Fault Tree Analysis Method

    Directory of Open Access Journals (Sweden)

    Sergej Težak

    2010-05-01

    Full Text Available This paper examines the reliability of the operation of cableway systems in Slovenia, which has major impact on the quality of service in the mountain tourism, mainly in wintertime. Different types of cableway installations in Slovenia were captured in a sample and fault tree analysis (FTA was made on the basis of the obtained data. The paper presents the results of the analysis. With these results it is possible to determine the probability of faults of different types of cableways, which types of faults have the greatest impact on the termination of operation, which components of cableways fail most, what is the impact of age of cableways on the occurrence of the faults. Finally, an attempt was made to find if occurrence of faults on individual cableway installation has also impact on traffic on this cableway due to reduced quality of service. KEYWORDS: cableways, aerial ropeways, chairlifts, ski-tows, quality, faults, fault tree analysis, reliability, service quality, winter tourism, mountain tourist centre

  10. HUMAN RELIABILITY ANALYSIS FOR COMPUTERIZED PROCEDURES, PART TWO: APPLICABILITY OF CURRENT METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-10-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no U.S. nuclear power plant has implemented CPs in its main control room. Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  11. Human reliability analysis for probabilistic safety assessments - review of methods and issues

    International Nuclear Information System (INIS)

    Srinivas, G.; Guptan, Rajee; Malhotra, P.K.; Ghadge, S.G.; Chandra, Umesh

    2011-01-01

    It is well known that the two major events in World Nuclear Power Plant Operating history, namely the Three Mile Island and Chernobyl, were Human failure events. Subsequent to these two events, several significant changes have been incorporated in Plant Design, Control Room Design and Operator Training to reduce the possibility of Human errors during plant transients. Still, human error contribution to Risk in Nuclear Power Plant operations has been a topic of continued attention for research, development and analysis. Probabilistic Safety Assessments attempt to capture all potential human errors with a scientifically computed failure probability, through Human Reliability Analysis. Several methods are followed by different countries to quantify the Human error probability. This paper reviews the various popular methods being followed, critically examines them with reference to their criticisms and brings out issues for future research. (author)

  12. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  13. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  14. Approximation of the Monte Carlo Sampling Method for Reliability Analysis of Structures

    Directory of Open Access Journals (Sweden)

    Mahdi Shadab Far

    2016-01-01

    Full Text Available Structural load types, on the one hand, and structural capacity to withstand these loads, on the other hand, are of a probabilistic nature as they cannot be calculated and presented in a fully deterministic way. As such, the past few decades have witnessed the development of numerous probabilistic approaches towards the analysis and design of structures. Among the conventional methods used to assess structural reliability, the Monte Carlo sampling method has proved to be very convenient and efficient. However, it does suffer from certain disadvantages, the biggest one being the requirement of a very large number of samples to handle small probabilities, leading to a high computational cost. In this paper, a simple algorithm was proposed to estimate low failure probabilities using a small number of samples in conjunction with the Monte Carlo method. This revised approach was then presented in a step-by-step flowchart, for the purpose of easy programming and implementation.

  15. Human reliability analysis of errors of commission: a review of methods and applications

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B

    2007-06-15

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  16. Human reliability analysis of errors of commission: a review of methods and applications

    International Nuclear Information System (INIS)

    Reer, B.

    2007-06-01

    Illustrated by specific examples relevant to contemporary probabilistic safety assessment (PSA), this report presents a review of human reliability analysis (HRA) addressing post initiator errors of commission (EOCs), i.e. inappropriate actions under abnormal operating conditions. The review addressed both methods and applications. Emerging HRA methods providing advanced features and explicit guidance suitable for PSA are: A Technique for Human Event Analysis (ATHEANA, key publications in 1998/2000), Methode d'Evaluation de la Realisation des Missions Operateur pour la Surete (MERMOS, 1998/2000), the EOC HRA method developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS, 2003), the Misdiagnosis Tree Analysis (MDTA) method (2005/2006), the Cognitive Reliability and Error Analysis Method (CREAM, 1998), and the Commission Errors Search and Assessment (CESA) method (2002/2004). As a result of a thorough investigation of various PSA/HRA applications, this paper furthermore presents an overview of EOCs (termination of safety injection, shutdown of secondary cooling, etc.) referred to in predictive studies and a qualitative review of cases of EOC quantification. The main conclusions of the review of both the methods and the EOC HRA cases are: (1) The CESA search scheme, which proceeds from possible operator actions to the affected systems to scenarios, may be preferable because this scheme provides a formalized way for identifying relatively important scenarios with EOC opportunities; (2) an EOC identification guidance like CESA, which is strongly based on the procedural guidance and important measures of systems or components affected by inappropriate actions, however should pay some attention to EOCs associated with familiar but non-procedural actions and EOCs leading to failures of manually initiated safety functions. (3) Orientations of advanced EOC quantification comprise a) modeling of multiple contexts for a given scenario, b) accounting for

  17. Knowledge-base for the new human reliability analysis method, A Technique for Human Error Analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.

    1996-01-01

    This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst

  18. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design.

  19. A survey on the human reliability analysis methods for the design of Korean next generation reactor

    International Nuclear Information System (INIS)

    Lee, Yong Hee; Lee, J. W.; Park, J. C.; Kwack, H. Y.; Lee, K. Y.; Park, J. K.; Kim, I. S.; Jung, K. W.

    2000-03-01

    Enhanced features through applying recent domestic technologies may characterize the safety and efficiency of KNGR(Korea Next Generation Reactor). Human engineered interface and control room environment are expected to be beneficial to the human aspects of KNGR design. However, since the current method for human reliability analysis is not up to date after THERP/SHARP, it becomes hard to assess the potential of human errors due to both of the positive and negative effect of the design changes in KNGR. This is a state of the art report on the human reliability analysis methods that are potentially available for the application to the KNGR design. We surveyed every technical aspects of existing HRA methods, and compared them in order to obtain the requirements for the assessment of human error potentials within KNGR design. We categorized the more than 10 methods into the first and the second generation according to the suggestion of Dr. Hollnagel. THERP was revisited in detail. ATHEANA proposed by US NRC for an advanced design and CREAM proposed by Dr. Hollnagel were reviewed and compared. We conclude that the key requirements might include the enhancement in the early steps for human error identification and the quantification steps with considerations of more extended error shaping factors over PSFs(performance shaping factors). The utilization of the steps and approaches of ATHEANA and CREAM will be beneficial to the attainment of an appropriate HRA method for KNGR. However, the steps and data from THERP will be still maintained because of the continuity with previous PSA activities in KNGR design

  20. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  1. Waste package reliability analysis

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table

  2. Uncertainty analysis of nonlinear systems employing the first-order reliability method

    International Nuclear Information System (INIS)

    Choi, Chan Kyu; Yoo, Hong Hee

    2012-01-01

    In most mechanical systems, properties of the system elements have uncertainties due to several reasons. For example, mass, stiffness coefficient of a spring, damping coefficient of a damper or friction coefficients have uncertain characteristics. The uncertain characteristics of the elements have a direct effect on the system performance uncertainty. It is very important to estimate the performance uncertainty since the performance uncertainty is directly related to manufacturing yield and consumer satisfaction. Due to this reason, the performance uncertainty should be estimated accurately and considered in the system design. In this paper, performance measures are defined for nonlinear vibration systems and the performance measure uncertainties are estimated employing the first order reliability method (FORM). It was found that the FORM could provide good results in spite of the system nonlinear characteristics. Comparing to the results obtained by Monte Carlo Simulation (MCS), the accuracy of the uncertainty analysis results obtained by the FORM is validated

  3. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  4. Bridging Human Reliability Analysis and Psychology, Part 1: The Psychological Literature Review for the IDHEAS Method

    Energy Technology Data Exchange (ETDEWEB)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring; Jeffrey C. Joe; Katya L. Le Blanc; Jing Xing

    2012-06-01

    In response to Staff Requirements Memorandum (SRM) SRM-M061020, the U.S. Nuclear Regulatory Commission (NRC) is sponsoring work to update the technical basis underlying human reliability analysis (HRA) in an effort to improve the robustness of HRA. The ultimate goal of this work is to develop a hybrid of existing methods addressing limitations of current HRA models and in particular issues related to intra- and inter-method variabilities and results. This hybrid method is now known as the Integrated Decision-tree Human Event Analysis System (IDHEAS). Existing HRA methods have looked at elements of the psychological literature, but there has not previously been a systematic attempt to translate the complete span of cognition from perception to action into mechanisms that can inform HRA. Therefore, a first step of this effort was to perform a literature search of psychology, cognition, behavioral science, teamwork, and operating performance to incorporate current understanding of human performance in operating environments, thus affording an improved technical foundation for HRA. However, this literature review went one step further by mining the literature findings to establish causal relationships and explicit links between the different types of human failures, performance drivers and associated performance measures ultimately used for quantification. This is the first of two papers that detail the literature review (paper 1) and its product (paper 2). This paper describes the literature review and the high-level architecture used to organize the literature review, and the second paper (Whaley, Hendrickson, Boring, & Xing, these proceedings) describes the resultant cognitive framework.

  5. Development of a reliability-analysis method for category I structures

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Reich, M.

    1983-01-01

    The present paper develops a reliability analysis method for category I nuclear structures, particularly for reinforced concrete containment structures subjected to various load combinations. The loads considered here include dead loads, accidental internal pressure and earthquake ground acceleration. For mathematical tractability, an earthquake occurrence is assumed to be governed by the Poisson arrival law, while its acceleration history is idealized as a Gaussian vector process of finite duration. A vector process consists of three component processes, each with zero mean. The second order statistics of this process are specified by a three-by-three spectral density matrix with a multiplying factor representing the overall intensity of the ground acceleration. With respect to accidental internal pressure, the following assumptions are made: (a) it occurs in accordance with the Poisson law; (b) its intensity and duration are random; and (c) its temporal rise and fall behaviors are such that a quasi-static structural analysis applies. A dead load is considered to be a deterministic constant

  6. Reliability Analysis of Corroded Reinforced Concrete Beams Using Enhanced HL-RF Method

    Directory of Open Access Journals (Sweden)

    Arash Mohammadi Farsani

    2015-12-01

    Full Text Available Steel corrosion of bars in concrete structures is a complex process which leads to the reduction of the cross-section bars and decreasing the resistance of the concrete and steel materials. In this study, reliability analysis of a reinforced concrete beam with corrosion defects under the distributed load was investigated using the enhanced Hasofer-Lind and Rackwitz-Fiessler (EHL-RF method based on relaxed approach. Robustness of the EHL-RF algorithm was compared with the HL-RF using a complicated example. It was seen that the EHL-RF algorithm is more robust than the HL-RF method. Finally, the effects of corrosion time were investigated using the EHL-RF algorithm for a reinforced concrete beam based on flexural strength in the pitting and general corrosion. The model uncertainties were considered in the resistance and load terms of flexural strength limit state function. The results illustrated that increasing the corrosion time-period leads to increase in the failure probability of the corroded concrete beam.

  7. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    Science.gov (United States)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  8. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  9. Case study on the use of PSA methods: Human reliability analysis

    International Nuclear Information System (INIS)

    1991-04-01

    The overall objective of treating human reliability in a probabilistic safety analysis is to ensure that the key human interactions of typical crews are accurately and systematically incorporated into the study in a traceable manner. An additional objective is to make the human reliability analysis (HRA) as realistic as possible, taking into account the emergency procedures, the man-machine interface, the focus of training process, and the knowledge and experience of the crews. Section 3 of the paper describes an overview of this analytical process which leads to three more detailed example problems described in Section 4. Section 5 discusses a peer review process. References are presented that are useful in performing HRAs. In addition appendices are provided for definitions, selected data and a generic list of performance shaping factors. 35 refs, figs and tabs

  10. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  11. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    Science.gov (United States)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  12. Quantitative developments in the cognitive reliability and error analysis method (CREAM) for the assessment of human performance

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Zio, Enrico; Librizzi, Massimo

    2006-01-01

    The current 'second generation' approaches in human reliability analysis focus their attention on the contextual conditions under which a given action is performed rather than on the notion of inherent human error probabilities, as was done in the earlier 'first generation' techniques. Among the 'second generation' methods, this paper considers the Cognitive Reliability and Error Analysis Method (CREAM) and proposes some developments with respect to a systematic procedure for computing probabilities of action failure. The starting point for the quantification is a previously introduced fuzzy version of the CREAM paradigm which is here further extended to include uncertainty on the qualification of the conditions under which the action is performed and to account for the fact that the effects of the common performance conditions (CPCs) on performance reliability may not all be equal. By the proposed approach, the probability of action failure is estimated by rating the performance conditions in terms of their effect on the action

  13. Uncertainty analysis methods for estimation of reliability of passive system of VHTR

    International Nuclear Information System (INIS)

    Han, S.J.

    2012-01-01

    An estimation of reliability of passive system for the probabilistic safety assessment (PSA) of a very high temperature reactor (VHTR) is under development in Korea. The essential approach of this estimation is to measure the uncertainty of the system performance under a specific accident condition. The uncertainty propagation approach according to the simulation of phenomenological models (computer codes) is adopted as a typical method to estimate the uncertainty for this purpose. This presentation introduced the uncertainty propagation and discussed the related issues focusing on the propagation object and its surrogates. To achieve a sufficient level of depth of uncertainty results, the applicability of the propagation should be carefully reviewed. For an example study, Latin-hypercube sampling (LHS) method as a direct propagation was tested for a specific accident sequence of VHTR. The reactor cavity cooling system (RCCS) developed by KAERI was considered for this example study. This is an air-cooled type passive system that has no active components for its operation. The accident sequence is a low pressure conduction cooling (LPCC) accident that is considered as a design basis accident for the safety design of VHTR. This sequence is due to a large failure of the pressure boundary of the reactor system such as a guillotine break of coolant pipe lines. The presentation discussed the obtained insights (benefit and weakness) to apply an estimation of reliability of passive system

  14. A method and application study on holistic decision tree for human reliability analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Sun Feng; Zhong Shan; Wu Zhiyu

    2008-01-01

    The paper introduces a human reliability analysis method mainly used in Nuclear Power Plant Safety Assessment and the Holistic Decision Tree (HDT) method and how to apply it. The focus is primarily on providing the basic framework and some background of HDT method and steps to perform it. Influence factors and quality descriptors are formed by the interview with operators in Qinshan Nuclear Power Plant and HDT analysis performed for SGTR and SLOCA based on this information. The HDT model can use a graphic tree structure to indicate that error rate is a function of influence factors. HDT method is capable of dealing with the uncertainty in HRA, and it is reliable and practical. (authors)

  15. The treatment of commission errors in first generation human reliability analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Alvarengga, Marco Antonio Bayout; Fonseca, Renato Alves da, E-mail: bayout@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN) Rio de Janeiro, RJ (Brazil); Melo, Paulo Fernando Frutuoso e, E-mail: frutuoso@nuclear.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    Human errors in human reliability analysis can be classified generically as errors of omission and commission errors. Omission errors are related to the omission of any human action that should have been performed, but does not occur. Errors of commission are those related to human actions that should not be performed, but which in fact are performed. Both involve specific types of cognitive error mechanisms, however, errors of commission are more difficult to model because they are characterized by non-anticipated actions that are performed instead of others that are omitted (omission errors) or are entered into an operational task without being part of the normal sequence of this task. The identification of actions that are not supposed to occur depends on the operational context that will influence or become easy certain unsafe actions of the operator depending on the operational performance of its parameters and variables. The survey of operational contexts and associated unsafe actions is a characteristic of second-generation models, unlike the first generation models. This paper discusses how first generation models can treat errors of commission in the steps of detection, diagnosis, decision-making and implementation, in the human information processing, particularly with the use of THERP tables of errors quantification. (author)

  16. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  17. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    NARCIS (Netherlands)

    Gharouni-Nik, M.; Naeimi, M.; Ahadi, S.; Alimoradi, Z.

    2014-01-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute

  18. Computational intelligence methods for the efficient reliability analysis of complex flood defence structures

    NARCIS (Netherlands)

    Kingston, Greer B.; Rajabali Nejad, Mohammadreza; Gouldby, Ben P.; van Gelder, Pieter H.A.J.M.

    2011-01-01

    With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex

  19. Reliability analysis and risk-based methods for planning of operation & maintenance of offshore wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2017-01-01

    for extreme and fatigue limit states are presented. Operation & Maintenance planning often follows corrective and preventive strategies based on information from condition monitoring and structural health monitoring systems. A reliability- and risk-based approach is presented where a life-cycle approach...

  20. A simple and reliable method reducing sulfate to sulfide for multiple sulfur isotope analysis.

    Science.gov (United States)

    Geng, Lei; Savarino, Joel; Savarino, Clara A; Caillon, Nicolas; Cartigny, Pierre; Hattori, Shohei; Ishino, Sakiko; Yoshida, Naohiro

    2018-02-28

    Precise analysis of four sulfur isotopes of sulfate in geological and environmental samples provides the means to extract unique information in wide geological contexts. Reduction of sulfate to sulfide is the first step to access such information. The conventional reduction method suffers from a cumbersome distillation system, long reaction time and large volume of the reducing solution. We present a new and simple method enabling the process of multiple samples at one time with a much reduced volume of reducing solution. One mL of reducing solution made of HI and NaH 2 PO 2 was added to a septum glass tube with dry sulfate. The tube was heated at 124°C and the produced H 2 S was purged with inert gas (He or N 2 ) through gas-washing tubes and then collected by NaOH solution. The collected H 2 S was converted into Ag 2 S by adding AgNO 3 solution and the co-precipitated Ag 2 O was removed by adding a few drops of concentrated HNO 3 . Within 2-3 h, a 100% yield was observed for samples with 0.2-2.5 μmol Na 2 SO 4 . The reduction rate was much slower for BaSO 4 and a complete reduction was not observed. International sulfur reference materials, NBS-127, SO-5 and SO-6, were processed with this method, and the measured against accepted δ 34 S values yielded a linear regression line which had a slope of 0.99 ± 0.01 and a R 2 value of 0.998. The new methodology is easy to handle and allows us to process multiple samples at a time. It has also demonstrated good reproducibility in terms of H 2 S yield and for further isotope analysis. It is thus a good alternative to the conventional manual method, especially when processing samples with limited amount of sulfate available. © 2017 The Authors. Rapid Communications in Mass Spectrometry Pubished by John Wiley & Sons Ltd.

  1. Application of SAW method for multiple-criteria comparative analysis of the reliability of heat supply organizations

    Science.gov (United States)

    Akhmetova, I. G.; Chichirova, N. D.

    2016-12-01

    Heat supply is the most energy-consuming sector of the economy. Approximately 30% of all used primary fuel-and-energy resources is spent on municipal heat-supply needs. One of the key indicators of activity of heat-supply organizations is the reliability of an energy facility. The reliability index of a heat supply organization is of interest to potential investors for assessing risks when investing in projects. The reliability indices established by the federal legislation are actually reduced to a single numerical factor, which depends on the number of heat-supply outages in connection with disturbances in operation of heat networks and the volume of their resource recovery in the calculation year. This factor is rather subjective and may change in a wide range during several years. A technique is proposed for evaluating the reliability of heat-supply organizations with the use of the simple additive weighting (SAW) method. The technique for integrated-index determination satisfies the following conditions: the reliability level of the evaluated heat-supply system is represented maximum fully and objectively; the information used for the reliability-index evaluation is easily available (is located on the Internet in accordance with demands of data-disclosure standards). For reliability estimation of heat-supply organizations, the following indicators were selected: the wear of equipment of thermal energy sources, the wear of heat networks, the number of outages of supply of thermal energy (heat carrier due to technological disturbances on heat networks per 1 km of heat networks), the number of outages of supply of thermal energy (heat carrier due to technologic disturbances on thermal energy sources per 1 Gcal/h of installed power), the share of expenditures in the cost of thermal energy aimed at recovery of the resource (renewal of fixed assets), coefficient of renewal of fixed assets, and a coefficient of fixed asset retirement. A versatile program is developed

  2. Reliability of an analysis method for measuring diaphragm excursion by means of direct visualization with videofluoroscopy.

    Science.gov (United States)

    Yi, Liu C; Nascimento, Oliver A; Jardim, José R

    2011-06-01

    The purpose of this study was to verify the reproducibility between two different observers of an analysis method for diaphragmatic displacement measurements using direct visualization with videofluoroscopy. 29 mouth breathing children aged 5 to 12 years from both genders were analyzed. The diaphragmatic displacement evaluation was divided in three parts: videofluoroscopy with VHS recording in standing, sitting, and dorsal positions; digitalization of the images; and measurement of the distance between diaphragmatic domes during a breathing cycle using Adobe Photoshop 5.5 and Adobe Premiere PRO 6.5 software. The intraclass correlation coefficients presented excellent reproducibility in all positions, with coefficients always above 0.94. Mean of the measurements of the diaphagramatic domes displacement done by the two observers were similar (Phealthcare professionals. Copyright © 2010 SEPAR. Published by Elsevier Espana. All rights reserved.

  3. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  4. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  5. Structural systems reliability analysis

    International Nuclear Information System (INIS)

    Frangopol, D.

    1975-01-01

    For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de

  6. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Jeong, Sinyoung; Ko, Eunbyeol; Jeong, Dae Hong, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Chemistry Education, Seoul National University, Seoul 151-742 (Korea, Republic of); Kang, Homan [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Yoon-Sik, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Interdisciplinary Program in Nano-Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Ho-Young, E-mail: yslee@snu.ac.kr, E-mail: debobkr@gmail.com, E-mail: jeongdh@snu.ac.kr [Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 463-707 (Korea, Republic of)

    2015-05-15

    Surface-enhanced Raman scattering techniques have been widely used for bioanalysis due to its high sensitivity and multiplex capacity. However, the point-scanning method using a micro-Raman system, which is the most common method in the literature, has a disadvantage of extremely long measurement time for on-chip immunoassay adopting a large chip area of approximately 1-mm scale and confocal beam point of ca. 1-μm size. Alternative methods such as sampled spot scan with high confocality and large-area scan method with enlarged field of view and low confocality have been utilized in order to minimize the measurement time practically. In this study, we analyzed the two methods in respect of signal-to-noise ratio and sampling-led signal fluctuations to obtain insights into a fast and reliable readout strategy. On this basis, we proposed a methodology for fast and reliable quantitative measurement of the whole chip area. The proposed method adopted a raster scan covering a full area of 100 μm × 100 μm region as a proof-of-concept experiment while accumulating signals in the CCD detector for single spectrum per frame. One single scan with 10 s over 100 μm × 100 μm area yielded much higher sensitivity compared to sampled spot scanning measurements and no signal fluctuations attributed to sampled spot scan. This readout method is able to serve as one of key technologies that will bring quantitative multiplexed detection and analysis into practice.

  7. An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization

    International Nuclear Information System (INIS)

    Yao, Wen; Chen, Xiaoqian; Huang, Yiyong; Tooren, Michel van

    2013-01-01

    In engineering, there exist both aleatory uncertainties due to the inherent variation of the physical system and its operational environment, and epistemic uncertainties due to lack of knowledge and which can be reduced with the collection of more data. To analyze the uncertain distribution of the system performance under both aleatory and epistemic uncertainties, combined probability and evidence theory can be employed to quantify the compound effects of the mixed uncertainties. The existing First Order Reliability Method (FORM) based Unified Uncertainty Analysis (UUA) approach nests the optimization based interval analysis in the improved Hasofer–Lind–Rackwitz–Fiessler (iHLRF) algorithm based Most Probable Point (MPP) searching procedure, which is computationally inhibitive for complex systems and may encounter convergence problem as well. Therefore, in this paper it is proposed to use general optimization solvers to search MPP in the outer loop and then reformulate the double-loop optimization problem into an equivalent single-level optimization (SLO) problem, so as to simplify the uncertainty analysis process, improve the robustness of the algorithm, and alleviate the computational complexity. The effectiveness and efficiency of the proposed method is demonstrated with two numerical examples and one practical satellite conceptual design problem. -- Highlights: ► Uncertainty analysis under mixed aleatory and epistemic uncertainties is studied. ► A unified uncertainty analysis method is proposed with combined probability and evidence theory. ► The traditional nested analysis method is converted to single level optimization for efficiency. ► The effectiveness and efficiency of the proposed method are testified with three examples

  8. A reliability simulation language for reliability analysis

    International Nuclear Information System (INIS)

    Deans, N.D.; Miller, A.J.; Mann, D.P.

    1986-01-01

    The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)

  9. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  10. Scyllac equipment reliability analysis

    International Nuclear Information System (INIS)

    Gutscher, W.D.; Johnson, K.J.

    1975-01-01

    Most of the failures in Scyllac can be related to crowbar trigger cable faults. A new cable has been designed, procured, and is currently undergoing evaluation. When the new cable has been proven, it will be worked into the system as quickly as possible without causing too much additional down time. The cable-tip problem may not be easy or even desirable to solve. A tightly fastened permanent connection that maximizes contact area would be more reliable than the plug-in type of connection in use now, but it would make system changes and repairs much more difficult. The balance of the failures have such a low occurrence rate that they do not cause much down time and no major effort is underway to eliminate them. Even though Scyllac was built as an experimental system and has many thousands of components, its reliability is very good. Because of this the experiment has been able to progress at a reasonable pace

  11. Reliability analysis of PWR thermohydraulic design by the Monte Carlo method

    International Nuclear Information System (INIS)

    Silva Junior, H.C. da; Berthoud, J.S.; Carajilescov, P.

    1977-01-01

    The operating power level of a PWR is limited by the occurence of DNB. Without affecting the safety and performance of the reactor, it is possible to admit failure of a certain number of core channels. The thermohydraulic design, however, is affect by a great number of uncertainties of deterministic or statistical nature. In the present work, the Monte Carlo method is applied to yield the probability that a number F of channels submitted to boiling crises will not exceed a number F* previously given. This probability is obtained as function of the reactor power level. (Author) [pt

  12. Application of simple approximate system analysis methods for reliability and availability improvement of reactor WWER-1000

    International Nuclear Information System (INIS)

    Manchev, B.; Marinova, B.; Nenkova, B.

    2001-01-01

    The method described on this report provides a set of simple, easily understood 'approximate' models applicable to a large class of system architectures. Constructing a Markov model of each redundant subsystem and its replacement after that by a pseudo-component develops the approximation models. Of equal importance, the models can be easily understood even of non-experts, including managers, high-level decision-makers and unsophisticated consumers. A necessary requirement for their application is the systems to be repairable and the mean time to repair to be much smaller than the mean time to failure. This ia a case most often met in the real practice. Results of the 'approximate' model application on a technological system of Kozloduy NPP are also presented. The results obtained can be compared quite favorably with the results obtained by using SAPHIRE software

  13. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  14. Atomization in a graphite furnace with ballast - a method of improvement of reliability of atomic absorption analysis

    International Nuclear Information System (INIS)

    Katskov, D.A.; Grinshtejn, I.L.

    1978-01-01

    For the purpose of improving the reliability with which elements are determined in atomic absorption analysis with atomization in a graphite furnace, a method is proposed based on the use of a furnace with an extra ballast body. A small cylinder of graphite or refractory metal (Ta) placed in the central part of the furnace, is used as ballast. When in poor heat contact with the wall the ballast is heated by ray emission at a somewhat slower rate than the furnace. It is shown that the kinetics of evaporation of the substance being analysed in the ballast furnace is determined by the rate of change of temperature of the ballast body. As a result of the lag in evaporation, vapour from the analysed substance reaches a zone of a much higher temperature than with evaporation in the usual type furnace, leading to an increase in the degree of atomization. Theoretical analysis establishes the temperature of the ballast, and conditions for the determination of elements (Cd) are optimized. The experiments conducted indicate a considerable decrease in the effect of the composition of the sample on the results of the analysis and a lower molecular interference in the ballast furnace. With high evaporation lag the vapours of the sample reach the zone of practically constant temperature, thus making it possible to use the integral method of absorption registration with absolute accuracy. With fractionated distillation of volatile components of the sample, fractionation is considerably more accurate in a ballast furnace than in the usual type furnace

  15. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  16. Validation of Land Cover Products Using Reliability Evaluation Methods

    Directory of Open Access Journals (Sweden)

    Wenzhong Shi

    2015-06-01

    Full Text Available Validation of land cover products is a fundamental task prior to data applications. Current validation schemes and methods are, however, suited only for assessing classification accuracy and disregard the reliability of land cover products. The reliability evaluation of land cover products should be undertaken to provide reliable land cover information. In addition, the lack of high-quality reference data often constrains validation and affects the reliability results of land cover products. This study proposes a validation schema to evaluate the reliability of land cover products, including two methods, namely, result reliability evaluation and process reliability evaluation. Result reliability evaluation computes the reliability of land cover products using seven reliability indicators. Process reliability evaluation analyzes the reliability propagation in the data production process to obtain the reliability of land cover products. Fuzzy fault tree analysis is introduced and improved in the reliability analysis of a data production process. Research results show that the proposed reliability evaluation scheme is reasonable and can be applied to validate land cover products. Through the analysis of the seven indicators of result reliability evaluation, more information on land cover can be obtained for strategic decision-making and planning, compared with traditional accuracy assessment methods. Process reliability evaluation without the need for reference data can facilitate the validation and reflect the change trends of reliabilities to some extent.

  17. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  18. Testing inter-observer reliability of the Transition Analysis aging method on the William M. Bass forensic skeletal collection.

    Science.gov (United States)

    Fojas, Christina L; Kim, Jieun; Minsky-Rowland, Jocelyn D; Algee-Hewitt, Bridget F B

    2018-01-01

    Skeletal age estimation is an integral part of the biological profile. Recent work shows how multiple-trait approaches better capture senescence as it occurs at different rates among individuals. Furthermore, a Bayesian statistical framework of analysis provides more useful age estimates. The component-scoring method of Transition Analysis (TA) may resolve many of the functional and statistical limitations of traditional phase-aging methods and is applicable to both paleodemography and forensic casework. The present study contributes to TA-research by validating TA for multiple, differently experienced observers using a collection of modern forensic skeletal cases. Five researchers independently applied TA to a random sample of 58 documented individuals from the William M. Bass Forensic Skeletal Collection, for whom knowledge of chronological age was withheld. Resulting scores were input into the ADBOU software and maximum likelihood estimates (MLEs) and 95% confidence intervals (CIs) were produced using the forensic prior. Krippendorff's alpha was used to evaluate interrater reliability and agreement. Inaccuracy and bias were measured to gauge the magnitude and direction of difference between estimated ages and chronological ages among the five observers. The majority of traits had moderate to excellent agreement among observers (≥0.6). The superior surface morphology had the least congruence (0.4), while the ventral symphyseal margin had the most (0.9) among scores. Inaccuracy was the lowest for individuals younger than 30 and the greatest for individuals over 60. Consistent over-estimation of individuals younger than 30 and under-estimation of individuals over 40 years old occurred. Individuals in their 30s showed a mixed pattern of under- and over-estimation among observers. These results support the use of the TA method by researchers of varying experience levels. Further, they validate its use on forensic cases, given the low error overall. © 2017 Wiley

  19. Risk analysis and reliability

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1979-01-01

    Mathematical foundations of risk analysis are addressed. The importance of having the same probability space in order to compare different experiments is pointed out. Then the following topics are discussed: consequences as random variables with infinite expectations; the phenomenon of rare events; series-parallel systems and different kinds of randomness that could be imposed on such systems; and the problem of consensus of estimates of expert opinion

  20. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  1. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    Hall, R.E.

    1985-01-01

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  2. Reliability of Estimation Pile Load Capacity Methods

    Directory of Open Access Journals (Sweden)

    Yudhi Lastiasih

    2014-04-01

    Full Text Available None of numerous previous methods for predicting pile capacity is known how accurate any of them are when compared with the actual ultimate capacity of piles tested to failure. The author’s of the present paper have conducted such an analysis, based on 130 data sets of field loading tests. Out of these 130 data sets, only 44 could be analysed, of which 15 were conducted until the piles actually reached failure. The pile prediction methods used were: Brinch Hansen’s method (1963, Chin’s method (1970, Decourt’s Extrapolation Method (1999, Mazurkiewicz’s method (1972, Van der Veen’s method (1953, and the Quadratic Hyperbolic Method proposed by Lastiasih et al. (2012. It was obtained that all the above methods were sufficiently reliable when applied to data from pile loading tests that loaded to reach failure. However, when applied to data from pile loading tests that loaded without reaching failure, the methods that yielded lower values for correction factor N are more recommended. Finally, the empirical method of Reese and O’Neill (1988 was found to be reliable enough to be used to estimate the Qult of a pile foundation based on soil data only.

  3. Reliability analysis for radiographic measures of lumbar lordosis in adult scoliosis: a case–control study comparing 6 methods

    Science.gov (United States)

    Hong, Jae Young; Modi, Hitesh N.; Hur, Chang Yong; Song, Hae Ryong; Park, Jong Hoon

    2010-01-01

    Several methods are used to measure lumbar lordosis. In adult scoliosis patients, the measurement is difficult due to degenerative changes in the vertebral endplate as well as the coronal and sagittal deformity. We did the observational study with three examiners to determine the reliability of six methods for measuring the global lumbar lordosis in adult scoliosis patients. Ninety lateral lumbar radiographs were collected for the study. The radiographs were divided into normal (Cobb lordosis measurement decreased with increasing severity of scoliosis. In Cobb L1–S1, centroid and posterior tangent L1–S1 methods, the ICCs were relatively lower in the high-grade scoliosis group (≥0.60). And, the mean absolute difference (MAD) in these methods was high in the high-grade scoliosis group (≤7.17°). However, in the Cobb L1–L5 and posterior tangent L1–L5 method, the ICCs were ≥0.86 in all groups. And, in the TRALL method, the ICCs were ≥0.76 in all groups. In addition, in the Cobb L1–L5 and posterior tangent L1–L5 method, the MAD was ≤3.63°. And, in the TRALL method, the MAD was ≤3.84° in all groups. We concluded that the Cobb L1–L5 and the posterior tangent L1–L5 methods are reliable methods for measuring the global lumbar lordosis in adult scoliosis. And the TRALL method is more reliable method than other methods which include the L5–S1 joint in lordosis measurement. PMID:20437183

  4. Driver behavior in car-to-pedestrian incidents: An application of the Driving Reliability and Error Analysis Method (DREAM).

    Science.gov (United States)

    Habibovic, Azra; Tivesten, Emma; Uchida, Nobuyuki; Bärgman, Jonas; Ljung Aust, Mikael

    2013-01-01

    To develop relevant road safety countermeasures, it is necessary to first obtain an in-depth understanding of how and why safety-critical situations such as incidents, near-crashes, and crashes occur. Video-recordings from naturalistic driving studies provide detailed information on events and circumstances prior to such situations that is difficult to obtain from traditional crash investigations, at least when it comes to the observable driver behavior. This study analyzed causation in 90 video-recordings of car-to-pedestrian incidents captured by onboard cameras in a naturalistic driving study in Japan. The Driving Reliability and Error Analysis Method (DREAM) was modified and used to identify contributing factors and causation patterns in these incidents. Two main causation patterns were found. In intersections, drivers failed to recognize the presence of the conflict pedestrian due to visual obstructions and/or because their attention was allocated towards something other than the conflict pedestrian. In incidents away from intersections, this pattern reoccurred along with another pattern showing that pedestrians often behaved in unexpected ways. These patterns indicate that an interactive advanced driver assistance system (ADAS) able to redirect the driver's attention could have averted many of the intersection incidents, while autonomous systems may be needed away from intersections. Cooperative ADAS may be needed to address issues raised by visual obstructions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  6. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  7. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  8. Structural reliability methods: Code development status

    Science.gov (United States)

    Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.

    1991-05-01

    The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.

  9. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  10. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  11. Application of reliability methods in Ontario Hydro

    International Nuclear Information System (INIS)

    Jeppesen, R.; Ravishankar, T.J.

    1985-01-01

    Ontario Hydro have established a reliability program in support of its substantial nuclear program. Application of the reliability program to achieve both production and safety goals is described. The value of such a reliability program is evident in the record of Ontario Hydro's operating nuclear stations. The factors which have contributed to the success of the reliability program are identified as line management's commitment to reliability; selective and judicious application of reliability methods; establishing performance goals and monitoring the in-service performance; and collection, distribution, review and utilization of performance information to facilitate cost-effective achievement of goals and improvements. (orig.)

  12. RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...

    African Journals Online (AJOL)

    eobe

    Reliability analysis of the safety levels of the criteria slabs, have been .... was also noted [2] that if the risk level or β < 3.1), the ... reliability analysis. A study [6] has shown that all geometric variables, ..... Germany, 1988. 12. Hasofer, A. M and ...

  13. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  14. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  15. A study of digital hardware architectures for nuclear reactors protection systems applications - reliability and safety analysis methods

    International Nuclear Information System (INIS)

    Benko, Pedro Luiz

    1997-01-01

    A study of digital hardware architectures, including experience in many countries, topologies and solutions to interface circuits for protection systems of nuclear reactors is presented. Methods for developing digital systems architectures based on fault tolerant and safety requirements is proposed. Directives for assessing such conditions are suggested. Techniques and the most common tools employed in reliability, safety evaluation and modeling of hardware architectures is also presented. Markov chain modeling is used to evaluate the reliability of redundant architectures. In order to estimate software quality, several mechanisms to be used in design, specification, and validation and verification (V and V) procedures are suggested. A digital protection system architecture has been analyzed as a case study. (author)

  16. Reliability and validity of risk analysis

    International Nuclear Information System (INIS)

    Aven, Terje; Heide, Bjornar

    2009-01-01

    In this paper we investigate to what extent risk analysis meets the scientific quality requirements of reliability and validity. We distinguish between two types of approaches within risk analysis, relative frequency-based approaches and Bayesian approaches. The former category includes both traditional statistical inference methods and the so-called probability of frequency approach. Depending on the risk analysis approach, the aim of the analysis is different, the results are presented in different ways and consequently the meaning of the concepts reliability and validity are not the same.

  17. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  18. Method for analysis and assessment of the relation between stress and reliability of knowledge-based actions in the probabilistic safety analysis

    International Nuclear Information System (INIS)

    Fassmann, Werner

    2014-06-01

    According to the current theoretical and empirical state-of-the-art, stress has to be understood as the emotional and cognitive reaction by which humans adapt to situations which imply real or imagined danger, threat, or frustration of important personal goals or needs. The emotional reaction to such situations can be so extreme that rational coping with the situation will be precluded. In less extreme cases, changes of cognitive processes underlying human action will occur, which may systematically affect the reliability of tasks personnel has to perform in a stressful situation. Reliable task performance by personnel of nuclear power plants and other risk technologies is also affected by such effects. The method developed in the frame of the research and development project RS1198 sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi) addresses both aspects of emotional and cognitive coping with stressful situations. Analytical and evaluation steps of the approach provide guidance to the end users on how to capture and quantify the contribution of stress-related emotional and cognitive factors to the reliable performance of knowledge-based actions. For this purpose, a suitable guideline has been developed. Further research for clarifying open questions has been identified. A case study application illustrates how to use the method. Part of the work performed in this project was dedicated to a review addressing the question to which extent Swain's approach to the analysis and evaluation of stress is in line with current scientific knowledge. Suitable suggestions for updates have been developed.

  19. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  20. Evaluation of structural reliability using simulation methods

    Directory of Open Access Journals (Sweden)

    Baballëku Markel

    2015-01-01

    Full Text Available Eurocode describes the 'index of reliability' as a measure of structural reliability, related to the 'probability of failure'. This paper is focused on the assessment of this index for a reinforced concrete bridge pier. It is rare to explicitly use reliability concepts for design of structures, but the problems of structural engineering are better known through them. Some of the main methods for the estimation of the probability of failure are the exact analytical integration, numerical integration, approximate analytical methods and simulation methods. Monte Carlo Simulation is used in this paper, because it offers a very good tool for the estimation of probability in multivariate functions. Complicated probability and statistics problems are solved through computer aided simulations of a large number of tests. The procedures of structural reliability assessment for the bridge pier and the comparison with the partial factor method of the Eurocodes have been demonstrated in this paper.

  1. A Method of Nuclear Software Reliability Estimation

    International Nuclear Information System (INIS)

    Park, Gee Yong; Eom, Heung Seop; Cheon, Se Woo; Jang, Seung Cheol

    2011-01-01

    A method on estimating software reliability for nuclear safety software is proposed. This method is based on the software reliability growth model (SRGM) where the behavior of software failure is assumed to follow the non-homogeneous Poisson process. Several modeling schemes are presented in order to estimate and predict more precisely the number of software defects based on a few of software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating the software test cases into the model. It is identified that this method is capable of accurately estimating the remaining number of software defects which are on-demand type directly affecting safety trip functions. The software reliability can be estimated from a model equation and one method of obtaining the software reliability is proposed

  2. Review of Quantitative Software Reliability Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L.; Yue, M.; Martinez-Guridi, M.; Lehner, J.

    2010-09-17

    The current U.S. Nuclear Regulatory Commission (NRC) licensing process for digital systems rests on deterministic engineering criteria. In its 1995 probabilistic risk assessment (PRA) policy statement, the Commission encouraged the use of PRA technology in all regulatory matters to the extent supported by the state-of-the-art in PRA methods and data. Although many activities have been completed in the area of risk-informed regulation, the risk-informed analysis process for digital systems has not yet been satisfactorily developed. Since digital instrumentation and control (I&C) systems are expected to play an increasingly important role in nuclear power plant (NPP) safety, the NRC established a digital system research plan that defines a coherent set of research programs to support its regulatory needs. One of the research programs included in the NRC's digital system research plan addresses risk assessment methods and data for digital systems. Digital I&C systems have some unique characteristics, such as using software, and may have different failure causes and/or modes than analog I&C systems; hence, their incorporation into NPP PRAs entails special challenges. The objective of the NRC's digital system risk research is to identify and develop methods, analytical tools, and regulatory guidance for (1) including models of digital systems into NPP PRAs, and (2) using information on the risks of digital systems to support the NRC's risk-informed licensing and oversight activities. For several years, Brookhaven National Laboratory (BNL) has worked on NRC projects to investigate methods and tools for the probabilistic modeling of digital systems, as documented mainly in NUREG/CR-6962 and NUREG/CR-6997. However, the scope of this research principally focused on hardware failures, with limited reviews of software failure experience and software reliability methods. NRC also sponsored research at the Ohio State University investigating the modeling of

  3. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    OpenAIRE

    Hai An; Ling Zhou; Hui Sun

    2016-01-01

    Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...

  4. Sensitivity analysis in a structural reliability context

    International Nuclear Information System (INIS)

    Lemaitre, Paul

    2014-01-01

    This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)

  5. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    Science.gov (United States)

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  7. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  8. A human reliability analysis (HRA) method for identifying and assessing the error of commission (EOC) from a diagnosis failure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Yun; Kang, Dae Il

    2005-01-01

    The study deals with a method for systematically identifying and assessing the EOC events that might be caused from a diagnosis failure or misdiagnosis of the expected events in accident scenarios of nuclear power plants. The method for EOC identification and assessment consists of three steps: analysis of the potential for a diagnosis failure (or misdiagnosis), identification of the EOC events from the diagnosis failure, quantitative assessment of the identified EOC events. As a tool for analysing a diagnosis failure, the MisDiagnosis Tree Analysis (MDTA) technique is proposed with the taxonomy of misdiagnosis causes. Also, the guidance on the identification of EOC events and the classification system and data are given for quantitiative assessment. As an applicaton of the proposed method, the EOCs identification and assessment for Younggwang 3 and 4 plants and their impact on the plant risk were performed. As the result, six events or event sequences were considered for diagnosis failures and about 20 new Human Failure Events (HFEs) involving EOCs were identified. According to the assessment of the risk impact of the identified HFEs, they increase the CDF by 11.4 % of the current CDF value, which corresponds to 10.2 % of the new CDF. The small loss of coolant accident (SLOCA) turned out to be a major contributor to the increase of CDF resulting in 9.2 % increaseof the current CDF.

  9. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  10. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  11. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    Castillo, Enrique; Minguez, Roberto; Castillo, Carmen

    2008-01-01

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  12. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  13. Prime implicants in dynamic reliability analysis

    International Nuclear Information System (INIS)

    Tyrväinen, Tero

    2016-01-01

    This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.

  14. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  15. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  16. Reliably detectable flaw size for NDE methods that use calibration

    Science.gov (United States)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  17. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  18. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  19. Cost analysis of reliability investigations

    International Nuclear Information System (INIS)

    Schmidt, F.

    1981-01-01

    Taking Epsteins testing theory as a basis, premisses are formulated for the selection of cost-optimized reliability inspection plans. Using an example, the expected testing costs and inspection time periods of various inspection plan types, standardized on the basis of the exponential distribution, are compared. It can be shown that sequential reliability tests usually involve lower costs than failure or time-fixed tests. The most 'costly' test is to be expected with the inspection plan type NOt. (orig.) [de

  20. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  1. Weibull distribution in reliability data analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang

    2015-01-01

    Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)

  2. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  3. PREP KITT, System Reliability by Fault Tree Analysis. PREP, Min Path Set and Min Cut Set for Fault Tree Analysis, Monte-Carlo Method. KITT, Component and System Reliability Information from Kinetic Fault Tree Theory

    International Nuclear Information System (INIS)

    Vesely, W.E.; Narum, R.E.

    1997-01-01

    1 - Description of problem or function: The PREP/KITT computer program package obtains system reliability information from a system fault tree. The PREP program finds the minimal cut sets and/or the minimal path sets of the system fault tree. (A minimal cut set is a smallest set of components such that if all the components are simultaneously failed the system is failed. A minimal path set is a smallest set of components such that if all of the components are simultaneously functioning the system is functioning.) The KITT programs determine reliability information for the components of each minimal cut or path set, for each minimal cut or path set, and for the system. Exact, time-dependent reliability information is determined for each component and for each minimal cut set or path set. For the system, reliability results are obtained by upper bound approximations or by a bracketing procedure in which various upper and lower bounds may be obtained as close to one another as desired. The KITT programs can handle independent components which are non-repairable or which have a constant repair time. Any assortment of non-repairable components and components having constant repair times can be considered. Any inhibit conditions having constant probabilities of occurrence can be handled. The failure intensity of each component is assumed to be constant with respect to time. The KITT2 program can also handle components which during different time intervals, called phases, may have different reliability properties. 2 - Method of solution: The PREP program obtains minimal cut sets by either direct deterministic testing or by an efficient Monte Carlo algorithm. The minimal path sets are obtained using the Monte Carlo algorithm. The reliability information is obtained by the KITT programs from numerical solution of the simple integral balance equations of kinetic tree theory. 3 - Restrictions on the complexity of the problem: The PREP program will obtain the minimal cut and

  4. Qualitative analysis in reliability and safety studies

    International Nuclear Information System (INIS)

    Worrell, R.B.; Burdick, G.R.

    1976-01-01

    The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs

  5. Reliability Analysis of Money Habitudes

    Science.gov (United States)

    Delgadillo, Lucy M.; Bushman, Brittani S.

    2015-01-01

    Use of the Money Habitudes exercise has gained popularity among various financial professionals. This article reports on the reliability of this resource. A survey administered to young adults at a western state university was conducted, and each Habitude or "domain" was analyzed using Cronbach's alpha procedures. Results showed all six…

  6. Reliability Analysis of Offshore Jacket Structures with Wave Load on Deck using the Model Correction Factor Method

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Friis-Hansen, P.; Nielsen, J.S.

    2006-01-01

    failure/collapse of jacket type platforms with wave in deck loads using the so-called Model Correction Factor Method (MCFM). A simple representative model for the RSR measure is developed and used in the MCFM technique. A realistic example is evaluated and it is seen that it is possible to perform...

  7. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  8. Extrapolation Method for System Reliability Assessment

    DEFF Research Database (Denmark)

    Qin, Jianjun; Nishijima, Kazuyoshi; Faber, Michael Havbro

    2012-01-01

    of integrals with scaled domains. The performance of this class of approximation depends on the approach applied for the scaling and the functional form utilized for the extrapolation. A scheme for this task is derived here taking basis in the theory of asymptotic solutions to multinormal probability integrals......The present paper presents a new scheme for probability integral solution for system reliability analysis, which takes basis in the approaches by Naess et al. (2009) and Bucher (2009). The idea is to evaluate the probability integral by extrapolation, based on a sequence of MC approximations...... that the proposed scheme is efficient and adds to generality for this class of approximations for probability integrals....

  9. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  10. Component reliability analysis for development of component reliability DB of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.; Kim, S. H.

    2002-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA and Risk Informed Application. We have performed a project to develop the component reliability DB and calculate the component reliability such as failure rate and unavailability. We have collected the component operation data and failure/repair data of Korean standard NPPs. We have analyzed failure data by developing a data analysis method which incorporates the domestic data situation. And then we have compared the reliability results with the generic data for the foreign NPPs

  11. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  12. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  13. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  14. Standardizing the practice of human reliability analysis

    International Nuclear Information System (INIS)

    Hallbert, B.P.

    1993-01-01

    The practice of human reliability analysis (HRA) within the nuclear industry varies greatly in terms of posited mechanisms that shape human performance, methods of characterizing and analytically modeling human behavior, and the techniques that are employed to estimate the frequency with which human error occurs. This variation has been a source of contention among HRA practitioners regarding the validity of results obtained from different HRA methods. It has also resulted in attempts to develop standard methods and procedures for conducting HRAs. For many of the same reasons, the practice of HRA has not been standardized or has been standardized only to the extent that individual analysts have developed heuristics and consistent approaches in their practice of HRA. From the standpoint of consumers and regulators, this has resulted in a lack of clear acceptance criteria for the assumptions, modeling, and quantification of human errors in probabilistic risk assessments

  15. Radiocarbon dating uncertainty and the reliability of the PEWMA method of time-series analysis for research on long-term human-environment interaction.

    Science.gov (United States)

    Carleton, W Christopher; Campbell, David; Collard, Mark

    2018-01-01

    Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20-30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence.

  16. Methods of Estimation the Reliability and Increasing the Informativeness of the Laboratory Results (Analysis of the Laboratory Case of Measurement the Indicators of Thyroid Function)

    OpenAIRE

    N A Kovyazina; N A Alhutova; N N Zybina; N M Kalinina

    2014-01-01

    The goal of the study was to demonstrate the multilevel laboratory quality management system and point at the methods of estimating the reliability and increasing the amount of information content of the laboratory results (on the example of the laboratory case). Results. The article examines the stages of laboratory quality management which has helped to estimate the reliability of the results of determining Free T3, Free T4 and TSH. The measurement results are presented by the expanded unce...

  17. Human Reliability Analysis For Computerized Procedures

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Gertman, David I.; Le Blanc, Katya

    2011-01-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  18. Reliability analysis using network simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1985-01-01

    The models that can be used to provide estimates of the reliability of nuclear power systems operate at many different levels of sophistication. The least-sophisticated models treat failure processes that entail only time-independent phenomena (such as demand failure). More advanced models treat processes that also include time-dependent phenomena such as run failure and possibly repair. However, many of these dynamic models are deficient in some respects because they either disregard the time-dependent phenomena that cannot be expressed in closed-form analytic terms or because they treat these phenomena in quasi-static terms. The next level of modeling requires a dynamic approach that incorporates not only procedures for treating all significant time-dependent phenomena but also procedures for treating these phenomena when they are conditionally linked or characterized by arbitrarily selected probability distributions. The level of sophistication that is required is provided by a dynamic, Monte Carlo modeling approach. A computer code that uses a dynamic, Monte Carlo modeling approach is Q-GERT (Graphical Evaluation and Review Technique - with Queueing), and the present study had demonstrated the feasibility of using Q-GERT for modeling time-dependent, unconditionally and conditionally linked phenomena that are characterized by arbitrarily selected probability distributions

  19. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    Kondakci, Suleyman

    2015-01-01

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  20. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2013-01-01

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  1. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  2. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  3. Can target-to-pons ratio be used as a reliable method for the analysis of [11C]PIB brain scans?

    Science.gov (United States)

    Edison, P; Hinz, R; Ramlackhansingh, A; Thomas, J; Gelosa, G; Archer, H A; Turkheimer, F E; Brooks, D J

    2012-04-15

    cortex and cerebellum. This study established 60-90 min target-to-pons RATIOs as a reliable method of analysis in [(11)C]PIB PET studies where cerebellum is not an appropriate reference region. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  5. An Evaluation Method of Equipment Reliability Configuration Management

    Science.gov (United States)

    Wang, Wei; Feng, Weijia; Zhang, Wei; Li, Yuan

    2018-01-01

    At present, many equipment development companies have been aware of the great significance of reliability of the equipment development. But, due to the lack of effective management evaluation method, it is very difficult for the equipment development company to manage its own reliability work. Evaluation method of equipment reliability configuration management is to determine the reliability management capabilities of equipment development company. Reliability is not only designed, but also managed to achieve. This paper evaluates the reliability management capabilities by reliability configuration capability maturity model(RCM-CMM) evaluation method.

  6. Selected Methods For Increases Reliability The Of Electronic Systems Security

    Directory of Open Access Journals (Sweden)

    Paś Jacek

    2015-11-01

    Full Text Available The article presents the issues related to the different methods to increase the reliability of electronic security systems (ESS for example, a fire alarm system (SSP. Reliability of the SSP in the descriptive sense is a property preservation capacity to implement the preset function (e.g. protection: fire airport, the port, logistics base, etc., at a certain time and under certain conditions, e.g. Environmental, despite the possible non-compliance by a specific subset of elements this system. Analyzing the available literature on the ESS-SSP is not available studies on methods to increase the reliability (several works similar topics but moving with respect to the burglary and robbery (Intrusion. Based on the analysis of the set of all paths in the system suitability of the SSP for the scenario mentioned elements fire events (device critical because of security.

  7. A method of predicting the reliability of CDM coil insulation

    International Nuclear Information System (INIS)

    Kytasty, A.; Ogle, C.; Arrendale, H.

    1992-01-01

    This paper presents a method of predicting the reliability of the Collider Dipole Magnet (CDM) coil insulation design. The method proposes a probabilistic treatment of electrical test data, stress analysis, material properties variability and loading uncertainties to give the reliability estimate. The approach taken to predict reliability of design related failure modes of the CDM is to form analytical models of the various possible failure modes and their related mechanisms or causes, and then statistically assess the contributions of the various contributing variables. The probability of the failure mode occurring is interpreted as the number of times one would expect certain extreme situations to combine and randomly occur. One of the more complex failure modes of the CDM will be used to illustrate this methodology

  8. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  9. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  10. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  11. Advances in human reliability analysis in Mexico

    International Nuclear Information System (INIS)

    Nelson, Pamela F.; Gonzalez C, M.; Ruiz S, T.; Guillen M, D.; Contreras V, A.

    2010-10-01

    Human Reliability Analysis (HRA) is a very important part of Probabilistic Risk Analysis (PRA), and constant work is dedicated to improving methods, guidance and data in order to approach realism in the results as well as looking for ways to use these to reduce accident frequency at plants. Further, in order to advance in these areas, several HRA studies are being performed globally. Mexico has participated in the International HRA Empirical study with the objective of -benchmarking- HRA methods by comparing HRA predictions to actual crew performance in a simulator, as well as in the empirical study on a US nuclear power plant currently in progress. The focus of the first study was the development of an understanding of how methods are applied by various analysts, and characterize the methods for their capability to guide the analysts to identify potential human failures, and associated causes and performance shaping factors. The HRA benchmarking study has been performed by using the Halden simulator, 14 European crews, and 15 HRA equipment s (NRC, EPRI, and foreign HRA equipment s using different HRA methods). This effort in Mexico is reflected through the work being performed on updating the Laguna Verde PRA to comply with the ASME PRA standard. In order to be considered an HRA with technical adequacy, that is, be considered as a capability category II, for risk-informed applications, the methodology used for the HRA in the original PRA is not considered sufficiently detailed, and the methodology had to upgraded. The HCR/CBDT/THERP method was chosen, since this is used in many nuclear plants with similar design. The HRA update includes identification and evaluation of human errors that can occur during testing and maintenance, as well as human errors that can occur during an accident using the Emergency Operating Procedures. The review of procedures for maintenance, surveillance and operation is a necessary step in HRA and provides insight into the possible

  12. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  13. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  14. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  15. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  16. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  17. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  18. Methods of Estimation the Reliability and Increasing the Informativeness of the Laboratory Results (Analysis of the Laboratory Case of Measurement the Indicators of Thyroid Function

    Directory of Open Access Journals (Sweden)

    N A Kovyazina

    2014-06-01

    Full Text Available The goal of the study was to demonstrate the multilevel laboratory quality management system and point at the methods of estimating the reliability and increasing the amount of information content of the laboratory results (on the example of the laboratory case. Results. The article examines the stages of laboratory quality management which has helped to estimate the reliability of the results of determining Free T3, Free T4 and TSH. The measurement results are presented by the expanded uncertainty and the evaluation of the dynamics. Conclusion. Compliance with mandatory measures for laboratory quality management system enables laboratories to obtain reliable results and calculate the parameters that are able to increase the amount of information content of laboratory tests in clinical decision making.

  19. Review of methods for the integration of reliability and design engineering

    International Nuclear Information System (INIS)

    Reilly, J.T.

    1978-03-01

    A review of methods for the integration of reliability and design engineering was carried out to establish a reliability program philosophy, an initial set of methods, and procedures to be used by both the designer and reliability analyst. The report outlines a set of procedures which implements a philosophy that requires increased involvement by the designer in reliability analysis. Discussions of each method reviewed include examples of its application

  20. Survey of methods used to asses human reliability in the human factors reliability benchmark exercise

    International Nuclear Information System (INIS)

    Poucet, A.

    1988-01-01

    The Joint Research Centre of the European Commission has organised a Human Factors Reliability Benchmark Exercise (HF-RBE) with the aim to assess the state-of-the-art in human reliability modelling and assessment. Fifteen teams from eleven countries, representing industry, utilities, licensing organisations and research institutes, participate in the HF-RBE, which is organised around two study cases: (1) analysis of routine functional test and maintenance procedures, with the aim to assess the probability of test-induced failures, the probability of failures to remain unrevealed, and the potential to initiate transients because of errors performed in the test; and (2) analysis of human actions during an operational transient, with the aim to assess the probability that the operators will correctly diagnose the malfunctions and take proper corrective action. The paper briefly reports how the HF-RBE was structured and gives an overview of the methods that have been used for predicting human reliability in both study cases. The experience in applying these methods is discussed and the results obtained are compared. (author)

  1. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...

  2. Reliability studies of diagnostic methods in Indian traditional Ayurveda medicine

    DEFF Research Database (Denmark)

    Kurande, Vrinda Hitendra; Waagepetersen, Rasmus; Toft, Egon

    2013-01-01

    as prakriti classification), method development (pulse diagnosis), quality assurance for diagnosis and treatment and in the conduct of clinical studies. Several reliability studies are conducted in western medicine. The investigation of the reliability of traditional Chinese, Japanese and Sasang medicine...

  3. Reliability Analysis of a Steel Frame

    Directory of Open Access Journals (Sweden)

    M. Sýkora

    2002-01-01

    Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.

  4. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  5. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  6. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  7. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  8. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  9. Representative Sampling for reliable data analysis

    DEFF Research Database (Denmark)

    Petersen, Lars; Esbensen, Kim Harry

    2005-01-01

    regime in order to secure the necessary reliability of: samples (which must be representative, from the primary sampling onwards), analysis (which will not mean anything outside the miniscule analytical volume without representativity ruling all mass reductions involved, also in the laboratory) and data...

  10. Application of system reliability analytical method, GO-FLOW

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Kobayashi, Michiyuki

    1999-01-01

    The Ship Research Institute proceed a developmental study on GO-FLOW method with various advancing functionalities for the system reliability analysis method occupying main parts of PSA (Probabilistic Safety Assessment). Here was attempted to intend to upgrade functionality of the GO-FLOW method, to develop an analytical function integrated with dynamic behavior analytical function, physical behavior and probable subject transfer, and to prepare a main accident sequence picking-out function. In 1997 fiscal year, in dynamic event-tree analytical system, an analytical function was developed by adding dependency between headings. In simulation analytical function of the accident sequence, main accident sequence of MRX for improved ship propulsion reactor became possible to be covered perfectly. And, input data for analysis was prepared with a function capable easily to set by an analysis operator. (G.K.)

  11. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  12. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  13. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  14. State of the art report on aging reliability analysis

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon; Han, Sang Hoon; Ha, Jae Joo

    2002-03-01

    The goal of this report is to describe the state of the art on aging analysis methods to calculate the effects of component aging quantitatively. In this report, we described some aging analysis methods which calculate the increase of Core Damage Frequency (CDF) due to aging by including the influence of aging into PSA. We also described several research topics required for aging analysis for components of domestic NPPs. We have described a statistical model and reliability physics model which calculate the effect of aging quantitatively by using PSA method. It is expected that the practical use of the reliability-physics model will be increased though the process with the reliability-physics model is more complicated than statistical model

  15. Individual Differences in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring

    2014-06-01

    While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.

  16. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  17. COMPOSITE METHOD OF RELIABILITY RESEARCH FOR HIERARCHICAL MULTILAYER ROUTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. B. Tregubov

    2016-09-01

    Full Text Available The paper deals with the idea of a research method for hierarchical multilayer routing systems. The method represents a composition of methods of graph theories, reliability, probabilities, etc. These methods are applied to the solution of different private analysis and optimization tasks and are systemically connected and coordinated with each other through uniform set-theoretic representation of the object of research. The hierarchical multilayer routing systems are considered as infrastructure facilities (gas and oil pipelines, automobile and railway networks, systems of power supply and communication with distribution of material resources, energy or information with the use of hierarchically nested functions of routing. For descriptive reasons theoretical constructions are considered on the example of task solution of probability determination for up state of specific infocommunication system. The author showed the possibility of constructive combination of graph representation of structure of the object of research and a logic probable analysis method of its reliability indices through uniform set-theoretic representation of its elements and processes proceeding in them.

  18. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  19. Structural reliability calculation method based on the dual neural network and direct integration method.

    Science.gov (United States)

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  20. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    Heslinga, G.

    1983-01-01

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  1. Reliability analysis of pipe whip impacts

    International Nuclear Information System (INIS)

    Alzbutas, R.; Dundulis, G.; Kulak, R.F.; Marchertas, P.V.

    2003-01-01

    A probabilistic analysis of a group distribution header (GDH) guillotine break and the damage resulting from the failed GDH impacting against a neighbouring wall was carried out for the Ignalita RBMK-1500 reactor. The NEPTUNE software system was used for the deterministic transient analysis of a GDH guillotine break. Many deterministic analyses were performed using different values of the random variables that were specified by ProFES software. All the deterministic results were transferred to the ProFES system, which then performed probabilistic analyses of piping failure and wall damage. The Monte Carlo Simulation (MCS) method was used to study the sensitivity of the response variables and the effect of uncertainties of material properties and geometry parameters to the probability of limit states. The First Order Reliability Method (FORM) was used to study the probability of failure of the impacted-wall and the support-wall. The Response Surface (RS/MCS) method was used in order to express failure probability as function and to investigate the dependence between impact load and failure probability. The results of the probability analyses for a whipping GDH impacting onto an adjacent wall show that: (i) there is a 0.982 probability that after a GDH guillotine break contact between GDH and wall will occur; (ii) there is a probability of 0.013 that the ultimate tensile strength of concrete at the impact location will be reached, and a through-crack may open; (iii) there is a probability of 0.0126 that the ultimate compressive strength of concrete at the GDH support location will be reached, and the concrete may fail; (iv) at the impact location in the adjacent wall, there is a probability of 0.327 that the ultimate tensile strength of the rebars in the first layer will be reached and the rebars will fail; (v) at the GDH support location, there is a probability of 0.11 that the ultimate stress of the rebars in the first layer will be reached and the rebars will fail

  2. Structural Reliability Using Probability Density Estimation Methods Within NESSUS

    Science.gov (United States)

    Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric

    2003-01-01

    A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been

  3. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  4. Reliability of non-destructive testing methods

    International Nuclear Information System (INIS)

    Broekhoven, M.J.G.

    1988-01-01

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author)

  5. Reliability of non-destructive testing methods

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven, M J.G. [Ministry of Social Affairs, (Netherlands)

    1988-12-31

    This contribution regards the results of an evaluation of the reliability of radiography (X-rays and gamma-rays), manual-, and mechanized/automated ultrasonic examination by generally accepted codes/rules, with respect to detection, characterization and sizing/localization of defects. The evaluation is based on the results of examinations, by a number of teams, of 30 test plates, 30 and 50 mm thickness, containing V,U, X and K-shaped welds each containing several types of imperfections (211) in total) typical for steel arc fusion welding, such as porosity, inclusions, lack of fusion or penetration and cracks. Besides, some results are presented obtained from research on advanced UT-techniques, viz. the time-of-flight-diffraction and flaw-tip deflection technique. (author). 4 refs.

  6. A reliability evaluation method for NPP safety DCS application software

    International Nuclear Information System (INIS)

    Li Yunjian; Zhang Lei; Liu Yuan

    2014-01-01

    In the field of nuclear power plant (NPP) digital i and c application, reliability evaluation for safety DCS application software is a key obstacle to be removed. In order to quantitatively evaluate reliability of NPP safety DCS application software, this paper propose a reliability evaluating method based on software development life cycle every stage's v and v defects density characteristics, by which the operating reliability level of the software can be predicted before its delivery, and helps to improve the reliability of NPP safety important software. (authors)

  7. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  8. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  9. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia; Grelle, Austin

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), a systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.

  10. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  11. Reliability analysis of reactor inspection robot(RIROB)

    International Nuclear Information System (INIS)

    Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.

    2002-05-01

    This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)

  12. Subset simulation for structural reliability sensitivity analysis

    International Nuclear Information System (INIS)

    Song Shufang; Lu Zhenzhou; Qiao Hongwei

    2009-01-01

    Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes

  13. User's manual of a support system for human reliability analysis

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Tamura, Kazuo.

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)

  14. Reliability of the Emergency Severity Index: Meta-analysis

    Directory of Open Access Journals (Sweden)

    Amir Mirhaghi

    2015-01-01

    Full Text Available Objectives: Although triage systems based on the Emergency Severity Index (ESI have many advantages in terms of simplicity and clarity, previous research has questioned their reliability in practice. Therefore, the aim of this meta-analysis was to determine the reliability of ESI triage scales. Methods: This metaanalysis was performed in March 2014. Electronic research databases were searched and articles conforming to the Guidelines for Reporting Reliability and Agreement Studies were selected. Two researchers independently examined selected abstracts. Data were extracted in the following categories: version of scale (latest/older, participants (adult/paediatric, raters (nurse, physician or expert, method of reliability (intra/inter-rater, reliability statistics (weighted/unweighted kappa and the origin and publication year of the study. The effect size was obtained by the Z-transformation of reliability coefficients. Data were pooled with random-effects models and a meta-regression was performed based on the method of moments estimator. Results: A total of 19 studies from six countries were included in the analysis. The pooled coefficient for the ESI triage scales was substantial at 0.791 (95% confidence interval: 0.787‒0.795. Agreement was higher with the latest and adult versions of the scale and among expert raters, compared to agreement with older and paediatric versions of the scales and with other groups of raters, respectively. Conclusion: ESI triage scales showed an acceptable level of overall reliability. However, ESI scales require more development in order to see full agreement from all rater groups. Further studies concentrating on other aspects of reliability assessment are needed.

  15. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  16. Application of Metric-based Software Reliability Analysis to Example Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Smidts, Carol

    2008-07-01

    The software reliability of TELLERFAST ATM software is analyzed by using two metric-based software reliability analysis methods, a state transition diagram-based method and a test coverage-based method. The procedures for the software reliability analysis by using the two methods and the analysis results are provided in this report. It is found that the two methods have a relation of complementary cooperation, and therefore further researches on combining the two methods to reflect the benefit of the complementary cooperative effect to the software reliability analysis are recommended

  17. Structural reliability analysis applied to pipeline risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, M. [GL Industrial Services, Loughborough (United Kingdom); Mendes, Renato F.; Donato, Guilherme V.P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Quantitative Risk Assessment (QRA) of pipelines requires two main components to be provided. These are models of the consequences that follow from some loss of containment incident, and models for the likelihood of such incidents occurring. This paper describes how PETROBRAS have used Structural Reliability Analysis for the second of these, to provide pipeline- and location-specific predictions of failure frequency for a number of pipeline assets. This paper presents an approach to estimating failure rates for liquid and gas pipelines, using Structural Reliability Analysis (SRA) to analyze the credible basic mechanisms of failure such as corrosion and mechanical damage. SRA is a probabilistic limit state method: for a given failure mechanism it quantifies the uncertainty in parameters to mathematical models of the load-resistance state of a structure and then evaluates the probability of load exceeding resistance. SRA can be used to benefit the pipeline risk management process by optimizing in-line inspection schedules, and as part of the design process for new construction in pipeline rights of way that already contain multiple lines. A case study is presented to show how the SRA approach has recently been used on PETROBRAS pipelines and the benefits obtained from it. (author)

  18. Collection of methods for reliability and safety engineering

    International Nuclear Information System (INIS)

    Fussell, J.B.; Rasmuson, D.M.; Wilson, J.R.; Burdick, G.R.; Zipperer, J.C.

    1976-04-01

    The document presented contains five reports each describing a method of reliability and safety engineering. Report I provides a conceptual framework for the study of component malfunctions during system evaluations. Report II provides methods for locating groups of critical component failures such that all the component failures in a given group can be caused to occur by the occurrence of a single separate event. These groups of component failures are called common cause candidates. Report III provides a method for acquiring and storing system-independent component failure logic information. The information stored is influenced by the concepts presented in Report I and also includes information useful in locating common cause candidates. Report IV puts forth methods for analyzing situations that involve systems which change character in a predetermined time sequence. These phased missions techniques are applicable to the hypothetical ''accident chains'' frequently analyzed for nuclear power plants. Report V presents a unified approach to cause-consequence analysis, a method of analysis useful during risk assessments. This approach, as developed by the Danish Atomic Energy Commission, is modified to reflect the format and symbology conventionally used for other types of analysis of nuclear reactor systems

  19. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  20. A taxonomy for human reliability analysis

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.

    1984-01-01

    A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized

  1. An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method

    Science.gov (United States)

    Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo

    2018-05-01

    The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.

  2. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Counts, C.A.

    1984-06-01

    The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references

  3. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Ames, K.R.; Gallucci, R.H.

    1985-06-01

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report

  4. A novel reliability evaluation method for large engineering systems

    Directory of Open Access Journals (Sweden)

    Reda Farag

    2016-06-01

    Full Text Available A novel reliability evaluation method for large nonlinear engineering systems excited by dynamic loading applied in time domain is presented. For this class of problems, the performance functions are expected to be function of time and implicit in nature. Available first- or second-order reliability method (FORM/SORM will be challenging to estimate reliability of such systems. Because of its inefficiency, the classical Monte Carlo simulation (MCS method also cannot be used for large nonlinear dynamic systems. In the proposed approach, only tens instead of hundreds or thousands of deterministic evaluations at intelligently selected points are used to extract the reliability information. A hybrid approach, consisting of the stochastic finite element method (SFEM developed by the author and his research team using FORM, response surface method (RSM, an interpolation scheme, and advanced factorial schemes, is proposed. The method is clarified with the help of several numerical examples.

  5. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  6. ZERBERUS - the code for reliability analysis of crack containing structures

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.

    1992-04-01

    Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP) [de

  7. Human reliability analysis in Loviisa probabilistic safety analysis

    International Nuclear Information System (INIS)

    Illman, L.; Isaksson, J.; Makkonen, L.; Vaurio, J.K.; Vuorio, U.

    1986-01-01

    The human reliability analysis in the Loviisa PSA project is carried out for three major groups of errors in human actions: (A) errors made before an initiating event, (B) errors that initiate a transient and (C) errors made during transients. Recovery possibilities are also included in each group. The methods used or planned for each group are described. A simplified THERP approach is used for group A, with emphasis on test and maintenance error recovery aspects and dependencies between redundancies. For group B, task analyses and human factors assessments are made for startup, shutdown and operational transients, with emphasis on potential common cause initiators. For group C, both misdiagnosis and slow decision making are analyzed, as well as errors made in carrying out necessary or backup actions. New or advanced features of the methodology are described

  8. Integrated Reliability and Risk Analysis System (IRRAS)

    International Nuclear Information System (INIS)

    Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1992-01-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance

  9. Method for assessing reliability of a network considering probabilistic safety assessment

    International Nuclear Information System (INIS)

    Cepin, M.

    2005-01-01

    A method for assessment of reliability of the network is developed, which uses the features of the fault tree analysis. The method is developed in a way that the increase of the network under consideration does not require significant increase of the model. The method is applied to small examples of network consisting of a small number of nodes and a small number of their connections. The results give the network reliability. They identify equipment, which is to be carefully maintained in order that the network reliability is not reduced, and equipment, which is a candidate for redundancy, as this would improve network reliability significantly. (author)

  10. Analysis methods (from 301 to 351)

    International Nuclear Information System (INIS)

    Analysis methods of materials used in the nuclear field (uranium, plutonium and their compounds, zirconium, magnesium, water...) and determination of impurities. Only reliable methods are selected [fr

  11. Verification of practicability of quantitative reliability evaluation method (De-BDA) in nuclear power plants

    International Nuclear Information System (INIS)

    Takahashi, Kinshiro; Yukimachi, Takeo.

    1988-01-01

    A variety of methods have been applied to study of reliability analysis in which human factors are included in order to enhance the safety and availability of nuclear power plants. De-BDA (Detailed Block Diagram Analysis) is one of such mehtods developed with the objective of creating a more comprehensive and understandable tool for quantitative analysis of reliability associated with plant operations. The practicability of this method has been verified by applying it to reliability analysis of various phases of plant operation as well as evaluation of enhanced man-machine interface in the central control room. (author)

  12. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  13. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  14. A method to assign failure rates for piping reliability assessments

    International Nuclear Information System (INIS)

    Gamble, R.M.; Tagart, S.W. Jr.

    1991-01-01

    This paper reports on a simplified method that has been developed to assign failure rates that can be used in reliability and risk studies of piping. The method can be applied on a line-by-line basis by identifying line and location specific attributes that can lead to piping unreliability from in-service degradation mechanisms and random events. A survey of service experience for nuclear piping reliability also was performed. The data from this survey provides a basis for identifying in-service failure attributes and assigning failure rates for risk and reliability studies

  15. Modifying nodal pricing method considering market participants optimality and reliability

    Directory of Open Access Journals (Sweden)

    A. R. Soofiabadi

    2015-06-01

    Full Text Available This paper develops a method for nodal pricing and market clearing mechanism considering reliability of the system. The effects of components reliability on electricity price, market participants’ profit and system social welfare is considered. This paper considers reliability both for evaluation of market participant’s optimality as well as for fair pricing and market clearing mechanism. To achieve fair pricing, nodal price has been obtained through a two stage optimization problem and to achieve fair market clearing mechanism, comprehensive criteria has been introduced for optimality evaluation of market participant. Social welfare of the system and system efficiency are increased under proposed modified nodal pricing method.

  16. Study on operator’s SA reliability in digital NPPs. Part 1: The analysis method of operator’s errors of situation awareness

    International Nuclear Information System (INIS)

    Li, Peng-cheng; Zhang, Li; Dai, Li-cao; Li, Xiao-Fang

    2017-01-01

    Highlights: • The model of ESA is established from an organization perspective, and it is new perspective. • The detailed classification system of ESA is developed based on the built ESA model. It is useful to identify the cause chain and root causes of organization causing ESA. • The analysis method of ESA is also constructed to guide the investigation of ESA event. A case study is provided to illustrate the concrete application of the method. - Abstract: Situation awareness (SA) is a key element that impacts operator’s decision-making and performance in nuclear power plants (NPPs). The subsequent complex cognitive activities cannot be correctly completed due to errors of situation awareness (ESA), which will lead to disastrous consequences. In order to investigate and analyze operator’s ESA in the digitized main control room (DMCR) of a nuclear power plant, the model of ESA is established, the classification system of ESA is developed based on the built ESA model, and the analysis method of ESA is also constructed on the basis of the observation of simulator and operator surveys. Finally, a case study is provided to illustrate the concrete application of the method. It provides a theoretical and practical support for the operator’s SAE analysis in a digitized main control room of a nuclear power plant.

  17. Reliability studies of diagnostic methods in Indian traditional Ayurveda medicine: An overview

    Science.gov (United States)

    Kurande, Vrinda Hitendra; Waagepetersen, Rasmus; Toft, Egon; Prasad, Ramjee

    2013-01-01

    Recently, a need to develop supportive new scientific evidence for contemporary Ayurveda has emerged. One of the research objectives is an assessment of the reliability of diagnoses and treatment. Reliability is a quantitative measure of consistency. It is a crucial issue in classification (such as prakriti classification), method development (pulse diagnosis), quality assurance for diagnosis and treatment and in the conduct of clinical studies. Several reliability studies are conducted in western medicine. The investigation of the reliability of traditional Chinese, Japanese and Sasang medicine diagnoses is in the formative stage. However, reliability studies in Ayurveda are in the preliminary stage. In this paper, examples are provided to illustrate relevant concepts of reliability studies of diagnostic methods and their implication in practice, education, and training. An introduction to reliability estimates and different study designs and statistical analysis is given for future studies in Ayurveda. PMID:23930037

  18. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  19. A SOFTWARE RELIABILITY ESTIMATION METHOD TO NUCLEAR SAFETY SOFTWARE

    Directory of Open Access Journals (Sweden)

    GEE-YONG PARK

    2014-02-01

    Full Text Available A method for estimating software reliability for nuclear safety software is proposed in this paper. This method is based on the software reliability growth model (SRGM, where the behavior of software failure is assumed to follow a non-homogeneous Poisson process. Two types of modeling schemes based on a particular underlying method are proposed in order to more precisely estimate and predict the number of software defects based on very rare software failure data. The Bayesian statistical inference is employed to estimate the model parameters by incorporating software test cases as a covariate into the model. It was identified that these models are capable of reasonably estimating the remaining number of software defects which directly affects the reactor trip functions. The software reliability might be estimated from these modeling equations, and one approach of obtaining software reliability value is proposed in this paper.

  20. Reliability Analysis of Structural Timber Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hoffmeyer, P.

    2000-01-01

    Structural systems like timber trussed rafters and roof elements made of timber can be expected to have some degree of redundancy and nonlinear/plastic behaviour when the loading consists of for example snow or imposed load. In this paper this system effect is modelled and the statistic...... of variation. In the paper a stochastic model is described for the strength of a single piece of timber taking into account the stochastic variation of the strength and stiffness with length. Also stochastic models for different types of loads are formulated. First, simple representative systems with different...... types of redundancy and non-linearity are considered. The statistical characteristics of the load bearing capacity are determined by reliability analysis. Next, more complex systems are considered modelling the mechanical behaviour of timber roof elements I stressed skin panels made of timber. Using...

  1. Human reliability analysis of dependent events

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1977-01-01

    In the human reliability analysis in WASH-1400, the continuous variable of degree of interaction among human events was approximated by selecting four points on this continuum to represent the entire continuum. The four points selected were identified as zero coupling (i.e., zero dependence), complete coupling (i.e., complete dependence), and two intermediate points--loose coupling (a moderate level of dependence) and tight coupling (a high level of dependence). The paper expands the WASH-1400 treatment of common mode failure due to the interaction of human activities. Mathematical expressions for the above four levels of dependence are derived for parallel and series systems. The psychological meaning of each level of dependence is illustrated by examples, with probability tree diagrams to illustrate the use of conditional probabilities resulting from the interaction of human actions in nuclear power plant tasks

  2. [A reliability growth assessment method and its application in the development of equipment in space cabin].

    Science.gov (United States)

    Chen, J D; Sun, H L

    1999-04-01

    Objective. To assess and predict reliability of an equipment dynamically by making full use of various test informations in the development of products. Method. A new reliability growth assessment method based on army material system analysis activity (AMSAA) model was developed. The method is composed of the AMSAA model and test data conversion technology. Result. The assessment and prediction results of a space-borne equipment conform to its expectations. Conclusion. It is suggested that this method should be further researched and popularized.

  3. Evaluation of Information Requirements of Reliability Methods in Engineering Design

    DEFF Research Database (Denmark)

    Marini, Vinicius Kaster; Restrepo-Giraldo, John Dairo; Ahmed-Kristensen, Saeema

    2010-01-01

    This paper aims to characterize the information needed to perform methods for robustness and reliability, and verify their applicability to early design stages. Several methods were evaluated on their support to synthesis in engineering design. Of those methods, FMEA, FTA and HAZOP were selected...

  4. Reliability analysis - systematic approach based on limited data

    International Nuclear Information System (INIS)

    Bourne, A.J.

    1975-11-01

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)

  5. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  6. Development of reliability centered maintenance methods and tools

    International Nuclear Information System (INIS)

    Jacquot, J.P.; Dubreuil-Chambardel, A.; Lannoy, A.; Monnier, B.

    1992-12-01

    This paper recalls the development of the RCM (Reliability Centered Maintenance) approach in the nuclear industry and describes the trial study implemented by EDF in the context of the OMF (RCM) Project. The approach developed is currently being applied to about thirty systems (Industrial Project). On a parallel, R and D efforts are being maintained to improve the selectivity of the analysis methods. These methods use Probabilistic Safety Study models, thereby guaranteeing better selectivity in the identification of safety critical elements and enhancing consistency between Maintenance and Safety studies. They also offer more detailed analysis of operation feedback, invoking for example Bayes' methods combining expert judgement and feedback data. Finally, they propose a functional and material representation of the plant. This dual representation describes both the functions assured by maintenance provisions and the material elements required for their implementation. In the final chapter, the targets of the future OMF workstation are summarized and the latter's insertion in the EDF information system is briefly described. (authors). 5 figs., 2 tabs., 7 refs

  7. Maintenance management of railway infrastructures based on reliability analysis

    International Nuclear Information System (INIS)

    Macchi, Marco; Garetti, Marco; Centrone, Domenico; Fumagalli, Luca; Piero Pavirani, Gian

    2012-01-01

    Railway infrastructure maintenance plays a crucial role for rail transport. It aims at guaranteeing safety of operations and availability of railway tracks and related equipment for traffic regulation. Moreover, it is one major cost for rail transport operations. Thus, the increased competition in traffic market is asking for maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations. This issue is addressed by the methodology presented in the paper. The first step of the methodology consists of a family-based approach for the equipment reliability analysis; its purpose is the identification of families of railway items which can be given the same reliability targets. The second step builds the reliability model of the railway system for identifying the most critical items, given a required service level for the transportation system. The two methods have been implemented and tested in practical case studies, in the context of Rete Ferroviaria Italiana, the Italian public limited company for railway transportation.

  8. Reliability Analysis of Free Jet Scour Below Dams

    Directory of Open Access Journals (Sweden)

    Chuanqi Li

    2012-12-01

    Full Text Available Current formulas for calculating scour depth below of a free over fall are mostly deterministic in nature and do not adequately consider the uncertainties of various scouring parameters. A reliability-based assessment of scour, taking into account uncertainties of parameters and coefficients involved, should be performed. This paper studies the reliability of a dam foundation under the threat of scour. A model for calculating the reliability of scour and estimating the probability of failure of the dam foundation subjected to scour is presented. The Maximum Entropy Method is applied to construct the probability density function (PDF of the performance function subject to the moment constraints. Monte Carlo simulation (MCS is applied for uncertainty analysis. An example is considered, and there liability of its scour is computed, the influence of various random variables on the probability failure is analyzed.

  9. A comparative study on the HW reliability assessment methods for digital I and C equipment

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hoan Sung; Sung, T. Y.; Eom, H. S.; Park, J. K.; Kang, H. G.; Lee, G. Y. [Korea Atomic Energy Research Institute, Taejeon (Korea); Kim, M. C. [Korea Advanced Institute of Science and Technology, Taejeon (Korea); Jun, S. T. [KHNP, Taejeon (Korea)

    2002-03-01

    It is necessary to predict or to evaluate the reliability of electronic equipment for the probabilistic safety analysis of digital instrument and control equipment. But most databases for the reliability prediction have no data for the up-to-date equipment and the failure modes are not classified. The prediction results for the specific component show different values according to the methods and databases. For boards and systems each method shows different values than others also. This study is for reliability prediction of PDC system for Wolsong NPP1 as a digital I and C equipment. Various reliability prediction methods and failure databases are used in calculation of the reliability to compare the effects of sensitivity and accuracy of each model and database. Many considerations for the reliability assessment of digital systems are derived with the results of this study. 14 refs., 19 figs., 15 tabs. (Author)

  10. Application of DFM in human reliability analysis

    International Nuclear Information System (INIS)

    Yu Shaojie; Zhao Jun; Tong Jiejuan

    2011-01-01

    Combining with ATHEANA, the possible to identify EFCs and UAs using DFM is studied; and then Steam Generator Tube Rupture (SGTR) accident is modeled and solved. Through inductive analysis, 26 Prime Implicants (PIs) are obtained and the meaning of results is interpreted; and one of PIs is similar to the accident scenario of human failure event in one nuclear power plant. Finally, this paper discusses the methods of quantifying PIs, analysis of Error of commission (EOC) and so on. (authors)

  11. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  12. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  13. Sequential optimization and reliability assessment method for metal forming processes

    International Nuclear Information System (INIS)

    Sahai, Atul; Schramm, Uwe; Buranathiti, Thaweepat; Chen Wei; Cao Jian; Xia, Cedric Z.

    2004-01-01

    Uncertainty is inevitable in any design process. The uncertainty could be due to the variations in geometry of the part, material properties or due to the lack of knowledge about the phenomena being modeled itself. Deterministic design optimization does not take uncertainty into account and worst case scenario assumptions lead to vastly over conservative design. Probabilistic design, such as reliability-based design and robust design, offers tools for making robust and reliable decisions under the presence of uncertainty in the design process. Probabilistic design optimization often involves double-loop procedure for optimization and iterative probabilistic assessment. This results in high computational demand. The high computational demand can be reduced by replacing computationally intensive simulation models with less costly surrogate models and by employing Sequential Optimization and reliability assessment (SORA) method. The SORA method uses a single-loop strategy with a series of cycles of deterministic optimization and reliability assessment. The deterministic optimization and reliability assessment is decoupled in each cycle. This leads to quick improvement of design from one cycle to other and increase in computational efficiency. This paper demonstrates the effectiveness of Sequential Optimization and Reliability Assessment (SORA) method when applied to designing a sheet metal flanging process. Surrogate models are used as less costly approximations to the computationally expensive Finite Element simulations

  14. Reliability analysis applied to structural tests

    Science.gov (United States)

    Diamond, P.; Payne, A. O.

    1972-01-01

    The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.

  15. Inclusion of task dependence in human reliability analysis

    International Nuclear Information System (INIS)

    Su, Xiaoyan; Mahadevan, Sankaran; Xu, Peida; Deng, Yong

    2014-01-01

    Dependence assessment among human errors in human reliability analysis (HRA) is an important issue, which includes the evaluation of the dependence among human tasks and the effect of the dependence on the final human error probability (HEP). This paper represents a computational model to handle dependence in human reliability analysis. The aim of the study is to automatically provide conclusions on the overall degree of dependence and calculate the conditional human error probability (CHEP) once the judgments of the input factors are given. The dependence influencing factors are first identified by the experts and the priorities of these factors are also taken into consideration. Anchors and qualitative labels are provided as guidance for the HRA analyst's judgment of the input factors. The overall degree of dependence between human failure events is calculated based on the input values and the weights of the input factors. Finally, the CHEP is obtained according to a computing formula derived from the technique for human error rate prediction (THERP) method. The proposed method is able to quantify the subjective judgment from the experts and improve the transparency in the HEP evaluation process. Two examples are illustrated to show the effectiveness and the flexibility of the proposed method. - Highlights: • We propose a computational model to handle dependence in human reliability analysis. • The priorities of the dependence influencing factors are taken into consideration. • The overall dependence degree is determined by input judgments and the weights of factors. • The CHEP is obtained according to a computing formula derived from THERP

  16. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  17. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  18. Level III Reliability methods feasible for complex structures

    NARCIS (Netherlands)

    Waarts, P.H.; Boer, A. de

    2001-01-01

    The paper describes the comparison between three types of reliability methods: code type level I used by a designer, full level I and a level III method. Two cases that are typical for civil engineering practise, a cable-stayed subjected to traffic load and the installation of a soil retaining sheet

  19. Developing a reliable signal wire attachment method for rail.

    Science.gov (United States)

    2014-11-01

    The goal of this project was to develop a better attachment method for rail signal wires to improve the reliability of signaling : systems. EWI conducted basic research into the failure mode of current attachment methods and developed and tested a ne...

  20. Development on methods for evaluating structure reliability of piping components

    International Nuclear Information System (INIS)

    Schimpfke, T.; Grebner, H.; Peschke, J.; Sievers, J.

    2003-01-01

    In the frame of the German reactor safety research program of the Federal Ministry of Economics and Labour, GRS has started to develop an analysis code named PROST (PRObabilistic STructure analysis) for estimating the leak and break probabilities of piping systems in nuclear power plants. The development is based on the experience achieved with applications of the public available US code PRAISE 3.10 (Piping Reliability Analysis Including Seismic Events), which was supplemented by additional features regarding the statistical evaluation and the crack orientation. PROST is designed to be more flexible to changes and supplementations. Up to now it can be used for calculating fatigue problems. The paper mentions the main capabilities and theoretical background of the present PROST development and presents a parametric study on the influence by changing the method of stress intensity factor and limit load calculation and the statistical evaluation options on the leak probability of an exemplary pipe with postulated axial crack distribution. Furthermore the resulting leak probability of an exemplary pipe with postulated circumferential crack distribution is compared with the results of the modified PRAISE computer program. The intention of this investigation is to show trends. Therefore the resulting absolute values for probabilities should not be considered as realistic evaluations. (author)

  1. Reliability Estimation of the Pultrusion Process Using the First-Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    In the present study the reliability estimation of the pultrusion process of a flat plate is analyzed by using the first order reliability method (FORM). The implementation of the numerical process model is validated by comparing the deterministic temperature and cure degree profiles...... with corresponding analyses in the literature. The centerline degree of cure at the exit (CDOCE) being less than a critical value and the maximum composite temperature (Tmax) during the process being greater than a critical temperature are selected as the limit state functions (LSFs) for the FORM. The cumulative...

  2. Monoexponential analysis of plasma disappearance of 99mTc-DTPA and 131I-iodohippurate: A reliable method for measuring changes of renal function

    International Nuclear Information System (INIS)

    Clifton, G.G.; Anderson, C.; McMahon, G.; Vargas, R.; Wallin, J.D.

    1989-01-01

    Glomerular filtration rate and effective renal plasma flow were measured in 170 subjects using monoexponential analysis of plasma disappearance curves for 99m Tc-DTPA and 131 I-iodohippurate after single injection. In the current study population, glomerular filtration rate and effective renal plasma flow decreased with increasing age, were less in females than in males, and were less in hypertensives than in normotensives. Differences in glomerular filtration rate according to age and sex in the current study were similar to those reported using traditional creatinine clearance methodology. Monoexponential treatment of plasma isotope disappearance gave reproducible values for both glomerular filtration rate and effective renal plasma flow when measured either during the day or on a daily basis. Intraindividual coefficient of variation was less than 10% for both 99m Tc-DTPA and 131 I-iodohippurate clearances derived from monoexponential analysis. These results demonstrate that monoexponential analysis of plasma disappearance curves for 99m Tc-DTPA and 131 I-iodohippurate after a single injection is a useful method for evaluating changes in renal hemodynamics either during chronic drug therapy or acutely after single dose administration

  3. A New Method of Reliability Evaluation Based on Wavelet Information Entropy for Equipment Condition Identification

    International Nuclear Information System (INIS)

    He, Z J; Zhang, X L; Chen, X F

    2012-01-01

    Aiming at reliability evaluation of condition identification of mechanical equipment, it is necessary to analyze condition monitoring information. A new method of reliability evaluation based on wavelet information entropy extracted from vibration signals of mechanical equipment is proposed. The method is quite different from traditional reliability evaluation models that are dependent on probability statistics analysis of large number sample data. The vibration signals of mechanical equipment were analyzed by means of second generation wavelet package (SGWP). We take relative energy in each frequency band of decomposed signal that equals a percentage of the whole signal energy as probability. Normalized information entropy (IE) is obtained based on the relative energy to describe uncertainty of a system instead of probability. The reliability degree is transformed by the normalized wavelet information entropy. A successful application has been achieved to evaluate the assembled quality reliability for a kind of dismountable disk-drum aero-engine. The reliability degree indicates the assembled quality satisfactorily.

  4. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  5. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  6. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  7. Standardization of domestic human reliability analysis and experience of human reliability analysis in probabilistic safety assessment for NPPs under design

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2002-01-01

    This paper introduces the background and development activities of domestic standardization of procedure and method for Human Reliability Analysis (HRA) to avoid the intervention of subjectivity by HRA analyst in Probabilistic Safety Assessment (PSA) as possible, and the review of the HRA results for domestic nuclear power plants under design studied by Korea Atomic Energy Research Institute. We identify the HRA methods used for PSA for domestic NPPs and discuss the subjectivity of HRA analyst shown in performing a HRA. Also, we introduce the PSA guidelines published in USA and review the HRA results based on them. We propose the system of a standard procedure and method for HRA to be developed

  8. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  9. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  10. An overview of reliability methods in mechanical and structural design

    Science.gov (United States)

    Wirsching, P. H.; Ortiz, K.; Lee, S. J.

    1987-01-01

    An evaluation is made of modern methods of fast probability integration and Monte Carlo treatment for the assessment of structural systems' and components' reliability. Fast probability integration methods are noted to be more efficient than Monte Carlo ones. This is judged to be an important consideration when several point probability estimates must be made in order to construct a distribution function. An example illustrating the relative efficiency of the various methods is included.

  11. A Reliability Assessment Method for the VHTR Safety Systems

    International Nuclear Information System (INIS)

    Lee, Hyung Sok; Jae, Moo Sung; Kim, Yong Wan

    2011-01-01

    The Passive safety system by very high temperature reactor which has attracted worldwide attention in the last century is the reliability safety system introduced for the improvement in the safety of the next generation nuclear power plant design. The Passive system functionality does not rely on an external source of energy, but on an intelligent use of the natural phenomena, such as gravity, conduction and radiation, which are always present. Because of these features, it is difficult to evaluate the passive safety on the risk analysis methodology having considered the existing active system failure. Therefore new reliability methodology has to be considered. In this study, the preliminary evaluation and conceptualization are tried, applying the concept of the load and capacity from the reliability physics model, designing the new passive system analysis methodology, and the trial applying to paper plant.

  12. Assessment of the reliability of ultrasonic inspection methods

    International Nuclear Information System (INIS)

    Haines, N.F.; Langston, D.B.; Green, A.J.; Wilson, R.

    1982-01-01

    The reliability of NDT techniques has remained an open question for many years. A reliable technique may be defined as one that, when rigorously applied by a number of inspection teams, consistently finds then correctly sizes all defects of concern. In this paper we report an assessment of the reliability of defect detection by manual ultrasonic methods applied to the inspection of thick section pressure vessel weldments. Initially we consider the available data relating to the inherent physical capabilities of ultrasonic techniques to detect cracks in weldment and then, independently, we assess the likely variability in team to team performance when several teams are asked to follow the same specified test procedure. The two aspects of 'capability' and 'variability' are brought together to provide quantitative estimates of the overall reliability of ultrasonic inspection of thick section pressure vessel weldments based on currently existing data. The final section of the paper considers current research programmes on reliability and presents a view on how these will help to further improve NDT reliability. (author)

  13. Investigation of MLE in nonparametric estimation methods of reliability function

    International Nuclear Information System (INIS)

    Ahn, Kwang Won; Kim, Yoon Ik; Chung, Chang Hyun; Kim, Kil Yoo

    2001-01-01

    There have been lots of trials to estimate a reliability function. In the ESReDA 20 th seminar, a new method in nonparametric way was proposed. The major point of that paper is how to use censored data efficiently. Generally there are three kinds of approach to estimate a reliability function in nonparametric way, i.e., Reduced Sample Method, Actuarial Method and Product-Limit (PL) Method. The above three methods have some limits. So we suggest an advanced method that reflects censored information more efficiently. In many instances there will be a unique maximum likelihood estimator (MLE) of an unknown parameter, and often it may be obtained by the process of differentiation. It is well known that the three methods generally used to estimate a reliability function in nonparametric way have maximum likelihood estimators that are uniquely exist. So, MLE of the new method is derived in this study. The procedure to calculate a MLE is similar just like that of PL-estimator. The difference of the two is that in the new method, the mass (or weight) of each has an influence of the others but the mass in PL-estimator not

  14. Reliability methods in nuclear power plant ageing management

    International Nuclear Information System (INIS)

    Simola, K.

    1999-01-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  15. Reliability methods in nuclear power plant ageing management

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation, Espoo (Finland). Industrial Automation

    1999-07-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  16. Some developments in human reliability analysis approaches and tools

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W; Worledge, D H

    1988-01-01

    Since human actions have been recognized as an important contributor to safety of operating plants in most industries, research has been performed to better understand and account for the way operators interact during accidents through the control room and equipment interface. This paper describes the integration of a series of research projects sponsored by the Electric Power Research Institute to strengthen the methods for performing the human reliability analysis portion of the probabilistic safety studies. It focuses on the analytical framework used to guide the analysis, the development of the models for quantifying time-dependent actions, and simulator experiments used to validate the models.

  17. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  18. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...

  19. An attempt to use FMEA method for an approximate reliability assessment of machinery

    Directory of Open Access Journals (Sweden)

    Przystupa Krzysztof

    2017-01-01

    Full Text Available The paper presents a modified FMEA (Failure Mode and Effect Analysis method to assess reliability of the components that make up a wrench type 2145: MAX Impactol TM Driver Ingersoll Rand Company. This case concerns the analysis of reliability in conditions, when full service data is not known. The aim of the study is to determine the weakest element in the design of the tool.

  20. Analogical reasoning for reliability analysis based on generic data

    Energy Technology Data Exchange (ETDEWEB)

    Kozin, Igor O

    1996-10-01

    The paper suggests using the systemic concept 'analogy' for the foundation of an approach to analyze system reliability on the basis of generic data, describing the method of structuring the set that defines analogical models, an approach of transition from the analogical model to a reliability model and a way of obtaining reliability intervals of analogous objects.

  1. Analogical reasoning for reliability analysis based on generic data

    International Nuclear Information System (INIS)

    Kozin, Igor O.

    1996-01-01

    The paper suggests using the systemic concept 'analogy' for the foundation of an approach to analyze system reliability on the basis of generic data, describing the method of structuring the set that defines analogical models, an approach of transition from the analogical model to a reliability model and a way of obtaining reliability intervals of analogous objects

  2. Methods to compute reliabilities for genomic predictions of feed intake

    Science.gov (United States)

    For new traits without historical reference data, cross-validation is often the preferred method to validate reliability (REL). Time truncation is less useful because few animals gain substantial REL after the truncation point. Accurate cross-validation requires separating genomic gain from pedigree...

  3. Planning of operation & maintenance using risk and reliability based methods

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2015-01-01

    Operation and maintenance (OM) of offshore wind turbines contributes with a substantial part of the total levelized cost of energy (LCOE). The objective of this paper is to present an application of risk- and reliability-based methods for planning of OM. The theoretical basis is presented...

  4. Assessment of reliability of Greulich and Pyle (gp) method for ...

    African Journals Online (AJOL)

    Background: Greulich and Pyle standards are the most widely used age estimation standards all over the world. The applicability of the Greulich and Pyle standards to populations which differ from their reference population is often questioned. This study aimed to assess the reliability of Greulich and Pyle (GP) method for ...

  5. Reliability demonstration test planning using bayesian analysis

    International Nuclear Information System (INIS)

    Chandran, Senthil Kumar; Arul, John A.

    2003-01-01

    In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)

  6. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    Science.gov (United States)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  7. Statistical Bayesian method for reliability evaluation based on ADT data

    Science.gov (United States)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  8. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  9. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  10. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  11. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  12. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Parry; J.A Forester; V.N. Dang; S. M. L. Hendrickson; M. Presley; E. Lois; J. Xing

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.

  13. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  14. TIGER reliability analysis in the DSN

    Science.gov (United States)

    Gunn, J. M.

    1982-01-01

    The TIGER algorithm, the inputs to the program and the output are described. TIGER is a computer program designed to simulate a system over a period of time to evaluate system reliability and availability. Results can be used in the Deep Space Network for initial spares provisioning and system evaluation.

  15. Reliability analysis of an offshore structure

    DEFF Research Database (Denmark)

    Sorensen, J. D.; Faber, M. H.; Thoft-Christensen, P.

    1992-01-01

    A jacket type offshore structure from the North Sea is considered. The time variant reliability is estimated for failure defined as brittle fracture and crack through the tubular member walls. The stochastic modelling is described. The hot spot stress spectral moments as function of the stochasti...

  16. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  17. Bypassing BDD Construction for Reliability Analysis

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Nikolskaia, Macha; Rauzy, Antoine

    2000-01-01

    In this note, we propose a Boolean Expression Diagram (BED)-based algorithm to compute the minimal p-cuts of boolean reliability models such as fault trees. BEDs make it possible to bypass the Binary Decision Diagram (BDD) construction, which is the main cost of fault tree assessment....

  18. Reliability and discriminatory power of methods for dental plaque quantification

    Directory of Open Access Journals (Sweden)

    Daniela Prócida Raggio

    2010-04-01

    Full Text Available OBJECTIVE: This in situ study evaluated the discriminatory power and reliability of methods of dental plaque quantification and the relationship between visual indices (VI and fluorescence camera (FC to detect plaque. MATERIAL AND METHODS: Six volunteers used palatal appliances with six bovine enamel blocks presenting different stages of plaque accumulation. The presence of plaque with and without disclosing was assessed using VI. Images were obtained with FC and digital camera in both conditions. The area covered by plaque was assessed. Examinations were done by two independent examiners. Data were analyzed by Kruskal-Wallis and Kappa tests to compare different conditions of samples and to assess the inter-examiner reproducibility. RESULTS: Some methods presented adequate reproducibility. The Turesky index and the assessment of area covered by disclosed plaque in the FC images presented the highest discriminatory powers. CONCLUSION: The Turesky index and images with FC with disclosing present good reliability and discriminatory power in quantifying dental plaque.

  19. Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Aksit, Mehmet; de Lemos, Rogerio; Gacek, Cristina

    2007-01-01

    Several reliability engineering approaches have been proposed to identify and recover from failures. A well-known and mature approach is the Failure Mode and Effect Analysis (FMEA) method that is usually utilized together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of failures.

  20. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  1. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2011-01-01

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: →We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. → We discuss the difficulties in defining and measuring fatigue. → We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  2. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  3. Mechanical reliability analysis of tubes intended for hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nahal, Mourad; Khelif, Rabia [Badji Mokhtar University, Annaba (Algeria)

    2013-02-15

    Reliability analysis constitutes an essential phase in any study concerning reliability. Many industrialists evaluate and improve the reliability of their products during the development cycle - from design to startup (design, manufacture, and exploitation) - to develop their knowledge on cost/reliability ratio and to control sources of failure. In this study, we obtain results for hardness, tensile, and hydrostatic tests carried out on steel tubes for transporting hydrocarbons followed by statistical analysis. Results obtained allow us to conduct a reliability study based on resistance request. Thus, index of reliability is calculated and the importance of the variables related to the tube is presented. Reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. Residual stress has been found to greatly increase probability of failure, especially in the early stages of pipe lifetime.

  4. A generic method for estimating system reliability using Bayesian networks

    International Nuclear Information System (INIS)

    Doguc, Ozge; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This study presents a holistic method for constructing a Bayesian network (BN) model for estimating system reliability. BN is a probabilistic approach that is used to model and predict the behavior of a system based on observed stochastic events. The BN model is a directed acyclic graph (DAG) where the nodes represent system components and arcs represent relationships among them. Although recent studies on using BN for estimating system reliability have been proposed, they are based on the assumption that a pre-built BN has been designed to represent the system. In these studies, the task of building the BN is typically left to a group of specialists who are BN and domain experts. The BN experts should learn about the domain before building the BN, which is generally very time consuming and may lead to incorrect deductions. As there are no existing studies to eliminate the need for a human expert in the process of system reliability estimation, this paper introduces a method that uses historical data about the system to be modeled as a BN and provides efficient techniques for automated construction of the BN model, and hence estimation of the system reliability. In this respect K2, a data mining algorithm, is used for finding associations between system components, and thus building the BN model. This algorithm uses a heuristic to provide efficient and accurate results while searching for associations. Moreover, no human intervention is necessary during the process of BN construction and reliability estimation. The paper provides a step-by-step illustration of the method and evaluation of the approach with literature case examples

  5. A generic method for estimating system reliability using Bayesian networks

    Energy Technology Data Exchange (ETDEWEB)

    Doguc, Ozge [Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Ramirez-Marquez, Jose Emmanuel [Stevens Institute of Technology, Hoboken, NJ 07030 (United States)], E-mail: jmarquez@stevens.edu

    2009-02-15

    This study presents a holistic method for constructing a Bayesian network (BN) model for estimating system reliability. BN is a probabilistic approach that is used to model and predict the behavior of a system based on observed stochastic events. The BN model is a directed acyclic graph (DAG) where the nodes represent system components and arcs represent relationships among them. Although recent studies on using BN for estimating system reliability have been proposed, they are based on the assumption that a pre-built BN has been designed to represent the system. In these studies, the task of building the BN is typically left to a group of specialists who are BN and domain experts. The BN experts should learn about the domain before building the BN, which is generally very time consuming and may lead to incorrect deductions. As there are no existing studies to eliminate the need for a human expert in the process of system reliability estimation, this paper introduces a method that uses historical data about the system to be modeled as a BN and provides efficient techniques for automated construction of the BN model, and hence estimation of the system reliability. In this respect K2, a data mining algorithm, is used for finding associations between system components, and thus building the BN model. This algorithm uses a heuristic to provide efficient and accurate results while searching for associations. Moreover, no human intervention is necessary during the process of BN construction and reliability estimation. The paper provides a step-by-step illustration of the method and evaluation of the approach with literature case examples.

  6. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  7. Damage tolerance reliability analysis of automotive spot-welded joints

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Ni Kan

    2003-01-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture

  8. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  9. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  10. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  11. A method to evaluate performance reliability of individual subjects in laboratory research applied to work settings.

    Science.gov (United States)

    1978-10-01

    This report presents a method that may be used to evaluate the reliability of performance of individual subjects, particularly in applied laboratory research. The method is based on analysis of variance of a tasks-by-subjects data matrix, with all sc...

  12. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  13. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  14. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  15. Melting curve analysis after T allele enrichment (MelcaTle as a highly sensitive and reliable method for detecting the JAK2V617F mutation.

    Directory of Open Access Journals (Sweden)

    Soji Morishita

    Full Text Available Detection of the JAK2V617F mutation is essential for diagnosing patients with classical myeloproliferative neoplasms (MPNs. However, detection of the low-frequency JAK2V617F mutation is a challenging task due to the necessity of discriminating between true-positive and false-positive results. Here, we have developed a highly sensitive and accurate assay for the detection of JAK2V617F and named it melting curve analysis after T allele enrichment (MelcaTle. MelcaTle comprises three steps: 1 two cycles of JAK2V617F allele enrichment by PCR amplification followed by BsaXI digestion, 2 selective amplification of the JAK2V617F allele in the presence of a bridged nucleic acid (BNA probe, and 3 a melting curve assay using a BODIPY-FL-labeled oligonucleotide. Using this assay, we successfully detected nearly a single copy of the JAK2V617F allele, without false-positive signals, using 10 ng of genomic DNA standard. Furthermore, MelcaTle showed no positive signals in 90 assays screening healthy individuals for JAK2V617F. When applying MelcaTle to 27 patients who were initially classified as JAK2V617F-positive on the basis of allele-specific PCR analysis and were thus suspected as having MPNs, we found that two of the patients were actually JAK2V617F-negative. A more careful clinical data analysis revealed that these two patients had developed transient erythrocytosis of unknown etiology but not polycythemia vera, a subtype of MPNs. These findings indicate that the newly developed MelcaTle assay should markedly improve the diagnosis of JAK2V617F-positive MPNs.

  16. An Application of Graph Theory in Markov Chains Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Pavel Skalny

    2014-01-01

    Full Text Available The paper presents reliability analysis which was realized for an industrial company. The aim of the paper is to present the usage of discrete time Markov chains and the flow in network approach. Discrete Markov chains a well-known method of stochastic modelling describes the issue. The method is suitable for many systems occurring in practice where we can easily distinguish various amount of states. Markov chains are used to describe transitions between the states of the process. The industrial process is described as a graph network. The maximal flow in the network corresponds to the production. The Ford-Fulkerson algorithm is used to quantify the production for each state. The combination of both methods are utilized to quantify the expected value of the amount of manufactured products for the given time period.

  17. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  18. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  19. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  20. Usefulness of the Monte Carlo method in reliability calculations

    International Nuclear Information System (INIS)

    Lanore, J.M.; Kalli, H.

    1977-01-01

    Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels

  1. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  2. Comparative analysis of the efficiency, reliability, technical feasibility and costs of methods to convert sewage sludge to a hygienically safe condition

    International Nuclear Information System (INIS)

    Fuhrmann, D.; Leschber, R.; Mueller, G.; Jaeger, B.; Neumann, U.

    1981-01-01

    Due to the development of sewage treatment technology and the construction of new and sewage works and enlargement of older ones, increasing amounts of sewage sludge have been produced. Agricultural use of municipal sewage sludge is a practicable way of utilization which, however, is often limited for reasons of hygienic safety. The present study intends to describe methods of sewage sludge disinfection which have been used in practice or tested extensively, as well as technical innovations in this field, and to give information on their performance with respect to hygienic and technical requirements. A direct comparison of processes has turned out to be extremely difficult because disinfection of sewage sludge is only one of the stages of sewage treatment. For comparison, numerous factors have to be taken into account such as plant size, type of sewage and sludge treatment processes, energy costs, sales potential for agricultural use etc. This study is meant as an aid in such work. (orig.) [de

  3. Reliability Analysis Study of Digital Reactor Protection System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Guo, Xiao Ming; Liu, Tao; Tong, Jie Juan; Zhao, Jun

    2011-01-01

    The Digital I and C systems are believed to improve a plants safety and reliability generally. The reliability analysis of digital I and C system has become one research hotspot. Traditional fault tree method is one of means to quantify the digital I and C system reliability. Review of advanced nuclear power plant AP1000 digital protection system evaluation makes clear both the fault tree application and analysis process to the digital system reliability. One typical digital protection system special for advanced reactor has been developed, which reliability evaluation is necessary for design demonstration. The typical digital protection system construction is introduced in the paper, and the process of FMEA and fault tree application to the digital protection system reliability evaluation are described. Reliability data and bypass logic modeling are two points giving special attention in the paper. Because the factors about time sequence and feedback not exist in reactor protection system obviously, the dynamic feature of digital system is not discussed

  4. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  5. A simple reliability block diagram method for safety integrity verification

    International Nuclear Information System (INIS)

    Guo Haitao; Yang Xianhui

    2007-01-01

    IEC 61508 requires safety integrity verification for safety related systems to be a necessary procedure in safety life cycle. PFD avg must be calculated to verify the safety integrity level (SIL). Since IEC 61508-6 does not give detailed explanations of the definitions and PFD avg calculations for its examples, it is difficult for common reliability or safety engineers to understand when they use the standard as guidance in practice. A method using reliability block diagram is investigated in this study in order to provide a clear and feasible way of PFD avg calculation and help those who take IEC 61508-6 as their guidance. The method finds mean down times (MDTs) of both channel and voted group first and then PFD avg . The calculated results of various voted groups are compared with those in IEC61508 part 6 and Ref. [Zhang T, Long W, Sato Y. Availability of systems with self-diagnostic components-applying Markov model to IEC 61508-6. Reliab Eng System Saf 2003;80(2):133-41]. An interesting outcome can be realized from the comparison. Furthermore, although differences in MDT of voted groups exist between IEC 61508-6 and this paper, PFD avg of voted groups are comparatively close. With detailed description, the method of RBD presented can be applied to the quantitative SIL verification, showing a similarity of the method in IEC 61508-6

  6. Interactive reliability analysis project. FY 80 progress report

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.

    1981-03-01

    This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system

  7. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  8. The Evaluation Method of the Lightning Strike on Transmission Lines Aiming at Power Grid Reliability

    Science.gov (United States)

    Wen, Jianfeng; Wu, Jianwei; Huang, Liandong; Geng, Yinan; Yu, zhanqing

    2018-01-01

    Lightning protection of power system focuses on reducing the flashover rate, only distinguishing by the voltage level, without considering the functional differences between the transmission lines, and being lack of analysis the effect on the reliability of power grid. This will lead lightning protection design of general transmission lines is surplus but insufficient for key lines. In order to solve this problem, the analysis method of lightning striking on transmission lines for power grid reliability is given. Full wave process theory is used to analyze the lightning back striking; the leader propagation model is used to describe the process of shielding failure of transmission lines. The index of power grid reliability is introduced and the effect of transmission line fault on the reliability of power system is discussed in detail.

  9. Analysis of dependent failures in risk assessment and reliability evaluation

    International Nuclear Information System (INIS)

    Fleming, K.N.; Mosleh, A.; Kelley, A.P. Jr.; Gas-Cooled Reactors Associates, La Jolla, CA)

    1983-01-01

    The ability to estimate the risk of potential reactor accidents is largely determined by the ability to analyze statistically dependent multiple failures. The importance of dependent failures has been indicated in recent probabilistic risk assessment (PRA) studies as well as in reports of reactor operating experiences. This article highlights the importance of several different types of dependent failures from the perspective of the risk and reliability analyst and provides references to the methods and data available for their analysis. In addition to describing the current state of the art, some recent advances, pitfalls, misconceptions, and limitations of some approaches to dependent failure analysis are addressed. A summary is included of the discourse on this subject, which is presented in the Institute of Electrical and Electronics Engineers/American Nuclear Society PRA Procedures Guide

  10. Time-dependent reliability analysis and condition assessment of structures

    International Nuclear Information System (INIS)

    Ellingwood, B.R.

    1997-01-01

    Structures generally play a passive role in assurance of safety in nuclear plant operation, but are important if the plant is to withstand the effect of extreme environmental or abnormal events. Relative to mechanical and electrical components, structural systems and components would be difficult and costly to replace. While the performance of steel or reinforced concrete structures in service generally has been very good, their strengths may deteriorate during an extended service life as a result of changes brought on by an aggressive environment, excessive loading, or accidental loading. Quantitative tools for condition assessment of aging structures can be developed using time-dependent structural reliability analysis methods. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process

  11. Analysis of operating reliability of WWER-1000 unit

    International Nuclear Information System (INIS)

    Bortlik, J.

    1985-01-01

    The nuclear power unit was divided into 33 technological units. Input data for reliability analysis were surveys of operating results obtained from the IAEA information system and certain indexes of the reliability of technological equipment determined using the Bayes formula. The missing reliability data for technological equipment were used from the basic variant. The fault tree of the WWER-1000 unit was determined for the peak event defined as the impossibility of reaching 100%, 75% and 50% of rated power. The period was observed of the nuclear power plant operation with reduced output owing to defect and the respective time needed for a repair of the equipment. The calculation of the availability of the WWER-1000 unit was made for different variant situations. Certain indexes of the operating reliability of the WWER-1000 unit which are the result of a detailed reliability analysis are tabulated for selected variants. (E.S.)

  12. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  13. Simulation Approach to Mission Risk and Reliability Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...

  14. PSA applications and piping reliability analysis: where do we stand?

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    1997-01-01

    This reviews a recently proposed framework for piping reliability analysis. The framework was developed to promote critical interpretations of operational data on pipe failures, and to support application-specific-parameter estimation

  15. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Sopira Vladimir; Kovacs, Zoltan

    2015-01-01

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  16. reliability analysis of a two span floor designed according

    African Journals Online (AJOL)

    user

    deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor ... loading, strength and stiffness parameters, dimensions .... to show that there is a direct relation between the failure probability (Pf) ...

  17. Inter comparison of REPAS and APSRA methodologies for passive system reliability analysis

    International Nuclear Information System (INIS)

    Solanki, R.B.; Krishnamurthy, P.R.; Singh, Suneet; Varde, P.V.; Verma, A.K.

    2014-01-01

    The increasing use of passive systems in the innovative nuclear reactors puts demand on the estimation of the reliability assessment of these passive systems. The passive systems operate on the driving forces such as natural circulation, gravity, internal stored energy etc. which are moderately weaker than that of active components. Hence, phenomenological failures (virtual components) are equally important as that of equipment failures (real components) in the evaluation of passive systems reliability. The contribution of the mechanical components to the passive system reliability can be evaluated in a classical way using the available component reliability database and well known methods. On the other hand, different methods are required to evaluate the reliability of processes like thermohydraulics due to lack of adequate failure data. The research is ongoing worldwide on the reliability assessment of the passive systems and their integration into PSA, however consensus is not reached. Two of the most widely used methods are Reliability Evaluation of Passive Systems (REPAS) and Assessment of Passive System Reliability (APSRA). Both these methods characterize the uncertainties involved in the design and process parameters governing the function of the passive system. However, these methods differ in the quantification of passive system reliability. Inter comparison among different available methods provides useful insights into the strength and weakness of different methods. This paper highlights the results of the thermal hydraulic analysis of a typical passive isolation condenser system carried out using RELAP mode 3.2 computer code applying REPAS and APSRA methodologies. The failure surface is established for the passive system under consideration and system reliability has also been evaluated using these methods. Challenges involved in passive system reliabilities are identified, which require further attention in order to overcome the shortcomings of these

  18. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Kumar, Sachin; Mishra, Vivek; Joshi, N.S.; Varde, P.V.

    2014-01-01

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  19. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  20. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  1. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  2. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  3. Tailoring a Human Reliability Analysis to Your Industry Needs

    Science.gov (United States)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed

  4. Statis Program Analysis for Reliable, Trusted Apps

    Science.gov (United States)

    2017-02-01

    and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins (“checkers”) that find bugs or verify their absence. It...versions of the Java language. 4.8 DATAFLOW FRAMEWORK The dataflow framework enables more accurate analysis of source code. (Despite their similar...names, the dataflow framework is independent of the (Information) Flow Checker of chapter 2.) In Java code, a given operation may be permitted or

  5. Reliability analysis of digital based I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)

    1999-10-01

    Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.

  6. Further development of the structure mechanics analysis method for the calculation of the structure reliability of passive components, phase II. Final report; Weiterentwicklung der strukturmechanischen Analysemethodik zur Bestimmung der Strukturzuverlaessigkeit passiver Komponenten, Phase II. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Grebner, H.; Wang, Y.; Schmipfke, T.; Sievers, J.

    2010-06-15

    Within the framework of research project RS 1163 the computer code PROST for the quantitative assessment of the structural reliability of pipe components has been further developed. Thereby models were provided and tested for the consideration of the damage mechanism 'corrosion' to determine leak and break probabilities in cylindrical structures of ferritic and austenitic reactor steels. These models are now additionally available to the model for the consideration of the damage mechanism 'fatigue'. Furthermore, the application range of the code was extended to complex geometries in regards to loading and boundary conditions. Additional code modules were developed to be able to include the results of finite element (FE) calculations. The extended analysis method was tested, amongst others, in the context of calculations for a cracked feedwater nozzle of a steam generator under thermal-mechanical cyclic loading. The stress on cracks was calculated with the FE-method. For the determination of leak probabilities the crack growth due to fatigue was estimated taking into account the ''mixed-mode'' - loading within the J-integral vector approach. Altogether, the analyses show that with the provided flexible probabilistic analysis method quantitative determination of leak probabilities of a detected or postulated crack in a complex structure geometry under thermal-mechanical loading as function of the operating time in the range of very small probability values (<1.0 E-8) to large values (>1.0 E-2) are possible. The next development steps should comprise especially the improvement of the accuracy of the method to determine break probabilities and also the consideration of approaches on crack formation due to the damage mechanisms 'fatigue' and 'corrosion', based on evaluations of national and international operating experiences.

  7. Application of human reliability analysis methodology of second generation

    International Nuclear Information System (INIS)

    Ruiz S, T. de J.; Nelson E, P. F.

    2009-10-01

    The human reliability analysis (HRA) is a very important part of probabilistic safety analysis. The main contribution of HRA in nuclear power plants is the identification and characterization of the issues that are brought together for an error occurring in the human tasks that occur under normal operation conditions and those made after abnormal event. Additionally, the analysis of various accidents in history, it was found that the human component has been a contributing factor in the cause. Because of need to understand the forms and probability of human error in the 60 decade begins with the collection of generic data that result in the development of the first generation of HRA methodologies. Subsequently develop methods to include in their models additional performance shaping factors and the interaction between them. So by the 90 mid, comes what is considered the second generation methodologies. Among these is the methodology A Technique for Human Event Analysis (ATHEANA). The application of this method in a generic human failure event, it is interesting because it includes in its modeling commission error, the additional deviations quantification to nominal scenario considered in the accident sequence of probabilistic safety analysis and, for this event the dependency actions evaluation. That is, the generic human failure event was required first independent evaluation of the two related human failure events . So the gathering of the new human error probabilities involves the nominal scenario quantification and cases of significant deviations considered by the potential impact on analyzed human failure events. Like probabilistic safety analysis, with the analysis of the sequences were extracted factors more specific with the highest contribution in the human error probabilities. (Author)

  8. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information

    International Nuclear Information System (INIS)

    Wang, Lizhi; Pan, Rong; Li, Xiaoyang; Jiang, Tongmin

    2013-01-01

    Accelerated degradation testing (ADT) is a common approach in reliability prediction, especially for products with high reliability. However, oftentimes the laboratory condition of ADT is different from the field condition; thus, to predict field failure, one need to calibrate the prediction made by using ADT data. In this paper a Bayesian evaluation method is proposed to integrate the ADT data from laboratory with the failure data from field. Calibration factors are introduced to calibrate the difference between the lab and the field conditions so as to predict a product's actual field reliability more accurately. The information fusion and statistical inference procedure are carried out through a Bayesian approach and Markov chain Monte Carlo methods. The proposed method is demonstrated by two examples and the sensitivity analysis to prior distribution assumption

  9. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  10. Basic aspects of stochastic reliability analysis for redundancy systems

    International Nuclear Information System (INIS)

    Doerre, P.

    1989-01-01

    Much confusion has been created by trying to establish common cause failure (CCF) as an extra phenomenon which has to be treated with extra methods in reliability and data analysis. This paper takes another approach which can be roughly described by the statement that dependent failure is the basic phenomenon, while 'independent failure' refers to a special limiting case, namely the perfectly homogeneous population. This approach is motivated by examples demonstrating that common causes do not lead to dependent failure, so far as physical dependencies like shared components are excluded, and that stochastic dependencies are not related to common causes. The possibility to select more than one failure behaviour from an inhomogeneous population is identified as an additional random process which creates stochastic dependence. However, this source of randomness is usually treated in the deterministic limit, which destroys dependence and hence yields incorrect multiple failure frequencies for redundancy structures, thus creating the need for applying corrective CCF models. (author)

  11. Multidisciplinary Inverse Reliability Analysis Based on Collaborative Optimization with Combination of Linear Approximations

    Directory of Open Access Journals (Sweden)

    Xin-Jia Meng

    2015-01-01

    Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.

  12. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  13. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  14. An automated method for estimating reliability of grid systems using Bayesian networks

    International Nuclear Information System (INIS)

    Doguc, Ozge; Emmanuel Ramirez-Marquez, Jose

    2012-01-01

    Grid computing has become relevant due to its applications to large-scale resource sharing, wide-area information transfer, and multi-institutional collaborating. In general, in grid computing a service requests the use of a set of resources, available in a grid, to complete certain tasks. Although analysis tools and techniques for these types of systems have been studied, grid reliability analysis is generally computation-intensive to obtain due to the complexity of the system. Moreover, conventional reliability models have some common assumptions that cannot be applied to the grid systems. Therefore, new analytical methods are needed for effective and accurate assessment of grid reliability. This study presents a new method for estimating grid service reliability, which does not require prior knowledge about the grid system structure unlike the previous studies. Moreover, the proposed method does not rely on any assumptions about the link and node failure rates. This approach is based on a data-mining algorithm, the K2, to discover the grid system structure from raw historical system data, that allows to find minimum resource spanning trees (MRST) within the grid then, uses Bayesian networks (BN) to model the MRST and estimate grid service reliability.

  15. A Reliability-Oriented Design Method for Power Electronic Converters

    DEFF Research Database (Denmark)

    Wang, Huai; Zhou, Dao; Blaabjerg, Frede

    2013-01-01

    Reliability is a crucial performance indicator of power electronic systems in terms of availability, mission accomplishment and life cycle cost. A paradigm shift in the research on reliability of power electronics is going on from simple handbook based calculations (e.g. models in MIL-HDBK-217F h...... and reliability prediction models are provided. A case study on a 2.3 MW wind power converter is discussed with emphasis on the reliability critical component IGBT modules....

  16. Precision profiles and analytic reliability of radioimmunologic methods

    International Nuclear Information System (INIS)

    Yaneva, Z.; Popova, Yu.

    1991-01-01

    The aim of the present study is to investigate and compare some methods for creation of 'precision profiles' (PP) and to clarify their possibilities for determining the analytical reliability of RIA. Only methods without complicated mathematical calculations has been used. The reproducibility in serums with a concentration of the determinable hormone in the whole range of the calibration curve has been studied. The radioimmunoassay has been performed with TSH-RIA set (ex East Germany), and comparative evaluations - with commercial sets of HOECHST (Germany) and AMERSHAM (GB). Three methods for obtaining the relationship concentration (IU/l) -reproducibility (C.V.,%) are used and a comparison is made of their corresponding profiles: preliminary rough profile, Rodbard-PP and Ekins-PP. It is concluded that the creation of a precision profile is obligatory and the method of its construction does not influence the relationship's course. PP allows to determine concentration range giving stable results which improves the efficiency of the analitical work. 16 refs., 4 figs

  17. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  18. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  19. A human reliability based usability evaluation method for safety-critical software

    International Nuclear Information System (INIS)

    Boring, R. L.; Tran, T. Q.; Gertman, D. I.; Ragsdale, A.

    2006-01-01

    Boring and Gertman (2005) introduced a novel method that augments heuristic usability evaluation methods with that of the human reliability analysis method of SPAR-H. By assigning probabilistic modifiers to individual heuristics, it is possible to arrive at the usability error probability (UEP). Although this UEP is not a literal probability of error, it nonetheless provides a quantitative basis to heuristic evaluation. This method allows one to seamlessly prioritize and identify usability issues (i.e., a higher UEP requires more immediate fixes). However, the original version of this method required the usability evaluator to assign priority weights to the final UEP, thus allowing the priority of a usability issue to differ among usability evaluators. The purpose of this paper is to explore an alternative approach to standardize the priority weighting of the UEP in an effort to improve the method's reliability. (authors)

  20. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)

    2008-11-15

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

  1. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    International Nuclear Information System (INIS)

    Phuc Do Van; Barros, Anne; Berenguer, Christophe

    2008-01-01

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies

  2. Reliability analysis of component of affination centrifugal 1 machine by using reliability engineering

    Science.gov (United States)

    Sembiring, N.; Ginting, E.; Darnello, T.

    2017-12-01

    Problems that appear in a company that produces refined sugar, the production floor has not reached the level of critical machine availability because it often suffered damage (breakdown). This results in a sudden loss of production time and production opportunities. This problem can be solved by Reliability Engineering method where the statistical approach to historical damage data is performed to see the pattern of the distribution. The method can provide a value of reliability, rate of damage, and availability level, of an machine during the maintenance time interval schedule. The result of distribution test to time inter-damage data (MTTF) flexible hose component is lognormal distribution while component of teflon cone lifthing is weibull distribution. While from distribution test to mean time of improvement (MTTR) flexible hose component is exponential distribution while component of teflon cone lifthing is weibull distribution. The actual results of the flexible hose component on the replacement schedule per 720 hours obtained reliability of 0.2451 and availability 0.9960. While on the critical components of teflon cone lifthing actual on the replacement schedule per 1944 hours obtained reliability of 0.4083 and availability 0.9927.

  3. Development of advanced methods and related software for human reliability evaluation within probabilistic safety analyses

    International Nuclear Information System (INIS)

    Kosmowski, K.T.; Mertens, J.; Degen, G.; Reer, B.

    1994-06-01

    Human Reliability Analysis (HRA) is an important part of Probabilistic Safety Analysis (PSA). The first part of this report consists of an overview of types of human behaviour and human error including the effect of significant performance shaping factors on human reliability. Particularly with regard to safety assessments for nuclear power plants a lot of HRA methods have been developed. The most important of these methods are presented and discussed in the report, together with techniques for incorporating HRA into PSA and with models of operator cognitive behaviour. Based on existing HRA methods the concept of a software system is described. For the development of this system the utilization of modern programming tools is proposed; the essential goal is the effective application of HRA methods. A possible integration of computeraided HRA within PSA is discussed. The features of Expert System Technology and examples of applications (PSA, HRA) are presented in four appendices. (orig.) [de

  4. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  5. Analysis of sodium valve reliability data at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF

  6. Reliability analysis and updating of deteriorating systems with subset simulation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Straub, Daniel

    2017-01-01

    An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....

  7. Use of COMCAN III in system design and reliability analysis

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.

    1982-03-01

    This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis

  8. Reliability analysis of reinforced concrete grids with nonlinear material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Rodrigo A [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil); Chateauneuf, Alaa [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)]. E-mail: alaa.chateauneuf@ifma.fr; Venturini, Wilson S [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil)]. E-mail: venturin@sc.usp.br; Lemaire, Maurice [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)

    2006-06-15

    Reinforced concrete grids are usually used to support large floor slabs. These grids are characterized by a great number of critical cross-sections, where the overall failure is usually sudden. However, nonlinear behavior of concrete leads to the redistribution of internal forces and accurate reliability assessment becomes mandatory. This paper presents a reliability study on reinforced concrete (RC) grids based on coupling Monte Carlo simulations with the response surface techniques. This approach allows us to analyze real RC grids with large number of failure components. The response surface is used to evaluate the structural safety by using first order reliability methods. The application to simple grids shows the interest of the proposed method and the role of moment redistribution in the reliability assessment.

  9. LIF: A new Kriging based learning function and its application to structural reliability analysis

    International Nuclear Information System (INIS)

    Sun, Zhili; Wang, Jian; Li, Rui; Tong, Cao

    2017-01-01

    The main task of structural reliability analysis is to estimate failure probability of a studied structure taking randomness of input variables into account. To consider structural behavior practically, numerical models become more and more complicated and time-consuming, which increases the difficulty of reliability analysis. Therefore, sequential strategies of design of experiment (DoE) are raised. In this research, a new learning function, named least improvement function (LIF), is proposed to update DoE of Kriging based reliability analysis method. LIF values how much the accuracy of estimated failure probability will be improved if adding a given point into DoE. It takes both statistical information provided by the Kriging model and the joint probability density function of input variables into account, which is the most important difference from the existing learning functions. Maximum point of LIF is approximately determined with Markov Chain Monte Carlo(MCMC) simulation. A new reliability analysis method is developed based on the Kriging model, in which LIF, MCMC and Monte Carlo(MC) simulation are employed. Three examples are analyzed. Results show that LIF and the new method proposed in this research are very efficient when dealing with nonlinear performance function, small probability, complicated limit state and engineering problems with high dimension. - Highlights: • Least improvement function (LIF) is proposed for structural reliability analysis. • LIF takes both Kriging based statistical information and joint PDF into account. • A reliability analysis method is constructed based on Kriging, MCS and LIF.

  10. Reliability analysis of safety systems of nuclear power plant and utility experience with reliability safeguarding of systems during specified normal operation

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1989-01-01

    The paper gives an outline of the methods applied for reliability analysis of safety systems in nuclear power plant. The main tasks are to check the system design for detection of weak points, and to find possibilities of optimizing the strategies for inspection, inspection intervals, maintenance periods. Reliability safeguarding measures include the determination and verification of the broundary conditions of the analysis with regard to the reliability parameters and maintenance parameters used in the analysis, and the analysis of data feedback reflecting the plant response during operation. (orig.) [de

  11. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    Science.gov (United States)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  12. Method for analysis and assessment of the relation between stress and reliability of knowledge-based actions in the probabilistic safety analysis; Methode fuer die Analyse und Bewertung der Wechselwirkung zwischen Stress und der Zuverlaessigkeit wissensbasierten Handelns in der probabilistischen Sicherheitsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Fassmann, Werner

    2014-06-15

    According to the current theoretical and empirical state-of-the-art, stress has to be understood as the emotional and cognitive reaction by which humans adapt to situations which imply real or imagined danger, threat, or frustration of important personal goals or needs. The emotional reaction to such situations can be so extreme that rational coping with the situation will be precluded. In less extreme cases, changes of cognitive processes underlying human action will occur, which may systematically affect the reliability of tasks personnel has to perform in a stressful situation. Reliable task performance by personnel of nuclear power plants and other risk technologies is also affected by such effects. The method developed in the frame of the research and development project RS1198 sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi) addresses both aspects of emotional and cognitive coping with stressful situations. Analytical and evaluation steps of the approach provide guidance to the end users on how to capture and quantify the contribution of stress-related emotional and cognitive factors to the reliable performance of knowledge-based actions. For this purpose, a suitable guideline has been developed. Further research for clarifying open questions has been identified. A case study application illustrates how to use the method. Part of the work performed in this project was dedicated to a review addressing the question to which extent Swain's approach to the analysis and evaluation of stress is in line with current scientific knowledge. Suitable suggestions for updates have been developed.

  13. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.

    2007-01-01

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional

  14. Dynamic decision-making for reliability and maintenance analysis of manufacturing systems based on failure effects

    Science.gov (United States)

    Zhang, Ding; Zhang, Yingjie

    2017-09-01

    A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.

  15. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  16. Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...

    African Journals Online (AJOL)

    (2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.

  17. Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life

    CERN Document Server

    Nikulin, M; Mesbah, M; Limnios, N

    2004-01-01

    Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields.

  18. Reliability and Validity of the Footprint Assessment Method Using Photoshop CS5 Software.

    Science.gov (United States)

    Gutiérrez-Vilahú, Lourdes; Massó-Ortigosa, Núria; Costa-Tutusaus, Lluís; Guerra-Balic, Myriam

    2015-05-01

    Several sophisticated methods of footprint analysis currently exist. However, it is sometimes useful to apply standard measurement methods of recognized evidence with an easy and quick application. We sought to assess the reliability and validity of a new method of footprint assessment in a healthy population using Photoshop CS5 software (Adobe Systems Inc, San Jose, California). Forty-two footprints, corresponding to 21 healthy individuals (11 men with a mean ± SD age of 20.45 ± 2.16 years and 10 women with a mean ± SD age of 20.00 ± 1.70 years) were analyzed. Footprints were recorded in static bipedal standing position using optical podography and digital photography. Three trials for each participant were performed. The Hernández-Corvo, Chippaux-Smirak, and Staheli indices and the Clarke angle were calculated by manual method and by computerized method using Photoshop CS5 software. Test-retest was used to determine reliability. Validity was obtained by intraclass correlation coefficient (ICC). The reliability test for all of the indices showed high values (ICC, 0.98-0.99). Moreover, the validity test clearly showed no difference between techniques (ICC, 0.99-1). The reliability and validity of a method to measure, assess, and record the podometric indices using Photoshop CS5 software has been demonstrated. This provides a quick and accurate tool useful for the digital recording of morphostatic foot study parameters and their control.

  19. The psychophysiological assessment method for pilot's professional reliability.

    Science.gov (United States)

    Zhang, L M; Yu, L S; Wang, K N; Jing, B S; Fang, C

    1997-05-01

    Previous research has shown that a pilot's professional reliability depends on two relative factors: the pilot's functional state and the demands of task workload. The Psychophysiological Reserve Capacity (PRC) is defined as a pilot's ability to accomplish additive tasks without reducing the performance of the primary task (flight task). We hypothesized that the PRC was a mirror of the pilot's functional state. The purpose of this study was to probe the psychophysiological method for evaluating a pilot's professional reliability on a simulator. The PRC Comprehensive Evaluating System (PRCCES) which was used in the experiment included four subsystems: a) quantitative evaluation system for pilot's performance on simulator; b) secondary task display and quantitative estimating system; c) multiphysiological data monitoring and statistical system; and d) comprehensive evaluation system for pilot PRC. Two studies were performed. In study one, 63 healthy and 13 hospitalized pilots participated. Each pilot performed a double 180 degrees circuit flight program with and without secondary task (three digit operation). The operator performance, score of secondary task and cost of physiological effort were measured and compared by PRCCES in the two conditions. Then, each pilot's flight skill in training was subjectively scored by instructor pilot ratings. In study two, 7 healthy pilots volunteered to take part in the experiment on the effects of sleep deprivation on pilot's PRC. Each participant had PRC tested pre- and post-8 h sleep deprivation. The results show that the PRC values of a healthy pilot was positively correlated with abilities of flexibility, operating and correcting deviation, attention distribution, and accuracy of instrument flight in the air (r = 0.27-0.40, p < 0.05), and negatively correlated with emotional anxiety in flight (r = -0.40, p < 0.05). The values of PRC in healthy pilots (0.61 +/- 0.17) were significantly higher than that of hospitalized pilots

  20. Assessment of Electronic Circuits Reliability Using Boolean Truth Table Modeling Method

    International Nuclear Information System (INIS)

    EI-Shanshoury, A.I.

    2011-01-01

    This paper explores the use of Boolean Truth Table modeling Method (BTTM) in the analysis of qualitative data. It is widely used in certain fields especially in the fields of electrical and electronic engineering. Our work focuses on the evaluation of power supply circuit reliability using (BTTM) which involves systematic attempts to falsify and identify hypotheses on the basis of truth tables constructed from qualitative data. Reliability parameters such as the system's failure rates for the power supply case study are estimated. All possible state combinations (operating and failed states) of the major components in the circuit were listed and their effects on overall system were studied

  1. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  2. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  3. The development of a reliable amateur boxing performance analysis template.

    Science.gov (United States)

    Thomson, Edward; Lamb, Kevin; Nicholas, Ceri

    2013-01-01

    The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.

  4. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  5. Structural reliability analysis under evidence theory using the active learning kriging model

    Science.gov (United States)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  6. A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components

    International Nuclear Information System (INIS)

    Kang, Won-Hee; Kliese, Alyce

    2014-01-01

    Lifeline networks, such as transportation, water supply, sewers, telecommunications, and electrical and gas networks, are essential elements for the economic and societal functions of urban areas, but their components are highly susceptible to natural or man-made hazards. In this context, it is essential to provide effective pre-disaster hazard mitigation strategies and prompt post-disaster risk management efforts based on rapid system reliability assessment. This paper proposes a rapid reliability estimation method for node-pair connectivity analysis of lifeline networks especially when the network components are statistically correlated. Recursive procedures are proposed to compound all network nodes until they become a single super node representing the connectivity between the origin and destination nodes. The proposed method is applied to numerical network examples and benchmark interconnected power and water networks in Memphis, Shelby County. The connectivity analysis results show the proposed method's reasonable accuracy and remarkable efficiency as compared to the Monte Carlo simulations

  7. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    -1, where partial safety factors are introduced together with characteristic values. Asymptotic sampling is used to estimate the reliability with support points generated by randomized Sobol sequences. The predicted reliability level is compared with the implicitly required target reliability level defined......This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  8. A Fast Optimization Method for Reliability and Performance of Cloud Services Composition Application

    Directory of Open Access Journals (Sweden)

    Zhao Wu

    2013-01-01

    Full Text Available At present the cloud computing is one of the newest trends of distributed computation, which is propelling another important revolution of software industry. The cloud services composition is one of the key techniques in software development. The optimization for reliability and performance of cloud services composition application, which is a typical stochastic optimization problem, is confronted with severe challenges due to its randomness and long transaction, as well as the characteristics of the cloud computing resources such as openness and dynamic. The traditional reliability and performance optimization techniques, for example, Markov model and state space analysis and so forth, have some defects such as being too time consuming and easy to cause state space explosion and unsatisfied the assumptions of component execution independence. To overcome these defects, we propose a fast optimization method for reliability and performance of cloud services composition application based on universal generating function and genetic algorithm in this paper. At first, a reliability and performance model for cloud service composition application based on the multiple state system theory is presented. Then the reliability and performance definition based on universal generating function is proposed. Based on this, a fast reliability and performance optimization algorithm is presented. In the end, the illustrative examples are given.

  9. Reliability and Validity of the Research Methods Skills Assessment

    Science.gov (United States)

    Smith, Tamarah; Smith, Samantha

    2018-01-01

    The Research Methods Skills Assessment (RMSA) was created to measure psychology majors' statistics knowledge and skills. The American Psychological Association's Guidelines for the Undergraduate Major in Psychology (APA, 2007, 2013) served as a framework for development. Results from a Rasch analysis with data from n = 330 undergraduates showed…

  10. Reliability of an Automated High-Resolution Manometry Analysis Program across Expert Users, Novice Users, and Speech-Language Pathologists

    Science.gov (United States)

    Jones, Corinne A.; Hoffman, Matthew R.; Geng, Zhixian; Abdelhalim, Suzan M.; Jiang, Jack J.; McCulloch, Timothy M.

    2014-01-01

    Purpose: The purpose of this study was to investigate inter- and intrarater reliability among expert users, novice users, and speech-language pathologists with a semiautomated high-resolution manometry analysis program. We hypothesized that all users would have high intrarater reliability and high interrater reliability. Method: Three expert…

  11. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  12. A dynamic discretization method for reliability inference in Dynamic Bayesian Networks

    International Nuclear Information System (INIS)

    Zhu, Jiandao; Collette, Matthew

    2015-01-01

    The material and modeling parameters that drive structural reliability analysis for marine structures are subject to a significant uncertainty. This is especially true when time-dependent degradation mechanisms such as structural fatigue cracking are considered. Through inspection and monitoring, information such as crack location and size can be obtained to improve these parameters and the corresponding reliability estimates. Dynamic Bayesian Networks (DBNs) are a powerful and flexible tool to model dynamic system behavior and update reliability and uncertainty analysis with life cycle data for problems such as fatigue cracking. However, a central challenge in using DBNs is the need to discretize certain types of continuous random variables to perform network inference while still accurately tracking low-probability failure events. Most existing discretization methods focus on getting the overall shape of the distribution correct, with less emphasis on the tail region. Therefore, a novel scheme is presented specifically to estimate the likelihood of low-probability failure events. The scheme is an iterative algorithm which dynamically partitions the discretization intervals at each iteration. Through applications to two stochastic crack-growth example problems, the algorithm is shown to be robust and accurate. Comparisons are presented between the proposed approach and existing methods for the discretization problem. - Highlights: • A dynamic discretization method is developed for low-probability events in DBNs. • The method is compared to existing approaches on two crack growth problems. • The method is shown to improve on existing methods for low-probability events

  13. Reliable methods for computer simulation error control and a posteriori estimates

    CERN Document Server

    Neittaanmäki, P

    2004-01-01

    Recent decades have seen a very rapid success in developing numerical methods based on explicit control over approximation errors. It may be said that nowadays a new direction is forming in numerical analysis, the main goal of which is to develop methods ofreliable computations. In general, a reliable numerical method must solve two basic problems: (a) generate a sequence of approximations that converges to a solution and (b) verify the accuracy of these approximations. A computer code for such a method must consist of two respective blocks: solver and checker.In this book, we are chie

  14. An advanced human reliability analysis methodology: analysis of cognitive errors focused on

    International Nuclear Information System (INIS)

    Kim, J. H.; Jeong, W. D.

    2001-01-01

    The conventional Human Reliability Analysis (HRA) methods such as THERP/ASEP, HCR and SLIM has been criticised for their deficiency in analysing cognitive errors which occurs during operator's decision making process. In order to supplement the limitation of the conventional methods, an advanced HRA method, what is called the 2 nd generation HRA method, including both qualitative analysis and quantitative assessment of cognitive errors has been being developed based on the state-of-the-art theory of cognitive systems engineering and error psychology. The method was developed on the basis of human decision-making model and the relation between the cognitive function and the performance influencing factors. The application of the proposed method to two emergency operation tasks is presented

  15. Reliability of Semiautomated Computational Methods for Estimating Tibiofemoral Contact Stress in the Multicenter Osteoarthritis Study

    Directory of Open Access Journals (Sweden)

    Donald D. Anderson

    2012-01-01

    Full Text Available Recent findings suggest that contact stress is a potent predictor of subsequent symptomatic osteoarthritis development in the knee. However, much larger numbers of knees (likely on the order of hundreds, if not thousands need to be reliably analyzed to achieve the statistical power necessary to clarify this relationship. This study assessed the reliability of new semiautomated computational methods for estimating contact stress in knees from large population-based cohorts. Ten knees of subjects from the Multicenter Osteoarthritis Study were included. Bone surfaces were manually segmented from sequential 1.0 Tesla magnetic resonance imaging slices by three individuals on two nonconsecutive days. Four individuals then registered the resulting bone surfaces to corresponding bone edges on weight-bearing radiographs, using a semi-automated algorithm. Discrete element analysis methods were used to estimate contact stress distributions for each knee. Segmentation and registration reliabilities (day-to-day and interrater for peak and mean medial and lateral tibiofemoral contact stress were assessed with Shrout-Fleiss intraclass correlation coefficients (ICCs. The segmentation and registration steps of the modeling approach were found to have excellent day-to-day (ICC 0.93–0.99 and good inter-rater reliability (0.84–0.97. This approach for estimating compartment-specific tibiofemoral contact stress appears to be sufficiently reliable for use in large population-based cohorts.

  16. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  17. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  18. Reliability analysis of land pipelines for hydrocarbons transportation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon, D.; Cortes, C. [Inst. Mexicano del Petroleo (Mexico)

    2004-07-01

    The reliability of a land pipeline operated by PEMEX in Mexico was estimated under a range of failure modes. Reliability and safety were evaluated in terms of the pipeline's internal pressure, bending, fracture toughness and its tension failure mode conditions. Loading conditions were applied individually, while bending and tension loads were applied in a combined fashion. The mechanical properties of the steel were also considered along with the degradation effect of internal corrosion resulting from the type of product being transported. A set of internal pressures and mechanical properties were generated randomly using Monte Carlo simulation. Commercial software was used to obtain the pipeline response under each modeled condition. The response analysis was based on the nonlinear finite element method involving a calculation of maximum stresses and stress concentration factors under conditions of corrosion and no corrosion. The margin between maximum stresses due to internal pressure, tension and bending was evaluated along with the margin between stress concentration factor and fracture initiation toughness. The study showed that internal pressure, stress concentration and tension-bending were the critical failure modes. It was suggested that more research should be conducted to improve the modeling of the deteriorating effects of corrosion and to adjust the probability distribution for fracture toughness and the length/depth defect ratio. The consideration of welding geometries along with features of marine pipelines and pipeline products would help to generalize the study to facilitate the creation of codes for the construction, design, inspection and maintenance of pipelines in Mexico. 7 refs., 1 tab., 14 figs.

  19. Methods for qualification of highly reliable software - international procedure

    International Nuclear Information System (INIS)

    Kersken, M.

    1997-01-01

    Despite the advantages of computer-assisted safety technology, there still is some uneasyness to be observed with respect to the novel processes, resulting from absence of a body of generally accepted and uncontentious qualification guides (regulatory provisions, standards) for safety evaluation of the computer codes applied. Warranty of adequate protection of the population, operators or plant components is an essential aspect in this context, too - as it is in general with reliability and risk assessment of novel technology - so that, due to appropriate legislation still missing, there currently is a licensing risk involved in the introduction of digital safety systems. Nevertheless, there is some extent of agreement within the international community and utility operators about what standards and measures should be applied for qualification of software of relevance to plant safety. The standard IEC 880/IEC 86/ in particular, in its original version, or national documents based on this standard, are applied in all countries using or planning to install those systems. A novel supplement to this standard, document /IEC 96/, is in the process of finalization and defines the requirements to be met by modern methods of software engineering. (orig./DG) [de

  20. Distribution System Reliability Analysis for Smart Grid Applications

    Science.gov (United States)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  1. A fracture mechanics and reliability based method to assess non-destructive testings for pressure vessels

    International Nuclear Information System (INIS)

    Kitagawa, Hideo; Hisada, Toshiaki

    1979-01-01

    Quantitative evaluation has not been made on the effects of carrying out preservice and in-service nondestructive tests for securing the soundness, safety and maintainability of pressure vessels, spending large expenses and labor. Especially the problems concerning the time and interval of in-service inspections lack the reasonable, quantitative evaluation method. In this paper, the problems of pressure vessels are treated by having developed the analysis method based on reliability technology and probability theory. The growth of surface cracks in pressure vessels was estimated, using the results of previous studies. The effects of nondestructive inspection on the defects in pressure vessels were evaluated, and the influences of many factors, such as plate thickness, stress, the accuracy of inspection and so on, on the effects of inspection, and the method of evaluating the inspections at unequal intervals were investigated. The analysis of reliability taking in-service inspection into consideration, the evaluation of in-service inspection and other affecting factors through the typical examples of analysis, and the review concerning the time of inspection are described. The method of analyzing the reliability of pressure vessels, considering the growth of defects and preservice and in-service nondestructive tests, was able to be systematized so as to be practically usable. (Kako, I.)

  2. AK-SYS: An adaptation of the AK-MCS method for system reliability

    International Nuclear Information System (INIS)

    Fauriat, W.; Gayton, N.

    2014-01-01

    A lot of research work has been proposed over the last two decades to evaluate the probability of failure of a structure involving a very time-consuming mechanical model. Surrogate model approaches based on Kriging, such as the Efficient Global Reliability Analysis (EGRA) or the Active learning and Kriging-based Monte-Carlo Simulation (AK-MCS) methods, are very efficient and each has advantages of its own. EGRA is well suited to evaluating small probabilities, as the surrogate can be used to classify any population. AK-MCS is built in relation to a given population and requires no optimization program for the active learning procedure to be performed. It is therefore easier to implement and more likely to spend computational effort on areas with a significant probability content. When assessing system reliability, analytical approaches and first-order approximation are widely used in the literature. However, in the present paper we rather focus on sampling techniques and, considering the recent adaptation of the EGRA method for systems, a strategy is presented to adapt the AK-MCS method for system reliability. The AK-SYS method, “Active learning and Kriging-based SYStem reliability method”, is presented. Its high efficiency and accuracy are illustrated via various examples

  3. A Simple and Reliable Method of Design for Standalone Photovoltaic Systems

    Science.gov (United States)

    Srinivasarao, Mantri; Sudha, K. Rama; Bhanu, C. V. K.

    2017-06-01

    Standalone photovoltaic (SAPV) systems are seen as a promoting method of electrifying areas of developing world that lack power grid infrastructure. Proliferations of these systems require a design procedure that is simple, reliable and exhibit good performance over its life time. The proposed methodology uses simple empirical formulae and easily available parameters to design SAPV systems, that is, array size with energy storage. After arriving at the different array size (area), performance curves are obtained for optimal design of SAPV system with high amount of reliability in terms of autonomy at a specified value of loss of load probability (LOLP). Based on the array to load ratio (ALR) and levelized energy cost (LEC) through life cycle cost (LCC) analysis, it is shown that the proposed methodology gives better performance, requires simple data and is more reliable when compared with conventional design using monthly average daily load and insolation.

  4. Sensitivity Weaknesses in Application of some Statistical Distribution in First Order Reliability Methods

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Enevoldsen, I.

    1993-01-01

    It has been observed and shown that in some examples a sensitivity analysis of the first order reliability index results in increasing reliability index, when the standard deviation for a stochastic variable is increased while the expected value is fixed. This unfortunate behaviour can occur when...... a stochastic variable is modelled by an asymmetrical density function. For lognormally, Gumbel and Weibull distributed stochastic variables it is shown for which combinations of the/3-point, the expected value and standard deviation the weakness can occur. In relation to practical application the behaviour...... is probably rather infrequent. A simple example is shown as illustration and to exemplify that for second order reliability methods and for exact calculations of the probability of failure this behaviour is much more infrequent....

  5. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  6. Factorial validation and reliability analysis of the brain fag syndrome ...

    African Journals Online (AJOL)

    Results: Two valid factors emerged with items 1-3 and items 4, 5 & 7 loading on respectively, making the BFSS a twodimensional (multidimensional) scale which measures 2 aspects of brain fag [labeled burning sensation and crawling sensation respectively]. The reliability analysis yielded a Cronbach Alpha coefficient of ...

  7. RELOSS, Reliability of Safety System by Fault Tree Analysis

    International Nuclear Information System (INIS)

    Allan, R.N.; Rondiris, I.L.; Adraktas, A.

    1981-01-01

    1 - Description of problem or function: Program RELOSS is used in the reliability/safety assessment of any complex system with predetermined operational logic in qualitative and (if required) quantitative terms. The program calculates the possible system outcomes following an abnormal operating condition and the probability of occurrence, if required. Furthermore, the program deduces the minimal cut or tie sets of the system outcomes and identifies the potential common mode failures. 4. Method of solution: The reliability analysis performed by the program is based on the event tree methodology. Using this methodology, the program develops the event tree of a system or a module of that system and relates each path of this tree to its qualitative and/or quantitative impact on specified system or module outcomes. If the system being analysed is subdivided into modules the program assesses each module in turn as described previously and then combines the module information to obtain results for the overall system. Having developed the event tree of a module or a system, the program identifies which paths lead or do not lead to various outcomes depending on whether the cut or the tie sets of the outcomes are required and deduces the corresponding sets. Furthermore the program identifies for a specific system outcome, the potential common mode failures and the cut or tie sets containing potential dependent failures of some components. 5. Restrictions on the complexity of the problem: The present dimensions of the program are as follows. They can however be easily modified: Maximum number of modules (equivalent components): 25; Maximum number of components in a module: 15; Maximum number of levels of parentheses in a logical statement: 10 Maximum number of system outcomes: 3; Maximum number of module outcomes: 2; Maximum number of points in time for which quantitative analysis is required: 5; Maximum order of any cut or tie set: 10; Maximum order of a cut or tie of any

  8. Erratum: Comparative Analysis of Some Reliability Characteristics of ...

    African Journals Online (AJOL)

    ... are analyzed using kolmogorov's forward equation method. Comparisons are performed for specific values of system parameters. Finally, the configurations are ranked based on MTSF and ( AV(∞)) and the results show that configuration 3 is optimal. Keywords: Reliability, Availability, Deterioration, Repair, Replacement.

  9. Method of core thermodynamic reliability determination in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, G.; Horche, W. (Ingenieurhochschule Zittau (German Democratic Republic). Sektion Kraftwerksanlagenbau und Energieumwandlung)

    1983-01-01

    A statistical model appropriate to determine the thermodynamic reliability and the power-limiting parameter of PWR cores is described for cases of accidental transients. The model is compared with the hot channel model hitherto applied.

  10. Method of core thermodynamic reliability determination in pressurized water reactors

    International Nuclear Information System (INIS)

    Ackermann, G.; Horche, W.

    1983-01-01

    A statistical model appropriate to determine the thermodynamic reliability and the power-limiting parameter of PWR cores is described for cases of accidental transients. The model is compared with the hot channel model hitherto applied. (author)

  11. A study of operational and testing reliability in software reliability analysis

    International Nuclear Information System (INIS)

    Yang, B.; Xie, M.

    2000-01-01

    Software reliability is an important aspect of any complex equipment today. Software reliability is usually estimated based on reliability models such as nonhomogeneous Poisson process (NHPP) models. Software systems are improving in testing phase, while it normally does not change in operational phase. Depending on whether the reliability is to be predicted for testing phase or operation phase, different measure should be used. In this paper, two different reliability concepts, namely, the operational reliability and the testing reliability, are clarified and studied in detail. These concepts have been mixed up or even misused in some existing literature. Using different reliability concept will lead to different reliability values obtained and it will further lead to different reliability-based decisions made. The difference of the estimated reliabilities is studied and the effect on the optimal release time is investigated

  12. Dependability Analysis Methods For Configurable Software

    International Nuclear Information System (INIS)

    Dahll, Gustav; Pulkkinen, Urho

    1996-01-01

    Configurable software systems are systems which are built up by standard software components in the same way as a hardware system is built up by standard hardware components. Such systems are often used in the control of NPPs, also in safety related applications. A reliability analysis of such systems is therefore necessary. This report discusses what configurable software is, and what is particular with respect to reliability assessment of such software. Two very commonly used techniques in traditional reliability analysis, viz. failure mode, effect and criticality analysis (FMECA) and fault tree analysis are investigated. A real example is used to illustrate the discussed methods. Various aspects relevant to the assessment of the software reliability in such systems are discussed. Finally some models for quantitative software reliability assessment applicable on configurable software systems are described. (author)

  13. Structural Reliability Methods for Wind Power Converter System Component Reliability Assessment

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2012-01-01

    Wind power converter systems are essential subsystems in both off-shore and on-shore wind turbines. It is the main interface between generator and grid connection. This system is affected by numerous stresses where the main contributors might be defined as vibration and temperature loadings....... The temperature variations induce time-varying stresses and thereby fatigue loads. A probabilistic model is used to model fatigue failure for an electrical component in the power converter system. This model is based on a linear damage accumulation and physics of failure approaches, where a failure criterion...... is defined by the threshold model. The attention is focused on crack propagation in solder joints of electrical components due to the temperature loadings. Structural Reliability approaches are used to incorporate model, physical and statistical uncertainties. Reliability estimation by means of structural...

  14. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  15. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  16. Total Longitudinal Moment Calculation and Reliability Analysis of Yacht Structures

    Science.gov (United States)

    Zhi, Wenzheng; Lin, Shaofen

    In order to check the reliability of the yacht in FRP (Fiber Reinforce Plastic) materials, in this paper, the vertical force and the calculation method of the overall longitudinal bending moment on yacht was analyzed. Specially, this paper focuses on the impact of speed on the still water bending moment on yacht. Then considering the mechanical properties of the cap type stiffeners in composite materials, the ultimate bearing capacity of the yacht has been worked out, finally the reliability of the yacht was calculated with using response surface methodology. The result can be used in yacht design and yacht driving.

  17. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  18. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  19. Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Nacef Tazi

    2017-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been proven to be an effective methodology to improve system design reliability. However, the standard approach reveals some weaknesses when applied to wind turbine systems. The conventional criticality assessment method has been criticized as having many limitations such as the weighting of severity and detection factors. In this paper, we aim to overcome these drawbacks and develop a hybrid cost-FMEA by integrating cost factors to assess the criticality, these costs vary from replacement costs to expected failure costs. Then, a quantitative comparative study is carried out to point out average failure rate, main cause of failure, expected failure costs and failure detection techniques. A special reliability analysis of gearbox and rotor-blades are presented.

  20. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    Bonfietti, Gerson

    2003-01-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  1. System reliability assessment via sensitivity analysis in the Markov chain scheme

    International Nuclear Information System (INIS)

    Gandini, A.

    1988-01-01

    Methods for reliability sensitivity analysis in the Markov chain scheme are presented, together with a new formulation which makes use of Generalized Perturbation Theory (GPT) methods. As well known, sensitivity methods are fundamental in system risk analysis, since they allow to identify important components, so to assist the analyst in finding weaknesses in design and operation and in suggesting optimal modifications for system upgrade. The relationship between the GPT sensitivity expression and the Birnbaum importance is also given [fr

  2. Study and application of human reliability analysis for digital human-system interface

    International Nuclear Information System (INIS)

    Jia Ming; Liu Yanzi; Zhang Jianbo

    2014-01-01

    The knowledge of human-orientated abilities and limitations could be used to digital human-system interface (HSI) design by human reliability analysis (HRA) technology. Further, control room system design could achieve the perfect match of man-machine-environment. This research was conducted to establish an integrated HRA method. This method identified HSI potential design flaws which may affect human performance and cause human error. Then a systematic approach was adopted to optimize HSI. It turns out that this method is practical and objective, and effectively improves the safety, reliability and economy of nuclear power plant. This method was applied to CRP1000 projects under construction successfully with great potential. (authors)

  3. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  4. Reliability analysis of load-sharing systems with memory.

    Science.gov (United States)

    Wang, Dewei; Jiang, Chendi; Park, Chanseok

    2018-02-22

    The load-sharing model has been studied since the early 1940s to account for the stochastic dependence of components in a parallel system. It assumes that, as components fail one by one, the total workload applied to the system is shared by the remaining components and thus affects their performance. Such dependent systems have been studied in many engineering applications which include but are not limited to fiber composites, manufacturing, power plants, workload analysis of computing, software and hardware reliability, etc. Many statistical models have been proposed to analyze the impact of each redistribution of the workload; i.e., the changes on the hazard rate of each remaining component. However, they do not consider how long a surviving component has worked for prior to the redistribution. We name such load-sharing models as memoryless. To remedy this potential limitation, we propose a general framework for load-sharing models that account for the work history. Through simulation studies, we show that an inappropriate use of the memoryless assumption could lead to inaccurate inference on the impact of redistribution. Further, a real-data example of plasma display devices is analyzed to illustrate our methods.

  5. Characteristics and application study of AP1000 NPPs equipment reliability classification method

    International Nuclear Information System (INIS)

    Guan Gao

    2013-01-01

    AP1000 nuclear power plant applies an integrated approach to establish equipment reliability classification, which includes probabilistic risk assessment technique, maintenance rule administrative, power production reliability classification and functional equipment group bounding method, and eventually classify equipment reliability into 4 levels. This classification process and result are very different from classical RCM and streamlined RCM. It studied the characteristic of AP1000 equipment reliability classification approach, considered that equipment reliability classification should effectively support maintenance strategy development and work process control, recommended to use a combined RCM method to establish the future equipment reliability program of AP1000 nuclear power plants. (authors)

  6. Calculation of the reliability of large complex systems by the relevant path method

    International Nuclear Information System (INIS)

    Richter, G.

    1975-03-01

    In this paper, analytical methods are presented and tested with which the probabilistic reliability data of technical systems can be determined for given fault trees and block diagrams and known reliability data of the components. (orig./AK) [de

  7. Reliability of a semi-quantitative method for dermal exposure assessment (DREAM)

    NARCIS (Netherlands)

    Wendel de Joode, B. van; Hemmen, J.J. van; Meijster, T.; Major, V.; London, L.; Kromhout, H.

    2005-01-01

    Valid and reliable semi-quantitative dermal exposure assessment methods for epidemiological research and for occupational hygiene practice, applicable for different chemical agents, are practically nonexistent. The aim of this study was to assess the reliability of a recently developed

  8. Application of Fault Tree Analysis for Estimating Temperature Alarm Circuit Reliability

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.; El-Shanshoury, G.I.

    2011-01-01

    Fault Tree Analysis (FTA) is one of the most widely-used methods in system reliability analysis. It is a graphical technique that provides a systematic description of the combinations of possible occurrences in a system, which can result in an undesirable outcome. The presented paper deals with the application of FTA method in analyzing temperature alarm circuit. The criticality failure of this circuit comes from failing to alarm when temperature exceeds a certain limit. In order for a circuit to be safe, a detailed analysis of the faults causing circuit failure is performed by configuring fault tree diagram (qualitative analysis). Calculations of circuit quantitative reliability parameters such as Failure Rate (FR) and Mean Time between Failures (MTBF) are also done by using Relex 2009 computer program. Benefits of FTA are assessing system reliability or safety during operation, improving understanding of the system, and identifying root causes of equipment failures

  9. A study of digital hardware architectures for nuclear reactors protection systems applications - reliability and safety analysis methods; Um estudo de arquiteturas de hardware para aplicacao em sistemas digitais de protecao de reatores nucleares - metodos de analise de confiabilidade e seguranca

    Energy Technology Data Exchange (ETDEWEB)

    Benko, Pedro Luiz

    1997-07-01

    A study of digital hardware architectures, including experience in many countries, topologies and solutions to interface circuits for protection systems of nuclear reactors is presented. Methods for developing digital systems architectures based on fault tolerant and safety requirements is proposed. Directives for assessing such conditions are suggested. Techniques and the most common tools employed in reliability, safety evaluation and modeling of hardware architectures is also presented. Markov chain modeling is used to evaluate the reliability of redundant architectures. In order to estimate software quality, several mechanisms to be used in design, specification, and validation and verification (V and V) procedures are suggested. A digital protection system architecture has been analyzed as a case study. (author)

  10. A framework for intelligent reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    Cheng Zhonghua; Jia Xisheng; Gao Ping; Wu Su; Wang Jianzhao

    2008-01-01

    To improve the efficiency of reliability-centered maintenance (RCM) analysis, case-based reasoning (CBR), as a kind of artificial intelligence (AI) technology, was successfully introduced into RCM analysis process, and a framework for intelligent RCM analysis (IRCMA) was studied. The idea for IRCMA is based on the fact that the historical records of RCM analysis on similar items can be referenced and used for the current RCM analysis of a new item. Because many common or similar items may exist in the analyzed equipment, the repeated tasks of RCM analysis can be considerably simplified or avoided by revising the similar cases in conducting RCM analysis. Based on the previous theory studies, an intelligent RCM analysis system (IRCMAS) prototype was developed. This research has focused on the description of the definition, basic principles as well as a framework of IRCMA, and discussion of critical techniques in the IRCMA. Finally, IRCMAS prototype is presented based on a case study

  11. Reliability and risk analysis data base development: an historical perspective

    International Nuclear Information System (INIS)

    Fragola, Joseph R.

    1996-01-01

    Collection of empirical data and data base development for use in the prediction of the probability of future events has a long history. Dating back at least to the 17th century, safe passage events and mortality events were collected and analyzed to uncover prospective underlying classes and associated class attributes. Tabulations of these developed classes and associated attributes formed the underwriting basis for the fledgling insurance industry. Much earlier, master masons and architects used design rules of thumb to capture the experience of the ages and thereby produce structures of incredible longevity and reliability (Antona, E., Fragola, J. and Galvagni, R. Risk based decision analysis in design. Fourth SRA Europe Conference Proceedings, Rome, Italy, 18-20 October 1993). These rules served so well in producing robust designs that it was not until almost the 19th century that the analysis (Charlton, T.M., A History Of Theory Of Structures In The 19th Century, Cambridge University Press, Cambridge, UK, 1982) of masonry voussoir arches, begun by Galileo some two centuries earlier (Galilei, G. Discorsi e dimostrazioni mathematiche intorno a due nuove science, (Discourses and mathematical demonstrations concerning two new sciences, Leiden, The Netherlands, 1638), was placed on a sound scientific basis. Still, with the introduction of new materials (such as wrought iron and steel) and the lack of theoretical knowledge and computational facilities, approximate methods of structural design abounded well into the second half of the 20th century. To this day structural designers account for material variations and gaps in theoretical knowledge by employing factors of safety (Benvenuto, E., An Introduction to the History of Structural Mechanics, Part II: Vaulted Structures and Elastic Systems, Springer-Verlag, NY, 1991) or codes of practice (ASME Boiler and Pressure Vessel Code, ASME, New York) originally developed in the 19th century (Antona, E., Fragola, J. and

  12. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    Science.gov (United States)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system

  13. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    Science.gov (United States)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  14. System principles, mathematical models and methods to ensure high reliability of safety systems

    Science.gov (United States)

    Zaslavskyi, V.

    2017-04-01

    Modern safety and security systems are composed of a large number of various components designed for detection, localization, tracking, collecting, and processing of information from the systems of monitoring, telemetry, control, etc. They are required to be highly reliable in a view to correctly perform data aggregation, processing and analysis for subsequent decision making support. On design and construction phases of the manufacturing of such systems a various types of components (elements, devices, and subsystems) are considered and used to ensure high reliability of signals detection, noise isolation, and erroneous commands reduction. When generating design solutions for highly reliable systems a number of restrictions and conditions such as types of components and various constrains on resources should be considered. Various types of components perform identical functions; however, they are implemented using diverse principles, approaches and have distinct technical and economic indicators such as cost or power consumption. The systematic use of different component types increases the probability of tasks performing and eliminates the common cause failure. We consider type-variety principle as an engineering principle of system analysis, mathematical models based on this principle, and algorithms for solving optimization problems of highly reliable safety and security systems design. Mathematical models are formalized in a class of two-level discrete optimization problems of large dimension. The proposed approach, mathematical models, algorithms can be used for problem solving of optimal redundancy on the basis of a variety of methods and control devices for fault and defects detection in technical systems, telecommunication networks, and energy systems.

  15. An efficient phased mission reliability analysis for autonomous vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Remenyte-Prescott, R., E-mail: R.Remenyte-Prescott@nottingham.ac.u [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Andrews, J.D. [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Chung, P.W.H. [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  16. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Remenyte-Prescott, R.; Andrews, J.D.; Chung, P.W.H.

    2010-01-01

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  17. Survey of industry methods for producing highly reliable software

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Persons, W.L.

    1994-11-01

    The Nuclear Reactor Regulation Office of the US Nuclear Regulatory Commission is charged with assessing the safety of new instrument and control designs for nuclear power plants which may use computer-based reactor protection systems. Lawrence Livermore National Laboratory has evaluated the latest techniques in software reliability for measurement, estimation, error detection, and prediction that can be used during the software life cycle as a means of risk assessment for reactor protection systems. One aspect of this task has been a survey of the software industry to collect information to help identify the design factors used to improve the reliability and safety of software. The intent was to discover what practices really work in industry and what design factors are used by industry to achieve highly reliable software. The results of the survey are documented in this report. Three companies participated in the survey: Computer Sciences Corporation, International Business Machines (Federal Systems Company), and TRW. Discussions were also held with NASA Software Engineering Lab/University of Maryland/CSC, and the AIAA Software Reliability Project

  18. A new approach for reliability analysis with time-variant performance characteristics

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2013-01-01

    Reliability represents safety level in industry practice and may variant due to time-variant operation condition and components deterioration throughout a product life-cycle. Thus, the capability to perform time-variant reliability analysis is of vital importance in practical engineering applications. This paper presents a new approach, referred to as nested extreme response surface (NERS), that can efficiently tackle time dependency issue in time-variant reliability analysis and enable to solve such problem by easily integrating with advanced time-independent tools. The key of the NERS approach is to build a nested response surface of time corresponding to the extreme value of the limit state function by employing Kriging model. To obtain the data for the Kriging model, the efficient global optimization technique is integrated with the NERS to extract the extreme time responses of the limit state function for any given system input. An adaptive response prediction and model maturation mechanism is developed based on mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-variant reliability analysis can be converted into the time-independent reliability analysis and existing advanced reliability analysis methods can be used. Three case studies are used to demonstrate the efficiency and accuracy of NERS approach

  19. Task analysis and computer aid development for human reliability analysis in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W. C.; Kim, H.; Park, H. S.; Choi, H. H.; Moon, J. M.; Heo, J. Y.; Ham, D. H.; Lee, K. K.; Han, B. T. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-04-01

    Importance of human reliability analysis (HRA) that predicts the error's occurrence possibility in a quantitative and qualitative manners is gradually increased by human errors' effects on the system's safety. HRA needs a task analysis as a virtue step, but extant task analysis techniques have the problem that a collection of information about the situation, which the human error occurs, depends entirely on HRA analyzers. The problem makes results of the task analysis inconsistent and unreliable. To complement such problem, KAERI developed the structural information analysis (SIA) that helps to analyze task's structure and situations systematically. In this study, the SIA method was evaluated by HRA experts, and a prototype computerized supporting system named CASIA (Computer Aid for SIA) was developed for the purpose of supporting to perform HRA using the SIA method. Additionally, through applying the SIA method to emergency operating procedures, we derived generic task types used in emergency and accumulated the analysis results in the database of the CASIA. The CASIA is expected to help HRA analyzers perform the analysis more easily and consistently. If more analyses will be performed and more data will be accumulated to the CASIA's database, HRA analyzers can share freely and spread smoothly his or her analysis experiences, and there by the quality of the HRA analysis will be improved. 35 refs., 38 figs., 25 tabs. (Author)

  20. Reliability analysis of maintenance operations for railway tracks

    International Nuclear Information System (INIS)

    Rhayma, N.; Bressolette, Ph.; Breul, P.; Fogli, M.; Saussine, G.

    2013-01-01

    Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis

  1. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  2. An application of the fault tree analysis for the power system reliability estimation

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2007-01-01

    The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)

  3. Application of GO methodology in reliability analysis of offsite power supply of Daya Bay NPP

    International Nuclear Information System (INIS)

    Shen Zupei; Li Xiaodong; Huang Xiangrui

    2003-01-01

    The author applies the GO methodology to reliability analysis of the offsite power supply system of Daya Bay NPP. The direct quantitative calculation formulas of the stable reliability target of the system with shared signals and the dynamic calculation formulas of the state probability for the unit with two states are derived. The method to solve the fault event sets of the system is also presented and all the fault event sets of the outer power supply system and their failure probability are obtained. The resumption reliability of the offsite power supply system after the stability failure of the power net is also calculated. The result shows that the GO methodology is very simple and useful in the stable and dynamic reliability analysis of the repairable system

  4. Reliability analysis of numerical simulation in near field behavior

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Yamamoto, Kiyohito; Chijimatsu, Masakazu; Fujita, Tomoo

    2008-01-01

    The uncertainties of the boundary conditions, the elastic modulus and Poisson's ratio on the mechanical behavior at near field of high level radioactive waste repository were examined. The method used to examine the error propagation was the first order second moment method. The reliability of the maximum principal stress, maximum shear stress at crown of the tunnel and the minimum principal stress at spring line was examined for one million years. For elastic model, the reliability of the maximum shear stress gradually decreased while that of the maximum principle stress increased. That of the minimum principal stress was relatively low for one million years. This tendency was similar to that from the damage model. (author)

  5. THE RELIABILITY ANALYSIS OF EXISTING REINFORCED CONCRETE PILES IN PERMAFROST REGIONS

    Directory of Open Access Journals (Sweden)

    Vladimir S. Utkin

    2017-06-01

    Full Text Available The article describes the general problem of safe operation of buildings and structures with the dynamics of permafrost in Russia and other countries. The global warming on Earth will lead to global disasters such as failures of buildings and structures. The main reason of these failures will be a reduction of bearing capacity and the reliability of foundations. It is necessary to organize the observations (monitoring for the process of reducing the bearing capacity of foundations to prevent such accidents and reduce negative consequences, to development of preventive measures and operational methods for the piles reliability analysis. The main load-bearing elements of the foundation are reinforced concrete piles and frozen ground. Reinforced concrete piles have a tendency to decrease the bearing capacity and reliability of the upper (aerial part and the part in the soil. The article discusses the problem of reliability analysis of existing reinforced concrete piles in upper part in permafrost regions by the reason of pile degradation in the contact zone of seasonal thawing and freezing soil. The evaluation of the probability of failure is important in itself, but also it important for the reliability of foundation: consisting of piles and frozen soil. Authors offers the methods for reliability analysis of upper part of reinforced concrete piles in the contact zone with seasonally thawed soil under different number of random variables (fuzzy variables in the design mathematical model of a limit state by the strength criterion.

  6. Modelling of nuclear power plant control and instrumentation elements for automatic disturbance and reliability analysis

    International Nuclear Information System (INIS)

    Hollo, E.

    1985-08-01

    Present Final Report summarizes results of R/D work done within IAEA-VEIKI (Institute for Electrical Power Research, Budapest, Hungary) Research Contract No. 3210 during 3 years' period of 01.08.1982 - 31.08.1985. Chapter 1 lists main research objectives of the project. Main results obtained are summarized in Chapters 2 and 3. Outcomes from development of failure modelling methodologies and their application for C/I components of WWER-440 units are as follows (Chapter 2): improvement of available ''failure mode and effect analysis'' methods and mini-fault tree structures usable for automatic disturbance (DAS) and reliability (RAS) analysis; general classification and determination of functional failure modes of WWER-440 NPP C/I components; set up of logic models for motor operated control valves and rod control/drive mechanism. Results of development of methods and their application for reliability modelling of NPP components and systems cover (Chapter 3): development of an algorithm (computer code COMPREL) for component-related failure and reliability parameter calculation; reliability analysis of PAKS II NPP diesel system; definition of functional requirements for reliability data bank (RDB) in WWER-440 units. Determination of RDB input/output data structure and data manipulation services. Methods used are a-priori failure mode and effect analysis, combined fault tree/event tree modelling technique, structural computer programming, probability theory application to nuclear field

  7. A Review: Passive System Reliability Analysis – Accomplishments and Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun Kumar, E-mail: arunths@barc.gov.in [Reactor Engineering Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India); Chandrakar, Amit [Homi Bhabha National Institute, Mumbai (India); Vinod, Gopika [Reactor Safety Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India)

    2014-10-10

    Reliability assessment of passive safety systems is one of the important issues, since safety of advanced nuclear reactors rely on several passive features. In this context, a few methodologies such as reliability evaluation of passive safety system (REPAS), reliability methods for passive safety functions (RMPS), and analysis of passive systems reliability (APSRA) have been developed in the past. These methodologies have been used to assess reliability of various passive safety systems. While these methodologies have certain features in common, but they differ in considering certain issues; for example, treatment of model uncertainties, deviation of geometric, and process parameters from their nominal values. This paper presents the state of the art on passive system reliability assessment methodologies, the accomplishments, and remaining issues. In this review, three critical issues pertaining to passive systems performance and reliability have been identified. The first issue is applicability of best estimate codes and model uncertainty. The best estimate codes based phenomenological simulations of natural convection passive systems could have significant amount of uncertainties, these uncertainties must be incorporated in appropriate manner in the performance and reliability analysis of such systems. The second issue is the treatment of dynamic failure characteristics of components of passive systems. REPAS, RMPS, and APSRA methodologies do not consider dynamic failures of components or process, which may have strong influence on the failure of passive systems. The influence of dynamic failure characteristics of components on system failure probability is presented with the help of a dynamic reliability methodology based on Monte Carlo simulation. The analysis of a benchmark problem of Hold-up tank shows the error in failure probability estimation by not considering the dynamism of components. It is thus suggested that dynamic reliability methodologies must be

  8. A Systematic Review of Statistical Methods Used to Test for Reliability of Medical Instruments Measuring Continuous Variables

    Directory of Open Access Journals (Sweden)

    Rafdzah Zaki

    2013-06-01

    Full Text Available   Objective(s: Reliability measures precision or the extent to which test results can be replicated. This is the first ever systematic review to identify statistical methods used to measure reliability of equipment measuring continuous variables. This studyalso aims to highlight the inappropriate statistical method used in the reliability analysis and its implication in the medical practice.   Materials and Methods: In 2010, five electronic databases were searched between 2007 and 2009 to look for reliability studies. A total of 5,795 titles were initially identified. Only 282 titles were potentially related, and finally 42 fitted the inclusion criteria. Results: The Intra-class Correlation Coefficient (ICC is the most popular method with 25 (60% studies having used this method followed by the comparing means (8 or 19%. Out of 25 studies using the ICC, only 7 (28% reported the confidence intervals and types of ICC used. Most studies (71% also tested the agreement of instruments. Conclusion: This study finds that the Intra-class Correlation Coefficient is the most popular method used to assess the reliability of medical instruments measuring continuous outcomes. There are also inappropriate applications and interpretations of statistical methods in some studies. It is important for medical researchers to be aware of this issue, and be able to correctly perform analysis in reliability studies.

  9. Reliability Analysis of Safety Grade PLC(POSAFE-Q) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lyou, J.; Lee, D. Y.; Choi, J. G.; Park, W. M.

    2006-01-01

    The Part Count Method of the military standard MILHDK- 217F has been used for the reliability prediction of the nuclear field. This handbook determines the Programmable Logic Controller (PLC) failure rate by summing the failure rates of the individual component included in the PLC. Normally it is easily predictable that the components added for the fault detection improve the reliability of the PLC. But the application of this handbook is estimated with poor reliability because of the increased component number for the fault detection. To compensate this discrepancy, the quantitative reliability analysis method is suggested using the functional separation model in this paper. And it is applied to the Reactor Protection System (RPS) being developed in Korea to identify any design weak points from a safety point of view

  10. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  11. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  12. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  13. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  14. Reliability analysis for new technology-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Charpentier, Dominique [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2011-02-15

    The reliability analysis of new technology-based transmitters has to deal with specific issues: various interactions between both material elements and functions, undefined behaviours under faulty conditions, several transmitted data, and little reliability feedback. To handle these particularities, a '3-step' model is proposed, based on goal tree-success tree (GTST) approaches to represent both the functional and material aspects, and includes the faults and failures as a third part for supporting reliability analyses. The behavioural aspects are provided by relationship matrices, also denoted master logic diagrams (MLD), with stochastic values which represent direct relationships between system elements. Relationship analyses are then proposed to assess the effect of any fault or failure on any material element or function. Taking these relationships into account, the probabilities of malfunction and failure modes are evaluated according to time. Furthermore, uncertainty analyses tend to show that even if the input data and system behaviour are not well known, these previous results can be obtained in a relatively precise way. An illustration is provided by a case study on an infrared gas transmitter. These properties make the proposed model and corresponding reliability analyses especially suitable for intelligent transmitters (or 'smart sensors').

  15. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  16. Advancing methods for reliably assessing motivational interviewing fidelity using the motivational interviewing skills code.

    Science.gov (United States)

    Lord, Sarah Peregrine; Can, Doğan; Yi, Michael; Marin, Rebeca; Dunn, Christopher W; Imel, Zac E; Georgiou, Panayiotis; Narayanan, Shrikanth; Steyvers, Mark; Atkins, David C

    2015-02-01

    The current paper presents novel methods for collecting MISC data and accurately assessing reliability of behavior codes at the level of the utterance. The MISC 2.1 was used to rate MI interviews from five randomized trials targeting alcohol and drug use. Sessions were coded at the utterance-level. Utterance-based coding reliability was estimated using three methods and compared to traditional reliability estimates of session tallies. Session-level reliability was generally higher compared to reliability using utterance-based codes, suggesting that typical methods for MISC reliability may be biased. These novel methods in MI fidelity data collection and reliability assessment provided rich data for therapist feedback and further analyses. Beyond implications for fidelity coding, utterance-level coding schemes may elucidate important elements in the counselor-client interaction that could inform theories of change and the practice of MI. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Reliability of fitness tests using methods and time periods common in sport and occupational management.

    Science.gov (United States)

    Burnstein, Bryan D; Steele, Russell J; Shrier, Ian

    2011-01-01

    Fitness testing is used frequently in many areas of physical activity, but the reliability of these measurements under real-world, practical conditions is unknown. To evaluate the reliability of specific fitness tests using the methods and time periods used in the context of real-world sport and occupational management. Cohort study. Eighteen different Cirque du Soleil shows. Cirque du Soleil physical performers who completed 4 consecutive tests (6-month intervals) and were free of injury or illness at each session (n = 238 of 701 physical performers). Performers completed 6 fitness tests on each assessment date: dynamic balance, Harvard step test, handgrip, vertical jump, pull-ups, and 60-second jump test. We calculated the intraclass coefficient (ICC) and limits of agreement between baseline and each time point and the ICC over all 4 time points combined. Reliability was acceptable (ICC > 0.6) over an 18-month time period for all pairwise comparisons and all time points together for the handgrip, vertical jump, and pull-up assessments. The Harvard step test and 60-second jump test had poor reliability (ICC < 0.6) between baseline and other time points. When we excluded the baseline data and calculated the ICC for 6-month, 12-month, and 18-month time points, both the Harvard step test and 60-second jump test demonstrated acceptable reliability. Dynamic balance was unreliable in all contexts. Limit-of-agreement analysis demonstrated considerable intraindividual variability for some tests and a learning effect by administrators on others. Five of the 6 tests in this battery had acceptable reliability over an 18-month time frame, but the values for certain individuals may vary considerably from time to time for some tests. Specific tests may require a learning period for administrators.

  18. Reliability improvement methods for sapphire fiber temperature sensors

    Science.gov (United States)

    Schietinger, C.; Adams, B.

    1991-08-01

    Mechanical, optical, electrical, and software design improvements can be brought to bear in the enhancement of fiber-optic sapphire-fiber temperature measurement tool reliability in harsh environments. The optical fiber thermometry (OFT) equipment discussed is used in numerous process industries and generally involves a sapphire sensor, an optical transmission cable, and a microprocessor-based signal analyzer. OFT technology incorporating sensors for corrosive environments, hybrid sensors, and two-wavelength measurements, are discussed.

  19. Study on Feasibility of Applying Function Approximation Moment Method to Achieve Reliability-Based Design Optimization

    International Nuclear Information System (INIS)

    Huh, Jae Sung; Kwak, Byung Man

    2011-01-01

    Robust optimization or reliability-based design optimization are some of the methodologies that are employed to take into account the uncertainties of a system at the design stage. For applying such methodologies to solve industrial problems, accurate and efficient methods for estimating statistical moments and failure probability are required, and further, the results of sensitivity analysis, which is needed for searching direction during the optimization process, should also be accurate. The aim of this study is to employ the function approximation moment method into the sensitivity analysis formulation, which is expressed as an integral form, to verify the accuracy of the sensitivity results, and to solve a typical problem of reliability-based design optimization. These results are compared with those of other moment methods, and the feasibility of the function approximation moment method is verified. The sensitivity analysis formula with integral form is the efficient formulation for evaluating sensitivity because any additional function calculation is not needed provided the failure probability or statistical moments are calculated

  20. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    Science.gov (United States)

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  1. Between-day reliability of a method for non-invasive estimation of muscle composition.

    Science.gov (United States)

    Simunič, Boštjan

    2012-08-01

    Tensiomyography is a method for valid and non-invasive estimation of skeletal muscle fibre type composition. The validity of selected temporal tensiomyographic measures has been well established recently; there is, however, no evidence regarding the method's between-day reliability. Therefore it is the aim of this paper to establish the between-day repeatability of tensiomyographic measures in three skeletal muscles. For three consecutive days, 10 healthy male volunteers (mean±SD: age 24.6 ± 3.0 years; height 177.9 ± 3.9 cm; weight 72.4 ± 5.2 kg) were examined in a supine position. Four temporal measures (delay, contraction, sustain, and half-relaxation time) and maximal amplitude were extracted from the displacement-time tensiomyogram. A reliability analysis was performed with calculations of bias, random error, coefficient of variation (CV), standard error of measurement, and intra-class correlation coefficient (ICC) with a 95% confidence interval. An analysis of ICC demonstrated excellent agreement (ICC were over 0.94 in 14 out of 15 tested parameters). However, lower CV was observed in half-relaxation time, presumably because of the specifics of the parameter definition itself. These data indicate that for the three muscles tested, tensiomyographic measurements were reproducible across consecutive test days. Furthermore, we indicated the most possible origin of the lowest reliability detected in half-relaxation time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Intra-observer reliability and agreement of manual and digital orthodontic model analysis.

    Science.gov (United States)

    Koretsi, Vasiliki; Tingelhoff, Linda; Proff, Peter; Kirschneck, Christian

    2018-01-23

    Digital orthodontic model analysis is gaining acceptance in orthodontics, but its reliability is dependent on the digitalisation hardware and software used. We thus investigated intra-observer reliability and agreement / conformity of a particular digital model analysis work-flow in relation to traditional manual plaster model analysis. Forty-eight plaster casts of the upper/lower dentition were collected. Virtual models were obtained with orthoX®scan (Dentaurum) and analysed with ivoris®analyze3D (Computer konkret). Manual model analyses were done with a dial caliper (0.1 mm). Common parameters were measured on each plaster cast and its virtual counterpart five times each by an experienced observer. We assessed intra-observer reliability within method (ICC), agreement/conformity between methods (Bland-Altman analyses and Lin's concordance correlation), and changing bias (regression analyses). Intra-observer reliability was substantial within each method (ICC ≥ 0.7), except for five manual outcomes (12.8 per cent). Bias between methods was statistically significant, but less than 0.5 mm for 87.2 per cent of the outcomes. In general, larger tooth sizes were measured digitally. Total difference maxilla and mandible had wide limits of agreement (-3.25/6.15 and -2.31/4.57 mm), but bias between methods was mostly smaller than intra-observer variation within each method with substantial conformity of manual and digital measurements in general. No changing bias was detected. Although both work-flows were reliable, the investigated digital work-flow proved to be more reliable and yielded on average larger tooth sizes. Averaged differences between methods were within 0.5 mm for directly measured outcomes but wide ranges are expected for some computed space parameters due to cumulative error. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  3. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  4. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  5. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Maheri, Alireza

    2014-01-01

    Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a

  6. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  7. Interrater reliability of videotaped observational gait-analysis assessments.

    Science.gov (United States)

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  8. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  9. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  10. Decreasing inventory of a cement factory roller mill parts using reliability centered maintenance method

    Science.gov (United States)

    Witantyo; Rindiyah, Anita

    2018-03-01

    According to data from maintenance planning and control, it was obtained that highest inventory value is non-routine components. Maintenance components are components which procured based on maintenance activities. The problem happens because there is no synchronization between maintenance activities and the components required. Reliability Centered Maintenance method is used to overcome the problem by reevaluating maintenance activities required components. The case chosen is roller mill system because it has the highest unscheduled downtime record. Components required for each maintenance activities will be determined by its failure distribution, so the number of components needed could be predicted. Moreover, those components will be reclassified from routine component to be non-routine component, so the procurement could be carried out regularly. Based on the conducted analysis, failure happens in almost every maintenance task are classified to become scheduled on condition task, scheduled discard task, schedule restoration task and no schedule maintenance. From 87 used components for maintenance activities are evaluated and there 19 components that experience reclassification from non-routine components to routine components. Then the reliability and need of those components were calculated for one-year operation period. Based on this invention, it is suggested to change all of the components in overhaul activity to increase the reliability of roller mill system. Besides, the inventory system should follow maintenance schedule and the number of required components in maintenance activity so the value of procurement will be decreased and the reliability system will increase.

  11. Reliability analysis of offshore structures using OMA based fatigue stresses

    DEFF Research Database (Denmark)

    Silva Nabuco, Bruna; Aissani, Amina; Glindtvad Tarpø, Marius

    2017-01-01

    focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known...... points of the structure, the stress history can be calculated in any arbitrary point of the structure. The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue...... stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies....

  12. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  13. Photovoltaic module reliability improvement through application testing and failure analysis

    Science.gov (United States)

    Dumas, L. N.; Shumka, A.

    1982-01-01

    During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.

  14. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  15. Review of the treat upgrade reactor scram system reliability analysis

    International Nuclear Information System (INIS)

    Montague, D.F.; Fussell, J.B.; Krois, P.A.; Morelock, T.C.; Knee, H.E.; Manning, J.J.; Haas, P.M.; West, K.W.

    1984-10-01

    In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10 -9 /demand (independent failures only); (2) an inadvertent shutdown probability of 10 -3 /experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals

  16. Reliability evaluation of nuclear power plants by fault tree analysis

    International Nuclear Information System (INIS)

    Iwao, H.; Otsuka, T.; Fujita, I.

    1993-01-01

    As a work sponsored by the Ministry of International Trade and Industry, the Safety Information Research Center of NUPEC, using reliability data based on the operational experience of the domestic LWR Plants, has implemented FTA for the standard PWRs and BWRs in Japan with reactor scram due to system failures being at the top event. Up to this point, we have obtained the FT chart and minimal cut set for each type of system failure for qualitative evaluation, and we have estimated system unavailability, Fussell-Vesely importance and risk worth for components for quantitative evaluation. As the second stage of a series in our reliability evaluation work, another program was started to establish a support system. The aim of this system is to assist foreign and domestic plants in creating countermeasures when incidents occur, by providing them with the necessary information using the above analytical method and its results. (author)

  17. Reliability Analysis of Timber Structures through NDT Data Upgrading

    DEFF Research Database (Denmark)

    Sousa, Hélder; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    The first part of this document presents, in chapter 2, a description of timber characteristics and common used NDT and MDT for timber elements. Stochastic models for timber properties and damage accumulation models are also referred. According to timber’s properties a framework is proposed...... for a safety reassessment procedure. For that purpose a theoretical background for structural reliability assessment including probabilistic concepts for structural systems and stochastic models are given in chapter 3. System models, both series and parallel systems, are presented as well as methods...... for robustness are dealt in chapter 5. The second part of this document begins in chapter 6, where a practical application of the premise definitions and methodologies is given through the implementation of upgraded models with NDT and MDT data. Structural life-cycle is, therefore, assessed and reliability...

  18. Reliability Evaluation of Bridges Based on Nonprobabilistic Response Surface Limit Method

    Directory of Open Access Journals (Sweden)

    Xuyong Chen

    2017-01-01

    Full Text Available Due to many uncertainties in nonprobabilistic reliability assessment of bridges, the limit state function is generally unknown. The traditional nonprobabilistic response surface method is a lengthy and oscillating iteration process and leads to difficultly solving the nonprobabilistic reliability index. This article proposes a nonprobabilistic response surface limit method based on the interval model. The intention of this method is to solve the upper and lower limits of the nonprobabilistic reliability index and to narrow the range of the nonprobabilistic reliability index. If the range of the reliability index reduces to an acceptable accuracy, the solution will be considered convergent, and the nonprobabilistic reliability index will be obtained. The case study indicates that using the proposed method can avoid oscillating iteration process, make iteration process stable and convergent, reduce iteration steps significantly, and improve computational efficiency and precision significantly compared with the traditional nonprobabilistic response surface method. Finally, the nonprobabilistic reliability evaluation process of bridge will be built through evaluating the reliability of one PC continuous rigid frame bridge with three spans using the proposed method, which appears to be more simple and reliable when lack of samples and parameters in the bridge nonprobabilistic reliability evaluation is present.

  19. Reliability of ^1^H NMR analysis for assessment of lipid oxidation at frying temperatures

    Science.gov (United States)

    The reliability of a method using ^1^H NMR analysis for assessment of oil oxidation at a frying temperature was examined. During heating and frying at 180 °C, changes of soybean oil signals in the ^1^H NMR spectrum including olefinic (5.16-5.30 ppm), bisallylic (2.70-2.88 ppm), and allylic (1.94-2.1...

  20. A summary of methods of predicting reliability life of nuclear equipment with small samples

    International Nuclear Information System (INIS)

    Liao Weixian

    2000-03-01

    Some of nuclear equipment are manufactured in small batch, e.g., 1-3 sets. Their service life may be very difficult to determine experimentally in view of economy and technology. The method combining theoretical analysis with material tests to predict the life of equipment is put forward, based on that equipment consists of parts or elements which are made of different materials. The whole life of an equipment part consists of the crack forming life (i.e., the fatigue life or the damage accumulation life) and the crack extension life. Methods of predicting machine life has systematically summarized with the emphasis on those which use theoretical analysis to substitute large scale prototype experiments. Meanwhile, methods and steps of predicting reliability life have been described by taking into consideration of randomness of various variables and parameters in engineering. Finally, the latest advance and trends of machine life prediction are discussed