WorldWideScience

Sample records for reliability analysis based

  1. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  2. Reliability analysis of digital based I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)

    1999-10-01

    Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.

  3. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  4. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  5. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  6. Maintenance management of railway infrastructures based on reliability analysis

    International Nuclear Information System (INIS)

    Macchi, Marco; Garetti, Marco; Centrone, Domenico; Fumagalli, Luca; Piero Pavirani, Gian

    2012-01-01

    Railway infrastructure maintenance plays a crucial role for rail transport. It aims at guaranteeing safety of operations and availability of railway tracks and related equipment for traffic regulation. Moreover, it is one major cost for rail transport operations. Thus, the increased competition in traffic market is asking for maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations. This issue is addressed by the methodology presented in the paper. The first step of the methodology consists of a family-based approach for the equipment reliability analysis; its purpose is the identification of families of railway items which can be given the same reliability targets. The second step builds the reliability model of the railway system for identifying the most critical items, given a required service level for the transportation system. The two methods have been implemented and tested in practical case studies, in the context of Rete Ferroviaria Italiana, the Italian public limited company for railway transportation.

  7. Reliability analysis of offshore structures using OMA based fatigue stresses

    DEFF Research Database (Denmark)

    Silva Nabuco, Bruna; Aissani, Amina; Glindtvad Tarpø, Marius

    2017-01-01

    focus is on the uncertainty observed on the different stresses used to predict the damage. This uncertainty can be reduced by Modal Based Fatigue Monitoring which is a technique based on continuously measuring of the accelerations in few points of the structure with the use of accelerometers known...... points of the structure, the stress history can be calculated in any arbitrary point of the structure. The accuracy of the estimated actual stress is analyzed by experimental tests on a scale model where the obtained stresses are compared to strain gauges measurements. After evaluating the fatigue...... stresses directly from the operational response of the structure, a reliability analysis is performed in order to estimate the reliability of using Modal Based Fatigue Monitoring for long term fatigue studies....

  8. Reliability analysis for new technology-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Charpentier, Dominique [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2011-02-15

    The reliability analysis of new technology-based transmitters has to deal with specific issues: various interactions between both material elements and functions, undefined behaviours under faulty conditions, several transmitted data, and little reliability feedback. To handle these particularities, a '3-step' model is proposed, based on goal tree-success tree (GTST) approaches to represent both the functional and material aspects, and includes the faults and failures as a third part for supporting reliability analyses. The behavioural aspects are provided by relationship matrices, also denoted master logic diagrams (MLD), with stochastic values which represent direct relationships between system elements. Relationship analyses are then proposed to assess the effect of any fault or failure on any material element or function. Taking these relationships into account, the probabilities of malfunction and failure modes are evaluated according to time. Furthermore, uncertainty analyses tend to show that even if the input data and system behaviour are not well known, these previous results can be obtained in a relatively precise way. An illustration is provided by a case study on an infrared gas transmitter. These properties make the proposed model and corresponding reliability analyses especially suitable for intelligent transmitters (or 'smart sensors').

  9. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  10. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  11. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  12. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  13. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  14. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  15. Reliability and risk analysis data base development: an historical perspective

    International Nuclear Information System (INIS)

    Fragola, Joseph R.

    1996-01-01

    Collection of empirical data and data base development for use in the prediction of the probability of future events has a long history. Dating back at least to the 17th century, safe passage events and mortality events were collected and analyzed to uncover prospective underlying classes and associated class attributes. Tabulations of these developed classes and associated attributes formed the underwriting basis for the fledgling insurance industry. Much earlier, master masons and architects used design rules of thumb to capture the experience of the ages and thereby produce structures of incredible longevity and reliability (Antona, E., Fragola, J. and Galvagni, R. Risk based decision analysis in design. Fourth SRA Europe Conference Proceedings, Rome, Italy, 18-20 October 1993). These rules served so well in producing robust designs that it was not until almost the 19th century that the analysis (Charlton, T.M., A History Of Theory Of Structures In The 19th Century, Cambridge University Press, Cambridge, UK, 1982) of masonry voussoir arches, begun by Galileo some two centuries earlier (Galilei, G. Discorsi e dimostrazioni mathematiche intorno a due nuove science, (Discourses and mathematical demonstrations concerning two new sciences, Leiden, The Netherlands, 1638), was placed on a sound scientific basis. Still, with the introduction of new materials (such as wrought iron and steel) and the lack of theoretical knowledge and computational facilities, approximate methods of structural design abounded well into the second half of the 20th century. To this day structural designers account for material variations and gaps in theoretical knowledge by employing factors of safety (Benvenuto, E., An Introduction to the History of Structural Mechanics, Part II: Vaulted Structures and Elastic Systems, Springer-Verlag, NY, 1991) or codes of practice (ASME Boiler and Pressure Vessel Code, ASME, New York) originally developed in the 19th century (Antona, E., Fragola, J. and

  16. Reliability analysis - systematic approach based on limited data

    International Nuclear Information System (INIS)

    Bourne, A.J.

    1975-11-01

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)

  17. Limitations in simulator time-based human reliability analysis methods

    International Nuclear Information System (INIS)

    Wreathall, J.

    1989-01-01

    Developments in human reliability analysis (HRA) methods have evolved slowly. Current methods are little changed from those of almost a decade ago, particularly in the use of time-reliability relationships. While these methods were suitable as an interim step, the time (and the need) has come to specify the next evolution of HRA methods. As with any performance-oriented data source, power plant simulator data have no direct connection to HRA models. Errors reported in data are normal deficiencies observed in human performance; failures are events modeled in probabilistic risk assessments (PRAs). Not all errors cause failures; not all failures are caused by errors. Second, the times at which actions are taken provide no measure of the likelihood of failures to act correctly within an accident scenario. Inferences can be made about human reliability, but they must be made with great care. Specific limitations are discussed. Simulator performance data are useful in providing qualitative evidence of the variety of error types and their potential influences on operating systems. More work is required to combine recent developments in the psychology of error with the qualitative data collected at stimulators. Until data become openly available, however, such an advance will not be practical

  18. Analogical reasoning for reliability analysis based on generic data

    Energy Technology Data Exchange (ETDEWEB)

    Kozin, Igor O

    1996-10-01

    The paper suggests using the systemic concept 'analogy' for the foundation of an approach to analyze system reliability on the basis of generic data, describing the method of structuring the set that defines analogical models, an approach of transition from the analogical model to a reliability model and a way of obtaining reliability intervals of analogous objects.

  19. Analogical reasoning for reliability analysis based on generic data

    International Nuclear Information System (INIS)

    Kozin, Igor O.

    1996-01-01

    The paper suggests using the systemic concept 'analogy' for the foundation of an approach to analyze system reliability on the basis of generic data, describing the method of structuring the set that defines analogical models, an approach of transition from the analogical model to a reliability model and a way of obtaining reliability intervals of analogous objects

  20. Application of Metric-based Software Reliability Analysis to Example Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Smidts, Carol

    2008-07-01

    The software reliability of TELLERFAST ATM software is analyzed by using two metric-based software reliability analysis methods, a state transition diagram-based method and a test coverage-based method. The procedures for the software reliability analysis by using the two methods and the analysis results are provided in this report. It is found that the two methods have a relation of complementary cooperation, and therefore further researches on combining the two methods to reflect the benefit of the complementary cooperative effect to the software reliability analysis are recommended

  1. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  2. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Shirley, Rachel Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  3. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  4. Architecture-Based Reliability Analysis of Web Services

    Science.gov (United States)

    Rahmani, Cobra Mariam

    2012-01-01

    In a Service Oriented Architecture (SOA), the hierarchical complexity of Web Services (WS) and their interactions with the underlying Application Server (AS) create new challenges in providing a realistic estimate of WS performance and reliability. The current approaches often treat the entire WS environment as a black-box. Thus, the sensitivity…

  5. Reliability analysis of microcomputer boards and computer based systems important to safety of nuclear plants

    International Nuclear Information System (INIS)

    Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.

    2010-01-01

    Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)

  6. Sensitivity based reduced approaches for structural reliability analysis

    Indian Academy of Sciences (India)

    captured by a safety-factor based approach due to the intricate nonlinear ... give the accounts of extensive research works which have been done over ... (ii) simulation based methods, for example, importance sampling (Bucher 1988; Mahade-.

  7. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  8. Reliability analysis of the solar array based on Fault Tree Analysis

    International Nuclear Information System (INIS)

    Wu Jianing; Yan Shaoze

    2011-01-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  9. Reliability analysis of the solar array based on Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jianing; Yan Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University,Beijing 100084 (China)

    2011-07-19

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  10. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  11. Dynamic decision-making for reliability and maintenance analysis of manufacturing systems based on failure effects

    Science.gov (United States)

    Zhang, Ding; Zhang, Yingjie

    2017-09-01

    A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.

  12. LIF: A new Kriging based learning function and its application to structural reliability analysis

    International Nuclear Information System (INIS)

    Sun, Zhili; Wang, Jian; Li, Rui; Tong, Cao

    2017-01-01

    The main task of structural reliability analysis is to estimate failure probability of a studied structure taking randomness of input variables into account. To consider structural behavior practically, numerical models become more and more complicated and time-consuming, which increases the difficulty of reliability analysis. Therefore, sequential strategies of design of experiment (DoE) are raised. In this research, a new learning function, named least improvement function (LIF), is proposed to update DoE of Kriging based reliability analysis method. LIF values how much the accuracy of estimated failure probability will be improved if adding a given point into DoE. It takes both statistical information provided by the Kriging model and the joint probability density function of input variables into account, which is the most important difference from the existing learning functions. Maximum point of LIF is approximately determined with Markov Chain Monte Carlo(MCMC) simulation. A new reliability analysis method is developed based on the Kriging model, in which LIF, MCMC and Monte Carlo(MC) simulation are employed. Three examples are analyzed. Results show that LIF and the new method proposed in this research are very efficient when dealing with nonlinear performance function, small probability, complicated limit state and engineering problems with high dimension. - Highlights: • Least improvement function (LIF) is proposed for structural reliability analysis. • LIF takes both Kriging based statistical information and joint PDF into account. • A reliability analysis method is constructed based on Kriging, MCS and LIF.

  13. Physical-Mechanisms Based Reliability Analysis For Emerging Technologies

    Science.gov (United States)

    2017-05-05

    irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy," Appl. Phys. Lett., vol. 106, article...Chan, A. Raman, and M. Turowski, "State and angular dependence of single-event upsets in an asymmetric RC-hardened SRAM using deep trench capacitors...Trinczek, E. W. Blackmore, S. J. Wen , R. Wong, B. Narasimham, J. A. Pellish and H. Puchner, "The contribution of low-energy protons to the total

  14. Multidisciplinary Inverse Reliability Analysis Based on Collaborative Optimization with Combination of Linear Approximations

    Directory of Open Access Journals (Sweden)

    Xin-Jia Meng

    2015-01-01

    Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.

  15. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    Science.gov (United States)

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  16. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  17. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  18. Study on reliability analysis based on multilevel flow models and fault tree method

    International Nuclear Information System (INIS)

    Chen Qiang; Yang Ming

    2014-01-01

    Multilevel flow models (MFM) and fault tree method describe the system knowledge in different forms, so the two methods express an equivalent logic of the system reliability under the same boundary conditions and assumptions. Based on this and combined with the characteristics of MFM, a method mapping MFM to fault tree was put forward, thus providing a way to establish fault tree rapidly and realizing qualitative reliability analysis based on MFM. Taking the safety injection system of pressurized water reactor nuclear power plant as an example, its MFM was established and its reliability was analyzed qualitatively. The analysis result shows that the logic of mapping MFM to fault tree is correct. The MFM is easily understood, created and modified. Compared with the traditional fault tree analysis, the workload is greatly reduced and the modeling time is saved. (authors)

  19. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Ionescu-Bujor, M.

    2008-01-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  20. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safety, D-76021 Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  1. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  2. Reliability analysis for power supply system in a reprocessing facility based on GO methodology

    International Nuclear Information System (INIS)

    Wang Renze

    2014-01-01

    GO methodology was applied to analyze the reliability of power supply system in a typical reprocessing facility. Based on the fact that tie breakers are set in the system, tie breaker operator was defined. Then GO methodology modeling and quantitative analysis were performed sequently, minimal cut sets and average unavailability of the system were obtained. Parallel analysis between GO methodology and fault tree methodology was also performed. The results showed that setup of tie breakers was rational and necessary and that the modeling was much easier and the chart was much more succinct for GO methodology parallel with fault tree methodology to analyze the reliability of the power supply system. (author)

  3. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    Science.gov (United States)

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  4. Reliability Analysis of Sealing Structure of Electromechanical System Based on Kriging Model

    Science.gov (United States)

    Zhang, F.; Wang, Y. M.; Chen, R. W.; Deng, W. W.; Gao, Y.

    2018-05-01

    The sealing performance of aircraft electromechanical system has a great influence on flight safety, and the reliability of its typical seal structure is analyzed by researcher. In this paper, we regard reciprocating seal structure as a research object to study structural reliability. Having been based on the finite element numerical simulation method, the contact stress between the rubber sealing ring and the cylinder wall is calculated, and the relationship between the contact stress and the pressure of the hydraulic medium is built, and the friction force on different working conditions are compared. Through the co-simulation, the adaptive Kriging model obtained by EFF learning mechanism is used to describe the failure probability of the seal ring, so as to evaluate the reliability of the sealing structure. This article proposes a new idea of numerical evaluation for the reliability analysis of sealing structure, and also provides a theoretical basis for the optimal design of sealing structure.

  5. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    Science.gov (United States)

    Gharouni-Nik, Morteza; Naeimi, Meysam; Ahadi, Sodayf; Alimoradi, Zahra

    2014-06-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute to stability of the tunnel structure are recognized owing to identify various aspects of reliability and sustainability in the system. The selection of efficient support methods for rock tunneling is a key factor in order to reduce the number of problems during construction and maintain the project cost and time within the limited budget and planned schedule. This paper introduces a smart approach by which decision-makers will be able to find the overall reliability of tunnel support system before selecting the final scheme of the lining system. Due to this research focus, engineering reliability which is a branch of statistics and probability is being appropriately applied to the field and much effort has been made to use it in tunneling while investigating the reliability of the lining support system for the tunnel structure. Therefore, reliability analysis for evaluating the tunnel support performance is the main idea used in this research. Decomposition approaches are used for producing system block diagram and determining the failure probability of the whole system. Effectiveness of the proposed reliability model of tunnel lining together with the recommended approaches is examined using several case studies and the final value of reliability obtained for different designing scenarios. Considering the idea of linear correlation between safety factors and reliability parameters, the values of isolated reliabilities determined for different structural components of tunnel support system. In order to determine individual safety factors, finite element modeling is employed for different structural subsystems and the results of numerical analyses are obtained in

  6. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  7. Hybrid Structural Reliability Analysis under Multisource Uncertainties Based on Universal Grey Numbers

    Directory of Open Access Journals (Sweden)

    Xingfa Yang

    2018-01-01

    Full Text Available Nondeterministic parameters of certain distribution are employed to model structural uncertainties, which are usually assumed as stochastic factors. However, model parameters may not be precisely represented due to some factors in engineering practices, such as lack of sufficient data, data with fuzziness, and unknown-but-bounded conditions. To this end, interval and fuzzy parameters are implemented and an efficient approach to structural reliability analysis with random-interval-fuzzy hybrid parameters is proposed in this study. Fuzzy parameters are first converted to equivalent random ones based on the equal entropy principle. 3σ criterion is then employed to transform the equivalent random and the original random parameters to interval variables. In doing this, the hybrid reliability problem is transformed into the one only with interval variables, in other words, nonprobabilistic reliability analysis problem. Nevertheless, the problem of interval extension existed in interval arithmetic, especially for the nonlinear systems. Therefore, universal grey mathematics, which can tackle the issue of interval extension, is employed to solve the nonprobabilistic reliability analysis problem. The results show that the proposed method can obtain more conservative results of the hybrid structural reliability.

  8. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  9. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G.; Balan, I. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safetly, Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  10. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Balan, I.; Ionescu-Bujor, M.

    2008-01-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  11. Choosing a heuristic and root node for edge ordering in BDD-based network reliability analysis

    International Nuclear Information System (INIS)

    Mo, Yuchang; Xing, Liudong; Zhong, Farong; Pan, Zhusheng; Chen, Zhongyu

    2014-01-01

    In the Binary Decision Diagram (BDD)-based network reliability analysis, heuristics have been widely used to obtain a reasonably good ordering of edge variables. Orderings generated using different heuristics can lead to dramatically different sizes of BDDs, and thus dramatically different running times and memory usages for the analysis of the same network. Unfortunately, due to the nature of the ordering problem (i.e., being an NP-complete problem) no formal guidelines or rules are available for choosing a good heuristic or for choosing a high-performance root node to perform edge searching using a particular heuristic. In this work, we make novel contributions by proposing heuristic and root node selection methods based on the concept of boundary sets for the BDD-based network reliability analysis. Empirical studies show that the proposed selection methods can help to generate high-performance edge ordering for most of studied cases, enabling the efficient BDD-based reliability analysis of large-scale networks. The proposed methods are demonstrated on different types of networks, including square lattice networks, torus lattice networks and de Bruijn networks

  12. Development of web-based reliability data analysis algorithm model and its application

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae

    2010-01-01

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  13. Development of web-based reliability data analysis algorithm model and its application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)

    2010-02-15

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  14. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  15. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  16. Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations

    International Nuclear Information System (INIS)

    Shalev, Dan M.; Tiran, Joseph

    2007-01-01

    Condition-based maintenance methods have changed systems reliability in general and individual systems in particular. Yet, this change does not affect system reliability analysis. System fault tree analysis (FTA) is performed during the design phase. It uses components failure rates derived from available sources as handbooks, etc. Condition-based fault tree analysis (CBFTA) starts with the known FTA. Condition monitoring (CM) methods applied to systems (e.g. vibration analysis, oil analysis, electric current analysis, bearing CM, electric motor CM, and so forth) are used to determine updated failure rate values of sensitive components. The CBFTA method accepts updated failure rates and applies them to the FTA. The CBFTA recalculates periodically the top event (TE) failure rate (λ TE ) thus determining the probability of system failure and the probability of successful system operation-i.e. the system's reliability. FTA is a tool for enhancing system reliability during the design stages. But, it has disadvantages, mainly it does not relate to a specific system undergoing maintenance. CBFTA is tool for updating reliability values of a specific system and for calculating the residual life according to the system's monitored conditions. Using CBFTA, the original FTA is ameliorated to a practical tool for use during the system's field life phase, not just during system design phase. This paper describes the CBFTA method and its advantages are demonstrated by an example

  17. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  18. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....

  19. Method of reliability allocation based on fault tree analysis and fuzzy math in nuclear power plants

    International Nuclear Information System (INIS)

    Chen Zhaobing; Deng Jian; Cao Xuewu

    2005-01-01

    Reliability allocation is a kind of a difficult multi-objective optimization problem. It can not only be applied to determine the reliability characteristic of reactor systems, subsystem and main components but also be performed to improve the design, operation and maintenance of nuclear plants. The fuzzy math known as one of the powerful tools for fuzzy optimization and the fault analysis deemed to be one of the effective methods of reliability analysis can be applied to the reliability allocation model so as to work out the problems of fuzzy characteristic of some factors and subsystem's choice respectively in this paper. Thus we develop a failure rate allocation model on the basis of the fault tree analysis and fuzzy math. For the choice of the reliability constraint factors, we choose the six important ones according to practical need for conducting the reliability allocation. The subsystem selected by the top-level fault tree analysis is to avoid allocating reliability for all the equipment and components including the unnecessary parts. During the reliability process, some factors can be calculated or measured quantitatively while others only can be assessed qualitatively by the expert rating method. So we adopt fuzzy decision and dualistic contrast to realize the reliability allocation with the help of fault tree analysis. Finally the example of the emergency diesel generator's reliability allocation is used to illustrate reliability allocation model and improve this model simple and applicable. (authors)

  20. Reliability analysis of a consecutive r-out-of-n: F system based on neural networks

    International Nuclear Information System (INIS)

    Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada

    2009-01-01

    In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.

  1. Knowledge-base for the new human reliability analysis method, A Technique for Human Error Analysis (ATHEANA)

    International Nuclear Information System (INIS)

    Cooper, S.E.; Wreathall, J.; Thompson, C.M., Drouin, M.; Bley, D.C.

    1996-01-01

    This paper describes the knowledge base for the application of the new human reliability analysis (HRA) method, a ''A Technique for Human Error Analysis'' (ATHEANA). Since application of ATHEANA requires the identification of previously unmodeled human failure events, especially errors of commission, and associated error-forcing contexts (i.e., combinations of plant conditions and performance shaping factors), this knowledge base is an essential aid for the HRA analyst

  2. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  3. Reliability analysis based on a novel density estimation method for structures with correlations

    Directory of Open Access Journals (Sweden)

    Baoyu LI

    2017-06-01

    Full Text Available Estimating the Probability Density Function (PDF of the performance function is a direct way for structural reliability analysis, and the failure probability can be easily obtained by integration in the failure domain. However, efficiently estimating the PDF is still an urgent problem to be solved. The existing fractional moment based maximum entropy has provided a very advanced method for the PDF estimation, whereas the main shortcoming is that it limits the application of the reliability analysis method only to structures with independent inputs. While in fact, structures with correlated inputs always exist in engineering, thus this paper improves the maximum entropy method, and applies the Unscented Transformation (UT technique to compute the fractional moments of the performance function for structures with correlations, which is a very efficient moment estimation method for models with any inputs. The proposed method can precisely estimate the probability distributions of performance functions for structures with correlations. Besides, the number of function evaluations of the proposed method in reliability analysis, which is determined by UT, is really small. Several examples are employed to illustrate the accuracy and advantages of the proposed method.

  4. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  5. Analysis and recommendations for a reliable programming of software based safety systems

    International Nuclear Information System (INIS)

    Nunez McLeod, J.; Nunez McLeod, J.E.; Rivera, S.S.

    1997-01-01

    The present paper summarizes the results of several studies performed for the development of high software on i486 microprocessors, towards its utilization for control and safety systems for nuclear power plants. The work is based on software programmed in C language. Several recommendations oriented to high reliability software are analyzed, relating the requirements on high level language to its influence on assembler level. Several metrics are implemented, that allow for the quantification of the results achieved. New metrics were developed and other were adapted, in order to obtain more efficient indexes for the software description. Such metrics are helpful to visualize the adaptation of the software under development to the quality rules under use. A specific program developed to assist the reliability analyst on this quantification is also present in the paper. It performs the analysis of an executable program written in C language, disassembling it and evaluating its inter al structures. (author)

  6. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    Science.gov (United States)

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  7. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Science.gov (United States)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  8. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  9. Optimal, Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2002-01-01

    Reliability based code calibration is considered in this paper. It is described how the results of FORM based reliability analysis may be related to the partial safety factors and characteristic values. The code calibration problem is presented in a decision theoretical form and it is discussed how...... of reliability based code calibration of LRFD based design codes....

  10. A Hybrid Approach for Reliability Analysis Based on Analytic Hierarchy Process and Bayesian Network

    International Nuclear Information System (INIS)

    Zubair, Muhammad

    2014-01-01

    By using analytic hierarchy process (AHP) and Bayesian Network (BN) the present research signifies the technical and non-technical issues of nuclear accidents. The study exposed that the technical faults was one major reason of these accidents. Keep an eye on other point of view it becomes clearer that human behavior like dishonesty, insufficient training, and selfishness are also play a key role to cause these accidents. In this study, a hybrid approach for reliability analysis based on AHP and BN to increase nuclear power plant (NPP) safety has been developed. By using AHP, best alternative to improve safety, design, operation, and to allocate budget for all technical and non-technical factors related with nuclear safety has been investigated. We use a special structure of BN based on the method AHP. The graphs of the BN and the probabilities associated with nodes are designed to translate the knowledge of experts on the selection of best alternative. The results show that the improvement in regulatory authorities will decrease failure probabilities and increase safety and reliability in industrial area.

  11. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  12. Phoenix – A model-based Human Reliability Analysis methodology: Qualitative Analysis Procedure

    International Nuclear Information System (INIS)

    Ekanem, Nsimah J.; Mosleh, Ali; Shen, Song-Hua

    2016-01-01

    Phoenix method is an attempt to address various issues in the field of Human Reliability Analysis (HRA). Built on a cognitive human response model, Phoenix incorporates strong elements of current HRA good practices, leverages lessons learned from empirical studies, and takes advantage of the best features of existing and emerging HRA methods. Its original framework was introduced in previous publications. This paper reports on the completed methodology, summarizing the steps and techniques of its qualitative analysis phase. The methodology introduces the “Crew Response Tree” which provides a structure for capturing the context associated with Human Failure Events (HFEs), including errors of omission and commission. It also uses a team-centered version of the Information, Decision and Action cognitive model and “macro-cognitive” abstractions of crew behavior, as well as relevant findings from cognitive psychology literature and operating experience, to identify potential causes of failures and influencing factors during procedure-driven and knowledge-supported crew-plant interactions. The result is the set of identified HFEs and likely scenarios leading to each. The methodology itself is generic in the sense that it is compatible with various quantification methods, and can be adapted for use across different environments including nuclear, oil and gas, aerospace, aviation, and healthcare. - Highlights: • Produces a detailed, consistent, traceable, reproducible and properly documented HRA. • Uses “Crew Response Tree” to capture context associated with Human Failure Events. • Models dependencies between Human Failure Events and influencing factors. • Provides a human performance model for relating context to performance. • Provides a framework for relating Crew Failure Modes to its influencing factors.

  13. Reliability analysis for thermal cutting method based non-explosive separation device

    International Nuclear Information System (INIS)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu

    2016-01-01

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils

  14. Reliability analysis for thermal cutting method based non-explosive separation device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu [Korea Aerospace University, Goyang (Korea, Republic of)

    2016-12-15

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils.

  15. Waste package reliability analysis

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table

  16. Failure and Maintenance Analysis Using Web-Based Reliability Database System

    International Nuclear Information System (INIS)

    Hwang, Seok Won; Kim, Myoung Su; Seong, Ki Yeoul; Na, Jang Hwan; Jerng, Dong Wook

    2007-01-01

    Korea Hydro and Nuclear Power Company has lunched the development of a database system for PSA and Maintenance Rule implementation. It focuses on the easy processing of raw data into a credible and useful database for the risk-informed environment of nuclear power plant operation and maintenance. Even though KHNP had recently completed the PSA for all domestic NPPs as a requirement of the severe accident mitigation strategy, the component failure data were only gathered as a means of quantification purposes for the relevant project. So, the data were not efficient enough for the Living PSA or other generic purposes. Another reason to build a real time database is for the newly adopted Maintenance Rule, which requests the utility to continuously monitor the plant risk based on its operation and maintenance performance. Furthermore, as one of the pre-condition for the Risk Informed Regulation and Application, the nuclear regulatory agency of Korea requests the development and management of domestic database system. KHNP is stacking up data of operation and maintenance on the Enterprise Resource Planning (ERP) system since its first opening on July, 2003. But, so far a systematic review has not been performed to apply the component failure and maintenance history for PSA and other reliability analysis. The data stored in PUMAS before the ERP system is introduced also need to be converted and managed into the new database structure and methodology. This reliability database system is a web-based interface on a UNIX server with Oracle relational database. It is designed to be applicable for all domestic NPPs with a common database structure and the web interfaces, therefore additional program development would not be necessary for data acquisition and processing in the near future. Categorization standards for systems and components have been implemented to analyze all domestic NPPs. For example, SysCode (for a system code) and CpCode (for a component code) were newly

  17. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  18. Comparative analysis of different configurations of PLC-based safety systems from reliability point of view

    Science.gov (United States)

    Tapia, Moiez A.

    1993-01-01

    The study of a comparative analysis of distinct multiplex and fault-tolerant configurations for a PLC-based safety system from a reliability point of view is presented. It considers simplex, duplex and fault-tolerant triple redundancy configurations. The standby unit in case of a duplex configuration has a failure rate which is k times the failure rate of the standby unit, the value of k varying from 0 to 1. For distinct values of MTTR and MTTF of the main unit, MTBF and availability for these configurations are calculated. The effect of duplexing only the PLC module or only the sensors and the actuators module, on the MTBF of the configuration, is also presented. The results are summarized and merits and demerits of various configurations under distinct environments are discussed.

  19. Investigation of reliability indicators of information analysis systems based on Markov’s absorbing chain model

    Science.gov (United States)

    Gilmanshin, I. R.; Kirpichnikov, A. P.

    2017-09-01

    In the result of study of the algorithm of the functioning of the early detection module of excessive losses, it is proven the ability to model it by using absorbing Markov chains. The particular interest is in the study of probability characteristics of early detection module functioning algorithm of losses in order to identify the relationship of indicators of reliability of individual elements, or the probability of occurrence of certain events and the likelihood of transmission of reliable information. The identified relations during the analysis allow to set thresholds reliability characteristics of the system components.

  20. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    Science.gov (United States)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  1. Reliability analysis and risk-based methods for planning of operation & maintenance of offshore wind turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2017-01-01

    for extreme and fatigue limit states are presented. Operation & Maintenance planning often follows corrective and preventive strategies based on information from condition monitoring and structural health monitoring systems. A reliability- and risk-based approach is presented where a life-cycle approach...

  2. Use of knowledge based systems for rational reliability analysis based inspection and maintenance planning for offshore structures

    International Nuclear Information System (INIS)

    Tang, M.X.; Dharmavasan, S.; Peers, S.M.C.

    1994-01-01

    The structural integrity of fixed offshore platforms is ensured by periodic inspections. In the past, decisions made as to when, where and how to inspect have been made by engineers using rules-of-thumb and general planning heuristics. It is now hoped that more rational inspection and maintenance scheduling may be carried out by applying recently developed techniques based on structural reliability methods. However, one of the problems associated with a theoretical approach is that it is not always possible to incorporate all the constraints that are present in a practical situation. These constraints modify the decisions made for analysis data input and the interpretation of the analysis results. Knowledge based systems provide a mean of encapsulating several different forms of information and knowledge within a computer system and hence can overcome this problem. In this paper, a prototype system being developed for integrating reliability based analysis with other constraints for inspection scheduling will be described. In addition, the scheduling model and the algorithms to carry out the scheduling will be explained. Furthermore, implementation details are also given

  3. Reliability assessment of a manual-based procedure towards learning curve modeling and fmea analysis

    Directory of Open Access Journals (Sweden)

    Gustavo Rech

    2013-03-01

    Full Text Available Separation procedures in drug Distribution Centers (DC are manual-based activities prone to failures such as shipping exchanged, expired or broken drugs to the customer. Two interventions seem as promising in improving the reliability in the separation procedure: (i selection and allocation of appropriate operators to the procedure, and (ii analysis of potential failure modes incurred by selected operators. This article integrates Learning Curves (LC and FMEA (Failure Mode and Effect Analysis aimed at reducing the occurrence of failures in the manual separation of a drug DC. LCs parameters enable generating an index to identify the recommended operators to perform the procedures. The FMEA is then applied to the separation procedure carried out by the selected operators in order to identify failure modes. It also deployed the traditional FMEA severity index into two sub-indexes related to financial issues and damage to company´s image in order to characterize failures severity. When applied to a drug DC, the proposed method significantly reduced the frequency and severity of failures in the separation procedure.

  4. Reliability Based Ship Structural Design

    DEFF Research Database (Denmark)

    Dogliani, M.; Østergaard, C.; Parmentier, G.

    1996-01-01

    This paper deals with the development of different methods that allow the reliability-based design of ship structures to be transferred from the area of research to the systematic application in current design. It summarises the achievements of a three-year collaborative research project dealing...... with developments of models of load effects and of structural collapse adopted in reliability formulations which aim at calibrating partial safety factors for ship structural design. New probabilistic models of still-water load effects are developed both for tankers and for containerships. New results are presented...... structure of several tankers and containerships. The results of the reliability analysis were the basis for the definition of a target safety level which was used to asses the partial safety factors suitable for in a new design rules format to be adopted in modern ship structural design. Finally...

  5. The design and use of reliability data base with analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst`s current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs.

  6. The design and use of reliability data base with analysis tool

    International Nuclear Information System (INIS)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst's current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs

  7. Reliability analysis of idealized tunnel support system using probability-based methods with case studies

    NARCIS (Netherlands)

    Gharouni-Nik, M.; Naeimi, M.; Ahadi, S.; Alimoradi, Z.

    2014-01-01

    In order to determine the overall safety of a tunnel support lining, a reliability-based approach is presented in this paper. Support elements in jointed rock tunnels are provided to control the ground movement caused by stress redistribution during the tunnel drive. Main support elements contribute

  8. Science-Based Simulation Model of Human Performance for Human Reliability Analysis

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Boring, Ronald L.; Mosleh, Ali; Smidts, Carol

    2011-01-01

    Human reliability analysis (HRA), a component of an integrated probabilistic risk assessment (PRA), is the means by which the human contribution to risk is assessed, both qualitatively and quantitatively. However, among the literally dozens of HRA methods that have been developed, most cannot fully model and quantify the types of errors that occurred at Three Mile Island. Furthermore, all of the methods lack a solid empirical basis, relying heavily on expert judgment or empirical results derived in non-reactor domains. Finally, all of the methods are essentially static, and are thus unable to capture the dynamics of an accident in progress. The objective of this work is to begin exploring a dynamic simulation approach to HRA, one whose models have a basis in psychological theories of human performance, and whose quantitative estimates have an empirical basis. This paper highlights a plan to formalize collaboration among the Idaho National Laboratory (INL), the University of Maryland, and The Ohio State University (OSU) to continue development of a simulation model initially formulated at the University of Maryland. Initial work will focus on enhancing the underlying human performance models with the most recent psychological research, and on planning follow-on studies to establish an empirical basis for the model, based on simulator experiments to be carried out at the INL and at the OSU.

  9. Human-centered modeling in human reliability analysis: some trends based on case studies

    International Nuclear Information System (INIS)

    Mosneron-Dupin, F.; Reer, B.; Heslinga, G.; Straeter, O.; Gerdes, V.; Saliou, G.; Ullwer, W.

    1997-01-01

    As an informal working group of researchers from France, Germany and The Netherlands created in 1993, the EARTH association is investigating significant subjects in the field of human reliability analysis (HRA). Our initial review of cases from nuclear operating experience showed that decision-based unrequired actions (DUA) contribute to risk significantly on the one hand. On the other hand, our evaluation of current HRA methods showed that these methods do not cover such actions adequately. Especially, practice-oriented guidelines for their predictive identification are lacking. We assumed that a basic cause for such difficulties was that these methods actually use a limited representation of the stimulus-organism-response (SOR) paradigm. We proposed a human-centered model, which better highlights the active role of the operators and the importance of their culture, attitudes and goals. This orientation was encouraged by our review of current HRA research activities. We therefore decided to envisage progress by identifying cognitive tendencies in the context of operating and simulator experience. For this purpose, advanced approaches for retrospective event analysis were discussed. Some orientations for improvements were proposed. By analyzing cases, various cognitive tendencies were identified, together with useful information about their context. Some of them match psychological findings already published in the literature, some of them are not covered adequately by the literature that we reviewed. Finally, this exploratory study shows that contextual and case-illustrated findings about cognitive tendencies provide useful help for the predictive identification of DUA in HRA. More research should be carried out to complement our findings and elaborate more detailed and systematic guidelines for using them in HRA studies

  10. Coloured Letters and Numbers (CLaN): A reliable factor-analysis based synaesthesia questionnaire

    OpenAIRE

    Rothen Nicolas; Tsakanikos Elias; Meier Beat; Ward Jamie

    2013-01-01

    Synaesthesia is a heterogeneous phenomenon even when considering one particular sub type. The purpose of this study was to design a reliable and valid questionnaire for grapheme colour synaesthesia that captures this heterogeneity. By the means of a large sample of 628 synaesthetes and a factor analysis we created the Coloured Letters and Numbers (CLaN) questionnaire with 16 items loading on 4 different factors (i.e. localisation automaticity/attention deliberate use and longitudinal changes)...

  11. Dependence assessment in human reliability analysis based on D numbers and AHP

    International Nuclear Information System (INIS)

    Zhou, Xinyi; Deng, Xinyang; Deng, Yong; Mahadevan, Sankaran

    2017-01-01

    Highlights: • D numbers and AHP are combined to implement dependence assessment in HRA. • A new tool, called D numbers, is used to deal with the uncertainty in HRA. • The proposed method can well address the fuzziness and subjectivity in linguistic assessment. • The proposed method is well applicable in dependence assessment which inherently has a linguistic assessment process. - Abstract: Since human errors always cause heavy loss especially in nuclear engineering, human reliability analysis (HRA) has attracted more and more attention. Dependence assessment plays a vital role in HRA, measuring the dependence degree of human errors. Many researches have been done while still have improvement space. In this paper, a dependence assessment model based on D numbers and analytic hierarchy process (AHP) is proposed. Firstly, identify the factors used to measure the dependence level of two human operations. Besides, in terms of the suggested dependence level, determine and quantify the anchor points for each factor. Secondly, D numbers and AHP are adopted in model. Experts evaluate the dependence level of human operations for each factor. Then, the evaluation results are presented as D numbers and fused by D number’s combination rule that can obtain the dependence probability of human operations for each factor. The weights of factors can be determined by AHP. Thirdly, based on the dependence probability for each factor and its corresponding weight, the dependence probability of two human operations and its confidence can be obtained. The proposed method can well address the fuzziness and subjectivity in linguistic assessment. The proposed method is well applicable to assess the dependence degree of human errors in HRA which inherently has a linguistic assessment process.

  12. Dependence assessment in human reliability analysis based on D numbers and AHP

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyi; Deng, Xinyang [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Deng, Yong, E-mail: ydeng@swu.edu.cn [School of Computer and Information Science, Southwest University, Chongqing 400715 (China); Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Mahadevan, Sankaran [School of Engineering, Vanderbilt University, Nashville, TN 37235 (United States)

    2017-03-15

    Highlights: • D numbers and AHP are combined to implement dependence assessment in HRA. • A new tool, called D numbers, is used to deal with the uncertainty in HRA. • The proposed method can well address the fuzziness and subjectivity in linguistic assessment. • The proposed method is well applicable in dependence assessment which inherently has a linguistic assessment process. - Abstract: Since human errors always cause heavy loss especially in nuclear engineering, human reliability analysis (HRA) has attracted more and more attention. Dependence assessment plays a vital role in HRA, measuring the dependence degree of human errors. Many researches have been done while still have improvement space. In this paper, a dependence assessment model based on D numbers and analytic hierarchy process (AHP) is proposed. Firstly, identify the factors used to measure the dependence level of two human operations. Besides, in terms of the suggested dependence level, determine and quantify the anchor points for each factor. Secondly, D numbers and AHP are adopted in model. Experts evaluate the dependence level of human operations for each factor. Then, the evaluation results are presented as D numbers and fused by D number’s combination rule that can obtain the dependence probability of human operations for each factor. The weights of factors can be determined by AHP. Thirdly, based on the dependence probability for each factor and its corresponding weight, the dependence probability of two human operations and its confidence can be obtained. The proposed method can well address the fuzziness and subjectivity in linguistic assessment. The proposed method is well applicable to assess the dependence degree of human errors in HRA which inherently has a linguistic assessment process.

  13. Structural systems reliability analysis

    International Nuclear Information System (INIS)

    Frangopol, D.

    1975-01-01

    For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de

  14. Based on Weibull Information Fusion Analysis Semiconductors Quality the Key Technology of Manufacturing Execution Systems Reliability

    Science.gov (United States)

    Huang, Zhi-Hui; Tang, Ying-Chun; Dai, Kai

    2016-05-01

    Semiconductor materials and Product qualified rate are directly related to the manufacturing costs and survival of the enterprise. Application a dynamic reliability growth analysis method studies manufacturing execution system reliability growth to improve product quality. Refer to classical Duane model assumptions and tracking growth forecasts the TGP programming model, through the failure data, established the Weibull distribution model. Combining with the median rank of average rank method, through linear regression and least squares estimation method, match respectively weibull information fusion reliability growth curve. This assumption model overcome Duane model a weakness which is MTBF point estimation accuracy is not high, through the analysis of the failure data show that the method is an instance of the test and evaluation modeling process are basically identical. Median rank in the statistics is used to determine the method of random variable distribution function, which is a good way to solve the problem of complex systems such as the limited sample size. Therefore this method has great engineering application value.

  15. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2014-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  16. Test-retest reliability of computer-based video analysis of general movements in healthy term-born infants.

    Science.gov (United States)

    Valle, Susanne Collier; Støen, Ragnhild; Sæther, Rannei; Jensenius, Alexander Refsum; Adde, Lars

    2015-10-01

    A computer-based video analysis has recently been presented for quantitative assessment of general movements (GMs). This method's test-retest reliability, however, has not yet been evaluated. The aim of the current study was to evaluate the test-retest reliability of computer-based video analysis of GMs, and to explore the association between computer-based video analysis and the temporal organization of fidgety movements (FMs). Test-retest reliability study. 75 healthy, term-born infants were recorded twice the same day during the FMs period using a standardized video set-up. The computer-based movement variables "quantity of motion mean" (Qmean), "quantity of motion standard deviation" (QSD) and "centroid of motion standard deviation" (CSD) were analyzed, reflecting the amount of motion and the variability of the spatial center of motion of the infant, respectively. In addition, the association between the variable CSD and the temporal organization of FMs was explored. Intraclass correlation coefficients (ICC 1.1 and ICC 3.1) were calculated to assess test-retest reliability. The ICC values for the variables CSD, Qmean and QSD were 0.80, 0.80 and 0.86 for ICC (1.1), respectively; and 0.80, 0.86 and 0.90 for ICC (3.1), respectively. There were significantly lower CSD values in the recordings with continual FMs compared to the recordings with intermittent FMs (ptest-retest reliability of computer-based video analysis of GMs, and a significant association between our computer-based video analysis and the temporal organization of FMs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis

    International Nuclear Information System (INIS)

    Kang, Seunghoon; Lim, Woochul; Cho, Su-gil; Park, Sanghyun; Lee, Tae Hee; Lee, Minuk; Choi, Jong-su; Hong, Sup

    2015-01-01

    In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF

  18. Threshold Estimation of Generalized Pareto Distribution Based on Akaike Information Criterion for Accurate Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seunghoon; Lim, Woochul; Cho, Su-gil; Park, Sanghyun; Lee, Tae Hee [Hanyang University, Seoul (Korea, Republic of); Lee, Minuk; Choi, Jong-su; Hong, Sup [Korea Research Insitute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-02-15

    In order to perform estimations with high reliability, it is necessary to deal with the tail part of the cumulative distribution function (CDF) in greater detail compared to an overall CDF. The use of a generalized Pareto distribution (GPD) to model the tail part of a CDF is receiving more research attention with the goal of performing estimations with high reliability. Current studies on GPDs focus on ways to determine the appropriate number of sample points and their parameters. However, even if a proper estimation is made, it can be inaccurate as a result of an incorrect threshold value. Therefore, in this paper, a GPD based on the Akaike information criterion (AIC) is proposed to improve the accuracy of the tail model. The proposed method determines an accurate threshold value using the AIC with the overall samples before estimating the GPD over the threshold. To validate the accuracy of the method, its reliability is compared with that obtained using a general GPD model with an empirical CDF.

  19. A reliability simulation language for reliability analysis

    International Nuclear Information System (INIS)

    Deans, N.D.; Miller, A.J.; Mann, D.P.

    1986-01-01

    The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)

  20. Reliability analysis on passive residual heat removal of AP1000 based on Grey model

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Shi; Zhou, Tao; Shahzad, Muhammad Ali; Li, Yu [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, Beijing (China); Jiang, Guangming [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Laboratory

    2017-06-15

    It is common to base the design of passive systems on the natural laws of physics, such as gravity, heat conduction, inertia. For AP1000, a generation-III reactor, such systems have an inherent safety associated with them due to the simplicity of their structures. However, there is a fairly large amount of uncertainty in the operating conditions of these passive safety systems. In some cases, a small deviation in the design or operating conditions can affect the function of the system. The reliability of the passive residual heat removal is analysed.

  1. Scyllac equipment reliability analysis

    International Nuclear Information System (INIS)

    Gutscher, W.D.; Johnson, K.J.

    1975-01-01

    Most of the failures in Scyllac can be related to crowbar trigger cable faults. A new cable has been designed, procured, and is currently undergoing evaluation. When the new cable has been proven, it will be worked into the system as quickly as possible without causing too much additional down time. The cable-tip problem may not be easy or even desirable to solve. A tightly fastened permanent connection that maximizes contact area would be more reliable than the plug-in type of connection in use now, but it would make system changes and repairs much more difficult. The balance of the failures have such a low occurrence rate that they do not cause much down time and no major effort is underway to eliminate them. Even though Scyllac was built as an experimental system and has many thousands of components, its reliability is very good. Because of this the experiment has been able to progress at a reasonable pace

  2. A data-informed PIF hierarchy for model-based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Groth, Katrina M.; Mosleh, Ali

    2012-01-01

    This paper addresses three problems associated with the use of Performance Shaping Factors in Human Reliability Analysis. (1) There are more than a dozen Human Reliability Analysis (HRA) methods that use Performance Influencing Factors (PIFs) or Performance Shaping Factors (PSFs) to model human performance, but there is not a standard set of PIFs used among the methods, nor is there a framework available to compare the PIFs used in various methods. (2) The PIFs currently in use are not defined specifically enough to ensure consistent interpretation of similar PIFs across methods. (3) There are few rules governing the creation, definition, and usage of PIF sets. This paper introduces a hierarchical set of PIFs that can be used for both qualitative and quantitative HRA. The proposed PIF set is arranged in a hierarchy that can be collapsed or expanded to meet multiple objectives. The PIF hierarchy has been developed with respect to a set fundamental principles necessary for PIF sets, which are also introduced in this paper. This paper includes definitions of the PIFs to allow analysts to map the proposed PIFs onto current and future HRA methods. The standardized PIF hierarchy will allow analysts to combine different types of data and will therefore make the best use of the limited data in HRA. The collapsible hierarchy provides the structure necessary to combine multiple types of information without reducing the quality of the information.

  3. Reliability Analysis-Based Numerical Calculation of Metal Structure of Bridge Crane

    Directory of Open Access Journals (Sweden)

    Wenjun Meng

    2013-01-01

    Full Text Available The study introduced a finite element model of DQ75t-28m bridge crane metal structure and made finite element static analysis to obtain the stress response of the dangerous point of metal structure in the most extreme condition. The simulated samples of the random variable and the stress of the dangerous point were successfully obtained through the orthogonal design. Then, we utilized BP neural network nonlinear mapping function trains to get the explicit expression of stress in response to the random variable. Combined with random perturbation theory and first-order second-moment (FOSM method, the study analyzed the reliability and its sensitivity of metal structure. In conclusion, we established a novel method for accurately quantitative analysis and design of bridge crane metal structure.

  4. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  5. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  6. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  7. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  8. Comprehensive reliability allocation method for CNC lathes based on cubic transformed functions of failure mode and effects analysis

    Science.gov (United States)

    Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin

    2015-03-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  9. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  10. Risk analysis and reliability

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1979-01-01

    Mathematical foundations of risk analysis are addressed. The importance of having the same probability space in order to compare different experiments is pointed out. Then the following topics are discussed: consequences as random variables with infinite expectations; the phenomenon of rare events; series-parallel systems and different kinds of randomness that could be imposed on such systems; and the problem of consensus of estimates of expert opinion

  11. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    International Nuclear Information System (INIS)

    Renaud, M; Goedbloed, M; De Nooijer, C; Van Schaijk, R; Fujita, T

    2015-01-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture. (paper)

  12. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    Science.gov (United States)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-10-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

  13. An evaluation of the Browns Ferry Nuclear Plant preventive maintenance program based on reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    McCullough, C.L.; McCullough, C.A.

    1989-01-01

    Reliability centered maintenance (RCM) techniques were used to support a preventative maintenance (PM) upgrade program (PMUP) performed at TVA Browns Ferry Nuclear Plant (BFNP). The purpose of the RCM analysis was to identify critical equipment based on risk and economic importance and to evaluate the PM activities applicable to that equipment. The analysis may be conveniently divided into three steps, which will be outlined in the Approach section of this paper. The net benefit of the RCM approach was a prioritization of the focus of the PM upgrade program so that plant components receive attention proportional to their importance, and assurance that PM activities properly address the most likely component failure causes

  14. Reliability-Based Optimization in Structural Engineering

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1994-01-01

    In this paper reliability-based optimization problems in structural engineering are formulated on the basis of the classical decision theory. Several formulations are presented: Reliability-based optimal design of structural systems with component or systems reliability constraints, reliability...

  15. Reliability prediction of large fuel cell stack based on structure stress analysis

    Science.gov (United States)

    Liu, L. F.; Liu, B.; Wu, C. W.

    2017-09-01

    The aim of this paper is to improve the reliability of Proton Electrolyte Membrane Fuel Cell (PEMFC) stack by designing the clamping force and the thickness difference between the membrane electrode assembly (MEA) and the gasket. The stack reliability is directly determined by the component reliability, which is affected by the material property and contact stress. The component contact stress is a random variable because it is usually affected by many uncertain factors in the production and clamping process. We have investigated the influences of parameter variation coefficient on the probability distribution of contact stress using the equivalent stiffness model and the first-order second moment method. The optimal contact stress to make the component stay in the highest level reliability is obtained by the stress-strength interference model. To obtain the optimal contact stress between the contact components, the optimal thickness of the component and the stack clamping force are optimally designed. Finally, a detailed description is given how to design the MEA and gasket dimensions to obtain the highest stack reliability. This work can provide a valuable guidance in the design of stack structure for a high reliability of fuel cell stack.

  16. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  17. Reliability Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1987-01-01

    The optimization problem to design structural systems such that the reliability is satisfactory during the whole lifetime of the structure is considered in this paper. Some of the quantities modelling the loads and the strength of the structure are modelled as random variables. The reliability...... is estimated using first. order reliability methods ( FORM ). The design problem is formulated as the optimization problem to minimize a given cost function such that the reliability of the single elements satisfies given requirements or such that the systems reliability satisfies a given requirement....... For these optimization problems it is described how a sensitivity analysis can be performed. Next, new optimization procedures to solve the optimization problems are presented. Two of these procedures solve the system reliability based optimization problem sequentially using quasi-analytical derivatives. Finally...

  18. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  19. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  20. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  1. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  2. RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...

    African Journals Online (AJOL)

    eobe

    Reliability analysis of the safety levels of the criteria slabs, have been .... was also noted [2] that if the risk level or β < 3.1), the ... reliability analysis. A study [6] has shown that all geometric variables, ..... Germany, 1988. 12. Hasofer, A. M and ...

  3. Formulating informative, data-based priors for failure probability estimation in reliability analysis

    International Nuclear Information System (INIS)

    Guikema, Seth D.

    2007-01-01

    Priors play an important role in the use of Bayesian methods in risk analysis, and using all available information to formulate an informative prior can lead to more accurate posterior inferences. This paper examines the practical implications of using five different methods for formulating an informative prior for a failure probability based on past data. These methods are the method of moments, maximum likelihood (ML) estimation, maximum entropy estimation, starting from a non-informative 'pre-prior', and fitting a prior based on confidence/credible interval matching. The priors resulting from the use of these different methods are compared qualitatively, and the posteriors are compared quantitatively based on a number of different scenarios of observed data used to update the priors. The results show that the amount of information assumed in the prior makes a critical difference in the accuracy of the posterior inferences. For situations in which the data used to formulate the informative prior is an accurate reflection of the data that is later observed, the ML approach yields the minimum variance posterior. However, the maximum entropy approach is more robust to differences between the data used to formulate the prior and the observed data because it maximizes the uncertainty in the prior subject to the constraints imposed by the past data

  4. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    Kondakci, Suleyman

    2015-01-01

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  5. Reliability analysis and computation of computer-based safety instrumentation and control used in German nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Ding, Yongjian; Krause, Ulrich; Gu, Chunlei

    2014-01-01

    extended according to cope with special needs of the digital safety I and C system. The new modelling method based on fault tree analysis (FTA) combined with MCBFR model is provided and validated by a real example system from an industrial partner. The reliability data are taken from a platform specific data base of the industrial partner and an international generic data base. The results demonstrate the applicability of the new approach although the modelling quality is strongly dependent on the observed failure cases from the plant operation. Therefore more failure data of safety I and C should be collected in the future. This report is the final project report.

  6. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  7. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  8. Reliability and validity of risk analysis

    International Nuclear Information System (INIS)

    Aven, Terje; Heide, Bjornar

    2009-01-01

    In this paper we investigate to what extent risk analysis meets the scientific quality requirements of reliability and validity. We distinguish between two types of approaches within risk analysis, relative frequency-based approaches and Bayesian approaches. The former category includes both traditional statistical inference methods and the so-called probability of frequency approach. Depending on the risk analysis approach, the aim of the analysis is different, the results are presented in different ways and consequently the meaning of the concepts reliability and validity are not the same.

  9. An enhanced unified uncertainty analysis approach based on first order reliability method with single-level optimization

    International Nuclear Information System (INIS)

    Yao, Wen; Chen, Xiaoqian; Huang, Yiyong; Tooren, Michel van

    2013-01-01

    In engineering, there exist both aleatory uncertainties due to the inherent variation of the physical system and its operational environment, and epistemic uncertainties due to lack of knowledge and which can be reduced with the collection of more data. To analyze the uncertain distribution of the system performance under both aleatory and epistemic uncertainties, combined probability and evidence theory can be employed to quantify the compound effects of the mixed uncertainties. The existing First Order Reliability Method (FORM) based Unified Uncertainty Analysis (UUA) approach nests the optimization based interval analysis in the improved Hasofer–Lind–Rackwitz–Fiessler (iHLRF) algorithm based Most Probable Point (MPP) searching procedure, which is computationally inhibitive for complex systems and may encounter convergence problem as well. Therefore, in this paper it is proposed to use general optimization solvers to search MPP in the outer loop and then reformulate the double-loop optimization problem into an equivalent single-level optimization (SLO) problem, so as to simplify the uncertainty analysis process, improve the robustness of the algorithm, and alleviate the computational complexity. The effectiveness and efficiency of the proposed method is demonstrated with two numerical examples and one practical satellite conceptual design problem. -- Highlights: ► Uncertainty analysis under mixed aleatory and epistemic uncertainties is studied. ► A unified uncertainty analysis method is proposed with combined probability and evidence theory. ► The traditional nested analysis method is converted to single level optimization for efficiency. ► The effectiveness and efficiency of the proposed method are testified with three examples

  10. Reliability analysis of a gravity-based foundation for wind turbines

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammad Javad; Griffiths, D. V.; Andersen, Lars Vabbersgaard

    2014-01-01

    its bearing capacity, is used to calibrate a code-based design procedure. A probabilistic finite element model is developed to analyze the bearing capacity of a surface footing on soil with spatially variable undrained strength. Monte Carlo simulation is combined with a re-sampling simulation...

  11. Research on the Reliability Analysis of the Integrated Modular Avionics System Based on the AADL Error Model

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2018-01-01

    Full Text Available In recent years, the integrated modular avionics (IMA concept has been introduced to replace the traditional federated avionics. Different avionics functions are hosted in a shared IMA platform, and IMA adopts partition technologies to provide a logical isolation among different functions. The IMA architecture can provide more sophisticated and powerful avionics functionality; meanwhile, the failure propagation patterns in IMA are more complex. The feature of resource sharing introduces some unintended interconnections among different functions, which makes the failure propagation modes more complex. Therefore, this paper proposes an architecture analysis and design language- (AADL- based method to establish the reliability model of IMA platform. The single software and hardware error behavior in IMA system is modeled. The corresponding AADL error model of failure propagation among components, between software and hardware, is given. Finally, the display function of IMA platform is taken as an example to illustrate the effectiveness of the proposed method.

  12. Nuclear reactor component populations, reliability data bases, and their relationship to failure rate estimation and uncertainty analysis

    International Nuclear Information System (INIS)

    Martz, H.F.; Beckman, R.J.

    1981-12-01

    Probabilistic risk analyses are used to assess the risks inherent in the operation of existing and proposed nuclear power reactors. In performing such risk analyses the failure rates of various components which are used in a variety of reactor systems must be estimated. These failure rate estimates serve as input to fault trees and event trees used in the analyses. Component failure rate estimation is often based on relevant field failure data from different reliability data sources such as LERs, NPRDS, and the In-Plant Data Program. Various statistical data analysis and estimation methods have been proposed over the years to provide the required estimates of the component failure rates. This report discusses the basis and extent to which statistical methods can be used to obtain component failure rate estimates. The report is expository in nature and focuses on the general philosophical basis for such statistical methods. Various terms and concepts are defined and illustrated by means of numerous simple examples

  13. Analysis of reliability of professor recommendation letters based on concordance with self-introduction letter.

    Science.gov (United States)

    Kim, Sang Hyun

    2013-12-01

    The purpose of this study was to examine the concordance between a checklist's categories of professor recommendation letters and characteristics of the self-introduction letter. Checklists of professor recommendation letters were analyzed and classified into cognitive, social, and affective domains. Simple correlation was performed to determine whether the characteristics of the checklists were concordant with those of the self-introduction letter. The difference in ratings of the checklists by pass or fail grades was analyzed by independent sample t-test. Logistic regression analysis was performed to determine whether a pass or fail grade was influenced by ratings on the checklists. The Cronbach alpha value of the checklists was 0.854. Initiative, as an affective domain, in the professor's recommendation letter was highly ranked among the six checklist categories. Self-directed learning in the self-introduction letter was influenced by a pass or fail grade by logistic regression analysis (pprofessor recommendation letters and the sum of all characteristics in the self-introduction letter.

  14. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    Science.gov (United States)

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  15. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...

  16. Reliability Analysis of a Steel Frame

    Directory of Open Access Journals (Sweden)

    M. Sýkora

    2002-01-01

    Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.

  17. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  18. Reliability analysis of the multi purposes reactor G.A. siwabessy (MPR.GAS) using data base

    International Nuclear Information System (INIS)

    Handoyo, Demon; Tjahjani, D.T. Sony; M, Dwijo; K, Slamet

    1999-01-01

    The purpose of development of the MPR GAS component and system data base is to know characteristic of reliability of component and system of the MPR GAS. The analysis have been done base on component operating experiences and the data collection from the operation logbook. The operation data provide values such as: the operation time of component, number of failure, number of demand and number of the component of MPR GAS. Number of failure rate from 1990 until 1998/99 of pumps in fuel Storage Pool Purification System (FAK-AP) = 0.65∼2.1 10-4/hr, Primary Cooling System (JE01-AP) = 0.54∼6.9 10-4/hr, Primary Pool Purification System (KBE01- AP) = 0.23∼0.,26 10-4/hr, Warm layer System (KBE02-AP)= 0.88∼1.9 10-4/hr,Cooling tower (PA/D-AH)=0.88∼3.8 10-4/hr, Secondary Cooling System 9PA-AP)=0.94∼3.5 10-4/hr and Genset (BRV)= 0.2∼2.4 10-2 /demand. The data of failure probability of pump from IAEA-TECDOC-478 is 1 10-6 ∼ 2.9 10-5/hr, and of failure probability of genset from IAEA-TECDOC-478 is 2.9 10-3 ∼ 3 10-2/demand

  19. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  20. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  1. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    Hall, R.E.

    1985-01-01

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  2. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  3. Experience based reliability centered maintenance

    International Nuclear Information System (INIS)

    Haenninen, S.; Laakso, K.

    1993-03-01

    The systematic analysis and documentation of operating experiences should be included in a living NPP life management program. Failure mode and effects and maintenance effects analyses are suitable methods for analysis of the failure and corrective maintenance experiences of equipment. Combined use of the information on occurred functional failures and the decision tree logic of the reliability centered maintenance identifies applicable and effective preventive maintenance tasks of equipment in an old plant. In this study the electrical motor drives of closing and isolation valves (MOV) of TVO and Loviisa nuclear power plants were selected to serve as pilot study objects. The study was limited to valve drives having actuators manufactured by AUMA in Germany. The fault and maintenance history of MOVs from 1981 up to and including October 1991 in different safety and process systems at TVO 1 and 2 nuclear power units was at first analyzed in a systematic way. The scope of the components studied was 81 MOVs in safety-related systems and 127 other MOVs per each TVO unit. In the case of the Loviisa plant, the observation period was limited to three years, i.e. from February 1989 up to February 1992. The scope of the Loviisa 1 and 2 components studied was 44 respectively 95 MOVs. (25 refs., 22 figs., 8 tabs.)

  4. Fault tolerant control of a three-phase three-wire shunt active filter system based on reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy LIEN, EA 3440, Nancy-Universite, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France); Weber, P.; Theilliol, D. [Centre de Recherche en Automatique de Nancy UMR 7039, Nancy-Universite, CNRS, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France); Saadate, S. [Groupe de Recherches en Electrotechnique et Electronique de Nancy UMR 7037, Nancy-Universite, CNRS, Faculte des Sciences et Techniques, BP 239, 54506 Vandoeuvre Cedex (France)

    2009-02-15

    This paper deals with fault tolerant shunt three-phase three-wire active filter topologies for which reliability is very important in industry applications. The determination of the optimal reconfiguration structure among various ones with or without redundant components is discussed based on reliability criteria. First, the reconfiguration of the inverter is detailed and a fast fault diagnosis method for power semi-conductor or driver fault detection and compensation is presented. This method avoids false fault detection due to power semi-conductors switching. The control architecture and algorithm are studied and a fault tolerant control strategy is considered. Simulation results in open and short circuit cases validate the theoretical study. Finally, the reliability of the studied three-phase three-wire filter shunt active topologies is analyzed to determine the optimal one. (author)

  5. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  6. An integrated reliability-based design optimization of offshore towers

    International Nuclear Information System (INIS)

    Karadeniz, Halil; Togan, Vedat; Vrouwenvelder, Ton

    2009-01-01

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  7. An integrated reliability-based design optimization of offshore towers

    Energy Technology Data Exchange (ETDEWEB)

    Karadeniz, Halil [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)], E-mail: h.karadeniz@tudelft.nl; Togan, Vedat [Department of Civil Engineering, Karadeniz Technical University, Trabzon (Turkey); Vrouwenvelder, Ton [Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft (Netherlands)

    2009-10-15

    After recognizing the uncertainty in the parameters such as material, loading, geometry and so on in contrast with the conventional optimization, the reliability-based design optimization (RBDO) concept has become more meaningful to perform an economical design implementation, which includes a reliability analysis and an optimization algorithm. RBDO procedures include structural analysis, reliability analysis and sensitivity analysis both for optimization and for reliability. The efficiency of the RBDO system depends on the mentioned numerical algorithms. In this work, an integrated algorithms system is proposed to implement the RBDO of the offshore towers, which are subjected to the extreme wave loading. The numerical strategies interacting with each other to fulfill the RBDO of towers are as follows: (a) a structural analysis program, SAPOS, (b) an optimization program, SQP and (c) a reliability analysis program based on FORM. A demonstration of an example tripod tower under the reliability constraints based on limit states of the critical stress, buckling and the natural frequency is presented.

  8. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  9. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  10. A fuzzy-based reliability approach to evaluate basic events of fault tree analysis for nuclear power plant probabilistic safety assessment

    International Nuclear Information System (INIS)

    Purba, Julwan Hendry

    2014-01-01

    Highlights: • We propose a fuzzy-based reliability approach to evaluate basic event reliabilities. • It implements the concepts of failure possibilities and fuzzy sets. • Experts evaluate basic event failure possibilities using qualitative words. • Triangular fuzzy numbers mathematically represent qualitative failure possibilities. • It is a very good alternative for conventional reliability approach. - Abstract: Fault tree analysis has been widely utilized as a tool for nuclear power plant probabilistic safety assessment. This analysis can be completed only if all basic events of the system fault tree have their quantitative failure rates or failure probabilities. However, it is difficult to obtain those failure data due to insufficient data, environment changing or new components. This study proposes a fuzzy-based reliability approach to evaluate basic events of system fault trees whose failure precise probability distributions of their lifetime to failures are not available. It applies the concept of failure possibilities to qualitatively evaluate basic events and the concept of fuzzy sets to quantitatively represent the corresponding failure possibilities. To demonstrate the feasibility and the effectiveness of the proposed approach, the actual basic event failure probabilities collected from the operational experiences of the David–Besse design of the Babcock and Wilcox reactor protection system fault tree are used to benchmark the failure probabilities generated by the proposed approach. The results confirm that the proposed fuzzy-based reliability approach arises as a suitable alternative for the conventional probabilistic reliability approach when basic events do not have the corresponding quantitative historical failure data for determining their reliability characteristics. Hence, it overcomes the limitation of the conventional fault tree analysis for nuclear power plant probabilistic safety assessment

  11. Cost analysis of reliability investigations

    International Nuclear Information System (INIS)

    Schmidt, F.

    1981-01-01

    Taking Epsteins testing theory as a basis, premisses are formulated for the selection of cost-optimized reliability inspection plans. Using an example, the expected testing costs and inspection time periods of various inspection plan types, standardized on the basis of the exponential distribution, are compared. It can be shown that sequential reliability tests usually involve lower costs than failure or time-fixed tests. The most 'costly' test is to be expected with the inspection plan type NOt. (orig.) [de

  12. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  13. Reliability-based optimization of engineering structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    The theoretical basis for reliability-based structural optimization within the framework of Bayesian statistical decision theory is briefly described. Reliability-based cost benefit problems are formulated and exemplitied with structural optimization. The basic reliability-based optimization...... problems are generalized to the following extensions: interactive optimization, inspection and repair costs, systematic reconstruction, re-assessment of existing structures. Illustrative examples are presented including a simple introductory example, a decision problem related to bridge re...

  14. Reliability Analysis of Money Habitudes

    Science.gov (United States)

    Delgadillo, Lucy M.; Bushman, Brittani S.

    2015-01-01

    Use of the Money Habitudes exercise has gained popularity among various financial professionals. This article reports on the reliability of this resource. A survey administered to young adults at a western state university was conducted, and each Habitude or "domain" was analyzed using Cronbach's alpha procedures. Results showed all six…

  15. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    OpenAIRE

    Hai An; Ling Zhou; Hui Sun

    2016-01-01

    Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new...

  16. Subset simulation for structural reliability sensitivity analysis

    International Nuclear Information System (INIS)

    Song Shufang; Lu Zhenzhou; Qiao Hongwei

    2009-01-01

    Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes

  17. Method for analysis and assessment of the relation between stress and reliability of knowledge-based actions in the probabilistic safety analysis

    International Nuclear Information System (INIS)

    Fassmann, Werner

    2014-06-01

    According to the current theoretical and empirical state-of-the-art, stress has to be understood as the emotional and cognitive reaction by which humans adapt to situations which imply real or imagined danger, threat, or frustration of important personal goals or needs. The emotional reaction to such situations can be so extreme that rational coping with the situation will be precluded. In less extreme cases, changes of cognitive processes underlying human action will occur, which may systematically affect the reliability of tasks personnel has to perform in a stressful situation. Reliable task performance by personnel of nuclear power plants and other risk technologies is also affected by such effects. The method developed in the frame of the research and development project RS1198 sponsored by the German Federal Ministry for Economic Affairs and Energy (BMWi) addresses both aspects of emotional and cognitive coping with stressful situations. Analytical and evaluation steps of the approach provide guidance to the end users on how to capture and quantify the contribution of stress-related emotional and cognitive factors to the reliable performance of knowledge-based actions. For this purpose, a suitable guideline has been developed. Further research for clarifying open questions has been identified. A case study application illustrates how to use the method. Part of the work performed in this project was dedicated to a review addressing the question to which extent Swain's approach to the analysis and evaluation of stress is in line with current scientific knowledge. Suitable suggestions for updates have been developed.

  18. Development of web-based reliability data base platform

    International Nuclear Information System (INIS)

    Hwang, Seok Won; Lee, Chang Ju; Sung, Key Yong

    2004-01-01

    Probabilistic safety assessment (PSA) is a systematic technique which estimates the degree of risk impacts to the public due to an accident scenario. Estimating the occurrence frequencies and consequences of potential scenarios requires a thorough analysis of the accident details and all fundamental parameters. The robustness of PSA to check weaknesses in a design and operation will allow a better informed and balanced decision to be reached. The fundamental parameters for PSA, such as the component failure rates, should be estimated under the condition of steady collection of the evidence throughout the operational period. However, since any single plant data does not sufficiently enough to provide an adequate PSA result, in actual, the whole operating data was commonly used to estimate the reliability parameters for the same type of components. The reliability data of any component type consists of two categories; the generic that is based on the operating experiences of whole plants, and the plant-specific that is based on the operation of a specific plant of interest. The generic data is highly essential for new or recently-built nuclear power plants (NPPs). Generally, the reliability data base may be categorized into the component reliability, initiating event frequencies, human performance, and so on. Among these data, the component reliability seems a key element because it has the most abundant population. Therefore, the component reliability data is essential for taking a part in the quantification of accident sequences because it becomes an input of various basic events which consists of the fault tree

  19. Design and reliability analysis of high-speed and continuous data recording system based on disk array

    Science.gov (United States)

    Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo

    2002-12-01

    In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.

  20. Mechanical reliability analysis of tubes intended for hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nahal, Mourad; Khelif, Rabia [Badji Mokhtar University, Annaba (Algeria)

    2013-02-15

    Reliability analysis constitutes an essential phase in any study concerning reliability. Many industrialists evaluate and improve the reliability of their products during the development cycle - from design to startup (design, manufacture, and exploitation) - to develop their knowledge on cost/reliability ratio and to control sources of failure. In this study, we obtain results for hardness, tensile, and hydrostatic tests carried out on steel tubes for transporting hydrocarbons followed by statistical analysis. Results obtained allow us to conduct a reliability study based on resistance request. Thus, index of reliability is calculated and the importance of the variables related to the tube is presented. Reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. Residual stress has been found to greatly increase probability of failure, especially in the early stages of pipe lifetime.

  1. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    1993-01-01

    Reliability-based design of structural systems is considered. In particular, systems where the reliability model is a series system of parallel systems are treated. A sensitivity analysis for this class of problems is presented. Optimization problems with series systems of parallel systems...... optimization of series systems of parallel systems, but it is also efficient in reliability-based optimization of series systems in general....

  2. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  3. Integrated Reliability and Risk Analysis System (IRRAS)

    International Nuclear Information System (INIS)

    Russell, K.D.; McKay, M.K.; Sattison, M.B.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1992-01-01

    The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the user the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification. Version 1.0 of the IRRAS program was released in February of 1987. Since that time, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 4.0 and is the subject of this Reference Manual. Version 4.0 of IRRAS provides the same capabilities as Version 1.0 and adds a relational data base facility for managing the data, improved functionality, and improved algorithm performance

  4. Measurement-based reliability/performability models

    Science.gov (United States)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  5. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Ames, K.R.; Gallucci, R.H.

    1985-06-01

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report

  6. Human Reliability Analysis For Computerized Procedures

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Gertman, David I.; Le Blanc, Katya

    2011-01-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  7. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  8. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  9. Reliability analysis using network simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1985-01-01

    The models that can be used to provide estimates of the reliability of nuclear power systems operate at many different levels of sophistication. The least-sophisticated models treat failure processes that entail only time-independent phenomena (such as demand failure). More advanced models treat processes that also include time-dependent phenomena such as run failure and possibly repair. However, many of these dynamic models are deficient in some respects because they either disregard the time-dependent phenomena that cannot be expressed in closed-form analytic terms or because they treat these phenomena in quasi-static terms. The next level of modeling requires a dynamic approach that incorporates not only procedures for treating all significant time-dependent phenomena but also procedures for treating these phenomena when they are conditionally linked or characterized by arbitrarily selected probability distributions. The level of sophistication that is required is provided by a dynamic, Monte Carlo modeling approach. A computer code that uses a dynamic, Monte Carlo modeling approach is Q-GERT (Graphical Evaluation and Review Technique - with Queueing), and the present study had demonstrated the feasibility of using Q-GERT for modeling time-dependent, unconditionally and conditionally linked phenomena that are characterized by arbitrarily selected probability distributions

  10. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  11. Reliability-Based Optimization of Series Systems of Parallel Systems

    DEFF Research Database (Denmark)

    Enevoldsen, I.; Sørensen, John Dalsgaard

    Reliability-based design of structural systems is considered. Especially systems where the reliability model is a series system of parallel systems are analysed. A sensitivity analysis for this class of problems is presented. Direct and sequential optimization procedures to solve the optimization...

  12. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  13. Simulation Approach to Mission Risk and Reliability Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...

  14. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2013-01-01

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  15. Reliability assessment based on subjective inferences

    International Nuclear Information System (INIS)

    Ma Zhibo; Zhu Jianshi; Xu Naixin

    2003-01-01

    The reliability information which comes from subjective analysis is often incomplete prior. This information can be generally assumed to exist in the form of either a stated prior mean of R (reliability) or a stated prior credibility interval on R. An efficient approach is developed to determine a complete beta prior distribution from the subjective information according to the principle of maximum entropy, and the the reliability of survival/failure product is assessed via Bayes theorem. Numerical examples are presented to illustrate the methods

  16. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: an analysis of an iphone® application and gravity based inclinometry.

    Science.gov (United States)

    Kolber, Morey J; Pizzini, Matias; Robinson, Ashley; Yanez, Dania; Hanney, William J

    2013-04-01

    PURPOSEAIM: This purpose of this study was to investigate the reliability, minimal detectable change (MDC), and concurrent validity of active spinal mobility measurements using a gravity-based bubble inclinometer and iPhone® application. MATERIALSMETHODS: Two investigators each used a bubble inclinometer and an iPhone® with inclinometer application to measure total thoracolumbo-pelvic flexion, isolated lumbar flexion, total thoracolumbo-pelvic extension, and thoracolumbar lateral flexion in 30 asymptomatic participants using a blinded repeated measures design. The procedures used in this investigation for measuring spinal mobility yielded good intrarater and interrater reliability with Intraclass Correlation Coefficients (ICC) for bubble inclinometry ≥ 0.81 and the iPhone® ≥ 0.80. The MDC90 for the interrater analysis ranged from 4° to 9°. The concurrent validity between bubble inclinometry and the iPhone® application was good with ICC values of ≥ 0.86. The 95% level of agreement indicates that although these measuring instruments are equivalent individual differences of up to 18° may exist when using these devices interchangeably. The bubble inclinometer and iPhone® possess good intrarater and interrater reliability as well as concurrent validity when strict measurement procedures are adhered to. This study provides preliminary evidence to suggest that smart phone applications may offer clinical utility comparable to inclinometry for quantifying spinal mobility. Clinicians should be aware of the potential disagreement when using these devices interchangeably. 2b (Observational study of reliability).

  17. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  18. Reliability data bases: the current picture

    International Nuclear Information System (INIS)

    Fragola, J.R.

    1985-01-01

    The paper addresses specific advances in nuclear power plant reliability data base development, a critical review of a select set of relevant data bases and suggested future data bases and suggested future data development needs required for risk assessment techniques to reach full potential

  19. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  20. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  1. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  2. Enhanced DET-Based Fault Signature Analysis for Reliable Diagnosis of Single and Multiple-Combined Bearing Defects

    Directory of Open Access Journals (Sweden)

    In-Kyu Jeong

    2015-01-01

    Full Text Available To early identify cylindrical roller bearing failures, this paper proposes a comprehensive bearing fault diagnosis method, which consists of spectral kurtosis analysis for finding the most informative subband signal well representing abnormal symptoms about the bearing failures, fault signature calculation using this subband signal, enhanced distance evaluation technique- (EDET- based fault signature analysis that outputs the most discriminative fault features for accurate diagnosis, and identification of various single and multiple-combined cylindrical roller bearing defects using the simplified fuzzy adaptive resonance map (SFAM. The proposed comprehensive bearing fault diagnosis methodology is effective for accurate bearing fault diagnosis, yielding an average classification accuracy of 90.35%. In this paper, the proposed EDET specifically addresses shortcomings in the conventional distance evaluation technique (DET by accurately estimating the sensitivity of each fault signature for each class. To verify the efficacy of the EDET-based fault signature analysis for accurate diagnosis, a diagnostic performance comparison is carried between the proposed EDET and the conventional DET in terms of average classification accuracy. In fact, the proposed EDET achieves up to 106.85% performance improvement over the conventional DET in average classification accuracy.

  3. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  4. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  5. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  6. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  7. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  8. Component fragility data base for reliability and probability studies

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Hofmayer, C.; Kassier, M.; Pepper, S.

    1989-01-01

    Safety-related equipment in a nuclear plant plays a vital role in its proper operation and control, and failure of such equipment due to an earthquake may pose a risk to the safe operation of the plant. Therefore, in order to assess the overall reliability of a plant, the reliability of performance of the equipment should be studied first. The success of a reliability or a probability study depends to a great extent on the data base. To meet this demand, Brookhaven National Laboratory (BNL) has formed a test data base relating the seismic capacity of equipment specimens to the earthquake levels. Subsequently, the test data have been analyzed for use in reliability and probability studies. This paper describes the data base and discusses the analysis methods. The final results that can be directly used in plant reliability and probability studies are also presented in this paper

  9. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  10. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  11. Space Mission Human Reliability Analysis (HRA) Project

    Science.gov (United States)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  12. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  13. Reliability Analysis Of The Multi Purposes Reactor G.A Siwabessy (MPR-GAS) Using Data Base

    International Nuclear Information System (INIS)

    Handoyo, Demon; Puradwi, I.W; Sriyono; Mulyanto, Dwijo; Kusmono, Slamet

    2000-01-01

    The analysis have been done base on component operating experiences and the data collection from the operation logbook of MPR GAS. Number of failure rate from 1990 until 1999/2000 of pumps in Fuel Storage Pool Purification System (FAK-AP) = 0,75∼2,5 10 exp.-4/hr, Primary Cooling System (JE01-AP)0,58∼7,1 10 exp.-4/hr, Primary Pool Purification System (KBE01-AP)0,2∼0,26 10 exp.-4/hr, Warm Layer System (KBE02-AP)0,8∼1,9 10 exp.-4/hr, Cooling Tower (PA/D-AH)= 0,85∼3,3 10 exp.-4/hr, Secondary Cooling System (PA-AP)0,91∼3,5 10 exp.-4/hr and Gen set (BRV)= 0,2∼2,2 10 exp.-2 /demand. The data of failure probability of pump from IAEA - TECDOC - 478 IS 1 10 exp.-6 ∼ 2.9 10 exp.-5 /hr, and of failure probability of gen set from IAEA - TECDOC -478 is 2.9 10 exp.-3 ∼ 3 10 exp.-2 /demand. From the result can be known that the estimation of number of failure rate in 1999/2000 is not so different if is compared with the last year estimation of number of failure rate

  14. Representative Sampling for reliable data analysis

    DEFF Research Database (Denmark)

    Petersen, Lars; Esbensen, Kim Harry

    2005-01-01

    regime in order to secure the necessary reliability of: samples (which must be representative, from the primary sampling onwards), analysis (which will not mean anything outside the miniscule analytical volume without representativity ruling all mass reductions involved, also in the laboratory) and data...

  15. Reliability-Based Optimization of Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Tarp-Johansen, N.J.

    2004-01-01

    Reliability-based optimization of the main tower and monopile foundation of an offshore wind turbine is considered. Different formulations are considered of the objective function including benefits and building and failure costs of the wind turbine. Also different reconstruction policies in case...

  16. Reliability demonstration test planning using bayesian analysis

    International Nuclear Information System (INIS)

    Chandran, Senthil Kumar; Arul, John A.

    2003-01-01

    In Nuclear Power Plants, the reliability of all the safety systems is very critical from the safety viewpoint and it is very essential that the required reliability requirements be met while satisfying the design constraints. From practical experience, it is found that the reliability of complex systems such as Safety Rod Drive Mechanism is of the order of 10 -4 with an uncertainty factor of 10. To demonstrate the reliability of such systems is prohibitive in terms of cost and time as the number of tests needed is very large. The purpose of this paper is to develop a Bayesian reliability demonstrating testing procedure for exponentially distributed failure times with gamma prior distribution on the failure rate which can be easily and effectively used to demonstrate component/subsystem/system reliability conformance to stated requirements. The important questions addressed in this paper are: With zero failures, how long one should perform the tests and how many components are required to conclude with a given degree of confidence, that the component under test, meets the reliability requirement. The procedure is explained with an example. This procedure can also be extended to demonstrate with more number of failures. The approach presented is applicable for deriving test plans for demonstrating component failure rates of nuclear power plants, as the failure data for similar components are becoming available in existing plants elsewhere. The advantages of this procedure are the criterion upon which the procedure is based is simple and pertinent, the fitting of the prior distribution is an integral part of the procedure and is based on the use of information regarding two percentiles of this distribution and finally, the procedure is straightforward and easy to apply in practice. (author)

  17. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... tasks, namely finite element analyses, sensitivity analyses, reliability analyses and application of an optimization algorithm. In the paper it is shown how these four tasks can be linked effectively and how existing information on design variables, Lagrange multipliers and the Hessian matrix can...

  18. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  19. Prime implicants in dynamic reliability analysis

    International Nuclear Information System (INIS)

    Tyrväinen, Tero

    2016-01-01

    This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.

  20. Bypassing BDD Construction for Reliability Analysis

    DEFF Research Database (Denmark)

    Williams, Poul Frederick; Nikolskaia, Macha; Rauzy, Antoine

    2000-01-01

    In this note, we propose a Boolean Expression Diagram (BED)-based algorithm to compute the minimal p-cuts of boolean reliability models such as fault trees. BEDs make it possible to bypass the Binary Decision Diagram (BDD) construction, which is the main cost of fault tree assessment....

  1. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  2. Review of cause-based decision tree approach for the development of domestic standard human reliability analysis procedure in low power/shutdown operation probabilistic safety assessment

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2003-01-01

    We review the Cause-Based Decision Tree (CBDT) approach to decide whether we incorporate it or not for the development of domestic standard Human Reliability Analysis (HRA) procedure in low power/shutdown operation Probabilistic Safety Assessment (PSA). In this paper, we introduce the cause based decision tree approach, quantify human errors using it, and identify merits and demerits of it in comparision with previously used THERP. The review results show that it is difficult to incorporate the CBDT method for the development of domestic standard HRA procedure in low power/shutdown PSA because the CBDT method need for the subjective judgment of HRA analyst like as THERP. However, it is expected that the incorporation of the CBDT method into the development of domestic standard HRA procedure only for the comparision of quantitative HRA results will relieve the burden of development of detailed HRA procedure and will help maintain consistent quantitative HRA results

  3. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    International Nuclear Information System (INIS)

    Joe, Jeffrey Clark; Boring, Ronald Laurids; Herberger, Sarah Elizabeth Marie; Mandelli, Diego; Smith, Curtis Lee

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS 'pathways,' or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  4. Proof-of-Concept Demonstrations for Computation-Based Human Reliability Analysis. Modeling Operator Performance During Flooding Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herberger, Sarah Elizabeth Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program has the overall objective to help sustain the existing commercial nuclear power plants (NPPs). To accomplish this program objective, there are multiple LWRS “pathways,” or research and development (R&D) focus areas. One LWRS focus area is called the Risk-Informed Safety Margin and Characterization (RISMC) pathway. Initial efforts under this pathway to combine probabilistic and plant multi-physics models to quantify safety margins and support business decisions also included HRA, but in a somewhat simplified manner. HRA experts at Idaho National Laboratory (INL) have been collaborating with other experts to develop a computational HRA approach, called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER), for inclusion into the RISMC framework. The basic premise of this research is to leverage applicable computational techniques, namely simulation and modeling, to develop and then, using RAVEN as a controller, seamlessly integrate virtual operator models (HUNTER) with 1) the dynamic computational MOOSE runtime environment that includes a full-scope plant model, and 2) the RISMC framework PRA models already in use. The HUNTER computational HRA approach is a hybrid approach that leverages past work from cognitive psychology, human performance modeling, and HRA, but it is also a significant departure from existing static and even dynamic HRA methods. This report is divided into five chapters that cover the development of an external flooding event test case and associated statistical modeling considerations.

  5. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    1984-10-01

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  6. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  7. A Reliability Based Model for Wind Turbine Selection

    Directory of Open Access Journals (Sweden)

    A.K. Rajeevan

    2013-06-01

    Full Text Available A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.

  8. Reliability analysis and updating of deteriorating systems with subset simulation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Straub, Daniel

    2017-01-01

    An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....

  9. Developing safety performance functions incorporating reliability-based risk measures.

    Science.gov (United States)

    Ibrahim, Shewkar El-Bassiouni; Sayed, Tarek

    2011-11-01

    Current geometric design guides provide deterministic standards where the safety margin of the design output is generally unknown and there is little knowledge of the safety implications of deviating from these standards. Several studies have advocated probabilistic geometric design where reliability analysis can be used to account for the uncertainty in the design parameters and to provide a risk measure of the implication of deviation from design standards. However, there is currently no link between measures of design reliability and the quantification of safety using collision frequency. The analysis presented in this paper attempts to bridge this gap by incorporating a reliability-based quantitative risk measure such as the probability of non-compliance (P(nc)) in safety performance functions (SPFs). Establishing this link will allow admitting reliability-based design into traditional benefit-cost analysis and should lead to a wider application of the reliability technique in road design. The present application is concerned with the design of horizontal curves, where the limit state function is defined in terms of the available (supply) and stopping (demand) sight distances. A comprehensive collision and geometric design database of two-lane rural highways is used to investigate the effect of the probability of non-compliance on safety. The reliability analysis was carried out using the First Order Reliability Method (FORM). Two Negative Binomial (NB) SPFs were developed to compare models with and without the reliability-based risk measures. It was found that models incorporating the P(nc) provided a better fit to the data set than the traditional (without risk) NB SPFs for total, injury and fatality (I+F) and property damage only (PDO) collisions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sensitivity analysis in a structural reliability context

    International Nuclear Information System (INIS)

    Lemaitre, Paul

    2014-01-01

    This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)

  11. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    Heslinga, G.

    1983-01-01

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  12. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  13. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  14. Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the Risk-Informed Safety Margin Characterization Toolkit

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Rasmussen, Martin; Ulrich, Thomas; Groth, Katrina; Smith, Curtis

    2016-01-01

    This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: • Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.

  15. Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the Risk-Informed Safety Margin Characterization Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rasmussen, Martin [Norwegian Univ. of Science and Technology, Trondheim (Norway). Social Research; Herberger, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: • Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.

  16. Reliability Analysis Based on a Jump Diffusion Model with Two Wiener Processes for Cloud Computing with Big Data

    Directory of Open Access Journals (Sweden)

    Yoshinobu Tamura

    2015-06-01

    Full Text Available At present, many cloud services are managed by using open source software, such as OpenStack and Eucalyptus, because of the unification management of data, cost reduction, quick delivery and work savings. The operation phase of cloud computing has a unique feature, such as the provisioning processes, the network-based operation and the diversity of data, because the operation phase of cloud computing changes depending on many external factors. We propose a jump diffusion model with two-dimensional Wiener processes in order to consider the interesting aspects of the network traffic and big data on cloud computing. In particular, we assess the stability of cloud software by using the sample paths obtained from the jump diffusion model with two-dimensional Wiener processes. Moreover, we discuss the optimal maintenance problem based on the proposed jump diffusion model. Furthermore, we analyze actual data to show numerical examples of dependability optimization based on the software maintenance cost considering big data on cloud computing.

  17. A study of operational and testing reliability in software reliability analysis

    International Nuclear Information System (INIS)

    Yang, B.; Xie, M.

    2000-01-01

    Software reliability is an important aspect of any complex equipment today. Software reliability is usually estimated based on reliability models such as nonhomogeneous Poisson process (NHPP) models. Software systems are improving in testing phase, while it normally does not change in operational phase. Depending on whether the reliability is to be predicted for testing phase or operation phase, different measure should be used. In this paper, two different reliability concepts, namely, the operational reliability and the testing reliability, are clarified and studied in detail. These concepts have been mixed up or even misused in some existing literature. Using different reliability concept will lead to different reliability values obtained and it will further lead to different reliability-based decisions made. The difference of the estimated reliabilities is studied and the effect on the optimal release time is investigated

  18. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  19. Qualitative analysis in reliability and safety studies

    International Nuclear Information System (INIS)

    Worrell, R.B.; Burdick, G.R.

    1976-01-01

    The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs

  20. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    Castillo, Enrique; Minguez, Roberto; Castillo, Carmen

    2008-01-01

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  1. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  2. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  3. Reliability Based Optimization of Fire Protection

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    fire protection (PFP) of firewalls and structural members. The paper is partly based on research performed within the EU supported research project B/E-4359 "Optimized Fire Safety of Offshore Structures" and partly on research supported by the Danish Technical Research Council (see Thoft-Christensen [1......]). Special emphasis is put on the optimization software developed within the project.......It is well known that fire is one of the major risks of serious damage or total loss of several types of structures such as nuclear installations, buildings, offshore platforms/topsides etc. This paper presents a methodology and software for reliability based optimization of the layout of passive...

  4. Interactive Reliability-Based Optimization of Structural Systems

    DEFF Research Database (Denmark)

    Pedersen, Claus

    In order to introduce the basic concepts within the field of reliability-based structural optimization problems, this chapter is devoted to a brief outline of the basic theories. Therefore, this chapter is of a more formal nature and used as a basis for the remaining parts of the thesis. In section...... 2.2 a general non-linear optimization problem and corresponding terminology are presented whereupon optimality conditions and the standard form of an iterative optimization algorithm are outlined. Subsequently, the special properties and characteristics concerning structural optimization problems...... are treated in section 2.3. With respect to the reliability evalutation, the basic theory behind a reliability analysis and estimation of probability of failure by the First-Order Reliability Method (FORM) and the iterative Rackwitz-Fiessler (RF) algorithm are considered in section 2.5 in which...

  5. A taxonomy for human reliability analysis

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.

    1984-01-01

    A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized

  6. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  7. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Counts, C.A.

    1984-06-01

    The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references

  8. IAEA's experience in compiling a generic component reliability data base

    International Nuclear Information System (INIS)

    Tomic, B.; Lederman, L.

    1991-01-01

    Reliability data are essential in probabilistic safety assessment, with component reliability parameters being particularly important. Component failure data which is plant specific would be most appropriate but this is rather limited. However, similar components are used in different designs. Generic data, that is all data that is not plant specific to the plant being analyzed but which relates to components more generally, is important. The International Atomic Energy Agency has compiled the Generic Component Reliability Data Base from data available in the open literature. It is part of the IAEA computer code package for fault/event tree analysis. The Data Base contains 1010 different records including most of the components used in probabilistic safety analyses of nuclear power plants. The data base input was quality controlled and data sources noted. The data compilation procedure and problems associated with using generic data are explained. (UK)

  9. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.

    2007-01-01

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional

  10. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  11. A framework for intelligent reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    Cheng Zhonghua; Jia Xisheng; Gao Ping; Wu Su; Wang Jianzhao

    2008-01-01

    To improve the efficiency of reliability-centered maintenance (RCM) analysis, case-based reasoning (CBR), as a kind of artificial intelligence (AI) technology, was successfully introduced into RCM analysis process, and a framework for intelligent RCM analysis (IRCMA) was studied. The idea for IRCMA is based on the fact that the historical records of RCM analysis on similar items can be referenced and used for the current RCM analysis of a new item. Because many common or similar items may exist in the analyzed equipment, the repeated tasks of RCM analysis can be considerably simplified or avoided by revising the similar cases in conducting RCM analysis. Based on the previous theory studies, an intelligent RCM analysis system (IRCMAS) prototype was developed. This research has focused on the description of the definition, basic principles as well as a framework of IRCMA, and discussion of critical techniques in the IRCMA. Finally, IRCMAS prototype is presented based on a case study

  12. Reliability of the Emergency Severity Index: Meta-analysis

    Directory of Open Access Journals (Sweden)

    Amir Mirhaghi

    2015-01-01

    Full Text Available Objectives: Although triage systems based on the Emergency Severity Index (ESI have many advantages in terms of simplicity and clarity, previous research has questioned their reliability in practice. Therefore, the aim of this meta-analysis was to determine the reliability of ESI triage scales. Methods: This metaanalysis was performed in March 2014. Electronic research databases were searched and articles conforming to the Guidelines for Reporting Reliability and Agreement Studies were selected. Two researchers independently examined selected abstracts. Data were extracted in the following categories: version of scale (latest/older, participants (adult/paediatric, raters (nurse, physician or expert, method of reliability (intra/inter-rater, reliability statistics (weighted/unweighted kappa and the origin and publication year of the study. The effect size was obtained by the Z-transformation of reliability coefficients. Data were pooled with random-effects models and a meta-regression was performed based on the method of moments estimator. Results: A total of 19 studies from six countries were included in the analysis. The pooled coefficient for the ESI triage scales was substantial at 0.791 (95% confidence interval: 0.787‒0.795. Agreement was higher with the latest and adult versions of the scale and among expert raters, compared to agreement with older and paediatric versions of the scales and with other groups of raters, respectively. Conclusion: ESI triage scales showed an acceptable level of overall reliability. However, ESI scales require more development in order to see full agreement from all rater groups. Further studies concentrating on other aspects of reliability assessment are needed.

  13. Inverse Reliability Task: Artificial Neural Networks and Reliability-Based Optimization Approaches

    OpenAIRE

    Lehký , David; Slowik , Ondřej; Novák , Drahomír

    2014-01-01

    Part 7: Genetic Algorithms; International audience; The paper presents two alternative approaches to solve inverse reliability task – to determine the design parameters to achieve desired target reliabilities. The first approach is based on utilization of artificial neural networks and small-sample simulation Latin hypercube sampling. The second approach considers inverse reliability task as reliability-based optimization task using double-loop method and also small-sample simulation. Efficie...

  14. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  15. Structural hybrid reliability index and its convergent solving method based on random–fuzzy–interval reliability model

    Directory of Open Access Journals (Sweden)

    Hai An

    2016-08-01

    Full Text Available Aiming to resolve the problems of a variety of uncertainty variables that coexist in the engineering structure reliability analysis, a new hybrid reliability index to evaluate structural hybrid reliability, based on the random–fuzzy–interval model, is proposed in this article. The convergent solving method is also presented. First, the truncated probability reliability model, the fuzzy random reliability model, and the non-probabilistic interval reliability model are introduced. Then, the new hybrid reliability index definition is presented based on the random–fuzzy–interval model. Furthermore, the calculation flowchart of the hybrid reliability index is presented and it is solved using the modified limit-step length iterative algorithm, which ensures convergence. And the validity of convergent algorithm for the hybrid reliability model is verified through the calculation examples in literature. In the end, a numerical example is demonstrated to show that the hybrid reliability index is applicable for the wear reliability assessment of mechanisms, where truncated random variables, fuzzy random variables, and interval variables coexist. The demonstration also shows the good convergence of the iterative algorithm proposed in this article.

  16. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  17. Reliability Estimation Based Upon Test Plan Results

    National Research Council Canada - National Science Library

    Read, Robert

    1997-01-01

    The report contains a brief summary of aspects of the Maximus reliability point and interval estimation technique as it has been applied to the reliability of a device whose surveillance tests contain...

  18. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  19. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  20. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  1. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  2. Reliability Analysis of Structural Timber Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hoffmeyer, P.

    2000-01-01

    Structural systems like timber trussed rafters and roof elements made of timber can be expected to have some degree of redundancy and nonlinear/plastic behaviour when the loading consists of for example snow or imposed load. In this paper this system effect is modelled and the statistic...... of variation. In the paper a stochastic model is described for the strength of a single piece of timber taking into account the stochastic variation of the strength and stiffness with length. Also stochastic models for different types of loads are formulated. First, simple representative systems with different...... types of redundancy and non-linearity are considered. The statistical characteristics of the load bearing capacity are determined by reliability analysis. Next, more complex systems are considered modelling the mechanical behaviour of timber roof elements I stressed skin panels made of timber. Using...

  3. Human reliability analysis of dependent events

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1977-01-01

    In the human reliability analysis in WASH-1400, the continuous variable of degree of interaction among human events was approximated by selecting four points on this continuum to represent the entire continuum. The four points selected were identified as zero coupling (i.e., zero dependence), complete coupling (i.e., complete dependence), and two intermediate points--loose coupling (a moderate level of dependence) and tight coupling (a high level of dependence). The paper expands the WASH-1400 treatment of common mode failure due to the interaction of human activities. Mathematical expressions for the above four levels of dependence are derived for parallel and series systems. The psychological meaning of each level of dependence is illustrated by examples, with probability tree diagrams to illustrate the use of conditional probabilities resulting from the interaction of human actions in nuclear power plant tasks

  4. Standardizing the practice of human reliability analysis

    International Nuclear Information System (INIS)

    Hallbert, B.P.

    1993-01-01

    The practice of human reliability analysis (HRA) within the nuclear industry varies greatly in terms of posited mechanisms that shape human performance, methods of characterizing and analytically modeling human behavior, and the techniques that are employed to estimate the frequency with which human error occurs. This variation has been a source of contention among HRA practitioners regarding the validity of results obtained from different HRA methods. It has also resulted in attempts to develop standard methods and procedures for conducting HRAs. For many of the same reasons, the practice of HRA has not been standardized or has been standardized only to the extent that individual analysts have developed heuristics and consistent approaches in their practice of HRA. From the standpoint of consumers and regulators, this has resulted in a lack of clear acceptance criteria for the assumptions, modeling, and quantification of human errors in probabilistic risk assessments

  5. Reliability of microprocessor-based relay protection devices: Myths and reality

    Directory of Open Access Journals (Sweden)

    Gurevich Vladimir

    2009-01-01

    Full Text Available The article examines four basic theses about the ostensibly extremely high reliability of microprocessor-based relay protection (MP touted by supporters of MP. Through detailed analysis based on many references it is shown that the basis of these theses are widespread myths, and actually MP reliability is lower than the reliability of electromechanical and electronic protective relays on discrete components.

  6. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  7. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    Science.gov (United States)

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  9. Reliability-based assessment of polyethylene pipe creep lifetime

    International Nuclear Information System (INIS)

    Khelif, Rabia; Chateauneuf, Alaa; Chaoui, Kamel

    2007-01-01

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature

  10. Reliability-based assessment of polyethylene pipe creep lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Khelif, Rabia [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere Cedex (France); LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: rabia.khelif@ifma.fr; Chateauneuf, Alaa [LGC-University Blaise Pascal, Campus des Cezeaux, BP 206, 63174 Aubiere Cedex (France)], E-mail: alaa.chateauneuf@polytech.univ-bpclermont.fr; Chaoui, Kamel [LR3MI, Departement de Genie Mecanique, Universite Badji Mokhtar, BP 12, Annaba 23000 (Algeria)], E-mail: chaoui@univ-annaba.org

    2007-12-15

    Lifetime management of underground pipelines is mandatory for safe hydrocarbon transmission and distribution systems. The use of high-density polyethylene tubes subjected to internal pressure, external loading and environmental variations requires a reliability study in order to define the service limits and the optimal operating conditions. In service, the time-dependent phenomena, especially creep, take place during the pipe lifetime, leading to significant strength reduction. In this work, the reliability-based assessment of pipe lifetime models is carried out, in order to propose a probabilistic methodology for lifetime model selection and to determine the pipe safety levels as well as the most important parameters for pipeline reliability. This study is enhanced by parametric analysis on pipe configuration, gas pressure and operating temperature.

  11. Distribution System Reliability Analysis for Smart Grid Applications

    Science.gov (United States)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  12. Optimal Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, Michael Havbro

    1994-01-01

    Calibration of partial safety factors is considered in general, including classes of structures where no code exists beforehand. The partial safety factors are determined such that the difference between the reliability for the different structures in the class considered and a target reliability...... level is minimized. Code calibration on a decision theoretical basis is also considered and it is shown how target reliability indices can be calibrated. Results from code calibration for rubble mound breakwater designs are shown....

  13. Reliability Analysis of Free Jet Scour Below Dams

    Directory of Open Access Journals (Sweden)

    Chuanqi Li

    2012-12-01

    Full Text Available Current formulas for calculating scour depth below of a free over fall are mostly deterministic in nature and do not adequately consider the uncertainties of various scouring parameters. A reliability-based assessment of scour, taking into account uncertainties of parameters and coefficients involved, should be performed. This paper studies the reliability of a dam foundation under the threat of scour. A model for calculating the reliability of scour and estimating the probability of failure of the dam foundation subjected to scour is presented. The Maximum Entropy Method is applied to construct the probability density function (PDF of the performance function subject to the moment constraints. Monte Carlo simulation (MCS is applied for uncertainty analysis. An example is considered, and there liability of its scour is computed, the influence of various random variables on the probability failure is analyzed.

  14. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  15. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  16. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wi...

  17. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  18. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  19. Statistical reliability assessment of software-based systems

    International Nuclear Information System (INIS)

    Korhonen, J.; Pulkkinen, U.; Haapanen, P.

    1997-01-01

    Plant vendors nowadays propose software-based systems even for the most critical safety functions. The reliability estimation of safety critical software-based systems is difficult since the conventional modeling techniques do not necessarily apply to the analysis of these systems, and the quantification seems to be impossible. Due to lack of operational experience and due to the nature of software faults, the conventional reliability estimation methods can not be applied. New methods are therefore needed for the safety assessment of software-based systems. In the research project Programmable automation systems in nuclear power plants (OHA), financed together by the Finnish Centre for Radiation and Nuclear Safety (STUK), the Ministry of Trade and Industry and the Technical Research Centre of Finland (VTT), various safety assessment methods and tools for software based systems are developed and evaluated. This volume in the OHA-report series deals with the statistical reliability assessment of software based systems on the basis of dynamic test results and qualitative evidence from the system design process. Other reports to be published later on in OHA-report series will handle the diversity requirements in safety critical software-based systems, generation of test data from operational profiles and handling of programmable automation in plant PSA-studies. (orig.) (25 refs.)

  20. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  1. Individual Differences in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey C. Joe; Ronald L. Boring

    2014-06-01

    While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research has shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.

  2. Advances in human reliability analysis in Mexico

    International Nuclear Information System (INIS)

    Nelson, Pamela F.; Gonzalez C, M.; Ruiz S, T.; Guillen M, D.; Contreras V, A.

    2010-10-01

    Human Reliability Analysis (HRA) is a very important part of Probabilistic Risk Analysis (PRA), and constant work is dedicated to improving methods, guidance and data in order to approach realism in the results as well as looking for ways to use these to reduce accident frequency at plants. Further, in order to advance in these areas, several HRA studies are being performed globally. Mexico has participated in the International HRA Empirical study with the objective of -benchmarking- HRA methods by comparing HRA predictions to actual crew performance in a simulator, as well as in the empirical study on a US nuclear power plant currently in progress. The focus of the first study was the development of an understanding of how methods are applied by various analysts, and characterize the methods for their capability to guide the analysts to identify potential human failures, and associated causes and performance shaping factors. The HRA benchmarking study has been performed by using the Halden simulator, 14 European crews, and 15 HRA equipment s (NRC, EPRI, and foreign HRA equipment s using different HRA methods). This effort in Mexico is reflected through the work being performed on updating the Laguna Verde PRA to comply with the ASME PRA standard. In order to be considered an HRA with technical adequacy, that is, be considered as a capability category II, for risk-informed applications, the methodology used for the HRA in the original PRA is not considered sufficiently detailed, and the methodology had to upgraded. The HCR/CBDT/THERP method was chosen, since this is used in many nuclear plants with similar design. The HRA update includes identification and evaluation of human errors that can occur during testing and maintenance, as well as human errors that can occur during an accident using the Emergency Operating Procedures. The review of procedures for maintenance, surveillance and operation is a necessary step in HRA and provides insight into the possible

  3. Weibull distribution in reliability data analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang

    2015-01-01

    Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)

  4. System Reliability for LED-Based Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J Lynn; Mills, Karmann; Lamvik, Michael; Yaga, Robert; Shepherd, Sarah D; Bittle, James; Baldasaro, Nick; Solano, Eric; Bobashev, Georgiy; Johnson, Cortina; Evans, Amy

    2014-04-07

    Results from accelerated life tests (ALT) on mass-produced commercially available 6” downlights are reported along with results from commercial LEDs. The luminaires capture many of the design features found in modern luminaires. In general, a systems perspective is required to understand the reliability of these devices since LED failure is rare. In contrast, components such as drivers, lenses, and reflector are more likely to impact luminaire reliability than LEDs.

  5. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  6. Reliability

    OpenAIRE

    Condon, David; Revelle, William

    2017-01-01

    Separating the signal in a test from the irrelevant noise is a challenge for all measurement. Low test reliability limits test validity, attenuates important relationships, and can lead to regression artifacts. Multiple approaches to the assessment and improvement of reliability are discussed. The advantages and disadvantages of several different approaches to reliability are considered. Practical advice on how to assess reliability using open source software is provided.

  7. EMG normalization method based on grade 3 of manual muscle testing: Within- and between-day reliability of normalization tasks and application to gait analysis.

    Science.gov (United States)

    Tabard-Fougère, Anne; Rose-Dulcina, Kevin; Pittet, Vincent; Dayer, Romain; Vuillerme, Nicolas; Armand, Stéphane

    2018-02-01

    Electromyography (EMG) is an important parameter in Clinical Gait Analysis (CGA), and is generally interpreted with timing of activation. EMG amplitude comparisons between individuals, muscles or days need normalization. There is no consensus on existing methods. The gold standard, maximum voluntary isometric contraction (MVIC), is not adapted to pathological populations because patients are often unable to perform an MVIC. The normalization method inspired by the isometric grade 3 of manual muscle testing (isoMMT3), which is the ability of a muscle to maintain a position against gravity, could be an interesting alternative. The aim of this study was to evaluate the within- and between-day reliability of the isoMMT3 EMG normalizing method during gait compared with the conventional MVIC method. Lower limb muscles EMG (gluteus medius, rectus femoris, tibialis anterior, semitendinosus) were recorded bilaterally in nine healthy participants (five males, aged 29.7±6.2years, BMI 22.7±3.3kgm -2 ) giving a total of 18 independent legs. Three repeated measurements of the isoMMT3 and MVIC exercises were performed with an EMG recording. EMG amplitude of the muscles during gait was normalized by these two methods. This protocol was repeated one week later. Within- and between-day reliability of normalization tasks were similar for isoMMT3 and MVIC methods. Within- and between-day reliability of gait EMG normalized by isoMMT3 was higher than with MVIC normalization. These results indicate that EMG normalization using isoMMT3 is a reliable method with no special equipment needed and will support CGA interpretation. The next step will be to evaluate this method in pathological populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reliability model analysis and primary experimental evaluation of laser triggered pulse trigger

    International Nuclear Information System (INIS)

    Chen Debiao; Yang Xinglin; Li Yuan; Li Jin

    2012-01-01

    High performance pulse trigger can enhance performance and stability of the PPS. It is necessary to evaluate the reliability of the LTGS pulse trigger, so we establish the reliability analysis model of this pulse trigger based on CARMES software, the reliability evaluation is accord with the statistical results. (authors)

  9. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  10. Component reliability analysis for development of component reliability DB of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.; Kim, S. H.

    2002-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA and Risk Informed Application. We have performed a project to develop the component reliability DB and calculate the component reliability such as failure rate and unavailability. We have collected the component operation data and failure/repair data of Korean standard NPPs. We have analyzed failure data by developing a data analysis method which incorporates the domestic data situation. And then we have compared the reliability results with the generic data for the foreign NPPs

  11. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  12. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

    CERN Document Server

    Huber, Catherine; Mesbah, Mounir

    2008-01-01

    Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

  13. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  14. Reliability analysis of pipe whip impacts

    International Nuclear Information System (INIS)

    Alzbutas, R.; Dundulis, G.; Kulak, R.F.; Marchertas, P.V.

    2003-01-01

    A probabilistic analysis of a group distribution header (GDH) guillotine break and the damage resulting from the failed GDH impacting against a neighbouring wall was carried out for the Ignalita RBMK-1500 reactor. The NEPTUNE software system was used for the deterministic transient analysis of a GDH guillotine break. Many deterministic analyses were performed using different values of the random variables that were specified by ProFES software. All the deterministic results were transferred to the ProFES system, which then performed probabilistic analyses of piping failure and wall damage. The Monte Carlo Simulation (MCS) method was used to study the sensitivity of the response variables and the effect of uncertainties of material properties and geometry parameters to the probability of limit states. The First Order Reliability Method (FORM) was used to study the probability of failure of the impacted-wall and the support-wall. The Response Surface (RS/MCS) method was used in order to express failure probability as function and to investigate the dependence between impact load and failure probability. The results of the probability analyses for a whipping GDH impacting onto an adjacent wall show that: (i) there is a 0.982 probability that after a GDH guillotine break contact between GDH and wall will occur; (ii) there is a probability of 0.013 that the ultimate tensile strength of concrete at the impact location will be reached, and a through-crack may open; (iii) there is a probability of 0.0126 that the ultimate compressive strength of concrete at the GDH support location will be reached, and the concrete may fail; (iv) at the impact location in the adjacent wall, there is a probability of 0.327 that the ultimate tensile strength of the rebars in the first layer will be reached and the rebars will fail; (v) at the GDH support location, there is a probability of 0.11 that the ultimate stress of the rebars in the first layer will be reached and the rebars will fail

  15. Reliability analysis of the Chinese version of the Functional Assessment of Cancer Therapy - Leukemia (FACT-Leu) scale based on multivariate generalizability theory.

    Science.gov (United States)

    Meng, Qiong; Yang, Zheng; Wu, Yang; Xiao, Yuanyuan; Gu, Xuezhong; Zhang, Meixia; Wan, Chonghua; Li, Xiaosong

    2017-05-04

    -Leu scale has good reliability as a whole based on the results of MGT and the implementation of MGT could lead to more informed decisions in complex questionnaire design and improvement.

  16. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  17. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  18. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  19. Methodology for reliability based condition assessment

    International Nuclear Information System (INIS)

    Mori, Y.; Ellingwood, B.

    1993-08-01

    Structures in nuclear power plants may be exposed to aggressive environmental effects that cause their strength to decrease over an extended period of service. A major concern in evaluating the continued service for such structures is to ensure that in their current condition they are able to withstand future extreme load events during the intended service life with a level of reliability sufficient for public safety. This report describes a methodology to facilitate quantitative assessments of current and future structural reliability and performance of structures in nuclear power plants. This methodology takes into account the nature of past and future loads, and randomness in strength and in degradation resulting from environmental factors. An adaptive Monte Carlo simulation procedure is used to evaluate time-dependent system reliability. The time-dependent reliability is sensitive to the time-varying load characteristics and to the choice of initial strength and strength degradation models but not to correlation in component strengths within a system. Inspection/maintenance strategies are identified that minimize the expected future costs of keeping the failure probability of a structure at or below an established target failure probability during its anticipated service period

  20. Reliability-Based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    1997-01-01

    The objective of this paper is to introduce the application of reliability theory for conceptual design and evaluation of coastal structures. It is without the scope to discuss the validity and quality of the various design formulae available for coastal structures. The contents of the paper is a....... Proceedings Conference of Port and Coastal Engineering in developing countries. Rio de Janeiro, Brazil, 1995....

  1. Reliability-Based Optimization of Structural Elements

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    In this paper structural elements from an optimization point of view are considered, i.e. only the geometry of a structural element is optimized. Reliability modelling of the structural element is discussed both from an element point of view and from a system point of view. The optimization...

  2. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  3. Analysis of NPP protection structure reliability under impact of a falling aircraft

    International Nuclear Information System (INIS)

    Shul'man, G.S.

    1996-01-01

    Methodology for evaluation of NPP protection structure reliability by impact of aircraft fall down is considered. The methodology is base on the probabilistic analysis of all potential events. The problem is solved in three stages: determination of loads on structural units, calculation of local reliability of protection structures by assigned loads and estimation of the structure reliability. The methodology proposed may be applied at the NPP design stage and by determination of reliability of already available structures

  4. Damage tolerance reliability analysis of automotive spot-welded joints

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Ni Kan

    2003-01-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture

  5. Inclusion of task dependence in human reliability analysis

    International Nuclear Information System (INIS)

    Su, Xiaoyan; Mahadevan, Sankaran; Xu, Peida; Deng, Yong

    2014-01-01

    Dependence assessment among human errors in human reliability analysis (HRA) is an important issue, which includes the evaluation of the dependence among human tasks and the effect of the dependence on the final human error probability (HEP). This paper represents a computational model to handle dependence in human reliability analysis. The aim of the study is to automatically provide conclusions on the overall degree of dependence and calculate the conditional human error probability (CHEP) once the judgments of the input factors are given. The dependence influencing factors are first identified by the experts and the priorities of these factors are also taken into consideration. Anchors and qualitative labels are provided as guidance for the HRA analyst's judgment of the input factors. The overall degree of dependence between human failure events is calculated based on the input values and the weights of the input factors. Finally, the CHEP is obtained according to a computing formula derived from the technique for human error rate prediction (THERP) method. The proposed method is able to quantify the subjective judgment from the experts and improve the transparency in the HEP evaluation process. Two examples are illustrated to show the effectiveness and the flexibility of the proposed method. - Highlights: • We propose a computational model to handle dependence in human reliability analysis. • The priorities of the dependence influencing factors are taken into consideration. • The overall dependence degree is determined by input judgments and the weights of factors. • The CHEP is obtained according to a computing formula derived from THERP

  6. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  7. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  8. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  9. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  10. TIGER reliability analysis in the DSN

    Science.gov (United States)

    Gunn, J. M.

    1982-01-01

    The TIGER algorithm, the inputs to the program and the output are described. TIGER is a computer program designed to simulate a system over a period of time to evaluate system reliability and availability. Results can be used in the Deep Space Network for initial spares provisioning and system evaluation.

  11. Reliability analysis of an offshore structure

    DEFF Research Database (Denmark)

    Sorensen, J. D.; Faber, M. H.; Thoft-Christensen, P.

    1992-01-01

    A jacket type offshore structure from the North Sea is considered. The time variant reliability is estimated for failure defined as brittle fracture and crack through the tubular member walls. The stochastic modelling is described. The hot spot stress spectral moments as function of the stochasti...

  12. Reliability analysis of reactor protection systems

    International Nuclear Information System (INIS)

    Alsan, S.

    1976-07-01

    A theoretical mathematical study of reliability is presented and the concepts subsequently defined applied to the study of nuclear reactor safety systems. The theory is applied to investigations of the operational reliability of the Siloe reactor from the point of view of rod drop. A statistical study conducted between 1964 and 1971 demonstrated that most rod drop incidents arose from circumstances associated with experimental equipment (new set-ups). The reliability of the most suitable safety system for some recently developed experimental equipment is discussed. Calculations indicate that if all experimental equipment were equipped with these new systems, only 1.75 rod drop accidents would be expected to occur per year on average. It is suggested that all experimental equipment should be equipped with these new safety systems and tested every 21 days. The reliability of the new safety system currently being studied for the Siloe reactor was also investigated. The following results were obtained: definite failures must be detected immediately as a result of the disturbances produced; the repair time must not exceed a few hours; the equipment must be tested every week. Under such conditions, the rate of accidental rod drops is about 0.013 on average per year. The level of nondefinite failures is less than 10 -6 per hour and the level of nonprotection 1 hour per year. (author)

  13. Reliability Based Management of Marine Fouling

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Hansen, Peter Friis

    1999-01-01

    The present paper describes the results of a recent study on the application of methods from structural reliability to optimise management of marine fouling on jacket type structures.In particular the study addresses effects on the structural response by assessment and quantification of uncertain......The present paper describes the results of a recent study on the application of methods from structural reliability to optimise management of marine fouling on jacket type structures.In particular the study addresses effects on the structural response by assessment and quantification...... of uncertainties of a set of parameters. These are the seasonal variation of marine fouling parameters, the wave loading (taking into account the seasonal variation in sea-state statistics), and the effects of spatial variations and seasonal effects of marine fouling parameters. Comparison of design values...

  14. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  15. User's manual of a support system for human reliability analysis

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Tamura, Kazuo.

    1995-10-01

    Many kinds of human reliability analysis (HRA) methods have been developed. However, users are required to be skillful so as to use them, and also required complicated works such as drawing event tree (ET) and calculation of uncertainty bounds. Moreover, each method is not so complete that only one method of them is not enough to evaluate human reliability. Therefore, a personal computer (PC) based support system for HRA has been developed to execute HRA practically and efficiently. The system consists of two methods, namely, simple method and detailed one. The former uses ASEP that is a simplified THERP-technique, and combined method of OAT and HRA-ET/DeBDA is used for the latter. Users can select a suitable method for their purpose. Human error probability (HEP) data were collected and a database of them was built to use for the support system. This paper describes outline of the HRA methods, support functions and user's guide of the system. (author)

  16. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  17. IDHEAS – A NEW APPROACH FOR HUMAN RELIABILITY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. W. Parry; J.A Forester; V.N. Dang; S. M. L. Hendrickson; M. Presley; E. Lois; J. Xing

    2013-09-01

    This paper describes a method, IDHEAS (Integrated Decision-Tree Human Event Analysis System) that has been developed jointly by the US NRC and EPRI as an improved approach to Human Reliability Analysis (HRA) that is based on an understanding of the cognitive mechanisms and performance influencing factors (PIFs) that affect operator responses. The paper describes the various elements of the method, namely the performance of a detailed cognitive task analysis that is documented in a crew response tree (CRT), and the development of the associated time-line to identify the critical tasks, i.e. those whose failure results in a human failure event (HFE), and an approach to quantification that is based on explanations of why the HFE might occur.

  18. Development of reliability-based safety enhancement technology

    International Nuclear Information System (INIS)

    Kim, Kil Yoo; Han, Sang Hoon; Jang, Seung Cherl

    2002-04-01

    This project aims to develop critical technologies and the necessary reliability DB for maximizing the economics in the NPP operation with keeping the safety using the information of the risk (or reliability). For the research goal, firstly the four critical technologies(Risk Informed Tech. Spec. Optimization, Risk Informed Inservice Testing, On-line Maintenance, Maintenance Rule) for RIR and A have been developed. Secondly, KIND (Korea Information System for Nuclear Reliability Data) has been developed. Using KIND, YGN 3,4 and UCN 3,4 component reliability DB have been established. A reactor trip history DB for all NPP in Korea also has been developed and analyzed. Finally, a detailed reliability analysis of RPS/ESFAS for KNSP has been performed. With the result of the analysis, the sensitivity analysis also has been performed to optimize the AOT/STI of tech. spec. A statistical analysis procedure and computer code have been developed for the set point drift analysis

  19. Reliability assessment using Bayesian networks. Case study on quantative reliability estimation of a software-based motor protection relay

    International Nuclear Information System (INIS)

    Helminen, A.; Pulkkinen, U.

    2003-06-01

    In this report a quantitative reliability assessment of motor protection relay SPAM 150 C has been carried out. The assessment focuses to the methodological analysis of the quantitative reliability assessment using the software-based motor protection relay as a case study. The assessment method is based on Bayesian networks and tries to take the full advantage of the previous work done in a project called Programmable Automation System Safety Integrity assessment (PASSI). From the results and experiences achieved during the work it is justified to claim that the assessment method presented in the work enables a flexible use of qualitative and quantitative elements of reliability related evidence in a single reliability assessment. At the same time the assessment method is a concurrent way of reasoning one's beliefs and references about the reliability of the system. Full advantage of the assessment method is taken when using the method as a way to cultivate the information related to the reliability of software-based systems. The method can also be used as a communicational instrument in a licensing process of software-based systems. (orig.)

  20. Reliability-Based Inspection Planning for Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1993-01-01

    A general model for reliability-based optimal inspection and repair strategies for structural systems is described. The total expected costs in the design lifetime is minimized with the number of inspections, the inspection times and efforts as decision variables. The equivalence of this model...... with a preposterior analysis from statistical decision theory is discussed. It is described how information obtained by an inspection can be used in a repair decision. Stochastic models for inspection, measurement and repair actions are presented. The general model is applied for inspection and repair planning...

  1. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  2. A reliability analysis of the revised competitiveness index.

    Science.gov (United States)

    Harris, Paul B; Houston, John M

    2010-06-01

    This study examined the reliability of the Revised Competitiveness Index by investigating the test-retest reliability, interitem reliability, and factor structure of the measure based on a sample of 280 undergraduates (200 women, 80 men) ranging in age from 18 to 28 years (M = 20.1, SD = 2.1). The findings indicate that the Revised Competitiveness Index has high test-retest reliability, high inter-item reliability, and a stable factor structure. The results support the assertion that the Revised Competitiveness Index assesses competitiveness as a stable trait rather than a dynamic state.

  3. Reliability analysis of PLC safety equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yu, J.; Kim, J. Y. [Chungnam Nat. Univ., Daejeon (Korea, Republic of)

    2006-06-15

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system.

  4. Reliability analysis of PLC safety equipment

    International Nuclear Information System (INIS)

    Yu, J.; Kim, J. Y.

    2006-06-01

    FMEA analysis for Nuclear Safety Grade PLC, failure rate prediction for nuclear safety grade PLC, sensitivity analysis for components failure rate of nuclear safety grade PLC, unavailability analysis support for nuclear safety system

  5. reliability reliability

    African Journals Online (AJOL)

    eobe

    Corresponding author, Tel: +234-703. RELIABILITY .... V , , given by the code of practice. However, checks must .... an optimization procedure over the failure domain F corresponding .... of Concrete Members based on Utility Theory,. Technical ...

  6. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  7. IAEA's experience in compiling a generic component reliability data base

    International Nuclear Information System (INIS)

    Tomic, B.; Lederman, L.

    1988-01-01

    Reliability data are an essential part of probabilistic safety assessment. The quality of data can determine the quality of the study as a whole. It is obvious that component failure data originated from the plant being analyzed would be most appropriate. However, in few cases complete reliance on plant experience is possible, mainly because of the rather limited operating experience. Nuclear plants, although of different design, often use fairly similar components, so some of the experience could be combined and transferred from one plant to another. In addition information about component failures is available also from experts with knowledge on component design, manufacturing and operation. That bring us to the importance of assessing generic data. (Generic is meant to be everything that is not plant specific regarding the plant being analyzed). The generic data available in the open literature, can be divided in three broad categories. The first one includes data base used in previous analysis. These can be plant specific or updated from generic with plant specific information (latter case deserve special attention). The second one is based on compilation of plants' operating experience usually based on some kind of event reporting system. The third category includes data sources based on expert opinions (single or aggregate) or combination of expert opinions and other nuclear and non-nuclear experience. This paper reflects insights gained in compiling data from generic data sources and highlights advantages and pitfalls of using generic component reliability data in PSAs

  8. Efficient approach for reliability-based optimization based on weighted importance sampling approach

    International Nuclear Information System (INIS)

    Yuan, Xiukai; Lu, Zhenzhou

    2014-01-01

    An efficient methodology is presented to perform the reliability-based optimization (RBO). It is based on an efficient weighted approach for constructing an approximation of the failure probability as an explicit function of the design variables which is referred to as the ‘failure probability function (FPF)’. It expresses the FPF as a weighted sum of sample values obtained in the simulation-based reliability analysis. The required computational effort for decoupling in each iteration is just single reliability analysis. After the approximation of the FPF is established, the target RBO problem can be decoupled into a deterministic one. Meanwhile, the proposed weighted approach is combined with a decoupling approach and a sequential approximate optimization framework. Engineering examples are given to demonstrate the efficiency and accuracy of the presented methodology

  9. Reliability-based sensitivity of mechanical components with arbitrary distribution parameters

    International Nuclear Information System (INIS)

    Zhang, Yi Min; Yang, Zhou; Wen, Bang Chun; He, Xiang Dong; Liu, Qiaoling

    2010-01-01

    This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Techniques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical components were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical components

  10. Standardization of domestic human reliability analysis and experience of human reliability analysis in probabilistic safety assessment for NPPs under design

    International Nuclear Information System (INIS)

    Kang, D. I.; Jung, W. D.

    2002-01-01

    This paper introduces the background and development activities of domestic standardization of procedure and method for Human Reliability Analysis (HRA) to avoid the intervention of subjectivity by HRA analyst in Probabilistic Safety Assessment (PSA) as possible, and the review of the HRA results for domestic nuclear power plants under design studied by Korea Atomic Energy Research Institute. We identify the HRA methods used for PSA for domestic NPPs and discuss the subjectivity of HRA analyst shown in performing a HRA. Also, we introduce the PSA guidelines published in USA and review the HRA results based on them. We propose the system of a standard procedure and method for HRA to be developed

  11. Structural reliability analysis applied to pipeline risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, M. [GL Industrial Services, Loughborough (United Kingdom); Mendes, Renato F.; Donato, Guilherme V.P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Quantitative Risk Assessment (QRA) of pipelines requires two main components to be provided. These are models of the consequences that follow from some loss of containment incident, and models for the likelihood of such incidents occurring. This paper describes how PETROBRAS have used Structural Reliability Analysis for the second of these, to provide pipeline- and location-specific predictions of failure frequency for a number of pipeline assets. This paper presents an approach to estimating failure rates for liquid and gas pipelines, using Structural Reliability Analysis (SRA) to analyze the credible basic mechanisms of failure such as corrosion and mechanical damage. SRA is a probabilistic limit state method: for a given failure mechanism it quantifies the uncertainty in parameters to mathematical models of the load-resistance state of a structure and then evaluates the probability of load exceeding resistance. SRA can be used to benefit the pipeline risk management process by optimizing in-line inspection schedules, and as part of the design process for new construction in pipeline rights of way that already contain multiple lines. A case study is presented to show how the SRA approach has recently been used on PETROBRAS pipelines and the benefits obtained from it. (author)

  12. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  13. Reliability Assessment and Reliability-Based Inspection and Maintenance of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramírez, José G. Rangel; Sørensen, John Dalsgaard

    2009-01-01

    Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and deal with the deterioration in structures such as offshore wind turbines (OWT). Reliability based methods such as Risk Based Inspection (RBI) planning may represent a proper methodology to opt...

  14. Imprecise system reliability and component importance based on survival signature

    International Nuclear Information System (INIS)

    Feng, Geng; Patelli, Edoardo; Beer, Michael; Coolen, Frank P.A.

    2016-01-01

    The concept of the survival signature has recently attracted increasing attention for performing reliability analysis on systems with multiple types of components. It opens a new pathway for a structured approach with high computational efficiency based on a complete probabilistic description of the system. In practical applications, however, some of the parameters of the system might not be defined completely due to limited data, which implies the need to take imprecisions of component specifications into account. This paper presents a methodology to include explicitly the imprecision, which leads to upper and lower bounds of the survival function of the system. In addition, the approach introduces novel and efficient component importance measures. By implementing relative importance index of each component without or with imprecision, the most critical component in the system can be identified depending on the service time of the system. Simulation method based on survival signature is introduced to deal with imprecision within components, which is precise and efficient. Numerical example is presented to show the applicability of the approach for systems. - Highlights: • Survival signature is a novel way for system reliability and component importance • High computational efficiency based on a complete description of system. • Include explicitly the imprecision, which leads to bounds of the survival function. • A novel relative importance index is proposed as importance measure. • Allows to identify critical components depending on the service time of the system.

  15. Interactive reliability analysis project. FY 80 progress report

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.

    1981-03-01

    This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system

  16. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  17. Methodology for maintenance analysis based on hydroelectric power stations reliability; Metodologia para realizar analisis de mantenimiento basado en confiabilidad en centrales hidroelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Rea Soto, Rogelio; Calixto Rodriguez, Roberto; Sandoval Valenzuela, Salvador; Velasco Flores, Rocio; Garcia Lizarraga, Maria del Carmen [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2012-07-01

    A methodology to carry out Reliability Centered Maintenance (RCM) studies for hydroelectric power plants is presented. The methodology is an implantation/extension of the guidelines proposed by the Engineering Society for Advanced Mobility Land, Sea and Space in the SAE-JA1012 standard. With the purpose of answering the first five questions, that are set out in that standard, the use of standard ISO14224 is strongly recommended. This approach standardizes failure mechanisms and homogenizes RCM studies with the process of collecting failure and maintenance data. The use of risk matrixes to rank the importance of each failure based on a risk criteria is also proposed. [Spanish] Se presenta una metodologia para realizar estudios de mantenimiento Basado en Confiabilidad (RCM) aplicados a la industria hidroelectrica. La metodologia es una implantacion/ extension realizada por los autores de este trabajo, de los lineamientos propuestos por la Engineering Society for Advanced Mobility Land, Sea and Space en el estandar SAE-JA1012. Para contestar las primeras cinco preguntas del estandar se propone tomar como base los modos y mecanismos de fallas de componentes documentados en la guia para recopilar datos de falla en el estandar ISO-14224. Este enfoque permite estandarizar la descripcion de mecanismos de fallas de los equipos, tanto en el estudio RCM como en el proceso de recopilacion de datos de falla y de mantenimiento, lo que permite retroalimentar el ciclo de mejora continua de los procesos RCM. Tambien se propone el uso de matrices de riesgo para jerarquizar la importancia de los mecanismos de falla con base en el nivel de riesgo.

  18. Reliability-based inspection of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Pandey, M.D.

    1996-03-01

    A study was undertaken to develop a reliability-based approach to the planning of inspection programs for prestressed concrete containment structures. The main function of the prestressing system is to ensure the leak integrity of the containment by maintaining a compressive state of stress under the tensile forces which arise in a hypothesized loss of coolant accident. Prestressing force losses (due to creep and shrinkage, stress relaxation or tendon corrosion) can lead to tensile stresses under accident pressure, resulting in loss of containment leak integrity due to concrete cracking and tensile yielding of the non-prestressed reinforcement. Therefore, the evaluation of prestressing inspection programs was based on their effectiveness in maintaining an acceptable reliability level with respect to a limit state representing yeilding of non-prestressed reinforcement. An annual target reliability of 10 -4 was used for this limit state. As specified in CSA-N287.7, the evaluation of prestressing systems for containment structures is based on the results of lift-off tests to determine the prestressing force. For unbonded systems the tests are carried out on a randomly selected sample from each tendon group in the structure. For bonded systems, the test is carried out on an unbonded test beam that matches the section geometry and material properties of the containment structure. It was found that flexural testing is useful in updating the probability of concrete cracking under accident pressure. For unbonded systems, the analysis indicated that the sample size recommended by the CSA Standard (4% of the tendon population) is adequate. The CSA recommendation for a five year inspection interval is conservative unless severe degradation of the prestressing system, characterized by a high prestressing loss rate (>3%) and a large coefficient of variation of the measured prestressing force (>15%), is observed

  19. Tailoring a Human Reliability Analysis to Your Industry Needs

    Science.gov (United States)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed

  20. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  1. Reliability-based Assessment of Fatigue Life for Bridges

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2012-01-01

    The reliability level for bridges is discussed based on a comparison of the reliability levels proposed and used by e.g. JCSS, ISO, NKB and Eurocodes. The influence of reserve capacity by which failure of a specific detail does not lead to structural collapse is investigated. The results show...

  2. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  3. Reliability analysis applied to structural tests

    Science.gov (United States)

    Diamond, P.; Payne, A. O.

    1972-01-01

    The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.

  4. An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments

    Directory of Open Access Journals (Sweden)

    Michael A. Guthrie

    2013-01-01

    Full Text Available limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment. For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.

  5. Identification of Black Spots Based on Reliability Approach

    Directory of Open Access Journals (Sweden)

    Ahmadreza Ghaffari

    2013-12-01

    Full Text Available Identifying crash “black-spots”, “hot-spots” or “high-risk” locations is one of the most important and prevalent concerns in traffic safety and various methods have been devised and presented for solving this issue until now. In this paper, a new method based on the reliability analysis is presented to identify black-spots. Reliability analysis has an ordered framework to consider the probabilistic nature of engineering problems, so crashes with their probabilistic na -ture can be applied. In this study, the application of this new method was compared with the commonly implemented Frequency and Empirical Bayesian methods using simulated data. The results indicated that the traditional methods can lead to an inconsistent prediction due to their inconsider -ation of the variance of the number of crashes in each site and their dependence on the mean of the data.

  6. Application of DFM in human reliability analysis

    International Nuclear Information System (INIS)

    Yu Shaojie; Zhao Jun; Tong Jiejuan

    2011-01-01

    Combining with ATHEANA, the possible to identify EFCs and UAs using DFM is studied; and then Steam Generator Tube Rupture (SGTR) accident is modeled and solved. Through inductive analysis, 26 Prime Implicants (PIs) are obtained and the meaning of results is interpreted; and one of PIs is similar to the accident scenario of human failure event in one nuclear power plant. Finally, this paper discusses the methods of quantifying PIs, analysis of Error of commission (EOC) and so on. (authors)

  7. Operator reliability analysis during NPP small break LOCA

    International Nuclear Information System (INIS)

    Zhang Jiong; Chen Shenglin

    1990-01-01

    To assess the human factor characteristic of a NPP main control room (MCR) design, the MCR operator reliability during a small break LOCA is analyzed, and some approaches for improving the MCR operator reliability are proposed based on the analyzing results

  8. Analysis of operating reliability of WWER-1000 unit

    International Nuclear Information System (INIS)

    Bortlik, J.

    1985-01-01

    The nuclear power unit was divided into 33 technological units. Input data for reliability analysis were surveys of operating results obtained from the IAEA information system and certain indexes of the reliability of technological equipment determined using the Bayes formula. The missing reliability data for technological equipment were used from the basic variant. The fault tree of the WWER-1000 unit was determined for the peak event defined as the impossibility of reaching 100%, 75% and 50% of rated power. The period was observed of the nuclear power plant operation with reduced output owing to defect and the respective time needed for a repair of the equipment. The calculation of the availability of the WWER-1000 unit was made for different variant situations. Certain indexes of the operating reliability of the WWER-1000 unit which are the result of a detailed reliability analysis are tabulated for selected variants. (E.S.)

  9. PSA applications and piping reliability analysis: where do we stand?

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    1997-01-01

    This reviews a recently proposed framework for piping reliability analysis. The framework was developed to promote critical interpretations of operational data on pipe failures, and to support application-specific-parameter estimation

  10. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Sopira Vladimir; Kovacs, Zoltan

    2015-01-01

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  11. reliability analysis of a two span floor designed according

    African Journals Online (AJOL)

    user

    deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor ... loading, strength and stiffness parameters, dimensions .... to show that there is a direct relation between the failure probability (Pf) ...

  12. Fault detection and reliability, knowledge based and other approaches

    International Nuclear Information System (INIS)

    Singh, M.G.; Hindi, K.S.; Tzafestas, S.G.

    1987-01-01

    These proceedings are split up into four major parts in order to reflect the most significant aspects of reliability and fault detection as viewed at present. The first part deals with knowledge-based systems and comprises eleven contributions from leading experts in the field. The emphasis here is primarily on the use of artificial intelligence, expert systems and other knowledge-based systems for fault detection and reliability. The second part is devoted to fault detection of technological systems and comprises thirteen contributions dealing with applications of fault detection techniques to various technological systems such as gas networks, electric power systems, nuclear reactors and assembly cells. The third part of the proceedings, which consists of seven contributions, treats robust, fault tolerant and intelligent controllers and covers methodological issues as well as several applications ranging from nuclear power plants to industrial robots to steel grinding. The fourth part treats fault tolerant digital techniques and comprises five contributions. Two papers, one on reactor noise analysis, the other on reactor control system design, are indexed separately. (author)

  13. Fatigue Reliability Analysis of Wind Turbine Cast Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard; Fæster, Søren

    2017-01-01

    .) and to quantify the relevant uncertainties using available fatigue tests. Illustrative results are presented as obtained by statistical analysis of a large set of fatigue data for casted test components typically used for wind turbines. Furthermore, the SN curves (fatigue life curves based on applied stress......The fatigue life of wind turbine cast components, such as the main shaft in a drivetrain, is generally determined by defects from the casting process. These defects may reduce the fatigue life and they are generally distributed randomly in components. The foundries, cutting facilities and test...... facilities can affect the verification of properties by testing. Hence, it is important to have a tool to identify which foundry, cutting and/or test facility produces components which, based on the relevant uncertainties, have the largest expected fatigue life or, alternatively, have the largest reliability...

  14. Reliability Worth Analysis of Distribution Systems Using Cascade Correlation Neural Networks

    DEFF Research Database (Denmark)

    Heidari, Alireza; Agelidis, Vassilios; Pou, Josep

    2018-01-01

    Reliability worth analysis is of great importance in the area of distribution network planning and operation. The reliability worth's precision can be affected greatly by the customer interruption cost model used. The choice of the cost models can change system and load point reliability indices....... In this study, a cascade correlation neural network is adopted to further develop two cost models comprising a probabilistic distribution model and an average or aggregate model. A contingency-based analytical technique is adopted to conduct the reliability worth analysis. Furthermore, the possible effects...

  15. Reliability analysis of reactor systems by applying probability method; Analiza pouzdanosti reaktorskih sistema primenom metoda verovatnoce

    Energy Technology Data Exchange (ETDEWEB)

    Milivojevic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1974-12-15

    Probability method was chosen for analysing the reactor system reliability is considered realistic since it is based on verified experimental data. In fact this is a statistical method. The probability method developed takes into account the probability distribution of permitted levels of relevant parameters and their particular influence on the reliability of the system as a whole. The proposed method is rather general, and was used for problem of thermal safety analysis of reactor system. This analysis enables to analyze basic properties of the system under different operation conditions, expressed in form of probability they show the reliability of the system on the whole as well as reliability of each component.

  16. Reliability analysis of the automatic control and power supply of reactor equipment

    International Nuclear Information System (INIS)

    Monori, Pal; Nagy, J.A.; Meszaros, Zoltan; Konkoly, Laszlo; Szabo, Antal; Nagy, Laszlo

    1988-01-01

    Based on reliability analysis the shortcomings of nuclear facilities are discovered. Fault tree types constructed for the technology of automatic control and for power supply serve as input data of the ORCHARD 2 computer code. In order to charaterize the reliability of the system, availability, failure rates and time intervals between failures are calculated. The results of the reliability analysis of the feedwater system of the Paks Nuclear Power Plant showed that the system consisted of elements of similar reliabilities. (V.N.) 8 figs.; 3 tabs

  17. Human reliability analysis in Loviisa probabilistic safety analysis

    International Nuclear Information System (INIS)

    Illman, L.; Isaksson, J.; Makkonen, L.; Vaurio, J.K.; Vuorio, U.

    1986-01-01

    The human reliability analysis in the Loviisa PSA project is carried out for three major groups of errors in human actions: (A) errors made before an initiating event, (B) errors that initiate a transient and (C) errors made during transients. Recovery possibilities are also included in each group. The methods used or planned for each group are described. A simplified THERP approach is used for group A, with emphasis on test and maintenance error recovery aspects and dependencies between redundancies. For group B, task analyses and human factors assessments are made for startup, shutdown and operational transients, with emphasis on potential common cause initiators. For group C, both misdiagnosis and slow decision making are analyzed, as well as errors made in carrying out necessary or backup actions. New or advanced features of the methodology are described

  18. Evaluation of mobile ad hoc network reliability using propagation-based link reliability model

    International Nuclear Information System (INIS)

    Padmavathy, N.; Chaturvedi, Sanjay K.

    2013-01-01

    A wireless mobile ad hoc network (MANET) is a collection of solely independent nodes (that can move randomly around the area of deployment) making the topology highly dynamic; nodes communicate with each other by forming a single hop/multi-hop network and maintain connectivity in decentralized manner. MANET is modelled using geometric random graphs rather than random graphs because the link existence in MANET is a function of the geometric distance between the nodes and the transmission range of the nodes. Among many factors that contribute to the MANET reliability, the reliability of these networks also depends on the robustness of the link between the mobile nodes of the network. Recently, the reliability of such networks has been evaluated for imperfect nodes (transceivers) with binary model of communication links based on the transmission range of the mobile nodes and the distance between them. However, in reality, the probability of successful communication decreases as the signal strength deteriorates due to noise, fading or interference effects even up to the nodes' transmission range. Hence, in this paper, using a propagation-based link reliability model rather than a binary-model with nodes following a known failure distribution to evaluate the network reliability (2TR m , ATR m and AoTR m ) of MANET through Monte Carlo Simulation is proposed. The method is illustrated with an application and some imperative results are also presented

  19. Design of Korean nuclear reliability data-base network using a two-stage Bayesian concept

    International Nuclear Information System (INIS)

    Kim, T.W.; Jeong, K.S.; Chae, S.K.

    1987-01-01

    In an analysis of probabilistic risk, safety, and reliability of a nuclear power plant, the reliability data base (DB) must be established first. As the importance of the reliability data base increases, event reporting systems such as the US Nuclear Regulatory Commission's Licensee Event Report and the International Atomic Energy Agency's Incident Reporting System have been developed. In Korea, however, the systematic reliability data base is not yet available. Therefore, foreign data bases have been directly quoted in reliability analyses of Korean plants. In order to develop a reliability data base for Korean plants, the problem is which methodology is to be used, and the application limits of the selected method must be solved and clarified. After starting the commercial operation of Korea Nuclear Unit-1 (KNU-1) in 1978, six nuclear power plants have begun operation. Of these, only KNU-3 is a Canada Deuterium Uranium pressurized heavy-water reactor, and the others are all pressurized water reactors. This paper describes the proposed reliability data-base network (KNRDS) for Korean nuclear power plants in the context of two-stage Bayesian (TSB) procedure of Kaplan. It describes the concept of TSB to obtain the Korean-specific plant reliability data base, which is updated with the incorporation of both the reported generic reliability data and the operation experiences of similar plants

  20. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  1. Development of RBDGG Solver and Its Application to System Reliability Analysis

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2010-01-01

    For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis

  2. Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2015-01-01

    Full Text Available A new reliability-based design optimization (RBDO method based on support vector machines (SVM and the Most Probable Point (MPP is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

  3. RELIABILITY MODELING BASED ON INCOMPLETE DATA: OIL PUMP APPLICATION

    Directory of Open Access Journals (Sweden)

    Ahmed HAFAIFA

    2014-07-01

    Full Text Available The reliability analysis for industrial maintenance is now increasingly demanded by the industrialists in the world. Indeed, the modern manufacturing facilities are equipped by data acquisition and monitoring system, these systems generates a large volume of data. These data can be used to infer future decisions affecting the health facilities. These data can be used to infer future decisions affecting the state of the exploited equipment. However, in most practical cases the data used in reliability modelling are incomplete or not reliable. In this context, to analyze the reliability of an oil pump, this work proposes to examine and treat the incomplete, incorrect or aberrant data to the reliability modeling of an oil pump. The objective of this paper is to propose a suitable methodology for replacing the incomplete data using a regression method.

  4. Reliability based Robustness of Timber Structures through NDT Data Updating

    DEFF Research Database (Denmark)

    Sousa, Hélder S.; Sørensen, John Dalsgaard; Kirkegaard, Poul Henning

    2011-01-01

    This work presents a framework for reliability-based assessment of timber structures / members using data gathered from non-destructive test results. These results are used for modeling an update of the mechanical characteristics of timber, using Bayesian methods. Results gathered from ultrasound...... of the structure, thus, being possible to evaluate reliability based in time dependent factors, as well to categorize that structure in terms of robustness. For exemplification of the underlined concepts, three different types of structures are studied....

  5. Reliability based Design of Coastal Structures

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    2003-01-01

    Conventional design practice for coastal structures is deterministic in nature and is based on the concept of a design load which should not exceed the resistance (carrying capacity) of the structure. The design load is usually defined on a probabilistic basis as a characteristic value of the load......, for example the expectation (mean) value of the 100-year return period event. However, this selection is often made without consideration of the involved uncertainties. In most cases the resistance is defined in terms of the load that causes a certain design impact or damage to the structure...

  6. Statis Program Analysis for Reliable, Trusted Apps

    Science.gov (United States)

    2017-02-01

    and prevent errors in their Java programs. The Checker Framework includes compiler plug-ins (“checkers”) that find bugs or verify their absence. It...versions of the Java language. 4.8 DATAFLOW FRAMEWORK The dataflow framework enables more accurate analysis of source code. (Despite their similar...names, the dataflow framework is independent of the (Information) Flow Checker of chapter 2.) In Java code, a given operation may be permitted or

  7. Application of Reliability Analysis for Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard; Christiani, E.

    1995-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of some of the most important failure modes are described. The failures are sliding and slip surface failure of a rubble mound and a clay foundation. Relevant design...

  8. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  9. Numerical Model based Reliability Estimation of Selective Laser Melting Process

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....

  10. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  11. MODELING HUMAN RELIABILITY ANALYSIS USING MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Donald D. Dudenhoeffer; Bruce P. Hallbert; Brian F. Gore

    2006-05-01

    This paper summarizes an emerging collaboration between Idaho National Laboratory and NASA Ames Research Center regarding the utilization of high-fidelity MIDAS simulations for modeling control room crew performance at nuclear power plants. The key envisioned uses for MIDAS-based control room simulations are: (i) the estimation of human error with novel control room equipment and configurations, (ii) the investigative determination of risk significance in recreating past event scenarios involving control room operating crews, and (iii) the certification of novel staffing levels in control rooms. It is proposed that MIDAS serves as a key component for the effective modeling of risk in next generation control rooms.

  12. Reliability analysis of dispersion nuclear fuel elements

    Science.gov (United States)

    Ding, Shurong; Jiang, Xin; Huo, Yongzhong; Li, Lin an

    2008-03-01

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  13. Reliability analysis of dispersion nuclear fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shurong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: dsr1971@163.com; Jiang Xin [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China); Huo Yongzhong [Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433 (China)], E-mail: yzhuo@fudan.edu.cn; Li Linan [Department of Mechanics, Tianjin University, Tianjin 300072 (China)

    2008-03-15

    Taking a dispersion fuel element as a special particle composite, the representative volume element is chosen to act as the research object. The fuel swelling is simulated through temperature increase. The large strain elastoplastic analysis is carried out for the mechanical behaviors using FEM. The results indicate that the fission swelling is simulated successfully; the thickness increments grow linearly with burnup; with increasing of burnup: (1) the first principal stresses at fuel particles change from tensile ones to compression ones, (2) the maximum Mises stresses at the particles transfer from the centers of fuel particles to the location close to the interfaces between the matrix and the particles, their values increase with burnup; the maximum Mises stresses at the matrix exist in the middle location between the two particles near the mid-plane along the length (or width) direction, and the maximum plastic strains are also at the above region.

  14. Enhancing product robustness in reliability-based design optimization

    International Nuclear Information System (INIS)

    Zhuang, Xiaotian; Pan, Rong; Du, Xiaoping

    2015-01-01

    Different types of uncertainties need to be addressed in a product design optimization process. In this paper, the uncertainties in both product design variables and environmental noise variables are considered. The reliability-based design optimization (RBDO) is integrated with robust product design (RPD) to concurrently reduce the production cost and the long-term operation cost, including quality loss, in the process of product design. This problem leads to a multi-objective optimization with probabilistic constraints. In addition, the model uncertainties associated with a surrogate model that is derived from numerical computation methods, such as finite element analysis, is addressed. A hierarchical experimental design approach, augmented by a sequential sampling strategy, is proposed to construct the response surface of product performance function for finding optimal design solutions. The proposed method is demonstrated through an engineering example. - Highlights: • A unifying framework for integrating RBDO and RPD is proposed. • Implicit product performance function is considered. • The design problem is solved by sequential optimization and reliability assessment. • A sequential sampling technique is developed for improving design optimization. • The comparison with traditional RBDO is provided

  15. A New Method of Reliability Evaluation Based on Wavelet Information Entropy for Equipment Condition Identification

    International Nuclear Information System (INIS)

    He, Z J; Zhang, X L; Chen, X F

    2012-01-01

    Aiming at reliability evaluation of condition identification of mechanical equipment, it is necessary to analyze condition monitoring information. A new method of reliability evaluation based on wavelet information entropy extracted from vibration signals of mechanical equipment is proposed. The method is quite different from traditional reliability evaluation models that are dependent on probability statistics analysis of large number sample data. The vibration signals of mechanical equipment were analyzed by means of second generation wavelet package (SGWP). We take relative energy in each frequency band of decomposed signal that equals a percentage of the whole signal energy as probability. Normalized information entropy (IE) is obtained based on the relative energy to describe uncertainty of a system instead of probability. The reliability degree is transformed by the normalized wavelet information entropy. A successful application has been achieved to evaluate the assembled quality reliability for a kind of dismountable disk-drum aero-engine. The reliability degree indicates the assembled quality satisfactorily.

  16. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  17. A heuristic-based approach for reliability importance assessment of energy producers

    International Nuclear Information System (INIS)

    Akhavein, A.; Fotuhi Firuzabad, M.

    2011-01-01

    Reliability of energy supply is one of the most important issues of service quality. On one hand, customers usually have different expectations for service reliability and price. On the other hand, providing different level of reliability at load points is a challenge for system operators. In order to take reasonable decisions and obviate reliability implementation difficulties, market players need to know impacts of their assets on system and load-point reliabilities. One tool to specify reliability impacts of assets is the criticality or reliability importance measure by which system components can be ranked based on their effect on reliability. Conventional methods for determination of reliability importance are essentially on the basis of risk sensitivity analysis and hence, impose prohibitive calculation burden in large power systems. An approach is proposed in this paper to determine reliability importance of energy producers from perspective of consumers or distribution companies in a composite generation and transmission system. In the presented method, while avoiding immense computational burden, the energy producers are ranked based on their rating, unavailability and impact on power flows in the lines connecting to the considered load points. Study results on the IEEE reliability test system show successful application of the proposed method. - Research highlights: → Required reliability level at load points is a concern in modern power systems. → It is important to assess reliability importance of energy producers or generators. → Generators can be ranked based on their impacts on power flow to a selected area. → Ranking of generators is an efficient tool to assess their reliability importance.

  18. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  19. Human reliability analysis for advanced control room of KNGR

    International Nuclear Information System (INIS)

    Kim, Myung-Ro; Park, Seong-Kyu

    2000-01-01

    There are two purposes in Human Reliability Analysis (HRA) which was performed during Korean Next Generation Reactor (KNGR) Phase 2 research project. One is to present the human error probability quantification results for Probabilistic Safety Assessment (PSA) and the other is to provide a list of the critical operator actions for Human Factor Engineering (HFE). Critical operator actions were identified from the KNGR HRA/RSA based on selection criteria and incorporated in the MMI Task Analysis, where they receive additional treatment. The use of HRA/PSA results in design, procedure development, and training was ensured by their incorporation in the MMI task analysis and MCR design such as fixed position alarms, displays and controls. Any dominant PSA sequence that takes credit for human performance to achieve acceptable results was incorporated in MMIS validation activities through the PSA-based critical operator actions. The integration of KNGR HRA into MMI design was sufficiently addressed all applicable review criteria of NUREG-0800, Chapter 18, Section 2 F and NUREG-0711. (S.Y.)

  20. Reliability evaluation of microgrid considering incentive-based demand response

    Science.gov (United States)

    Huang, Ting-Cheng; Zhang, Yong-Jun

    2017-07-01

    Incentive-based demand response (IBDR) can guide customers to adjust their behaviour of electricity and curtail load actively. Meanwhile, distributed generation (DG) and energy storage system (ESS) can provide time for the implementation of IBDR. The paper focus on the reliability evaluation of microgrid considering IBDR. Firstly, the mechanism of IBDR and its impact on power supply reliability are analysed. Secondly, the IBDR dispatch model considering customer’s comprehensive assessment and the customer response model are developed. Thirdly, the reliability evaluation method considering IBDR based on Monte Carlo simulation is proposed. Finally, the validity of the above models and method is studied through numerical tests on modified RBTS Bus6 test system. Simulation results demonstrated that IBDR can improve the reliability of microgrid.

  1. Analysis of sodium valve reliability data at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF

  2. Use of COMCAN III in system design and reliability analysis

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.

    1982-03-01

    This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis

  3. Practice of value-based distribution reliability assessment (VBDRA) at Scarborough Public Utilities

    International Nuclear Information System (INIS)

    Chen, R-L.

    1995-01-01

    The development of value-based distribution reliability assessment (VBDRA) at Scarborough Public Utilities was described. Load point reliability indices, customer interruption costs (CIC), continuity and service reliability, accuracy of CIC, and the aspects of application of VBDRA were addressed. The application of VBDRA to a long-term rebuild plan for 4.16 kV distribution system was described. The importance of a cost-benefit analysis for implementation of VBDRA was emphasized. In the case of the Scarborough Public Utilities Commission the enhanced feeder reliability assessment was found to influence the allocation of funding to where it provided the most value to customers. 14 refs., 3 tabs., 3 figs

  4. Reliability prediction system based on the failure rate model for electronic components

    International Nuclear Information System (INIS)

    Lee, Seung Woo; Lee, Hwa Ki

    2008-01-01

    Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. Among the reliability prediction methods are the statistical analysis based method, the similarity analysis method based on an external failure rate database, and the method based on the physics-of-failure model. In this study, we developed a system by which the reliability of electronic components can be predicted by creating a system for the statistical analysis method of predicting reliability most easily. The failure rate models that were applied are MILHDBK- 217F N2, PRISM, and Telcordia (Bellcore), and these were compared with the general purpose system in order to validate the effectiveness of the developed system. Being able to predict the reliability of electronic components from the stage of design, the system that we have developed is expected to contribute to enhancing the reliability of electronic components

  5. Reliability analysis of large scaled structures by optimization technique

    International Nuclear Information System (INIS)

    Ishikawa, N.; Mihara, T.; Iizuka, M.

    1987-01-01

    This paper presents a reliability analysis based on the optimization technique using PNET (Probabilistic Network Evaluation Technique) method for the highly redundant structures having a large number of collapse modes. This approach makes the best use of the merit of the optimization technique in which the idea of PNET method is used. The analytical process involves the minimization of safety index of the representative mode, subjected to satisfaction of the mechanism condition and of the positive external work. The procedure entails the sequential performance of a series of the NLP (Nonlinear Programming) problems, where the correlation condition as the idea of PNET method pertaining to the representative mode is taken as an additional constraint to the next analysis. Upon succeeding iterations, the final analysis is achieved when a collapse probability at the subsequent mode is extremely less than the value at the 1st mode. The approximate collapse probability of the structure is defined as the sum of the collapse probabilities of the representative modes classified by the extent of correlation. Then, in order to confirm the validity of the proposed method, the conventional Monte Carlo simulation is also revised by using the collapse load analysis. Finally, two fairly large structures were analyzed to illustrate the scope and application of the approach. (orig./HP)

  6. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  7. Reliability analysis and computation of computer-based safety instrumentation and control used in German nuclear power plant. Final report; Zuverlaessigkeitsuntersuchung und -berechnung rechnerbasierter Sicherheitsleittechnik zum Einsatz in deutschen Kernkraftwerken. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yongjian [Hochschule Magdeburg-Stendal, Magdeburg (Germany). Inst. fuer Elektrotechnik; Krause, Ulrich [Magdeburg Univ. (Germany). Inst. fuer Apparate- und Umwelttechnik; Gu, Chunlei

    2014-08-21

    extended according to cope with special needs of the digital safety I and C system. The new modelling method based on fault tree analysis (FTA) combined with MCBFR model is provided and validated by a real example system from an industrial partner. The reliability data are taken from a platform specific data base of the industrial partner and an international generic data base. The results demonstrate the applicability of the new approach although the modelling quality is strongly dependent on the observed failure cases from the plant operation. Therefore more failure data of safety I and C should be collected in the future. This report is the final project report.

  8. Risk and reliability analysis theory and applications : in honor of Prof. Armen Der Kiureghian

    CERN Document Server

    2017-01-01

    This book presents a unique collection of contributions from some of the foremost scholars in the field of risk and reliability analysis. Combining the most advanced analysis techniques with practical applications, it is one of the most comprehensive and up-to-date books available on risk-based engineering. All the fundamental concepts needed to conduct risk and reliability assessments are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students and researchers alike. This book was prepared in honor of Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis.

  9. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  10. Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...

    African Journals Online (AJOL)

    (2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.

  11. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Kumar, Sachin; Mishra, Vivek; Joshi, N.S.; Varde, P.V.

    2014-01-01

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  12. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  13. Distribution-level electricity reliability: Temporal trends using statistical analysis

    International Nuclear Information System (INIS)

    Eto, Joseph H.; LaCommare, Kristina H.; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-01

    This paper helps to address the lack of comprehensive, national-scale information on the reliability of the U.S. electric power system by assessing trends in U.S. electricity reliability based on the information reported by the electric utilities on power interruptions experienced by their customers. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. We find that reported annual average duration and annual average frequency of power interruptions have been increasing over time at a rate of approximately 2% annually. We find that, independent of this trend, installation or upgrade of an automated outage management system is correlated with an increase in the reported annual average duration of power interruptions. We also find that reliance on IEEE Standard 1366-2003 is correlated with higher reported reliability compared to reported reliability not using the IEEE standard. However, we caution that we cannot attribute reliance on the IEEE standard as having caused or led to higher reported reliability because we could not separate the effect of reliance on the IEEE standard from other utility-specific factors that may be correlated with reliance on the IEEE standard. - Highlights: ► We assess trends in electricity reliability based on the information reported by the electric utilities. ► We use rigorous statistical techniques to account for utility-specific differences. ► We find modest declines in reliability analyzing interruption duration and frequency experienced by utility customers. ► Installation or upgrade of an OMS is correlated to an increase in reported duration of power interruptions. ► We find reliance in IEEE Standard 1366 is correlated with higher reported reliability.

  14. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    1995-01-01

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...... to optimization variables can be performed. A computer implementation is described and an illustrative example is given....

  15. Stochastic Finite Elements in Reliability-Based Structural Optimization

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Engelund, S.

    Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...

  16. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  17. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  18. The development of a reliable amateur boxing performance analysis template.

    Science.gov (United States)

    Thomson, Edward; Lamb, Kevin; Nicholas, Ceri

    2013-01-01

    The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.

  19. Research on Control Method Based on Real-Time Operational Reliability Evaluation for Space Manipulator

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2014-05-01

    Full Text Available A control method based on real-time operational reliability evaluation for space manipulator is presented for improving the success rate of a manipulator during the execution of a task. In this paper, a method for quantitative analysis of operational reliability is given when manipulator is executing a specified task; then a control model which could control the quantitative operational reliability is built. First, the control process is described by using a state space equation. Second, process parameters are estimated in real time using Bayesian method. Third, the expression of the system's real-time operational reliability is deduced based on the state space equation and process parameters which are estimated using Bayesian method. Finally, a control variable regulation strategy which considers the cost of control is given based on the Theory of Statistical Process Control. It is shown via simulations that this method effectively improves the operational reliability of space manipulator control system.

  20. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  1. Performance reliability prediction for thermal aging based on kalman filtering

    International Nuclear Information System (INIS)

    Ren Shuhong; Wen Zhenhua; Xue Fei; Zhao Wensheng

    2015-01-01

    The performance reliability of the nuclear power plant main pipeline that failed due to thermal aging was studied by the performance degradation theory. Firstly, through the data obtained from the accelerated thermal aging experiments, the degradation process of the impact strength and fracture toughness of austenitic stainless steel material of the main pipeline was analyzed. The time-varying performance degradation model based on the state space method was built, and the performance trends were predicted by using Kalman filtering. Then, the multi-parameter and real-time performance reliability prediction model for the main pipeline thermal aging was developed by considering the correlation between the impact properties and fracture toughness, and by using the stochastic process theory. Thus, the thermal aging performance reliability and reliability life of the main pipeline with multi-parameter were obtained, which provides the scientific basis for the optimization management of the aging maintenance decision making for nuclear power plant main pipelines. (authors)

  2. Reliability-Based Decision Fusion in Multimodal Biometric Verification Systems

    Directory of Open Access Journals (Sweden)

    Kryszczuk Krzysztof

    2007-01-01

    Full Text Available We present a methodology of reliability estimation in the multimodal biometric verification scenario. Reliability estimation has shown to be an efficient and accurate way of predicting and correcting erroneous classification decisions in both unimodal (speech, face, online signature and multimodal (speech and face systems. While the initial research results indicate the high potential of the proposed methodology, the performance of the reliability estimation in a multimodal setting has not been sufficiently studied or evaluated. In this paper, we demonstrate the advantages of using the unimodal reliability information in order to perform an efficient biometric fusion of two modalities. We further show the presented method to be superior to state-of-the-art multimodal decision-level fusion schemes. The experimental evaluation presented in this paper is based on the popular benchmarking bimodal BANCA database.

  3. State of the art report on aging reliability analysis

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon; Han, Sang Hoon; Ha, Jae Joo

    2002-03-01

    The goal of this report is to describe the state of the art on aging analysis methods to calculate the effects of component aging quantitatively. In this report, we described some aging analysis methods which calculate the increase of Core Damage Frequency (CDF) due to aging by including the influence of aging into PSA. We also described several research topics required for aging analysis for components of domestic NPPs. We have described a statistical model and reliability physics model which calculate the effect of aging quantitatively by using PSA method. It is expected that the practical use of the reliability-physics model will be increased though the process with the reliability-physics model is more complicated than statistical model

  4. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  5. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  6. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  7. RELIABILITY BASED DESIGN OF FIXED FOUNDATION WIND TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.

    2013-10-14

    Recent analysis of offshore wind turbine foundations using both applicable API and IEC standards show that the total load demand from wind and waves is greatest in wave driven storms. Further, analysis of overturning moment loads (OTM) reveal that impact forces exerted by breaking waves are the largest contributor to OTM in big storms at wind speeds above the operating range of 25 m/s. Currently, no codes or standards for offshore wind power generators have been adopted by the Bureau of Ocean Energy Management Regulation and Enforcement (BOEMRE) for use on the Outer Continental Shelf (OCS). Current design methods based on allowable stress design (ASD) incorporate the uncertainty in the variation of loads transferred to the foundation and geotechnical capacity of the soil and rock to support the loads is incorporated into a factor of safety. Sources of uncertainty include spatial and temporal variation of engineering properties, reliability of property measurements applicability and sufficiency of sampling and testing methods, modeling errors, and variability of estimated load predictions. In ASD these sources of variability are generally given qualitative rather than quantitative consideration. The IEC 61400‐3 design standard for offshore wind turbines is based on ASD methods. Load and resistance factor design (LRFD) methods are being increasingly used in the design of structures. Uncertainties such as those listed above can be included quantitatively into the LRFD process. In LRFD load factors and resistance factors are statistically based. This type of analysis recognizes that there is always some probability of failure and enables the probability of failure to be quantified. This paper presents an integrated approach consisting of field observations and numerical simulation to establish the distribution of loads from breaking waves to support the LRFD of fixed offshore foundations.

  8. Reliability-based condition assessment of steel containment and liners

    International Nuclear Information System (INIS)

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs

  9. A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2015-01-01

    Dynamic reliability measures reliability of an engineered system considering time-variant operation condition and component deterioration. Due to high computational costs, conducting dynamic reliability analysis at an early system design stage remains challenging. This paper presents a confidence-based meta-modeling approach, referred to as double-loop adaptive sampling (DLAS), for efficient sensitivity-free dynamic reliability analysis. The DLAS builds a Gaussian process (GP) model sequentially to approximate extreme system responses over time, so that Monte Carlo simulation (MCS) can be employed directly to estimate dynamic reliability. A generic confidence measure is developed to evaluate the accuracy of dynamic reliability estimation while using the MCS approach based on developed GP models. A double-loop adaptive sampling scheme is developed to efficiently update the GP model in a sequential manner, by considering system input variables and time concurrently in two sampling loops. The model updating process using the developed sampling scheme can be terminated once the user defined confidence target is satisfied. The developed DLAS approach eliminates computationally expensive sensitivity analysis process, thus substantially improves the efficiency of dynamic reliability analysis. Three case studies are used to demonstrate the efficacy of DLAS for dynamic reliability analysis. - Highlights: • Developed a novel adaptive sampling approach for dynamic reliability analysis. • POD Developed a new metric to quantify the accuracy of dynamic reliability estimation. • Developed a new sequential sampling scheme to efficiently update surrogate models. • Three case studies were used to demonstrate the efficacy of the new approach. • Case study results showed substantially enhanced efficiency with high accuracy

  10. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  11. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.

    2003-04-01

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  12. Reliability analysis of reinforced concrete grids with nonlinear material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Rodrigo A [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil); Chateauneuf, Alaa [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)]. E-mail: alaa.chateauneuf@ifma.fr; Venturini, Wilson S [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil)]. E-mail: venturin@sc.usp.br; Lemaire, Maurice [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)

    2006-06-15

    Reinforced concrete grids are usually used to support large floor slabs. These grids are characterized by a great number of critical cross-sections, where the overall failure is usually sudden. However, nonlinear behavior of concrete leads to the redistribution of internal forces and accurate reliability assessment becomes mandatory. This paper presents a reliability study on reinforced concrete (RC) grids based on coupling Monte Carlo simulations with the response surface techniques. This approach allows us to analyze real RC grids with large number of failure components. The response surface is used to evaluate the structural safety by using first order reliability methods. The application to simple grids shows the interest of the proposed method and the role of moment redistribution in the reliability assessment.

  13. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  14. Reliability analysis of reactor inspection robot(RIROB)

    International Nuclear Information System (INIS)

    Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.

    2002-05-01

    This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)

  15. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis.

    Science.gov (United States)

    Enciso, M; Carrascosa, J P; Sarasa, J; Martínez-Ortiz, P A; Munné, S; Horcajadas, J A; Aizpurua, J

    2018-02-01

    comparing LH + 2 and LH + 7 samples (paired t-test, P terms in this group of genes. Principal component analysis and discriminant functional analysis showed that 40 of the differentially expressed genes allowed accurate classification of samples according to endometrial status (proliferative, pre-receptive, receptive and post-receptive) in both fertile and infertile groups. N/A. To evaluate the efficacy of this new tool to improve ART outcomes, further investigations such as non-selection studies and randomized controlled trials will also be required. A new comprehensive system for human endometrial receptivity evaluation based on gene expression analysis has been developed. The identification of the optimal time for embryo transfer is essential to maximize the effectiveness of ART. This study is a new step in the field of personalized medicine in human reproduction which may help in the management of endometrial preparation for embryo transfer, increasing the chances of pregnancy for many couples. The authors have no potential conflict of interest to declare. No external funding was obtained for this study. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Reliability analysis of a sensitive and independent stabilometry parameter set.

    Science.gov (United States)

    Nagymáté, Gergely; Orlovits, Zsanett; Kiss, Rita M

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54-0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals.

  17. Reliability analysis of a sensitive and independent stabilometry parameter set

    Science.gov (United States)

    Nagymáté, Gergely; Orlovits, Zsanett

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54–0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals. PMID:29664938

  18. Reliability-based performance simulation for optimized pavement maintenance

    International Nuclear Information System (INIS)

    Chou, Jui-Sheng; Le, Thanh-Son

    2011-01-01

    Roadway pavement maintenance is essential for driver safety and highway infrastructure efficiency. However, regular preventive maintenance and rehabilitation (M and R) activities are extremely costly. Unfortunately, the funds available for the M and R of highway pavement are often given lower priority compared to other national development policies, therefore, available funds must be allocated wisely. Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regression parameters is employed to assess reliability-based performance. A numerical example of a highway pavement project is illustrated to demonstrate the efficacy of the proposed MOPSO algorithms. The analytical results show that the proposed approach can help decision makers to optimize roadway maintenance plans. - Highlights: →A novel algorithm using multi-objective particle swarm optimization technique. → Evaluation of the cost-reliability tradeoff in a flexible maintenance strategy. → A probabilistic model for regression parameters is employed to assess reliability-based performance. → The proposed approach can help decision makers to optimize roadway maintenance plans.

  19. Reliability-based performance simulation for optimized pavement maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jui-Sheng, E-mail: jschou@mail.ntust.edu.tw [Department of Construction Engineering, National Taiwan University of Science and Technology (Taiwan Tech), 43 Sec. 4, Keelung Rd., Taipei 106, Taiwan (China); Le, Thanh-Son [Department of Construction Engineering, National Taiwan University of Science and Technology (Taiwan Tech), 43 Sec. 4, Keelung Rd., Taipei 106, Taiwan (China)

    2011-10-15

    Roadway pavement maintenance is essential for driver safety and highway infrastructure efficiency. However, regular preventive maintenance and rehabilitation (M and R) activities are extremely costly. Unfortunately, the funds available for the M and R of highway pavement are often given lower priority compared to other national development policies, therefore, available funds must be allocated wisely. Maintenance strategies are typically implemented by optimizing only the cost whilst the reliability of facility performance is neglected. This study proposes a novel algorithm using multi-objective particle swarm optimization (MOPSO) technique to evaluate the cost-reliability tradeoff in a flexible maintenance strategy based on non-dominant solutions. Moreover, a probabilistic model for regression parameters is employed to assess reliability-based performance. A numerical example of a highway pavement project is illustrated to demonstrate the efficacy of the proposed MOPSO algorithms. The analytical results show that the proposed approach can help decision makers to optimize roadway maintenance plans. - Highlights: > A novel algorithm using multi-objective particle swarm optimization technique. > Evaluation of the cost-reliability tradeoff in a flexible maintenance strategy. > A probabilistic model for regression parameters is employed to assess reliability-based performance. > The proposed approach can help decision makers to optimize roadway maintenance plans.

  20. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...

  1. Multi-state reliability for coolant pump based on dependent competitive failure model

    International Nuclear Information System (INIS)

    Shang Yanlong; Cai Qi; Zhao Xinwen; Chen Ling

    2013-01-01

    By taking into account the effect of degradation due to internal vibration and external shocks. and based on service environment and degradation mechanism of nuclear power plant coolant pump, a multi-state reliability model of coolant pump was proposed for the system that involves competitive failure process between shocks and degradation. Using this model, degradation state probability and system reliability were obtained under the consideration of internal vibration and external shocks for the degraded coolant pump. It provided an effective method to reliability analysis for coolant pump in nuclear power plant based on operating environment. The results can provide a decision making basis for design changing and maintenance optimization. (authors)

  2. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  3. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  4. Structural reliability analysis under evidence theory using the active learning kriging model

    Science.gov (United States)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  5. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  6. Reliability analysis of land pipelines for hydrocarbons transportation in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Leon, D.; Cortes, C. [Inst. Mexicano del Petroleo (Mexico)

    2004-07-01

    The reliability of a land pipeline operated by PEMEX in Mexico was estimated under a range of failure modes. Reliability and safety were evaluated in terms of the pipeline's internal pressure, bending, fracture toughness and its tension failure mode conditions. Loading conditions were applied individually, while bending and tension loads were applied in a combined fashion. The mechanical properties of the steel were also considered along with the degradation effect of internal corrosion resulting from the type of product being transported. A set of internal pressures and mechanical properties were generated randomly using Monte Carlo simulation. Commercial software was used to obtain the pipeline response under each modeled condition. The response analysis was based on the nonlinear finite element method involving a calculation of maximum stresses and stress concentration factors under conditions of corrosion and no corrosion. The margin between maximum stresses due to internal pressure, tension and bending was evaluated along with the margin between stress concentration factor and fracture initiation toughness. The study showed that internal pressure, stress concentration and tension-bending were the critical failure modes. It was suggested that more research should be conducted to improve the modeling of the deteriorating effects of corrosion and to adjust the probability distribution for fracture toughness and the length/depth defect ratio. The consideration of welding geometries along with features of marine pipelines and pipeline products would help to generalize the study to facilitate the creation of codes for the construction, design, inspection and maintenance of pipelines in Mexico. 7 refs., 1 tab., 14 figs.

  7. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  8. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  9. Factorial validation and reliability analysis of the brain fag syndrome ...

    African Journals Online (AJOL)

    Results: Two valid factors emerged with items 1-3 and items 4, 5 & 7 loading on respectively, making the BFSS a twodimensional (multidimensional) scale which measures 2 aspects of brain fag [labeled burning sensation and crawling sensation respectively]. The reliability analysis yielded a Cronbach Alpha coefficient of ...

  10. Reliability analysis of water distribution systems under uncertainty

    International Nuclear Information System (INIS)

    Kansal, M.L.; Kumar, Arun; Sharma, P.B.

    1995-01-01

    In most of the developing countries, the Water Distribution Networks (WDN) are of intermittent type because of the shortage of safe drinking water. Failure of a pipeline(s) in such cases will cause not only the fall in one or more nodal heads but also the poor connectivity of source with various demand nodes of the system. Most of the previous works have used the two-step algorithm based on pathset or cutset approach for connectivity analysis. The computations become more cumbersome when connectivity of all demand nodes taken together with that of supply is carried out. In the present paper, network connectivity based on the concept of Appended Spanning Tree (AST) is suggested to compute global network connectivity which is defined as the probability of the source node being connected with all the demand nodes simultaneously. The concept of AST has distinct advantages as it attacks the problem directly rather than in an indirect way as most of the studies so far have done. Since the water distribution system is a repairable one, a general expression for pipeline avialability using the failure/repair rate is considered. Furthermore, the sensitivity of global reliability estimates due to the likely error in the estimation of failure/repair rates of various pipelines is also studied

  11. Enhancing reliable online transaction with intelligent rule-based ...

    African Journals Online (AJOL)

    Enhancing reliable online transaction with intelligent rule-based fraud detection technique. ... These are with a bid to reducing amongst other things the cost of production and also dissuade the poor handling of Nigeria currency. The CBN pronouncement has necessitated the upsurge in transactions completed with credit ...

  12. Reliability Based Calibration of Fatigue Design Guidelines for Ship Structures

    DEFF Research Database (Denmark)

    Folsø, Rasmus; Otto, S.; Parmentier, G.

    2002-01-01

    A simple reliability based framework is applied to calibrate a new set of fatigue design guidelines. This new guideline considers two different approaches for the assessment of both loads, stresses and local stress raising effects, and partial safety factors must be given for any combination...

  13. Planning of operation & maintenance using risk and reliability based methods

    DEFF Research Database (Denmark)

    Florian, Mihai; Sørensen, John Dalsgaard

    2015-01-01

    Operation and maintenance (OM) of offshore wind turbines contributes with a substantial part of the total levelized cost of energy (LCOE). The objective of this paper is to present an application of risk- and reliability-based methods for planning of OM. The theoretical basis is presented...

  14. The reliability of mercury analysis in environmental materials

    International Nuclear Information System (INIS)

    Heinonen, J.; Suschny, O.

    1973-01-01

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 10 9 parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material

  15. The reliability of mercury analysis in environmental materials

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, J.; Suschny, O

    1973-01-01

    Mercury occurs in nature in its native elemental as well as in different mineral forms. It has been mined for centuries and is used in many branches of industry, agriculture and medicine. Mercury is very toxic to man and reports of poisoning due to the presence of the element in fish and shellfish caught at Minamata and Niigata, Japan have led not only to local investigations but to multi-national research into the sources and the levels of mercury in the environment. The concentrations at which the element has to be determined in these studies are extremely small, usually of the order of a few parts in 10{sup 9} parts of environmental material. Few analytical techniques provide the required sensitivity for analysis at such low concentrations, and only two are normally used for mercury: neutron activation analysis and atomic absorption photometry. They are also the most convenient end points of various separation schemes for different organic mercury compounds. Mercury analysis at the ppb-level is beset with many problems: volatility of the metal and its compounds, impurity of reagents, interference by other elements and many other analytical difficulties may influence the results. To be able to draw valid conclusions from the analyses it is necessary to know the reliability attached to the values obtained. To assist laboratories in the evaluation of their analytical performance, the International Atomic Energy Agency through its own laboratory at Seibersdorf already organised in 1967 an intercomparison of mercury analysis in flour. Based on the results obtained at that time, a whole series of intercomparisons of mercury determinations in nine different environmental materials was undertaken in 1971. The materials investigated included corn and wheat flour, spray-dried animal blood serum, fish solubles, milk powder, saw dust, cellulose, lacquer paint and coloric material.

  16. RELOSS, Reliability of Safety System by Fault Tree Analysis

    International Nuclear Information System (INIS)

    Allan, R.N.; Rondiris, I.L.; Adraktas, A.

    1981-01-01

    1 - Description of problem or function: Program RELOSS is used in the reliability/safety assessment of any complex system with predetermined operational logic in qualitative and (if required) quantitative terms. The program calculates the possible system outcomes following an abnormal operating condition and the probability of occurrence, if required. Furthermore, the program deduces the minimal cut or tie sets of the system outcomes and identifies the potential common mode failures. 4. Method of solution: The reliability analysis performed by the program is based on the event tree methodology. Using this methodology, the program develops the event tree of a system or a module of that system and relates each path of this tree to its qualitative and/or quantitative impact on specified system or module outcomes. If the system being analysed is subdivided into modules the program assesses each module in turn as described previously and then combines the module information to obtain results for the overall system. Having developed the event tree of a module or a system, the program identifies which paths lead or do not lead to various outcomes depending on whether the cut or the tie sets of the outcomes are required and deduces the corresponding sets. Furthermore the program identifies for a specific system outcome, the potential common mode failures and the cut or tie sets containing potential dependent failures of some components. 5. Restrictions on the complexity of the problem: The present dimensions of the program are as follows. They can however be easily modified: Maximum number of modules (equivalent components): 25; Maximum number of components in a module: 15; Maximum number of levels of parentheses in a logical statement: 10 Maximum number of system outcomes: 3; Maximum number of module outcomes: 2; Maximum number of points in time for which quantitative analysis is required: 5; Maximum order of any cut or tie set: 10; Maximum order of a cut or tie of any

  17. ZERBERUS - the code for reliability analysis of crack containing structures

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.

    1992-04-01

    Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP) [de

  18. Condition-based Human Reliability Assessment for digitalized control room

    International Nuclear Information System (INIS)

    Kang, H. G.; Jang, S. C.; Eom, H. S.; Ha, J. J.

    2005-04-01

    In safety-critical systems, the generation failure of an actuation signal is caused by the concurrent failures of the automated systems and an operator action. These two sources of safety signals are complicatedly correlated. The failures of sensors or automated systems will cause a lack of necessary information for a human operator and result in error-forcing contexts such as the loss of corresponding alarms and indications. In the conventional analysis, the Human Error Probabilities (HEP) are estimated based on the assumption of 'normal condition of indications and alarms'. In order to construct a more realistic signal-generation failure model, we have to consider more complicated conditions in a more realistic manner. In this study, we performed two kinds of investigation for addressing this issue. We performed the analytic calculations for estimating the effect of sensors failures on the system unavailability and plant risk. For the single-parameter safety signals, the analysis result reveals that the quantification of the HEP should be performed by focusing on the 'no alarm from the automatic system and corresponding indications unavailable' situation. This study also proposes a Condition-Based Human Reliability Assessment (CBHRA) method in order to address these complicated conditions in a practical way. We apply the CBHRA method to the manual actuation of the safety features such as a reactor trip and auxiliary feedwater actuation in Korean Standard Nuclear Power Plants. In the case of conventional single HEP method, it is very hard to consider the multiple HE conditions. The merit of CBHRA is clearly shown in the application to the AFAS generation where no dominating HE condition exits. In this case, even if the HE conditions are carefully investigated, the single HEP method cannot accommodate the multiple conditions in a fault tree. On the other hand, the application result of the reactor trip in SLOCA shows that if there is a dominating condition, the use

  19. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  20. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  1. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    Science.gov (United States)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  2. Erratum: Comparative Analysis of Some Reliability Characteristics of ...

    African Journals Online (AJOL)

    ... are analyzed using kolmogorov's forward equation method. Comparisons are performed for specific values of system parameters. Finally, the configurations are ranked based on MTSF and ( AV(∞)) and the results show that configuration 3 is optimal. Keywords: Reliability, Availability, Deterioration, Repair, Replacement.

  3. Reliability-Based Optimal Design for Very Large Floating Structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-hua(张淑华); FUJIKUBO Masahiko

    2003-01-01

    Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post-yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave-induced structural damage. Here, the development of a methodology for determining optimal, cost-effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life-cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life-cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life-cycle cost function, structural damage modeling, and reliability analysis.

  4. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  5. Long term reliability analysis of standby diesel generators

    International Nuclear Information System (INIS)

    Winfield, D.J.

    1988-01-01

    The long term reliability of 11 diesel generators of 125 to 250 kV A size has been analysed from 26 years of data base information on individual diesel service as standby power supplies for the Chalk River research reactor facilities. Failure to start on demand and failure to run data is presented and failure by diesel subsystem and multiple failures are also analysed. A brief comparison is made with reliability studies of larger diesel generator units used for standby power service in nuclear power plants. (author)

  6. An efficient phased mission reliability analysis for autonomous vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Remenyte-Prescott, R., E-mail: R.Remenyte-Prescott@nottingham.ac.u [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Andrews, J.D. [Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Chung, P.W.H. [Department of Computer Science, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  7. An efficient phased mission reliability analysis for autonomous vehicles

    International Nuclear Information System (INIS)

    Remenyte-Prescott, R.; Andrews, J.D.; Chung, P.W.H.

    2010-01-01

    Autonomous systems are becoming more commonly used, especially in hazardous situations. Such systems are expected to make their own decisions about future actions when some capabilities degrade due to failures of their subsystems. Such decisions are made without human input, therefore they need to be well-informed in a short time when the situation is analysed and future consequences of the failure are estimated. The future planning of the mission should take account of the likelihood of mission failure. The reliability analysis for autonomous systems can be performed using the methodologies developed for phased mission analysis, where the causes of failure for each phase in the mission can be expressed by fault trees. Unmanned autonomous vehicles (UAVs) are of a particular interest in the aeronautical industry, where it is a long term ambition to operate them routinely in civil airspace. Safety is the main requirement for the UAV operation and the calculation of failure probability of each phase and the overall mission is the topic of this paper. When components or subsystems fail or environmental conditions throughout the mission change, these changes can affect the future mission. The new proposed methodology takes into account the available diagnostics data and is used to predict future capabilities of the UAV in real time. Since this methodology is based on the efficient BDD method, the quickly provided advice can be used in making decisions. When failures occur appropriate actions are required in order to preserve safety of the autonomous vehicle. The overall decision making strategy for autonomous vehicles is explained in this paper. Some limitations of the methodology are discussed and further improvements are presented based on experimental results.

  8. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  9. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  10. Reliability Analysis Multiple Redundancy Controller for Nuclear Safety Systems

    International Nuclear Information System (INIS)

    Son, Gwangseop; Kim, Donghoon; Son, Choulwoong

    2013-01-01

    This controller is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). The architecture of MRC is briefly described, and the Markov model is developed. Based on the model, the reliability and Mean Time To Failure (MTTF) are analyzed. In this paper, the architecture of MRC for nuclear safety systems is described. The MRC is configured for multiple modular redundancy (MMR) composed of dual modular redundancy (DMR) and triple modular redundancy (TMR). Markov models for MRC architecture was developed, and then the reliability was analyzed by using the model. From the reliability analyses for the MRC, it is obtained that the failure rate of each module in the MRC should be less than 2 Χ 10 -4 /hour and the MTTF average increase rate depending on FCF increment, i. e. ΔMTTF/ΔFCF, is 4 months/0.1

  11. Design Optimization Method for Composite Components Based on Moment Reliability-Sensitivity Criteria

    Science.gov (United States)

    Sun, Zhigang; Wang, Changxi; Niu, Xuming; Song, Yingdong

    2017-08-01

    In this paper, a Reliability-Sensitivity Based Design Optimization (RSBDO) methodology for the design of the ceramic matrix composites (CMCs) components has been proposed. A practical and efficient method for reliability analysis and sensitivity analysis of complex components with arbitrary distribution parameters are investigated by using the perturbation method, the respond surface method, the Edgeworth series and the sensitivity analysis approach. The RSBDO methodology is then established by incorporating sensitivity calculation model into RBDO methodology. Finally, the proposed RSBDO methodology is applied to the design of the CMCs components. By comparing with Monte Carlo simulation, the numerical results demonstrate that the proposed methodology provides an accurate, convergent and computationally efficient method for reliability-analysis based finite element modeling engineering practice.

  12. CRITICAL ANALYSIS OF THE RELIABILITY OF INTUITIVE MORAL DECISIONS

    Directory of Open Access Journals (Sweden)

    V. V. Nadurak

    2017-06-01

    Full Text Available Purpose of the research is a critical analysis of the reliability of intuitive moral decisions. Methodology. The work is based on the methodological attitude of empirical ethics, involving the use of findings from empirical research in ethical reflection and decision making. Originality. The main kinds of intuitive moral decisions are identified: 1 intuitively emotional decisions (i.e. decisions made under the influence of emotions that accompanies the process of moral decision making; 2 decisions made under the influence of moral risky psychological aptitudes (unconscious human tendencies that makes us think in a certain way and make decisions, unacceptable from the logical and ethical point of view; 3 intuitively normative decisions (decisions made under the influence of socially learned norms, that cause evaluative feeling «good-bad», without conscious reasoning. It was found that all of these kinds of intuitive moral decisions can lead to mistakes in the moral life. Conclusions. Considering the fact that intuition systematically leads to erroneous moral decisions, intuitive reaction cannot be the only source for making such decisions. The conscious rational reasoning can compensate for weaknesses of intuition. In this case, there is a necessity in theoretical model that would structure the knowledge about the interactions between intuitive and rational factors in moral decisions making and became the basis for making suggestions that would help us to make the right moral decision.

  13. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  14. Diagnostic reliability of MMPI-2 computer-based test interpretations.

    Science.gov (United States)

    Pant, Hina; McCabe, Brian J; Deskovitz, Mark A; Weed, Nathan C; Williams, John E

    2014-09-01

    Reflecting the common use of the MMPI-2 to provide diagnostic considerations, computer-based test interpretations (CBTIs) also typically offer diagnostic suggestions. However, these diagnostic suggestions can sometimes be shown to vary widely across different CBTI programs even for identical MMPI-2 profiles. The present study evaluated the diagnostic reliability of 6 commercially available CBTIs using a 20-item Q-sort task developed for this study. Four raters each sorted diagnostic classifications based on these 6 CBTI reports for 20 MMPI-2 profiles. Two questions were addressed. First, do users of CBTIs understand the diagnostic information contained within the reports similarly? Overall, diagnostic sorts of the CBTIs showed moderate inter-interpreter diagnostic reliability (mean r = .56), with sorts for the 1/2/3 profile showing the highest inter-interpreter diagnostic reliability (mean r = .67). Second, do different CBTIs programs vary with respect to diagnostic suggestions? It was found that diagnostic sorts of the CBTIs had a mean inter-CBTI diagnostic reliability of r = .56, indicating moderate but not strong agreement across CBTIs in terms of diagnostic suggestions. The strongest inter-CBTI diagnostic agreement was found for sorts of the 1/2/3 profile CBTIs (mean r = .71). Limitations and future directions are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Connectivity-Based Reliable Multicast MAC Protocol for IEEE 802.11 Wireless LANs

    Directory of Open Access Journals (Sweden)

    Woo-Yong Choi

    2009-01-01

    Full Text Available We propose the efficient reliable multicast MAC protocol based on the connectivity information among the recipients. Enhancing the BMMM (Batch Mode Multicast MAC protocol, the reliable multicast MAC protocol significantly reduces the RAK (Request for ACK frame transmissions in a reasonable computational time and enhances the MAC performance. By the analytical performance analysis, the throughputs of the BMMM protocol and our proposed MAC protocol are derived. Numerical examples show that our proposed MAC protocol increases the reliable multicast MAC performance for IEEE 802.11 wireless LANs.

  16. The effect of Web-based Braden Scale training on the reliability of Braden subscale ratings.

    Science.gov (United States)

    Magnan, Morris A; Maklebust, JoAnn

    2009-01-01

    The primary purpose of this study was to evaluate the effect of Web-based Braden Scale training on the reliability of Braden Scale subscale ratings made by nurses working in acute care hospitals. A secondary purpose was to describe the distribution of reliable Braden subscale ratings before and after Web-based Braden Scale training. Secondary analysis of data from a recently completed quasi-experimental, pretest-posttest, interrater reliability study. A convenience sample of RNs working at 3 Michigan medical centers voluntarily participated in the study. RN participants included nurses who used the Braden Scale regularly at their place of employment ("regular users") as well as nurses who did not use the Braden Scale at their place of employment ("new users"). Using a pretest-posttest, quasi-experimental design, pretest interrater reliability data were collected to identify the percentage of nurses making reliable Braden subscale assessments. Nurses then completed a Web-based Braden Scale training module after which posttest interrater reliability data were collected. The reliability of nurses' Braden subscale ratings was determined by examining the level of agreement/disagreement between ratings made by an RN and an "expert" rating the same patient. In total, 381 RN-to-expert dyads were available for analysis. During both the pretest and posttest periods, the percentage of reliable subscale ratings was highest for the activity subscale, lowest for the moisture subscale, and second lowest for the nutrition subscale. With Web-based Braden Scale training, the percentage of reliable Braden subscale ratings made by new users increased for all 6 subscales with statistically significant improvements in the percentage of reliable assessments made on 3 subscales: sensory-perception, moisture, and mobility. Training had virtually no effect on the percentage of reliable subscale ratings made by regular users of the Braden Scale. With Web-based Braden Scale training the

  17. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    International Nuclear Information System (INIS)

    Monteleone, S.

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research

  18. Twenty-fifth water reactor safety information meeting: Proceedings. Volume 2: Human reliability analysis and human performance evaluation; Technical issues related to rulemakings; Risk-informed, performance-based initiatives; High burn-up fuel research

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    This three-volume report contains papers presented at the conference. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Japan, Norway, and Russia. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. This volume contains the following: (1) human reliability analysis and human performance evaluation; (2) technical issues related to rulemakings; (3) risk-informed, performance-based initiatives; and (4) high burn-up fuel research. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  19. Reliability Assessment and Reliability-Based Inspection and Maintenance of Offshore Wind Turbines

    DEFF Research Database (Denmark)

    Ramirez, José Rangel

    actions are the most relevant and effective means of control of deterioration. The risk-based inspection planning methodology, based on Bayesian decision theory, represents an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind...... performance during the life cycle. The deterioration processes, such as fatigue and corrosion, are typically affecting offshore structural systems. This damage decreases the system performance and increases the risk of failure, thus not fulfilling the established safety criteria. Inspection and maintenance...... to their offshore location, no pollution risks and low human risks since they are unmanned. This allows the allocation of lower reliability level compared to e.g. oil & gas installations. With the incursion to water depths between 20 and 50 meters, the use of jacket and tripod structures represents a feasible...

  20. A Review: Passive System Reliability Analysis – Accomplishments and Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun Kumar, E-mail: arunths@barc.gov.in [Reactor Engineering Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India); Chandrakar, Amit [Homi Bhabha National Institute, Mumbai (India); Vinod, Gopika [Reactor Safety Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India)

    2014-10-10

    Reliability assessment of passive safety systems is one of the important issues, since safety of advanced nuclear reactors rely on several passive features. In this context, a few methodologies such as reliability evaluation of passive safety system (REPAS), reliability methods for passive safety functions (RMPS), and analysis of passive systems reliability (APSRA) have been developed in the past. These methodologies have been used to assess reliability of various passive safety systems. While these methodologies have certain features in common, but they differ in considering certain issues; for example, treatment of model uncertainties, deviation of geometric, and process parameters from their nominal values. This paper presents the state of the art on passive system reliability assessment methodologies, the accomplishments, and remaining issues. In this review, three critical issues pertaining to passive systems performance and reliability have been identified. The first issue is applicability of best estimate codes and model uncertainty. The best estimate codes based phenomenological simulations of natural convection passive systems could have significant amount of uncertainties, these uncertainties must be incorporated in appropriate manner in the performance and reliability analysis of such systems. The second issue is the treatment of dynamic failure characteristics of components of passive systems. REPAS, RMPS, and APSRA methodologies do not consider dynamic failures of components or process, which may have strong influence on the failure of passive systems. The influence of dynamic failure characteristics of components on system failure probability is presented with the help of a dynamic reliability methodology based on Monte Carlo simulation. The analysis of a benchmark problem of Hold-up tank shows the error in failure probability estimation by not considering the dynamism of components. It is thus suggested that dynamic reliability methodologies must be

  1. Reliability analysis of protection systems in NPP applying fault-tree analysis method

    International Nuclear Information System (INIS)

    Bokor, J.; Gaspar, P.; Hetthessy, J.; Szabo, G.

    1998-01-01

    This paper demonstrates the applicability and limits of dependability analysis in nuclear power plants (NPPS) based on the reactor protection refurbishment project (RRP) in NPP Paks. This paper illustrates case studies from the reliability analysis for NPP Paks. It also investigates the solutions for the connection between the data acquisition and subsystem control units (TSs) and the voter units (VTs), it analyzes the influence of the voting in the VT computer level, it studies the effects of the testing procedures to the dependability parameters. (author)

  2. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  3. Reliability-based design of a retaining wall

    OpenAIRE

    Kim, John Sang

    1995-01-01

    A retaining wall is subject to various limit states such as sliding, overturning and bearing capacity, and it can fail by anyone of them. Since a great deal of uncertainty is involved in the analysis of the limit states~ the use of detenninistic conventional safety factors may produce a misleading result. The main objective of this study is to develop a procedure for the optimum design of a retaining wall by using the reliability theory. Typical gravity retaining walls with fou...

  4. Reliability analysis of maintenance operations for railway tracks

    International Nuclear Information System (INIS)

    Rhayma, N.; Bressolette, Ph.; Breul, P.; Fogli, M.; Saussine, G.

    2013-01-01

    Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis

  5. Development of seismic technology and reliability based on vibration tests

    International Nuclear Information System (INIS)

    Sasaki, Youichi

    1997-01-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  6. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  7. A new approach for reliability analysis with time-variant performance characteristics

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2013-01-01

    Reliability represents safety level in industry practice and may variant due to time-variant operation condition and components deterioration throughout a product life-cycle. Thus, the capability to perform time-variant reliability analysis is of vital importance in practical engineering applications. This paper presents a new approach, referred to as nested extreme response surface (NERS), that can efficiently tackle time dependency issue in time-variant reliability analysis and enable to solve such problem by easily integrating with advanced time-independent tools. The key of the NERS approach is to build a nested response surface of time corresponding to the extreme value of the limit state function by employing Kriging model. To obtain the data for the Kriging model, the efficient global optimization technique is integrated with the NERS to extract the extreme time responses of the limit state function for any given system input. An adaptive response prediction and model maturation mechanism is developed based on mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-variant reliability analysis can be converted into the time-independent reliability analysis and existing advanced reliability analysis methods can be used. Three case studies are used to demonstrate the efficiency and accuracy of NERS approach

  8. Modeling Sensor Reliability in Fault Diagnosis Based on Evidence Theory

    Directory of Open Access Journals (Sweden)

    Kaijuan Yuan

    2016-01-01

    Full Text Available Sensor data fusion plays an important role in fault diagnosis. Dempster–Shafer (D-R evidence theory is widely used in fault diagnosis, since it is efficient to combine evidence from different sensors. However, under the situation where the evidence highly conflicts, it may obtain a counterintuitive result. To address the issue, a new method is proposed in this paper. Not only the statistic sensor reliability, but also the dynamic sensor reliability are taken into consideration. The evidence distance function and the belief entropy are combined to obtain the dynamic reliability of each sensor report. A weighted averaging method is adopted to modify the conflict evidence by assigning different weights to evidence according to sensor reliability. The proposed method has better performance in conflict management and fault diagnosis due to the fact that the information volume of each sensor report is taken into consideration. An application in fault diagnosis based on sensor fusion is illustrated to show the efficiency of the proposed method. The results show that the proposed method improves the accuracy of fault diagnosis from 81.19% to 89.48% compared to the existing methods.

  9. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  10. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  11. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  12. Reliability analysis of the epidural spinal cord compression scale.

    Science.gov (United States)

    Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R

    2010-09-01

    The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.

  13. An application of the fault tree analysis for the power system reliability estimation

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2007-01-01

    The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)

  14. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  15. Reliability Analysis of Public Survey in Satisfaction with Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon Soo; Moon, Joo Hyun; Kang, Chang Sun [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    Korea Institute of Nuclear Safety (KINS) carried out a questionnaire survey on public's understanding nuclear safety and regulation in order to grasp public acceptance for nuclear energy. The survey was planned to help to analyze public opinion on nuclear energy and provide basic data for advertising strategy and policy development. In this study, based on results of the survey, the reliability of the survey was evaluated according to each nuclear site.

  16. Reliability Analysis of Public Survey in Satisfaction with Nuclear Safety

    International Nuclear Information System (INIS)

    Park, Moon Soo; Moon, Joo Hyun; Kang, Chang Sun

    2005-01-01

    Korea Institute of Nuclear Safety (KINS) carried out a questionnaire survey on public's understanding nuclear safety and regulation in order to grasp public acceptance for nuclear energy. The survey was planned to help to analyze public opinion on nuclear energy and provide basic data for advertising strategy and policy development. In this study, based on results of the survey, the reliability of the survey was evaluated according to each nuclear site

  17. Some developments in human reliability analysis approaches and tools

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W; Worledge, D H

    1988-01-01

    Since human actions have been recognized as an important contributor to safety of operating plants in most industries, research has been performed to better understand and account for the way operators interact during accidents through the control room and equipment interface. This paper describes the integration of a series of research projects sponsored by the Electric Power Research Institute to strengthen the methods for performing the human reliability analysis portion of the probabilistic safety studies. It focuses on the analytical framework used to guide the analysis, the development of the models for quantifying time-dependent actions, and simulator experiments used to validate the models.

  18. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  19. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  20. Reliability-based design optimization via high order response surface method

    International Nuclear Information System (INIS)

    Li, Hong Shuang

    2013-01-01

    To reduce the computational effort of reliability-based design optimization (RBDO), the response surface method (RSM) has been widely used to evaluate reliability constraints. We propose an efficient methodology for solving RBDO problems based on an improved high order response surface method (HORSM) that takes advantage of an efficient sampling method, Hermite polynomials and uncertainty contribution concept to construct a high order response surface function with cross terms for reliability analysis. The sampling method generates supporting points from Gauss-Hermite quadrature points, which can be used to approximate response surface function without cross terms, to identify the highest order of each random variable and to determine the significant variables connected with point estimate method. The cross terms between two significant random variables are added to the response surface function to improve the approximation accuracy. Integrating the nested strategy, the improved HORSM is explored in solving RBDO problems. Additionally, a sampling based reliability sensitivity analysis method is employed to reduce the computational effort further when design variables are distributional parameters of input random variables. The proposed methodology is applied on two test problems to validate its accuracy and efficiency. The proposed methodology is more efficient than first order reliability method based RBDO and Monte Carlo simulation based RBDO, and enables the use of RBDO as a practical design tool.

  1. Interrater reliability of videotaped observational gait-analysis assessments.

    Science.gov (United States)

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  2. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  3. Reliability-Based Structural Optimization of Wave Energy Converters

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kramer, Morten; Sørensen, John Dalsgaard

    2014-01-01

    More and more wave energy converter (WEC) concepts are reaching prototype level. Once the prototype level is reached, the next step in order to further decrease the levelized cost of energy (LCOE) is optimizing the overall system with a focus on structural and maintenance (inspection) costs......, as well as on the harvested power from the waves. The target of a fully-developed WEC technology is not maximizing its power output, but minimizing the resulting LCOE. This paper presents a methodology to optimize the structural design of WECs based on a reliability-based optimization problem...

  4. Probabilistic confidence for decisions based on uncertain reliability estimates

    Science.gov (United States)

    Reid, Stuart G.

    2013-05-01

    Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.

  5. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  6. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  7. Photovoltaic module reliability improvement through application testing and failure analysis

    Science.gov (United States)

    Dumas, L. N.; Shumka, A.

    1982-01-01

    During the first four years of the U.S. Department of Energy (DOE) National Photovoltatic Program, the Jet Propulsion Laboratory Low-Cost Solar Array (LSA) Project purchased about 400 kW of photovoltaic modules for test and experiments. In order to identify, report, and analyze test and operational problems with the Block Procurement modules, a problem/failure reporting and analysis system was implemented by the LSA Project with the main purpose of providing manufacturers with feedback from test and field experience needed for the improvement of product performance and reliability. A description of the more significant types of failures is presented, taking into account interconnects, cracked cells, dielectric breakdown, delamination, and corrosion. Current design practices and reliability evaluations are also discussed. The conducted evaluation indicates that current module designs incorporate damage-resistant and fault-tolerant features which address field failure mechanisms observed to date.

  8. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  9. Review of the treat upgrade reactor scram system reliability analysis

    International Nuclear Information System (INIS)

    Montague, D.F.; Fussell, J.B.; Krois, P.A.; Morelock, T.C.; Knee, H.E.; Manning, J.J.; Haas, P.M.; West, K.W.

    1984-10-01

    In order to resolve some key LMFBR safety issues, ANL personnel are modifying the TREAT reactor to handle much larger experiments. As a result of these modifications, the upgraded Treat reactor will not always operate in a self-limited mode. During certain experiments in the upgraded TREAT reactor, it is possible that the fuel could be damaged by overheating if, once the computer systems fail, the reactor scram system (RSS) fails on demand. To help ensure that the upgraded TREAT reactor is shut down when required, ANL personnel have designed a triply redundant RSS for the facility. The RSS is designed to meet three reliability goals: (1) a loss of capability failure probability of 10 -9 /demand (independent failures only); (2) an inadvertent shutdown probability of 10 -3 /experiment; and (3) protection agaist any known potential common cause failures. According to ANL's reliability analysis of the RSS, this system substantially meets these goals

  10. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  11. Reliability-Based Topology Optimization Using Stochastic Response Surface Method with Sparse Grid Design

    Directory of Open Access Journals (Sweden)

    Qinghai Zhao

    2015-01-01

    Full Text Available A mathematical framework is developed which integrates the reliability concept into topology optimization to solve reliability-based topology optimization (RBTO problems under uncertainty. Two typical methodologies have been presented and implemented, including the performance measure approach (PMA and the sequential optimization and reliability assessment (SORA. To enhance the computational efficiency of reliability analysis, stochastic response surface method (SRSM is applied to approximate the true limit state function with respect to the normalized random variables, combined with the reasonable design of experiments generated by sparse grid design, which was proven to be an effective and special discretization technique. The uncertainties such as material property and external loads are considered on three numerical examples: a cantilever beam, a loaded knee structure, and a heat conduction problem. Monte-Carlo simulations are also performed to verify the accuracy of the failure probabilities computed by the proposed approach. Based on the results, it is demonstrated that application of SRSM with SGD can produce an efficient reliability analysis in RBTO which enables a more reliable design than that obtained by DTO. It is also found that, under identical accuracy, SORA is superior to PMA in view of computational efficiency.

  12. Reliability evaluation of nuclear power plants by fault tree analysis

    International Nuclear Information System (INIS)

    Iwao, H.; Otsuka, T.; Fujita, I.

    1993-01-01

    As a work sponsored by the Ministry of International Trade and Industry, the Safety Information Research Center of NUPEC, using reliability data based on the operational experience of the domestic LWR Plants, has implemented FTA for the standard PWRs and BWRs in Japan with reactor scram due to system failures being at the top event. Up to this point, we have obtained the FT chart and minimal cut set for each type of system failure for qualitative evaluation, and we have estimated system unavailability, Fussell-Vesely importance and risk worth for components for quantitative evaluation. As the second stage of a series in our reliability evaluation work, another program was started to establish a support system. The aim of this system is to assist foreign and domestic plants in creating countermeasures when incidents occur, by providing them with the necessary information using the above analytical method and its results. (author)

  13. Reliability Analysis of the CERN Radiation Monitoring Electronic System CROME

    CERN Document Server

    AUTHOR|(CDS)2126870

    For the new in-house developed CERN Radiation Monitoring Electronic System (CROME) a reliability analysis is necessary to ensure compliance with the statu-tory requirements regarding the Safety Integrity Level. The required Safety Integrity Level by IEC 60532 standard is SIL 2 (for the Safety Integrated Functions Measurement, Alarm Triggering and Interlock Triggering). The first step of the reliability analysis was a system and functional analysis which served as basis for the implementation of the CROME system in the software “Iso-graph”. In the “Prediction” module of Isograph the failure rates of all components were calculated. Failure rates for passive components were calculated by the Military Standard 217 and failure rates for active components were obtained from lifetime tests by the manufacturers. The FMEA was carried out together with the board designers and implemented in the “FMECA” module of Isograph. The FMEA served as basis for the Fault Tree Analysis and the detection of weak points...

  14. Decision theory, the context for risk and reliability analysis

    International Nuclear Information System (INIS)

    Kaplan, S.

    1985-01-01

    According to this model of the decision process then, the optimum decision is that option having the largest expected utility. This is the fundamental model of a decision situation. It is necessary to remark that in order for the model to represent a real-life decision situation, it must include all the options present in that situation, including, for example, the option of not deciding--which is itself a decision, although usually not the optimum one. Similarly, it should include the option of delaying the decision while the authors gather further information. Both of these options have probabilities, outcomes, impacts, and utilities like any option and should be included explicitly in the decision diagram. The reason for doing a quantitative risk or reliability analysis is always that, somewhere underlying there is a decision to be made. The decision analysis therefore always forms the context for the risk or reliability analysis, and this context shapes the form and language of that analysis. Therefore, they give in this section a brief review of the well-known decision theory diagram

  15. Statistical Bayesian method for reliability evaluation based on ADT data

    Science.gov (United States)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  16. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  17. A Novel OBDD-Based Reliability Evaluation Algorithm for Wireless Sensor Networks on the Multicast Model

    Directory of Open Access Journals (Sweden)

    Zongshuai Yan

    2015-01-01

    Full Text Available The two-terminal reliability calculation for wireless sensor networks (WSNs is a #P-hard problem. The reliability calculation of WSNs on the multicast model provides an even worse combinatorial explosion of node states with respect to the calculation of WSNs on the unicast model; many real WSNs require the multicast model to deliver information. This research first provides a formal definition for the WSN on the multicast model. Next, a symbolic OBDD_Multicast algorithm is proposed to evaluate the reliability of WSNs on the multicast model. Furthermore, our research on OBDD_Multicast construction avoids the problem of invalid expansion, which reduces the number of subnetworks by identifying the redundant paths of two adjacent nodes and s-t unconnected paths. Experiments show that the OBDD_Multicast both reduces the complexity of the WSN reliability analysis and has a lower running time than Xing’s OBDD- (ordered binary decision diagram- based algorithm.

  18. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  19. Failure and Reliability Analysis for the Master Pump Shutdown System

    International Nuclear Information System (INIS)

    BEVINS, R.R.

    2000-01-01

    The Master Pump Shutdown System (MPSS) will be installed in the 200 Areas of the Hanford Site to monitor and control the transfer of liquid waste between tank farms and between the 200 West and 200 East areas through the Cross-Site Transfer Line. The Safety Function provided by the MPSS is to shutdown any waste transfer process within or between tank farms if a waste leak should occur along the selected transfer route. The MPSS, which provides this Safety Class Function, is composed of Programmable Logic Controllers (PLCs), interconnecting wires, relays, Human to Machine Interfaces (HMI), and software. These components are defined as providing a Safety Class Function and will be designated in this report as MPSS/PLC. Input signals to the MPSS/PLC are provided by leak detection systems from each of the tank farm leak detector locations along the waste transfer route. The combination of the MPSS/PLC, leak detection system, and transfer pump controller system will be referred to as MPSS/SYS. The components addressed in this analysis are associated with the MPSS/SYS. The purpose of this failure and reliability analysis is to address the following design issues of the Project Development Specification (PDS) for the MPSS/SYS (HNF 2000a): (1) Single Component Failure Criterion, (2) System Status Upon Loss of Electrical Power, (3) Physical Separation of Safety Class cables, (4) Physical Isolation of Safety Class Wiring from General Service Wiring, and (5) Meeting the MPSS/PLC Option 1b (RPP 1999) Reliability estimate. The failure and reliability analysis examined the system on a component level basis and identified any hardware or software elements that could fail and/or prevent the system from performing its intended safety function

  20. Reliability and Robustness Analysis of the Masinga Dam under Uncertainty

    Directory of Open Access Journals (Sweden)

    Hayden Postle-Floyd

    2017-02-01

    Full Text Available Kenya’s water abstraction must meet the projected growth in municipal and irrigation demand by the end of 2030 in order to achieve the country’s industrial and economic development plan. The Masinga dam, on the Tana River, is the key to meeting this goal to satisfy the growing demands whilst also continuing to provide hydroelectric power generation. This study quantitatively assesses the reliability and robustness of the Masinga dam system under uncertain future supply and demand using probabilistic climate and population projections, and examines how long-term planning may improve the longevity of the dam. River flow and demand projections are used alongside each other as inputs to the dam system simulation model linked to an optimisation engine to maximise water availability. Water availability after demand satisfaction is assessed for future years, and the projected reliability of the system is calculated for selected years. The analysis shows that maximising power generation on a short-term year-by-year basis achieves 80%, 50% and 1% reliability by 2020, 2025 and 2030 onwards, respectively. Longer term optimal planning, however, has increased system reliability to up to 95% in 2020, 80% in 2025, and more than 40% in 2030 onwards. In addition, increasing the capacity of the reservoir by around 25% can significantly improve the robustness of the system for all future time periods. This study provides a platform for analysing the implication of different planning and management of Masinga dam and suggests that careful consideration should be given to account for growing municipal needs and irrigation schemes in both the immediate and the associated Tana River basin.

  1. Improvement of human reliability analysis method for PRA

    International Nuclear Information System (INIS)

    Tanji, Junichi; Fujimoto, Haruo

    2013-09-01

    It is required to refine human reliability analysis (HRA) method by, for example, incorporating consideration for the cognitive process of operator into the evaluation of diagnosis errors and decision-making errors, as a part of the development and improvement of methods used in probabilistic risk assessments (PRAs). JNES has been developed a HRA method based on ATHENA which is suitable to handle the structured relationship among diagnosis errors, decision-making errors and operator cognition process. This report summarizes outcomes obtained from the improvement of HRA method, in which enhancement to evaluate how the plant degraded condition affects operator cognitive process and to evaluate human error probabilities (HEPs) which correspond to the contents of operator tasks is made. In addition, this report describes the results of case studies on the representative accident sequences to investigate the applicability of HRA method developed. HEPs of the same accident sequences are also estimated using THERP method, which is most popularly used HRA method, and comparisons of the results obtained using these two methods are made to depict the differences of these methods and issues to be solved. Important conclusions obtained are as follows: (1) Improvement of HRA method using operator cognitive action model. Clarification of factors to be considered in the evaluation of human errors, incorporation of degraded plant safety condition into HRA and investigation of HEPs which are affected by the contents of operator tasks were made to improve the HRA method which can integrate operator cognitive action model into ATHENA method. In addition, the detail of procedures of the improved method was delineated in the form of flowchart. (2) Case studies and comparison with the results evaluated by THERP method. Four operator actions modeled in the PRAs of representative BWR5 and 4-loop PWR plants were selected and evaluated as case studies. These cases were also evaluated using

  2. Reliability analysis of structures under periodic proof tests in service

    Science.gov (United States)

    Yang, J.-N.

    1976-01-01

    A reliability analysis of structures subjected to random service loads and periodic proof tests treats gust loads and maneuver loads as random processes. Crack initiation, crack propagation, and strength degradation are treated as the fatigue process. The time to fatigue crack initiation and ultimate strength are random variables. Residual strength decreases during crack propagation, so that failure rate increases with time. When a structure fails under periodic proof testing, a new structure is built and proof-tested. The probability of structural failure in service is derived from treatment of all the random variables, strength degradations, service loads, proof tests, and the renewal of failed structures. Some numerical examples are worked out.

  3. Creation and Reliability Analysis of Vehicle Dynamic Weighing Model

    Directory of Open Access Journals (Sweden)

    Zhi-Ling XU

    2014-08-01

    Full Text Available In this paper, it is modeled by using ADAMS to portable axle load meter of dynamic weighing system, controlling a single variable simulation weighing process, getting the simulation weighing data under the different speed and weight; simultaneously using portable weighing system with the same parameters to achieve the actual measurement, comparative analysis the simulation results under the same conditions, at 30 km/h or less, the simulation value and the measured value do not differ by more than 5 %, it is not only to verify the reliability of dynamic weighing model, but also to create possible for improving algorithm study efficiency by using dynamic weighing model simulation.

  4. Reliability-Based Structural Optimization of Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Simon Ambühl

    2014-12-01

    Full Text Available More and more wave energy converter (WEC concepts are reaching prototypelevel. Once the prototype level is reached, the next step in order to further decrease thelevelized cost of energy (LCOE is optimizing the overall system with a focus on structuraland maintenance (inspection costs, as well as on the harvested power from the waves.The target of a fully-developed WEC technology is not maximizing its power output,but minimizing the resulting LCOE. This paper presents a methodology to optimize thestructural design of WECs based on a reliability-based optimization problem and the intentto maximize the investor’s benefits by maximizing the difference between income (e.g., fromselling electricity and the expected expenses (e.g., structural building costs or failure costs.Furthermore, different development levels, like prototype or commercial devices, may havedifferent main objectives and will be located at different locations, as well as receive varioussubsidies. These points should be accounted for when performing structural optimizationsof WECs. An illustrative example on the gravity-based foundation of the Wavestar deviceis performed showing how structural design can be optimized taking target reliability levelsand different structural failure modes due to extreme loads into account.

  5. Signal Quality Outage Analysis for Ultra-Reliable Communications in Cellular Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Alvarez, Beatriz Soret; Lauridsen, Mads

    2015-01-01

    Ultra-reliable communications over wireless will open the possibility for a wide range of novel use cases and applications. In cellular networks, achieving reliable communication is challenging due to many factors, particularly the fading of the desired signal and the interference. In this regard......, we investigate the potential of several techniques to combat these main threats. The analysis shows that traditional microscopic multiple-input multiple-output schemes with 2x2 or 4x4 antenna configurations are not enough to fulfil stringent reliability requirements. It is revealed how such antenna...... schemes must be complemented with macroscopic diversity as well as interference management techniques in order to ensure the necessary SINR outage performance. Based on the obtained performance results, it is discussed which of the feasible options fulfilling the ultra-reliable criteria are most promising...

  6. The application of two recently developed human reliability techniques to cognitive error analysis

    International Nuclear Information System (INIS)

    Gall, W.

    1990-01-01

    Cognitive error can lead to catastrophic consequences for manned systems, including those whose design renders them immune to the effects of physical slips made by operators. Four such events, pressurized water and boiling water reactor accidents which occurred recently, were analysed. The analysis identifies the factors which contributed to the errors and suggests practical strategies for error recovery or prevention. Two types of analysis were conducted: an unstructured analysis based on the analyst's knowledge of psychological theory, and a structured analysis using two recently-developed human reliability analysis techniques. In general, the structured techniques required less effort to produce results and these were comparable to those of the unstructured analysis. (author)

  7. Generic Reliability-Based Inspection Planning for Fatigue Sensitive Details

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Straub, Daniel; Faber, Michael Havbro

    2005-01-01

    of fatigue sensitive details in fixed offshore steel jacket platforms and FPSO ship structures. Inspection and maintenance activities are planned such that code based requirements to the safety of personnel and environment for the considered structure are fulfilled and at the same time such that the overall......The generic approach for planning of in-service NDT inspections is extended to cover the case where the fatigue load is modified during the design lifetime of the structure. Generic reliability-based inspection planning has been developed as a practical approach to perform inspection planning...... expected costs for design, inspections, repairs and failures are minimized. The method is based on the assumption of “no-finds” of cracks during inspections. Each fatigue sensitive detail is categorized according to their type of details (SN curves), FDF values, RSR values, inspection, repair and failure...

  8. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  9. 49 CFR Appendix E to Part 238 - General Principles of Reliability-Based Maintenance Programs

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Pt. 238, App. E Appendix E to Part 238—General Principles of Reliability-Based Maintenance... 49 Transportation 4 2010-10-01 2010-10-01 false General Principles of Reliability-Based... the design level of safety and reliability of the equipment; (2) To restore safety and reliability to...

  10. The relationship between cost estimates reliability and BIM adoption: SEM analysis

    Science.gov (United States)

    Ismail, N. A. A.; Idris, N. H.; Ramli, H.; Rooshdi, R. R. Raja Muhammad; Sahamir, S. R.

    2018-02-01

    This paper presents the usage of Structural Equation Modelling (SEM) approach in analysing the effects of Building Information Modelling (BIM) technology adoption in improving the reliability of cost estimates. Based on the questionnaire survey results, SEM analysis using SPSS-AMOS application examined the relationships between BIM-improved information and cost estimates reliability factors, leading to BIM technology adoption. Six hypotheses were established prior to SEM analysis employing two types of SEM models, namely the Confirmatory Factor Analysis (CFA) model and full structural model. The SEM models were then validated through the assessment on their uni-dimensionality, validity, reliability, and fitness index, in line with the hypotheses tested. The final SEM model fit measures are: P-value=0.000, RMSEA=0.0790.90, TLI=0.956>0.90, NFI=0.935>0.90 and ChiSq/df=2.259; indicating that the overall index values achieved the required level of model fitness. The model supports all the hypotheses evaluated, confirming that all relationship exists amongst the constructs are positive and significant. Ultimately, the analysis verified that most of the respondents foresee better understanding of project input information through BIM visualization, its reliable database and coordinated data, in developing more reliable cost estimates. They also perceive to accelerate their cost estimating task through BIM adoption.

  11. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  12. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2011-01-01

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: →We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. → We discuss the difficulties in defining and measuring fatigue. → We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  13. An accurate and efficient reliability-based design optimization using the second order reliability method and improved stability transformation method

    Science.gov (United States)

    Meng, Zeng; Yang, Dixiong; Zhou, Huanlin; Yu, Bo

    2018-05-01

    The first order reliability method has been extensively adopted for reliability-based design optimization (RBDO), but it shows inaccuracy in calculating the failure probability with highly nonlinear performance functions. Thus, the second order reliability method is required to evaluate the reliability accurately. However, its application for RBDO is quite challenge owing to the expensive computational cost incurred by the repeated reliability evaluation and Hessian calculation of probabilistic constraints. In this article, a new improved stability transformation method is proposed to search the most probable point efficiently, and the Hessian matrix is calculated by the symmetric rank-one update. The computational capability of the proposed method is illustrated and compared to the existing RBDO approaches through three mathematical and two engineering examples. The comparison results indicate that the proposed method is very efficient and accurate, providing an alternative tool for RBDO of engineering structures.

  14. Multisite Reliability of MR-Based Functional Connectivity

    Science.gov (United States)

    Noble, Stephanie; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen M.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Cannon, Tyrone D.; Constable, R. Todd

    2016-01-01

    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0

  15. Analysis of dependent failures in risk assessment and reliability evaluation

    International Nuclear Information System (INIS)

    Fleming, K.N.; Mosleh, A.; Kelley, A.P. Jr.; Gas-Cooled Reactors Associates, La Jolla, CA)

    1983-01-01

    The ability to estimate the risk of potential reactor accidents is largely determined by the ability to analyze statistically dependent multiple failures. The importance of dependent failures has been indicated in recent probabilistic risk assessment (PRA) studies as well as in reports of reactor operating experiences. This article highlights the importance of several different types of dependent failures from the perspective of the risk and reliability analyst and provides references to the methods and data available for their analysis. In addition to describing the current state of the art, some recent advances, pitfalls, misconceptions, and limitations of some approaches to dependent failure analysis are addressed. A summary is included of the discourse on this subject, which is presented in the Institute of Electrical and Electronics Engineers/American Nuclear Society PRA Procedures Guide

  16. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  17. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  18. Reliability-Based Robust Design Optimization of Structures Considering Uncertainty in Design Variables

    Directory of Open Access Journals (Sweden)

    Shujuan Wang

    2015-01-01

    Full Text Available This paper investigates the structural design optimization to cover both the reliability and robustness under uncertainty in design variables. The main objective is to improve the efficiency of the optimization process. To address this problem, a hybrid reliability-based robust design optimization (RRDO method is proposed. Prior to the design optimization, the Sobol sensitivity analysis is used for selecting key design variables and providing response variance as well, resulting in significantly reduced computational complexity. The single-loop algorithm is employed to guarantee the structural reliability, allowing fast optimization process. In the case of robust design, the weighting factor balances the response performance and variance with respect to the uncertainty in design variables. The main contribution of this paper is that the proposed method applies the RRDO strategy with the usage of global approximation and the Sobol sensitivity analysis, leading to the reduced computational cost. A structural example is given to illustrate the performance of the proposed method.

  19. Usage models in reliability assessment of software-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Haapanen, P.; Pulkkinen, U. [VTT Automation, Espoo (Finland); Korhonen, J. [VTT Electronics, Espoo (Finland)

    1997-04-01

    This volume in the OHA-project report series deals with the statistical reliability assessment of software based systems on the basis of dynamic test results and qualitative evidence from the system design process. Other reports to be published later on in the OHA-project report series will handle the diversity requirements in safety critical software-based systems, generation of test data from operational profiles and handling of programmable automation in plant PSA-studies. In this report the issues related to the statistical testing and especially automated test case generation are considered. The goal is to find an efficient method for building usage models for the generation of statistically significant set of test cases and to gather practical experiences from this method by applying it in a case study. The scope of the study also includes the tool support for the method, as the models may grow quite large and complex. (32 refs., 30 figs.).

  20. Usage models in reliability assessment of software-based systems

    International Nuclear Information System (INIS)

    Haapanen, P.; Pulkkinen, U.; Korhonen, J.

    1997-04-01

    This volume in the OHA-project report series deals with the statistical reliability assessment of software based systems on the basis of dynamic test results and qualitative evidence from the system design process. Other reports to be published later on in the OHA-project report series will handle the diversity requirements in safety critical software-based systems, generation of test data from operational profiles and handling of programmable automation in plant PSA-studies. In this report the issues related to the statistical testing and especially automated test case generation are considered. The goal is to find an efficient method for building usage models for the generation of statistically significant set of test cases and to gather practical experiences from this method by applying it in a case study. The scope of the study also includes the tool support for the method, as the models may grow quite large and complex. (32 refs., 30 figs.)