WorldWideScience

Sample records for relevant weather conditions

  1. Android Smartphone Relevance to Military Weather Applications

    Science.gov (United States)

    2011-10-01

    lithium -ion battery that may be replaced by the user (unlike Apple iPod Touch devices), thus spare batteries can be carried. If there is only sporadic...Android Smartphone Relevance to Military Weather Applications by David Sauter ARL-TR-5793 October 2011...Android Smartphone Relevance to Military Weather Applications David Sauter Computational and Information Sciences Directorate, ARL

  2. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  3. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    sions when the strong wind field appeared spread over the peninsula and central India. This was also seen both in OLR and in vertical velocity fields prepared by National Centre for Medium. Range Weather Forecasting (NCMRWF). A band of low OLR (150–160watts/sqm) could be seen in the south and adjoining central ...

  4. Weather conditions: a neglected factor in human salivary cortisol research?

    Science.gov (United States)

    Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović

    2018-02-01

    There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.

  5. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    1993-01-01

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  6. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  7. Influence of weather conditions on natural radioactivity

    International Nuclear Information System (INIS)

    Simion, Florin; Simion, Elena; Cuculeanu, Vasile; Mihalcea, Ion

    2011-01-01

    This paper presents the dependence of the natural radioactivity on atmospheric weather conditions: air temperature, atmospheric pressure, wind speed, atmospherical precipitations and relative humidity. The values used in the paper were taken from the environmental radioactivity monitoring in Botosani city, Romania, as measured by the Environmental Radioactivity Surveillance Station. Daily global measurements of atmospheric deposition beta and atmospheric aerosols as well were carried out, including the indirect determination of radon and thoron, and the absorbed gamma dose rate in air, as well. Sampling and measurement frequency depended on the type of sample analyzed as follows: atmospheric deposition were taken daily, atmospheric aerosols were collected 4 times/day, with a sampling interval of 5 hours while the air absorbed dose rate was determined at a hourly rate. The coefficient of multiple correlation between the type of analysis and weather conditions, was determined. By using multiple linear regression it was highlighted the natural radioactivity dependence on the atmospheric conditions and meteorological parameters by a mathematical expression that can be used to determine missing values in a time series of measured data. By predicting the measured values our procedure can be considered as a validation process of the measurement accuracy

  8. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  9. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  10. Power losses in electrical networks depending on weather conditions

    International Nuclear Information System (INIS)

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-01

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region

  11. Thermal stress analysis of reactor containment building considering severe weather condition

    International Nuclear Information System (INIS)

    Lee, Yun; Kim, Yun-Yong; Hyun, Jung-Hwan; Kim, Do-Gyeum

    2014-01-01

    Highlights: • We examine that through-wall crack risk in cold weather is high. • It is predicted that cracking in concrete wall will not happen in hot region. • Cracking due to hydration heat can be controlled by appropriate curing condition. • Temperature differences between inner and outer face is relatively small in hot weather. - Abstract: Prediction of concrete cracking due to hydration heat in mass concrete such as reactor containment building (RCB) in nuclear power plant is a crucial issue in construction site. In this study, the numerical analysis for heat transfer and stress development is performed for the containment wall in RCB by considering the severe weather conditions. Finally, concrete cracking risk in hot and cold weather is discussed based on analysis results. In analyses considering severe weather conditions, it is found that the through-wall cracking risk in cold weather is high due to the abrupt temperature difference between inside concrete and the ambient air in cold region. In hot weather, temperature differences between inner and outer face is relatively small, and accordingly the relevant cracking risk is relatively low in contrast with cold weather

  12. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  13. The relevance and legibility of radio/TV weather reports to the Austrian public

    Science.gov (United States)

    Keul, A. G.; Holzer, A. M.

    2013-03-01

    The communicative quality of media weather reports, especially warnings, can be evaluated by user research. It is an interdisciplinary field, still uncoordinated after 35 years. The authors suggest to shift from a cognitive learning model to news processing, qualitative discourse and usability models as the media audience is in an edutainment situation where it acts highly selective. A series of field surveys 2008-2011 tested the relevance and legibility of Austrian radio and television weather reports on fair weather and in warning situations. 247 laypeople heard/saw original, mostly up-to-date radio/TV weather reports and recalled personally relevant data. Also, a questionnaire on weather knowledge was answered by 237 Austrians. Several research hypotheses were tested. The main results were (a) a relatively high level of meteorological knowledge of the general population, with interest and participation of German-speaking migrants, (b) a pluralistic media usage with TV, radio and internet as the leading media, (c) higher interest and attention (also for local weather) after warnings, but a risk of more false recalls after long warnings, (d) more recall problems with radio messages and a wish that the weather elements should always appear in the same order to faciliate processing for the audience. In their narrow time windows, radio/TV weather reports should concentrate on main features (synoptic situation, tomorrow's temperature and precipitation, possible warnings), keep a verbal “speed limit” and restrict show elements to serve the active, selective, multioptional, multicultural audience.

  14. Intra-seasonal risk of agriculturally-relevant weather extremes in West African Sudan Savanna

    Science.gov (United States)

    Boansi, David; Tambo, Justice A.; Müller, Marc

    2018-01-01

    Using household survey data and historical daily climate data for 29 communities across Upper East Ghana and Southwest Burkina Faso, we document climatic conditions deemed major threat to farming in the West African Sudan Savanna and assess risks posed by such conditions over the period 1997-2014. Based on farmers' perception, it is found that drought, low rainfall, intense precipitation, flooding, erratic rainfall pattern, extremely high temperatures, delayed rains, and early cessation of rains are the major threats farmers face. Using first-order Markov chain model and relevant indices for monitoring weather extremes, it is discovered that climatic risk is a general inherent attribute of the rainy season in the study area. Due to recent changes in onset of rains and length of the rainy season, some farmers have either resorted to early planting of drought-hardy crops, late planting of drought-sensitive crops, or spreading of planting across the first 3 months of the season to moderate harm. Each of these planting decisions however has some risk implications. The months of May, June, and October are found to be more susceptible to relatively longer duration of dry and hot spells, while July, August, and September are found to be more susceptible to intense precipitation and flooding. To moderate harm from anticipated weather extremes, farmers need to adjust their cropping calendar, adopt appropriate crop varieties, and implement soil and water management practices. For policy makers and other stakeholders, we recommend the supply of timely and accurate weather forecasts to guide farmers in their seasonal cropping decisions and investment in/installation of low cost irrigation facilities to enhance the practice of supplemental irrigation.

  15. Synoptic-scale fire weather conditions in Alaska

    Science.gov (United States)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  16. Relationship between onset of spontaneous pneumothorax and weather conditions.

    Science.gov (United States)

    Mishina, Taijiro; Watanabe, Atsushi; Miyajima, Masahiro; Nakazawa, Junji

    2017-09-01

    Spontaneous pneumothorax (SP) results from the rupture of blebs or bullae. It has been suggested that changes in weather conditions may trigger the onset of SP. Our aim was to examine the association between the onset of primary SP with weather changes in the general population in Sapporo, Japan. From January 2008 through September 2013, 345 consecutive cases with a diagnosis of primary SP were reviewed. All cases of primary SP developed in the area within 40 km from the Sapporo District Meteorological Observatory. Climatic measurements were obtained from the Observatory, which included 1-h readings of weather conditions. Logistic regression model was used to obtain predicted risks for the onset of SP with respect to weather conditions. SP occurred significantly when the atmospheric pressure decreased by - 18 hPa or less during 96 h before the survey date (odds ratio = 1.379, P = 0.026), when the pressure increased by 15 hPa or more during 72 h before the survey date (odds ratio = 1.095, P = 0.007) and when maximum fluctuation in atmospheric pressure over 22 hPa was observed during 96 h before the survey date (odds ratio = 1.519, P = 0.001). Other weather conditions, including the presence of thunderstorms, were not significantly correlated with the onset of pneumothorax. Changes in atmospheric pressure influence the onset of SP. Future studies on the relationship between the onset of SP and weather conditions on days other than before the onset and with large number of patients may enable us to predict the onset of SP in various regions and weather conditions. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  18. Robust vehicle detection in different weather conditions: Using MIPM.

    Science.gov (United States)

    Yaghoobi Ershadi, Nastaran; Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.

  19. Droplet spectrum of a spray nozzle under different weather conditions

    Directory of Open Access Journals (Sweden)

    Christiam Felipe Silva Maciel

    Full Text Available ABSTRACT The application of pesticides is always susceptible to losses through evaporation and drift of the spray droplets. With these losses, a smaller amount of pesticide reaches the target, possibly impairing the efficiency of phytosanitary control. Due to these concerns, the aim of this study was to evaluate the interference of weather conditions in the droplet spectrum produced by hydraulic spraying. To carry out the work, it was necessary to build an experimental system. This consisted of a laser particle-size analyser, hydraulic nozzle (Jacto JSF 11002, stationary sprayer, gas heater, wind tunnel, climate chamber (with the aim of maintaining the internal psychrometry similar to that of the air exiting the wind tunnel, collector, and temperature and RH sensors. The weather conditions for the study included vapour pressure deficits (VPD of 5, 9.4, 20, 30.6 and 35 hPa, and air velocities of 2, 3.6, 7.4, 11.2 and 12.8 km h-1. A Rotatable Central Composite Design was used, and the data related using Response Surface Methodology. The wind caused such a sharp drift in the fine droplets, that it greatly affected the behaviour of the entire droplet spectrum, as well as hiding the effect of the VPD. However, the conclusion is that drift and evaporation both act on the coarser droplets.

  20. Deoxynivalenol occurrence in Serbian maize under different weather conditions

    Directory of Open Access Journals (Sweden)

    Jajić Igor M.

    2017-01-01

    Full Text Available The aim of this paper was to investigate deoxynivalenol (DON occurrence in maize samples originating from two harvest seasons in Serbia. The key differences between harvest seasons were weather conditions, specifically the humidity. The samples were analyzed using high performance liquid chromatography with DAD detection, after clean-up on SPE columns. In samples from 2014, DON was found in 82 (100.0% samples with the average content of 2.517 mg/kg (ranged from 0.368 to 11.343 mg/kg. Two samples exceeded maximum level permitted by EU regulations. However, analyzing larger number of samples (163 from 2015 harvest season, DON was present in 51 (31.3% samples in significantly lower concentrations (average of 0.662 mg/kg, ranged from 0.106 to 2.628 mg/kg. None of the samples from 2015 exceeded maximum level permitted by EU regulations. The data on DON presence in Serbian maize were in relation to the different weather conditions that prevailed during the two harvest seasons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172042

  1. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  2. Sustainable resilience in property maintenance: encountering changing weather conditions

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Nielsen, Susanne Balslev

    2014-01-01

    Purpose: The purpose of the study is to develop a methodological approach for project management to integrate sustainability and resilience planning in property maintenance as an incremental strategy for upgrading existing properties to meet new standards for sustainable and climate resilient...... buildings. Background: Current maintenance practice is focused on the technical standard of buildings, with little consideration of sustainability and resilience. There is a need to develop tools for incorporating sustainable resilience into maintenance planning. Approach: The study is primarily theoretical......, developing the concept of sustainable resilience for changing weather conditions Results: The paper suggests a decision support methodology that quantifies sustainable resilience for the analytical stages of property maintenance planning. Practical Implications: The methodology is generic and expected users...

  3. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  4. Climatological relevance of major USA weather losses during 1991-1994

    Science.gov (United States)

    Changnon, David; Changnon, Stanley A.

    1998-01-01

    Two insurance indices, which integrate storm types with their losses from 1948 to 1994, were examined to assess the frequency and intensity of damaging weather in the USA from 1991 to 1994. These indices adjust for changing socio-economic conditions, allowing meaningful temporal assessment of 1991-1994 conditions against those in earlier years.Catastrophes, as defined by property loss insurers, were assessed for two groups, those 707 storms with insured losses between 10 and 100 million and those 189 with greater than 100 million. Both categories experienced their greatest frequency and caused more loss during the 1991-1994 period than in any prior period. However, the temporal behaviour of annual frequency and losses for both categories were very different, with steady increases found for the 10 to 100 million catastrophes, while the number of >100 million catastrophes exhibited a high-low-high distribution and the annual cost distribution was flat with a few isolated peaks. For both categories the temporal behaviour of storm intensity was similar, with moderate intensities found in the recent period and the highest intensities in the 1950s. The crop-hail losses were high in 1992-1994, and the annual loss costs for the 1948-1994 period had a U-shaped time distribution similar to that of the >100 million catastrophes.Weather conditions (USA mean temperature and surface cyclone frequency) were found to largely define: (i) when major, highly expensive weather events occur (and their annual losses), and (ii) how intense catastrophic storm conditions and crop-damaging hailstorms are during each year. Conversely, the shifting target (population as an index) for damaging (non-hurricane) storms across the USA is the major factor in creating storms with losses reaching into the low (10 million) to moderate ($100 million) range.

  5. Triticale in the years with extreme weather conditions

    Directory of Open Access Journals (Sweden)

    Nožinić Miloš

    2009-01-01

    Full Text Available Unlike other grain crops, the area under triticale in the Republic of Srpska has been expanding every year. Since the introduction of this plant species in the broad production began a few years ago, the finding of the optimal variety agrotechnique in different environmental conditions has great importance. This paper deals with the results of the trials from seven locations in two very extreme vegetation seasons (2002/03, 2006/07. High yield of triticale on the location Banja Luka (150 m alt. with five triticale varieties in four sowing rates in the replication trial in very unfavorable weather conditions in 2003, points to emphasized triticale tolerance to high temperatures and drought. High grain yield of triticale in the trials on the locations Banja Luka, Butmir (460 m alt. and Živince (230 m alt. was obtained in 2007 too, when all vegetation months had higher mean temperature than long term average, what is a unique appearance in the entire 'meteorological history'. In the paper the appearance of the earliest triticale heading is described and explained. It happened at one production trial on Manjača (250 m alt. in the first decade of March in 2007. On the another location on Manjača (450 m alt., in the macrotrial, rye showed much higher tolerance to extreme soil acidity, than triticale. Obtained results and unusual appearances on triticale are helpful for the further research of the stability and adaptability of more important triticale traits. .

  6. Weather conditions influence the number of psychiatric emergency room patients

    Science.gov (United States)

    Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam

    2017-12-01

    The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter (p psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.

  7. Weather conditions and daily television use in the Netherlands, 1996-2005

    NARCIS (Netherlands)

    Eisinga, R.; Franses, Ph.-H.; Vergeer, M.

    2010-01-01

    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996–2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather

  8. Oil spill cleanup in severe weather and open ocean conditions

    International Nuclear Information System (INIS)

    Kowalski, T.

    1993-01-01

    Most serious oil spills occur in open water under severe weather conditions. At first the oil stays on the surface, where it is spread by winds and water currents. The action of the waves then mixes the oil into the water column. With time the light elements of crude oil evaporate. The remaining residue is of very low commercial value, but of significant environmental impact. The oil spill can move either out to sea or inshore, where it ends up on the beaches. Normal procedures are to let outbound oil disperse by evaporation and mixing into the water column, and to let the inbound oil collect on the beaches, where the cleanup operations are concentrated. The reason for this is that there is no capability to clean the surface of the water in wave conditions-present-day oil skimmers are ineffective in waves approaching 4 ft in height. It would be simpler, more effective and environmentally more beneficial to skim the oil right at the spill location. This paper describes a method to do this. In the case of an oil spill in open water and high wave conditions, it is proposed to reduce the height of the ocean waves by the use of floating breakwaters to provide a relatively calm area. In such protected areas existing oil skimmers can be used to recover valuable oil and clean up the spill long before it hits the beaches. A floating breakwater developed at the University of Rhode Island by the author can be of great benefit in oil spill cleanup for open ocean conditions. This breakwater is constructed from scrap automobile tires. It is built in units of 20 tires each, which are easily transportable and can be connected together at the spill site to form any desired configuration

  9. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  10. Microbiological composition of untreated water during different weather conditions

    Directory of Open Access Journals (Sweden)

    Adna Bešić

    2011-09-01

    Full Text Available Introduction: Water can support the growth of different microorganisms which may result in contamination. Therefore, the microbiological examination is required for testing the hygienic probity of water. In the study of microbial composition of untreated, natural spring and mineral water differences in the presence and number of bacteria during the two periods, winter and summer, are detectable.Methods: In our study, we analyzed and compared the following parameters, specified in the Rulebook: total bacteria and total aerobic bacteria (ml/22 and 37°C, total Coliform bacteria and Coliforms of fecalorigin (MPN/100ml, fecal streptococci as Streptococcus faecalis  (MPN/100ml, Proteus spp (MPN/100ml, and Pseudomonas aeruginosa (MPN/100 ml Sulphoreducing Clostridia (cfu / ml. The paper is a retrospective study in which we processed data related to the period of 2005-2009 year. While working, we used the descriptive-analytical comparative statistical treatment.Results: The obtained results show statistically significant differences in the microbial composition of untreated water in the two observed periods,Conclusions: Findings were consequence of different weather conditions in these periods, which imply a number of other variable factors.

  11. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    Science.gov (United States)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  12. Effects of weather conditions, light conditions, and road lighting on vehicle speed.

    Science.gov (United States)

    Jägerbrand, Annika K; Sjöbergh, Jonas

    2016-01-01

    Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their

  13. Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions

    Science.gov (United States)

    Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle

    Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.

  14. Improving growth performance in calves under hot weather conditions

    International Nuclear Information System (INIS)

    Emara, S.S.M.

    2009-01-01

    The main objectives of the present study were to evaluate the effect of some supplement such as dried live yeast DLY (Saccharomyces cerevisiae), DLY + vitamin E and / or dried whey milk (DWM) on blood constituents and thyroid activity in relation to some immune indices and growth performance of calves under hot weather conditions. The ambient temperature and relative humidity averaged 36.9±4 degree C and 43-58 % during day and 29±4 degree C and 60-68 % during night, respectively, which were equivalent to temperature humidity index of 86-89 during day and 78-80 during night . The present study included three experiments as follows. Experiment 1 : Six female bovine Baladi calves of 8-10 months old and 100 kg initial body weight (IBW) were used during two periods. In the first period, the calves were offered the basal diet for one month and considered as a control period. In the second period, the same calves were fed the same basal diet which supplemented with 15 g / calf/ day DLY for one month and considered as treated period. The obtained results indicated that supplementation of DLY reduced significantly the respiration rate (RR) and rectal temperature (RT) as well as serum lipids profile including total cholesterol, low density lipoprotein (LDL- cholesterol) very low density lipoprotein (VLDL-cholesterol) triglycerides and phospholipids.The second and third experiments were carried out for improving growth performance of heat-stressed bovine baladi calves by adding DLY and vitamine E (alpha-tocopherol) to their diet in experiment 2 and dried whey milk (DWM) in experiment 3.

  15. Weather conditions drive dynamic habitat selection in a generalist predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year...... and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly...... with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types...

  16. Poor weather conditions and flight operations: Implications for air ...

    African Journals Online (AJOL)

    This paper examined various weather hazards which include thunderstorm, fog, dust haze and line squall that affect flight operation such as flight delays, diversion and cancellation. The study revealed that fog accounted for 13.2% of flight cancellation at the airport and line squall similarly accounted for 10.1% of delays, ...

  17. Travel in adverse winter weather conditions by blind pedestrians.

    Science.gov (United States)

    2015-08-31

    Winter weather creates many orientation and mobility (O&M) challenges for people who are visually impaired. Getting the cane tip stuck is one of the noticeable challenges when traveling in snow, particularly when the walking surface is covered in dee...

  18. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  19. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  20. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2017-01-01

    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....

  1. CAUSALITY OF WEATHER CONDITIONS IN AUSTRALIAN STOCK EQUITY RETURNS

    OpenAIRE

    Svetlana Vlady; Ekrem Tufan; Bahattin Hamarat

    2011-01-01

    This study investigates causality of weather and its impact on the The S&P/ASX All Australian 200 Index has been selected as a proxy for the Australian capital market. The index consists exclusively of Australian domiciled companies. Following previous research in behaviour finance in the area of environmental psychology, the data set covers temperature, quality temperature, wet bulb temperature, quality wet bulb temperature, humidity, pressure and vapour pressure variables. The data set is a...

  2. The Conditions of Creation and Prospects of Weather Derivatives Development on the Domestic Market

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-06-01

    Full Text Available Analysing the possibility of creations and prospects of weather derivatives development on the domestic market the first of all should be identify the business areas that are strongly exposed for weather risk, which are: energy, agricultural, building and transportation. The specificity of the Polish climate is the high volatility of the major weather factors like temperature or precipitations. Similar to other European countries where weather derivatives markets already exist (e.g.: Germany, France, and United Kingdom. Having in mind dynamic grow of companies with regards to management processes, used technologies and marketing strategies, the exposure for weather risk is getting higher. Therefore, there is a strong pressure for creation of mechanisms and instruments that will allow reducing that kind of risks. Currently in Poland there are no conditions for development of weather derivatives market due to lack of demand. That situation is caused by low level of awareness regarding to possibilities of reducing weather risks. Within a few years the demand for such the instruments will appear ñ together with growing awareness. Once the demand for weather derivative will appear, the existing infrastructure of financial sector is ready for its implementation. Of course it is hard to say what will be the direction of whether derivatives grow on the domestic financial market but taking into consideration its dynamic grow and strong correlations with global markets, there is a small probability that weather derivatives will not appear on the Polish market ñ it is only the matter of time.

  3. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  4. Suitability of Nigerian Weather Conditions for Cultivation of Microalgae

    African Journals Online (AJOL)

    Client

    compared with optimal conditions for cultivation of various species of microalgae. ... The results of average hours of sunshine showed that Jos has the lowest number of hours ... Temperature stratification in ponds within Abakaliki was ... question of how we will feed the starving masses of our ever increasing world population.

  5. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure.

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta M; Dobozinskas, Paulius; Sakalyte, Gintare; Lopatiene, Kristina; Mikelionis, Nerijus

    2015-02-27

    We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009-2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs), in which the conditions for the emergency calls were made coded I.10-I.15. The Kaunas Weather Station provided daily records of air temperature (T), wind speed (WS), relative humidity, and barometric pressure (BP). We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS>600 km/s) increased the daily number of elevated arterial blood pressure (EABP) by 12% (RR=1.12; 95% confidence interval (CI) 1.04-1.21); and WS≥3.5 knots during days of Tweather conditions. These results may help in the understanding of the population's sensitivity to different weather conditions.

  6. Estimating national crop yield potential and the relevance of weather data sources

    Science.gov (United States)

    Van Wart, Justin

    2011-12-01

    To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing

  7. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  8. Weather conditions and political party vote share in Dutch national parliament elections, 1971-2010

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-11-01

    Inclement weather on election day is widely seen to benefit certain political parties at the expense of others. Empirical evidence for this weather-vote share hypothesis is sparse however. We examine the effects of rainfall and temperature on share of the votes of eight political parties that participated in 13 national parliament elections, held in the Netherlands from 1971 to 2010. This paper merges the election results for all Dutch municipalities with election-day weather observations drawn from all official weather stations well distributed over the country. We find that the weather parameters affect the election results in a statistically and politically significant way. Whereas the Christian Democratic party benefits from substantial rain (10 mm) on voting day by gaining one extra seat in the 150-seat Dutch national parliament, the left-wing Social Democratic (Labor) and the Socialist parties are found to suffer from cold and wet conditions. Cold (5°C) and rainy (10 mm) election day weather causes the latter parties to lose one or two parliamentary seats.

  9. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene

    2015-02-01

    Full Text Available We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009–2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs, in which the conditions for the emergency calls were made coded I.10–I.15. The Kaunas Weather Station provided daily records of air temperature (T, wind speed (WS, relative humidity, and barometric pressure (BP. We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS > 600 km/s increased the daily number of elevated arterial blood pressure (EABP by 12% (RR = 1.12; 95% confidence interval (CI 1.04–1.21; and WS ≥ 3.5 knots during days of T < 1.5 °C and T ≥ 12.5 °C by 8% (RR = 1.08; CI 1.04–1.12. An increase of T by 10 °C and an elevation of BP two days after by 10 hPa were associated with a decrease in RR by 3%. An additional effect of T was detected during days of T ≥ 17.5 °C only in females. Women and patients with grade III arterial hypertension at the time of the ambulance call were more sensitive to weather conditions. These results may help in the understanding of the population’s sensitivity to different weather conditions.

  10. Weather conditions may worsen symptoms in rheumatoid arthritis patients: the possible effect of temperature.

    Science.gov (United States)

    Abasolo, Lydia; Tobías, Aurelio; Leon, Leticia; Carmona, Loreto; Fernandez-Rueda, Jose Luis; Rodriguez, Ana Belen; Fernandez-Gutierrez, Benjamin; Jover, Juan Angel

    2013-01-01

    Patients with rheumatoid arthritis (RA) complain that weather conditions aggravate their symptoms. We investigated the short-term effects of weather conditions on worsening of RA and determined possible seasonal fluctuations. We conducted a case-crossover study in Madrid, Spain. Daily cases of RA flares were collected from the emergency room of a tertiary level hospital between 2004 and 2007. 245 RA patients who visited the emergency room 306 times due to RA related complaints as the main diagnostic reason were included in the study. Patients from 50 to 65 years old were 16% more likely to present a flare with lower mean temperatures. Our results support the belief that weather influences rheumatic pain in middle aged patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  11. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    Directory of Open Access Journals (Sweden)

    Élise Lépy

    2016-08-01

    Full Text Available (1 Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2 Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3 Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4 Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  12. Correlation-study about the ambient dose rate and the weather conditions

    Science.gov (United States)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  13. Geographic heterogeneity in cycling under various weather conditions: Evidence from Greater Rotterdam

    NARCIS (Netherlands)

    Helbich, M.; Böcker, L.; Dijst, M.J.

    2014-01-01

    With its sustainability, health and accessibility benefits, cycling has nowadays been established on research and policy agendas. Notwithstanding the decision to cycle is closely related to local weather conditions and interwoven with the geographical context, research dealing with both aspects is

  14. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  15. Thermal resistivity of tungsten grades under fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wirtz, M.; Linke, J.; Pintsuk, G. [Forschungszentrum Juelich (Germany). EURATOM Association

    2010-05-15

    Controlled nuclear fusion on earth is a very promising but also a very challenging task. Fusion devices like ITER and DEMO are major steps on the way of solving the energy problems of the future. However, the realisation of such thermonuclear fusion reactors still needs high efforts in many areas of research. One of the most critical issues is the field of in - vessel materials and components and in particular the plasma facing material (PFM). This not only has to be compatible to the heat sink material being able to withstand thermal fatigue loading conditions during steady state heat loading (up to 20 MW/m{sup 2}) but also has to withstand extreme thermal loads during transient events. The latter are divided into normal and off normal events, such as plasma disruptions or vertical displacement events (VDEs), resulting in irreversible damage of the material. Therefore they have to be avoided in future fusion devices by an improved plasma control. In contrast, edge localized modes (ELMs) occur during normal operation and are the result of complex plasma configuration. In the next step experiment ITER they are generated with a frequency of {>=} 1 Hz and a duration of 200 - 500 {mu}s depositing energies of {<=} 1 MJ/m{sup 2}. One of the most promising materials for the application as PFM in particular in the divertor region is tungsten. Its main advantages are a high thermal conductivity, a high melting temperature, a low tritium inventory and a low erosion rate. However there are some drawbacks like a high ductile to brittle transitions temperature (DBTT), its high atomic number Z and the remarkable neutron irradiation induced activation and degradation of its mechanical properties. The main aim of future R and D will be to understand the mechanisms of thermal induced damages and subsequently to minimize these types of damages. Therefore various tungsten grades have to be tested under fusion relevant conditions, e.g. by electron, ion or plasma beam exposure; the

  16. Cardiac Remote Conditioning and Clinical Relevance: All Together Now!

    Directory of Open Access Journals (Sweden)

    Kristin Luther

    2015-12-01

    mechanisms related to cardioprotection, and in the last five to ten years, it has become clear that the mechanisms are similar, whether induced by ischemic or non-ischemic stimuli. Taking together much of the data in the literature, we propose that all of these cardioprotective “conditioning” phenomena represent activation from different entry points of a cardiac conditioning network that converges upon specific mediators and effectors of myocardial cell survival, including NF-кB, Stat3/5, protein kinase C, bradykinin, and the mitoKATP channel. Nervous system pathways may represent a novel mechanism for initiating conditioning of the heart and other organs. IPC and RIPC have proven difficult to translate clinically, as they have associated risks and cannot be used in some patients. Because of this, the use of neural and nociceptive stimuli is emerging as a potential non-ischemic and non-traumatic means to initiate cardiac conditioning. Clinical relevance is underscored by the demonstration of postconditioning with one of these modalities, supporting the conclusion that the development of pharmaceuticals and electroceuticals for this purpose is an area ripe for clinical development.

  17. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  18. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.

    2009-01-01

    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on

  19. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  20. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  1. Role of different weather conditions on the incidence and development of american bollworm

    International Nuclear Information System (INIS)

    Khaliq, A.; Subhani, M.N.; Hassan, S.W.; Murtaza, M.A.

    2008-01-01

    Studies were conducted at Nuclear Institute for Agriculture and biology (NIAB). Faisalabad on ten advance genotypes of cotton Viz,. BH-121, NIAB KRISHMA, DNH-137, VH-142, BH-125. MNH-635, SLH-267, FNH-245, CRIS-467 and CRIS-82, to see the role of different weather condition on the incidence and development of American bollworm (Heliothis armigera) infestation and coefficient of correlation among these factors and American bollworm infestation. Trial were laid out using Randomized Complete Block Design (RCBD) with four replications. Finally data were subject to the statistical analysis and for correlation studies between weather factors and percent American boll temperature infestation. Temperature and relative humidity were correlated positively and rainfall effected negatively to the infestation of American bollworm on squares and for green bolls temperature was positively correlated while relative humidity and rainfall negatively with the percent American bollworm infestation in advance -genotypes of cotton under unsprayed condition. (author)

  2. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    of the variability for the 2020 Danish power system, one can see that in the worst case, up to 1500 MW of power can be lost in 30 minutes. We present results showing how this issue is partially solved by the new High Wind Storm Controller presented by Siemens in the TWENTIES project.......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  3. Forest ecosystem as a source of CO2 during growing season: relation to weather conditions

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Dvorská, Alice; Pavelka, Marian; Urbaniak, M.; Janouš, Dalibor

    2014-01-01

    Roč. 28, č. 2 (2014), s. 239-249 ISSN 0236-8722 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : net ecosystem production * CO2 source days * eddy covariance * weather conditions * Norway spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 1.117, year: 2014

  4. A Preliminary Assessment of Daily Weather Conditions in Nuclear Site for Development of Effective Emergency Plan

    International Nuclear Information System (INIS)

    Han, Seok Jung; Ahn, Kwang Il

    2012-01-01

    A radiological emergency preparedness for nuclear sites is recognized as an important measure against anticipated severe accidents with environmental releases of radioactive materials. While there are many individual means in the emergency preparedness for nuclear accidents, one of most important means is to make a decision of evacuation or shelter of the public residents with the emergency plan zone (EPZ) of a nuclear site. In order to prepare an effective strategy for the evacuation as a basis of the emergency preparedness, it may need the understanding of atmospheric dispersion characteristics of radiation releases to the environment, mainly depending upon the weather conditions of a radiation releases location, i.e., a nuclear site. As a preliminary study for the development of an effective emergency plan, the basic features of the weather conditions of a specific site were investigated. A main interest of this study is to identify whether or not the site weather conditions have specific features helpful for a decision making of evacuation of the public residents

  5. Weather conditions conducive to Beijing severe haze more frequent under climate change

    Science.gov (United States)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  6. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  7. Analysis of winter weather conditions and their potential impact on wind farm operations

    Science.gov (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.

    2009-12-01

    Severe weather conditions have two primary impacts on wind farm operations. The first relates to understanding potential damage to the turbines themselves and what actions are required to mitigate the effects. The second is recognizing what conditions may lead to a full or partial shutdown of the wind farm with sufficient lead time to determine the likely inability to meet energy generation committments. Ideally, wind forecasting suitable for wind farm operations should be of sufficient fidelity to resolve features within the boundary layer that lead to either damaging conditions or useful power generation. Given the complexity of the site-specific factors that effect the boundary layer at the scale of typical land-based wind farm locations such as topography, vegetation, land use, soil conditions, etc., which may vary with turbine design and layout within the farm, enabling reliable forecasts of too little or too much wind is challenging. A potential solution should involve continuous updates of alert triggering criteria through analysis of local wind patterns and probabilistic risk assessment for each location. To evaluate this idea, we utilize our operational mesoscale prediction system, dubbed “Deep Thunder”, developed at the IBM Thomas J. Watson Research Center. In particular, we analyze winter-time near-surface winds in upstate New York, where four similar winds farms are located. Each of these farms were built at roughly the same time and utilize similar turbines. Given the relative uncertainty associated with numerical weather prediction at this scale, and the difference in risk assessment due to the two primary impacts of severe weather, probabilistic forecasts are a prerequisite. Hence, we have employed ensembles of weather scenarios, which are based on the NCAR WRF-ARW modelling system. The set of ensemble members was composed with variations in the choices of physics and parameterization schemes, and source of background fields for initial

  8. Weather conditions associated with autumn migration by mule deer in Wyoming

    Directory of Open Access Journals (Sweden)

    Chadwick D. Rittenhouse

    2015-06-01

    Full Text Available Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480 from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.

  9. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen

    2011-01-01

    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  10. Monitoring fate and behaviour of Nanoceria under relevant environmental conditions

    CSIR Research Space (South Africa)

    Tancu, Y

    2014-11-01

    Full Text Available ). The results revealed significant tendency of nCeO¬2 to undergo aggregation, agglomeration and certain degree of deagglomeration processes under different environmental conditions. Moreover, the findings suggested that both electrostatic and steric interactions...

  11. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.

    Science.gov (United States)

    Linton, Danielle M; Macdonald, David W

    2018-04-10

    Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic

  12. Model Development for Risk Assessment of Driving on Freeway under Rainy Weather Conditions.

    Directory of Open Access Journals (Sweden)

    Xiaonan Cai

    Full Text Available Rainy weather conditions could result in significantly negative impacts on driving on freeways. However, due to lack of enough historical data and monitoring facilities, many regions are not able to establish reliable risk assessment models to identify such impacts. Given the situation, this paper provides an alternative solution where the procedure of risk assessment is developed based on drivers' subjective questionnaire and its performance is validated by using actual crash data. First, an ordered logit model was developed, based on questionnaire data collected from Freeway G15 in China, to estimate the relationship between drivers' perceived risk and factors, including vehicle type, rain intensity, traffic volume, and location. Then, weighted driving risk for different conditions was obtained by the model, and further divided into four levels of early warning (specified by colors using a rank order cluster analysis. After that, a risk matrix was established to determine which warning color should be disseminated to drivers, given a specific condition. Finally, to validate the proposed procedure, actual crash data from Freeway G15 were compared with the safety prediction based on the risk matrix. The results show that the risk matrix obtained in the study is able to predict driving risk consistent with actual safety implications, under rainy weather conditions.

  13. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  14. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  15. Colloidal stability of silver nanoparticles in biologically relevant conditions

    International Nuclear Information System (INIS)

    MacCuspie, Robert I.

    2011-01-01

    Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

  16. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  17. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    Science.gov (United States)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  18. The increasing relevance of biofilms in common dermatological conditions.

    Science.gov (United States)

    Kravvas, G; Veitch, D; Al-Niaimi, F

    2018-03-01

    Biofilms are diverse groups of microorganisms encased in a self-produced matrix that offers protection against unfavorable conditions and antibiotics. We performed a literature search using the MEDLINE electronic database. Only original articles published in English were considered for review. Biofilms have been implicated in the pathogenesis of acne, eczema, hidradenitis suppurativa, onychomycosis, miliaria, and impetigo. Adverse dermal-filler reactions are also linked to biofilms. Strict aseptic technique and prophylactic antibiotics are recommended in order to avoid such complications. Finally, biofilms are implicated in wounds, mainly chronic and diabetic, where they impede healing and cause recurrent infections. Several novel anti-biofilm agents and wound debridement have been shown to be beneficial. Biofilms are a significant cause of disease with wide implications in the field of dermatology. Several novel treatments have been found to be effective against biofilms, depending on the underlying microbes and type of disease.

  19. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis

    NARCIS (Netherlands)

    Timmermans, E.J.; Schaap, L.A.; Herbolsheimer, F.; Dennison, E.M.; Maggi, S.; Pedersen, N.L.; Castell, M.V; Denkinger, M.D.; Edwards, M.H.; Limongi, F.; Sanchez-Martinez, M.; Siviero, P.; Queipo, R.; Peter, R.; van der Pas, S.; Deeg, D.J.H.

    2015-01-01

    Objective. This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Methods. Data from the population-based European Project on OSteoArthritis were

  20. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  1. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    Science.gov (United States)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  2. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    Science.gov (United States)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  3. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  4. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine

    International Nuclear Information System (INIS)

    Amarillo, Ana C.; Carreras, Hebe A.

    2012-01-01

    We studied the effect of estimated PM 10 on respiratory infections in children from Cordoba, Argentine as well as the influence of weather factors, socio-economic conditions and education. We analyzed upper and lower respiratory infections and applied a time-series analysis with a quasi-Poisson distribution link function. To control for seasonally varying factors we fitted cubic smoothing splines of date. We also examined community-specific parameters and differences in susceptibility by sex. We found a significant association between particles and respiratory infections. This relationship was affected by mean temperature, atmospheric pressure and wind speed. These effects were stronger in fall, winter and spring for upper respiratory infections while for lower respiratory infections the association was significant only during spring. Low socio-economic conditions and low education levels increased the risk of respiratory infections. These findings add useful information to understand the influence of airborne particles on children health in developing countries. - Highlights: ► Few information is available on children respiratory health from developing countries. ► We modeled the association between PM 10 and children's respiratory infections. ► We checked the influence of weather factors, socio-economic conditions, education and sex. ► Temperature, pressure and wind speed modified the effect of particles. ► Low socio-economic conditions and low education levels increased the risk of infections. - The concentration of airborne particles as well as low socio-economic conditions and low education levels are significant risk factors for upper and lower respiratory infections in children from Cordoba, Argentine.

  5. Chemical Alteration of Soils on Earth as a Function of Precipitation: Insights Into Weathering Processes Relevant to Mars

    Science.gov (United States)

    Amundson, R.; Chadwick, O.; Ewing, S.; Sutter, B.; Owen, J.; McKay, C.

    2004-12-01

    Soils lie at the interface of the atmosphere and lithosphere, and the rates of chemical and physical processes that form them hinge on the availability of water. Here we quantify the effect of these processes on soil volume and mass in different rainfall regimes. We then use the results of this synthesis to compare with the growing chemical dataset for soils on Mars in order to identify moisture regimes on Earth that may provide crude analogues for past Martian weathering conditions. In this synthesis, the rates of elemental gains/losses, and corresponding volumetric changes, were compared for soils in nine soil chronosequences (sequences of soils of differing ages) - sequences formed in climates ranging from ~1 to ~4500 mm mean annual precipitation (MAP). Total elemental chemistry of soils and parent materials were determined via XRF, ICP-MS, and/or ICP-OES, and the absolute elemental gains or losses (and volume changes) were determined by normalizing data to an immobile index element. For the chronosequences examined, the initial stages of soil formation (103^ to 104^ yr), regardless of climate, generally show volumetric expansion due to (1) reduction in bulk density by biological/physical turbation, (2) addition of organic matter, (3) accumulation of water during clay mineral synthesis, and/or (4) accumulation of atmospheric salts and dust. Despite large differences in parent materials (basalt, sandstone, granitic alluvium), there was a systematic relationship between long-term (105^ to 106^ yr) volumetric change and rainfall, with an approximate cross-over point between net expansion (and accumulation of atmospheric solutes and dust) and net collapse (net losses of Si, Al, and alkaline earths and alkali metals) between approximately 20 and 100 mm MAP. Recently published geochemical data of soils at Gusev Crater (Gellert et al. 2004. Science 305:829), when normalized to Ti, show apparent net losses of Si and Al that range between 5 and 50% of values relative to

  6. Evaluation of a variable speed limit system for wet and extreme weather conditions : phase 1 report.

    Science.gov (United States)

    2012-06-01

    Weather presents considerable challenges to the highway system, both in terms of safety and operations. From a safety standpoint, weather (i.e. precipitation in the form of rain, snow or ice) reduces pavement friction, thus increasing the potential f...

  7. Conditional conservatism and value relevance of financial reporting: A study in view of converging accounting standards

    NARCIS (Netherlands)

    Thijssen, Maximiliaan Willem Pierre; Iatridis, George Emmanuel

    2016-01-01

    This study examines the relationship between conditional conservatism and value relevance in the EU and US. Specifically, it investigates whether this relationship differs under US GAAP and IFRS compliance. In addition, this study examines the trend in value relevance, conditional conservatism and

  8. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  9. Relationship between weather conditions and admissions for ischemic stroke and subarachnoid hemorrhage.

    Science.gov (United States)

    Tarnoki, Adam D; Turker, Acar; Tarnoki, David L; Iyisoy, Mehmet S; Szilagyi, Blanka K; Duong, Hoang; Miskolczi, Laszlo

    2017-02-28

    To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida. Diagnostic data of patients with spontaneous SAH and strokes were recorded between June 2010 and July 2013. Daily synchronous forecast charts were collected from the National Weather Service and the whole data were matched prospectively. The incidence rate ratio (IRR) was calculated. Increased incidence rate of ischemic stroke was consistent with the daily lowest and highest air pressure (IRR 1.03, P=0.128 and IRR 0.98, P=0.380, respectively), highest air temperature (IRR 0.99, P=0.375), and presence of hurricanes or storms (IRR 0.65, P=0.054). Increased incidence of SAH cases was consistent with daily lowest and highest air pressure (IRR 0.87, P<0.001 and IRR 1.08, P=0.019, respectively) and highest air temperature (IRR 0.98, P<0.001). Presence of hurricanes and/or tropical storms did not influence the frequency of SAH. We found no relationship between the presence of fronts and the admissions for ischemic stroke or SAH. Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases.

  10. Evaluation of operational numerical weather predictions in relation to the prevailing synoptic conditions

    Science.gov (United States)

    Pytharoulis, Ioannis; Tegoulias, Ioannis; Karacostas, Theodore; Kotsopoulos, Stylianos; Kartsios, Stergios; Bampzelis, Dimitrios

    2015-04-01

    The Thessaly plain, which is located in central Greece, has a vital role in the financial life of the country, because of its significant agricultural production. The aim of DAPHNE project (http://www.daphne-meteo.gr) is to tackle the problem of drought in this area by means of Weather Modification in convective clouds. This problem is reinforced by the increase of population and the water demand for irrigation, especially during the warm period of the year. The nonhydrostatic Weather Research and Forecasting model (WRF), is utilized for research and operational purposes of DAPHNE project. The WRF output fields are employed by the partners in order to provide high-resolution meteorological guidance and plan the project's operations. The model domains cover: i) Europe, the Mediterranean sea and northern Africa, ii) Greece and iii) the wider region of Thessaly (at selected periods), at horizontal grid-spacings of 15km, 5km and 1km, respectively, using 2-way telescoping nesting. The aim of this research work is to investigate the model performance in relation to the prevailing upper-air synoptic circulation. The statistical evaluation of the high-resolution operational forecasts of near-surface and upper air fields is performed at a selected period of the operational phase of the project using surface observations, gridded fields and weather radar data. The verification is based on gridded, point and object oriented techniques. The 10 upper-air circulation types, which describe the prevailing conditions over Greece, are employed in the synoptic classification. This methodology allows the identification of model errors that occur and/or are maximized at specific synoptic conditions and may otherwise be obscured in aggregate statistics. Preliminary analysis indicates that the largest errors are associated with cyclonic conditions. Acknowledgments This research work of Daphne project (11SYN_8_1088) is co-funded by the European Union (European Regional Development Fund

  11. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  12. Review on the Strength Development Required for the Concrete Structure of Nuclear Power Plant under Cold Weather Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Ryu, Gum Sung; Kim, Do Gyeum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2011-10-15

    As a part of a Department of Energy-Nuclear According to the specifications for the construction execution for a nuclear power plant (NPP), the cold weather concrete should be facilitated that comply with the regulations of ACI-306R. Here, in terms of the standards applied to the cold weather concrete, such concrete should be applied in the case where the daily average temperature is 5 .deg. C or less. So, according to the analysis on the average temperature in winter over the last one year at each NPP construction area, it was found that such had lowered by about 0.5 - 2 .deg. C as compared to the temperature during the normal years (the last ten years) and the number of days applied to the cold weather concrete according to the ACI regulations was shown as 83, so as around 1/4 of year falls into the cold weather conditions and furthermore the recent weather is getting severe, it is necessary to perform the appropriate insulation curing for the cold weather concrete. On the other hand, according to the regulations with regards to the curing conditions for cold weather concrete, the insulation curing of such should be appropriately performed under an environment of 5 .deg. C or greater until the strength of 3.5 MPa (500 Psi) develops. Likewise, according to the regulations regarding the cold weather concrete in the domestic concrete specifications, the insulation curing should be performed until a strength development of 5 MPa (715 Psi) considering the safety factor indicated to the ACI regulation under the temperature of 5 .deg. C or greater. According to the above-mentioned regulations, the NPP structure is required to develop a minimum strength of 5 MPa or greater, and to maintain such important qualities, including strength development, early anti-freezing and duality under cold weather conditions. However, even though the early strength of 5 MPa or greater is secured under the recent abnormal weather conditions and cold weather conditions, if the structure is

  13. Integrating K-means Clustering with Kernel Density Estimation for the Development of a Conditional Weather Generation Downscaling Model

    Science.gov (United States)

    Chen, Y.; Ho, C.; Chang, L.

    2011-12-01

    In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the

  14. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    DEFF Research Database (Denmark)

    Eitzinger, J; Thaler, S; Schmid, E

    2013-01-01

    the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing...

  15. Modelling the perception of weather conditions by users of outdoor public spaces

    Science.gov (United States)

    Andrade, H.; Oliveira, S.; Alcoforado, M.-J.

    2009-09-01

    Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared

  16. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene

    2018-03-01

    Full Text Available Circadian rhythm influences the physiology of the cardiovascular system, inducing diurnal variation of blood pressure. We investigated the association between daily emergency ambulance calls (EACs for elevated arterial blood pressure during the time intervals of 8:00–13:59, 14:00–21:59, and 22:00–7:59 and weekly fluctuations of air temperature (T, barometric pressure, relative humidity, wind speed, geomagnetic activity (GMA, and high-speed solar wind (HSSW. We used the Poisson regression to explore the association between the risk of EACs and weather variables, adjusting for seasonality and exposure to CO, PM10, and ozone. An increase of 10 °C when T > 1 °C on the day of the call was associated with a decrease in the risk of EACs during the time periods of 14:00–21:59 (RR (rate ratio = 0.78; p < 0.001 and 22:00–7:59 (RR = 0.88; p = 0.35. During the time period of 8:00–13:59, the risk of EACs was positively associated with T above 1 °C with a lag of 5–7 days (RR = 1.18; p = 0.03. An elevated risk was associated during 8:00–13:59 with active-stormy GMA (RR = 1.22; p = 0.003; during 14:00–21:59 with very low GMA (RR = 1.07; p = 0.008 and HSSW (RR = 1.17; p = 0.014; and during 22:00–7:59 with HSSW occurring after active-stormy days (RR = 1.32; p = 0.019. The associations of environmental variables with the exacerbation of essential hypertension may be analyzed depending on the time of the event.

  17. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Science.gov (United States)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  18. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    Science.gov (United States)

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  19. Transmitter Spatial Diversity for FSO Uplink in Presence of Atmospheric Turbulence and Weather Conditions for Different IM Schemes

    Science.gov (United States)

    Viswanath, Anjitha; Kumar Jain, Virander; Kar, Subrat

    2017-12-01

    We investigate the error performance of an earth-to-satellite free space optical uplink using transmitter spatial diversity in presence of turbulence and weather conditions, using gamma-gamma distribution and Beer-Lambert law, respectively, for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. Weather conditions such as moderate, light and thin fog cause additional degradation, while dense or thick fog and clouds may lead to link failure. The bit error rate reduces with increase in the number of transmitters for all the schemes. However, beyond a certain number of transmitters, the reduction becomes marginal. Diversity gain remains almost constant for various weather conditions but increases with increase in ground-level turbulence or zenith angle. Further, the number of transmitters required to improve the performance to a desired level is less for M-PPM scheme than M-DPPM and OOK schemes.

  20. Effects of weather conditions on emergency ambulance calls for acute coronary syndromes

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Dobozinskas, Paulius; Siurkaite, Viktorija

    2015-08-01

    The aim of this study was to evaluate the relationship between weather conditions and daily emergency ambulance calls for acute coronary syndromes (ACS). The study included data on 3631 patients who called the ambulance for chest pain and were admitted to the department of cardiology as patients with ACS. We investigated the effect of daily air temperature ( T), barometric pressure (BP), relative humidity, and wind speed (WS) to detect the risk areas for low and high daily volume (DV) of emergency calls. We used the classification and regression tree method as well as cluster analysis. The clusters were created by applying the k-means cluster algorithm using the standardized daily weather variables. The analysis was performed separately during cold (October-April) and warm (May-September) seasons. During the cold period, the greatest DV was observed on days of low T during the 3-day sequence, on cold and windy days, and on days of low BP and high WS during the 3-day sequence; low DV was associated with high BP and decreased WS on the previous day. During June-September, a lower DV was associated with low BP, windless days, and high BP and low WS during the 3-day sequence. During the warm period, the greatest DV was associated with increased BP and changing WS during the 3-day sequence. These results suggest that daily T, BP, and WS on the day of the ambulance call and on the two previous days may be prognostic variables for the risk of ACS.

  1. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions

    International Nuclear Information System (INIS)

    Bregnard, T.P.A.; Hoehener, P.; Zeyer, J.

    1998-01-01

    During the in situ bioremediation of a diesel fuel-contaminated aquifer in Menziken, Switzerland, aquifer material containing weathered diesel fuel (WDF) and indigenous microorganisms was excavated. This material was used to identify factors limiting WDF biodegradation under denitrifying conditions. Incubations of this material for 360 to 390 d under denitrifying conditions resulted in degradation of 23% of the WDF with concomitant consumption of NO 3 - and production of inorganic carbon. The biodegradation of WDF and the rate of NO 3 - consumption was stimulated by agitation of the microcosms. Biodegradation was not stimulated by the addition of a biosurfactant (rhamnolipids) or a synthetic surfactant (Triton X-100) at concentrations above their critical micelle concentrations. The rhamnolipids were biodegraded preferentially to WDF, whereas Triton X-100 was not degraded. Both surfactants reduced the surface tension of the growth medium from 72 to <35 dynes/cm and enhanced the apparent aqueous solubility of the model hydrocarbon n-hexadecane by four orders of magnitude. Solvent-extracted WDF, added at a concentration equal to that already present in the aquifer material, was also biodegraded by the microcosms, but not at a higher rate than the WDF already present in the material. The results show that the denitrifying biodegradation of WDF is not necessarily limited by bioavailability but rather by the inherent recalcitrance of WDF

  2. Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2006-01-01

    Full Text Available Ground clutter caused by anomalous propagation (anaprop can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate.

  3. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  4. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis.

    Science.gov (United States)

    Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H

    2015-10-01

    This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.

  5. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  6. Distributions of pharmaceuticals in an urban estuary during both dry- and wet-weather conditions

    Science.gov (United States)

    Benotti, M.J.; Brownawell, Bruce J.

    2007-01-01

    Pharmaceuticals and selected major human metabolites are ubiquitous in Jamaica Bay, a wastewater-impacted estuary at concentrations in the low ng/L to low ??g/L range. Concentrations throughout the bay are often consistent with conservative behavior during dry-weather conditions, as evidenced by nearly linear concentration-salinity relationships. Deviation from conservative behavior is noted for some pharmaceuticals and attributed to microbial degradation. Caffeine, cotinine, nicotine, and paraxanthine were detected with the greatest analytical signal, although evidence is presented for in situ removal, especially for nicotine and caffeine. There is little evidence for significant removal of carbamazepine and sulfamethoxazole, suggesting they are more conservative and useful wastewater tracers. Immediately following heavy precipitation, which induced a combined sewer overflow (CSO) event, the concentrations of all compounds but acetaminophen and nicotine decreased or disappeared. This observation is consistent with a simple model illustrating the effect of precipitation has on pharmaceutical concentration in the wastewater stream, given the balance between dilution from rain and the bypass of treatment. ?? 2007 American Chemical Society.

  7. Complex airborne system with combined action on the conditions of risk weather phenomena

    Directory of Open Access Journals (Sweden)

    Niculae MARIN

    2010-06-01

    Full Text Available The study of the weather phenomena is one of the main concerns of scientists. Initially, theresearches in this area were intended to provide military structures new ways of fighting in wars suchas the wars in Korea or Vietnam and then continued with the development of technologies to combatthe phenomena that affect the normal conditions of agriculture, the environment, etc. -extremephenomena- hail, low precipitation regime, etc. Since the last decade of last century also in Romaniathere were a number of initiatives supported through a national program of research in the fightagainst hail and stimulation of precipitation. In this context, INCAS proposed in 2008 a researchproject to implement a complex airborne system, which carry out actions to limit the effects of extremeweather events on crops and objectives of national and strategic interest, on the basis of informationreceived from a system of sensors located on the air platform and intended for measuring the physicalcharacteristics of the atmosphere. Also, as a long-term effect, the action of the complex airbornesystem may lead to the rainfall regulation and control, with all the implications arising from this(avoiding flooding, providing protection from frost of autumn crop, etc.The aerial platform chosen for this research approach is the aircraft for school and training IAR99SOIM, INCAS being the author of its structural design and also holding the patent for IndustrialDesign nr.00081 registered with OSIM. Project acronym : COMAEROPREC.

  8. Study on weathering index for improving the reliability of terrace correlation and chronology. Part 2. Understanding weathering condition of terrace gravel and induction of application requirement for correlation index

    International Nuclear Information System (INIS)

    Hamada, Takaomi

    2012-01-01

    Geomorphographic survey of fluvial terraces, geological exploration, borehole drilling and investigation, and analysis of weathering condition of terrace gravels were carried out in Chuetsu area, Niigata prefecture, where a great deal of geomorphostratigraphic and tephrostratigraphic data are available. The results of these surveys and investigations indicate that weathering degree of terrace gravels can be considered as an index of the terrace age, and also provide points to remember for sampling and method of sampling and observation. The effective porosity and the thickness of weathering rind of gravels, which are indexes for weathering degree evaluation, in boring core, increase above the depth of about 5m from the top of the hole. Weathering doesn't reach the deep portion, therefore, investigation and evaluation for the weathering degree of terrace gravels must be carried out on the upper portion. Weathering rind thickness and effective porosity of the gravels are dispersive. Dispersion of the weathering rind thickness can be reduced by confining to andesite, and dispersion of the effective porosity can be reduced by limiting range of gravel size. Reducing dispersion, increase trend with age becomes clear in change of the weathering rind thickness and the effective porosity in many of the studied area. It shows that weathering rind thickness and effective porosity are effective for terrace correlation. Dispersion of data in an outcrop isn't small, but data from neighboring terraces with the same age are not different each other. It indicates that weathering rind thickness and effective porosity can be quantitative indexes for terrace age evaluation. In area where weathering rind is effective for terrace correlation, the rate of the weathering rind formation of andesite gravels is about 0.04mm/1000 years. Therefore, MIS6 terraces and MIS8 terraces can be distinguished each other by means of thickness of the weathering rind. This formation rate falls inside the

  9. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  10. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.

    2013-01-01

    Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013

  11. THE APPLICABILITY OF EXISTING COMPUTER TECHNOLOGY TO AUTOMATE FUZZY SYNTHESIS OF TRAFFIC LIGHT UAV IN ADVERSE WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2014-01-01

    Full Text Available The results of the analysis of the applicability of known application software systems for automated synthesis of fuzzy control traffic light UAV during its flight in adverse weather conditions. The solution is based on a previously formulated and put into consideration the principle of permissible limited a priori estimation of the uncertainty of aerodynamic characteristics of UAVs.

  12. Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions

    Czech Academy of Sciences Publication Activity Database

    Menéndez, B.; Petráňová, Veronika

    2016-01-01

    Roč. 210, August (2016), s. 124-139 ISSN 0013-7952 R&D Projects: GA MŠk(CZ) LO1219 Keywords : salt weathering * limestone * environmental conditions * sodium chloride * sodium sulphate * calcium sulphate * salt mixture Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.569, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013795216301879

  13. Identification of relevant ICF categories in patients with chronic health conditions: a Delphi exercise.

    Science.gov (United States)

    Weigl, Martin; Cieza, Alarcos; Andersen, Christina; Kollerits, Barbara; Amann, Edda; Stucki, Gerold

    2004-07-01

    To identify the most typical and relevant categories of the International Classification of Functioning, Disability and Health (ICF) for patients with low back pain, osteoporosis, rheumatoid arthritis, osteoarthritis, chronic generalized pain, stroke, depression, obesity, chronic ischaemic heart disease, obstructive pulmonary disease, diabetes mellitus, and breast cancer. An international expert survey using the Delphi technique was conducted. Data were collected in 3 rounds. Answers were linked to the ICF and analysed for the degree of consensus. Between 21 (osteoporosis, chronic ischaemic heart disease, and obstructive pulmonary disease) and 43 (stroke) experts responded in each of the conditions. In all conditions, with the exception of depression, there were categories in all ICF components that were considered typical and/or relevant by at least 80% of the responders. While all conditions had a distinct typical spectrum of relevant ICF categories, there were also some common relevant categories throughout the majority of conditions. Lists of ICF categories that are considered relevant and typical for specific conditions by international experts could be created. This is an important step towards identifying ICF Core Sets for chronic conditions.

  14. Boundary layer height determination under summertime anticyclonic weather conditions over the coastal area of Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Nitis, T.; Moussiopoulos, N. [Aristotle Univ. Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering; Klaic, Z.B. [Univ. of Zagreb (Croatia). Andrija Mohorovicic Geophysical Inst., Faculty of Science; Kitsiou, D. [Univ. of the Aegean, Mytilene (Greece). Dept. of Marine Sciences

    2004-07-01

    The atmospheric boundary layer height is a fundamental parameter characterising the structure of the lower troposphere. The determination of this parameter is important in applications that range from meteorological modelling and forecasting to dispersion problems of atmospheric pollutants. Since substances emitted into the atmospheric boundary layer are dispersed horizontally and vertically through the action of turbulence, they are well-mixed over this layer that is widely known as ''mixing layer''. There are two basic approaches for the practical estimation of this height; the first approach suggests profile measurements, either in-situ or by remote sounding (sodar, clear-air radar, lidar) and the second one, the use of models with only a few measured parameters as input. As far as the second approach is concerned, the majority of the models use relatively crude estimates of the roughness length that is often based on constant values for land cover. Consequently, the model results are not quite accurate. The present work aims firstly to evaluate the effect of alternative calculations of the roughness length on the non-hydrostatic mesoscale model (MEMO) performance, based on the use of satellite data, and secondly, to estimate the mixing layer height and analyze its variability in relation to underlying topography and land use. Rijeka, a region with complex topography and several islands in its surroundings, offers the opportunity to examine the above mentioned relationships. The non-hydrostatic mesoscale model MEMO was applied under summertime anticyclonic weather conditions during two multi-day periods characterised by stagnant meteorological conditions. The results proved MEMO capable of simulating mesoscale wind flow reasonably well, however, the use of AVHRR satellite data for calculating the roughness length based on the calculation of the NDVI parameter, optimised the model performance and resulted to a more accurate determination of

  15. Weather conditions and voter turnout in Dutch national parliament elections, 1971-2010.

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-07-01

    While conventional wisdom assumes that inclement weather on election day reduces voter turnout, there is remarkably little evidence available to support truth to such belief. This paper examines the effects of temperature, sunshine duration and rainfall on voter turnout in 13 Dutch national parliament elections held from 1971 to 2010. It merges the election results from over 400 municipalities with election-day weather data drawn from the nearest weather station. We find that the weather parameters indeed affect voter turnout. Election-day rainfall of roughly 25 mm (1 inch) reduces turnout by a rate of one percent, whereas a 10-degree-Celsius increase in temperature correlates with an increase of almost one percent in overall turnout. One hundred percent sunshine corresponds to a one and a half percent greater voter turnout compared to zero sunshine.

  16. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    Science.gov (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  17. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Olatinwo, Rabiu O.; Prabha, Thara V.; Paz, Joel O.; Hoogenboom, Gerrit

    2012-03-01

    Early leaf spot of peanut ( Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  18. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets...

  19. Electrical in situ and post-irradiation properties of ceramics relevant to fusion irradiation conditions

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Zinkle, S.J.

    2002-01-01

    Electrical properties of ceramic candidate materials for the next-generation nuclear fusion devices under relevant irradiation conditions are reviewed. A main focal point is placed on the degradation behavior of the electrical insulating ability during and after irradiation. Several important radiation induced effects play important roles: radiation induced conductivity, thermally stimulated electrical conductivity, radiation induced electrical charge separation, and radiation induced electromotive force. These phenomena will interact with each other under fusion relevant irradiation conditions. The design of electrical components for the next-generation fusion devices should take into account these complicated interactions among the radiation induced phenomena

  20. Adverse weather conditions for European wheat production will become more frequent with climate change

    DEFF Research Database (Denmark)

    Trnka, Miroslav; Rötter, Reimund P.; Ruiz-Ramos, Margarita

    2014-01-01

    events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed...... crop failure across Europe. This study provides essential information for developing adaptation strategies.......Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather...

  1. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  2. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madison E. [Univ. of Florida, Gainesville, FL (United States)

    2017-05-20

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  3. Vegetation relevés and soil measurements in the Netherlands: the Ecological Conditions Database (EC)

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Adrichem, van M.H.C.; Dobben, van H.F.; Frissel, J.Y.; Held, den M.E.; Joosten, V.; Malinowska, A.H.; Slim, P.A.; Wegman, R.M.A.

    2012-01-01

    Since its establishment around 1990, the Ecological Conditions Database (EC; GIVD ID EU-00-006) has been accumulating vegetation relevés from the Netherlands, each accompanied by at least one abiotic soil measurement (e.g. pH or nutrient availability). On 1-1-2010, the database contained 8,229

  4. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    Science.gov (United States)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  5. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions

    Science.gov (United States)

    Nagpal, Shaina; Gupta, Amit

    2017-08-01

    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  6. Composition of in situ burn residue as a function of weathering conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Ascanius, Birgit Elkjær; Brandvik, Per Johan

    2013-01-01

    removed the light compounds eluting before C13. No effect from the prior weathering time or the different ice coverage was seen in the burn residue composition. The content of selected Poly Aromatic Hydrocarbons (PAHs) was determined and it was noted that the concentration of PAHs with more than 4 rings...

  7. Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Directory of Open Access Journals (Sweden)

    Anderson Hugh

    2007-04-01

    Full Text Available Abstract Background The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies. Methods The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered. Results Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6th 2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology. Conclusion The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.

  8. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  9. Post-harvest quality model of pineapple guava fruit according to storage and weather conditions of cultivation

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    Full Text Available ABSTRACT The post-harvest quality of pineapple guava fruit is determined by the storage and prevailing weather conditions during growth and development. This study proposes a model for post-harvest fruit quality according to the storage and weather conditions in the pineapple guava growing region. Physiologically ripe fruit were collected during two harvests from two locations within the Department of Cundinamarca (Colombia: Tenjo and San Francisco de Sales. The fruits were stored at 18 ± 1 °C (76 ± 5% relative humidity (RH, over 11 days and at 5 ± 1 °C (87 ± 5% RH, over 31 days, and the quality attributes were evaluated every two days. Models of the most significant physio-chemical quality characteristics of the post-harvest fruit were developed by using the Excel® Solver tool for all data obtained in the two crop periods. The results showed that storage and prevailing weather conditions, which differed according to the altitude of the growing site, had considerable impacts on the physio-chemical characteristics of the fruit throughout the post-harvest ripening process.

  10. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions.

    Science.gov (United States)

    Arnold, Benjamin F; Schiff, Kenneth C; Ercumen, Ayse; Benjamin-Chung, Jade; Steele, Joshua A; Griffith, John F; Steinberg, Steven J; Smith, Paul; McGee, Charles D; Wilson, Richard; Nelsen, Chad; Weisberg, Stephen B; Colford, John M

    2017-10-01

    Rainstorms increase levels of fecal indicator bacteria in urban coastal waters, but it is unknown whether exposure to seawater after rainstorms increases rates of acute illness. Our objective was to provide the first estimates of rates of acute illness after seawater exposure during both dry- and wet-weather periods and to determine the relationship between levels of indicator bacteria and illness among surfers, a population with a high potential for exposure after rain. We enrolled 654 surfers in San Diego, California, and followed them longitudinally during the 2013-2014 and 2014-2015 winters (33,377 days of observation, 10,081 surf sessions). We measured daily surf activities and illness symptoms (gastrointestinal illness, sinus infections, ear infections, infected wounds). Compared with no exposure, exposure to seawater during dry weather increased incidence rates of all outcomes (e.g., for earache or infection, adjusted incidence rate ratio (IRR) = 1.86, 95% confidence interval (CI): 1.27, 2.71; for infected wounds, IRR = 3.04, 95% CI: 1.54, 5.98); exposure during wet weather further increased rates (e.g., for earache or infection, IRR = 3.28, 95% CI: 1.95, 5.51; for infected wounds, IRR = 4.96, 95% CI: 2.18, 11.29). Fecal indicator bacteria measured in seawater (Enterococcus species, fecal coliforms, total coliforms) were strongly associated with incident illness only during wet weather. Urban coastal seawater exposure increases the incidence rates of many acute illnesses among surfers, with higher incidence rates after rainstorms. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  11. Association of day length and weather conditions with physical activity levels in older community dwelling people.

    Directory of Open Access Journals (Sweden)

    Miles D Witham

    Full Text Available Weather is a potentially important determinant of physical activity. Little work has been done examining the relationship between weather and physical activity, and potential modifiers of any relationship in older people. We therefore examined the relationship between weather and physical activity in a cohort of older community-dwelling people.We analysed prospectively collected cross-sectional activity data from community-dwelling people aged 65 and over in the Physical Activity Cohort Scotland. We correlated seven day triaxial accelerometry data with daily weather data (temperature, day length, sunshine, snow, rain, and a series of potential effect modifiers were tested in mixed models: environmental variables (urban vs rural dwelling, percentage of green space, psychological variables (anxiety, depression, perceived behavioural control, social variables (number of close contacts and health status measured using the SF-36 questionnaire.547 participants, mean age 78.5 years, were included in this analysis. Higher minimum daily temperature and longer day length were associated with higher activity levels; these associations remained robust to adjustment for other significant associates of activity: age, perceived behavioural control, number of social contacts and physical function. Of the potential effect modifier variables, only urban vs rural dwelling and the SF-36 measure of social functioning enhanced the association between day length and activity; no variable modified the association between minimum temperature and activity.In older community dwelling people, minimum temperature and day length were associated with objectively measured activity. There was little evidence for moderation of these associations through potentially modifiable health, environmental, social or psychological variables.

  12. Evaluation of Driver Visibility from Mobile LIDAR Data and Weather Conditions

    Science.gov (United States)

    González-Jorge, H.; Díaz-Vilariño, L.; Lorenzo, H.; Arias, P.

    2016-06-01

    Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog) to more than 10,000 m (clean atmosphere). Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain) and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain). In both cases, data from the Galician Weather Agency (Meteogalicia) are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  13. EVALUATION OF DRIVER VISIBILITY FROM MOBILE LIDAR DATA AND WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    H. González-Jorge

    2016-06-01

    Full Text Available Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog to more than 10,000 m (clean atmosphere. Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain. In both cases, data from the Galician Weather Agency (Meteogalicia are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  14. The Acoustic Emission in the Nest of the Honey Bee Depending on the Extreme Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jaromír Tlačbaba

    2014-01-01

    Full Text Available The vibroacoustic signals are an important part of communication in the honey bees (Apis mellifera L.. The aim of this study was to observe the acoustic emission that varies in a bee colony during different weather phenomena (strong winds and hailstorms and to estimate the nature and the extent of the reactions of the colony by the analysis of the obtained data. Experiments were carried out in the volume-reduced hives. The specific weather phenomena were followed by significant (P < 0.0001 increasing of the intensity of the acoustic emission in the colony in comparison with acoustic emission before or after the phenomena. Close linear positive relationship was confirmed between the intensity of wind gusts and intensity of acoustic emission (r = 0.72; P < 0.001. With the increase in the maximum gust of 1 km·h−1, the intensity of acoustic emission increased by 0.1466 mV. The character and degree of reaction of the colony can be estimated with analysis of the measured data. Permeability of vibration signals directly induced weather phenomena through the construction of the experimental hive and the stress in the colony are discussed. Observation of the acoustic emission distributed within the colony is one of the methodical alternatives for research of the vibroacoustic communication in the colony.

  15. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  16. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials

    Science.gov (United States)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...

  17. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Weathering processes under various moisture conditions in a lignite mine spoil from As Pontes (N.W. Spain)

    International Nuclear Information System (INIS)

    Seoane, S.; Leiros, M.C.

    1997-01-01

    Processes contributing to acid release/consumption during weathering of a lignite mine spoil (2.3% w/w S as sulfides) from As Pontes (N.W. Spain) were studied under three moisture conditions (at field capacity or under alternate wetting-drying or forced percolation), which were simulated in laboratory experiments. Oxidation of sulfides to sulfates was favoured under all three moisture conditions, releasing most acid in spoil kept at field capacity. Hydroxysulfates formed in spoil kept at field capacity or under alternate wetting-drying conditions, thereby contributing to acid release. Acid consumption by dissolution of clay minerals, especially micas, was favoured under all three moisture conditions, but was particularly intense in spoil at field capacity. Dissolution of aluminium oxides was also favoured under all the moisture conditions studied. 27 refs., 8 figs., 6 tabs

  19. Conditioned Subjective Responses to Socially Relevant Stimuli in Social Anxiety Disorder and Subclinical Social Anxiety.

    Science.gov (United States)

    Tinoco-González, Daniella; Fullana, Miquel Angel; Torrents-Rodas, David; Bonillo, Albert; Vervliet, Bram; Pailhez, Guillem; Farré, Magí; Andión, Oscar; Perez, Víctor; Torrubia, Rafael

    2015-01-01

    Although enhanced fear conditioning has been implicated in the origins of social anxiety disorder (SAD), laboratory evidence in support of this association is limited. Using a paradigm employing socially relevant unconditioned stimuli, we conducted two separate studies to asses fear conditioning in individuals with SAD and non-clinical individuals with high social anxiety (subclinical social anxiety [SSA]). They were compared with age-matched and gender-matched individuals with another anxiety disorder (panic disorder with agoraphobia) and healthy controls (Study 1) and with individuals with low social anxiety (Study 2). Contrary to our expectations, in both studies, self-report measures (ratings of anxiety, unpleasantness and arousal to the conditioned stimuli) of fear conditioning failed to discriminate between SAD or SSA and the other participant groups. Our results suggest that enhanced fear conditioning does not play a major role in pathological social anxiety. We used a social conditioning paradigm to study fear conditioning in clinical and subclinical social anxiety. We found no evidence of enhanced fear conditioning in social anxiety individuals. Enhanced fear conditioning may not be a hallmark of pathological social anxiety. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  1. THE INFLUENCE OF WEATHER CONDITIONS OF EASTERN POLAND ON SWEET CORN YIELDS AND LENGTH OF GROWING SEASON

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2016-09-01

    Full Text Available The aim of the study was to determine the effect of weather components (air temperature, precipitation on the growth, yield and the length of the growing season of sweet corn cultivated in eastern Poland. The results come from a field experiment conducted in 2006–2011. Weather conditions in the successive years of the study significantly modified the yield of ears, weight and number of formatted ears, high of plants and the length of the growing season of sweet corn. Good yielding of sweet corn favoured years with moderate air temperatures in July and uniform distribution of precipitation during the growing season. The highest yield of ears was found in 2011, the lowest in the very difficult in terms of weather 2006. The shortest growing season was characterized corn grown in the years 2006 and 2010 with the high air temperatures in July and August, the longest in the years 2009 and 2011, in which the temperatures in the period June-August were the lowest of all the years of research. Irrespective of the year of study, cv ‘Sheba F1’ was formatted eras with higher weight than cv ‘Sweet Nugget F1’.

  2. Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time

    International Nuclear Information System (INIS)

    Ling, Haoshu; Chen, Chao; Wei, Shen; Guan, Yong; Ma, Caiwen; Xie, Guangya; Li, Na; Chen, Ziguang

    2015-01-01

    Highlights: • Indicators evaluating the performance of PCMs in greenhouses are introduced. • Real equivalent specific heat capacity of PCMs is embedded in a numerical model. • Real behaviour of PCMs has been monitored over a long time. • Efficiency of PCMs walls are compared for sunny and cloudy days. • Heat storage and release amounts of PCMs walls have been calculated. - Abstract: To evaluate the effect of phase change materials (PCMs) on the indoor thermal environment of greenhouses under different weather conditions and over a long time in the heating season, a study was carried out using both experimental method and numerical method. The study was conducted in a typical greenhouse located in Beijing, China, and important parameters have been monitored continuously for 61 days, including indoor air temperature, outdoor air temperature, solar radiation, surface temperature of greenhouse envelopes and soil temperature. Based on these parameters, a number of indicators, namely, operative temperature, daily effective accumulative temperature, irradiated surface temperature of the north wall, average temperature of PCMs, and daily heat storage and release, have been used to evaluate the performance of PCMs in greenhouses. All indicators have provided consistent results that confirm the positive effect of PCMs on improving the indoor thermal environment of greenhouses over a long time. Additionally, the paper has demonstrated that a sunny weather could help to promote the efficiency of PCMs, comparing to a cloudy weather

  3. Testicular torsion and weather conditions: analysis of 21,289 cases in Brazil

    Directory of Open Access Journals (Sweden)

    Fernando Korkes

    2012-04-01

    Full Text Available PURPOSE: The hypothesis of association between testicular torsion and hyperactive cremasteric reflex, worsened by cold weather, has not been proved. Thirteen studies in the literature evaluated this issue, with inconclusive results. The aim of the present study was to evaluate the seasonality of testicular torsion in a large subset of patients surgically treated in Brazil, and additionally to estimate the incidence of testicular torsion. MATERIALS AND METHODS: Brazilian Public Health System Database was assessed from 1992-2010 to evaluate hospital admissions associated with treatment of testicular torsion. Average monthly temperature between 1992-2010 was calculated for each region. RESULTS: We identified 21,289 hospital admissions for treatment of testicular torsion. There was a higher number of testicular torsions during colder months (p = 0.002. To estimate the incidence of testicular torsion, we have related our findings to data from the last Brazilian census (2010. In 2010, testicular torsion occurred in 1.4:100,000 men in Brazil. CONCLUSIONS:Testicular torsion occurred at an annual incidence of approximately 1.4:100,000 men in Brazil in 2010. Seasonal variations do occur, with a significant increase of events during winter. Our findings support the theory of etiological role of cold weather to the occurrence of testicular torsion. Strategies to prevent these events can be based on these findings.

  4. Current Needs for the Experimental Investigation of the CHF Phenomenon Relevant to LWR Core Conditions

    International Nuclear Information System (INIS)

    Le Corre, J.M.

    2009-01-01

    The current achievements and needs toward the investigation, understanding and mechanistic prediction of the Critical Heat Flux (CHF) event, under PWR and BWR core conditions, are addressed in this paper. It is shown that, even when using advanced 3-D CFD simulation tools, the current approach to CHF mechanistic modeling has serious limitations. This is mainly due to the lack of information regarding the relevant two-phase flow pattern(s) (in particular near the heated wall) and associated mechanisms (at the meso and micro-scale) leading to the CHF event. Areas of current experimental needs are identified in order to address these shortcomings. In addition, the use of 1-D and 3-D numerical tools to mechanistically predict the CHF is discussed. It is shown that 3-D two-phase CFD codes may not be superior to 1-D codes without proper consideration of relevant constitutive relations. (author)

  5. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    Science.gov (United States)

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures 30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  6. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  7. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  8. Conditional net survival: Relevant prognostic information for colorectal cancer survivors. A French population-based study.

    Science.gov (United States)

    Drouillard, Antoine; Bouvier, Anne-Marie; Rollot, Fabien; Faivre, Jean; Jooste, Valérie; Lepage, Côme

    2015-07-01

    Traditionally, survival estimates have been reported as survival from the time of diagnosis. A patient's probability of survival changes according to time elapsed since the diagnosis and this is known as conditional survival. The aim was to estimate 5-year net conditional survival in patients with colorectal cancer in a well-defined French population at yearly intervals up to 5 years. Our study included 18,300 colorectal cancers diagnosed between 1976 and 2008 and registered in the population-based digestive cancer registry of Burgundy (France). We calculated conditional 5-year net survival, using the Pohar Perme estimator, for every additional year survived after diagnosis from 1 to 5 years. The initial 5-year net survival estimates varied between 89% for stage I and 9% for advanced stage cancer. The corresponding 5-year net survival for patients alive after 5 years was 95% and 75%. Stage II and III patients who survived 5 years had a similar probability of surviving 5 more years, respectively 87% and 84%. For survivors after the first year following diagnosis, five-year conditional net survival was similar regardless of age class and period of diagnosis. For colorectal cancer survivors, conditional net survival provides relevant and complementary prognostic information for patients and clinicians. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  9. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions

    International Nuclear Information System (INIS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Martens, B.; Deconinck, J.

    2009-01-01

    The crack propagation rate of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions was modelled. A film rupture/dissolution/repassivation mechanism is assumed and extended to cold worked materials by including a stress-dependent bare metal dissolution current density. The chemical and electrochemical conditions within the crack are calculated by finite element calculations, an analytical expression is used for the crack-tip strain rate and the crack-tip stress is assumed equal to 2.5 times the yield stress (plane-strain). First the model was calibrated against a literature published data set. Afterwards, the influence of various variables - dissolved hydrogen, boric acid and lithium hydroxide content, stress intensity, crack length, temperature, flow rate - was studied. Finally, other published crack growth rate tests were modelled and the calculated crack growth rates were found to be in reasonable agreement with the reported ones

  10. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  11. Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.

    Science.gov (United States)

    Sanghi, Achint; Ambrose, R P Kingsly

    2016-07-27

    Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.

  12. Estimation of the Hiroshima bomb yield and weather conditions at the time of the bomb

    International Nuclear Information System (INIS)

    Tajima, Eizo

    1984-01-01

    The results of the survey made immediately after the bombings in Hiroshima and Nagasaki were compiled in Collection of Reports on the Investigation of the Atomic Bomb Casualties published in 1953. Much valuable information for the reassessment of dose are included in this document. One of the major problems to be solved for the dose reassessment is the yield of the Hiroshima bomb. Two articles with relatively detailed description were selected, and the estimation of the yield was attempted, based on them. The data on roof tile melting were used for the purpose. Assuming the yield of the Nagasaki bomb as 22 kt, the yield of the Hiroshima bomb was given as 12.4 kt. By the experiment using the charred state of cypress boards, the total radiant energy from the bomb was calculated as 4.6 x 10 12 cal, and the yield of the Hiroshima bomb was estimated as 14.2 kt and 13.2 kt. The true value is likely between 12 and 13 kt. The vapor pressure at the time of bombing significantly affected the neutron spectrum. On the day of bombing, Japan was covered by hot, humid maritime air mass, namely summer monsoon pattern. The air density and water vapor content in the atmosphere were determined by the Japan Weather Association, and compared with the data of Dr. Kerr et al. (Kako, I.)

  13. THE INFLUENCE OF INTERCROPS AND FARMYARD MANURE FERTILIZATION IN CHANGEABLE WEATHER CONDITIONS ON CONSUMPTION VALUE OF POTATO TUBERS

    Directory of Open Access Journals (Sweden)

    ANNA PŁAZA

    2010-10-01

    Full Text Available The paper presents the results of research carried out over 1999-2002 with the aims to determine the influence of intercrops and farmyard manure fertilization on consumption value of potato tubers in changeable weather conditions. The following combinations of intercrops fertilization were taken into account: the control plot (without intercrop fertilization, farmyard manure, undersown crop (birdsfoot trefoil, birdsfoot trefoil + Italian ryegrass, Italian ryegrass, stubble crop (oleiferous radish, oleiferous radish – mulch. The results pointed that, the conditions of vegetation period, significantly modified the consumption values of potato tubers. The consumption value of potato tubers which were fertilized with intercrops was formed on approximated level, as the potato which was fertilized with farmyard manure. The best consumption features, especially taste, had potatoes which were fertilized with birdsfoot trefoil and with the mixture of birdsfoot trefoil and Italian ryegrass.

  14. Bad, mad and sad: rethinking the human condition in childhood with special relevance to moral development.

    Science.gov (United States)

    Nunn, Kenneth

    2011-09-01

    Identifying the territory, between what is subject to change and what is not in human functioning, is an extremely important strategy for limiting the range in which wisdom (discretion, judgment and the management of uncertainty) must be exercised. Over the last 30 years, child and adolescent psychiatry has seen an immense shift from the 'cannot change' category to the 'change category' and an even bigger shift to the territory between changeable and unchangeable. The question of the capacity for change in humans and the more traditional notion of 'the human condition' are in need of re-evaluation. The possibility that there might be elements of the human condition that are beyond good and evil is especially relevant to the psychiatric treatment of children and young people. The notion of the human condition in children and adolescents becomes problematic if an essential element of the human condition is the irreducibly unchangeable, as the essence of youth is change and the capacity to change. The notion of personality disorder, and the persistence of disturbed behaviour that the diagnosis implies, are completely out of place in childhood and adolescence. There is a telling discrepancy between the small number of mental health treatment facilities and the large number of juvenile detention facilities in Australia. The problem is that we can achieve change, and there is little political or community will to enable it to happen. © 2011 The Author. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  15. INFLUENCE OF WEATHER CONDITIONS ON RED BEET YIELD IN VARIOUS ZONES OF THE FORE-CAUCASUS

    Directory of Open Access Journals (Sweden)

    M. S. Gaplaev

    2014-01-01

    Full Text Available Based on the researches conducted in conditions of vertical zonality of the Chechen Republic, the high-yielding varieties of red beet in the certain climate and environmental conditions were selected. Moving from the plain zone to the piedmont and the mountain zones, the yield of red beet roots has increased by 1,6-3,4 t/ha regardless of early ripeness of cultivars and hybrids. Application of mathematical modeling allows the selection of the varieties, which are able to realize their yield potential in various conditions.

  16. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions.

    Science.gov (United States)

    You, Fang; Dalal, Ram; Huang, Longbin

    2018-08-01

    Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. EVALUATION OF YEAR WEATHER CONDITIONS AND HYBRIDS IMPACT ON THE SUNFLOWER (HELIANTHUS ANNUUS L. ACHENE YIELD AND FAT CONTENT

    Directory of Open Access Journals (Sweden)

    Ivan Černý

    2013-02-01

    Full Text Available The field polyfactorial trials were carried out on experimental fields of the Plant Biology and Ecology Centre, the Faculty of Agrobiology and Food Resources of the Slovak University of Agriculture (SUA in Nitra Dolná Malanta in two experimental years 2010 and 2011. Experimental locality is situated in the corn production area (climatic region: warm; climatic sub-region dry; climatic zone: warm, dry with mild winter and long sunshine, in altitude 250 m above sea level, with brown soil. On the trials was observed the influence of both temperature and moisture conditions of experimental area on sunflower yield of achenes and fat content. Fore crop of sunflower was spring barley (Hordeum vulgare L. Technological system of sunflower cultivation was realized in accordance with conventional technology of cultivation. The basic fertilization was made by balance method on the base of agrochemical analysis of soil for expected yield 3 t ha-1. The meteorological data were got out from agro-meteorological station the Faculty of Horticulture and Land Engineering SUA in Nitra. The results show statistically high significant impact of the year weather conditions on the both achenes yield and fat content. In the range of weather conditions, year 2011 have better impact on the values of both indicators than year 2010. The effect of hybrids on monitored production parameters was statistically high significant. In the year 2010 and 2011, in terms of yield quantity but also fat content had hybrid NK Kondi the most stable production. In 2010 and 2011 were reported negative correlations of fat content from achenes yield except of hybrid NK Tristan, which reach positive addiction in 2010.

  18. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    Science.gov (United States)

    Jänchen, Jochen; Feyh, Nina; Szewzyk, Ulrich; de Vera, Jean-Pierre P.

    2016-04-01

    Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  19. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  20. Rating the Relevant Factors of Business Conditions for Entrepreneurs in Serbia

    Directory of Open Access Journals (Sweden)

    Jovanka Popovic

    2016-05-01

    Full Text Available In this paper were processed and analyzed the attitudes and opinions of potential entrepreneurs regarding to starting their own businesses, in order to scan favorable conditions for development of entrepreneurship in Serbia. As a basic research instrument, a questionnaire with questions about the possibilities and limitations of entrepreneurial business was designed, with the task of identification and assessment of relevant factors that condition the operations of entrepreneurs in Serbia. Throughout the conducted research, it was concluded there are numerous obstacles to business start-ups and successful growth and development of entrepreneurship in Serbia. Participants of the survey believe they have competencies for starting their own business, but due to the unfavorable market conditions and the lack of financial resources, do not see themselves as employers. Analyzing of efforts and time, as well as the risks they take, it is concluded that most of them are not motivated to engage in entrepreneurship and does not plan a professional career in that field.

  1. Controlling Laser Plasma Instabilities Using Temporal Bandwidths Under Shock Ignition Relevant Conditions

    Science.gov (United States)

    Tsung, Frank; Weaver, J.; Lehmberg, R.

    2017-10-01

    We are performing particle-in-cell simulations using the code OSIRIS to study the effects of laser plasma interactions in the presence of temporal bandwidth under plasma conditions relevant to experiments on the Nike laser with induced spatial incoherence (ISI). With ISI, the instantaneous laser intensity can be 3-4 times larger than the average intensity, leading to the excitation of additional TPD modes and producing electrons with larger angular spread. In our simulations, we observe that although ISI can increase the interaction regions for short bursts of time, time-averaged (over many pico-seconds) laser plasma interactions can be reduced by a factor of 2 in systems with sufficiently large bandwidths (where the inverse bandwidth is comparable with the linear growth time). We will quantify these effects and investigate higher dimensional effects such as laser speckles and the effects of Coulomb collisions. Work supported by NRL, NNSA, and NSF.

  2. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  3. Use of a driving simulator to assess performance under adverse weather conditions in adults with albinism.

    Science.gov (United States)

    Hofman, Gwen M; Summers, C Gail; Ward, Nicholas; Bhargava, Esha; Rakauskas, Michael E; Holleschau, Ann M

    2012-04-01

    Participants with albinism have reduced vision and nystagmus with reduced foveation times. This prospective study evaluated driving in 12 participants with albinism and 12 matched controls. Participants drove a vehicle simulator through a virtual rural course in sunny and foggy conditions. Under sunny conditions, participants with albinism showed a narrower preferred minimum safety boundary during car-following tasks than did controls, but there was no difference under foggy conditions. Their driving did not differ significantly from that of controls when approaching a stop sign or when choosing gap size between oncoming vehicles when crossing an intersection. However, when compared to control drivers, participants with albinism had a decreased minimum safety boundary for car-following that should be included in counseling regarding driving safety.

  4. Standard Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This practice provides a procedure for the exposure of cover materials for flat-plate solar collectors to the natural weather environment at temperatures that are elevated to approximate operating conditions. 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors or photovoltaics. 1.4 The values stated in SI units are to be regarded as the standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. The impact of weather conditions on response of sorghum genotypes to anthracnose (Colletotrichum sublineola) infection

    Science.gov (United States)

    Rainfall is a major climatic factor influencing anthracnose development and in this study, 68 sorghum accessions were evaluated for anthracnose resistance under dry and wet growing conditions at the Texas A&M Agricultural Experiment Station, near College Station, Texas. Accessions, planted in a ran...

  6. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  7. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  8. Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation.

    Science.gov (United States)

    Fonseca, Fernanda; Meneghel, Julie; Cenard, Stéphanie; Passot, Stéphanie; Morris, G John

    2016-01-01

    During cryopreservation ice nucleation and crystal growth may occur within cells or the intracellular compartment may vitrify. Whilst previous literature describes intracellular vitrification in a qualitative manner, here we measure the intracellular vitrification temperature of bacteria and yeasts under conditions relevant to cryopreservation, including the addition of high levels of permeating and nonpermeating additives and the application of rapid rates of cooling. The effects of growth conditions that are known to modify cellular freezing resistance on the intracellular vitrification temperature are also examined. For bacteria a plot of the activity on thawing against intracellular glass transition of the maximally freeze-concentrated matrix (Tg') shows that cells with the lowest value of intracellular Tg' survive the freezing process better than cells with a higher intracellular Tg'. This paper demonstrates the role of the physical state of the intracellular environment in determining the response of microbial cells to preservation and could be a powerful tool to be manipulated to allow the optimization of methods for the preservation of microorganisms.

  9. Has dry/cold weather an impact on the skin condition of cleanroom workers?

    Science.gov (United States)

    Weistenhöfer, Wobbeke; Uter, Wolfgang; Drexler, Hans

    2016-01-01

    In previous epidemiological studies irritant skin changes were reported significantly more frequently under dry/cold ambient air conditions. The aim of this study was to assess whether a similar effect might be observed in cleanroom workers, occupationally exposed to strictly controlled ambient conditions. This investigation examined 690 employees of a semiconductor production company in Germany, one half in winter (n = 358) and the other half in spring (n = 332). In both waves, both cleanroom workers, who used occlusive gloves predominantly during the entire shift, and employees in the administration, serving as the control group, were included. Ambient outdoor temperature and relative humidity (RH) were measured and absolute humidity (AH) was calculated. Hands were dermatologically examined with quantitative clinical skin score HEROS, supplemented by transepidermal water loss (TEWL) and stratum corneum hydration measurements. Temperature ranged from -5.41 to 6.51°C in winter (RH 71.04-92.38%; AH 2.85-6.7 g/m 3 ) and from 6.35 to 10.26°C in spring (RH 76.17-82.79%; AH 5.66-7.92 g/m 3 ). Regarding HEROS, TEWL, and corneometry, no marked consistent pattern regarding an enhanced or decreased risk of irritant skin changes was found. Work in a strictly controlled environment with prolonged wearing of occlusive gloves, with clean hands and without exposure to additional hazardous substances, did not seem to negatively affect the skin. In this particular setting, meteorological conditions also did not appear to adversely affect the skin. It is conceivable that wearing of gloves and air conditioning in the plant protect skin of the hands from adverse effects due to dry and cold air encountered when not working.

  10. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Science.gov (United States)

    Valenti, Laura E.; Giacomelli, Carla E.

    2017-05-01

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  11. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Laura E.; Giacomelli, Carla E., E-mail: giacomel@fcq.unc.edu.ar [Universidad Nacional de Córdoba, Ciudad Universitaria, Instituto de Investigaciones en Físico Química de Córdoba (INFIQC) CONICET-UNC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas (Argentina)

    2017-05-15

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag{sup +} and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H{sub 2}O{sub 2}). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H{sub 2}O{sub 2}-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag{sup +} from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  12. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    Science.gov (United States)

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. Published by Elsevier Ltd.

  13. Reproductive parameters of tropical lesser noddies respond to local variations in oceanographic conditions and weather

    Science.gov (United States)

    Monticelli, David; Ramos, Jaime A.; Catry, Teresa; Pedro, Patricia; Paiva, Vitor H.

    2014-02-01

    Most attempts to link seabirds and climate/oceanographic effects have concerned the Atlantic and Pacific Oceans with comparatively few studies in the tropical Indian Ocean. This paper examines the reproductive response of the lesser noddy Anous tenuirostris to temporal fluctuations in oceanographic and climatic conditions using 8 years of monitoring data from Aride Island (Seychelles), tropical Western Indian Ocean. We tested the hypothesis that breeding parameters (mean hatching date, mean egg size, hatching and fledging successes) and chick growth are influenced by local, seasonal oceanographic conditions as expressed by ocean primary productivity (surface chlorophyll-a concentrations; CC), sea surface temperature (SST) and wind speed. We also examined the relationship between lesser noddy breeding parameters and climate conditions recorded at the basin-wide scale of the Indian Ocean (Indian Ocean Dipole Mode Index, DMI). Our findings suggest that birds had a tendency to lay slightly larger eggs during breeding seasons (years) with higher CC during April-June (pre-laying, laying and incubation periods). Hatching date was positively related to SST in April-June, with the regression parameters suggesting that each 0.5 °C increase in SST meant a delay of approx.10 days in hatching date. A negative linear relationship was also apparent between hatching success and SST in June-August (hatching and chick-rearing periods), while the quadratic regression models detected a significant effect of wind speed in June-August on fledging success. Body mass increments of growing chicks averaged over 7-day periods were positively related with (2-week) lagged CC values and negatively related with (2-week) lagged SST values. No significant relationship between DMI and lesser noddy breeding parameters was found, but DMI indices were strongly correlated with local SST. Altogether, our results indicate that the reproduction of this top marine predator is dictated by fluctuations in

  14. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  15. Visibility Enhancement of Scene Images Degraded by Foggy Weather Conditions with Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Farhan Hussain

    2016-01-01

    Full Text Available Nowadays many camera-based advanced driver assistance systems (ADAS have been introduced to assist the drivers and ensure their safety under various driving conditions. One of the problems faced by drivers is the faded scene visibility and lower contrast while driving in foggy conditions. In this paper, we present a novel approach to provide a solution to this problem by employing deep neural networks. We assume that the fog in an image can be mathematically modeled by an unknown complex function and we utilize the deep neural network to approximate the corresponding mathematical model for the fog. The advantages of our technique are as follows: (i its real-time operation and (ii being based on minimal input, that is, a single image, and exhibiting robustness/generalization for various unseen image data. Experiments carried out on various synthetic images indicate that our proposed technique has the abilities to approximate the corresponding fog function reasonably and remove it for better visibility and safety.

  16. Conditional Monthly Weather Resampling Procedure for Operational Seasonal Water Resources Forecasting

    Science.gov (United States)

    Beckers, J.; Weerts, A.; Tijdeman, E.; Welles, E.; McManamon, A.

    2013-12-01

    To provide reliable and accurate seasonal streamflow forecasts for water resources management several operational hydrologic agencies and hydropower companies around the world use the Extended Streamflow Prediction (ESP) procedure. The ESP in its original implementation does not accommodate for any additional information that the forecaster may have about expected deviations from climatology in the near future. Several attempts have been conducted to improve the skill of the ESP forecast, especially for areas which are affected by teleconnetions (e,g. ENSO, PDO) via selection (Hamlet and Lettenmaier, 1999) or weighting schemes (Werner et al., 2004; Wood and Lettenmaier, 2006; Najafi et al., 2012). A disadvantage of such schemes is that they lead to a reduction of the signal to noise ratio of the probabilistic forecast. To overcome this, we propose a resampling method conditional on climate indices to generate meteorological time series to be used in the ESP. The method can be used to generate a large number of meteorological ensemble members in order to improve the statistical properties of the ensemble. The effectiveness of the method was demonstrated in a real-time operational hydrologic seasonal forecasts system for the Columbia River basin operated by the Bonneville Power Administration. The forecast skill of the k-nn resampler was tested against the original ESP for three basins at the long-range seasonal time scale. The BSS and CRPSS were used to compare the results to those of the original ESP method. Positive forecast skill scores were found for the resampler method conditioned on different indices for the prediction of spring peak flows in the Dworshak and Hungry Horse basin. For the Libby Dam basin however, no improvement of skill was found. The proposed resampling method is a promising practical approach that can add skill to ESP forecasts at the seasonal time scale. Further improvement is possible by fine tuning the method and selecting the most

  17. Freezing of perchlorate and chloride brines under Mars-relevant conditions

    Science.gov (United States)

    Primm, K. M.; Gough, R. V.; Chevrier, V. F.; Tolbert, M. A.

    2017-09-01

    Perchlorate and chloride salts on Mars could readily absorb water vapor and deliquesce into aqueous solutions. The deliquescence relative humidity (RH) as well as the efflorescence (recrystallization) RH of several Mars-relevant salts are now well known; however, the conditions that could cause a brine to freeze are not well established. It is often assumed that ice formation will occur whenever the saturation with respect to ice, Sice, of the system is greater than or equal to unity; however, ice nucleation is often hindered due to a kinetic barrier. For ice to form, a critical cluster of the ice crystal must first be achieved, often requiring Sice > 1. Here we use a Raman microscope and an environmental cell to examine the RH and temperature conditions required for Mg(ClO4)2 and MgCl2 brines to freeze into ice. By examining the salt phase present both optically and spectrally under different low temperature conditions, it is found that both salts exhibit Sice values much greater than unity, meaning that supersaturation readily occurs and brines can persist under conditions previously thought to lead to freezing. The RH range of ice formation for Mg(ClO4)2 from 218 to 245 K is 83-95%, respectively, corresponding to Sice = 1.30-1.54. The RH of ice formation for MgCl2 ranges from 80 to 100% for temperatures between 221 and 252 K, corresponding to Sice = 1.30-1.35. In addition to ice nucleation, the deliquescence and efflorescence relative humidity values for MgCl2 were determined. Two hydrates for MgCl2 were observed, and exhibited different deliquescence relative humidity (DRH) values. The DRH for MgCl2·4H2O was found to be 12.8 ± 0.3% at 243 K with slightly increasing DRH as temperature decreased. The DRH for MgCl2·6H2O was found to be 31.3 ± 0.6% at 242 K with little temperature dependence. The DRH of MgCl2·6H2O was measured below the previously reported eutectic, 240 K, suggesting that the eutectic might be incorrect or that there is a different relevant

  18. A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krisman, Alexander; Hawkes, Evatt Robert.; Talei, Mohsen; Bhagatwala, Ankit; Chen, Jacqueline H.

    2016-11-11

    In diesel engines, combustion is initiated by a two-staged autoignition that includes both low- and high-temperature chemistry. The location and timing of both stages of autoignition are important parameters that influence the development and stabilisation of the flame. In this study, a two-dimensional direct numerical simulation (DNS) is conducted to provide a fully resolved description of ignition at diesel engine-relevant conditions. The DNS is performed at a pressure of 40 atmospheres and at an ambient temperature of 900 K using dimethyl ether (DME) as the fuel, with a 30 species reduced chemical mechanism. At these conditions, similar to diesel fuel, DME exhibits two-stage ignition. The focus of this study is on the behaviour of the low-temperature chemistry (LTC) and the way in which it influences the high-temperature ignition. The results show that the LTC develops as a “spotty” first-stage autoignition in lean regions which transitions to a diffusively supported cool-flame and then propagates up the local mixture fraction gradient towards richer regions. The cool-flame speed is much faster than can be attributed to spatial gradients in first-stage ignition delay time in homogeneous reactors. The cool-flame causes a shortening of the second-stage ignition delay times compared to a homogeneous reactor and the shortening becomes more pronounced at richer mixtures. Multiple high-temperature ignition kernels are observed over a range of rich mixtures that are much richer than the homogeneous most reactive mixture and most kernels form much earlier than suggested by the homogeneous ignition delay time of the corresponding local mixture. Altogether, the results suggest that LTC can strongly influence both the timing and location in composition space of the high-temperature ignition.

  19. Turbulent dispersivity under conditions relevant to airborne disease transmission between laboratory animals

    Science.gov (United States)

    Halloran, Siobhan; Ristenpart, William

    2013-11-01

    Virologists and other researchers who test pathogens for airborne disease transmissibility often place a test animal downstream from an inoculated animal and later determine whether the test animal became infected. Despite the crucial role of the airflow in pathogen transmission between the animals, to date the infectious disease community has paid little attention to the effect of airspeed or turbulent intensity on the probability of transmission. Here we present measurements of the turbulent dispersivity under conditions relevant to experimental tests of airborne disease transmissibility between laboratory animals. We used time lapse photography to visualize the downstream transport and turbulent dispersion of smoke particulates released from a point source downstream of an axial fan, thus mimicking the release and transport of expiratory aerosols exhaled by an inoculated animal. We show that for fan-generated turbulence the plume width is invariant with the mean airspeed and, close to the point source, increases linearly with downstream position. Importantly, the turbulent dispersivity is insensitive to the presence of meshes placed downstream from the point source, indicating that the fan length scale dictates the turbulent intensity and corresponding dispersivity.

  20. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    International Nuclear Information System (INIS)

    Bisio, M.; Branca, V.; Marco, M. Di; Federici, A.; Grattarola, M.; Gualco, G.; Guarnone, P.; Luconi, U.; Merola, M.; Ozzano, C.; Pasquale, G.; Poggi, P.; Rizzo, S.; Varone, F.

    2005-01-01

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions

  1. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  2. Description of Three Female 24-h Ultra-Endurance Race Winners in Various Weather Conditions and Disciplines.

    Science.gov (United States)

    Chlíbková, Daniela; Rosemann, Thomas; Knechtle, Beat; Nikolaidis, Pantelis T.; Žákovská, Alena; Sudi, Karl

    2017-08-31

    A The incidence of exercise-associated hyponatremia (EAH) is higher in women than in men. We present three cases of a very mild post-race EAH in female winners of three 24-h ultra races in various weather conditions and disciplines with post-race plasma sodium [Na⁺] levels of 134 mM (Case 1), 133 mM (Case 2) and 134 mM (Case 3). Moreover, Case 1 and Case 2 showed elevated creatine kinase concentrations of >10,000 U/l with an absence of renal function abnormality. The common characteristics were female sex, veteran recreational category, long race experience in the particular sports discipline, excellent race performance, similar total weekly training hours and the presence of luteal phase of the menstrual cycle during the race. Hematocrit and hemoglobin decreased and post-race K⁺/Na⁺ ratio in urine increased in all three cases. In addition, an increased body mass and a decreased urine specific gravity and urine osmolality suggested over-drinking in Case 1. A decrease in the glomerular filtration rate and creatine clearance accompanied by an increase in urine [Na⁺] may contribute to fluid overload in Cases 2 and 3. Furthermore, urine osmolality reached a level indicating antidiuretic hormone secretion in all the present cases. Therefore, we recommend that race medical personnel should not forget to look for EAH even in fast and experienced female athletes and during races in different environmental conditions.

  3. The impact of extreme weather conditions on the life of settlers in the Central Russia in X - XVI centuries

    Science.gov (United States)

    Graves, Irina; Nizovtsev, Viacheslav; Erman, Natalia

    2017-04-01

    A special place in the reconstruction of climate dynamics takes an analysis of extraordinary meteorological phenomena. These extreme weather events in the first place impact the functioning of, the rhythm and dynamics of the landscapes and determine not only the features of economy, but also certain aspects of historical development. In the analysis of primary chronicles and published data, along with the direct climatic characteristics (hot, warm, cold, wet, dry, etc.) a lot of attention was paid to abnormal (extreme) natural phenomena and indirect indications of climate variability (floods, crop failures, hunger years, epidemics, etc.). As a result, tables were compiled reflecting climatic basic characteristics and extremes for each year since 900 BC. X-XI centuries was a period of minor climatic optimum - the climate was warmer and drier than the modern one. In addition to higher temperatures (up to 1-3C above than mordern), during this period there were no severe winters. A small amount of summer rainfall has led to a reduction in the number of small water reservoirs and flooding rivers. This is evidenced by Slavic settlements on floodplains of a number of rivers in the Moscow region. It is in this favorable climatic time the way "from the Vikings to the Greeks" was open. Catastrophic natural events had a minimum repeatability. For example, during the X century the Russian chronicles mentioned 41 extreme event, but for the XIII century - 102. Most of the villages and towns were located on the low floodplain terraces of rivers. The main farmland was concentrated there as well. In the "period of contrasts" (XIII - XIV centuries) there was an increase of intra-seasonal climate variability, humidity and widespread reduction in summer temperatures by 1-2C. The number of extreme weather events increased: cold prolonged winters, long rains in summers, cold weather returns in the early summer, early frosts in late summer - early autumn. Such conditions often

  4. Warm weather conditions moderated the increase of power consumption in Finland in 2000

    International Nuclear Information System (INIS)

    Kangas, H.

    2001-01-01

    Year 2000 was exceptionally warm in Finland. The amount of rainfalls in Northern Finland was larger than in 1999. This is shown clearly in the production of hydroelectric power. The wind conditions were also better, so the wind power generation doubled in 2000. The increase in power consumption in 2000 was only 1.7%. The power consumption rate was slightly over 79 TWh. The power consumption of household and agricultural sectors decreased by nearly 2% and in the public sector by 0.2%. The industrial power consumption increased by nearly 3%. Year 2000 was excellent for the industrial sector. The industrial production increased by 11%. The increment of power demand in heavy metal industry, chemical industry and forest industry was 5-7%. Power demand of process industry in 2000 exceeded 43.4 TWh, of which the share of building industry was more than 200 GWh. Process industry use about 55% of the total power consumption in Finland in 2000. The power demand of forest industry was 26.3 TWh, which is about 2% higher than in 1999. The corresponding figures for metal industry were 7.1 TWh and growth rate 3%. Chemical industry used in 2000 about 5.9 TWh of electric power. The growth rate was more that 4% higher in 2000 than in 1999. Power consumption of other industrial sectors in 2000 increased about 3% being now about 3.9 TWh. Hydroelectric power generation in 2000 was nearly 14.4 TWh, which is nearly 14.4 % higher than in 1999. The share of hydroelectric power generation of the total power consumption in Finland in 2000 was 18%. The wind power generation in 2000 was nearly 80 GWh, which are about 60% higher than in 1999. The number of wind power plants is 63, and the capacity of them 38 MW. The production of nuclear power in 2000 decreased by about 2% because of the longer and more thorough maintenance stoppages in the Loviisa 1 reactor. The utilisation rates of Finnish nuclear power plants in 2000 were high, Loviisa 1 by nearly 85%, Loviisa 2 by 91%, Olkiluoto 1 by 96

  5. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    Science.gov (United States)

    Snead, L. L.; Terrani, K. A.; Katoh, Y.; Silva, C.; Leonard, K. J.; Perez-Bergquist, A. G.

    2014-05-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320-360 °C range to a maximum dose of 7.7 × 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  6. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    International Nuclear Information System (INIS)

    Snead, L.L.; Terrani, K.A.; Katoh, Y.; Silva, C.; Leonard, K.J.; Perez-Bergquist, A.G.

    2014-01-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle–matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320–360 °C range to a maximum dose of 7.7 × 10 25 n/m 2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix

  7. Geological conditions for lateral sealing of active faults and relevant research methods

    Directory of Open Access Journals (Sweden)

    Guang Fu

    2017-01-01

    Full Text Available Many researchers worked a lot on geologic conditions for lateral sealing of faults, but none of their studies took the effect of internal structures of fault zones on the lateral sealing capacity of faults. Therefore, the lateral sealing of active faults has rarely been discussed. In this paper, based on the analysis of the composition and structure characteristics of fault fillings, the geological conditions for lateral sealing of active faults and relevant research method were discussed in reference to the lateral sealing mechanisms of inactive fault rocks. It is shown that, in order to satisfy geologically the lateral sealing of active faults, the faults should be antithetic and the faulted strata should be mainly composed of mudstone, so that the displacement pressure of fault fillings is higher than or equal to that of reservoir rocks in oil and gas migration block. Then, a research method for the lateral sealing of active faults was established by comparing the displacement pressure of fillings in the fault with that of reservoir rocks in oil and gas migration block. This method was applied to three antithetic faults (F1, F2 and F3 in No. 1 structure of the Nanpu Sag, Bohai Bay Basin. As revealed, the fillings of these three active faults were mostly argillaceous at the stage of natural gas accumulation (the late stage of Neogene Minghuazhen Fm sedimentation, and their displacement pressures were higher than that of reservoir rocks in the first member of Paleogene Dongying Fm (F1 and F3 and the Neogene Guantao Fm (F2. Accordingly, they are laterally sealed for natural gas, which is conducive to the accumulation and preservation of natural gas. Industrial gas flow has been produced from the first member of Paleogene Dongying Fm in Well Np101, the Guantao Fm in Well Np1-2 and the first member of Paleogene Dongying Fm in Well Np1, which is in agreement with the analysis result. It is verified that this method is feasible for investigating the

  8. Comparative study of the reliability of MPPT algorithms for the crystalline silicon photovoltaic modules in variable weather conditions

    Directory of Open Access Journals (Sweden)

    Abraham Dandoussou

    2017-05-01

    Full Text Available The crystalline silicon photovoltaic modules are widely used as power supply sources in the tropical areas where the weather conditions change abruptly. Fortunately, many MPPT algorithms are implemented to improve their performance. In the other hand, it is well known that these power supply sources are nonlinear dipoles and so, their intrinsic parameters may vary with the irradiance and the temperature. In this paper, the MPPT algorithms widely used, i.e. Perturb and Observe (P&O, Incremental Conductance (INC, Hill-Climbing (HC, are implemented using Matlab®/Simulink® model of a crystalline silicon photovoltaic module whose intrinsic parameters were extracted by fitting the I(V characteristic to experimental points. Comparing the simulation results, it is obvious that the variable step size INC algorithm has the best reliability than both HC and P&O algorithms for the near to real Simulink® model of photovoltaic modules. With a 60 Wp photovoltaic module, the daily maximum power reaches 50.76 W against 34.40 W when the photovoltaic parameters are fixed. Meanwhile, the daily average energy is 263 Wh/day against 195 Wh/day.

  9. Association between weather conditions and the number of patients at the emergency room in an Argentine hospital

    Science.gov (United States)

    Rusticucci, Matilde; Bettolli, Laura M.; de los Angeles Harris, M.

    2002-02-01

    The aim of this paper is to study the relationships between hospital emergencies and weather conditions by analysing summer and winter cases of patients requiring attention at the emergency room of a hospital in the city of Buenos Aires, Argentina. Hospital data have been sorted into seven different diagnostic groups as follows: (1) respiratory, cardiovascular and chest-pain complaints; (2) digestive, genitourinary and abdominal complaints; (3) neurological and psychopathological disorders; (4) infections; (5) contusion and crushing, bone and muscle complaints; (6) skin and allergies and (7) miscellaneous complaints. In general, there is an increase of 16.7% in winter while, for group 2 and group 6, there are more patients in summer, 54% and 75% respectively. In summer, the total number of patients for group 6 shows a significant positive correlation with temperature and dew-point temperature, and a negative correlation with the sea-level pressure for the same day. In winter, the same relationship exists, however its correlation is not as strong. The lags observed between these three variables: maximum dew-point temperature, maximum temperature, minimum air pressure and the peaks in admissions are 1, 2 and 4 days respectively. In winter, increases in temperature and dew point and decreases in pressure are followed by a peak in admissions for group 2. In winter, there are significantly more cases in group 5 on warm, dry days and on warm, wet days in the summer.

  10. Extreme groundwater levels caused by extreme weather conditions - the highest ever measured groundwater levels in Middle Germany and their management

    Science.gov (United States)

    Reinstorf, F.; Kramer, S.; Koch, T.; Pfützner, B.

    2017-12-01

    Extreme weather conditions during the years 2009 - 2011 in combination with changes in the regional water management led to maximum groundwater levels in large areas of Germany in 2011. This resulted in extensive water logging, with problems especially in urban areas near rivers, where water logging produced huge problems for buildings and infrastructure. The acute situation still exists in many areas and requires the development of solution concepts. Taken the example of the Elbe-Saale-Region in the Federal State of Saxony-Anhalt, were a pilot research project was carried out, the analytical situation, the development of a management tool and the implementation of a groundwater management concept are shown. The central tool is a coupled water budget - groundwater flow model. In combination with sophisticated multi-scale parameter estimation, a high-resolution groundwater level simulation was carried out. A decision support process with an intensive stakeholder interaction combined with high-resolution simulations enables the development of a management concept for extreme groundwater situations in consideration of sustainable and environmentally sound solutions mainly on the base of passive measures.

  11. Reaction Norms in Natural Conditions: How Does Metabolic Performance Respond to Weather Variations in a Small Endotherm Facing Cold Environments?

    Science.gov (United States)

    Petit, Magali; Vézina, François

    2014-01-01

    Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints. PMID:25426860

  12. Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This practice covers a procedure for the exposure of solar collector cover materials to the natural weather environment at elevated temperatures that approximate stagnation conditions in solar collectors having a combined back and edge loss coefficient of less than 1.5 W/(m2 · °C). 1.2 This practice is suitable for exposure of both glass and plastic solar collector cover materials. Provisions are made for exposure of single and double cover assemblies to accommodate the need for exposure of both inner and outer solar collector cover materials. 1.3 This practice does not apply to cover materials for evacuated collectors, photovoltaic cells, flat-plate collectors having a combined back and edge loss coefficient greater than 1.5 W/(m2 ·° C), or flat-plate collectors whose design incorporates means for limiting temperatures during stagnation. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard t...

  13. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials

    Science.gov (United States)

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant ...

  14. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  15. Rare Earth Element Behavior During Incongruent Weathering and Varying Discharge Conditions in Silicate Dominated River Systems: The Australian Victorian Alps

    Science.gov (United States)

    Hagedorn, K. B.; Cartwright, I.

    2008-12-01

    The distribution of rare earth elements (REE) and trace elements was measured by ICP-MS on fresh, slightly weathered and weathered granite and surface water samples from a network of 11 pristine rivers draining the Australian Victorian Alps during (i) high and (ii) low discharge conditions. River water REE concentrations are largely derived from atmospheric precipitation (rain, snow), as indicated by similar Chondrite normalized REE patterns (higher LREE over HREE; negative Ce anomalies, positive Eu anomalies) and similar total REE concentrations during both dry and wet seasons. Calculations based on the covariance between REE and Cl concentrations and oxygen and hydrogen isotopes indicate precipitation input coupled with subsequent evaporation may account for 30% o 100% of dissolved REE in stream waters. The dissolved contribution to the granitic substratum to stream water comes mainly from the transformation of plagioclase to smectite, kaolinite and gibbsite and minor apatite dissolution. However, since most REE of the regional granite are present in accessory minerals (titanite, zircon, etc.) they do not significantly contribute to the river REE pool. REE concentrations drop sharply downstream as a result of dilution and chemical attenuation. A trend of downstream enrichment of the heavier REE is due to selective partitioning of the lighter REE (as both free REE or REECO3 complexes) to hydrous oxides of suspended Al which, in turn, is controlled by a downstream increase of pH to values > 6.1 (for free REE) and > 7.3 (for REECO3 complexes). Although most circumneutral waters were supersaturated with REE phosphate compounds, precipitation of LnPO4 is not believed to have been a dominant process because the predicted phosphate fractionation pattern is inconsistent with the observed trends. Negative saturation indices of hydrous ferric oxides also militate against surface complexation onto goethite. Instead, REE attenuation most likely resulted from adsorption onto

  16. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  17. Relevance feature selection of modal frequency-ambient condition pattern recognition in structural health assessment for reinforced concrete buildings

    Directory of Open Access Journals (Sweden)

    He-Qing Mu

    2016-08-01

    Full Text Available Modal frequency is an important indicator for structural health assessment. Previous studies have shown that this indicator is substantially affected by the fluctuation of ambient conditions, such as temperature and humidity. Therefore, recognizing the pattern between modal frequency and ambient conditions is necessary for reliable long-term structural health assessment. In this article, a novel machine-learning algorithm is proposed to automatically select relevance features in modal frequency-ambient condition pattern recognition based on structural dynamic response and ambient condition measurement. In contrast to the traditional feature selection approaches by examining a large number of combinations of extracted features, the proposed algorithm conducts continuous relevance feature selection by introducing a sophisticated hyperparameterization on the weight parameter vector controlling the relevancy of different features in the prediction model. The proposed algorithm is then utilized for structural health assessment for a reinforced concrete building based on 1-year daily measurements. It turns out that the optimal model class including the relevance features for each vibrational mode is capable to capture the pattern between the corresponding modal frequency and the ambient conditions.

  18. INFLUENCE OF WEATHER CONDITIONS ON GRAIN YIELD, OIL CONTENT AND OIL YIELD OF NEW OS SUNFLOWER HYBRIDS

    Directory of Open Access Journals (Sweden)

    Anto Mijić

    2017-01-01

    Full Text Available With the purpose of determining the influence of weather conditions on the yield components of sunflower, the results of three-year field trials are analysed in the paper. In the trials sown in Osijek in 2013, 2014 and 2015, there were 15 sunflower hybrids: two foreign hybrids and 13 hybrid combinations of the Agricultural Institute Osijek. In the period before sowing (January – March, the highest amount of precipitation was in 2013 (213.1 mm, then in 2015 (167.9 mm, and the lowest in 2014 (109.5 mm. In the growing period (April – September, the highest amount of precipitation (487.3 mm was in 2014, 475.7 mm in 2013, and in 2015 it was the lowest (251.6 mm. In 2013, during the growing period, the mean monthly air temperature was 19.1°C, in 2015 19.9°C, and in 2014 18.6°C. Of these years, statistically significant at the P=0.05, the highest value of the analysed traits was recorded in 2013: grain yield of 6.47 t ha-1, oil content 51.69% and oil yield 3.05 t ha-1. Grain yield, oil content and oil yield were lower in 2015, and the lowest in 2014. Matej, a newly recognized sunflower hybrid of the Agricultural Institute Osijek had the highest values of grain and oil yield (6.95 and 3.39 t ha-1, and by its oil content of 53.44%, it was in the third place. For high grain and oil yields of sunflower, in addition to the optimal air temperature, the amount and distribution of precipitation before and also during the growing season are very important.

  19. The Prevailing Weather and Traffic Conditions in the Evaluation of a Future ECA in the Mediterranean Sea. A view into the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Marcella Castells i Sanabra

    2014-03-01

    Full Text Available Appendix III of MARPOL's Annex VI sets out the criteria and procedures for designating an emission control area (ECA.These criteria includes: a clear delineation of the proposed ECA; types of emissions proposed for control, land and sea areas at risk; emission quantification and impact assessment; prevailing weather conditions; data and quality on marine traffic; land based measures concurrent with the ECA adoption and the relative costs of reducing emissions from ships. This paper analyses the climate parameter together with traffic conditions: prevailing weather conditions as a parameter to be kept in mind for the adoption of a future ECA in the Mediterranean Sea. Preliminary results would show how marine emissions coming from existing traffic will impact the sea and land ecology in the Mediterranean area.

  20. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    Science.gov (United States)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  1. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    Science.gov (United States)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  2. Effectiveness of short-term numerical weather prediction in predicting growing degree days and meteorological conditions for apple scab appearance

    Czech Academy of Sciences Publication Activity Database

    Lalic, B.; Francia, M.; Eitzinger, Josef; Podrascanin, Z.; Arsenic, I.

    2016-01-01

    Roč. 23, č. 1 (2016), s. 50-56 ISSN 1350-4827 Institutional support: RVO:86652079 Keywords : venturia-inaequalis * temperature * equation * schemes * model * numerical weather prediction * disease prediction * verification * apple scab * growing degree days Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.411, year: 2016

  3. The significance of climate change in the Netherlands. An analysis of historical and future trends (1901-2020) in weather conditions, weather extremes and temperature-related impacts

    Energy Technology Data Exchange (ETDEWEB)

    Visser, H.

    2005-07-01

    A rigorous statistical analysis reveals changes in Dutch climate that are statistically significant over the last century. Annually averaged temperatures have increased by 1.5 about 0.5 degrees Centigrade; the number of summer days has roughly doubled from 14 about 5 to 27 about 9 days; annual precipitation has increased by 120 about 100 mm; and the number of extremely wet days has increased by about 40%, from 19 about 3 to 26 about 3 days. Several other changes in Dutch climate, such as spring temperatures rising more rapidly than winter temperatures, the increase of the coldest temperature in each year by 0.9 degrees Centigrade and the annual maximum day sum of precipitation, turn out to be not (yet) statistically significant. The changes in Dutch climate have already led to several statistically significant impacts. The length of the growing season has increased by nearly a month, and the number of heating-degree days, a measure for the energy needed for the heating of houses and buildings, has decreased by 14 about 5%. Projections of future temperature increase in 2020 based on the statistical analysis closely resemble projections based on climate models: temperatures continue to increase from 10.4 about 0.4 degrees Centigrade in 2003 to 10.7 about 0.6 degrees Centigrade in 2010 and 11.1 about 1.0 degrees Centigrade in 2020. The energy needed for heating of houses and buildings is expected to decrease further. This warming effect is expected to lower projections of future Dutch greenhouse-gas emissions by 3.5 Mton CO2 equivalents, which is relevant in the context of commitments under the Kyoto Protocol. Finally, over the course of the 20th century the chance on an 'Elfstedentocht', an outdoor skating event in the Netherlands, has decreased from once every five years to once every ten years. Even though this impact change is not yet statistically significant, it resides 'on the edge' of significance: within a few years more evidence may

  4. Plasma exposure of different tungsten grades with plasma accelerators under ITER-relevant conditions

    International Nuclear Information System (INIS)

    Makhlaj, Vadym A; Garkusha, Igor E; Aksenov, Nikolay N; Byrka, Oleg V; Bazylev, Boris; Landman, Igor; Linke, Jochen; Wirtz, Marius; Malykhin, Sergey V; Pugachov, Anatoliy T; Sadowski, Marek J; Skladnik-Sadowska, Elzbieta

    2014-01-01

    This paper presents the results of tungsten irradiation experiments performed with three plasma facilities: the QSPA Kh-50 quasi-steady-state plasma accelerator, the PPA pulsed plasma gun and the magneto-plasma compressor. Targets made of different kinds of tungsten (sintered, rolled and deformed) were irradiated with powerful plasma streams at heat fluxes relevant to edge-localized modes in ITER. The irradiated targets were analyzed and two different meshes of cracks were identified. It has been shown that the major cracks do not depend on the tungsten grade. This has been attributed to ductile-to-brittle transition effects. Meshes of inter-granular micro-cracks were detected for energy loads above the melting threshold and these were probably caused by the re-solidification process. The blister-like and cellular-like structures were observed on sample surfaces exposed to helium and hydrogen plasmas. (paper)

  5. Assessment of hypervapotron heat sink performance using CFD under DEMO relevant first wall conditions

    Energy Technology Data Exchange (ETDEWEB)

    Domalapally, Phani, E-mail: p_kumar.domalapally@cvrez.cz

    2016-11-01

    Highlights: • Performance of Hypervapotron heat sink was tested for First wall limiter application. • Two different materials were tested Eurofer 97 and CuCrZr at PWR conditions. • Simulations were performed to see the effect of the different inlet conditions and materials on the maximum temperature. • It was found that CuCrZr heat sink performance is far better than Eurofer heat sink at the same operating conditions. - Abstract: Among the proposed First Wall (FW) cooling concepts for European Demonstration Fusion Power Plant (DEMO), water cooled FW is one of the options. The heat flux load distribution on the FW of the DEMO reactor is not yet precisely defined. But if the heat loads on the FW are extrapolated from ITER conditions, the numbers are quite high and have to be handled none the less. The design of the FW itself is challenging as the thermal conductivity ratio of heat sink materials in ITER (CuCrZr) and in DEMO (Eurofer 97) is ∼10–12 and the operating conditions are of Pressurized Water Reactor (PWR) in DEMO instead of 70 °C and 4 MPa as in ITER. This paper analyzes the performance of Hypervapotron (HV) heat sink for FW limiter application under DEMO conditions. Where different materials, temperatures, heat fluxes and velocities are considered to predict the performance of the HV, to establish its limits in handling the heat loads before reaching the upper limits from temperature point of view. In order to assess the performance, numerical simulations are performed using commercial CFD code, which was previously validated in predicting the thermal hydraulic performance of HV geometry. Based on the results the potential usage of HV heat sink for DEMO will be assessed.

  6. Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia.

    Science.gov (United States)

    Piantadosi, Patrick T; Floresco, Stan B

    2014-09-01

    Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.

  7. Assessing the Risk Relevance of Accounting Variables in Diverse Economic conditions

    NARCIS (Netherlands)

    Brimble, M.; Hodgson, A.

    2005-01-01

    This paper examines the association between accounting information and systematic (beta) risk. We extend previous research by using an updated data set, a range of risk measures that adjust for different market and time-varying conditions, and by examining whether the long-run association has

  8. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  9. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  10. Edge Plasma Physics Issues for the Fusion Advanced Studies Torus (FAST) in Reactor Relevant Conditions

    International Nuclear Information System (INIS)

    Maddaluno, G.; Pericoli Ridolfini, V.; Apicella, M.L.; Calabro, G.; Crisanti, F.; Cucchiaro, A.; Ramogida, G.; Zagorski, R.

    2008-01-01

    The issue of First wall materials and compatibility with ITER /DEMO relevant plasmas is among the RD missions for possible new European plasma fusion devices that the FAST project will address. FAST can operate with ITER relevant values of P/R (up to 22 MW/m, against the ITER 24 MW/m, inclusive of the α particles power), thanks to its compactness; thus it can investigate the physics of large heat loads on divertor plates. The FAST divertor will be made of bulk W tiles, for basic operations, but also fully toroidal divertor targets made of liquid lithium (L-Li) are foreseen. To have reliable predictions of the thermal loads on the divertor plates and of the core plasma purity a number of numerical self-consistent simulations have been made for the H-mode and steady-state scenario by using the code COREDIV. This code, already validated in the past on experimental data (namely JET, FTU, Textor), is able to describe self-consistently the core and edge plasma in a tokamak device by imposing the continuity of energy and particle fluxes and of particle densities and temperatures at the separatrix. In the present work the results of such calculations will be illustrated, including heat loads on the divertor. The overall picture shows that, marginally in the intermediate and, necessarily in the high density H-mode scenarios ( e >=2 and 5·10 20 m -3 respectively), impurity seeding should be foreseen with W as target material: however, only a small amount of Ar (0.03% atomic concentration), not affecting the core purity, is sufficient to maintain the divertor peak loads below 18 MW/m 2 , that represents the safety limit for the W mono block technology, presently accepted for the ITER divertor tiles. Li always needs additional impurities for decreasing divertor heat loads, the Z eff value being ≤ than 1.8. At low plasma densities (but ≥ 1.3·10 20 m -3 ), typical of steady state regimes, W by alone is effective in dissipating the input power by radiative losses, without

  11. Thermoregulatory responses and blood parameters of locally adapted ewes under natural weather conditions of Brazilian semiarid region

    Directory of Open Access Journals (Sweden)

    Wirton Peixoto Costa

    2015-12-01

    Full Text Available The effect of the natural weather conditions on respiratory rate, rectal temperature and hematologic parameters such as glucose, total cholesterol, triacylglycerol, total protein, albumin, globulin, red blood cells, microhematocrit, mean corpuscular volume, serum triiodothyronine (T3 and thyroxine (T4 levels was evaluated in red (RMN and white (WMN coat colored Morada Nova ewes, of different class of body condition score (CBCS, during the dry (from july to december and wet (from january to june seasons, which exhibited different (P<0.05 air temperature, relative humidity and radiant thermal load averages. Tukey’s test was used and the difference considered was to P<0.05. Significant greater averages of respiratory rate were observed in the dry period compared to the rainy period (42.26±8.96 and 36.89±8.20 breaths min-1, respectively, mainly in the RMN (45.54±8.23 breaths min-1 compared with the WMN (39.27±8.57 breaths min-1. No differences were observed in rectal temperature measurements between the dry and the wet periods (38.59±0.58 and 38.60±0.56 oC, respectively, but the WMN had higher values than the RMN (38.77±0.54 and 38.40±0.54 oC, respectively. The glucose and total cholesterol were higher in the wet season, with no variation due to breed variety and CBCS. The triacylglycerol did not change between breed varieties and seasons. The albumin was similar between varieties and in different seasons, being different in CBCS. Total protein and globulin serum were higher during the wet season, but total protein was higher and globulin was lower in better CBCS. T3 and T4 levels were higher in the rainy season (0.25±0.07 and 6.74±11.37 ?g dL-1, for T3 and T4, respectively than in the dry season (0.18±0.08 and 6.31±1.64 ?g dL-1, for T3 and T4, respectively. The red blood cells showed no difference, but microhematocrit was higher in WMN and in the better CBCS and mean corpuscular volume was higher in the dry season. The concentration

  12. Materials interactions test methods to measure radionuclide release from waste forms under repository-relevant conditions

    International Nuclear Information System (INIS)

    Strickert, R.G.; Erikson, R.L.; Shade, J.W.

    1984-10-01

    At the request of the Basalt Waste Isolation Project, the Materials Characterization Center has collected and developed a set of procedures into a waste form compliance test method (MCC-14.4). The purpose of the test is to measure the steady-state concentrations of specified radionuclides in solutions contacting a waste form material. The test method uses a crushed waste form and basalt material suspended in a synthetic basalt groundwater and agitated for up to three months at 150 0 C under anoxic conditions. Elemental and radioisotopic analyses are made on filtered and unfiltered aliquots of the solution. Replicate experiments are performed and simultaneous tests are conducted with an approved test material (ATM) to help ensure precise and reliable data for the actual waste form material. Various features of the test method, equipment, and test conditions are reviewed. Experimental testing using actinide-doped borosilicate glasses are also discussed. 9 references, 2 tables

  13. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy

    International Nuclear Information System (INIS)

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-01-01

    Radon ( 222 Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222 Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m -3 for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems

  14. Characterization of ion fluxes and heat fluxes for PMI relevant conditions on Proto-MPEX

    Science.gov (United States)

    Beers, Clyde; Shaw, Guinevere; Biewer, Theodore; Rapp, Juergen

    2016-10-01

    Plasma characterization, in particular, particle flux and electron and ion temperature distributions nearest to an exposed target, are critical to quantifying Plasma Surface Interaction (PSI). In the Proto-Material Plasma Exposure eXperiment (Proto-MPEX), the ion fluxes and heat fluxes are derived from double Langmuir Probes (DLP) and Thomson Scattering in front of the target assuming Bohm conditions at the sheath entrance. Power fluxes derived from ne and Te measurements are compared to heat fluxes measured with IR thermography. The comparison will allow conclusions on the sheath heat transmission coefficient to be made experimentally. Different experimental conditions (low and high density plasmas (0.5 - 6 x 1019 m-3) with different magnetic configuration are compared. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  15. Susceptibility profiles of amphotericin B and posaconazole against clinically relevant mucorales species under hypoxic conditions.

    Science.gov (United States)

    Maurer, Elisabeth; Binder, Ulrike; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2015-02-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Effects of nanomolar cadmium concentrations on water plants - comparison of biochemical and biophysical mechanisms of toxicity under environmentally relevant conditions

    OpenAIRE

    Andresen, Elisa

    2014-01-01

    In this thesis, the effects of the highly toxic heavy metal cadmium (Cd) on the rootless aquatic model plant Ceratophyllum demersum are investigated on the biochemical and biophysical level. The experiments were carried out using environmentally relevant conditions, i.e. light and temperature followed a sinusoidal cycle, a low biomass to water ratio resembled the situation in oligotrophic lakes and a continuous exchange of the defined nutrient solution ensured that metal uptake into the plant...

  17. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    Science.gov (United States)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  18. Titanium Dioxide Nanoparticle Integrated Concrete: An Assessment of Nanoparticle Release When Exposed to UV Radiation and Wet Weather Conditions

    Science.gov (United States)

    2016-03-23

    polystyrene tubes . This procedure was repeated 30 times to simulate an annual exposure to acidic precipitation weathering. The average annual number...with diluted nitric acid in a 10 mL test tube . This sample was used for the ICP-AES analysis. The remainder of the sample solution was acid...Water at a Semiconducter Electrode. Nature 238 9. Gamer AO, Leibold E, van Ravenzwaay B. 2006. The in vitro absorption of microfine zinc oxide and

  19. Stability of serum, plasma and urine osmolality in different storage conditions: Relevance of temperature and centrifugation.

    Science.gov (United States)

    Sureda-Vives, Macià; Morell-Garcia, Daniel; Rubio-Alaejos, Ana; Valiña, Laura; Robles, Juan; Bauça, Josep Miquel

    2017-09-01

    Osmolality reflects the concentration of all dissolved particles in a body fluid, and its measurement is routinely performed in clinical laboratories for the differential diagnosis of disorders related with the hydrolytic balance regulation, the renal function and in small-molecule poisonings. The aim of the study was to assess the stability of serum, plasma and urine osmolality through time and under different common storage conditions, including delayed centrifugation. Blood and urine samples were collected, and classified into different groups according to several preanalytical variables: serum or plasma lithium-heparin tubes; spun or unspun; stored at room temperature (RT), at 4°C or frozen at -21°C. Aliquots from each group were assayed over time, for up to 14days. Statistical differences were based on three different international performance criteria. Whole blood stability was higher in the presence of anticoagulant. Serum osmolality was stable for 2days at RT and 8days at 4°C, while plasma was less stable when refrigerated. Urine stability was 5days at RT, 4days at 4°C and >14days when frozen. Osmolality may be of great interest for the management of several conditions, such as in case of a delay in the clinical suspicion, or in case of problems in sample collection or processing. The ability to obtain reliable results for samples kept up to 14days also offers the possibility to retrospectively assess baseline values for patients which may require it. Copyright © 2017. Published by Elsevier Inc.

  20. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee; Choi, Siwon; Dien, Vivian; Sow-Peh, Yoke Keow; Qi, Genggeng; Hatton, T. Alan; Doyle, Patrick S.; Thio, Beng Joo Reginald

    2013-01-01

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  1. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    KAUST Repository

    Yeo, Siang Yee

    2013-06-20

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ~70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  2. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  3. Tungsten melt layer erosion due to J x B force under conditions relevant to ITER ELMs

    Energy Technology Data Exchange (ETDEWEB)

    Garkusha, I.E. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)]. E-mail: garkusha@ipp.kharkov.ua; Bazylev, B.N. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Bandura, A.N. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Byrka, O.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Chebotarev, V.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Landman, I.S. [Forschungszentrum Karlsruhe, IHM, 76021 Karlsruhe (Germany); Kulik, N.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Makhlaj, V.A. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Petrov, Yu.V. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Solyakov, D.G. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine); Tereshin, V.I. [Institute of Plasma Physics of the NSC KIPT, Akademicheskaya 1, 61108 Kharkov (Ukraine)

    2007-06-15

    The behavior of tungsten under repetitive hydrogen plasma impacts causing surface melting in conditions of an applied J x B force of up to 20 MN/m{sup 3} is studied with the plasma accelerator QSPA Kh-50. Tungsten samples of EU trademark have been exposed to up to 100 pulses simulating ITER ELMs of the energy load 0.7 MJ/m{sup 2} and the duration 0.25 ms. An electric current J flows across the magnetic field B of 1.4 T, and the resulting J x B force produces a displacement of the melt with formation of an erosion crater and an inclination of the surface profile along the force. Surface morphology and the damage by surface cracks are discussed. Comparisons of experimental results with numerical simulations of the code MEMOS-1.5D are presented.

  4. Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, T.W., E-mail: t.w.morgan@differ.nl; Bekerom, D.C.M. van den; De Temmerman, G.

    2015-08-15

    Sn filled capillary porous structures were exposed to high flux low temperature plasma conditions at the Pilot-PSI linear device. Enhanced erosion above that expected classically was investigated via spectroscopic observation of Sn{sup 0} emission from the plasma in front of the target surface while the surface temperature was monitored by both thermography and pyrometry. An anomalous erosion flux was observed as temperature increases, with onset for this occurrence varying strongly between different ion species. The results appear incompatible with existing ‘adatom’ models for the anomalous erosion flux. Further targets were exposed in turn to increasing heat fluxes and the heat removed determined from cooling water calorimetry, which was then compared to a solid Mo reference target. At high powers the total energy of the cooling water is reduced, indicating a shielding of the surface from the plasma heat flux by the vapour cloud in front.

  5. Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal.

    Science.gov (United States)

    Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel

    2014-12-09

    The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.

  6. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.

    2017-01-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of

  7. Assessing the Behavior of Typically Lithophile Elements Under Highly Reducing Conditions Relevant to the Planet Mercury

    Science.gov (United States)

    Rowland, R. L., II; Vander Kaaden, K. E.; McCubbin, F. M.; Danielson, L. R.

    2017-12-01

    With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wüstite (IW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at 1 GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850°C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-SiO2 buffer, which is 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of

  8. In-Pile thermal fatigue of First Wall mock-ups under ITER relevant conditions

    International Nuclear Information System (INIS)

    Blom, F.; Schmalz, F.; Kamer, S.; Ketema, D.J.

    2006-01-01

    The objective of this study is to perform in-pile thermal fatigue testing of three actively cooled First Wall (FW) mock-ups to check the effect of neutron irradiation on the Be/CuCrZr joints under representative FW operation conditions. Three FW mock-ups with Beryllium armor tiles will be neutron irradiated at 1 dpa (in Be) with parallel thermal fatigue testing for 30,000 cycles. The temperatures, stress distributions and stress amplitudes at the Be/CuCrZr interface of the mock-ups will be as close as possible to the values calculated for ITER FW panels. For this objective the PWM mocks-up subjected to thermal fatigue will be integrated with high density (W) plates on the Be-side to provide heat flux by nuclear heating. The assembly will be placed in the pool-side facility of the HFR and thermal cycling is then arranged by mechanical movement towards and from the core box. As the thermal design of the irradiation rig is very critical a pilot-irradiation will be performed to cross check the models used in the thermal design of the rig. The project is currently in the design phase of both the pilot and actual irradiation rig. The irradiation of the actual rig is planned to start at mid 2007 and last for two years. (author)

  9. Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments

    International Nuclear Information System (INIS)

    Gilles, D.; Turck-Chieze, S.; Busquet, M.; Thais, F.; Loisel, G.; Piau, L.; Ducret, J. E.; Blenski, T.; Blancard, C.; Cosse, P.; Faussurier, G.; Gilleron, F.; Pain, J. C.; Porcherot, Q.; Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.; Harris, J.; Bastiani-Ceccotti, S.; Delahaye, F.; Zeippen, C. J.

    2013-01-01

    Seismology of stars is strongly developing. To address this question we have formed an international collaboration, OPAC, to perform specific experimental measurements, compare opacity calculations, and improve the opacity calculations in stellar codes [1]. We consider the following opacity codes: SCO, CASSANDRA, STA, OPAS, LEDCOP, OP, SCO-RCG. Their comparison has shown large differences for Fe and Ni in equivalent conditions of envelopes of type II supernova precursors, temperatures between 15 and 40 eV and densities of a few mg/cm 3 [2-4]. LEDCOP, OPAS, SCO-RCG structure codes and STA give similar results and differ from OP ones for the lower temperatures and for spectral interval values [3]. In this work we discuss the role of Configuration Interaction (CI) and the influence of the number of used configurations. We present and include in the opacity code comparisons new HULLAC-v9 calculations [5, 6] that include full CI. To illustrate the importance of this effect we compare different CI approximations (modes) available in HULLAC-v9 [7]. These results are compared to previous predictions and to experimental data. Differences with OP results are discussed. (authors)

  10. Does transcutaneous electrical nerve stimulation (TENS have a clinically relevant analgesic effect on different pain conditions? A literature review

    Directory of Open Access Journals (Sweden)

    Asami Naka

    2013-07-01

    Full Text Available Transcutaneous electric nerve stimulation (TENS is a standard therapy used in different painful conditions such as low back pain, diabetic polyneuropathy or arthrosis. However, literature reviews focusing on the effects and the clinical implication of this method in various painful conditions are yet scarce. The purpose of this literature research was to determine, whether TENS provides an analgesic effect on common painful conditions in clinical practice. Literature research was performed using three data bases (Pubmed, Embase, Cochrane Database, focusing on papers published in the space of time from 2007 to 2012. Papers were evaluated from two reviewers independently concerning the clinical outcome, taking account for the level of external evidence according to the German Cochrane levels of evidence (Ia – IV. 133 papers of varying methodological quality dealing with different painful conditions were selected in total. A clinically relevant analgesic effect was described in 90 painful conditions (67%. In 30 painful states (22%, the outcome was inconclusive due to the study design. No significant analgesic effect of TENS was observed in 15 painful conditions (11%. The vast majority of the papers were classified as Cochrane evidence level Ib (n = 64; 48%, followed by level Ia (n = 23; 17%, level III (n = 18; 14%, level IV (n = 15; 11%, level IIb (n = 10; 8% and level IIa (n = 3; 2%. Most of the studies revealed an analgesic effect in various painful conditions, confirming the usefulness of TENS in clinical practice.

  11. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia

    Directory of Open Access Journals (Sweden)

    Olga Tammeorg

    2014-01-01

    Full Text Available The impact of water temperature (T, water level (L, photosynthetically active radiation (PAR, and wind speed (V on the total phosphorus concentration (TP in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010 of TP concentrations and weather factors. A Thin Plate Spline (TPS model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (residuals, or TP anomalies were related to the weather variables to clarify how the weather anomalies in a year might correlate with the observed fluctuations in TP dynamics. Notable seasonal variations in TP, typical for many shallow lake systems, were found: TP was two to three times higher during late summer-early autumn than during winter. Patterns of TP variability were well predicted by using geographical coordinates, year and day of the year (R2=0.69; P<0.0001. However, TP anomalies were ascribed to the effects of T, L, PAR, and V, which were proved to play a significant additional role in TP dynamics. Moreover, L had consistently negative effects over the year, whereas the effects of T and PAR on TP change were seen to be dependent on the season. TP anomalies in lake Peipsi were most sensitive to wind anomalies. V was associated with frequent switches between increasing and decreasing TP values, though it appeared mainly as a negative driver of TP anomalies in the season prior to the 180th day, and as a positive driver in the subsequent season.

  12. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, L. M., E-mail: garrisonlm@ornl.gov; Egle, B. J. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831 (United States); Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Zenobia, S. J.; Kulcinski, G. L.; Santarius, J. F. [Fusion Technology Institute, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States)

    2016-08-15

    The Materials Irradiation Experiment (MITE-E) was constructed at the University of Wisconsin-Madison Inertial Electrostatic Confinement Laboratory to test materials for potential use as plasma-facing materials (PFMs) in fusion reactors. PFMs in fusion reactors will be bombarded with x-rays, neutrons, and ions of hydrogen and helium. More needs to be understood about the interactions between the plasma and the materials to validate their use for fusion reactors. The MITE-E simulates some of the fusion reactor conditions by holding samples at temperatures up to 1000 °C while irradiating them with helium or deuterium ions with energies from 10 to 150 keV. The ion gun can irradiate the samples with ion currents of 20 μA–500 μA; the typical current used is 72 μA, which is an average flux of 9 × 10{sup 14} ions/(cm{sup 2} s). The ion gun uses electrostatic lenses to extract and shape the ion beam. A variable power (1-20 W), steady-state, Nd:YAG laser provides additional heating to maintain a constant sample temperature during irradiations. The ion beam current reaching the sample is directly measured and monitored in real-time during irradiations. The ion beam profile has been investigated using a copper sample sputtering experiment. The MITE-E has successfully been used to irradiate polycrystalline and single crystal tungsten samples with helium ions and will continue to be a source of important data for plasma interactions with materials.

  13. Direct Numerical Simulation of Turbulent Multi-Stage Autoignition Relevant to Engine Conditions

    Science.gov (United States)

    Chen, Jacqueline

    2017-11-01

    Due to the unrivaled energy density of liquid hydrocarbon fuels combustion will continue to provide over 80% of the world's energy for at least the next fifty years. Hence, combustion needs to be understood and controlled to optimize combustion systems for efficiency to prevent further climate change, to reduce emissions and to ensure U.S. energy security. In this talk I will discuss recent progress in direct numerical simulations of turbulent combustion focused on providing fundamental insights into key `turbulence-chemistry' interactions that underpin the development of next generation fuel efficient, fuel flexible engines for transportation and power generation. Petascale direct numerical simulation (DNS) of multi-stage mixed-mode turbulent combustion in canonical configurations have elucidated key physics that govern autoignition and flame stabilization in engines and provide benchmark data for combustion model development under the conditions of advanced engines which operate near combustion limits to maximize efficiency and minimize emissions. Mixed-mode combustion refers to premixed or partially-premixed flames propagating into stratified autoignitive mixtures. Multi-stage ignition refers to hydrocarbon fuels with negative temperature coefficient behavior that undergo sequential low- and high-temperature autoignition. Key issues that will be discussed include: 1) the role of mixing in shear driven turbulence on the dynamics of multi-stage autoignition and cool flame propagation in diesel environments, 2) the role of thermal and composition stratification on the evolution of the balance of mixed combustion modes - flame propagation versus spontaneous ignition - which determines the overall combustion rate in autoignition processes, and 3) the role of cool flames on lifted flame stabilization. Finally prospects for DNS of turbulent combustion at the exascale will be discussed in the context of anticipated heterogeneous machine architectures. sponsored by DOE

  14. Dense plasma chemistry of hydrocarbons at conditions relevant to planetary interiors and inertial confinement fusion

    Science.gov (United States)

    Kraus, Dominik

    2017-10-01

    Carbon-hydrogen demixing and subsequent diamond precipitation has been predicted to strongly participate in shaping the internal structure and evolution of icy giant planets like Neptune and Uranus. The very same dense plasma chemistry is also a potential concern for CH plastic ablator materials in inertial confinement fusion (ICF) experiments where similar conditions are present during the first compression stage of the imploding capsule. Here, carbon-hydrogen demixing may enhance the hydrodynamic instabilities occurring in the following compression stages. First experiments applying dynamic compression and ultrafast in situ X-ray diffraction at SLAC's Linac Coherent Light Source demonstrated diamond formation from polystyrene (CH) at 150 GPa and 5000 K. Very recent experiments have now investigated the influence of oxygen, which is highly abundant in icy giant planets on the phase separation process. Compressing PET (C5H4O2) and PMMA(C5H8O2), we find again diamond formation at pressures above 150 GPa and temperatures of several thousand kelvins, showing no strong effect due to the presence of oxygen. Thus, diamond precipitation deep inside icy giant planets seems very likely. Moreover, small-angle X-ray scattering (SAXS) was added to the platform, which determines an upper limit for the diamond particle size, while the width of the diffraction features provides a lower limit. We find that diamond particles of several nanometers in size are formed on a nanosecond timescale. Finally, spectrally resolved X-ray scattering is used to scale amorphous diffraction signals and allows for determining the amount of carbon-hydrogen demixing inside the compressed samples even if no crystalline diamond is formed. This whole set of diagnostics provides unprecedented insights into the nanosecond kinetics of dense plasma chemistry.

  15. Weather conditions influencing phosphorus concentration in the growing period in the large shallow Lake Peipsi (Estonia/Russia)

    OpenAIRE

    Tammeorg, Olga; Möls, Tonu; Kangur, Külli

    2014-01-01

    The impact of water temperature (T), water level (L), photosynthetically active radiation (PAR), and wind speed (V) on the total phosphorus concentration (TP) in shallow eutrophic lake Peipsi, the fourth largest lake in Europe, was studied. We used a long-term dataset (1985-2010) of TP concentrations and weather factors. A Thin Plate Spline (TPS) model was used to predict TP by year, by day of the year, and by geographical coordinates. Deviations between observed and predicted TP values (resi...

  16. Sex and gonadal hormones in mouse models of Alzheimer’s disease: what is relevant to the human condition?

    Directory of Open Access Journals (Sweden)

    Dubal Dena B

    2012-11-01

    Full Text Available Abstract Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer’s – and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer’s disease (AD with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases.

  17. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  18. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  20. Winter Weather Checklists

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  1. Winter Weather: Frostbite

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  2. Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions.

    Science.gov (United States)

    Asiimwe, J K; Quilty, B; Muyanja, C K; McGuigan, K G

    2013-12-01

    Concerns about photodegradation products leaching from plastic bottle material into water during solar water disinfection (SODIS) are a major psychological barrier to increased uptake of SODIS. In this study, a comparison of SODIS efficacy using glass and plastic polyethylene terephalate (PET) bottles was carried out under strong real sunlight and overcast weather conditions at Makerere University in central Uganda. Both clear and turbid natural water samples from shallow wells and open dug wells, respectively, were used. Efficacy was determined from the inactivation of a wild strain of Escherichia coli in solar-exposed contaminated water in both glass and PET bottles. The studies reveal no significant difference in SODIS inactivation between glass and PET bottles (95% CI, p > 0.05), for all water samples under the different weather conditions except for clear water under overcast conditions where there was a small but significant difference (95% CI, p = 0.047) with less viable bacterial counts in PET bottles at two intermediate time points but not at the end of the exposure. The results demonstrate that SODIS efficacy in glass under tropical field conditions is comparable to PET plastic. SODIS users in these regions can choose either of reactors depending on availability and preference of the user.

  3. The influence of regional urbanization and abnormal weather conditions on the processes of human climatic adaptation on mountain resorts

    Science.gov (United States)

    Artamonova, M.; Golitsyn, G.; Senik, I.; Safronov, A.; Babyakin, A.; Efimenko, N.; Povolotskaya, N.; Topuriya, D.; Chalaya, E.

    2012-04-01

    This work is a further development in the study of weather pathogenic index (WPI) and negative influence of urbanization processes on the state of people's health with adaptation disorder. This problem is socially significant. According to the data of the WHO, in the world there are from 20 to 45% of healthy people and from 40 to 80% of people with chronic diseases who suffer from the raised meteosensitivity. As a result of our researches of meteosensitivity of people during their short-duration on mountain resorts there were used negative adaptive reactions (NAR) under 26 routine tests, stress-reactions under L.H. Garkavi's hemogram, vegetative indices, tests of neuro-vascular reactivity, signs of imbalance of vegetative and neurohumoral regulation according to the data of biorhythm fractal analysis and sudden aggravations of diseases (SAD) as an indicator of negative climatic and urbanization influence. In 2010-2011 the Caucasian mountain resorts were having long periods of climatic anomalies, strengthening of anthropogenic emissions and forest fires when record-breaking high waves of NAR and SAD were noticed. There have also been specified indices ranks of weather pathogenicity from results of comparison of health characteristics with indicators of synoptico-dynamic processes according to Weather Research and Forecasting model (WRF); air ionization N+, N-, N+/N- spectra of aerosol particles (the size from 500 to 20000 nanometers) and concentrations of chemically active gases (O3, NO, NO2, ), volatile phytoorganic substances in the surface atmosphere, bactericidal characteristics of vegetation by criterion χ2 (not above 0,05). It has allowed us to develop new physiological optimum borders, norm and pessimum, to classify emergency ecologo-weather situations, to develop a new techniques of their forecasting and prevention of meteopathic reactions with meteosensitive patients (Method of treatment and the early (emergency) and planned prevention meteopatic reactions

  4. Phosphates of crandallite type (plumibogummite, goyazite, gorceixcite) results of amblygonite under weathering conditions from Coronel Murta's pegmatites (northeastern Miras Gerais) and your paleoecological meaning

    International Nuclear Information System (INIS)

    Neves, J.M.C.; Marciano, V.R.P.R.O.; Lena, J.C. de; Soares, A.C.P.

    1987-01-01

    This paper deals with crandallite type phosphates (plumbogummite, go yazite gorceixcite) originating from amblygonite under weathering conditions active in very recent times in the Coronel Murta are (northeastern Minas Gerais). Amblygonite, the crystallization of which too place about 500 Ma ago within the replacement bodies of pegmatites emplaced in mia-bearing quartzites from the Proterozoic Salinas Group, was the start ing material for the above mentione supergene minerals. The pegmatitic veins, emplaced in the quartzites according to wo perpendicular joint systems, underwent a strong weathering which produced the total kaolinization of the pegmatitic primary feldspars observed at the present time. During the supergene processes, the amblygonite, after acting as a geochemical fence for Ca, Sr, Ba, Pb etc., which provided conditions for the formation of the crandallitic minerals, was transformed into kaolinite. The stability fields these crandallitic minerals, comparared to those of kaolinite and amblygonite, show that they are easily formed under rather high pH values. As the environment becomes more acid and keeping in mind the very low cationic activities in groundwaters, al these phosphates become unstable and, under SiO 2 metasomatism, envolve to kaolinite. This is thermodynamically sound as revealed not only by the calculated stability diagrams but by the identified mineral assemblages as well. These mineral assemblages and their widespread regional scaterring seem to be induced not only by climatic and relief conditions but also by their position within the weathering profile. In the Coronel Murta area the most effective factors seem to have the very recent climatic and relief changes. (author) [pt

  5. Biotite and chlorite weathering at 25 degrees C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, M.; Banwart, S. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Inorganic Chemistry; Duro, L. [Universidad Politecnica de Cataluna, Barcelona (Spain). Dept. de Ingneria Quimica; Wersin, P.; Bruno, J. [MBT Technologia Ambiental, Cerdanyola (Spain)

    1995-01-01

    We have studied the kinetics and thermodynamics of biotite and chlorite weathering in the pH range 2weathering product formed. A model of biotite dissolution and the formation of secondary solubility controlling minerals, such as Fe(III)-hydroxide, Na-clay, quartz and gibbsite is used to explain experimental equilibrium concentrations of silicon, iron, aluminium and magnesium. The model predict redox potentials in the range of -200-400 mV at neutral pH and qualitatively agrees with field data reported in the literature. We use observed iron release rate to make conservative estimates of timescales of 1. the depletion of molecular oxygen from deep aquifers (810{sup 2}-10{sup 2} year); and 2. the development of characteristic Fe(III) concentrations (10{sup -5} M in 10{sup -}1 years). The Fe(III)-bearing clay minerals formed during these experiments are similar to the fracture-filling-material observed at the Aespoe Hard Rock Laboratory. Such clays can provide reducing capacity to a repository. They can help maintain anoxic conditions by consuming oxygen that enters the repository during the construction and operation phases thereby helping maintain the redox stability of the repository regarding canister corrosion. The half-life of oxygen trapped in the repository at the time of closure depends on the rate of oxygen uptake by Fe(II) minerals, sulfide minerals and organic carbon. Fe(II)-clay minerals are important to the redox stability of a repository, as well as providing a sorption barrier to radionuclide migration. 107 refs, 52 figs, 35 tabs.

  6. Effects of shelter type, early environmental enrichment and weather conditions on free-range behaviour of slow-growing broiler chickens.

    Science.gov (United States)

    Stadig, L M; Rodenburg, T B; Ampe, B; Reubens, B; Tuyttens, F A M

    2017-06-01

    Free-range use by broiler chickens is often limited, whereas better use of the free-range area could benefit animal welfare. Use of free-range areas could be stimulated by more appropriate shelter or environmental enrichment (by decreasing birds' fearfulness). This study aimed to assess the effects of shelter type, early environmental enrichment and weather conditions on free-range use. Three production rounds with 440 slow-growing broiler chickens (Sasso T451) were carried out. Birds were housed indoors in four groups (two with males, two with females) from days 0 to 25, during which two of the groups received environmental enrichment. At day 23 birds' fearfulness was assessed with a tonic immobility (TI) test (n=100). At day 25 all birds were moved (in mixed-sex groups) to mobile houses, and provided with free-range access from day 28 onwards. Each group could access a range consisting for 50% of grassland with 21 artificial shelters (ASs, wooden A-frames) and for 50% of short rotation coppice (SRC) with willow (dense vegetation). Free-range use was recorded by live observations at 0900, 1300 and 1700 h for 15 to 21 days between days 28 and 63. For each bird observed outside the shelter type (AS or SRC), distance from the house (0 to 2, 2 to 5, >5 m) and its behaviour (only rounds 2 and 3) were recorded. Weather conditions were recorded by four weather stations. On average, 27.1% of the birds were observed outside at any given moment of observation. Early environmental enrichment did not decrease fearfulness as measured by the TI test. It only had a minor effect on the percentage of birds outside (0.4% more birds outside). At all distances from the house, SRC was preferred over AS. In AS, areas closer to the house were preferred over farther ones, in SRC this was less pronounced. Free-range use increased with age and temperature and decreased with wind speed. In AS, rainfall and decreasing solar radiation were related to finding more birds outside, whereas the

  7. Model of pre-harvest quality of pineapple guava fruits (Acca sellowiana (O. berg burret as a function of weather conditions of the crops

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    Full Text Available ABSTRACT Weather conditions influence the quality parameters of pineapple guava fruit during growth and development. The aim of this study was to propose a model of pre-harvest fruit quality as a function of weather conditions in the cultivation area. Twenty trees were flagged per farm in 2 localities of the Department of Cundinamarca, Colombia: Tenjo (2,580 m.a.s.l.; 12.5 °C; relative humidity between 74 and 86%; mean annual precipitation 765 mm and San Francisco de Sales (1,800 m.a.s.l.; 20.6 °C; relative humidity between 63 and 97%; mean annual precipitation 1,493 mm. Measurements were performed every 7 days during 2 harvest periods starting on days 96 (Tenjo and 99 (San Francisco de Sales after anthesis and until harvest. The models were obtained using Excel® Solver, and a set of data was obtained for the 2 different cultivar periods and each study site. The results showed that altitude, growing degree days, and accumulated precipitation are the weather variables with the highest influence on the physicochemical characteristics of the fruit during growth. The models of fresh weight, total titratable acidity, and skin firmness better predict the development of fruit quality during growth and development. Equations were obtained for increases of length and diameter as a function of fruit weight and for days from anthesis as a function of growing degree days and altitude. The regression analysis parameters showed that the models adequately predicted the fruit characteristics during growth for both localities, and a cross-validation analysis showed a good statistical fit between the estimated and observed values.

  8. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions.

    Science.gov (United States)

    Xu, Xiao-Qing; Liu, Bin; Zhu, Bao-Qing; Lan, Yi-Bin; Gao, Yuan; Wang, Dong; Reeves, Malcolm J; Duan, Chang-Qing

    2015-04-01

    Volatile compounds are considered important for plants to communicate with each other and interact with their environments. Most wine-producing regions in China feature a continental monsoon climate with hot-wet summers and dry-cold winters, giving grapes markedly different growing environments compared to the Mediterranean or oceanic climates described in previous reports. This study focused on comparing the volatile profiles of Vitis vinifera L. cv. Cabernet Sauvignon berries from two regions with distinct climate characteristics: Changli has a warm and semi-humid summer, and Gaotai has a cool-arid summer and a cold winter. The relationship between meteorological metrics and the concentrations of grape volatiles were also examined. In harvested grapes, benzyl alcohol, phenylethyl alcohol, 1-hexanol and 1-octen-3-ol were more abundant in the Changli berries, while hexanal, heptanal, 2-methoxy-3-isobutylpyrazine, and (E)-β-damascenone presented higher levels in the Gaotai berries. The fluctuation in the accumulation of volatile compounds observed during berry development was closely correlated with variations in short-term weather (weather in a week), especially rainfall. The concentration of some volatiles, notably aliphatic aldehydes, was significantly related to diurnal temperature differences. The variability during berry development of concentrations for compounds such as C6 volatile compounds, 2-methoxy-3-isobutylpyrazine and (E)-β-damascenone strongly depended upon weather conditions. This work expands our knowledge about the influence of continental monsoon climates on volatile compounds in developing grape berries. It will also improve the comprehension of the plant response to their surrounding environments through the accumulation of volatiles. The results will help growers to alter viticultural practices according to local conditions to improve the aromatic quality of grapes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Wacky Weather

    Science.gov (United States)

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  10. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  11. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Wang, Jinggang

    2010-01-01

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.

  12. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yi; Yang, Hongxing [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Jinggang [Hebei University of Engineering, Handan (China)

    2010-09-15

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building. (author)

  13. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Y.; Yang, H.X. [Hong Kong Polytechnic Univ., Renewable Energy Research Group, Hung Hom, Kowloon, (Hong Kong). Dept. of Building Services Engineering

    2008-07-01

    Due to its high energy efficiency and reliable operation capability, the ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions. However, when the technology is used in buildings where there is only cooling load in hot-weather areas such as Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE), resulting in degradation of system performance and increased system operating costs. This problem can be resolved by using a hybrid ground-coupled heat pump (HGCHP) system, as it uses supplemental heat rejecters to reject the accumulated heat. By modeling the heat transfer process of the system's main components, this paper presented a practical hourly simulation model of the HGCHP system. Based on this hourly simulation model, the computer program could be used to calculate the hour-by-hour operation data of the HGCHP system according to the cooling and hot water heating loads of a building. The paper discussed a case study that involved a design of both a HGCHP system and a traditional GCHP system for a hypothetical private residential building located in Hong Kong. The economic comparisons were performed between these two types of systems. It was concluded through the simulations that the HGCHP system could effectively solve the heat accumulation problem and reduce both the initial cost and operating cost of the air-conditioning system in the building. 19 refs., 1 tab., 13 figs.

  14. Developing a Traffic Management Framework for Coastal Expressway Bridges under Adverse Weather Conditions: Case Study of Rain Day in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Chenming Jiang

    2015-01-01

    Full Text Available Adverse weather can reduce visibility and road surface friction, lower vehicle maneuverability, and increase crash frequency and injury severity. The impacts of adverse weather and its interactions with drivers and roadway on the operation and management of expressway or expressway bridges have drawn the researchers’ and managers’ attention to develop traffic management frameworks to mitigate the negative influence. Considering the peculiar geographical location and meteorological conditions, the Guangshen Coast Expressway-Shenzhen Segment (GSCE-SS was selected as a case in this study to illustrate the proposed traffic management framework on rain days. Conditions categorized by rainfall intensity and traffic flow were the main precondition to make the management decisions. CORSIM simulator was used to develop the alternate routes choice schemes, providing reference for other systems in the proposed traffic management framework. Maps of (a entrance ramp control (ERC strategies; (b mainline control strategies; (c alternate routes choice; (d information release schemes, under scenarios of different volume and rainstorm warning grades (BLUE to RED, were drawn to present a reference or demonstration for managers of long-span expressway bridges not only in China, but even in the world.

  15. The impact of weather conditions on dynamics of Hylocomium splendens annual increment and net production in forest communities of forest-steppe zone in Khakassia

    Directory of Open Access Journals (Sweden)

    I. A. Goncharova

    2015-12-01

    Full Text Available Dynamics of annual increments of green moss Hylocomium splendens (Hedw. Schimp. in B.S.G. in the Khakassia forest-steppe zone has been studied. The values of the moss linear and phytomass increments were investigated in different habitats for 6 years. The aboveground annual production of the H. splendens in phytocenosis was estimated. Linear increments of the H. splendens growing under the tree canopy and opening between trees were not significantly different. Phytomass increments under the tree canopy are significantly higher than in the openings between trees. The density of moss mats, proportion between leaves and stems were calculated. It was revealed that climatic factors have a different degree and duration influence on the moss increments in different habitats. Linear increments of H. splendens in different habitats synchronously respond to weather factor changes. The air temperature was the most important at the beginning and the end of the vegetation period; the amount of precipitation was more important in the middle of the growth period. Phytomass increments of H. splendens in different habitats respond differently to influence of weather conditions. Phytomass increments under the tree canopy are not sensitive to air temperature, and more sensitive to precipitations in the middle of growth period than one of opening between trees. The specificity of the climatic factors’ influence on the biomass growth depends on habitat conditions.

  16. Power Prediction and Technoeconomic Analysis of a Solar PV Power Plant by MLP-ABC and COMFAR III, considering Cloudy Weather Conditions

    Directory of Open Access Journals (Sweden)

    M. Khademi

    2016-01-01

    Full Text Available The prediction of power generated by photovoltaic (PV panels in different climates is of great importance. The aim of this paper is to predict the output power of a 3.2 kW PV power plant using the MLP-ABC (multilayer perceptron-artificial bee colony algorithm. Experimental data (ambient temperature, solar radiation, and relative humidity was gathered at five-minute intervals from Tehran University’s PV Power Plant from September 22nd, 2012, to January 14th, 2013. Following data validation, 10665 data sets, equivalent to 35 days, were used in the analysis. The output power was predicted using the MLP-ABC algorithm with the mean absolute percentage error (MAPE, the mean bias error (MBE, and correlation coefficient (R2, of 3.7, 3.1, and 94.7%, respectively. The optimized configuration of the network consisted of two hidden layers. The first layer had four neurons and the second had two neurons. A detailed economic analysis is also presented for sunny and cloudy weather conditions using COMFAR III software. A detailed cost analysis indicated that the total investment’s payback period would be 3.83 years in sunny periods and 4.08 years in cloudy periods. The results showed that the solar PV power plant is feasible from an economic point of view in both cloudy and sunny weather conditions.

  17. Topical application of bFGF on acid-conditioned and non-conditioned dentin: effect on cell proliferation and gene expression in cells relevant for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Godoy Rocha

    Full Text Available Abstract Periodontal regeneration is still a challenge in terms of predictability and magnitude of effect. In this study we assess the biological effects of combining chemical root conditioning and biological mediators on three relevant cell types for periodontal regeneration. Material and Methods: Bovine dentin slices were conditioned with 25% citric acid followed by topical application of basic fibroblast growth factor (bFGF, 10 and 50 ng. We used ELISA to assess the dynamics of bFGF release from the dentin surface and RT-qPCR to study the expression of Runx2, Col1a1, Bglap and fibronectin by periodontal ligament (PDL fibroblasts, cementoblasts and bone marrow stromal cells (BMSC grown onto these dentin slices. We also assessed the effects of topical application of bFGF on cell proliferation by quantification of genomic DNA. Results: Acid conditioning significantly increased the release of bFGF from dentin slices. Overall, bFGF application significantly (p<0.05 increased cell proliferation, except for BMSC grown on non-conditioned dentin slices. Dentin substrate discretely increased expression of Col1a1 in all cell types. Expression of Runx2, Col1a1 and Fn was either unaffected or inhibited by bFGF application in all cell types. We could not detect expression of the target genes on BMSC grown onto conditioned dentin. Conclusion: Acid conditioning of dentin improves the release of topically-applied bFGF. Topical application of bFGF had a stimulatory effect on proliferation of PDL fibroblasts, cementoblasts and BMSC, but did not affect expression of Runx2, Col1a1, Bglap and fibronectin by these cells.

  18. Fruit Set of Several Sour Cherry Cultivars in Latvia Influenced by Weather Conditions Before and During Flowering

    Directory of Open Access Journals (Sweden)

    Feldmane Daina

    2017-06-01

    Full Text Available Fruit set is a crucial stage in the process of yield formation, which is influenced by environmental factors, growing technologies and peculiarities of genotype. The aim of the study was to evaluate the quality of pollen (viability and germination capacity and the effect of weather before and during flowering on fruit set in sour cherry cultivars ‘Latvijas Zemais’, ‘Zentenes’, ‘Bulatnikovskaya’, and ‘Orlica’. The research was carried out in Institute of Horticulture (Latvia University of Agriculture in 2009-2016. Good pollen viability and germination was found for cultivars ‘Latvijas Zemais’ and ‘Bulatnikovskaya’. Negative effects of increasing air temperature (in the range of 7.7 to 17.5 °C and relative humidity (in the range of 51.4 to 88.5% was observed for all cultivars during flowering. The effects of diurnal temperature fluctuations, wind and the amount of days with precipitation differed depending on sour cherry cultivar.

  19. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  20. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

    Science.gov (United States)

    Chen, Lei; Zhang, Meigen; Wang, Yongwei

    2016-08-01

    The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

  1. Biotite and chlorite weathering at 25 degrees C: the dependence of pH and (bi)carbonate on weathering kinetics, dissolution stoichiometry, and solubility; and the relation to redox conditions in granitic aquifers

    International Nuclear Information System (INIS)

    Malmstroem, M.; Banwart, S.

    1995-01-01

    We have studied the kinetics and thermodynamics of biotite and chlorite weathering in the pH range 2 2 -10 2 year); and 2. the development of characteristic Fe(III) concentrations (10 -5 M in 10 - 1 years). The Fe(III)-bearing clay minerals formed during these experiments are similar to the fracture-filling-material observed at the Aespoe Hard Rock Laboratory. Such clays can provide reducing capacity to a repository. They can help maintain anoxic conditions by consuming oxygen that enters the repository during the construction and operation phases thereby helping maintain the redox stability of the repository regarding canister corrosion. The half-life of oxygen trapped in the repository at the time of closure depends on the rate of oxygen uptake by Fe(II) minerals, sulfide minerals and organic carbon. Fe(II)-clay minerals are important to the redox stability of a repository, as well as providing a sorption barrier to radionuclide migration. 107 refs, 52 figs, 35 tabs

  2. Effects of Organic Load, pH, and EC Variations of Raw Wastewater and Weather Condition on the Efficiency of Yazd Stabilization Ponds

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Mozaheb

    2009-06-01

    Full Text Available This study investigates the effects of organic load, pH, and EC variations of raw wastewater as well as the effect of weather condition on organic removal in Yazd wastewater Stabilization Ponds (2007. During the course of this study, composite samples were collected from the inlet and outlet of the anaerobic pond and the final effluent to measure such quality parameters as BOD5, COD, TSS, EC, and pH.  BOD5, COD, TSS, and Fecal coliform removal efficiencies in the final effluent were found to be 64.9%, 44.9 %, 62.6 %, and 99.96%, respectively. No intestinal nematode egg was observed. Comparison of BOD5 and COD concentrations in the filtered and non-filtered samples showed that 52% of the BOD5 and 57% of the COD in the final effluent, respectively, were due to the presence of algal mass and organic suspended solids in the non-filtered samples. The results showed that variations in organic load, pH, EC as well as seasonal weather variations had no effects on organic removal and that the removal of BOD5 was almost constant. Effluent EC was higher than influent EC. This phenomenon can be related to the evaporation rate in wastewater stabilization ponds. The survey of algae in the final effluent showed that the major species of algae were Phytoconis, Chlorella, and Anabaena.

  3. [The influence of weather conditions on the epidemiology of vector-borne diseases by the example of West Nile fever in Russia].

    Science.gov (United States)

    Platonov, A E

    2006-01-01

    Climate changes must influence the incidence of vector-borne infections, but their effects cannot be revealed due to lack of long-term observations. The impact of short-term weather changes may be used as a model. In Russia the biggest numbers of clinical cases of mosquito-borne West Nile infection were registered in 1999 in Volgograd and Astrakhan regions. The analysis of climatic dataset since 1900 shows that 1999 was the hottest year in Volgograd in the 20th century due to a very mild winter (December-March) and a rather hot summer (June-September). The author of the article puts forward a hypothesis that high winter temperatures favored the survival of over-wintering mosquito vectors, and high summer temperature facilitated the growth of the virus in the mosquitoes, as well as propagation of the mosquitoes themselves. The author assumes that conventional threshold temperatures for "beneficial for WNF conditions" in Russia are > or = 3 degrees C in winter, and > or = 22 degrees C in summer. These conditions coincided only in 1948 and 1999. In Astrakhan the "beneficial for WNF conditions" were registered in 30 out of 147 years of observation, and in 12 years between 1964 and 2003. This is not surprising that Astrakhan region is endemic for WNF in accordance with clinical and epidemiological data collected since the sixties. These findings give some hints on the WNF predisposing factors, as well as possibility of weather surveillance and prediction of WNF outbreaks in temperate climatic zones such as Southern Russia.

  4. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics

    Science.gov (United States)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.

    2014-01-01

    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  5. Development of a New Analysis Tool for Evaluating and Correcting for Weather Conditions that Constrain Radiation Portal Monitor Performance

    International Nuclear Information System (INIS)

    Guzzardo, T.; Livesay, J.

    2011-01-01

    Researchers at Oak Ridge National Laboratory (ORNL) developed the Adaptable, Multiplatform, Real-Time Analysis Package (AMRAP) for the continuous measurement of environmental radionuclide decay. AMRAP is a completely open source visualization and analysis package capable of combining a variety of data streams into an array of real-time plots. Once acquired, data streams are analyzed to store static images and extract data based on previously defined thresholds. AMRAP is currently used at ORNL to combine data streams from an Ortec Detective high-purity germanium (HPGe) detector, a TSA Systems radiation portal monitor (RPM), and an Orion weather station. The combined data are used to study the rain-induced increase in RPM background radiation levels. RPMs experience an increase in background radiation during precipitation due to the deposition of atmospheric radionuclides on the ground. Using AMRAP results in a real-time analysis workstation specifically dedicated to the study of RPM background radiation levels. By means of an editable library of common inputs, AMRAP is adaptable to remote monitoring applications that would benefit from the real-time visualization and analysis of radiation measurements. To study rain-induced increases in background radiation levels observed in radiation portal monitors (RPMs), researchers at Oak Ridge National Laboratory (ORNL) developed a software package that allows data with different formats to be analyzed and plotted in near real time. The Adaptable, Multiplatform, Real-Time Analysis Package (AMRAP) was developed to operate in the background and capture plots of important data based on previously defined thresholds. After executing AMRAP, segments of a data stream can be captured without additional post-processing. AMRAP can also display previously recorded data to facilitate a detailed offline analysis. Without access to these capabilities in a single software package, analyzing multiple continuously recorded data streams with

  6. Cork stoppers as an effective sorbent for water treatment: the removal of mercury at environmentally relevant concentrations and conditions.

    Science.gov (United States)

    Lopes, Cláudia B; Oliveira, Joana R; Rocha, Luciana S; Tavares, Daniela S; Silva, Carlos M; Silva, Susana P; Hartog, Niels; Duarte, Armando C; Pereira, E

    2014-02-01

    The technical feasibility of using stopper-derived cork as an effective biosorbent towards bivalent mercury at environmentally relevant concentrations and conditions was evaluated in this study. Only 25 mg/L of cork powder was able to achieve 94 % of mercury removal for an initial mercury concentration of 500 μg/L. It was found that under the conditions tested, the efficiency of mercury removal expressed as equilibrium removal percentage does not depend on the amount of cork or its particle size, but is very sensitive to initial metal concentration, with higher removal efficiencies at higher initial concentrations. Ion exchange was identified as one of the mechanisms involved in the sorption of Hg onto cork in the absence of ionic competition. Under ionic competition, stopper-derived cork showed to be extremely effective and selective for mercury in binary mixtures, while in complex matrices like seawater, moderate inhibition of the sorption process was observed, attributed to a change in mercury speciation. The loadings achieved are similar to the majority of literature values found for other biosorbents and for other metals, suggesting that cork stoppers can be recycled as an effective biosorbent for water treatment. However, the most interesting result is that equilibrium data show a very rare behaviour, with the isotherm presenting an almost square convex shape to the concentration axis, with an infinite slope for an Hg concentration in solution around 25 μg/L.

  7. Biogeochemical Attributes That Affect the Fate and Transport of Military Relevant Contaminants Under Freeze-thaw Conditions

    Science.gov (United States)

    LeMonte, J.; Price, C. L.; Seiter, J.; Crocker, F. H.; Douglas, T.; Chappell, M. A.

    2017-12-01

    The roles and missions that the U.S. Department of Defense (DoD) undertakes in the Arctic are being reshaped by significant changes in the operational environment as a result of rising global temperatures and increased development of the vast training ranges available in Alaska. The Arctic is warming faster than any other region on Earth resulting in changing seasonality and precipitation patterns that, in turn, are leading to alterations in above ground vegetation, permafrost stability and summer sea ice extent. Collectively, these poorly defined ecosystem changes play critical roles in affecting the transport and eventual fate of persistent military relevant contaminants through unique Arctic and Subarctic terrestrial environments. As a result, management of military contaminants in a changing Arctic represents a unique and potentially significant liability to the Army and the DoD. The United States footprint in the Arctic region falls within the state of Alaska and U.S. Army Alaska manages 10% of all active Army training lands worldwide, which cover nearly 2,500 square miles in total land area. Primary recalcitrant contaminants of concern at active training ranges and at legacy sites include energetics (i.e. RDX and 2,4-dinitrotoluene) and heavy metals (i.e. antimony and lead). Through a series of field sampling and laboratory experiments, the objectives of this work are to: 1) quantify soil biogeochemical attributes that effect the physical fate and transport of military relevant contaminants in Arctic and subarctic soils under freeze-thaw conditions with a focus on near surface processes, and 2) quantify microbial diversity in Arctic and subarctic soils and the environmental constraints on community activity while exploring the effects of amendments on community function as they relate to contaminant transformation.

  8. Comparison of recreational health risks associated with surfing and swimming in dry weather and post-storm conditions at Southern California beaches using quantitative microbial risk assessment (QMRA).

    Science.gov (United States)

    Tseng, Linda Y; Jiang, Sunny C

    2012-05-01

    Southern California is an increasingly urbanized hotspot for surfing, thus it is of great interest to assess the human illness risks associated with this popular ocean recreational water sport from exposure to fecal bacteria contaminated coastal waters. Quantitative microbial risk assessments were applied to eight popular Southern California beaches using readily available enterococcus and fecal coliform data and dose-response models to compare health risks associated with surfing during dry weather and storm conditions. The results showed that the level of gastrointestinal illness risks from surfing post-storm events was elevated, with the probability of exceeding the US EPA health risk guideline up to 28% of the time. The surfing risk was also elevated in comparison with swimming at the same beach due to ingestion of greater volume of water. The study suggests that refinement of dose-response model, improving monitoring practice and better surfer behavior surveillance will improve the risk estimation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  10. [Human papillomavirus infection and its correlates with clinically relevant gynecological and obstetric conditions: A cross-sectional study].

    Science.gov (United States)

    López-Hernández, Daniel; Beltrán-Lagunes, Luis; Brito-Aranda, Leticia; López-Hernández, Maria de la Luz

    2016-08-05

    To analyze the prevalence of human papillomavirus (HPV) infection and the possible epidemiological association with conditions of clinical relevance in women. A cross-sectional study from Mexico City was conducted from January 2012 to December 2014. HPV molecular detection was performed on cervical samples. Data were analyzed with appropriated statistic tests. A total of 1,604 females (median 47, interquartile range 38-54) were analyzed. Global prevalence of infection for any HPV is 9.91% (95% CI 8.6-11.3). An association between infection with 16-HPV and number of abortions (NA) (OR=1.427; 95% CI 1.091-1.866), by univariate regression model (UVRM) was estimated. Moreover, menarche (OR=1.566; 95% CI 1.079-2.272), NA (OR=1.570; 95% CI 1.106-2.227) and number of pregnancies (NP) (OR=0.461; 95% CI 0.260-0.818) have a direct and inverse association with infection by genotype 18 of HPV, respectively. Also, infection with HR-HPV genotypes has an inverse association with NP (OR=0.791; 95% CI 0.707-0.884) by normal labor (OR=0.867; 95% CI 0.767-0.979) and NA (OR=0.715; 95% CI 0.534-0.959) (UVRM), and a direct association with number of sexual partners (OR=1.082; 95% CI 1.015-1.154). Onset of sexual activity has an inverse association with infection by genotype 16- (UVRM: OR=0.814; 95% CI 0.715-0.926; multinomial regression model (MNRM): OR=0.803; 95% CI 0.702-0.918) and HR-HPV (UVRM: OR=0.933; 95% CI 0.889-0.980, and MNRM: OR=0.912; 95% CI 0.867-0.959), all P values were lower than .03. Prevalence of HPV cervical infection is different according to age and it is associated with several medical conditions of clinical relevance in women. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  11. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Science.gov (United States)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  12. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551 (United States)

    2016-04-15

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  13. Prior Learning of Relevant Nonaversive Information Is a Boundary Condition for Avoidance Memory Reconsolidation in the Rat Hippocampus.

    Science.gov (United States)

    Radiske, Andressa; Gonzalez, Maria Carolina; Conde-Ocazionez, Sergio A; Feitosa, Anatildes; Köhler, Cristiano A; Bevilaqua, Lia R; Cammarota, Martín

    2017-10-04

    Reactivated memories can be modified during reconsolidation, making this process a potential therapeutic target for posttraumatic stress disorder (PTSD), a mental illness characterized by the recurring avoidance of situations that evoke trauma-related fears. However, avoidance memory reconsolidation depends on a set of still loosely defined boundary conditions, limiting the translational value of basic research. In particular, the involvement of the hippocampus in fear-motivated avoidance memory reconsolidation remains controversial. Combining behavioral and electrophysiological analyses in male Wistar rats, we found that previous learning of relevant nonaversive information is essential to elicit the participation of the hippocampus in avoidance memory reconsolidation, which is associated with an increase in theta- and gamma-oscillation power and cross-frequency coupling in dorsal CA1 during reactivation of the avoidance response. Our results indicate that the hippocampus is involved in memory reconsolidation only when reactivation results in contradictory representations regarding the consequences of avoidance and suggest that robust nesting of hippocampal theta-gamma rhythms at the time of retrieval is a specific reconsolidation marker. SIGNIFICANCE STATEMENT Posttraumatic stress disorder (PTSD) is characterized by maladaptive avoidance responses to stimuli or behaviors that represent or bear resemblance to some aspect of a traumatic experience. Disruption of reconsolidation, the process by which reactivated memories become susceptible to modifications, is a promising approach for treating PTSD patients. However, much of what is known about fear-motivated avoidance memory reconsolidation derives from studies based on fear conditioning instead of avoidance-learning paradigms. Using a step-down inhibitory avoidance task in rats, we found that the hippocampus is involved in memory reconsolidation only when the animals acquired the avoidance response in an

  14. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    International Nuclear Information System (INIS)

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-01-01

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m 2 and surface temperatures near 300 degrees C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15 degrees C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m 2 and surface temperatures up to 690 degrees C before debonding at 10 MW/m 2 . A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m 2 , while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue

  15. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum

    DEFF Research Database (Denmark)

    Andresen, Elisa; Kappel, Sophie; Stärk, Hans-Joachim

    2016-01-01

    Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under environmen......Cadmium (Cd) is an important environmental pollutant and is poisonous to most organisms. We aimed to unravel the mechanisms of Cd toxicity in the model water plant Ceratophyllum demersum exposed to low (nM) concentrations of Cd as are present in nature. Experiments were conducted under...... environmentally relevant conditions, including nature-like light and temperature cycles, and a low biomass to water ratio. We measured chlorophyll (Chl) fluorescence kinetics, oxygen exchange, the concentrations of reactive oxygen species and pigments, metal binding to proteins, and the accumulation of starch...... and metals. The inhibition threshold concentration for most parameters was 20 nM. Below this concentration, hardly any stress symptoms were observed. The first site of inhibition was photosynthetic light reactions (the maximal quantum yield of photosystem II (PSII) reaction centre measured as Fv /Fm , light...

  16. In situ Ge(Li)-spectrometric measurements of gamma radiation from radon daughters under different weather conditions

    International Nuclear Information System (INIS)

    Finck, R.R.; Persson, B.R.R.

    1980-01-01

    The photon fluence from radionuclides in the ground and air was measured continuously with a Ge(Li) spectrometer during several weeks. The most prominent change in photon fluence rate near the ground was obtained during periods of heavy rainfall. Deposition of the short-lived radon daughters 214 Pb and 214 Bi on the ground surface can cause a temporary increase in the external absorbed dose rate of approximately 2μrads/h. The photon fluence from airborne radon daughters can be correlated to the degree of atmospheric stability. During stable conditions the photon fluence increases and the activity ratio 214 Bi/ 214 Pb decreases

  17. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    Science.gov (United States)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  18. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular ConditionsConditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  19. STUDY ON OCEANGRAFHIC AND WEATHER CONDITIONS RELATED TO THE ABUNDANCE OF SMALL PELAGIC FISHERY IN NATUNA SEA USING REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    Teguh Prayogo

    2012-11-01

    Full Text Available Indonesian waters have abundance of natural resources; the potential of small pelagic fish in Natuna Sea and SouthChina Sea have not been optimized yet explores. Unfortunately, it was caused by lacking in the data of environmentalconditions that have been changed and the information of appropriate fishing ground. Hence, dynamical oceanographicinformation and weather condition is necessary to optimize small pelagic fish exploitation.Research location in Natuna Sea and its surrounding with geographical position is 08°N–03°S; 103°–111°E. Theoceanographic condition representative by monthly SST, Chl-a, SSH that derived from satellite data and Dipole ModeIndex for 2002-2007 from FRCGC website. Monthly wind data is variable for weather condition. Small pelagic fishabundance representative by annual fish production (2002-2005 and monthly Catch Per Unit Effort (CPUE ofGoldstripe sardinella, Bigeye scad and Indian scad (2006. It was data collected from Directorate General of CaptureFisheries (Ministry of Marine Affairs and Fisheries and daily fishing operation (2007 used to calculate match-up ratiothat was collected from Pemangkat fishing port in West Kalimantan. Research process consists of image processing,descriptive correlation analysis and GIS analysis to predict fishing ground map and match-up ratio calculation.Result of this research is the annual fish catch production of Bigeye scad and Indian scad (2002-2005 is tend toincrease and the monthly CPUE of both species is high during SE Monsoon (May-Sep that is condition contrarily in NWMonsoon (Nov-Apr. Meanwhile, the annual fish catch production of Goldstripe sardinella production is tend to decreasefrom 2002-2005, it has CPUE is high in early SE Monsoon (May. During the SE Monsoon (May-Sep when DM Index ispositive (+ the Indian scad and Bigeye scad production is high, for Goldstripe sardinella the fish production is highwhen DM Index is positive (+ in May. The accuracy of prediction map of

  20. Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests.

    Directory of Open Access Journals (Sweden)

    Ralf Lauterbach

    Full Text Available Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008-2010 in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming.

  1. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium

    Science.gov (United States)

    Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke

    2018-03-01

    A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.

  2. Simulation of an under-floor heating system integrated with solar energy under the weather conditions of Beirut

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, Patrick; Ghali, Kamel [American University of Beirut (Lebanon)], email: pek01@aub.edu.lb, email: ka04@aub.edu.lb

    2011-07-01

    Residential heating indoors can use convective systems, where hot air is blown into the space, or radiant systems, where a radiant panel transfers heat via both convection and radiation. Radiant systems can provide thermal comfort for less energy by directly heating the human body. The aim of this paper is to assess the feasibility of using under-floor solar energy heating systems in the climatic conditions of Beirut. An under-floor heating system with solar/diesel energy system was developed and optimized specifically for Beirut. Results showed that the system could lead to 38% energy savings and a 96% reduction in CO2 emissions with a solar fraction of 95%. An economic analysis was also performed using incremental prices of diesel costs and the cost of land for the installation; it yielded a figure of 19000$/m2 savings over the system's lifetime. This study demonstrated that the use of an under-floor heating system with solar energy in Beirut would have ecological and economic benefits.

  3. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium.

    Science.gov (United States)

    Bruffaerts, Nicolas; De Smedt, Tom; Delcloo, Andy; Simons, Koen; Hoebeke, Lucie; Verstraeten, Caroline; Van Nieuwenhuyse, An; Packeu, Ann; Hendrickx, Marijke

    2018-03-01

    A clear rise in seasonal and annual temperatures, a gradual increase of total radiation, and a relative trend of change in seasonal precipitation have been observed for the last four decades in Brussels (Belgium). These local modifications may have a direct and indirect public health impact by altering the timing and intensity of allergenic pollen seasons. In this study, we assessed the statistical correlations (Spearman's test) between pollen concentration and meteorological conditions by using long-term daily datasets of 11 pollen types (8 trees and 3 herbaceous plants) and 10 meteorological parameters observed in Brussels between 1982 and 2015. Furthermore, we analyzed the rate of change in the annual cycle of the same selected pollen types by the Mann-Kendall test. We revealed an overall trend of increase in daily airborne tree pollen (except for the European beech tree) and an overall trend of decrease in daily airborne pollen from herbaceous plants (except for Urticaceae). These results revealed an earlier onset of the flowering period for birch, oak, ash, plane, grasses, and Urticaceae. Finally, the rates of change in pollen annual cycles were shown to be associated with the rates of change in the annual cycles of several meteorological parameters such as temperature, radiation, humidity, and rainfall.

  4. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  5. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  6. Temporal variability of the quality of Taraxacum officinale seed progeny from the East-Ural radioactive trace: is there an interaction between low level radiation and weather conditions?

    Science.gov (United States)

    Pozolotina, Vera N; Antonova, Elena V

    2017-03-01

    The multiple stressors, in different combinations, may impact differently upon seed quality, and low-level doses of radiation may enhance synergistic or antagonistic effects. During 1991-2014 we investigated the quality of the dandelion (Taraxacum officinale s.l.) seed progeny growing under low-level radiation exposure at the East-Ural Radioactive Trace (EURT) area (result of the Kyshtym accident, Russia), and in plants from areas exposed to background radiation. The viability of the dandelion seed progeny was assessed according to chronic radiation exposure, accounting for the variability of weather conditions among years. Environmental factors (temperature, precipitation, and their ratio in different months) can modify the radiobiological effects. We found a wide range of possible responses to multiple stressors: inhibition, stimulation, and indifferent effects in different seasons. The intraspecific variability of the quality of dandelion seed progeny was greatly increased under conditions of low doses of chronic irradiation. Temperature was the most significant factor for seed progeny formation in the EURT zone, whereas the sums of precipitation and ratios of precipitation to temperature dominantly affected organisms from the background population.

  7. Do weather conditions correlate with findings in failed, provision-filled nest cells of Megachile rotundata (Hymenoptera: Megachilidae) in western North America?

    Science.gov (United States)

    Pitts-Singer, Theresa L; James, Rosalind R

    2008-06-01

    Cavity-nesting alfalfa leafcutting bees, Megachile rotundata (F.) (Hymenoptera: Megachilidae), are excellent pollinators of alfalfa, Medicago savita L., for seed production. In commercial settings, artificial cavities are placed in field domiciles for nesting and, thereby, bee populations are sustained for future use. For this study, cells from leafcutting bee nests were collected in late summer from commercial seed fields. Over 3 yr (2003-2005), 39 samples in total of approximately equal to 1,000 cells each were taken from several northwestern U.S. states and from Manitoba, Canada. X-radiography of 500 cells from each sample was used to identify "pollen balls" (i.e., cells in which the pollen-nectar provision remained, but the egg or larva, if present, was not detectable on an x-radiograph). Most U.S. samples seemed to have higher proportions of pollen ball cells than Manitoba samples. Pollen ball cells were dissected to determine the moisture condition of the mass provision and true contents of each cell. Most pollen ball cells from Manitoba samples contained fungus, the frequency of which was positively correlated with cool, wet weather. In the United States, most pollen ball cells had moist provisions, and many of them lacked young brood. Correlation analysis revealed that pollen ball cells occurred in greater proportions in fields with more hot days (above 38 degrees C). Broodless pollen ball cells occurred in greater proportions under cool conditions, but dead small larvae (second-third instars) seemed to occur in greater proportions under hot conditions. Pollen ball cells with unhatched eggs and first instars (in the chorion) occurred in lesser proportions under hot conditions.

  8. Effects of forest cover changes in European Russia on regional weather conditions: results of numerical experiments with the COSMO-CLM model

    Science.gov (United States)

    Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.

    2017-04-01

    The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on

  9. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  10. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  11. Late Cenozoic deep weathering patterns on the Fennoscandian shield in northern Finland: A window on ice sheet bed conditions at the onset of Northern Hemisphere glaciation

    Science.gov (United States)

    Hall, Adrian M.; Sarala, Pertti; Ebert, Karin

    2015-10-01

    The nature of the regolith that existed on the shields of the Northern Hemisphere at the onset of ice sheet glaciation is poorly constrained. In this paper, we provide the first detailed account of an exceptionally preserved, deeply weathered late Neogene landscape in the ice sheet divide zone in northern Finland. We mine data sets of drilling and pitting records gathered by the Geological Survey of Finland to reconstruct regional preglacial deep weathering patterns within a GIS framework. Using a large geochemical data set, we give standardised descriptions of saprolite geochemistry using a variant of the Weathering Index of Parker (WIP) as a proxy to assess the intensity of weathering. We also focus on mineral prospects and mines with dense pit and borehole data coverage in order to identify links between geology, topography, and weathering. Geology is closely linked to topography on the preglacial shield landscape of northern Finland and both factors influence weathering patterns. Upstanding, resistant granulite, granite, gabbro, metabasalt, and quartzite rocks were associated with fresh rock outcrops, including tors, or with thin (floors developed along mineralised shear and fracture zones, weathering penetrated locally to depths of > 50 m and included intensely weathered kaolinitic clays with WIPfines values below 1000. Late Neogene weathering profiles were varied in character. Tripartite clay-gruss-saprock profiles occur only in limited areas. Bipartite gruss-saprock profiles were widespread, with saprock thicknesses of > 10 m. Weathering profiles included two discontinuities in texture, materials and resistance to erosion, between saprolite and saprock and between saprock and rock. Limited core recovery when drilling below the soil base in mixed rocks of the Tana Belt indicates that weathering locally penetrated deep below upper fresh rock layers. Such deep-seated weathered bands in rock represent a third set of discontinuities. Incipient weathering and

  12. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public

    Science.gov (United States)

    Keul, A.; Holzer, A. M.; Wostal, T.

    2010-09-01

    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  13. Winter honey bee colony losses, Varroa destructor control strategies, and the role of weather conditions: Results from a survey among beekeepers.

    Science.gov (United States)

    Beyer, Marco; Junk, Jürgen; Eickermann, Michael; Clermont, Antoine; Kraus, François; Georges, Carlo; Reichart, Andreas; Hoffmann, Lucien

    2018-06-01

    Sets of treatments that were applied against varroa mites in the Luxembourgish beekeeper community were surveyed annually with a questionnaire between the winters 2010/11 and 2014/15. The average temperature and the precipitation sum of the month, when the respective varroa control method was applied were considered as co-variables when evaluating the efficacy of varroa control regimes. Success or failure of control regimes was evaluated based on the percentage of colonies lost per apiary in the winter following the treatment(s). Neither a positive nor a negative effect of formic acid (concentration 60%, w/v) on the colony losses could be found, irrespective of the weather conditions around the time of application. The higher concentration of 85% formic acid was linked with reduced colony losses when applications were done in August. Colony losses were reduced when Thymovar was applied in July or August, but applications in September were associated with increased losses compared with apiaries not treated with Thymovar during the same period. Apilife application in July as well as Apivar applications between July and September were associated with reduced colony losses. The removal of the drone brood and trickled oxalic acid application had beneficial effects when being done in April and December, respectively. Relatively warm (3.0±1.3°C) and wet (507.0±38.6mm/2months) conditions during the winter months December and January and relatively cool (17.2±1.4°C average monthly temperature) and wet (110.8±55.5mm/month) conditions in July were associated with elevated honey bee colony losses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions

    International Nuclear Information System (INIS)

    Vizzini, Fabio; Brai, Maria

    2012-01-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily – Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M max = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon

  15. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  16. Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum

    Czech Academy of Sciences Publication Activity Database

    Andresen, Elisa; Kappel, S.; Stärk, H.-J.; Riegger, U.; Borovec, Jakub; Mattusch, J.; Heinz, A.; Schmelzer, C.E.H.; Matoušková, Šárka; Dickinson, B.; Küpper, Hendrik

    2016-01-01

    Roč. 210, č. 4 (2016), s. 1244-1258 ISSN 0028-646X Institutional support: RVO:60077344 ; RVO:67985831 Keywords : Ceratophyllum demersum * Environmentally relevant * Light-harvesting complexes (LHCs) * Toxic metals Subject RIV: CE - Biochemistry; DD - Geochemistry (GLU-S) Impact factor: 7.330, year: 2016

  17. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  18. Computer system for the assessment of radiation situation in the cases of radiological accidents and extreme weather conditions in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Talerko, M.; Garger, E.; Kuzmenko, A. [Institute for Safety Problems of Nuclear Power Plants (Ukraine)

    2014-07-01

    Radiation situation within the Chernobyl Exclusion Zone (ChEZ) is determined by high radionuclides contamination of the land surface formed after the 1986 accident, as well as the presence of a number of potentially hazardous objects (the 'Shelter' object, the Interim Spent Nuclear Fuel Dry Storage Facility ISF-1, radioactive waste disposal sites, radioactive waste temporary localization sites etc.). The air concentration of radionuclides over the ChEZ territory and radiation exposure of personnel are influenced by natural and anthropogenic factors: variable weather conditions, forest fires, construction and excavation activity etc. The comprehensive radiation monitoring and early warning system in the ChEZ was established under financial support of European Commission in 2011. It involves the computer system developed for assessment and prediction of radiological emergencies consequences in the ChEZ ensuring the protection of personnel and the population living near its borders. The system assesses radiation situation under both normal conditions in the ChEZ and radiological emergencies which result in considerable radionuclides emission into the air (accidents at radiation hazardous objects, extreme weather conditions). Three different types of radionuclides release sources can be considered in the software package. So it is based on a set of different models of emission, atmospheric transport and deposition of radionuclides: 1) mesoscale model of radionuclide atmospheric transport LEDI for calculations of the radionuclides emission from stacks and buildings; 2) model of atmospheric transport and deposition of radionuclides due to anthropogenic resuspension from contaminated area (area surface source model) as a result of construction and excavation activity, heavy traffic etc.; 3) model of resuspension, atmospheric transport and deposition of radionuclides during grassland and forest fires in the ChEZ. The system calculates the volume and surface

  19. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  20. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  1. KZHU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  2. Winter Weather Frequently Asked Questions

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  3. KZOA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  4. KZJX Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  5. KZBW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  6. KZFW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  7. KZSE Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  8. KZME Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  9. KZDV Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  10. KZNY Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  11. KZDC Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  12. KZAU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  13. Investigation of erosion mechanisms and erosion products in divertor armour materials under conditions relevant to elms and mitigated disruptions in ITER

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Klimov, N.S.; Kovalenko, D.V.; Moskaleva, A.A.; Podkovyrov, V.L.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.S.; Poznyak, I.M.

    2008-01-01

    Carbon fibre composite (CFC) and tungsten were irradiated by intense plasma streams at plasma gun facilities MK-200UG and QSPA-T. The targets were tested by plasma loads relevant to Edge Localised Modes (ELM) and mitigated disruptions in ITER. Onset condition of material erosion and properties of erosion products have been studied

  14. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  15. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  16. Assessment of efficiency of functioning the infocommunication systems a special purpose in the conditions of violation quality of relevance information

    Science.gov (United States)

    Parinov, A. V.; Korotkikh, L. P.; Desyatov, D. B.; Stepanov, L. V.

    2018-03-01

    The uniqueness of information processing mechanisms in special-purpose infocommunication systems and the increased interest of intruders lead to an increase in the relevance of the problems associated with their protection. The paper considers the issues of building risk-models for the violation of the relevance and value of information in infocommunication systems for special purposes. Also, special attention is paid to the connection between the qualities of relevance and the value of information obtained as a result of the operation of infocommunication systems for special purposes. Analytical expressions for the risk and damage function in the time range in special-purpose infocommunication systems are obtained, which can serve as a mathematical basis for risk assessment. Further, an analytical expression is obtained to assess the chance of obtaining up-to-date information in the operation of infocommunication systems up to the time the information quality is violated. An analytical expression for estimating the chance can be used to calculate the effectiveness of a special-purpose infocommunication system.

  17. Influence and importance of daily weather conditions in the supply of chloride, sulfate, and other ions to fresh waters from atmospheric precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gorham, E

    1958-01-01

    From the data presented here it seems clear that local weather conditions play a very large part in determining the atmospheric supply of ions to natural waters in the lake district. It is likewise evident that atmospheric precipitation is of the utmost importance as a source of many of the major dissolved ions, especially to bogs, to upland tarns on hard volcanic rocks, and to heavily leached soils and more humus layers. The dissolved ions in rain must therefore have considerable ecological significance, though little is known of this at present. On the one hand, appreciable amounts of plant nutrients, for example nitrogen, potassium, calcium, and sulphur (and perhaps certain heavy metals), are supplied to habitats deficient in these elements; but on the other hand sulphuric acid, and probably also some of the organic compounds in smoke, may be toxic to many plants. In addition, the large amounts of sulphuric acid provided by pollution of the atmosphere will presumably hasten deterioration of the already heavily leached lake district soils. Whether the effects of the industrial age upon air chemistry have as yet seriously influenced the ecology of the lake district is difficult to say, but such influence might best be sought in the high tarns, since they are the most dependent upon rain for nutrients, and other factors such as local sewage pollution, agriculture, forestry operations, etc., could be discounted. Bog and moorland peat profiles might also repay investigation. But while there are regretably few undisturbed peat deposits in the lake district nowadays, there are fortunately a great many tarns in the central hills where mud cores might easily be taken with the aid of light instruments developed in recent years, and it is hoped that these matters will receive some attention in the future.

  18. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    International Nuclear Information System (INIS)

    W. L. Poe, Jr.; P.F. Wise

    1998-01-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage

  19. A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta Marija; Kiznys, Deivydas

    2017-01-01

    Hyperglycemia negatively affects cardiovascular variables that are also adversely affected by increased geomagnetic activity. It is likely that geomagnetic storms (GS) could have a stronger negative impact on these patients. We analyzed data on 1548 randomly selected patients with acute coronary syndrome (ACS) who were admitted inpatient treatment in Kaunas city, during 2000-2003. We evaluated the associations of GS, solar proton events (SPE), and high-speed solar wind (HSSW) (solar wind speed ≥600 km/s) with the risk of ACS in patients with diabetes mellitus (DM) and the metabolic syndrome (MS) by using logistic regression with categorical predictors. During days of HSSW, the risk of ACS in DM patients increased by 1.95 times (OR = 1.95, 95 % CI 1.36-2.79) as compared to days without either of these events or 2 days prior to or after them. In the multivariate model, the risk of ACS in DM patients was associated with days of HSSW and 1-2 days after (OR = 1.40, 95 % CI 1.01-1.93), with days of GS lasting >1 day and occurring on days of HSSW or 1-2 days after (OR = 2.31, 95 % CI 1.28-4.17), and with the onset of SPE (OR = 2.72 (1.09-6.83)). The risk of ACS in MS patients was associated with days of GS and 1-2 days prior or after GS (OR = 1.31 (1.00-1.73)); an additional impact was established if these days coincided with days of HSSW or 1-2 days before (OR = 2.16 (1.39-3.35)). These findings suggest that not only GS but also HSSW and changes in space weather conditions prior to SPE affect the human cardiovascular system.

  20. A decomposition of local labour-market conditions and their relevance for inequalities in transitions to vocational training

    OpenAIRE

    Hillmert, Steffen; Hartung, Andreas; Weßling, Katarina

    2017-01-01

    We investigate to what extent individual transitions to vocational training in Germany have been affected by local labour-market conditions. A statistical decomposition approach is developed and applied, allowing for a systematic differentiation between long-term change, short-term fluctuations, and structural regional differences in labour-market conditions. To study individual-level consequences for transitions to vocational training, regionalized labour-market data are merged with longitud...

  1. A framework for standardized calculation of weather indices in Germany

    Science.gov (United States)

    Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til

    2018-05-01

    Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

  2. WIRE: Weather Intelligence for Renewable Energies

    Science.gov (United States)

    Heimo, A.; Cattin, R.; Calpini, B.

    2010-09-01

    Renewable energies such as wind and solar energy will play an important, even decisive role in order to mitigate and adapt to the projected dramatic consequences to our society and environment due to climate change. Due to shrinking fossil resources, the transition to more and more renewable energy shares is unavoidable. But, as wind and solar energy are strongly dependent on highly variable weather processes, increased penetration rates will also lead to strong fluctuations in the electricity grid which need to be balanced. Proper and specific forecasting of ‘energy weather' is a key component for this. Therefore, it is today appropriate to scientifically address the requirements to provide the best possible specific weather information for forecasting the energy production of wind and solar power plants within the next minutes up to several days. Towards such aims, Weather Intelligence will first include developing dedicated post-processing algorithms coupled with weather prediction models and with past and/or online measurement data especially remote sensing observations. Second, it will contribute to investigate the difficult relationship between the highly intermittent weather dependent power production and concurrent capacities such as transport and distribution of this energy to the end users. Selecting, resp. developing surface-based and satellite remote sensing techniques well adapted to supply relevant information to the specific post-processing algorithms for solar and wind energy production short-term forecasts is a major task with big potential. It will lead to improved energy forecasts and help to increase the efficiency of the renewable energy productions while contributing to improve the management and presumably the design of the energy grids. The second goal will raise new challenges as this will require first from the energy producers and distributors definitions of the requested input data and new technologies dedicated to the management of

  3. Theoretical variations of the thermal performance of different solar collectors and solar combi systems as function of the varying yearly weather conditions in Denmark

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2009-01-01

    The thermal performances of solar collectors and solar combi systems with different solar fractions are studied under the influence of the Danish Design Reference Year, DRY data file, and measured weather data from a solar radiation measurement station situated at the Technical University of Denm...

  4. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.

    2014-01-01

    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  5. In-soil radon anomalies as precursors of earthquakes: a case study in the SE slope of Mt. Etna in a period of quite stable weather conditions.

    Science.gov (United States)

    Vizzini, Fabio; Brai, Maria

    2012-11-01

    In-soil radon concentrations as well as climatic parameters (temperature, atmospheric pressure and relative humidity) were collected in St. Venerina (Eastern Sicily - Italy) from March 19th to May 22nd 2009, close to an active fault system called Timpe Fault System (TFS), which is strictly linked to the geodynamics of Mt. Etna. During the monitoring period no drastic climatic variations were observed and, on the other hand, important seismic events were recorded close to the monitoring site. A seismic swarm composed of 5 earthquakes was observed in the Milo area on March 25th (M(max) = 2.7) at just 5.1 km from the site, and on May 13th an earthquake of 3.6 magnitude was recorded in the territory of St. Venerina, at just 3.2 km from the site; the earthquake was felt by the population and reported by all local and regional media. The in-soil radon concentrations have shown anomalous increases possibly linked to the earthquakes recorded, but certainly not attributable to local meteorology. To verify this assumption the average radon concentration and the standard deviation (σ) have been calculated and the regions of ±1.5σ and ±2σ deviation from the average concentration have been investigated. Moreover, to further minimise the contribution of the meteorological parameters on the in-soil radon fluctuations, a multiple regressions method has been used. To distinguish those earthquakes which could generate in-soil radon anomalies as precursors, the Dobrovolsky radius has been applied. The results obtained suggests that a clear correlation between earthquakes and in-soil radon increases exist, and that the detection of the in-soil radon anomalies becomes surely simpler in particular favourable conditions: weather stability, earthquakes within the Dobrovolsky radius and close to the monitoring area. Moreover, the absence of large variations of the climatic parameters, which could generate incoherent noise components to the radon signal, has made the radon fluctuations

  6. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  7. Identification of relevant ICF categories by patients with neurological conditions in early post-acute rehabilitation facilities.

    Science.gov (United States)

    Grill, Eva; Lipp, Berthold; Boldt, Christine; Stucki, Gerold; Koenig, Eberhard

    To describe functioning and health of patients with neurological conditions in early post-acute rehabilitation facilities and to identify the most common problems using the International Classification of Functioning, Disability and Health (ICF). Cross-sectional survey in a convenience sample of patients with neurological conditions requiring rehabilitation in early post-acute facilities. The second-level categories of the ICF were used to collect information on patients' problems. For the ICF components Body Functions, Body Structures and Activities and Participation absolute and relative frequencies of impairments/limitations in the study population were reported. For the component Environmental Factors absolute and relative frequencies of perceived barriers or facilitators were reported. The mean age in the sample was 56.6 years with a median age of 60 years. Forty percent of the patients were female. In 292 neurological patients 125 categories (51%) had a prevalence of 30% and above: 39 categories (49%) of Body Functions, 11 categories (28%) of Body Structures, 64 categories (88%) of Activities and Participation and 10 (20%) categories of Environmental Factors. This study is a first step towards the development of ICF Core Sets for of patients with neurological conditions in early post-acute rehabilitation facilities.

  8. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  9. Mechanism of uranium(VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xia, E-mail: lux2009@lzu.edu.cn; Zhou, Xiao-jiao; Wang, Tie-shan, E-mail: tswang@lzu.edu.cn

    2013-11-15

    Highlights: • Equilibrium reaches very rapid within 15 min. • pH shift towards neutral indicates release of hydroxyl ions. • High ionic strength inhabits biosorption capacity. • Uptake capacity of heat-killed cells is an order of magnitude higher than live one. • Electrostatic interaction, precipitation, and complexation are the main mechanisms. -- Abstract: Biosorption is of significance for the safety evaluation of high-level nuclear wastes repositories and remediation of radioactive contamination places. Quantitive study and structural characterization of uranium uptake by both live and heat-killed Saccharomyces cerevisiae at environmentally relevant uranium concentration and with different ionic strengths were carried out. Kinetic investigation showed the equilibrium reached within 15 min. In equilibrium studies, pH shift towards neutral indicated release of hydroxyl ions. pH was the most important factor, which partly affected electrostatic interaction between uranyl ions and S. cerevisiae surface. The high ionic strength inhibited biosorption capacity, which can be explained by a competitive reaction between sodium ions and uranyl ions. Heat killing process significantly enhanced biosorption capacity, showing an order of magnitude higher than that of live cells. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray (EDX) showed needle-like uranium-phosphate precipitation formed on the cell walls for both live and heat-killed cells. Besides, dark-field micrographs displayed considerable similar uranium-phosphate precipitation presented outside the heat-killed cells. The phosphate released during heat-killing process. FTIR illustrated function groups hydroxyl, carboxyl, phosphate, and amino groups played important role in complexation with uranium.

  10. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.

    Science.gov (United States)

    Chen, Ming; Wang, Dengjun; Yang, Fan; Xu, Xiaoyun; Xu, Nan; Cao, Xinde

    2017-11-01

    Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl 2 ), and natural organic matter (0-10 mg L -1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl 2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl 2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    Science.gov (United States)

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    Science.gov (United States)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  13. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  14. Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal.

    Science.gov (United States)

    Smith, Sarah L; Boothman, Christopher; Williams, Heather A; Ellis, Beverly L; Wragg, Joanna; West, Julia M; Lloyd, Jonathan R

    2017-01-01

    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99m Tc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H 2 and CO 2 , may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H 2 -oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H 2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste. Copyright © 2016. Published by Elsevier B.V.

  15. Seismic load resistance of reinforcing steels in the as delivered condition and after corrosion - relevant material characteristics for performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moersch, Ing. Joerg [Max Aicher Engineering GmbH, Freilassing (Germany)

    2016-10-15

    This type of accelerated corrosion test was used to study the high number of test samples in due time. The corrosion phenomena obtained in salt spray testing deviate significantly from corrosion phenomena (pitting factor) obtained in practical conditions. Salt spray testing represents practical conditions for the more uniform corrosion as a result of a severe carbonation of the concrete and/or for higher chloride contents at the surface of the rebar. At low corrosion current densities the effect of pit depth on residual mechanical performance might be underestimated. Reinforced concrete (r.c.) buildings in seismic areas shall be designed to guarantee enough ductile resources as for example a sufficient rotational capacity to allow for load re-distribution. The rotational capacity is directly dependent on the ductility of the reinforcing steel which is generally expressed as elongation at maximum load (A+g{sub t}) and the hardening ratio (R{sub m}/R{sub e}). A direct testing of the seismic load resistance of reinforcing steels is not part of the construction product standards. Therefore it was decided by European Commission to introduce this performance requirement in the mandate for the revision of EN 10080:2005. In parallel to the standardization process a research project was carried out to deliver the scientific background.

  16. Comparison of water absorption methods: testing the water absorption of recently quarried and weathered porous limestone on site and under laboratory conditions

    Science.gov (United States)

    Rozgonyi-Boissinot, Nikoletta; Agárdi, Tamás; Karolina Cebula, Ágnes; Török, Ákos

    2017-04-01

    The water absorption of weathering sensitive stones is a critical parameter that influences durability. The current paper compares different methods of water absorption tests by using on site and laboratory tests. The aims of the tests were to assess the water absorption of un-weathered quarry stones and various weathering forms occurring on porous limestone monuments. For the tests a Miocene porous limestone was used that occurs in Central and Western Hungary and especially near and in Budapest. Besides the Hungarian occurrences the same or very similar porous limestones are found in Austria, Slovakia and in the Czech Republic. Several quarries were operating in these countries. Due to the high workability the stone have been intensively used as construction material from the Roman period onward. The most prominent monuments made of this stone were built in Vienna and in Budapest during the 18th -19th century and in the early 20th century. The high porosity and the micro-fabric of the stone make it prone to frost- and salt weathering. Three different limestone types were tested representing coarse-, medium- and fine grained lithologies. The test methods included Rilem tube (Karsten tube) tests and capillary water absorption tests. The latter methodology has been described in detail in EN 1925:2000. The test results of on-site tests of weathered porous limestone clearly show that the water absorption of dissolved limestone surfaces and crumbling or micro-cracked limestone is similar. The water absorption curves have similar inclinations marking high amount of absorbed water. To the contrary, the white weathering crusts covered stone blocks and black crusts have significantly lower water absorptions and many of these crusts are considered as very tight almost impermeable surfaces. Capillary water absorption tests in the laboratory allowed the determination of maximum water absorption of quarried porous limestone. Specimens were placed in 3 mm of water column and the

  17. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  19. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    International Nuclear Information System (INIS)

    Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio

    2013-01-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ BP3 = (3.1 ± 0.3) · 10 −5 and the following second-order reaction rate constants: with • OH, k BP3, • OH = (2.0 ± 0.4) · 10 10 M −1 s −1 ; with the triplet states of chromophoric dissolved organic matter ( 3 CDOM*), k BP3, 3 CDOM* = (1.1 ± 0.1) · 10 9 M −1 s −1 ; with 1 O 2 , k BP3, 1 O 2 = (2.0 ± 0.1) · 10 5 M −1 s −1 , and with CO 3 −• , k BP3,CO 3 −• 7 M −1 s −1 . These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with • OH and 3 CDOM* would be the main processes of BP3 phototransformation. Reaction with • OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L −1 ), and reaction with 3 CDOM* at high DOC. If the reaction rate constant with CO 3 −• is near the upper limit of experimental measures (5 · 10 7 M −1 s −1 ), the CO 3 −• degradation process could be somewhat important for DOC −1 . The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with • OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, • OH and 3 CDOM*. • Two methylated isomers, benzaldehyde and benzoic acid detected as intermediates. • Phototransformation would be faster in shallow and DOM-poor water. • Half-life times of benzophenone-3 are in the range of weeks to a couple of months.

  20. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  1. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, Davide, E-mail: davide.vione@unito.it [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (Italy); Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy)

    2013-10-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ{sub BP3} = (3.1 ± 0.3) · 10{sup −5} and the following second-order reaction rate constants: with {sup •} OH, k{sub BP3,{sup •}} {sub OH} = (2.0 ± 0.4) · 10{sup 10} M{sup −1} s{sup −1}; with the triplet states of chromophoric dissolved organic matter ({sup 3}CDOM*), k{sub BP3,{sup 3}CDOM*} = (1.1 ± 0.1) · 10{sup 9} M{sup −1} s{sup −1}; with {sup 1}O{sub 2}, k{sub BP3,{sup 1}O{sub 2}} = (2.0 ± 0.1) · 10{sup 5} M{sup −1} s{sup −1}, and with CO{sub 3}{sup −•} , k{sub BP3,CO{sub 3{sup −}{sup •}}} < 5 · 10{sup 7} M{sup −1} s{sup −1}. These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with {sup •} OH and {sup 3}CDOM* would be the main processes of BP3 phototransformation. Reaction with {sup •} OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L{sup −1}), and reaction with {sup 3}CDOM* at high DOC. If the reaction rate constant with CO{sub 3}{sup −•} is near the upper limit of experimental measures (5 · 10{sup 7} M{sup −1} s{sup −1}), the CO{sub 3}{sup −•} degradation process could be somewhat important for DOC < 1 mg C L{sup −1}. The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with {sup •} OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, {sup •} OH and {sup 3}CDOM*.

  2. The effect of low energy helium ion irradiation on tungsten-tantalum (W-Ta) alloys under fusion relevant conditions

    Science.gov (United States)

    Gonderman, S.; Tripathi, J. K.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.

    2017-08-01

    Currently, tungsten remains the best candidate for plasma-facing components (PFCs) for future fusion devices because of its high melting point, low erosion, and strong mechanical properties. However, continued investigation has shown tungsten to undergo severe morphology changes under fusion-like conditions. These results motivate the study of innovative PFC materials which are resistant to surface morphology evolution. The goal of this work is to examine tungsten-tantalum (W-Ta) alloys, a potential PFC material, and their response to low energy helium ion irradiation. Specifically, W-Ta samples are exposed to 100 eV helium irradiations with a flux of 1.15 × 1021 ions m-2 s-1, at 873 K, 1023 K, and 1173 K for 1 h duration. Scanning electron microscopy (SEM) reveals significant changes in surface deterioration due to helium ion irradiation as a function of both temperature and tantalum concentration in W-Ta samples. X-Ray Diffraction (XRD) studies show a slight lattice parameter expansion in W-Ta alloy samples compared to pure W samples. The observed lattice parameter expansion in W-Ta alloy samples (proportional to increasing Ta wt.% concentrations) reflect significant differences observed in the evolution of surface morphology, i.e., fuzz development processes for both increasing Ta wt.% concentration and target temperature. These results suggest a correlation between the observed morphology differences and the induced crystal structure change caused by the presence of tantalum. Shifts in the XRD peaks before and after 100 eV helium irradiation with a flux of 1.15 × 1021 ions m-2 s-1, 1023 K, for 1 h showed a significant difference in the magnitude of the shift. This has suggested a possible link between the atomic spacing of the material and the accumulated damage. Ongoing research is needed on W-Ta alloys and other innovative materials for their application as irradiation resistant materials in future fusion or irradiation environments.

  3. Skywatch: The Western Weather Guide.

    Science.gov (United States)

    Keen, Richard A.

    The western United States is a region of mountains and valleys with the world's largest ocean next door. Its weather is unique. This book discusses how water, wind, and environmental conditions combine to create the climatic conditions of the region. Included are sections describing: fronts; cyclones; precipitation; storms; tornadoes; hurricanes;…

  4. Preliminary measurement of the drag force on a porous cylinder with fluid evolution under conditions relevant to pulverised-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dijan Supramono; Graham J. Nathan; Peter J. Ashman; Peter J. Mullinger [University of Adelaide, Adelaide, SA (Australia). Cooperative Research Centre for Clean Power from Lignite, Schools of Chemical Engineering and Mechanical Engineering

    2003-07-01

    The trajectories of the particles in pulverised coal combustion systems determine their residence times and reaction environments, and hence coal burnout and flame length. The trajectories, in turn, depend upon the drag coefficient of the particle. The effect of the evolution of fluid from the surface of the particle on this coefficient has never been measured before, particularly at the low particle Reynolds numbers that apply during coal combustion. Therefore mathematical models must rely on assumed sphere drag coefficients, which do not account for the effect of fluid evolving from the surface. A technique of using a porous cylinder mounted on a pendulum, instead of a sphere, through which fluid can be forced to evolve, simulating fluid evolution in coal devolatilisation and char burning, is used. The pendulum is capable of measuring drag forces of the order of 10-5 to 10-6 Newton, at Reynolds numbers similar to that experienced by coal particles. This paper presents preliminary measurements of drag force at relevant conditions. The working fluid is water in the first instance, although it will be extended to diluted glycerine in the future. The cross flow is provided by a water tunnel and the ejected fluid is induced by a separate pump. Both the Reynolds number and the ratio of evolution velocity to free-stream velocity are chosen to span conditions relevant to pulverised coal combustion. 16 refs., 5 figs., 2 tabs.

  5. [Effect of weather on odontogenic abscesses].

    Science.gov (United States)

    Nissen, G; Schmidseder, R

    1978-11-01

    An increased frequency of odontogenous abcesses was observed on certain days in the course of routine clinical practice. We therefore investigated the possibility of a statistically significant weather-related odontogenous soft-tissue purulence originating from chronic apical periodontitis. Medical reports of patients treated between 1970 and 1977 were used. Our study indicated that the frequency of odontogenous abcesses was significantly higher with cyclonic weather conditions, i.e., weather with low barometric pressure.

  6. Impact of extreme weather events and climate change for health and social care systems.

    Science.gov (United States)

    Curtis, Sarah; Fair, Alistair; Wistow, Jonathan; Val, Dimitri V; Oven, Katie

    2017-12-05

    This review, commissioned by the Research Councils UK Living With Environmental Change (LWEC) programme, concerns research on the impacts on health and social care systems in the United Kingdom of extreme weather events, under conditions of climate change. Extreme weather events considered include heatwaves, coldwaves and flooding. Using a structured review method, we consider evidence regarding the currently observed and anticipated future impacts of extreme weather on health and social care systems and the potential of preparedness and adaptation measures that may enhance resilience. We highlight a number of general conclusions which are likely to be of international relevance, although the review focussed on the situation in the UK. Extreme weather events impact the operation of health services through the effects on built, social and institutional infrastructures which support health and health care, and also because of changes in service demand as extreme weather impacts on human health. Strategic planning for extreme weather and impacts on the care system should be sensitive to within country variations. Adaptation will require changes to built infrastructure systems (including transport and utilities as well as individual care facilities) and also to institutional and social infrastructure supporting the health care system. Care sector organisations, communities and individuals need to adapt their practices to improve resilience of health and health care to extreme weather. Preparedness and emergency response strategies call for action extending beyond the emergency response services, to include health and social care providers more generally.

  7. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  8. Economics of extreme weather events: Terminology and regional impact models

    OpenAIRE

    Jahn, Malte

    2015-01-01

    Impacts of extreme weather events are relevant for regional (in the sense of subnational) economies and in particular cities in many aspects. Cities are the cores of economic activity and the amount of people and assets endangered by extreme weather events is large, even under the current climate. A changing climate with changing extreme weather patterns and the process of urbanization will make the whole issue even more relevant in the future. In this paper, definitions and terminology in th...

  9. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  10. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung.

    Science.gov (United States)

    Kirchner, Sebastian; Fothergill, Joanne L; Wright, Elli A; James, Chloe E; Mowat, Eilidh; Winstanley, Craig

    2012-06-05

    There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much

  11. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  12. The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Science.gov (United States)

    Lacher, Larissa; Lohmann, Ulrike; Boose, Yvonne; Zipori, Assaf; Herrmann, Erik; Bukowiecki, Nicolas; Steinbacher, Martin; Kanji, Zamin A.

    2017-12-01

    In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L-1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L-1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L-1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L-1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other

  13. Weather, knowledge base and life-style

    Science.gov (United States)

    Bohle, Martin

    2015-04-01

    Why to main-stream curiosity for earth-science topics, thus to appraise these topics as of public interest? Namely, to influence practices how humankind's activities intersect the geosphere. How to main-stream that curiosity for earth-science topics? Namely, by weaving diverse concerns into common threads drawing on a wide range of perspectives: be it beauty or particularity of ordinary or special phenomena, evaluating hazards for or from mundane environments, or connecting the scholarly investigation with concerns of citizens at large; applying for threading traditional or modern media, arts or story-telling. Three examples: First "weather"; weather is a topic of primordial interest for most people: weather impacts on humans lives, be it for settlement, for food, for mobility, for hunting, for fishing, or for battle. It is the single earth-science topic that went "prime-time" since in the early 1950-ties the broadcasting of weather forecasts started and meteorologists present their work to the public, daily. Second "knowledge base"; earth-sciences are a relevant for modern societies' economy and value setting: earth-sciences provide insights into the evolution of live-bearing planets, the functioning of Earth's systems and the impact of humankind's activities on biogeochemical systems on Earth. These insights bear on production of goods, living conditions and individual well-being. Third "life-style"; citizen's urban culture prejudice their experiential connections: earth-sciences related phenomena are witnessed rarely, even most weather phenomena. In the past, traditional rural communities mediated their rich experiences through earth-centric story-telling. In course of the global urbanisation process this culture has given place to society-centric story-telling. Only recently anthropogenic global change triggered discussions on geoengineering, hazard mitigation, demographics, which interwoven with arts, linguistics and cultural histories offer a rich narrative

  14. Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths

    Directory of Open Access Journals (Sweden)

    Constantin von zur Mühlen

    2008-03-01

    Full Text Available Recent progress in molecular magnetic resonance imaging (MRI provides the opportunity to image cells and cellular receptors using microparticles of iron oxide (MPIOs. However, imaging targets on vessel walls remains challenging owing to the quantity of contrast agents delivered to areas of interest under shear stress conditions. We evaluated ex vivo binding characteristics of a functional MRI contrast agent to ligand-induced binding sites (LIBSs on activated glycoprotein IIb/IIIa receptors of human platelets, which were lining rupture-prone atherosclerotic plaques and could therefore facilitate detection of platelet-mediated pathology in atherothrombotic disease. MPIOs were conjugated to anti-LIBS single-chain antibodies (LIBS-MPIO or control antibodies (control MPIO. Ex vivo binding to human platelet-rich clots in a dose-dependent manner was confirmed on a 3 T clinical MRI scanner and by histology (p < .05 for LIBS-MPIO vs control MPIO. By using a flow chamber setup, significant binding of LIBS-MPIO to a platelet matrix was observed under venous and arterial flow conditions, but not for control MPIO (p < .001. A newly generated MRI contrast agent detects activated human platelets at clinically relevant magnetic field strengths and binds to platelets under venous and arterial flow conditions, conveying high payloads of contrast to specific molecular targets. This may provide the opportunity to identify vulnerable, rupture-prone atherosclerotic plaques via noninvasive MRI.

  15. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  16. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  17. Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Surface Weather Observation Collection consists primarily of hourly, synoptic, daily, and monthly forms submitted to the archive by the National Weather Service...

  18. Mariners Weather Log

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Mariners Weather Log (MWL) is a publication containing articles, news and information about marine weather events and phenomena, worldwide environmental impact...

  19. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  20. Pilot Weather Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aviation weather reports relayed from pilots to FAA air traffic controllers or National Weather Service personnel. Elements include sky cover, turbulence, wind...

  1. Winter Weather Emergencies

    Science.gov (United States)

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  2. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  3. Daily Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These daily weather records were compiled from a subset of stations in the Global Historical Climatological Network (GHCN)-Daily dataset. A weather record is...

  4. Surface Weather Observations Hourly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Standard hourly observations taken at Weather Bureau/National Weather Service offices and airports throughout the United States. Hourly observations began during the...

  5. Radar Weather Observation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Weather Observation is a set of archived historical manuscripts stored on microfiche. The primary source of these radar weather observations manuscript records...

  6. Land Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — METAR is the international standard code format for hourly surface weather observations. The acronym roughly translates from French as Aviation Routine Weather...

  7. Internet Weather Source

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (NWS) National Telecommunications Gateway provides weather, hydrologic, and climate forecasts and warnings for the United States, its...

  8. Natural Weathering Exposure Station

    Data.gov (United States)

    Federal Laboratory Consortium — The Corps of Engineers' Treat Island Natural Weathering Exposure Station is a long-term natural weathering facility used to study concrete durability. Located on the...

  9. Space Weather in Operation

    Data.gov (United States)

    National Aeronautics and Space Administration — The “Space Weather in Operations” effort will provide on-demand and near-real time space weather event information to the Data Access Toolkit (DAT), which is the...

  10. Effects of Changing Weather, Oceanographic Conditions, and Land Uses on Spatio-Temporal Variation of Sedimentation Dynamics along Near-Shore Coral Reefs

    Directory of Open Access Journals (Sweden)

    Abimarie Otaño-Cruz

    2017-08-01

    Full Text Available Sedimentation is a critical threat to coral reefs worldwide. Major land use alteration at steep, highly erodible semi-arid islands accelerates the potential of soil erosion, runoff, and sedimentation stress to nearshore coral reefs during extreme rainfall events. The goal of this study was to assess spatio-temporal variation of sedimentation dynamics across nearshore coral reefs as a function of land use patterns, weather and oceanographic dynamics, to identify marine ecosystem conservation strategies. Sediment was collected at a distance gradient from shore at Bahia Tamarindo (BTA and Punta Soldado (PSO coral reefs at Culebra Island, Puerto Rico. Sediment texture and composition were analyzed by dry sieving and loss-on-ignition techniques, and were contrasted with environmental variables for the research period (February 2014 to April 2015. Rainfall and oceanographic data were analyzed to address their potential role on affecting sediment distribution with BEST BIO-ENV, RELATE correlation, and linear regression analysis. A significant difference in sedimentation rate was observed by time and distance from shore (PERMANOVA, p < 0.0100, mostly attributed to higher sediment exposure at reef zones closer to shore due to strong relationships with coastal runoff. Sedimentation rate positively correlated with strong rainfall events (Rho = 0.301, p = 0.0400 associated with storms and rainfall intensity exceeding 15 mm/h. At BTA, sediment deposited were mostly composed of sand, suggesting a potential influence of resuspension produced by waves and swells. In contrast, PSO sediments were mostly composed of silt-clay and terrigenous material, mainly attributed to a deforestation event that occurred at adjacent steep sub-watershed during the study period. Spatial and temporal variation of sedimentation pulses and terrigenous sediment input implies that coral reefs exposure to sediment stress is determined by local land use patterns, weather, and

  11. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  12. Vodcasting Space Weather

    Science.gov (United States)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  13. Solar weather monitoring

    Directory of Open Access Journals (Sweden)

    J.-F. Hochedez

    2005-11-01

    Full Text Available Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs, flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  14. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  15. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  16. Reverse spin-crossover and high-pressure kinetics of the heme iron center relevant for the operation of heme proteins under deep-sea conditions.

    Science.gov (United States)

    Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana

    2014-10-20

    By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  18. Types of Forecast and Weather-Related Information Used among Tourism Businesses in Coastal North Carolina

    Science.gov (United States)

    Ayscue, Emily P.

    This study profiles the coastal tourism sector, a large and diverse consumer of climate and weather information. It is crucial to provide reliable, accurate and relevant resources for the climate and weather-sensitive portions of this stakeholder group in order to guide them in capitalizing on current climate and weather conditions and to prepare them for potential changes. An online survey of tourism business owners, managers and support specialists was conducted within the eight North Carolina oceanfront counties asking respondents about forecasts they use and for what purposes as well as why certain forecasts are not used. Respondents were also asked about their perceived dependency of their business on climate and weather as well as how valuable different forecasts are to their decision-making. Business types represented include: Agriculture, Outdoor Recreation, Accommodations, Food Services, Parks and Heritage, and Other. Weekly forecasts were the most popular forecasts with Monthly and Seasonal being the least used. MANOVA and ANOVA analyses revealed outdoor-oriented businesses (Agriculture and Outdoor Recreation) as perceiving themselves significantly more dependent on climate and weather than indoor-oriented ones (Food Services and Accommodations). Outdoor businesses also valued short-range forecasts significantly more than indoor businesses. This suggests a positive relationship between perceived climate and weather dependency and forecast value. The low perceived dependency and value of short-range forecasts of indoor businesses presents an opportunity to create climate and weather information resources directed at how they can capitalize on positive climate and weather forecasts and how to counter negative effects with forecasted adverse conditions. The low use of long-range forecasts among all business types can be related to the low value placed on these forecasts. However, these forecasts are still important in that they are used to make more

  19. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    International Nuclear Information System (INIS)

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL's Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field

  20. The Horizontal Ice Nucleation Chamber (HINC: INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    Directory of Open Access Journals (Sweden)

    L. Lacher

    2017-12-01

    Full Text Available In this work we describe the Horizontal Ice Nucleation Chamber (HINC as a new instrument to measure ambient ice-nucleating particle (INP concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T and relative humidity (RH in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l.  to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %, relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 % to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L−1; normalized to standard T of 273 K and pressure, p, of 1013 hPa and 4.7 std L−1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC of 2.2 std L−1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L−1 was measured during an event influenced by marine air, arriving at the JFJ

  1. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  2. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin

    Science.gov (United States)

    Guo, Jingheng; Wang, Fushun; Vogt, Rolf David; Zhang, Yuhang; Liu, Cong-Qiang

    2015-01-01

    Chemical weathering is a fundamental geochemical process regulating the atmosphere-land-ocean fluxes and earth’s climate. It is under natural conditions driven primarily by weak carbonic acid that originates from atmosphere CO2 or soil respiration. Chemical weathering is therefore assumed as positively coupled with its CO2 consumption in contemporary geochemistry. Strong acids (i.e. sulfuric- and nitric acid) from anthropogenic sources have been found to influence the weathering rate and CO2 consumption, but their integrated effects remain absent in the world largest river basins. By interpreting the water chemistry and overall proton budget in the Yangtze Basin, we found that anthropogenic acidification had enhanced the chemical weathering by 40% during the past three decades, leading to an increase of 30% in solute discharged to the ocean. Moreover, substitution of carbonic acid by strong acids increased inorganic carbon evasion, offsetting 30% of the CO2 consumption by carbonic weathering. Our assessments show that anthropogenic loadings of sulfuric and nitrogen compounds accelerate chemical weathering but lower its CO2 sequestration. These findings have significant relevance to improving our contemporary global biogeochemical budgets. PMID:26150000

  3. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  4. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  5. 49 CFR 192.231 - Protection from weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  6. Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions

    Science.gov (United States)

    Li, Weihua; Li, Lijie; Chen, Chia-li; Kacarab, Mary; Peng, Weihan; Price, Derek; Xu, Jin; Cocker, David R.

    2018-04-01

    Emissions of certain low vapor pressure-volatile organic compounds (LVP-VOCs) are considered exempt to volatile organic compounds (VOC) regulations due to their low evaporation rates. However, these compounds may still play a role in ambient secondary organic aerosol (SOA) and ozone formation. The LVP-VOCs selected for this work are categorized as intermediate-volatility organic compounds (IVOCs) according to their vapor pressures and molecular formulas. In this study, the evaporation rates of 14 select IVOCs are investigated with half of them losing more than 95% of their mass in less than one month. Further, SOA and ozone formation are presented from 11 select IVOCs and 5 IVOC-containing generic consumer products under atmospherically relevant conditions using varying radical sources (NOx and/or H2O2) and a surrogate reactive organic gas (ROG) mixture. Benzyl alcohol (0.41), n-heptadecane (0.38), and diethylene glycol monobutyl ether (0.16) are determined to have SOA yields greater than 0.1 in the presence of NOx and a surrogate urban hydrocarbon mixture. IVOCs also influence ozone formation from the surrogate urban mixture by impacting radical levels and NOx availability. The addition of lab created generic consumer products has a weak influence on ozone formation from the surrogate mixture but strongly affects SOA formation. The overall SOA and ozone formation of the generic consumer products could not be explained solely by the results of the pure IVOC experiments.

  7. The Impact of Biofilms upon Surfaces Relevant to an Intermediate Level Radioactive Waste Geological Disposal Facility under Simulated Near-Field Conditions

    Directory of Open Access Journals (Sweden)

    Christopher J. Charles

    2017-07-01

    Full Text Available The ability of biofilms to form on a range of materials (cementious backfill (Nirex Reference Vault Backfill (NRVB, graphite, and stainless steel relevant to potential UK intermediate level radioactive waste (ILW disposal concepts was investigated by exposing these surfaces to alkaliphilic flocs generated by mature biofilm communities. Flocs are aggregates of biofilm material that are able to act as a transport vector for the propagation of biofilms. In systems where biofilm formation was observed there was also a decrease in the sorption of isosaccharinic acids to the NRVB. The biofilms were composed of cells, extracellular DNA (eDNA, proteins, and lipids with a smaller polysaccharide fraction, which was biased towards mannopyranosyl linked carbohydrates. The same trend was seen with the graphite and stainless steel surfaces at these pH values, but in this case the biofilms associated with the stainless steel surfaces had a distinct eDNA basal layer that anchored the biofilm to the surface. At pH 13, no structured biofilm was observed, rather all the surfaces accumulated an indistinct organic layer composed of biofilm materials. This was particularly the case for the stainless steel coupons which accumulated relatively large quantities of eDNA. The results demonstrate that there is the potential for biofilm formation in an ILW-GDF provided an initiation source for the microbial biofilm is present. They also suggest that even when conditions are too harsh for biofilm formation, exposed surfaces may accumulate organic material such as eDNA.

  8. Space weathering of small Koronis family members

    Science.gov (United States)

    Thomas, Cristina A.; Rivkin, Andrew S.; Trilling, David E.; Enga, Marie-therese; Grier, Jennifer A.

    2011-03-01

    The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160-163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259-294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9-L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1-5 km that shows the

  9. Weather during bloom affects pollination and yield of highbush blueberry.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  10. Insurance against weather risk : use of heating degree-days from non-local stations for weather derivatives

    NARCIS (Netherlands)

    Asseldonk, van M.A.P.M.

    2003-01-01

    Weather derivatives enable policy-holders to safeguard themselves against extreme weather conditions. The effectiveness and the efficiency of the risk transfer is determined by the spatial risk basis, which is the stochastic dependency of the local weather outcome being insured and the outcome of

  11. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  12. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Science.gov (United States)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  13. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    Directory of Open Access Journals (Sweden)

    Janovcová Martina

    2015-01-01

    Full Text Available Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air – water, air is the primary low – energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  14. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  15. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  16. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  17. Measurements of Atmospheric CO2 Column in Cloudy Weather Conditions using An IM-CW Lidar at 1.57 Micron

    Science.gov (United States)

    Lin, Bing; Obland, Michael; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Campbell, Joel; Dobler, Jeremy; Meadows, Bryon; Fan, Tai-Fang; Kooi, Susan; hide

    2015-01-01

    This study evaluates the capability of atmospheric CO2 column measurements under cloudy conditions using an airborne intensity-modulated continuous-wave integrated-path-differential-absorption lidar operating in the 1.57-m CO2 absorption band. The atmospheric CO2 column amounts from the aircraft to the tops of optically thick cumulus clouds and to the surface in the presence of optically thin clouds are retrieved from lidar data obtained during the summer 2011 and spring 2013 flight campaigns, respectively.

  18. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  19. Effects of Cd and Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft and hard water including a German lake

    Energy Technology Data Exchange (ETDEWEB)

    Andresen, Elisa, E-mail: Elisa.Andresen@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Opitz, Judith, E-mail: Daniela.Opitz@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Thomas, George, E-mail: George.Thomas@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: Ha-Jo.Staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Dienemann, Holger, E-mail: Holger.Dienemann@smul.sachsen.de [Saxon State Company for Environment and Agriculture, Business Domain 5 (Laboratory), Department 53, Bitterfelder Str. 25, D-04849 Bad Düben (Germany); Jenemann, Kerstin, E-mail: Kerstin.Jenemann@smul.sachsen.de [Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, Abteilung Wasser, Boden, Wertstoffe, Zur Wetterwarte 11, D-01109 Dresden (Germany); Dickinson, Bryan C., E-mail: Bryan.Dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: Hendrik.Kuepper@uni-konstanz.de [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-10-15

    Highlights: •Hardly any macrophytic growth occurred in an oligotrophic hard water lake in Germany. •All parameters were optimal, besides elevated, nanomolar concentrations of Ni and Cd. •We cultivated submerged macrophytes in real and simulated hard and soft lake water. •Nanomolar Cd and Ni inhibited the plants’ photosynthetic light reactions in soft water. •The inhibition was synergistic, i.e. stronger than the addition of Cd and Ni effects. -- Abstract: Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far.

  20. Progress report on the results of testing advanced conceptual design metal barrier materials under relevant environmental conditions for a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; Halsey, W.G.; Van Konynenburg, R.A.

    1987-12-01

    This report discusses the performance of candidate metallic materials envisioned for fabricating waste package containers for long-term disposal at a possible geological repository at Yucca Mountain, Nevada. Candidate materials include austenitic iron-base to nickel-base alloy (AISI 304L, AISI 316L, and Alloy 825), high-purity copper (CDA 102), and copper-base alloys (CDA 613 and CDA 715). Possible degradation modes affecting these container materials are identified in the context of anticipated environmental conditions at the repository site. Low-temperature oxidation is the dominant degradation mode over most of the time period of concern (minimum of 300 yr to a maximum of 1000 yr after repository closure), but various forms of aqueous corrosion will occur when water infiltrates into the near-package environment. The results of three years of experimental work in different repository-relevant environments are presented. Much of the work was performed in water taken from Well J-13, located near the repository, and some of the experiments included gamma irradiation of the water or vapor environment. The influence of metallurgical effects on the corrosion and oxidation resistance of the material is reviewed; these effects result from container fabrication, welding, and long-term aging at moderately elevated temperatures in the repository. The report indicates the need for mechanisms to understand the physical/chemical reactions that determine the nature and rate of the different degradation modes, and the subsequent need for models based on these mechanisms for projecting the long-term performance of the container from comparatively short-term laboratory data. 91 refs., 17 figs., 16 tabs

  1. Effects of Cd and Ni toxicity to Ceratophyllum demersum under environmentally relevant conditions in soft and hard water including a German lake

    International Nuclear Information System (INIS)

    Andresen, Elisa; Opitz, Judith; Thomas, George; Stärk, Hans-Joachim; Dienemann, Holger; Jenemann, Kerstin; Dickinson, Bryan C.; Küpper, Hendrik

    2013-01-01

    Highlights: •Hardly any macrophytic growth occurred in an oligotrophic hard water lake in Germany. •All parameters were optimal, besides elevated, nanomolar concentrations of Ni and Cd. •We cultivated submerged macrophytes in real and simulated hard and soft lake water. •Nanomolar Cd and Ni inhibited the plants’ photosynthetic light reactions in soft water. •The inhibition was synergistic, i.e. stronger than the addition of Cd and Ni effects. -- Abstract: Even essential trace elements are phytotoxic over a certain threshold. In this study, we investigated whether heavy metal concentrations were responsible for the nearly complete lack of submerged macrophytes in an oligotrophic lake in Germany. We cultivated the rootless aquatic model plant Ceratophyllum demersum under environmentally relevant conditions like sinusoidal light and temperature cycles and a low plant biomass to water volume ratio. Experiments lasted for six weeks and were analysed by detailed measurements of photosynthetic biophysics, pigment content and hydrogen peroxide production. We established that individually non-toxic cadmium (3 nM) and slightly toxic nickel (300 nM) concentrations became highly toxic when applied together in soft water, severely inhibiting photosynthetic light reactions. Toxicity was further enhanced by phosphate limitation (75 nM) in soft water as present in many freshwater habitats. In the investigated lake, however, high water hardness limited the toxicity of these metal concentrations, thus the inhibition of macrophytic growth in the lake must have additional reasons. The results showed that synergistic heavy metal toxicity may change ecosystems in many more cases than estimated so far

  2. Fabulous Weather Day

    Science.gov (United States)

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  3. Designing a Weather Station

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  4. KSC Weather and Research

    Science.gov (United States)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  5. Weather and road capacity

    DEFF Research Database (Denmark)

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore...

  6. Tales of future weather

    NARCIS (Netherlands)

    Hazeleger, W.; Van den Hurk, B.J.J.M.; Min, E.; Van Oldenborgh, G.J.; Petersen, A.C.; Stainforth, D.A.; Vasileiadou, E.; Smith, L.A.

    2015-01-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The

  7. Weathering and weathering rates of natural stone

    Science.gov (United States)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  8. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    Science.gov (United States)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  9. Adverse weather impacts on arable cropping systems

    Science.gov (United States)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  10. Portable Weather Applications for General Aviation Pilots.

    Science.gov (United States)

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  11. Effects of intraday weather changes on asset returns and volatilities

    Directory of Open Access Journals (Sweden)

    Hyein Shim

    2017-12-01

    Full Text Available Analyzing the intraday dataset on weather and market information with the use of the extended GJR-GARCH framework, this study explores in depth the weather effects on the asset returns and volatilities of the Korean stock and derivatives markets. Our intraday analyses contribute to the existing literature by going beyond the attempt of prior studies to capture the weather effects using the average daily observations alone. The empirical results document a modest presence of the weather effect on the returns and volatilities, though the significance of its impact is found to vary across different market conditions and indices. We also find that the return and volatility respond asymmetrically to extremely good and bad weather conditions. The intraday analyses show that the weather effect on the returns and volatilities is more statistically significant at the beginning of the working day or the lunch break, indicating the intraday weather effects on the financial market.

  12. Future weather types and their influence on mean and extreme climate indices for precipitation and temperature in Central Europe

    Directory of Open Access Journals (Sweden)

    Ulf Riediger

    2014-09-01

    occurrence of warm south-westerlies and a decrease in cold easterlies. Thereby, an increase of extensive areal rainfall events is simulated for specific weather types. Otherwise, warmer and drier summers are projected by the RCM ensemble. Here, a few weather patterns are relevant for very hot conditions with the total number of very hot days where the mean daily temperature greater than 25 °C increases. Thereby, anticyclonic weather patterns are most relevant for non precipitation events and particulary, the number of days with anticyclonic westerlies is expected to double in the future.

  13. Successfully Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  14. Combating bad weather part I rain removal from video

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the

  15. Sun, weather, and climate

    International Nuclear Information System (INIS)

    Herman, J.R.; Goldberg, R.A.

    1985-01-01

    The general field of sun-weather/climate relationships that is, apparent weather and climate responses to solar activity is introduced and theoretical and experimental suggestions for further research to identify and investigate the unknown casual mechanisms are provided. Topics of discussion include: (1) solar-related correlation factors and energy sources; (2) long-term climate trends; (3) short-term meteorological correlations; (4) miscellaneous obscuring influences; (5) physical processes and mechanisms; (6) recapitulation of sun-weather relationships; and (7) guidelines for experiments. 300 references

  16. Weather effects on the success of longleaf pine cone crops

    Science.gov (United States)

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  17. Adverse weather impact on aviation safety, investigation and oversight

    Science.gov (United States)

    Smith, M. J.

    1985-01-01

    A brief review of the weather factors that effect aviation safety with respect to U.S. Coast Guard operations is presented. Precise meteorological information is an absolute necessity to the Coast Guard which must conduct life saving and rescue operations under the worst of weather conditions. Many times the weather conditions in which they operate are the cause of or a contributing factor to the predicament from which they must execute a rescue operation.

  18. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  19. Effects of Weather on Tourism and its Moderation

    Science.gov (United States)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  20. Uruguay - Surface Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface weather observation forms for 26 stations in Uruguay. Period of record 1896-2005, with two to eight observations per day. Files created through a...

  1. Weather Information Processing

    Science.gov (United States)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  2. Oil Rig Weather Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather observations taken at offshore platforms along the United States coastlines. The majority are located in oil-rich areas of the Gulf of Mexico, Gulf of...

  3. Cape Kennedy Weather Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digitized data taken from original weather observations taken at Cape Kennedy Air Force Station, Florida. Elements recorded are wind speed and direction,...

  4. Winter weather demand considerations.

    Science.gov (United States)

    2015-04-01

    Winter weather has varied effects on travel behavior. Using 418 survey responses from the Northern Virginia : commuting area of Washington, D.C. and binary logit models, this study examines travel related changes under : different types of winter wea...

  5. NOAA Weather Radio

    Science.gov (United States)

    del tiempo incluido. Si eres quieres ser avisado de las advertencias y relojes de día o de noche, un Weather Radio relojes son independientes o basadas en el Condado (parroquia basados en Luisiana), aunque

  6. Space Weather Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of space weather datasets from the National Oceanic and Atmospheric Administration and from the World Data Service for Geophysics,...

  7. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  8. Surface Weather Observations Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather Observation 1001 Forms is a set of historical manuscript records for the period 1893-1948. The collection includes two very similar form types: Form...

  9. Dothistroma septosporum: spore production and weather conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, M.; Drapela, K.; Kankovsky, L.

    2012-11-01

    Dartmouth's septosporum, the causal agent of Dothistroma needle blight is a widespread fungus which infects more than 80 species of coniferous trees through the entire world. Spreading of the infection is strongly affected by climatic factors of each locality where it is recorded. We attempt to describe the concrete limiting climatic factors necessary for the releasing of conidia of D. septosporum and to find out the timing of its spore production within the year. For this purpose we used an automatic volumetric spore trap and an automatic meteorological station. We found that a minimum daily average temperature of 10 degree centigrade was necessary for any spore production, as well as a long period of high air humidity. The values obtained in the present study were a little bit higher than those previously published, which may arise questions about a possible changing trend of the behaviour in the development of the Dothistroma needle blight causal agent. We used autoregressive integrated moving average (ARIMA) models to predict the spore counts on the base of previous values of spore counts and dew point. For a locality from Hackerovka, the best ARIMA model was 1,0,0; and for a locality from Lanzhot, the best was 3,1,0. (Author) 19 refs.

  10. Aircraft route forecasting under adverse weather conditions

    Directory of Open Access Journals (Sweden)

    Thomas Hauf

    2017-04-01

    Full Text Available In this paper storm nowcasts in the terminal manoeuvring area (TMA of Hong Kong International Airport are used to forecast deviation routes through a field of storms for arriving and departing aircraft. Storms were observed and nowcast by the nowcast system SWIRLS from the Hong Kong Observatory. Storms were considered as no-go zones for aircraft and deviation routes were determined with the DIVSIM software package. Two days (21 and 22 May 2011 with 22 actual flown routes were investigated. Flights were simulated with a nowcast issued at the time an aircraft entered the TMA or departed from the airport. These flights were compared with a posteriori simulations, in which all storm fields were known and circumnavigated. Both types of simulated routes were then compared with the actual flown routes. The qualitative comparison of the various routes revealed generally good agreement. Larger differences were found in more complex situations with many active storms in the TMA. Route differences resulted primarily from air traffic control measures imposed such as holdings, slow-downs and shortcuts, causing the largest differences between the estimated and actual landing time. Route differences could be enhanced as aircraft might be forced to circumnavigate a storm ahead in a different sense. The use of route forecasts to assist controllers coordinating flights in a complex moving storm field is discussed. The study emphasises the important application of storm nowcasts in aviation meteorology.

  11. Space Weather Models at the CCMC And Their Capabilities

    Science.gov (United States)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. In this presentation, we will provide an overview of the community-provided, space weather-relevant, model suite, which resides at CCMC. We will discuss current capabilities, and analyze expected future developments of space weather related modeling.

  12. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    Science.gov (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  13. Casebook on application for weather

    International Nuclear Information System (INIS)

    2009-11-01

    This book introduces the excellent cases on application using weather at the industry, research center and public office. It lists the names and application cases in 2008 and 2009, which includes research on decease in risk by weather in the industry by Sam sung institute of safety and environment, service on weather information for people by KT, application with weather information in the flight by Korean air, use on weather information for prevention of disasters by Masan city hall, upgrade for business with weather marketing, center for river forecast in NOAA and the case using weather management for high profit margins.

  14. Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: Effects of hydration, secondary organics coating, soot morphology, and coagulation

    Science.gov (United States)

    Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.

    2016-04-01

    Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.

  15. Iron isotopic fractionation during continental weathering

    Energy Technology Data Exchange (ETDEWEB)

    Fantle, Matthew S.; DePaolo, Donald J.

    2003-10-01

    The biological activity on continents and the oxygen content of the atmosphere determine the chemical pathways through which Fe is processed at the Earth's surface. Experiments have shown that the relevant chemical pathways fractionate Fe isotopes. Measurements of soils, streams, and deep-sea clay indicate that the {sup 56}Fe/{sup 54}Fe ratio ({delta}{sup 56}Fe relative to igneous rocks) varies from +1{per_thousand} for weathering residues like soils and clays, to -3{per_thousand} for dissolved Fe in streams. These measurements confirm that weathering processes produce substantial fractionation of Fe isotopes in the modern oxidizing Earth surface environment. The results imply that biologically-mediated processes, which preferentially mobilize light Fe isotopes, are critical to Fe chemistry in weathering environments, and that the {delta}{sup 56}Fe of marine dissolved Fe should be variable and negative. Diagenetic reduction of Fe in marine sediments may also be a significant component of the global Fe isotope cycle. Iron isotopes provide a tracer for the influence of biological activity and oxygen in weathering processes through Earth history. Iron isotopic fractionation during weathering may have been smaller or absent in an oxygen-poor environment such as that of the early Precambrian Earth.

  16. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  17. Prevalence of weather sensitivity in Germany and Canada

    Science.gov (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  18. Chemical Weathering on Venus

    Science.gov (United States)

    Zolotov, Mikhail

    2018-01-01

    Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal

  19. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  20. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  1. Weather In Some Islands

    Institute of Scientific and Technical Information of China (English)

    王良华

    2007-01-01

    There are four seasons in a year. When spring comes, the weather is mild(温和的). Summer comes after spring. Summer is the hottest season of the year. Autumn follows summer. It is the best season of the year. Winter is the coldest season of the year. Some islands(岛) have their own particular(特别的) seasons because their weather is very much affected(影响) by the oceans(海洋) around them. In Britain, winter is not very cold and summer is not very hot.

  2. Continuation of the Application of Parallel PIC Simulations to Laser and Electron Transport Through Plasmas Under Conditions Relevant to ICF and SBSS

    International Nuclear Information System (INIS)

    Warren B Mori

    2007-01-01

    In 2006/2007 we continued to study several issues related to underdense laser-plasma interactions. We have been studying the onset and saturation of Raman backscatter for NIF conditions, nonlinear plasma oscillations, and the two-plasmon decay instability

  3. Dress for the Weather

    Science.gov (United States)

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice…

  4. Climate, weather, and hops

    Science.gov (United States)

    As climate and weather become more variable, hop growers face increased uncertainty in making decisions about their crop. Given the unprecedented nature of these changes, growers may no longer have enough information and intuitive understanding to adequately assess the situation and evaluate their m...

  5. Weather and Flight Testing

    Science.gov (United States)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  6. Utilization of Live Localized Weather Information for Sustainable Agriculture

    Science.gov (United States)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  7. Development and Experimental Validation of Large Eddy Simulation Techniques for the Prediction of Combustion-Dynamic Process in Syngas Combustion: Characterization of Autoignition, Flashback, and Flame-Liftoff at Gas-Turbine Relevant Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ihme, Matthias [Univ. of Michigan, Ann Arbor, MI (United States); Driscoll, James [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-08-31

    The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controlling unstable flame regimes in HHC-combustion.

  8. Weatherization Works: Weatherization Assistance Program Close-Up Fact Sheet

    International Nuclear Information System (INIS)

    2001-01-01

    The United States demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes

  9. Submerged Medium Voltage Cable Systems at Nuclear Power Plants. A Review of Research Efforts Relevant to Aging Mechanisms and Condition Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, II, Gregory Von [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Glover, Steven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Gary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Kenneth Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zutavern, Fred J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gelbard, Fred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    In a submerged environment, power cables may experience accelerated insulation degradation due to water - related aging mechanisms . Direct contact with water or moisture intrusion in the cable insulation s ystem has been identified in the literature as a significant aging stressor that can affect performance and lifetime of electric cables . Progressive reduction of the dielectric strength is commonly a result of water treeing which involves the development of permanent hydrophilic structures in the insulation coinciding with the absorption of water into the cable . Water treeing is a phenomenon in which dendritic microvoids are formed in electric cable insulation due to electrochemic al reactions , electromechanical forces , and diffusion of contaminants over time . These reactions are caused by the combined effect s of water presence and high electrical stress es in the material . Water tree growth follow s a tree - like branching pattern , i ncreasing in volume and length over time . Although these cables can be "dried out," water tree degradation , specifically the growth of hydrophilic regions, is believed to be permanent and typically worsens over time. Based on established research , water treeing or water induced damage can occur in a variety of electric cables including XLPE, TR - XLPE and other insulating materials, such as EPR and butyl rubber . Once water trees or water induced damage form, the dielectric strength of an insulation materia l will decrease gradually with time as the water trees grow in length, which could eventually result in failure of the insulating material . Under wet conditions or i n submerged environments , several environmental and operational parameters can influence w ater tree initiation and affect water tree growth . These parameters include voltage cycling, field frequency, temperature, ion concentration and chemistry, type of insula tion material , and the characteristics of its defects. In this effort, a review of academic

  10. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  11. Concept of Operations for Road Weather Connected Vehicle and Automated Vehicle Applications

    Science.gov (United States)

    2017-05-21

    Weather has a significant impact on the operations of the nation's roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness and productivity. It is, th...

  12. New Technologies for Reducing Aviation Weather-Related Accidents

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., III; Jarrell, Michael A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed technologies to reduce aviation weather-related accidents. New technologies are presented for data-link and display of weather information to aircraft in flight, for detection of turbulence ahead of aircraft in flight, and for automated insitu reporting of atmospheric conditions from aircraft.

  13. Weather or Not To Teach Junior High Meteorology.

    Science.gov (United States)

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  14. Stability of Mg-sulfates at-10C and the rates of dehydration/rehydration processes under conditions relevant to Mars

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Chou, I.-Ming; Jolliff, B.L.

    2011-01-01

    We report the results of low temperature (-10??C) experiments on the stability fields and phase transition pathways of five hydrous Mg-sulfates. A low temperature form of MgSO 47H 2O (LT-7w) was found to have a wide stability field that extends to low relative humidity (???13% RH at-10??C). Using information on the timing of phase transitions, we extracted information on the reaction rates of five important dehydration and rehydration processes. We found that the temperature dependencies of rate constants for dehydration processes differ from those of rehydration, which reflect differences in reaction mechanisms. By extrapolating these rate constants versus T correlations into the T range relevant to Mars, we can evaluate the possibility of occurrence of specific processes and the presence of common Mg-sulfate species present on Mars in different periods and locations. We anticipate in a moderate obliquity period, starkeyite and LH-MgSO 4H 2O should be two common Mg-sulfates at the surface, another polymorph MH-MgSO 4H 2O can exist at the locations where hydrothermal processes may have occurred. In polar regions or within the subsurface of other regions, meridianiite (coexisting with water ice, near 100% RH) and LT-7w (over a large RH range) are the stable phases. During a high obliquity period, meridianiite and LT-7w should exhibit widespread occurrence. The correlations of reaction rates versus temperature found in this study imply that dehydration and rehydration of hydrous Mg-sulfates would always be slower than the sublimation and crystallization of water ice, which would be supported by mission observations from Odyssey and by Mars Exploration Rovers. Copyright 2011 by the American Geophysical Union.

  15. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  16. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  17. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  18. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    Science.gov (United States)

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  19. Severe Weather Data Inventory (SWDI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety...

  20. North America Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Series of Synoptic Weather Maps. Maps contains a surface analysis comprised of plotted weather station observations, isobars indicating low and high-pressure...

  1. Comprehensive behavioural analysis of Long Evans and Sprague-Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Karly M Turner

    Full Text Available Genetic (G and environmental (E manipulations are known to alter behavioural outcomes in rodents, however many animal models of neuropsychiatric disorders only use a restricted selection of strain and housing conditions. The aim of this study was to examine GxE interactions comparing two outbred rat strains, which were housed in either standard or enriched cages. The strains selected were the albino Sprague-Dawley rat, commonly used for animal models, and the other was the pigmented Long Evans rat, which is frequently used in cognitive studies. Rats were assessed using a comprehensive behavioural test battery and included well-established tests frequently employed to examine animal models of neuropsychiatric diseases, measuring aspects of anxiety, exploration, sensorimotor gating and cognition. Selective strain and housing effects were observed on a number of tests. These included increased locomotion and reduced pre-pulse inhibition in Long Evans rats compared to Sprague Dawley rats; and rats housed in enriched cages had reduced anxiety-like behaviour compared to standard housed rats. Long Evans rats required fewer sessions than Sprague Dawley rats to learn operant tasks, including a signal detection task and reversal learning. Furthermore, Long Evans rats housed in enriched cages acquired simple operant tasks faster than standard housed Long Evans rats. Cognitive phenotypes in animal models of neuropsychiatric disorders would benefit from using strain and housing conditions where there is greater potential for both enhancement and deficits in performance.

  2. Estuary wader capacity following severe weather mortality

    International Nuclear Information System (INIS)

    Clark, J.A.; Baillie, S.R.; Clark, N.A.; Langston, R.H.W.

    1993-01-01

    The building of a tidal power barrage across an estuary may lead to substantial changes in its ecology. Many of Britain's estuaries hold internationally important numbers of waders. Careful consideration, therefore, needs to be given to the likely effects of tidal power barrages on wader populations. The opportunity for increased understanding of the mechanisms which govern wader populations was provided by a period of severe winter weather in 1991, which resulted in a substantial mortality of waders in eastern England. Such conditions are known to be stressful to birds and the study objectives were to investigate both the effects of and recovery from severe weather. (author)

  3. Bioremediation of severely weathered hydrocarbons: is it possible?

    International Nuclear Information System (INIS)

    Gallego, J. R.; Villa, R.; Sierra, C.; Sotres, A.; Pelaez, A. I.; Sanchez, J.

    2009-01-01

    Weathering processes of spilled hydrocarbons promote a reduced biodegradability of petroleum compounds mixtures, and consequently bioremediation techniques are often ruled out within the selection of suitable remediation approaches. This is truly relevant wherever old spills at abandoned industrial sites have to be remediated. However it is well known most of the remaining fractions and individual compounds of weathered oil are still biodegradable, although at slow rates than alkanes or no and two-ring aromatics. (Author)

  4. Challenges for Transitioning Science Research to Space Weather Applications

    Science.gov (United States)

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  5. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  6. New Federal Government Space Weather Website and Document Repository Launched

    Science.gov (United States)

    Bonadonna, Michael; Jonas, Seth; McNamara, Erin

    2017-11-01

    On Tuesday, 19 September 2017, the NOAA Space Weather Prediction Center and Office of the Federal Coordinator for Meteorology (OFCM) launched the new Space Weather Operations, Research, and Mitigation website SWORM.GOV. The website provides access to the public to Federal activities supporting the Executive Office of the President National Science and Technology Council SWORM Subcommittee as well as other activities and events relevant to the National Space Weather Enterprise. SWORM.GOV was approved by the SWORM Subcommittee, funded by NOAA, and maintained by OFCM.

  7. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  8. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  9. Space weather and space anomalies

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available A large database of anomalies, registered by 220 satellites in different orbits over the period 1971-1994 has been compiled. For the first time, data from 49 Russian Kosmos satellites have been included in a statistical analysis. The database also contains a large set of daily and hourly space weather parameters. A series of statistical analyses made it possible to quantify, for different satellite orbits, space weather conditions on the days characterized by anomaly occurrences. In particular, very intense fluxes (>1000 pfu at energy >10 MeV of solar protons are linked to anomalies registered by satellites in high-altitude (>15000 km, near-polar (inclination >55° orbits typical for navigation satellites, such as those used in the GPS network, NAVSTAR, etc. (the rate of anomalies increases by a factor ~20, and to a much smaller extent to anomalies in geostationary orbits, (they increase by a factor ~4. Direct and indirect connections between anomaly occurrence and geomagnetic perturbations are also discussed.

  10. Assessment of weather risk on chestnut production

    Science.gov (United States)

    Pereira, M. G.; Gomes-Laranjo, J.; Caramelo, L.

    2009-04-01

    Meteorological conditions play a fundamental role during entire chestnut tree vegetative cycle. Chestnut trees are well adapted to mean year temperatures of 8-15°C, requires monthly mean temperatures greater than 10°C during 6 months (Gomes-Laranjo et al. 2008) and its pollen only germinates at relatively high temperatures of 27-30°C (Bounous, 2002). Photosynthesis of an adult tree is highly dependent of temperature. Photosynthesis is maximal at 24-28°C but it is inhibited for temperatures greater than 32°C (Gomes-Laranjo et al., 2005, 2006). Furthermore, there are significant differences between chestnut trees cultivated in northfaced orchads in relation to those cultivated in the southfaced and between leaves from different sides of the chestnut canopy because they receive different amounts of radiant energy and consequently they grow under different mean daily air temperature. The objective of this work was to assess the role of weather on chestnut production variability. This study was performed for the 28 years period defined between 1980 and 2007 and it was based on annual values of chestnut production and total area of production, at national level, provided by INE, the National Institute of Statistics of Portugal. The meteorological data used was provided by Meteored (http://www.meteored.com/) and includes daily values of precipitation, wind speed, and mean, maximum and minimum air temperature. All meteorological variables were tested as potential predictors by means of a simple correlation analysis. Multiple time intervals were considered in this the analysis, which consist in moving intervals of constant length and forward and backward evolutionary intervals. Results show that some meteorological variables present significant correlation with chestnut productivity particularly in the most relevant periods of the chestnut tree cycle, like the previous winter, the flushing phase and the maturation period. A regression model based on the winter (January

  11. Central American Flying Weather

    Science.gov (United States)

    1985-12-01

    CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic

  12. World Weather Extremes. Revision,

    Science.gov (United States)

    1985-12-01

    Ext r-,ncs, Weekl Weather and Crop Bull, Vol. 43, No. 9, pp. 6-8, 27 Feb 56. 21A. ntoli, La Piu Alta Temperatura del Mondo," [The HiLhest Temperi... Temperatura in Libia", Boll Soc Geogr Ita’iana, ser. 8, Vol. 7, pp. 59-71, 1954. 23J. Gentilli, "Libyan Climate", Geograph Rev, V0 l. 45, No. 2, p. 269 S" Apr

  13. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  14. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  15. Detection and attribution of extreme weather disasters

    Science.gov (United States)

    Huggel, Christian; Stone, Dáithí; Hansen, Gerrit

    2014-05-01

    Single disasters related to extreme weather events have caused loss and damage on the order of up to tens of billions US dollars over the past years. Recent disasters fueled the debate about whether and to what extent these events are related to climate change. In international climate negotiations disaster loss and damage is now high on the agenda, and related policy mechanisms have been discussed or are being implemented. In view of funding allocation and effective risk reduction strategies detection and attribution to climate change of extreme weather events and disasters is a key issue. Different avenues have so far been taken to address detection and attribution in this context. Physical climate sciences have developed approaches, among others, where variables that are reasonably sampled over climatically relevant time periods and related to the meteorological characteristics of the extreme event are examined. Trends in these variables (e.g. air or sea surface temperatures) are compared between observations and climate simulations with and without anthropogenic forcing. Generally, progress has been made in recent years in attribution of changes in the chance of some single extreme weather events to anthropogenic climate change but there remain important challenges. A different line of research is primarily concerned with losses related to the extreme weather events over time, using disaster databases. A growing consensus is that the increase in asset values and in exposure are main drivers of the strong increase of economic losses over the past several decades, and only a limited number of studies have found trends consistent with expectations from climate change. Here we propose a better integration of existing lines of research in detection and attribution of extreme weather events and disasters by applying a risk framework. Risk is thereby defined as a function of the probability of occurrence of an extreme weather event, and the associated consequences

  16. Induction of enhanced acoustic startle response by noise exposure: dependence on exposure conditions and testing parameters and possible relevance to hyperacusis.

    Directory of Open Access Journals (Sweden)

    Rony H Salloum

    Full Text Available There has been a recent surge of interest in the development of animal models of hyperacusis, a condition in which tolerance to sounds of moderate and high intensities is diminished. The reasons for this decreased tolerance are likely multifactorial, but some major factors that contribute to hyperacusis are increased loudness perception and heightened sensitivity and/or responsiveness to sound. Increased sound sensitivity is a symptom that sometimes develops in human subjects after acoustic insult and has recently been demonstrated in animals as evidenced by enhancement of the acoustic startle reflex following acoustic over-exposure. However, different laboratories have obtained conflicting results in this regard, with some studies reporting enhanced startle, others reporting weakened startle, and still others reporting little, if any, change in the amplitude of the acoustic startle reflex following noise exposure. In an effort to gain insight into these discrepancies, we conducted measures of acoustic startle responses (ASR in animals exposed to different levels of sound, and repeated such measures on consecutive days using a range of different startle stimuli. Since many studies combine measures of acoustic startle with measures of gap detection, we also tested ASR in two different acoustic contexts, one in which the startle amplitudes were tested in isolation, the other in which startle amplitudes were measured in the context of the gap detection test. The results reveal that the emergence of chronic hyperacusis-like enhancements of startle following noise exposure is highly reproducible but is dependent on the post-exposure thresholds, the time when the measures are performed and the context in which the ASR measures are obtained. These findings could explain many of the discrepancies that exist across studies and suggest guidelines for inducing in animals enhancements of the startle reflex that may be related to hyperacusis.

  17. Weathering of stone-built heritage: A lens through which to read the Anthropocene

    OpenAIRE

    Gómez-Heras, Miguel; McCabe, Stephen

    2015-01-01

    This paper discusses how the study of stone-built heritage decay is relevant in the context of the Anthropocene by raising the complex two-way interplay between stone and society. Natural and built stone heritage is an asset that is vulnerable to present and future climate change. Especially in the context of built heritage, stone can also be conceptualized as a “large scale laboratory” in which the evolution of weathering, and thus past exposure conditions, can be studied (analogous to physi...

  18. NWS Weather Fatality, Injury and Damage Statistics

    Science.gov (United States)

    ... Weather Awareness Floods, Wind Chill, Tornadoes, Heat... Education Weather Terms, Teachers, Statistics government web resources and services. Natural Hazard Statistics Statistics U.S. Summaries 78-Year List of Severe Weather Fatalities Preliminary Hazardous Weather Statistics for 2017 Now

  19. Determination of W-erosion through optical spectroscopy under ITER-relevant plasma conditions; Bestimmung der Wolframerosion mittels optischer Spektroskopie unter ITER-relevanten Plasmabedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Laengner, Marko

    2016-11-21

    the semi-empirical Lotz-formula. The necessary extension of the atomic data base regarding neutral tungsten leads to the interest in a tungsten source that can easily be used for calibration purposes. This was realised at TEXTOR through the injection of WF{sub 6}. The tungsten that was brought into the plasma via WF{sub 6}-injection was investigated regarding the comparability to tungsten originating from a sputtering process. Moreover was WF{sub 6} used for the first time to determine conversion factors - the so-called photon efficiencies - to calculate tungsten fluxes from spectroscopically measured photon fluxes. For the given combinations of temperature and density from (20±5) eV to (82±5) eV and from (2.2±1) x 10{sup 12} cm{sup -3} to (6.8±1) x 10{sup 12} cm{sup -3}, respectively, for the W I(400.88 nm)-line a constant average value of left angle E{sup WI(400.88} {sup nm)}{sub Ph} right angle =94±16 is found. To test these values sputtering yields were determined from the amount of eroded tungsten atoms. These sputtering yields are in line with experimental reference values and calculations. The prevailing investigated plasma conditions are in the range of what can be expected considering the ITER divertor during ELMs. The found experimental results are consistent and confirm the match between WF{sub 6} photon efficiencies and photon efficiencies of sputtered tungsten.

  20. Designing and Implementing Weather Generators as Web Services

    Directory of Open Access Journals (Sweden)

    Rassarin Chinnachodteeranun

    2016-12-01

    Full Text Available Climate and weather realizations are essential inputs for simulating crop growth and yields to analyze the risks associated with future conditions. To simplify the procedure of generating weather realizations and make them available over the Internet, we implemented novel mechanisms for providing weather generators as web services, as well as a mechanism for sharing identical weather realizations given a climatological information. A web service for preparing long-term climate data was implemented based on an international standard, Sensor Observation Service (SOS. The weather generator services, which are the core components of the framework, analyze climatological data, and can take seasonal climate forecasts as inputs for generating weather realizations. The generated weather realizations are encoded in a standard format, which are ready for use to crop modeling. All outputs are generated in SOS standard, which broadens the extent of data sharing and interoperability with other sectoral applications, e.g., water resources management. These services facilitate the development of other applications requiring input weather realizations, as these can be obtained easily by just calling the service. The workload of analysts related to data preparation and handling of legacy weather generator programs can be reduced. The architectural design and implementation presented here can be used as a prototype for constructing further services on top of an interoperable sensor network system.

  1. Impact of Weather Index Insurance on Household Demand for ...

    African Journals Online (AJOL)

    EJBE

    confidence about the compensation for expected loss from future weather condition .... found in western zone of Tigray, where the dominant crops are barley and teff. ... (such as age and sex of the household head, schooling level of household.

  2. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  3. Performance evaluation of solar heating system with thermal core type soil heat storage. Part 5. Performance prediction and evaluation of the system considered of the weather condition; Taiyonetsu riyo netsu kakushiki dojo chikunetsu system no seino hyoka. 5. Kisho joken wo koryoshita system no seino yosoku to hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, N [Nishimatsu Construction Co. Ltd., Tokyo (Japan); Nakajima, Y [Kogakuin University, Tokyo (Japan)

    1997-11-25

    The paper studied a solar heating system with thermal core type soil heat storage (combining a thermal core composing of a water tank and an underground pebble tank and the soil around the heat storage tank and also using solar energy). Solar energy is stored by temperature level in the high temperature water tank, the low temperature pebble heat storage tank and the soil around the heat storage tank. Heat is recovered according to temperature as direct ventilation space heating (utilization of pebble tank air), floor heating (utilization of hot water of the heat storage water tank) and heat pump heat source (utilization of pebble tank air). A study was made of performance and regional effectiveness of the system under different weather conditions. A study was also made of effects of the water tank for short term heat storage by changing the water volume. Using the same structure, etc. for the system, the system was evaluated using weather data of Sapporo, Tokyo and Kagoshima. In terms of efficiency of the system, the system structure was found to be most suitable for weather conditions in Tokyo. However, the air heat source heat pump which cannot be usually used in the cold area has come to be used. Such effect except efficiency is also considered, and the amount of performance to be targeted in each region changes. 2 refs., 14 figs., 1 tab.

  4. The Weather in Richmond

    OpenAIRE

    Harless, William Edwin

    2014-01-01

    ABSTRACT: The Weather in Richmond is a short documentary about the Oilers, the football team at Richmond High School in downtown Richmond, California, as they struggle in 2012 with the legacy of winning no games, with the exception of a forfeit, in two years. The video documents the city of Richmond’s poverty and violence, but it also is an account of the city’s cultural diversity, of the city’s industrial history and of the hopes of some of the people who grow up there. The...

  5. Combating bad weather

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the

  6. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  7. Explaining the road accident risk: weather effects.

    Science.gov (United States)

    Bergel-Hayat, Ruth; Debbarh, Mohammed; Antoniou, Constantinos; Yannis, George

    2013-11-01

    This research aims to highlight the link between weather conditions and road accident risk at an aggregate level and on a monthly basis, in order to improve road safety monitoring at a national level. It is based on some case studies carried out in Work Package 7 on "Data analysis and synthesis" of the EU-FP6 project "SafetyNet-Building the European Road Safety Observatory", which illustrate the use of weather variables for analysing changes in the number of road injury accidents. Time series analysis models with explanatory variables that measure the weather quantitatively were used and applied to aggregate datasets of injury accidents for France, the Netherlands and the Athens region, over periods of more than 20 years. The main results reveal significant correlations on a monthly basis between weather variables and the aggregate number of injury accidents, but the magnitude and even the sign of these correlations vary according to the type of road (motorways, rural roads or urban roads). Moreover, in the case of the interurban network in France, it appears that the rainfall effect is mainly direct on motorways--exposure being unchanged, and partly indirect on main roads--as a result of changes in exposure. Additional results obtained on a daily basis for the Athens region indicate that capturing the within-the-month variability of the weather variables and including it in a monthly model highlights the effects of extreme weather. Such findings are consistent with previous results obtained for France using a similar approach, with the exception of the negative correlation between precipitation and the number of injury accidents found for the Athens region, which is further investigated. The outlook for the approach and its added value are discussed in the conclusion. Copyright © 2013. Published by Elsevier Ltd.

  8. Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster

    Science.gov (United States)

    By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?  

  9. Weather impacts on natural, social and economic systems. German report

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, M; Gerlinger, K; Herrmann, N; Klein, R J.T.; Schneider, M; Sterr, H; Schellnhuber, H J

    2000-05-01

    The EU project Weather Impacts on Natural, Social and Economic Systems (WISE) has analysed impacts of current climate variability to evaluate the sensitivity of today's society to extreme weather. Unlike studies of anticipated impacts of climate change, WISE did not rely on scenarios and projections, but on existing and newly collected data. The research involved (i) the statistical modelling of meteorological and sectoral time series, aimed at quantifying the impacts of changing weather variables on sector output, (ii) a population survey, aimed at investigating public perception of and behavioural response to unusually hot and dry summers and mild winters, and (iii) a management survey, aimed at obtaining insight into managers' awareness and perception of the importance of extreme weather on their operations. The three activities revealed a wealth of data and information, providing relevant insights into Germany's sensitivity to and perception of extreme weather events. Sectors that were analysed included agriculture, outdoor fire, water supply, human health, electricity and gas consumption and tourism. It appears from the statistical modelling that extreme weather can have impressive impacts on all sectors, especially when expressed in monetary terms. However, weather variability is generally considered a manageable risk, to which sectors in Germany appear reasonably well-adapted. The population and management surveys reveal both positive and negative impacts of extreme weather. People generally respond to these impacts by adjusting their activities. The utilities (electricity, gas and water) indicate that they are robsut to the current level of weather variability and do not consider climate change an important threat to their operations. The tourism sector experiences impacts but typically takes a reactive approach to adaptation, although it is also developing weather-insensitive products. (orig.)

  10. Weather impacts on natural, social and economic systems. German report

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, M.; Gerlinger, K.; Herrmann, N.; Klein, R.J.T.; Schneider, M.; Sterr, H.; Schellnhuber, H.J.

    2000-05-01

    The EU project Weather Impacts on Natural, Social and Economic Systems (WISE) has analysed impacts of current climate variability to evaluate the sensitivity of today's society to extreme weather. Unlike studies of anticipated impacts of climate change, WISE did not rely on scenarios and projections, but on existing and newly collected data. The research involved (i) the statistical modelling of meteorological and sectoral time series, aimed at quantifying the impacts of changing weather variables on sector output, (ii) a population survey, aimed at investigating public perception of and behavioural response to unusually hot and dry summers and mild winters, and (iii) a management survey, aimed at obtaining insight into managers' awareness and perception of the importance of extreme weather on their operations. The three activities revealed a wealth of data and information, providing relevant insights into Germany's sensitivity to and perception of extreme weather events. Sectors that were analysed included agriculture, outdoor fire, water supply, human health, electricity and gas consumption and tourism. It appears from the statistical modelling that extreme weather can have impressive impacts on all sectors, especially when expressed in monetary terms. However, weather variability is generally considered a manageable risk, to which sectors in Germany appear reasonably well-adapted. The population and management surveys reveal both positive and negative impacts of extreme weather. People generally respond to these impacts by adjusting their activities. The utilities (electricity, gas and water) indicate that they are robsut to the current level of weather variability and do not consider climate change an important threat to their operations. The tourism sector experiences impacts but typically takes a reactive approach to adaptation, although it is also developing weather-insensitive products. (orig.)

  11. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  12. NASA Space Weather Center Services: Potential for Space Weather Research

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  13. Weatherization Apprenticeship Program

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  14. Weathering of rock 'Ginger'

    Science.gov (United States)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  15. Space Weather- Physics and Effects

    CERN Document Server

    Bothmer, Volker

    2007-01-01

    This book is a state-of-the-art review on the physics of space weather and on space weather impacts on human technology, including manned spaceflight. With contributions from a team of international experts, this comprehensive work covers all aspects of space weather physical processes, and all known aspects of space hazards from humans, both in space and on Earth. Space Weather - Physics and Effects provides the first comprehensive, scientific background of space storms caused by the sun and its impact on geospace focuses on weather issues that have become vital for the development of nationwide technological infrastructures explains magnetic storms on Earth, including the effects of EUV radiation on the atmosphere is an invaluable aid in establishing real-time weather forecasts details the threat that solar effects might have on modern telecommunication systems, including national power grid systems, aircraft and manned spaceflight.

  16. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  17. Cockpit weather graphics using mobile satellite communications

    Science.gov (United States)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  18. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  19. Mountain Warfare and Cold Weather Operations

    Science.gov (United States)

    2016-04-29

    is important to determine whether the bottom is composed of sand, gravel, silt, clay , or rock and in what proportions. For more information see ATP...these planning factors by about two quarts per individual. 6-22. Water increases in viscosity in extreme cold weather, and therefore moves slower...In arctic conditions, fuel spilled on flesh can cause instant frostbite if the proper gloves are not worn. 6-32. Multi- viscosity oil (15W-40) is

  20. Terminal weather information management

    Science.gov (United States)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.