WorldWideScience

Sample records for relevant physical theory

  1. Developments in entanglement theory and applications to relevant physical systems

    OpenAIRE

    Lamata Manuel, Lucas

    2007-01-01

    This Thesis is devoted to the analysis of entanglement in relevant physical systems. Entanglement is the conducting theme of this research, though I do not dedicate to a single topic, but consider a wide scope of physical situations. I have followed mainly three lines of research for this Thesis, with a series of different works each, which are, Entanglement and Relativistic Quantum Theory, Continuous-variable entanglement, and Multipartite entanglement.

  2. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  3. Set theory and physics

    Energy Technology Data Exchange (ETDEWEB)

    Svozil, K. [Univ. of Technology, Vienna (Austria)

    1995-11-01

    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.

  4. Relevance theory: pragmatics and cognition.

    Science.gov (United States)

    Wearing, Catherine J

    2015-01-01

    Relevance Theory is a cognitively oriented theory of pragmatics, i.e., a theory of language use. It builds on the seminal work of H.P. Grice(1) to develop a pragmatic theory which is at once philosophically sensitive and empirically plausible (in both psychological and evolutionary terms). This entry reviews the central commitments and chief contributions of Relevance Theory, including its Gricean commitment to the centrality of intention-reading and inference in communication; the cognitively grounded notion of relevance which provides the mechanism for explaining pragmatic interpretation as an intention-driven, inferential process; and several key applications of the theory (lexical pragmatics, metaphor and irony, procedural meaning). Relevance Theory is an important contribution to our understanding of the pragmatics of communication. © 2014 John Wiley & Sons, Ltd.

  5. Identity theory and personality theory: mutual relevance.

    Science.gov (United States)

    Stryker, Sheldon

    2007-12-01

    Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.

  6. Topics in the mathematical physics of E-infinity theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    This is the fourth contribution in a series of papers aimed at directing the attention of the prospective E-infinity researcher to the most important mathematical background and sources needed for an easy understanding and successful application of this theory. The present paper is mainly concerned with the mathematical physics relevant to E-infinity theory with emphasis on super Yang-Mills theory and superstrings

  7. Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Universitaet, Berlin (Germany). Inst. fuer Theoretische Physik

    2010-02-15

    After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to draw attention to the relevance of what at the time of Swieca was called 'the Schwinger Higgs screening mechanism'. which, together with recent ideas which generalize the concept of gauge theories, have all the ingredients to revolutionize the issue of gauge theories and the standard model. (author)

  8. Jorge A. Swieca's contributions to quantum field theory in the 60's and 70's and their relevance in present research

    International Nuclear Information System (INIS)

    Schroer, Bert

    2010-01-01

    After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to draw attention to the relevance of what at the time of Swieca was called t he Schwinger Higgs screening mechanism . which, together with recent ideas which generalize the concept of gauge theories, have all the ingredients to revolutionize the issue of gauge theories and the standard model. (author)

  9. Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research

    International Nuclear Information System (INIS)

    Schroer, Bert; Freie Universitaet, Berlin

    2010-02-01

    After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to draw attention to the relevance of what at the time of Swieca was called 'the Schwinger Higgs screening mechanism'. which, together with recent ideas which generalize the concept of gauge theories, have all the ingredients to revolutionize the issue of gauge theories and the standard model. (author)

  10. Translation as secondary communication. The relevance theory ...

    African Journals Online (AJOL)

    Ernst-August Gutt started one of the greatest translation debates of the past ten years when he suggested that relevance theory holds the key to providing a unified account of translation. The bulk of the debate has been between practitioners of functional equivalence and advocates of a relevance theoretic approach to ...

  11. Philosophy of physics quantum theory

    CERN Document Server

    Maudlin, Tim

    2019-01-01

    In this book, Tim Maudlin, one of the world’s leading philosophers of physics, offers a sophisticated, original introduction to the philosophy of quantum mechanics. The briefest, clearest, and most refined account of his influential approach to the subject, the book will be invaluable to all students of philosophy and physics. Quantum mechanics holds a unique place in the history of physics. It has produced the most accurate predictions of any scientific theory, but, more astonishing, there has never been any agreement about what the theory implies about physical reality. Maudlin argues that the very term “quantum theory” is a misnomer. A proper physical theory should clearly describe what is there and what it does—yet standard textbooks present quantum mechanics as a predictive recipe in search of a physical theory. In contrast, Maudlin explores three proper theories that recover the quantum predictions: the indeterministic wavefunction collapse theory of Ghirardi, Rimini, and Weber; the deterministic ...

  12. Jorge A. Swieca's contributions to quantum field theory in the 60s and 70s and their relevance in present research

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Freie Universitaet, Berlin (Germany). Inst. fuer Theoretische Physik

    2010-02-15

    After revisiting some high points of particle physics and QFT of the two decades from 1960 to 1980, I comment on the work by Jorge Andre Swieca. I explain how it fits into the quantum field theory during these two decades and draw attention to its relevance to the ongoing particle physics research. A particular aim of this article is to draw attention to the relevance of what at the time of Swieca was called 'the Schwinger Higgs screening mechanism'. which, together with recent ideas which generalize the concept of gauge theories, have all the ingredients to revolutionize the issue of gauge theories and the standard model. (author)

  13. The Accidental Transgressor: Morally Relevant Theory of Mind

    Science.gov (United States)

    Killen, Melanie; Mulvey, Kelly Lynn; Richardson, Cameron; Jampol, Noah

    2014-01-01

    To test young children’s false belief theory of mind in a morally relevant context, two experiments were conducted. In Experiment 1, children (N = 162) at 3.5, 5.5, and 7.5 years of age were administered 3 tasks: prototypic moral transgression task, false belief theory of mind task (ToM), and an “accidental transgressor” task, which measured a morally relevant false belief theory of mind (MoToM). Children who did not pass false belief ToM were more likely to attribute negative intentions to an accidental transgressor than children who passed false belief ToM, and to use moral reasons when blaming the accidental transgressor. In Experiment 2, children (N = 46) who did not pass false belief ToM viewed it as more acceptable to punish the accidental transgressor than did participants who passed false belief ToM. Findings are discussed in light of research on the emergence of moral judgment and theory of mind. PMID:21377148

  14. The Relevant Physical Trace in Criminal Investigation

    Directory of Open Access Journals (Sweden)

    Durdica Hazard

    2016-01-01

    Full Text Available A criminal investigation requires the forensic scientist to search and to interpret vestiges of a criminal act that happened in the past. The forensic scientist is one of the many stakeholders who take part in the information quest within the criminal justice system. She reads the investigation scene in search of physical traces that should enable her to tell the story of the offense/crime that allegedly occurred. The challenge for any investigator is to detect and recognize relevant physical traces in order to provide clues for investigation and intelligence purposes, and that will constitute sound and relevant evidence for the court. This article shows how important it is to consider the relevancy of physical traces from the beginning of the investigation and what might influence the evaluation process. The exchange and management of information between the investigation stakeholders are important. Relevancy is a dimension that needs to be understood from the standpoints of law enforcement personnel and forensic scientists with the aim of strengthening investigation and ultimately the overall judicial process.

  15. Renormalization group improved Yennie-Frautschi-Suura theory for Z0 physics

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    1987-06-01

    Described is a recently developed renormalization group improved version of the program of Yennie, Frautschi and Suura for the exponentiation of infrared divergences in Abelian gauge theories. Particular attention is paid to the relevance of this renormalization group improved exponentiation to Z 0 physics at the SLC and LEP

  16. On the Relevance of Game Theory in Strategic Thinking ...

    African Journals Online (AJOL)

    On the Relevance of Game Theory in Strategic Thinking. ... The author reviews some of the applicable literature and shows how game theory can be used to predict the outcome of a strategy, explain why a ... AJOL African Journals Online.

  17. The Accidental Transgressor: Morally-Relevant Theory of Mind

    Science.gov (United States)

    Killen, Melanie; Mulvey, Kelly Lynn; Richardson, Cameron; Jampol, Noah; Woodward, Amanda

    2011-01-01

    To test young children's false belief theory of mind in a morally relevant context, two experiments were conducted. In Experiment 1, children (N=162) at 3.5, 5.5, and 7.5 years of age were administered three tasks: prototypic moral transgression task, false belief theory of mind task (ToM), and an "accidental transgressor" task, which measured a…

  18. A New Foundation of Physical Theories

    CERN Document Server

    Ludwig, Günther

    2006-01-01

    Written in the tradition of G. Ludwig’s groundbreaking works, this book aims to clarify and formulate more precisely the fundamental ideas of physical theories. By introducing a basic descriptive language of simple form, in which it is possible to formulate recorded facts, ambiguities of physical theories are avoided as much as possible. In this approach the field of physics that should be described by a theory is determined by basic concepts only, i.e. concepts that can be explained without a theory. In this context the authors introduce a new concept of idealization and review the process of discovering new concepts. They believe that, when the theories are formulated within an axiomatic basis, solutions can be found to many difficult problems such as the interpretation of physical theories, the relations between theories as well as the introduction of physical concepts. The book addresses both physicists and philosophers of science and should encourage the reader to contribute to the understanding of the...

  19. Vocabulary of CPH Theory and Modern Physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Wherefore CPH theory was presented? There are various theories in physics, but nature is unique. This is not nature's problem that we have various theories; nature obeys simple and unique law. So, we should improve our understanding of physical phenomena and unify theories. There is a compare brief...... of CPH Theory (Creative Particles of Higgs Theory) and modern physics in this vocabulary....

  20. Bible Translation And Relevance Theory | Deist | Stellenbosch ...

    African Journals Online (AJOL)

    Stellenbosch Papers in Linguistics Plus. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 22 (1992) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Bible Translation And Relevance Theory. F Deist ...

  1. Hadron physics and transfinite set theory

    International Nuclear Information System (INIS)

    Augenstein, B.W.

    1984-01-01

    Known results in transfinite set theory appear to anticipate many aspects of modern particle physics. Extensive and powerful analogies exist between the very curious theorems on ''paradoxical'' decompositions in transfinite set theory, and hadron physics with its underlying quark theory. The phenomenon of quark confinement is an example of a topic with a natural explanation via the analogies. Further, every observed strong interaction hadron reaction can be envisaged as a paradoxical decomposition or sequence of paradoxical decompositions. The essential role of non-Abelian groups in both hadron physics and paradoxical decompositions is one mathematical link connecting these two areas. The analogies suggest critical roles in physics for transfinite set theory and nonmeasurable sets. (author)

  2. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  3. Relevance of physics to the pharmacy major.

    Science.gov (United States)

    McCall, Richard P

    2007-08-15

    To offer a physics course that is relevant to pharmacy students, yet still contains many of the fundamental principles of physics. The course was modified over a period of several years to include activities and examples that were related to other courses in the curriculum. Course evaluations were given to assess student attitudes about the importance of physics in the pharmacy curriculum. Students' attitudes have changed over time to appreciate the role that physics plays in their studies. Students gained confidence in their ability to learn in other courses.

  4. On Reading Comprehension Teaching for English Majors under Relevance Theory

    Science.gov (United States)

    He, Ping

    2018-01-01

    Relevance Theory from the perspective of cognitive psychology argues that human communication is an ostensive-inferential process, and emphasizes the function of the optimal relevance for communication. In this sense, reading comprehension could be considered as a kind of communication in which the writer manifests his/her communication intention…

  5. Physics of singularities in pressure-impulse theory

    Science.gov (United States)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  6. Relevance Theory as model for analysing visual and multimodal communication

    NARCIS (Netherlands)

    Forceville, C.; Machin, D.

    2014-01-01

    Elaborating on my earlier work (Forceville 1996: chapter 5, 2005, 2009; see also Yus 2008), I will here sketch how discussions of visual and multimodal discourse can be embedded in a more general theory of communication and cognition: Sperber and Wilson’s Relevance Theory/RT (Sperber and Wilson

  7. Symmetry and group theory throughout physics

    Directory of Open Access Journals (Sweden)

    Villain J.

    2012-03-01

    Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.

  8. Physical Activity Participation: Social Cognitive Theory versus the Theories of Reasoned Action and Planned Behavior.

    Science.gov (United States)

    Dzewaltowski, David A; Noble, John M; Shaw, Jeff M

    1990-12-01

    Social cognitive theory and the theories of reasoned action and planned behavior were examined in the prediction of 4 weeks of physical activity participation. The theories of reasoned action and planned behavior were supported. Attitude and perceived control predicted intention, and intention predicted physical activity participation. The social cognitive theory variables significantly predicted physical activity participation, with self-efficacy and self-evaluation of the behavior significantly contributing to the prediction. The greater the confidence in participating in physical activity and the greater the satisfaction with present physical activity, the more physical activity performed. Hierarchical regression analyses indicated that perceived control and intentions did not account for any unique variation in physical activity participation over self-efficacy. Therefore the social cognitive theory constructs were better predictors of physical activity than those from the theories of reasoned action and planned behavior.

  9. Thermal physics kinetic theory and thermodynamics

    CERN Document Server

    Singh, Devraj; Yadav, Raja Ram

    2016-01-01

    THERMAL PHYSICS: Kinetic Theory and Thermodynamics is designed for undergraduate course in Thermal Physics and Thermodynamics. The book provides thorough understanding of the fundamental principles of the concepts in Thermal Physics. The book begins with kinetic theory, then moves on liquefaction, transport phenomena, the zeroth, first, second and third laws, thermodynamics relations and thermal conduction. The book concluded with radiation phenomenon. KEY FEATURES: * Include exercises * Short Answer Type Questions * Long Answer Type Questions * Numerical Problems * Multiple Choice Questions

  10. F-Theory - From Geometry to Physics and Back

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Compactifications of string theory have the potential to form a bridge between what we believe is a consistent quantum theory of gravity in 10 spacetime dimensions and observed physics in four dimensions. At the same time, beautiful results from mathematics, especially algebraic geometry, are directly linked to some of the key concepts in modern particle and quantum field theory. This theory colloquium will illustrate some of these ideas in the context of F-theory, which provides a non-perturbative formulation of a class of string compactifications in their geometric regime. Recent applications of F-theory range from very concrete suggestions to address known challenges in physics beyond the Standard Model to the 'physicalization of geometry' to the construction and investigations of strongly coupled quantum field theories in various dimensions. After reviewing examples of such applications we will conclude by demonstrating the close links between geometry and physics in F-theory via some new results on the r...

  11. Group theory in physics

    CERN Document Server

    Cornwell, J F

    1989-01-01

    Recent devopments, particularly in high-energy physics, have projected group theory and symmetry consideration into a central position in theoretical physics. These developments have taken physicists increasingly deeper into the fascinating world of pure mathematics. This work presents important mathematical developments of the last fifteen years in a form that is easy to comprehend and appreciate.

  12. DOE fundamentals handbook: Nuclear physics and reactor theory

    International Nuclear Information System (INIS)

    1993-01-01

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance

  13. Particle physics and gauge theories

    International Nuclear Information System (INIS)

    Morel, A.

    1985-01-01

    These notes are intended to help readers not familiar with particle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. The introduction is considerably enlarged in order to give non specialists a general overview of present days ''elementary'' particle physics. The Glashow-Salam-Weinberg model is then treated, with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the non-observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a ''good'' unified theory. In particular, it allows one to study interesting connections between particle physics and cosmology. 35 refs.

  14. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  15. New approaches within the history and theory of medicine and their relevance for homeopathy.

    Science.gov (United States)

    Schmidt, Josef M

    2014-04-01

    Conventional sciences have brought forth a wealth of knowledge and benefits, but they have not always been clear and precise about their legitimate scope and methodological limitations. In contrast, new and critical approaches in modern sciences question and reflect their own presuppositions, dependencies, and constraints. Examples are quantum physics, theory and history of science, as well as theory and history of medicine, sociology, and economics. In this way, deprecative dogmatism and animosity amongst sciences ought to be lessened, while the field opens up for each science to redefine its appropriate place in society. This would appear to be a chance for homeopathy, as new approaches, especially within the social and economic sciences, suggest that being a follower of Samuel Hahnemann (1755-1843) may have advantages and privileges that conventional medicine seems to be lacking and whose relevance was overlooked during the rise of economic thinking in the last two centuries. Copyright © 2013 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  16. The Teaching Effectiveness of a Relevant Physics Course

    Science.gov (United States)

    Hobson, Art

    1998-04-01

    If America is to achieve the science literacy that is ssential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, critical thinking, ozone depletion, technological risk, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. Students find these topics relevant and fascinating, leading to strong course evaluations and large enrollments by non-scientists even in courses labeled physics. I will describe this course and present some evidence indicating that the course is effective in communicating physics and its interdisciplinary connections. A textbook, Physics: Concepts and Connections (Prentice Hall, 1995, 2nd edition to appear in June 1998), is available.

  17. The Unified Theory of Physics

    OpenAIRE

    Chung, Ding-Yu

    2002-01-01

    The unified theory of physics unifies various phenomena in our observable universe and other universes. The unified theory is based on the zero-energy universe and the space-object structures. Different universes in different developmental stages are the different expressions of the space-object structures. The unified theory is divided into five parts: the space-object structures, cosmology, the periodic table of elementary particles, the galaxy formation, and the extreme force field. The sp...

  18. Job Search and Social Cognitive Theory: The Role of Career-Relevant Activities

    Science.gov (United States)

    Zikic, Jelena; Saks, Alan M.

    2009-01-01

    Social cognitive theory was used to explain the relationships between career-relevant activities (environmental and self career exploration, career resources, and training), self-regulatory variables (job search self-efficacy and job search clarity), variables from the Theory of Planned Behavior (job search attitude, subjective norm, job search…

  19. Deliberate practice theory: perceived relevance, effort, and inherent enjoyment of music practice: study II.

    Science.gov (United States)

    Hyllegard, Randy; Bories, Tamara L

    2009-10-01

    This study, based on the theory of deliberate practice, examined the practice relevance, effort, and inherent enjoyment aspects of the theory. 25 college undergraduates practiced playing a melody on an electronic keyboard for three 20-min. practice sessions. Following each session, the perceived relevance of the practice for improving performance of the melody, the effort needed to learn the melody, and the inherent enjoyment of the practice were each rated on 10-point scales. Findings were consistent with theory and similar to previous studies also involving music practice and other tasks.

  20. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Science.gov (United States)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  1. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551 (United States)

    2016-04-15

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing

  2. Information Theory - The Bridge Connecting Bounded Rational Game Theory and Statistical Physics

    Science.gov (United States)

    Wolpert, David H.

    2005-01-01

    A long-running difficulty with conventional game theory has been how to modify it to accommodate the bounded rationality of all red-world players. A recurring issue in statistical physics is how best to approximate joint probability distributions with decoupled (and therefore far more tractable) distributions. This paper shows that the same information theoretic mathematical structure, known as Product Distribution (PD) theory, addresses both issues. In this, PD theory not only provides a principle formulation of bounded rationality and a set of new types of mean field theory in statistical physics; it also shows that those topics are fundamentally one and the same.

  3. Theory for everything. Elements of a knowledge theory of physics

    International Nuclear Information System (INIS)

    Boom, H. van den

    2006-01-01

    What means physical representation? Does it map the reality? Or does it rather form reality? This book introduces to the circle of themes of knowledge theory and draws the present picture of world of physics. It appeals to readers, who want to become acquainted with the picture of world represented by physics without special knowledge

  4. Theory of homogeneous condensation from small nuclei. I. Modified Mayer theory of physical clusters

    International Nuclear Information System (INIS)

    Lockett, A.M. III

    1980-01-01

    A theory of physical clusters is developed within the framework of the Theory of Imperfect Gases. Physical monomers and clusters are redefined diagrammatically thereby removing the unphysical nature of the usual Mayer clusters while retaining essentially all of the desirable features of the Mayer theory. The resulting formulation is simple, unambiguous, and well suited for incorporation into a kinetic theory of condensation which is computationally tractable

  5. THE RELEVANCE OF DUESENBERRY CONSUMPTION THEORY! AN APPLIED CASE TO LATIN AMERICA

    OpenAIRE

    Parada Corrales, Jairo; Bacca Mejia, William

    2009-01-01

    In this paper we examine the to-date relevance of Duesenberry's Consumption Theory through an applied case to four economies in Latin America: Mexico, Brazil, Argentina and Colombia. Using annual time series of these countries we show that some empirical evidence of Duesenberry's theory still holds and should not be discarded in modern macroeconomics as it has happened in regular macro text books in mainstream economics. Duesenberry's theory includes important institutional factors that canno...

  6. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 3. ed.

    International Nuclear Information System (INIS)

    Scheck, Florian

    2010-01-01

    Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [de

  7. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1978-03-01

    Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references

  8. Print versus a culturally-relevant Facebook and text message delivered intervention to promote physical activity in African American women: a randomized pilot trial.

    Science.gov (United States)

    Joseph, Rodney P; Keller, Colleen; Adams, Marc A; Ainsworth, Barbara E

    2015-03-27

    African American women report insufficient physical activity and are disproportionally burdened by associated disease conditions; indicating the need for innovative approaches to promote physical activity in this underserved population. Social media platforms (i.e. Facebook) and text messaging represent potential mediums to promote physical activity. This paper reports the results of a randomized pilot trial evaluating a theory-based (Social Cognitive Theory) multi-component intervention using Facebook and text-messages to promote physical activity among African American women. Participants (N = 29) were randomly assigned to receive one of two multi-component physical activity interventions over 8 weeks: a culturally-relevant, Social Cognitive Theory-based, intervention delivered by Facebook and text message (FI) (n = 14), or a non-culturally tailored print-based intervention (PI) (n = 15) consisting of promotion brochures mailed to their home. The primary outcome of physical activity was assessed by ActiGraph GT3X+ accelerometers. Secondary outcomes included self-reported physical activity, physical activity-related psychosocial variables, and participant satisfaction. All randomized participants (N = 29) completed the study. Accelerometer measured physical activity showed that FI participants decreased sedentary time (FI = -74 minutes/week vs. PI = +118 minute/week) and increased light intensity (FI = +95 minutes/week vs. PI = +59 minutes/week) and moderate-lifestyle intensity physical activity (FI = + 27 minutes/week vs. PI = -34 minutes/week) in comparison to PI participants (all P's  .05). Results of secondary outcomes showed that in comparison to the PI, FI participants self-reported greater increases in moderate-to-vigorous physical activity (FI = +62 minutes/week vs. PI = +6 minutes/week; P = .015) and had greater enhancements in self-regulation for physical activity (P program to a friend

  9. Relationships between self-determination theory and theory of planned behavior applied to physical activity and exercise behavior in chronic pain.

    Science.gov (United States)

    Brooks, Jessica M; Iwanaga, Kanako; Chiu, Chung-Yi; Cotton, Brandi Parker; Deiches, Jon; Morrison, Blaise; Moser, Erin; Chan, Fong

    2017-08-01

    This study examined the relationships between self-determination theory (SDT) and theory of planned behavior (TpB) applied to physical activity and exercise behavior (PA&E) in people with chronic pain. Two hundred and eleven adults with chronic musculoskeletal pain (28 males and 183 females, age range 18 to 82 years, mean age 43 years) were recruited from online support groups and clinic networks in the United States. Participants completed SDT measures relevant to PA&E on perceived autonomy support, autonomy, competence, and relatedness, as well as TpB measures relevant to PA&E on intention, attitudes, subjective norms, and perceived behavioral control. Correlational techniques and canonical correlation analysis were performed to examine the relationships and variance within and between theoretical dimensions. Overall, the SDT set accounted for 37% of the TpB variance and the TpB set accounted for 32% of the SDT set variance. The results indicate there are statistical similarities and differences between concepts in SDT and TpB models for PA&E. Using both empirical guidance and clinical expertise, researchers and practitioners should attempt to select and integrate non-redundant and complementary components from SDT, TpB, and other related health behavior theories.

  10. IS IT NECESSARY TO TEACH THE THEORY OF RELATIVITY IN GENERAL PHYSICS COURSE

    Directory of Open Access Journals (Sweden)

    Sergey N. Kolgatin

    2015-01-01

    Full Text Available The aim of the present investigation is to discuss and study the general structure of the course of Physics at the high school in an extended sense. In a narrower sense, the author wonders about the necessity for inclusion of the section «Theory of Relativity» in the General Physics course, and discusses the possible site of this issue in the order of presentation.Methods. A method for designing Physics course in modern conditions requires certain sophistication from a lecturer. This is due to the strong reduction of Physics course occurred in recent years, and due to a number of objective and subjective reasons. Planning the course structure, one has to make the selection of most significant questions sacrificing minor and less significant issues. This process is particularly exacerbated by severe restrictions on the time allowed for the subject. It is necessary to re-examine the content of the course due to the recent reduction in lecture hours on Physics. In this case, it would be undesirable to neglect the substantial parts of the subject content which are important conceptually or in its applications, e.g. the Relativity Theory. The author discusses two ways of disposition of the relevant material in the course structure, and correlates them with the required level of Physics teaching. In the first approach the Relativity Theory course is considered as a part of Modern Mechanics and is placed in the first semester immediately following Kinematics. In the second approach, Relativistic Physics is presented as a result of deduction, as a generalized theory explaining the unity of the world and the objective existence of physical laws; in this case, the section is better to locate after Optics, immediately before Atomic Physics.Results. As a result of consideration, the author proves the conclusion that the inclusion of the Relativistic Theory course in a number of sections of General Physics is necessary. The author offers a list of

  11. Nanostructure symmetry: Relevance for physics and computing

    International Nuclear Information System (INIS)

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.; Dalessi, S.; Gallinet, B.; Svendsen, G.

    2014-01-01

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented

  12. Nanostructure symmetry: Relevance for physics and computing

    Energy Technology Data Exchange (ETDEWEB)

    Dupertuis, Marc-André; Oberli, D. Y. [Laboratory for Physics of Nanostructure, EPF Lausanne (Switzerland); Karlsson, K. F. [Department of Physics, Chemistry, and Biology (IFM), Linköping University (Sweden); Dalessi, S. [Computational Biology Group, Department of Medical Genetics, University of Lausanne (Switzerland); Gallinet, B. [Nanophotonics and Metrology Laboratory, EPF Lausanne (Switzerland); Svendsen, G. [Dept. of Electronics and Telecom., Norwegian University of Science and Technology, Trondheim (Norway)

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  13. Mathematical and physical theory of turbulence

    CERN Document Server

    Cannon, John

    2006-01-01

    Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...

  14. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations

  15. Sens et temps de la Gestalt (Gestalt theory: critical overview and contemporary relevance)

    OpenAIRE

    Rosenthal, Victor; Visetti, Yves-Marie

    1999-01-01

    Rather than mere psychological doctrine, Gestalt theory was conceived of as a general theory of form and organization deemed to lay a unified groundwork for several domains of scientific endeavor. Our aim in this article is to assess the legacy of this framework, and examine its relevance for present-day research in cognitive science. We thus survey the intellectual contexts within which Gestalt theory originated and evolved, and review some of its central features: a phenomenological approac...

  16. Other relevant papers in physical oceanography

    International Nuclear Information System (INIS)

    Nyffeler, F.

    1989-01-01

    During the past few years, significant progress has occurred in the field of physical oceanography partly as a consequence of developing cooperation and international participation in well-coordinated ocean research programmes. Although these programs were not designed specifically to address CRESP problems, many have proved to be directly relevant to CRESP objectives. For example, MODE, POLYMODE, and Tourbillon were intensive site-specific experiments that included studies of dispersion processes throughout the water column. NOAMP and GME were also site specific, involved the entire water column, and even stressed near-bottom and suspended-sediment processes. Others, (e.g., WOCE) are larger in scope and include extensive observations of the general circulation of entire ocean basins. As a whole, they contribute immensely to improving the data base for exchange and transport processes and thereby for the verification and validation of both regional-scale and general-circulation ocean models. That, in turn, is directly relevant to radiological assessments. Selected papers deriving from experiments such as these are discussed and referenced below

  17. Deliberate practice theory: relevance, effort, and inherent enjoyment of music practice.

    Science.gov (United States)

    Hyllegard, Randy; Bories, Tamara L

    2008-10-01

    This study examined three assumptions of the theory of deliberate practice for practice playing music on an electronic keyboard. 40 undergraduate students, divided into two separate groups, practiced one of two music sequences and rated the relevance of practice for improving performance on the sequences, the amount of effort needed to learn the sequences, and the inherent enjoyment of practice sessions. Findings for each assumption were consistent with those suggested by theory but also showed that perceptions are affected by the amount of practice completed and performance of the skill.

  18. A situation-specific theory of Midlife Women's Attitudes Toward Physical Activity (MAPA).

    Science.gov (United States)

    Im, Eun-Ok; Stuifbergen, Alexa K; Walker, Lorraine

    2010-01-01

    This paper presents a situation specific theory-the Midlife Women's Attitudes Toward Physical Activity (MAPA) theory-that explains how women's attitudes toward physical activity influence their participation in physical activity. Using the integrative approach of Im, the theory was developed based on the Attitude, Social Influence, and Self Efficacy Model; a review of the related literature; and a study of women's attitudes toward physical activity. As a situation-specific theory, the MAPA theory can be linked easily to nursing practice and research projects related to physical activity in midlife women, especially interventions aimed at increasing midlife women's participation in physical activity. Copyright 2010 Mosby, Inc. All rights reserved.

  19. Formal analysis of physical theories

    International Nuclear Information System (INIS)

    Dalla Chiara, M.L.; Toraldo di Francia, G.

    1979-01-01

    The rules of inference that are made use of in formalization are considered. It is maintained that a physical law represents the universal assertion of a probability, and not the assessment of the probability of a universal assertion. The precision of the apparatus used to collect the experimental evidence is introduced as an essential part of the theoretical structure of physics. This approach allows the author to define the concept of truth in a satisfactory way, abandoning the unacceptable notion of approximate truth. It is shown that a considerable amount of light can be shed on a number of much debated problems arising in the logic of quantum mechanics. It is stressed that the deductive structure of quantum theory seems to be essentially founded on a kind of mixture of different logics. Two different concepts of truth are distinguished within quantum theory, an empirical truth and quantum-logical truth. (Auth.)

  20. Theory of safety needs (about the theory of arise of physical education

    Directory of Open Access Journals (Sweden)

    V.S. Muntian

    2014-12-01

    Full Text Available Purpose: Existing theories of physical education are examinated. Material : the analysis and synthesis of more than 20 literary sources and Internet information, reflecting the general patterns of occurrence and development of physical education during birth civilization. Results : Informed that early humans lived in a permanent state of the struggle for existence, associated with the satisfaction of primary needs. Ascertain in the process of obtaining food and ensuring their own safety, people began to use the means of physical education, resulting in a conscious understanding of the phenomenon and the importance effectiveness (the result of doing (perform the exercises preparation. Conclusions : First put forward and substantiated the theory safety needs as one of the top priorities and the likely causes of physical education and sport, as this needs arose almost simultaneously with the appearance of a person.

  1. Is Wagner’s theory relevant in explaining health expenditure dynamics in Botswana?

    Directory of Open Access Journals (Sweden)

    Kunofiwa Tsaurai

    2014-11-01

    Full Text Available This study tests the relevance of the Wagner’s theory in explaining the health expenditure in Botswana. There is no consensus yet when it comes to the causality relationship between health expenditure and economy. At the moment, there are four dominant schools of thought explaining the causality relationship between health expenditure and economy. The first school of thought is that health expenditure spurs the economy whilst the second school of thought says that the economy drives health expenditure. The third school of thought maintains that there is a feedback effect between health expenditure and the economy whilst the fourth mentions that there is no causality at all between the two variables. However, this study found out that there is no causality relationship between health expenditure and GDP in Botswana thereby dismissing the relevance of the Wagner’s theory.

  2. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1979-01-01

    The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de

  3. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    International Nuclear Information System (INIS)

    Wells, James

    2015-01-01

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more

  4. What is Time in Some Modern Physics Theories: Interpretation Problems

    Directory of Open Access Journals (Sweden)

    Karpenko Ivan A.

    2016-03-01

    Full Text Available The article deals with the problem of time in the context of several theories of modem physics. This fundamental concept inevitably arises in physical theories, but so far there is no adequate description of it in the philosophy of science. In the theory of relativity, quantum field theory. Standard Model of particle physics, theory of loop quantum gravity, superstring theory and other most recent theories the idea of time is shown explicitly or not. Sometimes, such as in the special theory of relativity, it plays a significant role and sometimes it does not. But anyway it exists and is implied by the content of the theory, which in some cases directly includes its mathematical tools. Fundamental difference of space-time processes in microcosm and macrocosm is of particular importance for solving the problem. In this regard, a need to understand the time in the way it appears in modem physics, to describe it in the language of philosophy arises (satisfactory for time description mathematical tools also do not exist. This will give an opportunity to get closer to the answer on question of time characteristics. And even if we do not obtain the exact answer, we will still be able to formulate the right question about its nature. For this purpose, the present research carries out analysis of the key theories of modern physics with regard to historical and scientific, historical and philosophical perspectives, hi some cases, this gives an opportunity to detect the succession of the associated with time perception ideas, their development, as well as the origination of fundamentally new ones. During the analysis, the conect characteristics of time are formulated from the point of view of physical theory and the attempt to state the nature of time is made. On the ground of conducted research, the conclusions about current state of the problem and its future solution perspectives are drawn.

  5. Group Theory with Applications in Chemical Physics

    Science.gov (United States)

    Jacobs, Patrick

    2005-10-01

    Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course. An introductory and advanced text that comprehensively covers fundamentals and applications of group theory in detail Suitable for a two-semester course with numerous worked examples and problems Includes several topics often omitted from introductory texts, such as rotation group, space groups and spinor bases

  6. Information Theoretic Characterization of Physical Theories with Projective State Space

    Science.gov (United States)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  7. Pores and Void in Asclepiades’ Physical Theory

    Science.gov (United States)

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  8. The mathematical foundations of gauge theories

    International Nuclear Information System (INIS)

    Marathe, K.B.; Martucci, G.

    1992-01-01

    Theoretical physicists tend to discuss their theories in the language of mathematics. However, the adequate mathematical formulation may not yet be available when the physical law is first discovered. Mathematical physicists trying to develop the relevant mathematics for these theories, may obtain new insights into old mathematical structures. Gauge Theory is such a gift from physics to mathematics. This book presents a self-contained development of a differential geometric formulation of gauge theories, in particular, the theory of Yang-Mills fields. (author). refs.; figs.; tabs

  9. Causal fermion systems as a candidate for a unified physical theory

    Science.gov (United States)

    Finster, Felix; Kleiner, Johannes

    2015-07-01

    The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.

  10. Low-energy meson physics (chiral theory)

    International Nuclear Information System (INIS)

    Volkov, M.K.; Pervushin, V.N.

    1976-01-01

    A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments

  11. The pairing theory - its physical basis and its consequences

    International Nuclear Information System (INIS)

    Schrieffer, J.R.

    1992-01-01

    The key developments which set the scene for the microscopic theory of superconductivity are discussed and the physical reasoning which lead to the pairing theory is presented. Consequences of the BCS theory are reviewed. (orig.)

  12. Causal fermion systems as a candidate for a unified physical theory

    International Nuclear Information System (INIS)

    Finster, Felix; Kleiner, Johannes

    2015-01-01

    The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction. (paper)

  13. Protection motivation theory and physical activity in the general population: a systematic literature review.

    Science.gov (United States)

    Bui, Linh; Mullan, Barbara; McCaffery, Kirsten

    2013-01-01

    An appropriate theoretical framework may be useful for guiding the development of physical activity interventions. This review investigates the effectiveness of the protection motivation theory (PMT), a model based on the cognitive mediation processes of behavioral change, in the prediction and promotion of physical activity participation. A literature search was conducted using the databases MEDLINE, PsycINFO, PubMed, and Web of Science, and a manual search was conducted on relevant reference lists. Studies were included if they tested or applied the PMT, measured physical activity, and sampled from healthy populations. A total of 20 studies were reviewed, grouped into four design categories: prediction, stage discrimination, experimental manipulation, and intervention. The results indicated that the PMT's coping appraisal construct of self-efficacy generally appears to be the most effective in predicting and promoting physical activity participation. In conclusion, the PMT shows some promise, however, there are still substantial gaps in the evidence.

  14. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  15. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Omohundro, S.M.

    1985-01-01

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  16. Physics Nobel prize 2004: Surprising theory wins physics Nobel

    CERN Multimedia

    2004-01-01

    From left to right: David Politzer, David Gross and Frank Wilczek. For their understanding of counter-intuitive aspects of the strong force, which governs quarks inside protons and neutrons, on 5 October three American physicists were awarded the 2004 Nobel Prize in Physics. David J. Gross (Kavli Institute of Theoretical Physics, University of California, Santa Barbara), H. David Politzer (California Institute of Technology), and Frank Wilczek (Massachusetts Institute of Technology) made a key theoretical discovery with a surprising result: the closer quarks are together, the weaker the force - opposite to what is seen with electromagnetism and gravity. Rather, the strong force is analogous to a rubber band stretching, where the force increases as the quarks get farther apart. These physicists discovered this property of quarks, known as asymptotic freedom, in 1976. It later became a key part of the theory of quantum chromodynamics (QCD) and the Standard Model, the current best theory to describe the interac...

  17. Scattering theory in quantum mechanics. Physical principles and mathematical methods

    International Nuclear Information System (INIS)

    Amrein, W.O.; Jauch, J.M.; Sinha, K.B.

    1977-01-01

    A contemporary approach is given to the classical topics of physics. The purpose is to explain the basic physical concepts of quantum scattering theory, to develop the necessary mathematical tools for their description, to display the interrelation between the three methods (the Schroedinger equation solutions, stationary scattering theory, and time dependence) to derive the properties of various quantities of physical interest with mathematically rigorous methods

  18. Self-determination theory and understanding of student motivation in physical education instruction

    Directory of Open Access Journals (Sweden)

    Đorđić Višnja

    2010-01-01

    Full Text Available Physical education is considered to be a favorable context for accomplishment of important educational outcomes and promotion of physical activity in children and youth. The real scope of physical education instruction largely depends on student motivation. Self-determination theory, as a specific macrotheory of motivation, offers a rewarding framework for understanding student motivation in physical education instruction. The paper presents the basic tenets of self-determination theory, the most important studies in the domain of physical education and didactic and methodical implications. Two mini-theories within the self-determination theory are analyzed in more detail, the cognitive evaluation theory and the organismic integration theory. Empirical verification of the theoretical tenets indicates the existence of typical motivational profiles of students in physical education instruction, the basic psychological needs as mediators of influence of social and interpersonal factors on student motivation, followed by the importance of motivational climate, students' goal orientations and teaching style for self-determination of students' behavior in physical education instruction. Didactic and methodical implications refer to the need for developing a more flexible curriculum of physical education, encouraging a motivational climate, task-focused goal orientations, and, especially, encouraging the perceived moving competence of the student.

  19. Index Theory with Applications to Mathematics and Physics

    DEFF Research Database (Denmark)

    Booss-Bavnbek, Bernhelm; Bleecker, David

    Index Theory with Applications to Mathematics and Physics describes, explains, and explores the Index Theorem of Atiyah and Singer, one of the truly great accomplishments of twentieth-century mathematics whose influence continues to grow, fifty years after its discovery. The Index Theorem has giv...... birth to many mathematical research areas and exposed profound connections between analysis, geometry, topology, algebra, and mathematical physics. Hardly any topic of modern mathematics stands independent of its influence.......Index Theory with Applications to Mathematics and Physics describes, explains, and explores the Index Theorem of Atiyah and Singer, one of the truly great accomplishments of twentieth-century mathematics whose influence continues to grow, fifty years after its discovery. The Index Theorem has given...

  20. arXiv The Infrared Physics of Bad Theories

    CERN Document Server

    Assel, Benjamin

    2017-09-28

    We study the complete moduli space of vacua of 3d $\\mathcal{N}=4$ $U(N)$ SQCDtheories with $N_f$ fundamentals, building on the algebraic description of theCoulomb branch, and deduce the low energy physics in any vacuum from the localgeometry of the moduli space. We confirm previous claims for good and ugly SQCDtheories, and show that bad theories flow to the same interacting fixed pointsas good theories with additional free twisted hypermultiplets. A Seiberg-likeduality proposed for bad theories with $N \\le N_f \\le 2N-2$ is ruled out: thespaces of vacua of the putative dual theories are different. However such badtheories have a distinguished vacuum, which preserves all the globalsymmetries, whose infrared physics is that of the proposed dual. We finallyexplain previous results on sphere partition functions and elucidate therelation between the UV and IR $R$-symmetry in this symmetric vacuum.

  1. The Amygdala and the Relevance Detection Theory of Autism: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Tiziana eZalla

    2013-12-01

    Full Text Available In the last few decades, there has been increasing interest in the role of the amygdala in psychiatric disorders and in particular its contribution to the socio-emotional impairments in autism spectrum disorders (ASDs. Given that the amygdala is a component structure of the social brain, several theoretical explanations compatible with amygdala dysfunction have been proposed to account for socio-emotional impairments in ASDs, including abnormal eye contact, gaze monitoring, face processing, mental state understanding and empathy. Nevertheless, many theoretical accounts, based on the Amygdala Theory of Autism, fail to elucidate the complex pattern of impairments observed in this population, which extends beyond the social domain. As posited by the Relevance Detector theory (Sander, Grafman and Zalla, 2003, the human amygdala is a critical component of a brain circuit involved in the appraisal of self-relevant events that include, but are not restricted to, social stimuli. Here, we propose that the behavioral and social-emotional features of ASDs may be better understood in terms of a disruption in a ‘Relevance Detector Network’ affecting the processing of stimuli that are relevant for the organism’s self-regulating functions. In the present review, we will first summarize the main literature supporting the involvement of the amygdala in socio-emotional disturbances in ASDs. Next, we will present a revised version of the amygdala Relevance Detector hypothesis and we will show that this theoretical framework can provide a better understanding of the heterogeneity of the impairments and symptomatology of ASDs. Finally, we will discuss some predictions of our model, and suggest new directions in the investigation of the role of the amygdala within the more generally disrupted cortical connectivity framework as a model of neural organization of the autistic brain.

  2. Investigations in gauge theories, topological solitons and string theories

    International Nuclear Information System (INIS)

    1993-01-01

    This is the Final Report on a supported research project on theoretical particle physics entitled ''Investigations in Gauge Theories, Topological Solitons and String Theories.'' The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies

  3. Solid state theory

    CERN Document Server

    Harrison, Walter A

    2011-01-01

    ""A well-written text . . . should find a wide readership, especially among graduate students."" - Dr. J. I. Pankove, RCA.The field of solid state theory, including crystallography, semi-conductor physics, and various applications in chemistry and electrical engineering, is highly relevant to many areas of modern science and industry. Professor Harrison's well-known text offers an excellent one-year graduate course in this active and important area of research. While presenting a broad overview of the fundamental concepts and methods of solid state physics, including the basic quantum theory o

  4. Excellence in Physics Education Award: Modeling Theory for Physics Instruction

    Science.gov (United States)

    Hestenes, David

    2014-03-01

    All humans create mental models to plan and guide their interactions with the physical world. Science has greatly refined and extended this ability by creating and validating formal scientific models of physical things and processes. Research in physics education has found that mental models created from everyday experience are largely incompatible with scientific models. This suggests that the fundamental problem in learning and understanding science is coordinating mental models with scientific models. Modeling Theory has drawn on resources of cognitive science to work out extensive implications of this suggestion and guide development of an approach to science pedagogy and curriculum design called Modeling Instruction. Modeling Instruction has been widely applied to high school physics and, more recently, to chemistry and biology, with noteworthy results.

  5. Investigation of possible observable e ects in a proposed theory of physics

    Energy Technology Data Exchange (ETDEWEB)

    Freidan, Daniel [State Univ. of New Jersey, Piscataway, NJ (United States)

    2015-03-31

    The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying to do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.

  6. Geometric theory of fundamental interactions. Foundations of unified physics

    International Nuclear Information System (INIS)

    Pestov, A.B.

    2012-01-01

    We put forward an idea that regularities of unified physics are in a simple relation: everything in the concept of space and the concept of space in everything. With this hypothesis as a ground, a conceptual structure of a unified geometrical theory of fundamental interactions is created and deductive derivation of its main equations is produced. The formulated theory gives solution of the actual problems, provides opportunity to understand the origin and nature of physical fields, local internal symmetry, time, energy, spin, charge, confinement, dark energy and dark matter, thus conforming the existence of new physics in its unity

  7. The general physics theory for 21 century

    International Nuclear Information System (INIS)

    Gassym, T. M.

    2006-01-01

    By solving the coupled system of kinetic equations for interacting system of electrons positrons (holes) and photons (phonons) at high external electric, arbitrary magnetic and at the propagation of strong electromagnetic waves non-equilibrium and non-stationary distribution function of photons (phonons) and charge carriers by taking into account of arbitrary heating and mutual drag of carriers and photons (phonons) was found. Author was sure that received him in 1976 distribution function of photons (phonons) must lay on the basis of Theoretical Physics of 21 Century, as the equilibrium Planck's distribution function of black-body radiation received in 1900 lied on the basis of Quantum Physics of 20 Century. Authors many years mental work (from 1976 till today) confirmed the rightness of searched him way and leads to the conclusion that Kinetic Theory is more general and fundamental theory of nature, which unificated Non-stationary Dynamics (the left-hand side) with Non-stationary Statistical Mechanics (the right-hand side) of Kinetic Equation. It is shown that other sections of Theoretical Physics such as Newtonian, Hamiltonian and Relativistic Classical Mechanics, Quantum Physics, Optics, Statistical Mechanics and Thermodynamics, Particle Physics may be received from Kinetic Theory under the special conditions and are the special parts of this theory. The problems such as the irreversibility and instability, the paradox of time, quantum paradox and others are solved. This new General Theory explains all the problems and troubles contents with the foundations and interpretation of quantum mechanics and relativity. It was found the mechanism of quantization and transition from one energetic level to another,the squeezed effect, the transition of particles wave-packets through the energetic barriers. It is shown the possibility of superluminal motion of light pulses and wave-packets through the medium and photonic barriers. It is well known that the experiments

  8. Relevance Theory and the Language of Advertising. CLS Occasional Paper No. 31.

    Science.gov (United States)

    Byrne, Barbara

    Relevance theory, the premise that a hearer will make the effort to process a communication if he or she feels it will alter or enrich his/her cognitive environment, can be useful for increasing the effectiveness of advertising communication. It is particularly helpful for analyzing and improving the effectiveness of the creative devices often…

  9. The Six Core Theories of Modern Physics

    Science.gov (United States)

    Stevens, Charles F.

    1996-09-01

    Charles Stevens, a prominent neurobiologist who originally trained as a biophysicist (with George Uhlenbeck and Mark Kac), wrote this book almost by accident. Each summer he found himself reviewing key areas of physics that he had once known and understood well, for use in his present biological research. Since there was no book, he created his own set of notes, which formed the basis for this brief, clear, and self-contained summary of the basic theoretical structures of classical mechanics, electricity and magnetism, quantum mechanics, statistical physics, special relativity, and quantum field theory. The Six Core Theories of Modern Physics can be used by advanced undergraduates or beginning graduate students as a supplement to the standard texts or for an uncluttered, succinct review of the key areas. Professionals in such quantitative sciences as chemistry, engineering, computer science, applied mathematics, and biophysics who need to brush up on the essentials of a particular area will find most of the required background material, including the mathematics.

  10. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Toward the fundamental theory of nuclear matter physics: The microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.

    1992-01-01

    Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)

  12. A tentative theory of large distance physics

    International Nuclear Information System (INIS)

    Friedan, Daniel

    2003-01-01

    A theoretical mechanism is devised to determine the large distance physics of spacetime. It is a two dimensional nonlinear model, the lambda model, set to govern the string world surface in an attempt to remedy the failure of string theory, as it stands. The lambda model is formulated to cancel the infrared divergent effects of handles at short distance on the world surface. The target manifold is the manifold of background spacetimes. The coupling strength is the spacetime coupling constant. The lambda model operates at 2d distance Δ -1 , very much shorter than the 2d distance μ -1 where the world surface is seen. A large characteristic spacetime distance L is given by L 2 ln(Δ/μ). Spacetime fields of wave number up to 1=L are the local coordinates for the manifold of spacetimes. The distribution of fluctuations at 2d distances shorter than Δ -1 gives the a priori measure on the target manifold, the manifold of spacetimes. If this measure concentrates at a macroscopic spacetime, then, nearby, it is a measure on the spacetime fields. The lambda model thereby constructs a spacetime quantum field theory, cutoff at ultraviolet distance L, describing physics at distances larger than L. The lambda model also constructs an effective string theory with infrared cutoff L, describing physics at distances smaller than L. The lambda model evolves outward from zero 2d distance, Δ -1 = 0, building spacetime physics starting from L ∞ and proceeding downward in L. L can be taken smaller than any distance practical for experiments, so the lambda model, if right, gives all actually observable physics. The harmonic surfaces in the manifold of spacetimes are expected to have novel nonperturbative effects at large distances. (author)

  13. Evaluation of a Theory of Instructional Sequences for Physics Instruction

    Science.gov (United States)

    Wackermann, Rainer; Trendel, Georg; Fischer, Hans E.

    2010-05-01

    The background of the study is the theory of basis models of teaching and learning, a comprehensive set of models of learning processes which includes, for example, learning through experience and problem-solving. The combined use of different models of learning processes has not been fully investigated and it is frequently not clear under what circumstances a particular model should be used by teachers. In contrast, the theory under investigation here gives guidelines for choosing a particular model and provides instructional sequences for each model. The aim is to investigate the implementation of the theory applied to physics instruction and to show if possible effects for the students may be attributed to the use of the theory. Therefore, a theory-oriented education programme for 18 physics teachers was developed and implemented in the 2005/06 school year. The main features of the intervention consisted of coaching physics lessons and video analysis according to the theory. The study follows a pre-treatment-post design with non-equivalent control group. Findings of repeated-measures ANOVAs show large effects for teachers' subjective beliefs, large effects for classroom actions, and small to medium effects for student outcomes such as perceived instructional quality and student emotions. The teachers/classes that applied the theory especially well according to video analysis showed the larger effects. The results showed that differentiating between different models of learning processes improves physics instruction. Effects can be followed through to student outcomes. The education programme effect was clearer for classroom actions and students' outcomes than for teachers' beliefs.

  14. Proceedings of the tenth biennial national conference of Physics Academy of North East: recent advances in physics research and its relevance

    International Nuclear Information System (INIS)

    Chutia, Simanta; Saikia, Shantu

    2017-06-01

    This conference provided a platform to discuss the recent developments in Physics research in different fields which includes high energy astrophysics, condensed matter physics, electronics, spectroscopy, atmospheric sciences, cosmology, general physics etc. The papers relevant to INIS are indexed separately

  15. The Physical Renormalization of Quantum Field Theories

    International Nuclear Information System (INIS)

    Binger, Michael William.; Stanford U., Phys. Dept.; SLAC

    2007-01-01

    The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, α(k 1 2 , k 2 2 , k 3 2 ), depends on three momentum scales and gives rise to an effective scale Q eff 2 (k 1 2 , k 2 2 , k 3 2 ) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi-scale analytic renormalization scheme based on gauge-invariant Green

  16. Clinically Relevant Physical Benefits of Exercise Interventions in Breast Cancer Survivors.

    Science.gov (United States)

    Kirkham, Amy A; Bland, Kelcey A; Sayyari, Sarah; Campbell, Kristin L; Davis, Margot K

    2016-02-01

    Evidence is currently limited for the effect of exercise on breast cancer clinical outcomes. However, several of the reported physical benefits of exercise, including peak oxygen consumption, functional capacity, muscle strength and lean mass, cardiovascular risk factors, and bone health, have established associations with disability, cardiovascular disease risk, morbidity, and mortality. This review will summarize the clinically relevant physical benefits of exercise interventions in breast cancer survivors and discuss recommendations for achieving these benefits. It will also describe potential differences in intervention delivery that may impact outcomes and, lastly, describe current physical activity guidelines for cancer survivors.

  17. A New Finslerian Unified Field Theory of Physical Interactions

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2009-10-01

    Full Text Available In this work, we shall present the foundational structure of a new unified field theory of physical interactions in a geometric world-space endowed with a new kind of Finslerian metric. The intrinsic non-metricity in the structure of our world-geometry may have direct, genuine connection with quantum mechanics, which is yet to be fully explored at present. Building upon some of the previous works of the Author, our ultimate aim here is yet another quantum theory of gravity (in just four space-time dimensions. Our resulting new theory appears to present us with a novel Eulerian (intrinsically motion-dependent world-geometry in which the physical fields originate.

  18. Promoting physical activity in rheumatoid arthritis: a narrative review of behaviour change theories.

    Science.gov (United States)

    Larkin, Louise; Kennedy, Norelee; Gallagher, Stephen

    2015-01-01

    Despite physical activity having significant health benefits for people with rheumatoid arthritis (RA), current levels of physical activity in this population are suboptimal. Changing behaviour is challenging and interventions aimed at increasing physical activity in this context have had varying levels of success. This review provides an overview of common behaviour change theories used in interventions to promote physical activity and their application for promoting physical activity in people with RA. A scoping, narrative review was conducted of English language literature, using the search terms "physical activity/exercise" and keywords, which are associated with behaviour change interventions. The theoretical basis of such interventions in people with RA was assessed using the "theory coding scheme". Six theories which have been used in physical activity research are discussed. Further, four studies which aimed to increase physical activity levels in people with RA are explored in detail. To date, behaviour change interventions conducted in RA populations to increase physical activity levels have not had a strong theoretical underpinning. It is proposed that an intervention utilising the theory of planned behaviour is developed with the aim of increasing physical activity in people with RA. Implications for Rehabilitation Interventions to promote physical activity in the rheumatoid arthritis (RA) population have failed to change participants' behaviour. A small number of studies have used behaviour change theories in the development and delivery of interventions. The theory of planned behaviour is recommended as the theoretical basis for an intervention to promote physical activity in the RA population.

  19. Outline of a classical theory of quantum physics and gravitation

    International Nuclear Information System (INIS)

    Gallop, J.W.

    1975-01-01

    It is argued that in the manner in which the Galilean-Newtonian physics may be said to have explained the Ptolemaic-Copernican theories in terms which have since been called classical, so also Milner's theories of the structure of matter may be said to explain present day quantum and relativistic theory. In both cases the former employ the concept of force and the latter, by contrast, are geometrical theories. Milner envisaged space as being stressed, whereas Einstein thought of it as strained. Development of Milner's theory from criticisms and suggestions made by Kilmister has taken it further into the realms of quantum and gravitational physics, where it is found to give a more physically comprehensible explanation of the phenomena. Further, it shows why present day quantum theory is cast in a statistical form. The theory is supported by many predictions such as the ratio of Planck's constant to the mass of the electron, the value of the fine structure constant and reason for apparent variations in past measurements, the magnetic moment of the electron and proton of the stable particles such as the neutron Λ and Σ together with the kaon, and a relation between the universal gravitational constant and Hubble's constant - all within published experimental accuracy. The latest results to be accounted for by the theory are the masses of the newly discovered psi particles and confirmation of the value of the decay of Newton's gravitational constant obtained from lunar measurements. (author)

  20. Topos models for physics and topos theory

    International Nuclear Information System (INIS)

    Wolters, Sander

    2014-01-01

    What is the role of topos theory in the topos models for quantum theory as used by Isham, Butterfield, Döring, Heunen, Landsman, Spitters, and others? In other words, what is the interplay between physical motivation for the models and the mathematical framework used in these models? Concretely, we show that the presheaf topos model of Butterfield, Isham, and Döring resembles classical physics when viewed from the internal language of the presheaf topos, similar to the copresheaf topos model of Heunen, Landsman, and Spitters. Both the presheaf and copresheaf models provide a “quantum logic” in the form of a complete Heyting algebra. Although these algebras are natural from a topos theoretic stance, we seek a physical interpretation for the logical operations. Finally, we investigate dynamics. In particular, we describe how an automorphism on the operator algebra induces a homeomorphism (or isomorphism of locales) on the associated state spaces of the topos models, and how elementary propositions and truth values transform under the action of this homeomorphism. Also with dynamics the focus is on the internal perspective of the topos

  1. Predicting differences in the perceived relevance of crime's costs and benefits in a test of rational choice theory.

    Science.gov (United States)

    Bouffard, Jeffrey A

    2007-08-01

    Previous hypothetical scenario tests of rational choice theory have presented all participants with the same set of consequences, implicitly assuming that these consequences would be relevant for each individual. Recent research demonstrates that those researcher-presented consequences do not accurately reflect those considered by study participants and that there is individual variation in the relevance of various consequences. Despite this and some theoretical propositions that such differences should exist, little empirical research has explored the possibility of predicting such variation. This study allows participants to develop their own set of relevant consequences for three hypothetical offenses and examines how several demographic and theoretical variables impact those consequences' relevance. Exploratory results suggest individual factors impact the perceived relevance of several cost and benefit types, even among a relatively homogenous sample of college students. Implications for future tests of rational choice theory, as well as policy implications are discussed.

  2. d=4 N=2 Field Theory And Physical Mathematics

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will explain the meaning of the two phrases in the title. Much of the talk will be a review of the renowned Seiberg-Witten formulation of the low-energy physics of certain four dimensional supersymmetric interacting quantum field theories. In the latter part of the talk I will briefly describe some of the significant progress that has been made in solving for the so-called BPS sector of the Hilbert space of these theories. Investigations into these physical questions have had a nontrivial impact on mathematics.

  3. Fostering Personal Meaning and Self-Relevance: A Self-Determination Theory Perspective on Internalization

    Science.gov (United States)

    Vansteenkiste, Maarten; Aelterman, Nathalie; De Muynck, Gert-Jan; Haerens, Leen; Patall, Erika; Reeve, Johnmarshall

    2018-01-01

    Central to self-determination theory (SDT) is the notion that autonomously motivated learning relates to greater learning benefits. While learners' intrinsic motivation has received substantial attention, learners also display volitional learning when they come to endorse the personal meaning or self-relevance of the learning task. In Part I of…

  4. Interdisciplinary and physics challenges of network theory

    Science.gov (United States)

    Bianconi, Ginestra

    2015-09-01

    Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.

  5. VALUE RELEVANCE OF GROUP FINANCIAL STATEMENTS BASED ON ENTITY VERSUS PARENT COMPANY THEORY: EVIDENCE FROM THE LARGEST THREE EUROPEAN CAPITAL MARKETS

    Directory of Open Access Journals (Sweden)

    Müller Victor-Octavian

    2012-07-01

    Full Text Available Financial statementsn#8217; main objective is to give information on the financial position, performance and changes in financial position of the reporting entity, which is useful to investors and other users in making economic decisions. In order to be useful, financial information needs to be relevant to the decision-making process of users in general, and investors in particular. Regarding consolidated financial statements, the accounting theory knows four perspectives (theories on which the preparation of those statements is based, namely, the proprietary theory, the parent company theory, the parent company extension theory and the entity theory (Baxter and Spinney, 1975. Of practical importance are especially the parent company extension perspective and the entity perspective. The IASB and FASB decided (within an ED regarding the Improvement of the Conceptual Framework that consolidated financial statements should be presented from the perspective of the group entity, and not from the perspective of the parent-company. However, this support for the entity theory is to our knowledge not backed by empirical findings in the academic literature. Therefore, in our paper we set to contribute with empirical arguments to finding an actual answer to the question about the superior market value relevance of one of the two concurrent perspectives (theories. We set to carry out an empirical association study on the problem of market value relevance of consolidated financial statements based on the entity theory respectively on the parent company (extension theory, searching for an answer to the above question. In this sense, we pursued an analysis of market value relevance of consolidated accounting information (based on the two perspectives of listed entities between 2003-2008 on the largest three European Stock Exchanges (London, Paris and Frankfurt. The obtained results showed that a n#8222;restrainedn#8221; entity perspective, which would combine

  6. Fusion-relevant basic radiation effects: theory and experiment

    International Nuclear Information System (INIS)

    Mansur, L.K.; Coghlan, W.A.; Farrell, K.; Horton, L.L.; Lee, E.H.; Lewis, M.B.; Packan, N.H.

    1983-01-01

    A summary is given of results of the basic radiation effects program at Oak Ridge National Laboratory, which are relevant to fusion reactor materials applications. The basic radiation effects program at ORNL is a large effort with the dual objectives of understanding the atomic and microstructural defect mechanisms underlying radiation effects and of determining principles for the design of radiation resistant materials. A strength of this effort is the parallel and integrated experimental and theoretical approaches in each major research area. The experimental effort is active in electron microscopy, ion irradiations and ion-beam techniques, neutron irradiations, surface analysis and in other areas. The theoretical effort is active in developing the theory of radiation effects for a broad range of phenomena and in applying it to the design and interpretation of experiments and to alloy design

  7. Principles of general relativity theory in terms of the present day physics

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1986-01-01

    A hystory of gradual unification of general relativity theory and quantum field theory on the basis of unified geometrical principles is detected. The gauge invariance principles became universal for construction of all physical theories. Quantum mechanics, electrodynamics and Einstein gravitation theory were used to form geometrical principles. Identity of inertial and gravitational masses is an experimental basis of the general relativity theory (GRT). It is shown that correct understanding of GRT bases is a developing process related to the development of the present physics and stimulating this development

  8. A possible definition of a {\\it Realistic} Physics Theory

    OpenAIRE

    Gisin, Nicolas

    2014-01-01

    A definition of a {\\it Realistic} Physics Theory is proposed based on the idea that, at all time, the set of physical properties possessed (at that time) by a system should unequivocally determine the probabilities of outcomes of all possible measurements.

  9. A physical detail relevant to the Savic-Kasanin theory of behaviour of materials under high pressure

    International Nuclear Information System (INIS)

    Celebonovic, V.

    1982-01-01

    P. Savic and R. Kasanin have proposed a theory of behaviour of materials under high pressure (Savic, 1981). Their theory can be applied to the explanation of the internal structures of planets and stars. The author proposes, a simple method for the calculation of the internal temperatures of the terrestrial planets. All the parameters needed for the application of the method can be obtained from the SK theory. (Auth.)

  10. The role of Einstein's general relativity theory in today's physics

    International Nuclear Information System (INIS)

    Bicak, J.

    The relationships are discussed of the general relativity theory to other fields of today's physics. Recent results are reported of studies into gravitational radiation, relativistic astrophysics, cosmology and the quantum theory. (Z.M.)

  11. Social Cognitive Theory and Physical Activity Among Korean Male High-School Students.

    Science.gov (United States)

    Lee, Chung Gun; Park, Seiyeong; Lee, Seung Hwan; Kim, Hyunwoo; Park, Ji-Won

    2018-02-01

    The most critical step in developing and implementing effective physical activity interventions is to understand the determinants and correlates of physical activity, and it is strongly suggested that such effort should be based on theories. The purpose of this study is to test the direct, indirect, and total effect of social cognitive theory constructs on physical activity among Korean male high-school students. Three-hundred and forty-one 10th-grade male students were recruited from a private single-sex high school located in Seoul, South Korea. Structural equation modeling was used to test the expected relationships among the latent variables. The proposed model accounted for 42% of the variance in physical activity. Self-efficacy had the strongest total effect on physical activity. Self-efficacy for being physically active was positively associated with physical activity ( p social cognitive theory is a useful framework to understand physical activity among Korean male adolescents. Physical activity interventions targeting Korean male high-school students should focus on the major sources of efficacy.

  12. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory

    OpenAIRE

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O.; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed...

  13. Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1989-01-01

    Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)

  14. Renormalization group and fixed points in quantum field theory

    International Nuclear Information System (INIS)

    Hollowood, Timothy J.

    2013-01-01

    This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.

  15. General quadratic gauge theory: constraint structure, symmetries and physical functions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)

    2005-06-17

    How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.

  16. Ergodic theory and dynamical systems from a physical point of view

    International Nuclear Information System (INIS)

    Sabbagan, M.; Nasertayoob, P.

    2008-01-01

    Ergodic theory and a large part of dynamical systems are in essence some mathematical modeling, which belongs to statistical physics. This paper is an attempt to present some of the results and principles in ergodic theory and dynamical systems from certain view points of physics such as thermodynamics and classical mechanics. The significance of the varational principle in the statistical physics, the relation between classical approach and statistical approach, also comparison between reversibility from statistical of view are discussed. (author)

  17. On Dobrushin's way from probability theory to statistical physics

    CERN Document Server

    Minlos, R A; Suhov, Yu M; Suhov, Yu

    2000-01-01

    R. Dobrushin worked in several branches of mathematics (probability theory, information theory), but his deepest influence was on mathematical physics. He was one of the founders of the rigorous study of statistical physics. When Dobrushin began working in that direction in the early sixties, only a few people worldwide were thinking along the same lines. Now there is an army of researchers in the field. This collection is devoted to the memory of R. L. Dobrushin. The authors who contributed to this collection knew him quite well and were his colleagues. The title, "On Dobrushin's Way", is mea

  18. Cognitive-behavioural theories and adherence: Application and relevance in antiretroviral therapy.

    Science.gov (United States)

    Adefolalu, Adegoke O

    2018-01-01

    Adherence in chronic disease conditions is described as the extent to which a person's behaviour corresponds to the prescribed medical advice of the healthcare provider. This is not limited to medication intake only but also includes acts such as following instructions regarding dietary or fluid restrictions and taking medicines at the prescribed times and intervals. Although adherence to antiretroviral therapy (ART) is a predictor of good clinical outcome among HIV-infected persons on ART, it is a major challenge and strict adherence is not very common. This article aims to examine the application and relevance of some cognitive-behavioural theories in antiretroviral therapy adherence. After doing a thorough literature review, contemporary theories of health behaviour at the individual and interpersonal levels referred to as cognitive-behavioural theories were explored. This review highlights some aspects of the cognitive perspective of health behaviour theories as a good theoretical framework that could be used for organising thoughts about adherence and other health behaviours among patients on lifelong treatment such as ART. Key concepts of these theories stipulate that behaviour is mediated by cognition i.e. knowledge and attitude affect the person's action. In addition, cognitive-behavioural theories recognise knowledge alone as being insufficient to produce behavioural change; a person's perception, motivation, skills and social environment are all influential in the process of behavioural change. Prediction of medication adherence is complex, and health-related knowledge and beliefs alone are insufficient to achieve behaviour change, especially in chronic conditions such as HIV/AIDS. However, people can control or influence the events affecting their lives by integrating cognitive, social, and behavioural sub-skills related to beliefs of personal efficacy in performing these skills.

  19. [Investigations in dynamics of gauge theories in theoretical particle physics

    International Nuclear Information System (INIS)

    1993-01-01

    The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC

  20. General Theory of Duality. A proposal to unifiy relativity theory, quantum mechanics and string theory - cognition for a new dynamic world view in physics

    International Nuclear Information System (INIS)

    Harder, M.

    2005-01-01

    The chase after a world formula is presently the most iridescent task for natural science. By the development of a radical new scientistic theory, unifying not only relativity and quantum theory as also astrophysics and string theory to a common view, the author lances the first serious candidate for a TOE (Theory of Everything) in the scientific discussion. The General Theory of Duality (GDT) offers not only surprising answers to fundamental questions of physics, but also discovers the smallest component of our universe, which is still known since a longer time, which we ignored: Planck's Constant. May be possible that by this book a new world view in physics can be created. (GL)

  1. Fundamentals of the physical theory of diffraction

    CERN Document Server

    Ufimtsev, Pyotr Ya

    2014-01-01

    A complete presentation of the modern physical theory of diffraction and its applications, by the world's leading authority on the topicExtensive revisions and additions to the first edition yield a second edition that is 492 pages in length, with 122 figuresNew sections examine the nature of polarization coupling, and extend the theory of shadow radiation and reflection to opaque objectsThis book features end-of-chapter problems and a solutions manual for university professors and graduate studentsMATLAB codes presented in appendices allow for quick numeric calculations of diffracted waves

  2. Applied group theory selected readings in physics

    CERN Document Server

    Cracknell, Arthur P

    1968-01-01

    Selected Readings in Physics: Applied Group Theory provides information pertinent to the fundamental aspects of applied group theory. This book discusses the properties of symmetry of a system in quantum mechanics.Organized into two parts encompassing nine chapters, this book begins with an overview of the problem of elastic vibrations of a symmetric structure. This text then examines the numbers, degeneracies, and symmetries of the normal modes of vibration. Other chapters consider the conditions under which a polyatomic molecule can have a stable equilibrium configuration when its electronic

  3. Super Yang-Mills theory in 10+2 dimensions, The 2T-physics Source for N=4 SYM and M(atrix) Theory

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    In this paper we construct super Yang-Mills theory in 10+2 dimensions, a number of dimensions that was not reached before in a unitary supersymmetric field theory, and show that this is the 2T-physics source of some cherished lower dimensional field theories. The much studied conformally exact N=4 Super Yang-Mills field theory in 3+1 dimensions is known to be a compactified version of N=1 SYM in 9+1 dimensions, while M(atrix) theory is obtained by compactifications of the 9+1 theory to 0 dimensions (also 0+1 and others). We show that there is a deeper origin of these theories in two higher dimensions as they emerge from the new theory with two times. Pursuing various alternatives of gauge choices, solving kinematic equations and/or dimensional reductions of the 10+2 theory, we suggest a web of connections that include those mentioned above and a host of new theories that relate 2T-physics and 1T-physics field theories, all of which have the 10+2 theory as the parent. In addition to establishing the higher spa...

  4. Determinants of physical activity among people with spinal cord injury: a test of social cognitive theory.

    Science.gov (United States)

    Ginis, Kathleen A Martin; Latimer, Amy E; Arbour-Nicitopoulos, Kelly P; Bassett, Rebecca L; Wolfe, Dalton L; Hanna, Steven E

    2011-08-01

    Little theory-based research has focused on understanding and increasing physical activity among people with physical disabilities. Testing a social cognitive theory-based model of determinants is important for identifying variables to target in physical activity-enhancing interventions. The aim of this study is to examine Social Cognitive Theory variables as predictors of physical activity among people living with spinal cord injury. Structural equation modeling was used to test a model of Social Cognitive Theory predictors of physical activity (n=160). The model explained 39% of the variance in physical activity. Self-regulation was the only significant, direct predictor. Self-regulatory efficacy and outcome expectations had indirect effects, mediated by self-regulation. Social Cognitive Theory is useful for predicting physical activity in people with spinal cord injury. Self-regulation is the most potent Social Cognitive Theory predictor of physical activity in people with spinal cord injury. Self-regulation and its determinants should be targeted in physical activity-enhancing interventions.

  5. Quantum Physics

    Science.gov (United States)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  6. Physics of F-theory compactifications without section

    International Nuclear Information System (INIS)

    Anderson, Lara B.; García-Etxebarria, Iñaki; Grimm, Thomas W.; Keitel, Jan

    2014-01-01

    We study the physics of F-theory compactifications on genus-one fibrations without section by using an M-theory dual description. The five-dimensional action obtained by considering M-theory on a Calabi-Yau threefold is compared with a six-dimensional F-theory effective action reduced on an additional circle. We propose that the six-dimensional effective action of these setups admits geometrically massive U(1) vectors with a charged hypermultiplet spectrum. The absence of a section induces NS-NS and R-R three-form fluxes in F-theory that are non-trivially supported along the circle and induce a shift-gauging of certain axions with respect to the Kaluza-Klein vector. In the five-dimensional effective theory the Kaluza-Klein vector and the massive U(1)s combine into a linear combination that is massless. This U(1) is identified with the massless U(1) corresponding to the multi-section of the Calabi-Yau threefold in M-theory. We confirm this interpretation by computing the one-loop Chern-Simons terms for the massless vectors of the five-dimensional setup by integrating out all massive states. A closed formula is found that accounts for the hypermultiplets charged under the massive U(1)s.

  7. Perspective: Fifty years of density-functional theory in chemical physics

    International Nuclear Information System (INIS)

    Becke, Axel D.

    2014-01-01

    Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development

  8. Perspective: Fifty years of density-functional theory in chemical physics

    Energy Technology Data Exchange (ETDEWEB)

    Becke, Axel D., E-mail: axel.becke@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Rd., P.O. Box 15000, Halifax, Nova Scotia B3H 4R2 (Canada)

    2014-05-14

    Since its formal inception in 1964–1965, Kohn-Sham density-functional theory (KS-DFT) has become the most popular electronic structure method in computational physics and chemistry. Its popularity stems from its beautifully simple conceptual framework and computational elegance. The rise of KS-DFT in chemical physics began in earnest in the mid 1980s, when crucial developments in its exchange-correlation term gave the theory predictive power competitive with well-developed wave-function methods. Today KS-DFT finds itself under increasing pressure to deliver higher and higher accuracy and to adapt to ever more challenging problems. If we are not mindful, however, these pressures may submerge the theory in the wave-function sea. KS-DFT might be lost. I am hopeful the Kohn-Sham philosophical, theoretical, and computational framework can be preserved. This Perspective outlines the history, basic concepts, and present status of KS-DFT in chemical physics, and offers suggestions for its future development.

  9. Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions.

    OpenAIRE

    Brug, Hans; Oenema, Anke; Ferreira, Isabel

    2005-01-01

    Abstract Background The present paper intends to contribute to the debate on the usefulness and barriers in applying theories in diet and physical activity behavior-change interventions. Discussion Since behavior theory is a reflection of the compiled evidence of behavior research, theory is the only foothold we have for the development of behavioral nutrition and physical activity interventions. Application of theory should improve the effectiveness of interventions. However, some of the the...

  10. Health Behavior Theory in Physical Activity Game Apps: A Content Analysis.

    Science.gov (United States)

    Payne, Hannah E; Moxley, Victor Ba; MacDonald, Elizabeth

    2015-07-13

    Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend themselves well to inclusion of theory and any

  11. On the physical basis of a theory of human thermoregulation.

    Science.gov (United States)

    Iberall, A. S.; Schindler, A. M.

    1973-01-01

    Theoretical study of the physical factors which are responsible for thermoregulation in nude resting humans in a physical steady state. The behavior of oxidative metabolism, evaporative and convective thermal fluxes, fluid heat transfer, internal and surface temperatures, and evaporative phase transitions is studied by physiological/physical modeling techniques. The modeling is based on the theories that the body has a vital core with autothermoregulation, that the vital core contracts longitudinally, that the temperature of peripheral regions and extremities decreases towards the ambient, and that a significant portion of the evaporative heat may be lost underneath the skin. A theoretical basis is derived for a consistent modeling of steady-state thermoregulation on the basis of these theories.

  12. Physics Content and Pedagogical Changes: Ramification of Theory and Practice

    Science.gov (United States)

    Cobbinah, Charles; Bayaga, Anass

    2017-01-01

    The aim of this study was to explore physics teachers' ramification of theory and practices as a result of physics content and pedagogical changes in the Further Education and Training (FET) phase. The researchers adopted the mixed method research approach. The quantitative aspect involved 109 physics teachers and the qualitative approach used ten…

  13. Human error theory: relevance to nurse management.

    Science.gov (United States)

    Armitage, Gerry

    2009-03-01

    Describe, discuss and critically appraise human error theory and consider its relevance for nurse managers. Healthcare errors are a persistent threat to patient safety. Effective risk management and clinical governance depends on understanding the nature of error. This paper draws upon a wide literature from published works, largely from the field of cognitive psychology and human factors. Although the content of this paper is pertinent to any healthcare professional; it is written primarily for nurse managers. Error is inevitable. Causation is often attributed to individuals, yet causation in complex environments such as healthcare is predominantly multi-factorial. Individual performance is affected by the tendency to develop prepacked solutions and attention deficits, which can in turn be related to local conditions and systems or latent failures. Blame is often inappropriate. Defences should be constructed in the light of these considerations and to promote error wisdom and organizational resilience. Managing and learning from error is seen as a priority in the British National Health Service (NHS), this can be better achieved with an understanding of the roots, nature and consequences of error. Such an understanding can provide a helpful framework for a range of risk management activities.

  14. Cognitive-behavioural theories and adherence: Application and relevance in antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Adegoke O. Adefolalu

    2018-04-01

    Full Text Available Background: Adherence in chronic disease conditions is described as the extent to which a person‘s behaviour corresponds to the prescribed medical advice of the healthcare provider. This is not limited to medication intake only but also includes acts such as following instructions regarding dietary or fluid restrictions and taking medicines at the prescribed times and intervals. Although adherence to antiretroviral therapy (ART is a predictor of good clinical outcome among HIV-infected persons on ART, it is a major challenge and strict adherence is not very common. This article aims to examine the application and relevance of some cognitive-behavioural theories in antiretroviral therapy adherence Methods: After doing a thorough literature review, contemporary theories of health behaviour at the individual and interpersonal levels referred to as cognitive-behavioural theories were explored. This review highlights some aspects of the cognitive perspective of health behaviour theories as a good theoretical framework that could be used for organising thoughts about adherence and other health behaviours among patients on lifelong treatment such as ART. Results: Key concepts of these theories stipulate that behaviour is mediated by cognition i.e. knowledge and attitude affect the person’s action. In addition, cognitive-behavioural theories recognise knowledge alone as being insufficient to produce behavioural change; a person’s perception, motivation, skills and social environment are all influential in the process of behavioural change. Conclusion: Prediction of medication adherence is complex, and health-related knowledge and beliefs alone are insufficient to achieve behaviour change, especially in chronic conditions such as HIV/AIDS. However, people can control or influence the events affecting their lives by integrating cognitive, social, and behavioural sub-skills related to beliefs of personal efficacy in performing these skills.

  15. A grounded theory of how social support influences physical activity in adolescent girls

    Science.gov (United States)

    Fawkner, Samantha

    2018-01-01

    ABSTRACT Purpose: Adolescent girls are not sufficiently active to achieve health benefits. Social support from friends and family has been positively associated with physical activity in adolescent girls; however it is unclear how social support influences physical activity behaviour. This study aimed to develop a grounded theory of how social support influences physical activity in adolescent girls. Methods: A qualitative, constructivist grounded theory approach was adopted. Individual interviews explored adolescent girls’ perspectives of how significant others’ influenced their physical activity through providing social support, and through modelling physical activity. Results: Participants perceived social support to influence physical activity behaviour through performance improvements, self-efficacy, enjoyment, motivation and by enabling physical activity. Improvements in performance and self-efficacy were also linked to motivation to be active. Girls perceived modelling to influence behaviour through providing opportunities for them to be physically active, and by inspiring them to be active. Conclusion: The grounded theory outlines adolescent girls’ perceptions of how significant others influence their physical activity and provides a framework for future research examining the role of social support on physical activity. PMID:29405881

  16. A grounded theory of how social support influences physical activity in adolescent girls.

    Science.gov (United States)

    Laird, Yvonne; Fawkner, Samantha; Niven, Ailsa

    2018-12-01

    Adolescent girls are not sufficiently active to achieve health benefits. Social support from friends and family has been positively associated with physical activity in adolescent girls; however it is unclear how social support influences physical activity behaviour. This study aimed to develop a grounded theory of how social support influences physical activity in adolescent girls. A qualitative, constructivist grounded theory approach was adopted. Individual interviews explored adolescent girls' perspectives of how significant others' influenced their physical activity through providing social support, and through modelling physical activity. Participants perceived social support to influence physical activity behaviour through performance improvements, self-efficacy, enjoyment, motivation and by enabling physical activity. Improvements in performance and self-efficacy were also linked to motivation to be active. Girls perceived modelling to influence behaviour through providing opportunities for them to be physically active, and by inspiring them to be active. The grounded theory outlines adolescent girls' perceptions of how significant others influence their physical activity and provides a framework for future research examining the role of social support on physical activity.

  17. Physics Without Causality — Theory and Evidence

    Science.gov (United States)

    Shoup, Richard

    2006-10-01

    The principle of cause and effect is deeply rooted in human experience, so much so that it is routinely and tacitly assumed throughout science, even by scientists working in areas where time symmetry is theoretically ingrained, as it is in both classical and quantum physics. Experiments are said to cause their results, not the other way around. In this informal paper, we argue that this assumption should be replaced with a more general notion of mutual influence — bi-directional relations or constraints on joint values of two or more variables. From an analysis based on quantum entropy, it is proposed that quantum measurement is a unitary three-interaction, with no collapse, no fundamental randomness, and no barrier to backward influence. Experimental results suggesting retrocausality are seen frequently in well-controlled laboratory experiments in parapsychology and elsewhere, especially where a random element is included. Certain common characteristics of these experiments give the appearance of contradicting well-established physical laws, thus providing an opportunity for deeper understanding and important clues that must be addressed by any explanatory theory. We discuss how retrocausal effects and other anomalous phenomena can be explained without major injury to existing physical theory. A modified quantum formalism can give new insights into the nature of quantum measurement, randomness, entanglement, causality, and time.

  18. Theory of heavy ion collision physics in hadron therapy

    CERN Document Server

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

  19. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  20. The unification of physics: the quest for a theory of everything.

    Science.gov (United States)

    Paulson, Steve; Gleiser, Marcelo; Freese, Katherine; Tegmark, Max

    2015-12-01

    The holy grail of physics has been to merge each of its fundamental branches into a unified "theory of everything" that would explain the functioning and existence of the universe. The last step toward this goal is to reconcile general relativity with the principles of quantum mechanics, a quest that has thus far eluded physicists. Will physics ever be able to develop an all-encompassing theory, or should we simply acknowledge that science will always have inherent limitations as to what can be known? Should new theories be validated solely on the basis of calculations that can never be empirically tested? Can we ever truly grasp the implications of modern physics when the basic laws of nature do not always operate according to our standard paradigms? These and other questions are discussed in this paper. © 2015 New York Academy of Sciences.

  1. Spectral theory and quantum mechanics mathematical foundations of quantum theories, symmetries and introduction to the algebraic formulation

    CERN Document Server

    Moretti, Valter

    2017-01-01

    This book discusses the mathematical foundations of quantum theories. It offers an introductory text on linear functional analysis with a focus on Hilbert spaces, highlighting the spectral theory features that are relevant in physics. After exploring physical phenomenology, it then turns its attention to the formal and logical aspects of the theory. Further, this Second Edition collects in one volume a number of useful rigorous results on the mathematical structure of quantum mechanics focusing in particular on von Neumann algebras, Superselection rules, the various notions of Quantum Symmetry and Symmetry Groups, and including a number of fundamental results on the algebraic formulation of quantum theories. Intended for Master's and PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book also benefits established researchers by organizing ...

  2. Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions

    Directory of Open Access Journals (Sweden)

    Ferreira Isabel

    2005-04-01

    Full Text Available Abstract Background The present paper intends to contribute to the debate on the usefulness and barriers in applying theories in diet and physical activity behavior-change interventions. Discussion Since behavior theory is a reflection of the compiled evidence of behavior research, theory is the only foothold we have for the development of behavioral nutrition and physical activity interventions. Application of theory should improve the effectiveness of interventions. However, some of the theories we use lack a strong empirical foundation, and the available theories are not always used in the most effective way. Furthermore, many of the commonly-used theories provide at best information on what needs to be changed to promote healthy behavior, but not on how changes can be induced. Finally, many theories explain behavioral intentions or motivation rather well, but are less well-suited to explaining or predicting actual behavior or behavior change. For more effective interventions, behavior change theory needs to be further developed in stronger research designs and such change-theory should especially focus on how to promote action rather than mere motivation. Since voluntary behavior change requires motivation, ability as well as the opportunity to change, further development of behavior change theory should incorporate environmental change strategies. Conclusion Intervention Mapping may help to further improve the application of theories in nutrition and physical activity behavior change.

  3. Group theory, the new language of modern physics

    International Nuclear Information System (INIS)

    Ahmad, S.M.W.

    1990-09-01

    This paper is a brief history of the applications of the methods of group theory to physics during 1830 to 1964 and is based mostly on the author's correspondence with Professor E.P. Wigner. 26 refs, 6 figs

  4. Twentyseventh European physical society conference on controlled fusion and plasma physics

    International Nuclear Information System (INIS)

    Igitkhanov, Y.

    2000-01-01

    The twentyseventh European physical society conference on controlled fusion and plasma physics was held in Budapest, 12-16 June 2000. About 10 invited papers were presented, covering a wide range of problems in plasma physics, including confinement and transport issues in fusion devices, astrophysics and industrial application of plasmas. More than 100 papers were presented on plasma theory and experiments from tokamaks and stellarators. Some of the ITER-relevant issues covered are described in this newsletter

  5. Plasma Theory Division

    International Nuclear Information System (INIS)

    Callen, J.D.; Dory, R.A.; Aghevli, R.

    1977-01-01

    The progress during the past year is organized by group efforts and divided into five major areas. The basic tokamak areas and the sections in which their work is summarized are: magnetohydrodynamic (MHD) theory, kinetic theory, and transport simulation. The ELMO Bumpy Torus (EBT) theory work has its own research projects on MHD theory, kinetic theory, and transport simulation. In the plasma engineering area, relevant research work is further developed and synthesized into models that are used in the design of advanced fusion systems--The Next Step (TNS), demonstration fusion reactor (Demo), EBT ignition test, etc. Specific plasma engineering projects on providing the TNS physics basis and the development of the EBT reactor study are discussed. The computing support activities during the past year are summarized

  6. Physical Activity Motivation: A Practitioner's Guide to Self-Determination Theory.

    Science.gov (United States)

    Kilpatrick, Marcus; Hebert, Edward; Jacobsen, Dee

    2002-01-01

    Describes the relationship of self-determination theory to elective physical activity motivation, offering the following recommendations for physical activity practitioners: give positive feedback, promote moderately difficult goals, provide choice of activities, provide a rational for activities, promote the development of social relationships,…

  7. An introduction to conformal field theory

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1995-01-01

    The aim of these lectures is to present an introduction at a fairly elementary level to recent developments in two dimensional field theory, namely in conformal field theory. We shall see the importance of new structures related to infinite dimensional algebras: current algebras and Virasoro algebra. These topics will find physically relevant applications in the lectures by Shankar and Ian Affeck. (author)

  8. Physics is in trouble, the string theory has failed

    International Nuclear Information System (INIS)

    Smolin, L.

    2007-01-01

    The popularity of the string theory is based on its claim to explain both the very big and the very small: gravity and elementary particles. The string theory assumes that the real world contains dimensions that have not yet been observed and that any elementary particle is a vibration of a unique entity called string that obeys simple and elegant laws. Most theoretical physicists and mathematicians have focused their attention on this theory for the last 25 years and the diagnosis is clear: string theory fails to cope with the standard model and to explain the existence of dark matter or the mass of neutrinos. The string theory is hailed for its beauty or elegancy but this theory has never been backed by experimental data. While science has made significant progress in numerous domains, particle physics seems to have reached a dead-end. It is high time we officially questioned the string theory and opened the gate for alternative theories. (A.C.)

  9. An experimental test of control theory-based interventions for physical activity.

    Science.gov (United States)

    Prestwich, Andrew; Conner, Mark; Hurling, Robert; Ayres, Karen; Morris, Ben

    2016-11-01

    To provide an experimental test of control theory to promote physical activity. Parallel groups, simple randomized design with an equal chance of allocation to any group. Participants not meeting recommended levels of physical activity but physically safe to do so (N = 124) were recruited on a UK university campus and randomized to goal-setting + self-monitoring + feedback (GS + SM + F, n = 40), goal-setting + self-monitoring (GS + SM, n = 40), or goal-setting only (GS, n = 44) conditions that differentially tapped the key features of control theory. Accelerometers assessed physical activity (primary outcome) as well as self-report over a 7-day period directly before/after the start of the intervention. The participants in the GS + SM + F condition significantly outperformed those in the GS condition, d = 0.62, 95% CI d = 0.15-1.08, and marginally outperformed those in the GS + SM condition in terms of total physical activity at follow-up on the accelerometer measure, d = 0.33, 95% CI d = -0.13 to 0.78. The feedback manipulation (GS + SM + F vs. GS + SM and GS) was most effective when baseline intentions were weak. These patterns did not emerge on the self-report measure but, on the basis of this measure, the feedback manipulation increased the risk that participants coasted in relation to their goal in the first few days of the intervention period. Using behaviour change techniques consistent with control theory can lead to significant short-term improvements on objectively assessed physical activity. Further research is needed to examine the underlying theoretical principles of the model. Statement of contribution What is already known on this subject? Interventions incorporating more techniques that are consistent with control theory are associated with larger positive changes in health behaviours and related outcomes (see reviews by Dombrowski et al., ; Michie et al., ). However, none of the studies included in these

  10. Health Behavior Theory in Physical Activity Game Apps: A Content Analysis

    Science.gov (United States)

    Moxley, Victor BA; MacDonald, Elizabeth

    2015-01-01

    Background Physical activity games developed for a mobile phone platform are becoming increasingly popular, yet little is known about their content or inclusion of health behavior theory (HBT). Objective The objective of our study was to quantify elements of HBT in physical activity games developed for mobile phones and to assess the relationship between theoretical constructs and various app features. Methods We conducted an analysis of exercise and physical activity game apps in the Apple App Store in the fall of 2014. A total of 52 apps were identified and rated for inclusion of health behavior theoretical constructs using an established theory-based rubric. Each app was coded for 100 theoretical items, containing 5 questions for 20 different constructs. Possible total theory scores ranged from 0 to 100. Descriptive statistics and Spearman correlations were used to describe the HBT score and association with selected app features, respectively. Results The average HBT score in the sample was 14.98 out of 100. One outlier, SuperBetter, scored higher than the other apps with a score of 76. Goal setting, self-monitoring, and self-reward were the most-reported constructs found in the sample. There was no association between either app price and theory score (P=.5074), or number of gamification elements and theory score (P=.5010). However, Superbetter, with the highest HBT score, was also the most expensive app. Conclusions There are few content analyses of serious games for health, but a comparison between these findings and previous content analyses of non-game health apps indicates that physical activity mobile phone games demonstrate higher levels of behavior theory. The most common theoretical constructs found in this sample are known to be efficacious elements in physical activity interventions. It is unclear, however, whether app designers consciously design physical activity mobile phone games with specific constructs in mind; it may be that games lend

  11. Renormalization in Large Momentum Effective Theory of Parton Physics.

    Science.gov (United States)

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2018-03-16

    In the large-momentum effective field theory approach to parton physics, the matrix elements of nonlocal operators of quark and gluon fields, linked by straight Wilson lines in a spatial direction, are calculated in lattice quantum chromodynamics as a function of hadron momentum. Using the heavy-quark effective theory formalism, we show a multiplicative renormalization of these operators at all orders in perturbation theory, both in dimensional and lattice regularizations. The result provides a theoretical basis for extracting parton properties through properly renormalized observables in Monte Carlo simulations.

  12. The physics of musical scales: Theory and experiment

    Science.gov (United States)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  13. Automatic and motivational predictors of children's physical activity: integrating habit, the environment, and the Theory of Planned Behavior.

    Science.gov (United States)

    Thomas, Erica; Upton, Dominic

    2014-07-01

    Physical activity determinant studies now often include both environmental and sociocognitive factors but few of them acknowledge and explore the mechanisms underlying relevant environmental influences. This study explored environmental correlates of children's self-reported physical activity and potential mediation through the Theory of Planned Behavior (TPB) and habit strength. Six hundred and twenty-one pupils aged 9-11 years were recruited from 4 primary schools in the UK. TPB variables, habit strength and environmental variables were assessed at baseline. Self-reported physical activity was assessed 1 week later. Mediation tests revealed that 43% of the association between convenient facilities and intention was mediated through subjective norms (17%) and habit (26%), while 15% of the association between convenient facilities and physical activity was mediated through habit strength alone. A significant direct effect of convenient facilities and resources in the home environment on physical activity was also found. The school environment was not significantly related to children's physical activity intentions or behavior. The results suggest that the environment influences children's physical activity both directly and indirectly and that habit strength seems to be the most important mediator for this association.

  14. Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics

    CERN Document Server

    Ismail, Mourad

    2001-01-01

    These are the proceedings of the conference "Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics" held at the Department of Mathematics, University of Florida, Gainesville, from November 11 to 13, 1999. The main emphasis of the conference was Com­ puter Algebra (i. e. symbolic computation) and how it related to the fields of Number Theory, Special Functions, Physics and Combinatorics. A subject that is common to all of these fields is q-series. We brought together those who do symbolic computation with q-series and those who need q-series in­ cluding workers in Physics and Combinatorics. The goal of the conference was to inform mathematicians and physicists who use q-series of the latest developments in the field of q-series and especially how symbolic computa­ tion has aided these developments. Over 60 people were invited to participate in the conference. We ended up having 45 participants at the conference, including six one hour plenary speakers and 28 half hour speakers. T...

  15. Any realistic theory must be computationally realistic: a response to N. Gisin's definition of a Realistic Physics Theory

    OpenAIRE

    Bolotin, Arkady

    2014-01-01

    It is argued that the recent definition of a realistic physics theory by N. Gisin cannot be considered comprehensive unless it is supplemented with requirement that any realistic theory must be computationally realistic as well.

  16. Theories, models and frameworks used in capacity building interventions relevant to public health: a systematic review.

    Science.gov (United States)

    Bergeron, Kim; Abdi, Samiya; DeCorby, Kara; Mensah, Gloria; Rempel, Benjamin; Manson, Heather

    2017-11-28

    There is limited research on capacity building interventions that include theoretical foundations. The purpose of this systematic review is to identify underlying theories, models and frameworks used to support capacity building interventions relevant to public health practice. The aim is to inform and improve capacity building practices and services offered by public health organizations. Four search strategies were used: 1) electronic database searching; 2) reference lists of included papers; 3) key informant consultation; and 4) grey literature searching. Inclusion and exclusion criteria are outlined with included papers focusing on capacity building, learning plans, professional development plans in combination with tools, resources, processes, procedures, steps, model, framework, guideline, described in a public health or healthcare setting, or non-government, government, or community organizations as they relate to healthcare, and explicitly or implicitly mention a theory, model and/or framework that grounds the type of capacity building approach developed. Quality assessment were performed on all included articles. Data analysis included a process for synthesizing, analyzing and presenting descriptive summaries, categorizing theoretical foundations according to which theory, model and/or framework was used and whether or not the theory, model or framework was implied or explicitly identified. Nineteen articles were included in this review. A total of 28 theories, models and frameworks were identified. Of this number, two theories (Diffusion of Innovations and Transformational Learning), two models (Ecological and Interactive Systems Framework for Dissemination and Implementation) and one framework (Bloom's Taxonomy of Learning) were identified as the most frequently cited. This review identifies specific theories, models and frameworks to support capacity building interventions relevant to public health organizations. It provides public health practitioners

  17. Gauge theories in particle physics a practical introduction

    CERN Document Server

    Aitchison, Ian J R

    2013-01-01

    The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field...

  18. Proceedings of the international conference on selected topics in quantum field theory and mathematical physics

    Energy Technology Data Exchange (ETDEWEB)

    Niederle, J; Bednar, M; Bicak, J

    1987-01-01

    The conference, the fourth in the series of conferences on this subject, was held at the Bechyne castle (Czechoslovakia) on June 23-27, 1986, and was attended by about 100 theoreticians from 15 countries. The conference was organized by the Institute of Physics of the Czechoslovak Academy of Sciences in Prague together with the Faculties of Mathematics and Physics of the Charles University, Prague, and of the Comenius University, Bratislava, the Faculty of Nuclear Science and Physical Engineering of the Czech Techical University, Prague, with the Institute of Physics of the Electro-Physical Research Centre of the Slovak Academy of Sciences, Bratislava, and the Institute of Nuclear Physics of the Czechoslovak Academy of Sciences in Rez. It was sponsored by the International Union for Pure and Applied Physics, the International Association of Mathematical Physics and the Physical Scientific Section of the Union of Czechoslovak Mathematicians and Physicists. The main subjects discussed at the conference were: supersymmetries, supergravity and superstring theories; quantum field theory and in particular gauge theories, theories on lattices, renormalization; selected topics in non-linear equations, scattering theory and quantization. Details are given in the attached program. The proceedings include invited talks and contributions presented respectively at the morning and afternoon sessions of the conference. The main part of the proceedings will be published in the Czechoslovak Journal of Physics v. 37(1987), nos. 3,4 and 9.

  19. Proceedings of the international conference on selected topics in quantum field theory and mathematical physics

    International Nuclear Information System (INIS)

    Niederle, J.; Bednar, M.; Bicak, J.

    1987-01-01

    The conference, the fourth in the series of conferences on this subject, was held at the Bechyne castle (Czechoslovakia) on June 23-27, 1986, and was attended by about 100 theoreticians from 15 countries. The conference was organized by the Institute of Physics of the Czechoslovak Academy of Sciences in Prague together with the Faculties of Mathematics and Physics of the Charles University, Prague, and of the Comenius University, Bratislava, the Faculty of Nuclear Science and Physical Engineering of the Czech Techical University, Prague, with the Institute of Physics of the Electro-Physical Research Centre of the Slovak Academy of Sciences, Bratislava, and the Institute of Nuclear Physics of the Czechoslovak Academy of Sciences in Rez. It was sponsored by the International Union for Pure and Applied Physics, the International Association of Mathematical Physics and the Physical Scientific Section of the Union of Czechoslovak Mathematicians and Physicists. The main subjects discussed at the conference were: supersymmetries, supergravity and superstring theories; quantum field theory and in particular gauge theories, theories on lattices, renormalization; selected topics in non-linear equations, scattering theory and quantization. Details are given in the attached program. The proceedings include invited talks and contributions presented respectively at the morning and afternoon sessions of the conference. The main part of the proceedings will be published in the Czechoslovak Journal of Physics v. 37(1987), nos. 3,4 and 9. (author)

  20. Knot theory and a physical state of quantum gravity

    International Nuclear Information System (INIS)

    Liko, Tomas; Kauffman, Louis H

    2006-01-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity. (topical review)

  1. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  2. Proceedings of the international colloquium on modern quantum field theory II

    International Nuclear Information System (INIS)

    Das, S.R.; Mandal, G.; Mukhi, S.; Wadia, S.R.

    1995-01-01

    In the second International Colloquium on Modern Quantum Field Theory an attempt was made to cover a broad spectrum of topics in theoretical physics that included string theory, quantum gravity, statistical mechanics, condensed matter theory, complexity, lattice gauge theory and epistemological aspects of quantum mechanics. Papers relevant to INIS in the published proceedings are indexed separately

  3. Fermion masses and Higgs physics in grand unified theories

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, Abdul Aziz

    2010-03-12

    The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)

  4. Mathematical methods in physics distributions, Hilbert space operators, variational methods, and applications in quantum physics

    CERN Document Server

    Blanchard, Philippe

    2015-01-01

    The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas.  The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories.  All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods.   The text is divided into three main parts. Part I is a brief introduction to distribution theory, in which elements from the theories of ultradistributions and hyperfunctions are considered in addition to some deeper results for Schwartz distributions, thus providing a comprehensive introduction to the theory of generalized functions. P...

  5. The Quest for a Fundamental Theory of Physics - Rise and Demise of the Field Paradigm

    NARCIS (Netherlands)

    Holman, M.

    2014-01-01

    Quite remarkably, the two physical theories that describe extremely well physical phenomena on the largest and smallest distance scales in our universe, viz. general relativity and quantum theory, respectively, are radically disparate. Both theories are now almost a century old and have passed with

  6. The Notion of Substance in Physical Theory

    Science.gov (United States)

    Vanzandt, Joseph David

    The thesis explores the philosophical consequences of adopting the view that the principle of non-contradiction, the principle of sufficient reason, and the monistic notion of substance are more closely linked than most modern and contemporary philosophers have supposed. This thesis is then applied to show the connections between the metaphysical views of Spinoza and the view of nature of Albert Einstein. The first chapter is an historical overview of the principles of sufficient reason and non-contradiction, and the notion of substance, followed by a presentation of the reasons that led the author to conclude that the usual treatment of these concepts requires revision. These reasons are based upon substantial cause theory, developed in the 1970s by Richard Cole. The second and third chapters are an interpretation of Book 1 of Spinoza's Ethics from the viewpoint presented in the first chapter. The implicit role of the principles of non-contradiction and sufficient reason in Spinoza's argument is drawn out through an examination of his definitions, axioms and propositions. The third and fourth chapters are an interpretation and criticism of Immanuel Kant. It is first shown that the common dismissal of Kant's philosophy based upon the discovery of non-Euclidean geometries and the denial of strict causality among some physical events is not well founded; ways in which Kant's framework can accommodate these problems are proposed. It is then argued that Kant's criticism of traditional metaphysics is not conclusive. In particular, Kant's arguments against the possibility of an ontological argument are examined and criticisms of his arguments are presented. The sixth and seventh chapters contain an historical account of the development of physics in the 20th century to illustrate the strong tendency toward unification found in science. It is suggested that this natural tendency to seek ever higher levels of unification is evidence that the principle of sufficient reason

  7. The Relevance of Nuclear Physics

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1969-01-01

    I am asked what nuclear physics is about, that is, nuclear physics as distinct from particle physics and other parts of physics. I see three trends in this science. One is the discovery of new phenomena, phenomena of nature which we have not seen or observed, of which we did not know anything before. The second trend, I would say, is towards the solution of fundamental problems, the answers to certain basic questions in physics; I shall give some details later on. The third is the construction of new concepts in physics necessary to deal with the problems not only in nuclear physics but also in the rest of physics. The order of these three items is unimportant. This meeting should be concerned not only with the factual questions of science, but also with the, let me say, philosophic and practical questions of nuclear physics. Why do we do nuclear physics, what is the sense of it, what is the meaning of it and, most importantly, how can we defend the support of nuclear physics, how can we convince the governments to spend money on such a thing, which to a certain extent is our pleasure? And so we will have to be quite clear among ourselves that this is a very important matter

  8. Conceptualizing physical activity behavior of older Korean-Americans: an integration of Korean culture and social cognitive theory.

    Science.gov (United States)

    Lim, Kyung-Choon; Waters, Catherine M; Froelicher, Erika S; Kayser-Jones, Jeanie S

    2008-01-01

    People can live longer and healthier lives by engaging in physical activity (PA). The purpose of this article is to assess the social cognitive theory (SCT) in relation to its relevance to produce cultural-specific directions for gerontological nursing practice in order to guide the design of PA interventions for Korean-American elders. SCT is compared to the Korean cultural, social, and health belief system and is analyzed and evaluated based on 3 criteria: assumptions of the theory, completeness and consistency, and essence of nursing. Within the Korean culture, as presumed in the SCT and the nursing paradigm, health-promoting behavior, such as PA, is conceptualized as the desire for a higher level of health rather than a fear of disease as is proposed by other health behavior theories. SCT with the integration of Korean culture recognizes cultural, developmental, societal, and other external constraints that may help in formulating interventions and better understanding of the limits faced by older Korean-Americans (OKAs) in their pursuit of routine PA.

  9. Bayesian probability theory applications in the physical sciences

    CERN Document Server

    Linden, Wolfgang von der; Toussaint, Udo von

    2014-01-01

    From the basics to the forefront of modern research, this book presents all aspects of probability theory, statistics and data analysis from a Bayesian perspective for physicists and engineers. The book presents the roots, applications and numerical implementation of probability theory, and covers advanced topics such as maximum entropy distributions, stochastic processes, parameter estimation, model selection, hypothesis testing and experimental design. In addition, it explores state-of-the art numerical techniques required to solve demanding real-world problems. The book is ideal for students and researchers in physical sciences and engineering.

  10. QCD Effective Field Theories for Heavy Quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora

    2006-01-01

    QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT

  11. Relativistic theory of gravitation and nonuniqueness of the predictions of general relativity theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Loskutov, Yu.M.

    1986-01-01

    It is shown that while the predictions of relativistic theory of gravitation (RTG) for the gravitational effects are unique and consistent with the experimental data available, the relevant predictions of general relativity theory are not unique. Therewith the above nonuniqueness manifests itself in some effects in the first order in the gravitational interaction constant in others in the second one. The absence in GRT of the energy-momentum and angular momentum conservation laws for the matter and gravitational field taken together and its inapplicability to give uniquely determined predictions for the gravitational phenomena compel to reject GRT as a physical theory

  12. M theory: a possible unification of physics laws

    International Nuclear Information System (INIS)

    Fernandes, Alexandre da Silva; Silva, Diego Oliveira Nolasco da; Sousa, Claudio Manoel Gomes de

    2011-01-01

    Full text: Physics has two pillars which are mutually incompatible: quantum field theory and general relativity theory. Throughout its history, various unifications have been made, and in attempts to have a better understanding of the birth and formation of the Universe is also necessary to unify these pillars. This unification may require 11 dimensions, and 6 of them are compressed so that it cannot be seen with existing instruments. These dimensions are the spaces in which the strings vibrate, and each mode of vibration corresponds to a particle. The last dimension shows that the universe is a brane, it is in full motion in the multiverse and the collision of two branes can answer the biggest problem of cosmology: what was the Big Bang? Black holes can be explained using a theory that contains gravity and quantum mechanics. The theory is still being developed, some problems are being solved and the main one is the experimental problem, because it requires energy levels that are not yet achieved by current particle accelerators. This work presents M theory as a possibility of unification between the micro and macro, which maybe leading us to the theory of everything. (author)

  13. M theory: a possible unification of physics laws

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Alexandre da Silva; Silva, Diego Oliveira Nolasco da; Sousa, Claudio Manoel Gomes de [Universidade Catolica de Brasilia (UCB), DF (Brazil)

    2011-07-01

    Full text: Physics has two pillars which are mutually incompatible: quantum field theory and general relativity theory. Throughout its history, various unifications have been made, and in attempts to have a better understanding of the birth and formation of the Universe is also necessary to unify these pillars. This unification may require 11 dimensions, and 6 of them are compressed so that it cannot be seen with existing instruments. These dimensions are the spaces in which the strings vibrate, and each mode of vibration corresponds to a particle. The last dimension shows that the universe is a brane, it is in full motion in the multiverse and the collision of two branes can answer the biggest problem of cosmology: what was the Big Bang? Black holes can be explained using a theory that contains gravity and quantum mechanics. The theory is still being developed, some problems are being solved and the main one is the experimental problem, because it requires energy levels that are not yet achieved by current particle accelerators. This work presents M theory as a possibility of unification between the micro and macro, which maybe leading us to the theory of everything. (author)

  14. Renormalization group in the theory of fully developed turbulence. Problem of the infrared relevant corrections to the Navier-Stokes equation

    International Nuclear Information System (INIS)

    Antonov, N.V.; Borisenok, S.V.; Girina, V.I.

    1996-01-01

    Within the framework of the renormalization group approach to the theory of fully developed turbulence we consider the problem of possible IR relevant corrections to the Navier-Stokes equation. We formulate an exact criterion of the actual IR relevance of the corrections. In accordance with this criterion we verify the IR relevance for certain classes of composite operators. 17 refs., 2 tabs

  15. Convolution product construction of interactions in probabilistic physical models

    International Nuclear Information System (INIS)

    Ratsimbarison, H.M.; Raboanary, R.

    2007-01-01

    This paper aims to give a probabilistic construction of interactions which may be relevant for building physical theories such as interacting quantum field theories. We start with the path integral definition of partition function in quantum field theory which recall us the probabilistic nature of this physical theory. From a Gaussian law considered as free theory, an interacting theory is constructed by nontrivial convolution product between the free theory and an interacting term which is also a probability law. The resulting theory, again a probability law, exhibits two proprieties already present in nowadays theories of interactions such as Gauge theory : the interaction term does not depend on the free term, and two different free theories can be implemented with the same interaction.

  16. Lexical Studies of Filipino Person Descriptors: Adding Personality-Relevant Social and Physical Attributes.

    Science.gov (United States)

    Imperio, Shellah Myra; Church, A Timothy; Katigbak, Marcia S; Reyes, Jose Alberto S

    2008-06-01

    Lexical studies have focused on traits. In the Filipino language, we investigated whether additional dimensions can be identified when personality-relevant terms for social roles, statuses, and effects, plus physical attributes, are included. Filipino students (N = 496) rated themselves on 268 such terms, plus 253 markers of trait and evaluative dimensions. We identified 10 dimensions of social and physical attributes-Prominence, Uselessness, Attractiveness, Respectability, Uniqueness, Destructiveness, Presentableness, Strength, Dangerousness, and Charisma. Most of these dimensions did not correspond in a one-to-one manner to Filipino or alternative trait models (Big Five, HEXACO, ML7). However, considerable redundancy was observed between the social and physical attribute dimensions and trait and evaluative dimensions. Thus, social and physical attributes communicate information about personality traits, and vice-versa.

  17. Lexical Studies of Filipino Person Descriptors: Adding Personality-Relevant Social and Physical Attributes

    Science.gov (United States)

    Imperio, Shellah Myra; Church, A. Timothy; Katigbak, Marcia S.; Reyes, Jose Alberto S.

    2009-01-01

    Lexical studies have focused on traits. In the Filipino language, we investigated whether additional dimensions can be identified when personality-relevant terms for social roles, statuses, and effects, plus physical attributes, are included. Filipino students (N = 496) rated themselves on 268 such terms, plus 253 markers of trait and evaluative dimensions. We identified 10 dimensions of social and physical attributes—Prominence, Uselessness, Attractiveness, Respectability, Uniqueness, Destructiveness, Presentableness, Strength, Dangerousness, and Charisma. Most of these dimensions did not correspond in a one-to-one manner to Filipino or alternative trait models (Big Five, HEXACO, ML7). However, considerable redundancy was observed between the social and physical attribute dimensions and trait and evaluative dimensions. Thus, social and physical attributes communicate information about personality traits, and vice-versa. PMID:19779603

  18. Hidden worlds in quantum physics

    CERN Document Server

    Gouesbet, Gérard

    2014-01-01

    The past decade has witnessed a resurgence in research and interest in the areas of quantum computation and entanglement. This new book addresses the hidden worlds or variables of quantum physics. Author Gérard Gouesbet studied and worked with a former student of Louis de Broglie, a pioneer of quantum physics. His presentation emphasizes the history and philosophical foundations of physics, areas that will interest lay readers as well as professionals and advanced undergraduate and graduate students of quantum physics. The introduction is succeeded by chapters offering background on relevant concepts in classical and quantum mechanics, a brief history of causal theories, and examinations of the double solution, pilot wave, and other hidden-variables theories. Additional topics include proofs of possibility and impossibility, contextuality, non-locality, classification of hidden-variables theories, and stochastic quantum mechanics. The final section discusses how to gain a genuine understanding of quantum mec...

  19. Kac-Moody Eisenstein series in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Philipp

    2013-12-19

    Understanding nature on its very smallest 'physical-length' scale has always been a central goal of physics. Theoretical investigations into this problem over the last fifty years or so were largely driven by the aim of reconciling the theory of general relativity, the theory which describes the fundamental force of gravity and therefore the dynamics of space-time, with the theory of quantum mechanics, which dominates the physical phenomena on very small (sub-atomic) scales, within one big framework, referred to as the theory of quantum gravity. One candidate for such a theory is string theory. The fundamental assumption of this theory is that the smallest constituents of nature are not given by point particles, but rather by one dimensional strings the size of the Planck length. Through their different vibrational modes, strings are thought to produce the different properties of the observed spectrum of particles in nature. With this basic idea, string theory is not only predicted to describe the gravitational force, but also all other known forces of nature, and therefore extends far beyond the concept of only being a theory of quantised gravity. Since its initial proposal, the theory has developed into a vast and complex mathematical web of different theories, which all seem to be part of a larger, all-encompassing theory. Key to understanding the complicated mathematical structure of this theory is the concept of symmetries. Such symmetries, which are also known as duality relations, for instance manifest themselves in special mathematical functions, contained in the amplitudes that capture information about the interaction processes of strings with one another. A particularly relevant example of such a function is given by the so-called Eisenstein series, which display invariance under certain discrete duality groups. The central goal of this thesis is to study the properties of Eisenstein series invariant under special, particularly large (in fact

  20. Kac-Moody Eisenstein series in string theory

    International Nuclear Information System (INIS)

    Fleig, Philipp

    2013-01-01

    Understanding nature on its very smallest 'physical-length' scale has always been a central goal of physics. Theoretical investigations into this problem over the last fifty years or so were largely driven by the aim of reconciling the theory of general relativity, the theory which describes the fundamental force of gravity and therefore the dynamics of space-time, with the theory of quantum mechanics, which dominates the physical phenomena on very small (sub-atomic) scales, within one big framework, referred to as the theory of quantum gravity. One candidate for such a theory is string theory. The fundamental assumption of this theory is that the smallest constituents of nature are not given by point particles, but rather by one dimensional strings the size of the Planck length. Through their different vibrational modes, strings are thought to produce the different properties of the observed spectrum of particles in nature. With this basic idea, string theory is not only predicted to describe the gravitational force, but also all other known forces of nature, and therefore extends far beyond the concept of only being a theory of quantised gravity. Since its initial proposal, the theory has developed into a vast and complex mathematical web of different theories, which all seem to be part of a larger, all-encompassing theory. Key to understanding the complicated mathematical structure of this theory is the concept of symmetries. Such symmetries, which are also known as duality relations, for instance manifest themselves in special mathematical functions, contained in the amplitudes that capture information about the interaction processes of strings with one another. A particularly relevant example of such a function is given by the so-called Eisenstein series, which display invariance under certain discrete duality groups. The central goal of this thesis is to study the properties of Eisenstein series invariant under special, particularly large (in fact infinite

  1. Mean-field theory and solitonic matter

    International Nuclear Information System (INIS)

    Cohen, T.D.

    1989-01-01

    Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)

  2. Neutrino physics

    CERN Document Server

    Hernandez, P.

    2016-01-01

    This is the writeup of the lectures on neutrino physics delivered at various schools: TASI and Trieste in 2013 and the CERN-Latin American School in 2015. The topics discussed in this lecture include: general properties of neutrinos in the SM, the theory of neutrino masses and mixings (Dirac and Majorana), neutrino oscillations both in vacuum and in matter, as well as an overview of the experimental evidence for neutrino masses and of the prospects in neutrino oscillation physics. We also briefly review the relevance of neutri- nos in leptogenesis and in beyond-the-Standard-Model physics.

  3. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  4. What Is Physics Problem-Solving Competency? The Views of Arnold Sommerfeld and Enrico Fermi

    Science.gov (United States)

    Niss, Martin

    2018-05-01

    A central goal of physics education is to teach problem-solving competency, but the description of the nature of this competency is somehwat fragmentary and implicit in the literature. The present article uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions on the nature of physics problem-solving competency. The first, Sommerfeld's, is a "theory first, phenomenon second" approach. Here, the relevant problems originate in one of the theories of physics and the goal of the problem-solver is to make a mathematical analysis of the relevant equation(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi's position is a "phenomenon first, theory second" approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions are illustrated with solutions to two problems and it is shown that the two positions are reflected in problem collections of university educations in physics.

  5. A grounded-theory investigation of patient education in physical therapy practice.

    Science.gov (United States)

    Rindflesch, Aaron B

    2009-04-01

    Patient education is a critical component of physical therapy and is used frequently in practice. Research describing the practice of patient education in physical therapy is scarce, however. Qualitative research methods can be used to describe the practice of patient education in physical therapy and to identify supportive theory. This study describes the practice of patient education grounded in data obtained from nine physical therapists in three settings: outpatient, acute care, and inpatient rehabilitation. From the data common themes are reported. From the themes, supportive theory can be identified. Results show four primary themes regarding patient education in physical therapy. First, the physical therapists in this study were not able to easily differentiate patient education from primary interventions. Second, the purpose of patient education was to empower patients toward self-management and prevention. Third, therapists used a patient-centered approach to decide upon content. Finally, each therapist used function or demonstration to assess the outcome of patient education interventions. The results of this study can be used to inform current practitioners, for future research and to identify theoretical underpinnings to support the practice of patient education in physical therapy.

  6. M Theory, G2-manifolds and four dimensional physics

    International Nuclear Information System (INIS)

    Acharya, B.S.

    2003-01-01

    M theory on a manifold of G 2 -holonomy is a natural framework for obtaining vacua with four large spacetime dimensions and N = 1 supersymmetry. In order to obtain, within this framework, the standard features of particle physics, namely non-Abelian gauge groups and chiral fermions, we consider G 2 -manifolds with certain kinds of singularities at which these features reside. The aim of these lectures is to describe in detail how the above picture emerges. Along the way we will see how interesting aspects of strongly coupled gauge theories, such as confinement, receive relatively simple explanations within the context of M theory. (author)

  7. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  8. The ``Folk Theorem'' on effective field theory: How does it fare in nuclear physics?

    Science.gov (United States)

    Rho, Mannque

    2017-10-01

    This is a brief history of what I consider as very important, some of which truly seminal, contributions made by young Korean nuclear theorists, mostly graduate students working on PhD thesis in 1990s and early 2000s, to nuclear effective field theory, nowadays heralded as the first-principle approach to nuclear physics. The theoretical framework employed is an effective field theory anchored on a single scale-invariant hidden local symmetric Lagrangian constructed in the spirit of Weinberg's "Folk Theorem" on effective field theory. The problems addressed are the high-precision calculations on the thermal np capture, the solar pp fusion process, the solar hep process — John Bahcall's challenge to nuclear theorists — and the quenching of g A in giant Gamow-Teller resonances and the whopping enhancement of first-forbidden beta transitions relevant in astrophysical processes. Extending adventurously the strategy to a wild uncharted domain in which a systematic implementation of the "theorem" is far from obvious, the same effective Lagrangian is applied to the structure of compact stars. A surprising, unexpected, result on the properties of massive stars, totally different from what has been obtained up to day in the literature, is predicted, such as the precocious onset of conformal sound velocity together with a hint for the possible emergence in dense matter of hidden symmetries such as scale symmetry and hidden local symmetry.

  9. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1987-01-01

    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress

  10. Introduction to gauge field theory

    International Nuclear Information System (INIS)

    Bailin, D.; Love, A.

    1986-01-01

    This book provides a postgraduate level introduction to gauge field theory entirely from a path integral standpoint without any reliance on the more traditional method of canonical quantisation. The ideas are developed by quantising the self-interacting scalar field theory, and are then used to deal with all the gauge field theories relevant to particle physics, quantum electrodynamics, quantum chromodynamics, electroweak theory, grand unified theories, and field theories at non-zero temperature. The use of these theories to make precise experimental predictions requires the development of the renormalised theories. This book provides a knowledge of relativistic quantum mechanics, but not of quantum field theory. The topics covered form a foundation for a knowledge of modern relativistic quantum field theory, providing a comprehensive coverage with emphasis on the details of actual calculations rather than the phenomenology of the applications

  11. The spin-s quantum Heisenberg ferromagnetic models in the physical magnon theory

    International Nuclear Information System (INIS)

    Liu, B.-G.; Pu, F.-C.

    2001-01-01

    The spin-s quantum Heisenberg ferromagnetic model is investigated in the physical magnon theory. The effect of the extra unphysical magnon states on every site is completely removed in the magnon Hamiltonian and during approximation procedure so that the condition †n i a n i >=0(n≥2s+1) is rigorously satisfied. The physical multi-magnon occupancy †n i a n i >(1≤n≤2s) is proportional to T 3n/2 at low temperature and is equivalent to 1/(2s+1) at the Curie temperature. The magnetization not only unified but also well-behaved from zero temperature to Curie temperature is obtained in the framework of the magnon theory for the spin-s quantum Heisenberg ferromagnetic model. The ill-behaved magnetizations at high temperature in earlier magnon theories are completely corrected. The relation of magnon (spin wave) theory with spin-operator decoupling theory is clearly understood

  12. Quantum tunneling and field electron emission theories

    CERN Document Server

    Liang, Shi-Dong

    2013-01-01

    Quantum tunneling is an essential issue in quantum physics. Especially, the rapid development of nanotechnology in recent years promises a lot of applications in condensed matter physics, surface science and nanodevices, which are growing interests in fundamental issues, computational techniques and potential applications of quantum tunneling. The book involves two relevant topics. One is quantum tunneling theory in condensed matter physics, including the basic concepts and methods, especially for recent developments in mesoscopic physics and computational formulation. The second part is the f

  13. p anti p collider physics: summary talk

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1985-06-01

    Progress is very briefly summarized in these areas: Drell-Yan production of W and Z; inclusive spectra of jets; angular distribution of two jet final states; Dalitz plot analysis of three jet final states; interior structure of jets; minijets; issues and relevent data in soft-collision physics; structure of the pomeron; W, Z, and electroweak theory; heavy quark physics; extinct exotica; extant exotica, including monojets, the top quark, and possibly anomalous same-sign isolated dimuons. Future directions are anticipated for the Sp anti pS, Tevatron I, instrumentation and detectors, group theory, and the physics at SSC energies. 39 refs., 18 figs

  14. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  15. Quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Adler, S.L.

    1986-01-01

    In this paper the author describes a new kind of quantum mechanics or quantum field theory based on quaternions. Quaternionic quantum mechanics has a Schrodinger equation, a Dirac transformation theory, and a functional integral. Quaternionic quantum mechanics does not seem to have (except in the complex quantum mechanics specialization): A correspondence principle, and beyond this a commuting tensor product, asymptotic states, an S-matrix, a canonical formalism, coherent states or a Euclidean continuation. A new kind of quantum mechanics exists. There are many interesting formal questions to study, which should enable one to decide whether quaternionic quantum field theory is relevant for particle physics

  16. Theory, evidence and Intervention Mapping to improve behavior nutrition and physical activity interventions.

    NARCIS (Netherlands)

    J. Brug (Hans); A. Oenema (Anke); A. Ferreira (Isabel)

    2005-01-01

    textabstractBACKGROUND: The present paper intends to contribute to the debate on the usefulness and barriers in applying theories in diet and physical activity behavior-change interventions. DISCUSSION: Since behavior theory is a reflection of the compiled evidence of behavior research, theory is

  17. Asymptotic mass degeneracies in conformal field theories

    International Nuclear Information System (INIS)

    Kani, I.; Vafa, C.

    1990-01-01

    By applying a method of Hardy and Ramanujan to characters of rational conformal field theories, we find an asymptotic expansion for degeneracy of states in the limit of large mass which is exact for strings propagating in more than two uncompactified space-time dimensions. Moreover we explore how the rationality of the conformal theory is reflected in the degeneracy of states. We also consider the one loop partition function for strings, restricted to physical states, for arbitrary (irrational) conformal theories, and obtain an asymptotic expansion for it in the limit that the torus degenerates. This expansion depends only on the spectrum of (physical and unphysical) relevant operators in the theory. We see how rationality is consistent with the smoothness of mass degeneracies as a function of moduli. (orig.)

  18. Quantum mechanics as total physical theory

    International Nuclear Information System (INIS)

    Slavnov, D.A.

    2002-01-01

    It is shown that the principles of the total physical theory and conclusions of the standard quantum mechanics are not at such an antagonistic variance as it is usually accepted. The axioms, which make it possible to plot the renewed mathematical scheme of the quantum mechanics are formulated within the frames of the algebraic approach. The above scheme includes the standard mathematical apparatus of the quantum mechanics. Simultaneously there exists the mathematical object, which adequately describes the individual experiment. The examples of applying the proposed scheme is presented [ru

  19. Complexity in quantum field theory and physics beyond the standard model

    International Nuclear Information System (INIS)

    Goldfain, Ervin

    2006-01-01

    Complex quantum field theory (abbreviated c-QFT) is introduced in this paper as an alternative framework for the description of physics beyond the energy range of the standard model. The mathematics of c-QFT is based on fractal differential operators that generalize the momentum operators of conventional quantum field theory (QFT). The underlying premise of our approach is that c-QFT contains the right analytical tools for dealing with the asymptotic regime of QFT. Canonical quantization of c-QFT leads to the following findings: (i) the Fock space of c-QFT includes fractional numbers of particles and antiparticles per state (ii) c-QFT represents a generalization of topological field theory and (iii) classical limit of c-QFT is equivalent to field theory in curved space-time. The first finding provides a field-theoretic motivation for the transfinite discretization approach of El-Naschie's ε (∞) theory. The second and third findings suggest the dynamic unification of boson and fermion fields as particles with fractional spin, as well as the close connection between spin and space-time topology beyond the conventional physics of the standard model

  20. Complexity in quantum field theory and physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Goldfain, Ervin [OptiSolve Consulting, 4422 Cleveland Road, Syracuse, NY 13215 (United States)

    2006-05-15

    Complex quantum field theory (abbreviated c-QFT) is introduced in this paper as an alternative framework for the description of physics beyond the energy range of the standard model. The mathematics of c-QFT is based on fractal differential operators that generalize the momentum operators of conventional quantum field theory (QFT). The underlying premise of our approach is that c-QFT contains the right analytical tools for dealing with the asymptotic regime of QFT. Canonical quantization of c-QFT leads to the following findings: (i) the Fock space of c-QFT includes fractional numbers of particles and antiparticles per state (ii) c-QFT represents a generalization of topological field theory and (iii) classical limit of c-QFT is equivalent to field theory in curved space-time. The first finding provides a field-theoretic motivation for the transfinite discretization approach of El-Naschie's {epsilon} {sup ({infinity}}{sup )} theory. The second and third findings suggest the dynamic unification of boson and fermion fields as particles with fractional spin, as well as the close connection between spin and space-time topology beyond the conventional physics of the standard model.

  1. Rare Decays Probing Physics Beyond the Standard Theory

    CERN Document Server

    Teubert, Frederic

    2016-01-01

    In the last 50 years we have seen how an initially ad-hoc and not widely accepted theory of the strong and electroweak interactions (Standard Theory: ST) has correctly predicted the entire accelerator based experimental observations with incredible accuracy (with the important exception of neutrino oscillation experiments). Decays of the ST particles (quarks and leptons), which are rare due to some symmetry of the theory, have played an important role in the formalism of the ST. These rare decays have been powerful tools to search for new particle interactions with the ST particles, which may not necessarily have the same symmetries. In this article, I will describe the indirect search for evidence of new physics (NP) using quark and lepton flavour changing neutral decays, which are highly suppressed within the ST, and constitute strong probes of potential new flavour structures.

  2. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    1999-01-01

    The elementary building blocks of matter are quarks. Hence, it is fundamental to describe hadrons and nuclei in terms of quarks and gluons, the subject of which is called Quark Nuclear Physics. The quark-dynamics is described by Quantum Chromodynamics (QCD). Our interest is the non-perturbative aspect of QCD as confinement, chiral symmetry breaking, hadronization etc. We introduce the dual Ginzburg-Landau theory (DGL), where the color monopole fields and their condensation is the QCD vacuum, play essential roles in describing these non-perturbative phenomena. We emphasize its connection to QCD through the use of the Abelian gauge. We apply the DGL theory to various observables. We discuss then the connection of the monopole fields with instantons, which are the classical solutions of the non-Abelian gauge theory and connect through the tunneling process QCD vacuum with different winding numbers. (author)

  3. Random matrix theories and chaotic dynamics

    International Nuclear Information System (INIS)

    Bohigas, O.

    1991-01-01

    A review of some of the main ideas, assumptions and results of the Wigner-Dyson type random matrix theories (RMT) which are relevant in the general context of 'Chaos and Quantum Physics' is presented. RMT are providing interesting and unexpected clues to connect classical dynamics with quantum phenomena. It is this aspect which will be emphasised and, concerning the main body of RMT, the author will restrict himself to a minimum. However, emphasis will be put on some generalizations of the 'canonical' random matrix ensembles that increase their flexibility, rendering the incorporation of relevant physical constraints possible. (R.P.) 112 refs., 35 figs., 5 tabs

  4. Bounds on the power of proofs and advice in general physical theories.

    Science.gov (United States)

    Lee, Ciarán M; Hoban, Matty J

    2016-06-01

    Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that [Formula: see text] is contained in [Formula: see text], which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.

  5. The physical environment and its relevance to customer satisfaction in boutique hotels; Hotel Haven, Helsinki

    OpenAIRE

    Jysmä, Ekaterina

    2012-01-01

    Object of this research is physical environment of the boutique hotel named Haven. As there is lack of the researches concerning physical environment role in the boutique hotels, this paper could be useful both for the studied hotel as well as for the other boutique hotels managers and owners. Moreover, it could be useful for the potential customers of Hotel Haven. Main topic of this research is the importance and relevance of the physical environment in Hotel Haven, mostly its impact o...

  6. Physical Activity and Social Cognitive Theory Outcomes of an Internet-Enhanced Physical Activity Intervention for African American Female College Students.

    Science.gov (United States)

    Joseph, Rodney P; Pekmezi, Dorothy W; Lewis, Terri; Dutton, Gareth; Turner, Lori W; Durant, Nefertiti H

    2013-01-01

    African American women report low levels of physical activity (PA) and are disproportionately burdened by related chronic diseases. This pilot study tested a 6-month theory-based (Social Cognitive Theory, SCT) culturally-relevant website intervention to promote PA among African American female college students. A single group pre-post test design (n=34) was used. PA and associated SCT constructs (outcome expectations, enjoyment, self-regulation, social support) were assessed at baseline, 3 months and 6 months. The sample was comprised of mostly obese ( M BMI= 35.4, SD =6.82) young adults ( M age= 21.21 years, SD =2.31). Fifty percent of the sample completed all assessments. Intent-to-treat analyses showed that participants reported a significant median improvement in moderate-to-vigorous physical activity from 82.5 minutes/week ( M =81.76, SD =76.23) at baseline to 115.0 minutes/week ( M= 122.44, SD =97.93) at 3 months ( Wilcoxon z= 2.39 , p =.02). However these gains appear to have attenuated by 6 months (Median= 82.5 minutes/week, M =96.73, SD =84.20; Wilcoxon z= 1.02, p =.31). Significant increases from baseline to 6 months were found in self-regulation for PA (p= .02 ) and social support for PA from friends ( p =.02). Changes in the SCT variables were not significantly associated with changes in PA; however, this may have been due to small sample size. Future studies with larger samples and more aggressive retention strategies (e.g., more frequent incentives, prompts for website use) are needed to further explore the applicability of web-based approaches to promote PA in this at-risk population.

  7. From physics to metaphysics. A sociological reconstruction of the interpretation problem of the quantum theory

    International Nuclear Information System (INIS)

    Vogd, Werner

    2014-01-01

    The quantum theory represents one of the most fastidious and successful theory projects of the history of mankind. It is one, if not the universal theory of physics. The history of its interpretation and the discussion affects however by far more than only the field of theoretical physics. Such theory approach destroys ontological certainty. It calls the observer in question, and it lets us anticipate, what is to be expected, if we are employed in other fields with complex phenomena, which are infected with the observer problematics. As transclassical physics the quantum theory is so to say built on ''worlds without ground'' and disappoints by this the hope to be able to set themselves free from mind questions by physics or mathematics. Homologuously to the top forms of mystic reflexion the discussion about the interpretation of quantum physics can mediate an idea, what the mystery of the conditioned coproduction of system and environment - reflexion and world - can mean for us and possibly help us to become homelike in worlds without grounds. Hereby it becomes clear, that highly driven theory, which solves itself in its abstractions in a high degree from the live-worldly reality, stands not in contradiction to the possibility of knowledge of the world. On the contrary, at first a theory creation sufficiently elaborated and endowed with own internally conditioned consistency constraints represents the condition for the possibility of reflexion and gain of knowledge.

  8. 1984 CERN school of physics

    International Nuclear Information System (INIS)

    1985-01-01

    The CERN School of Physics is intended to give young experimental physicists an introduction to the theoretical aspects of recent advances in elementary particle physics. These Proceedings contain reports of lecture series on the following topics: proton antiproton physics, experimental tests of gauge theories, QCD, phenomenology of Higgs particles, the electroweak model, unification and supersymmetry. In addition, there is a report of a special lecture on elementary supersymmetry. See hints under the relevant topics. (orig./HSI)

  9. A theory manual for multi-physics code coupling in LIME.

    Energy Technology Data Exchange (ETDEWEB)

    Belcourt, Noel; Bartlett, Roscoe Ainsworth; Pawlowski, Roger Patrick; Schmidt, Rodney Cannon; Hooper, Russell Warren

    2011-03-01

    The Lightweight Integrating Multi-physics Environment (LIME) is a software package for creating multi-physics simulation codes. Its primary application space is when computer codes are currently available to solve different parts of a multi-physics problem and now need to be coupled with other such codes. In this report we define a common domain language for discussing multi-physics coupling and describe the basic theory associated with multiphysics coupling algorithms that are to be supported in LIME. We provide an assessment of coupling techniques for both steady-state and time dependent coupled systems. Example couplings are also demonstrated.

  10. Comments on the interaction between theory and experiment in high energy physics

    International Nuclear Information System (INIS)

    Derrick, M.

    1990-01-01

    This paper discusses work being conducted in High Energy Physics and Nuclear Physics where theory and experiment go hand in hand. Pion capture, proton-antiproton interactions, kaon-pion interactions and hypernuclei decay are discussed as examples

  11. General definition of the concept of "sport" as one of the basic constructs of the general theory of physical culture and sports theory

    Directory of Open Access Journals (Sweden)

    Vasil Sutula

    2018-02-01

    Full Text Available Purpose: to reveal modern ideas about the essence of the concept of "sport" and determine its role in the development of the general theory of physical culture and sports theory. Material & Methods: analysis of specialized literature, which highlights various aspects of the development of the field of people's activities related to the use of physical exercises. Results: in today's society there is an objective sphere of human activity related to the use of physical exercises, for which the name in domestic and foreign scientific and social practice is most often used the term "physical culture". Conclusion: the constitutive conditions of the process of developing a general theory of physical culture are singled out, it is shown that sport, as a special socio-cultural phenomenon, is a historically conditioned activity of people associated with the use of physical exercises, aimed at preparing and participating in competitions, as well as individual and socially significant results of such activity.

  12. The outlooks of Helmholtz, Plank and Einstein on the unified physical theory

    International Nuclear Information System (INIS)

    Treder, G.Yu.

    1982-01-01

    The outlooks of Helmholtz, Planck and Einstein on the unified physical theory are exposed. Planck formulated the Einstein relativistic mechanics in the canonical form stemming from the suggested by Helmholtz approach that the principle of action is the unified formal principle of physics. Einstein and his companious proceeded from machroscopic fields in the attempts to prove the unified geometric field theory. The sense of Planck length as ''the smallest length in physics'' is determined, on the one hand, by the Heizenberg uncerntainty principle for the measurement process, and on the other hand by the universal proportionality between inertia and gravity. It results from geometrical nature and gravitational potential, i. e. from Einstein interpretation of the equivalence principle

  13. Complexity vs energy: theory of computation and theoretical physics

    International Nuclear Information System (INIS)

    Manin, Y I

    2014-01-01

    This paper is a survey based upon the talk at the satellite QQQ conference to ECM6, 3Quantum: Algebra Geometry Information, Tallinn, July 2012. It is dedicated to the analogy between the notions of complexity in theoretical computer science and energy in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.

  14. Many-Body Quantum Theory in Condensed Matter Physics-An Introduction

    International Nuclear Information System (INIS)

    Logan, D E

    2005-01-01

    fifty pages of the book, are devoted to electron transport in mesoscopic systems; the one on interacting systems is preceded by a brief account of equation of motion techniques-a relative rarity in a general text, used here to provide background to subsequent discussion of the Coulomb blockade in quantum dots. So does it work, and will it find a niche beside other established, wide ranging texts? On the whole I think the answer has to be yes. To begin with, the book is well organised and user-friendly, which must surely appeal to students (and their mentors). The chapters are typically bite-sized and digestible. Each is accompanied by a summary/outlook, which in doing just that attempts to place the specific topic in a wider context, together with a set of problems that illustrate, and in many cases expand substantially on, the basic subject matter. A particularly healthy feature of the book is the extent to which the authors have sought where possible to include physical and/or material applications of basic theory, thereby enlivening old material and enhancing appreciation of the new. The first chapter on the electron gas, for example, introduces the reader to a range of material examples, including 2D heterostructures, carbon nanotubes and quantum dots. A chapter on the formalism of Green's functions takes time out to explain how the single-particle spectral function can be measured by tunnelling spectroscopy, while discussion of impurity scattering and conductivity is refreshed by consideration of weak localization in bulk and mesoscopic systems, and the phenomenon of universal conductance fluctuations. And so on: in a text that could readily descend to the purely formal, the authors have clearly taken seriously the task of incorporating relevant, topical applications of the underlying theory. In a book as wide ranging as this any reviewer is of course bound to perceive the occasional deficiency. I felt for example that some aspects of the discussion of conductance

  15. Testing a self-determination theory model of children's physical activity motivation: a cross-sectional study.

    Science.gov (United States)

    Sebire, Simon J; Jago, Russell; Fox, Kenneth R; Edwards, Mark J; Thompson, Janice L

    2013-09-26

    Understanding children's physical activity motivation, its antecedents and associations with behavior is important and can be advanced by using self-determination theory. However, research among youth is largely restricted to adolescents and studies of motivation within certain contexts (e.g., physical education). There are no measures of self-determination theory constructs (physical activity motivation or psychological need satisfaction) for use among children and no previous studies have tested a self-determination theory-based model of children's physical activity motivation. The purpose of this study was to test the reliability and validity of scores derived from scales adapted to measure self-determination theory constructs among children and test a motivational model predicting accelerometer-derived physical activity. Cross-sectional data from 462 children aged 7 to 11 years from 20 primary schools in Bristol, UK were analysed. Confirmatory factor analysis was used to examine the construct validity of adapted behavioral regulation and psychological need satisfaction scales. Structural equation modelling was used to test cross-sectional associations between psychological need satisfaction, motivation types and physical activity assessed by accelerometer. The construct validity and reliability of the motivation and psychological need satisfaction measures were supported. Structural equation modelling provided evidence for a motivational model in which psychological need satisfaction was positively associated with intrinsic and identified motivation types and intrinsic motivation was positively associated with children's minutes in moderate-to-vigorous physical activity. The study provides evidence for the psychometric properties of measures of motivation aligned with self-determination theory among children. Children's motivation that is based on enjoyment and inherent satisfaction of physical activity is associated with their objectively-assessed physical

  16. Increasing Children's Voluntary Physical Activity Outside of School Hours Through Targeting Social Cognitive Theory Variables.

    Science.gov (United States)

    Annesi, James J; Walsh, Stephanie M; Greenwood, Brittney L

    2016-10-01

    Volume of moderate-to-vigorous physical activity completed during the elementary school day is insufficient, and associated with health risks. Improvements in theory-based psychosocial factors might facilitate increased out-of-school physical activity. A behaviorally based after-school care protocol, Youth Fit 4 Life, was tested for its association with increased voluntary, out-of-school physical activity and improvements in its theory-based psychosocial predictors in 9- to 12-year-olds. Increases over 12 weeks in out-of-school physical activity, and improvements in self-regulation for physical activity, exercise self-efficacy, and mood, were significantly greater in the Youth Fit 4 Life group (n = 88) when contrasted with a typical care control group (n = 57). Changes in the 3 psychosocial variables significantly mediated the group-physical activity change relationship (R(2) = .31, P theory-based psychosocial changes within a structured after-school care physical activity program was associated with increases in children's overall time being physically active. After replication, large scale application will be warranted. © The Author(s) 2016.

  17. Utility of Social Cognitive Theory in Intervention Design for Promoting Physical Activity among African-American Women: A Qualitative Study.

    Science.gov (United States)

    Joseph, Rodney P; Ainsworth, Barbara E; Mathis, LaTanya; Hooker, Steven P; Keller, Colleen

    2017-09-01

    We examined the cultural relevance of Social Cognitive Theory (SCT) in the design of a physical activity intervention for African-American women. A qualitative study design was used. Twenty-five African-American women (Mean age = 38.5 years, Mean BMI = 39.4 kg·m2) were enrolled in a series of focus groups (N = 9) to elucidate how 5 SCT constructs (ie, Behavioral Capability, Outcome Expectations, Self-efficacy, Self-regulation, Social Support) can be culturally tailored in the design of a physical activity program for African-American women. For the construct of Behavioral Capability, participants were generally unaware of the amount, intensity, and types of physical activity needed for health benefits. Outcome Expectations associated with physical activity included increased energy, improved health, weight loss, and positive role modeling behaviors. Constructs of Self-efficacy and Self-regulation were elicited through the women perceiving themselves as a primary barrier to physical activity. Participants endorsed the need of a strong social support component and identified a variety of acceptable sources to include in a physical activity program (ie, family, friends, other program participants). Findings explicate the utility of SCT as a behavioral change theoretical basis for tailoring physical activity programs to African-American women.

  18. Einstein's impact on theoretical physics

    International Nuclear Information System (INIS)

    Yang, C.N.

    1983-01-01

    There occurred in the early years of this century three conceptual revolutions that profoundly changed Man's understanding of the physical universe: the special theory of relativity (in 1905), the general theory of relativity (1915) and quantum mechanics (1925). Einstein personally was responsible for the first two of these revolutions, and influenced and helped to shape the third. But it is not about his work in these conceptual revolutions that he writes about here. Much has been written about that work already. Instead, he discusses, in general terms, Einstein's insights on the structure of theoretical physics and their relevance to the development of physics in the second half of this century. He divides the discussion into four sections which are, of course, very much related

  19. A Review on Polymer Crystallization Theories

    Directory of Open Access Journals (Sweden)

    Michael C. Zhang

    2016-12-01

    Full Text Available It is the aim of this article to review the major theories of polymer crystallization since up to now we still have not completely comprehended the underlying mechanism in a unified framework. A lack of paradigm is an indicator of immaturity of the field itself; thus, the fundamental issue of polymer crystallization remains unsolved. This paper provides an understanding of the basic hypothesis, as well as relevant physical implications and consequences of each theory without too much bias. We try to present the essential aspects of the major theories, and intuitive physical arguments over rigorously mathematical calculations are highlighted. In addition, a detailed comparison of various theories will be made in a logical and self-contained fashion. Our personal view of the existing theories is presented as well, aiming to inspire further open discussions. We expect that new theories based on the framework of kinetics with direct consideration of long-range multi-body correlation will help solve the remaining problems in the field of polymer crystallization.

  20. A course in mathematical physics 2 classical field theory

    CERN Document Server

    Thirring, Walter

    1978-01-01

    In the past decade the language and methods ofmodern differential geometry have been increasingly used in theoretical physics. What seemed extravagant when this book first appeared 12 years ago, as lecture notes, is now a commonplace. This fact has strengthened my belief that today students of theoretical physics have to learn that language-and the sooner the better. Afterall, they willbe the professors ofthe twenty-first century and it would be absurd if they were to teach then the mathematics of the nineteenth century. Thus for this new edition I did not change the mathematical language. Apart from correcting some mistakes I have only added a section on gauge theories. In the last decade it has become evident that these theories describe fundamental interactions, and on the classical level their structure is suffi­ cientlyclear to qualify them for the minimum amount ofknowledge required by a theoretician. It is with much regret that I had to refrain from in­ corporating the interesting developments in Kal...

  1. Light Cone 2017 : Frontiers in Light Front Hadron Physics : Theory and Experiment.

    CERN Document Server

    2018-01-01

    LC2017 belongs to a series of Light-Cone conferences, which started in 1991. Light Cone conferences are held each year under the auspices of the International Light Cone Advisory Committee (ILCAC) (http://www.ilcacinc.org). The main objective of the Light Cone conference series is to provide a timely update of the progress in light-front theory and its phenomenological applications. Light-front theory provides a suitable framework to calculate observables such as scattering amplitudes, decay rates, spin effects, parton distributions, and other hadronic observables. One of the themes of the conference will be the interface between theory and experiment in hadron physics. The main topics of the program are: o Hadron Physics at present and future colliders o Light Front Field Theory in QED and QCD o AdS/QCD, D Branes and Strings o Hadron Structure : TMDs, GPDs and PDFs o Lattice QCD o QCD at high temperature and density o Higher order QCD corrections

  2. Computational physics an introduction to Monte Carlo simulations of matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    This book is divided into two parts. In the first part we give an elementary introduction to computational physics consisting of 21 simulations which originated from a formal course of lectures and laboratory simulations delivered since 2010 to physics students at Annaba University. The second part is much more advanced and deals with the problem of how to set up working Monte Carlo simulations of matrix field theories which involve finite dimensional matrix regularizations of noncommutative and fuzzy field theories, fuzzy spaces and matrix geometry. The study of matrix field theory in its own right has also become very important to the proper understanding of all noncommutative, fuzzy and matrix phenomena. The second part, which consists of 9 simulations, was delivered informally to doctoral students who are working on various problems in matrix field theory. Sample codes as well as sample key solutions are also provided for convenience and completness. An appendix containing an executive arabic summary of t...

  3. Cosmology in Gauge Field Theory and String Theory

    International Nuclear Information System (INIS)

    Garcia Compean, H

    2005-01-01

    This new book is intended for students and researchers who want to go into the interplay between cosmology and high-energy physics. It assumes a prior knowledge of these subjects such as some of the topics contained in the previous books by the authors, Introduction to Gauge Field Theory (1993 Bristol: Institute of Physics Publishing) and Supersymmetric Gauge Field Theory and String Theory (1994 Bristol: Institute of Physics Publishing). However, the book is intended to be self-contained, explaining, from a modern perspective, some background material mainly in standard cosmology, topological defects, baryogenesis, inflationary cosmology and, at the end of the book, some of the basics of string theory. What is distinctively new about this book is that it lies in the interplay between cosmology and high-energy physics typically above 100 GeV (10 15 K). Often these subjects are presented in regular textbooks in a disconnected way, or in research papers, proceedings and review papers but usually not in a pedagogical style. Thus, in this sense, the book is unique and deserves a special place in the recent literature. The book starts by reviewing the standard material of the early universe. The standard model of cosmology from a modern perspective is revised in chapter 1. In chapter 2, phase transitions in different models are discussed, Higgs, electroweak, GUTs, supersymmetric GUTs and supergravity, by using quantum field theory at finite temperature. Chapter 3 is devoted to a general account of topological defects and discusses how they arise as possible remnants of these phase transitions in GUTs. Other relics, such as neutrinos and axions, are introduced in chapter 5 and their impact in cosmology is assessed. In chapter 4, some of the most relevant mechanisms of baryogenesis are discussed in the context of the different GUTs and the minimal supersymmetric standard model (MSSM). Inflation is also discussed in the context of GUTs. In chapter 6, the authors introduce

  4. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  5. Local observables in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1981-09-01

    Labelling of the physical states of a non-Abelian gauge theory on a lattice in terms of local observables in considered. The labelling is in terms of local color electric field observables and (separately) local color magnetic field observables. Matter field is also included. The non-local variables required when space is multiply-connected, are specified. Non-Abelian version of the Stokes' theorem is considered. Relevance to the continuum theory is discussed in detail. (orig.)

  6. Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques

    International Nuclear Information System (INIS)

    Carretero-González, R; Frantzeskakis, D J; Kevrekidis, P G

    2008-01-01

    The aim of this review is to introduce the reader to some of the physical notions and the mathematical methods that are relevant to the study of nonlinear waves in Bose–Einstein condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyse some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g. the linear or the nonlinear limit or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools. (invited article)

  7. Psychosocial factors and theory in physical activity studies in minorities.

    Science.gov (United States)

    Mama, Scherezade K; McNeill, Lorna H; McCurdy, Sheryl A; Evans, Alexandra E; Diamond, Pamela M; Adamus-Leach, Heather J; Lee, Rebecca E

    2015-01-01

    To summarize the effectiveness of interventions targeting psychosocial factors to increase physical activity (PA) among ethnic minority adults and explore theory use in PA interventions. Studies (N = 11) were identified through a systematic review and targeted African American/Hispanic adults, specific psychosocial factors, and PA. Data were extracted using a standard code sheet and the Theory Coding Scheme. Social support was the most common psychosocial factor reported, followed by motivational readiness, and self-efficacy, as being associated with increased PA. Only 7 studies explicitly reported using a theoretical framework. Future efforts should explore theory use in PA interventions and how integration of theoretical constructs, including psychosocial factors, increases PA.

  8. Renormalization group theory impact on experimental magnetism

    CERN Document Server

    Köbler, Ulrich

    2010-01-01

    Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are calle...

  9. Physical principles, geometrical aspects, and locality properties of gauge field theories

    International Nuclear Information System (INIS)

    Mack, G.; Hamburg Univ.

    1981-01-01

    Gauge field theories, particularly Yang - Mills theories, are discussed at a classical level from a geometrical point of view. The introductory chapters are concentrated on physical principles and mathematical tools. The main part is devoted to locality problems in gauge field theories. Examples show that locality problems originate from two sources in pure Yang - Mills theories (without matter fields). One is topological and the other is related to the existence of degenerated field configurations of the infinitesimal holonomy groups on some extended region of space or space-time. Nondegenerate field configurations in theories with semisimple gauge groups can be analysed with the help of the concept of a local gauge. Such gauges play a central role in the discussion. (author)

  10. Theory of radiatively driven stellar winds. I. A physical interpretation

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1980-01-01

    This series of papers extends the line-driven wind theory of Castor, Abbott, and Klein (CAK). The present paper develops a physical interpretation of line-driven flows using analytic methods. Numerical results will follow in two subsequent papers

  11. Implicit Theories of Ability in Physical Education: Current Issues and Future Directions

    Science.gov (United States)

    Warburton, Victoria Emily; Spray, Christopher Mark

    2017-01-01

    Purpose: In light of the extensive empirical evidence that implicit theories have important motivational consequences for young people across a range of educational settings we seek to provide a summary of, and personal reflection on, implicit theory research and practice in physical education (PE). Overview: We first provide an introduction to…

  12. Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory

    Science.gov (United States)

    Tweney, Ryan D.

    2011-07-01

    James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.

  13. The analysis of irony through relevance theory in the big bang theory sitcom = A análise da ironia por meio da teoria da relevância na comédia de situação the big bang theory

    Directory of Open Access Journals (Sweden)

    Izaias, Karla Camila Oliveira

    2011-01-01

    Full Text Available Neste trabalho, será analisada a teoria da relevância proposta por Sperber e Wilson. Adicionalmente, a figura de linguagem ironia será descrita. Esse referencial teórico será utilizado para analisar um episódio da comédia de situação intitulado "The Big Bang Theory", em um esforço para demonstrar como enunciados são compreendidos entre os personagens e o público e como ironia é largamente utilizada como recurso humorístico

  14. There is no Theory of Everything a physics perspective on emergence

    CERN Document Server

    English, Lars Q

    2017-01-01

    The main purpose of this book is to introduce a broader audience to emergence by illustrating how discoveries in the physical sciences have informed the ways we think about it.  In a nutshell, emergence asserts that non-reductive behavior arises at higher levels of organization and complexity. As physicist Philip Anderson put it, “more is different.”  Along the text's conversational tour through the terrain of quantum physics, phase transitions, nonlinear and statistical physics, networks and complexity, the author highlights the various philosophical nuances that arise in encounters with emergence. The final part of the book zooms out to reflect on some larger lessons that emergence affords us. One of those larger lessons is the realization that the great diversity of theories and models, and the great variety of independent explanatory frameworks, will always be with us in the sciences and beyond. There is no “Theory of Everything” just around the corner waiting to be discovered. One of the main b...

  15. Foundations of quantum mechanics an exploration of the physical meaning of quantum theory

    CERN Document Server

    Norsen, Travis

    2017-01-01

    Authored by an acclaimed teacher of quantum physics and philosophy, this textbook pays special attention to the aspects that many courses sweep under the carpet. Traditional courses in quantum mechanics teach students how to use the quantum formalism to make calculations. But even the best students - indeed, especially the best students - emerge rather confused about what, exactly, the theory says is going on, physically, in microscopic systems. This supplementary textbook is designed to help such students understand that they are not alone in their confusions (luminaries such as Albert Einstein, Erwin Schroedinger, and John Stewart Bell having shared them), to sharpen their understanding of the most important difficulties associated with interpreting quantum theory in a realistic manner, and to introduce them to the most promising attempts to formulate the theory in a way that is physically clear and coherent. The text is acces sible to students with at least one semester of prior exposure to quantum (or...

  16. Exactly renormalizable model in quantum field theory. II. The physical-particle representation

    NARCIS (Netherlands)

    Ruijgrok, Th.W.

    1958-01-01

    For the simplified model of quantum field theory discussed in a previous paper it is shown how the physical particles can be properly described by means of the so-called asymptotically stationary (a.s.) states. It is possible by formulating the theory in terms of these a.s. states to express it

  17. 278 THE RELEVANCE OF SPEECH ACT THEORY FOR ...

    African Journals Online (AJOL)

    ACQUISITION OF PRAGMATIC COMPETENCE BY SECOND LANGUAGE ... more general linguistic theory, i.e. a theory of language use. I shall start .... theories focused on learners' acquisition of grammatical ... knowledge required to construct or understand well-formed .... getting the neighbours' children to turn down their.

  18. The geometry and physics of Abelian gauge groups in F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Keitel, Jan

    2015-07-14

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  19. The geometry and physics of Abelian gauge groups in F-theory

    International Nuclear Information System (INIS)

    Keitel, Jan

    2015-01-01

    In this thesis we study the geometry and the low-energy effective physics associated with Abelian gauge groups in F-theory compactifications. To construct suitable torus-fibered Calabi-Yau manifolds, we employ the framework of toric geometry. By identifying appropriate building blocks of Calabi-Yau manifolds that can be studied independently, we devise a method to engineer large numbers of manifolds that give rise to a specified gauge group and achieve a partial classification of toric gauge groups. Extending our analysis from gauge groups to matter spectra, we prove that the matter content of the most commonly studied F-theory set-ups is rather constrained. To circumvent such limitations, we introduce an algorithm to analyze torus-fibrations defined as complete intersections and present several novel kinds of F-theory compactifications. Finally, we show how torus-fibrations without section are linked to fibrations with multiple sections through a network of successive geometric transitions. In order to investigate the low-energy effective physics resulting from our compactifications, we apply M- to F-theory duality. After determining the effective action of F-theory with Abelian gauge groups in six dimensions, we compare the loop-corrected Chern-Simons terms to topological quantities of the compactification manifold to read off the massless matter content. Under certain assumptions, we show that all gravitational and mixed anomalies are automatically canceled in F-theory. Furthermore, we compute the low-energy effective action of F-theory compactifications without section and suggest that the absence of a section signals the presence of an additional massive Abelian gauge field. Adjusting our analysis to four dimensions, we show that remnants of this massive gauge field survive as discrete symmetries that impose selection rules on the Yukawa couplings of the effective theory.

  20. Hyperbolic manifolds as vacuum solutions in Kaluza-Klein theories

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1985-08-01

    The relevance of compact hyperbolic manifolds in the context of Kaluza-Klein theories is discussed. Examples of spontaneous compactification on hyperbolic manifolds including d dimensional (d>=8) Einstein-Yang-Mills gravity and 11-dimensional supergravity are considered. Some mathematical facts about hyperbolic manifolds essential for the physical content of the theory are briefly summarized. Non-linear σ-models based on hyperbolic manifolds are discussed. (author)

  1. Testing a self-determination theory model of children’s physical activity motivation: a cross-sectional study

    Science.gov (United States)

    2013-01-01

    Background Understanding children’s physical activity motivation, its antecedents and associations with behavior is important and can be advanced by using self-determination theory. However, research among youth is largely restricted to adolescents and studies of motivation within certain contexts (e.g., physical education). There are no measures of self-determination theory constructs (physical activity motivation or psychological need satisfaction) for use among children and no previous studies have tested a self-determination theory-based model of children’s physical activity motivation. The purpose of this study was to test the reliability and validity of scores derived from scales adapted to measure self-determination theory constructs among children and test a motivational model predicting accelerometer-derived physical activity. Methods Cross-sectional data from 462 children aged 7 to 11 years from 20 primary schools in Bristol, UK were analysed. Confirmatory factor analysis was used to examine the construct validity of adapted behavioral regulation and psychological need satisfaction scales. Structural equation modelling was used to test cross-sectional associations between psychological need satisfaction, motivation types and physical activity assessed by accelerometer. Results The construct validity and reliability of the motivation and psychological need satisfaction measures were supported. Structural equation modelling provided evidence for a motivational model in which psychological need satisfaction was positively associated with intrinsic and identified motivation types and intrinsic motivation was positively associated with children’s minutes in moderate-to-vigorous physical activity. Conclusions The study provides evidence for the psychometric properties of measures of motivation aligned with self-determination theory among children. Children’s motivation that is based on enjoyment and inherent satisfaction of physical activity is

  2. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.

    1994-10-01

    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  3. Physical states at the tachyonic vacuum of open string field theory

    International Nuclear Information System (INIS)

    Giusto, S.; Imbimbo, C.

    2004-01-01

    We illustrate a method for computing the number of physical states of open string theory at the stable tachyonic vacuum in level truncation approximation. The method is based on the analysis of the gauge-fixed open string field theory quadratic action that includes Fadeev-Popov ghost string fields. Computations up to level 9 in the scalar sector are consistent with Sen's conjecture about the absence of physical open string states at the tachyonic vacuum. We also derive a long exact cohomology sequence that relates relative and absolute cohomologies of the BRS operator at the non-perturbative vacuum. We use this exact result in conjunction with our numerical findings to conclude that the higher ghost number non-perturbative BRS cohomologies are non-empty

  4. How far do EPR-Bell experiments constrain physical collapse theories?

    International Nuclear Information System (INIS)

    Leggett, A J

    2007-01-01

    A class of theories alternative to standard quantum mechanics, including that of Ghirardi et al ('GRWP'), postulates that when a quantum superposition becomes amplified to the point that the superposed states reach some level of 'macroscopic distinctness', then some non-quantum-mechanical principle comes into play and realizes one or other of the two macroscopic outcomes. Without specializing to any particular theory of this class, I ask how far such 'macrorealistic' theories are generically constrained, if one insists that the physical reduction process should respect Einstein locality, by the results of existing EPR-Bell experiments. I conclude that provided one does not demand that the prescription for reduction respects Lorentz invariance, at least some theories of this type, while in principle inevitably making some predictions that conflict with those of standard quantum mechanics, are not refuted by any existing experiment

  5. Chapter 2: Theoretical Models for Understanding Physical Activity Behavior among Children and Adolescents--Social Cognitive Theory and Self-Determination Theory

    Science.gov (United States)

    Motl, Robert W.

    2007-01-01

    The study of physical activity behavior in youth generally lacks a sufficient theoretical foundation for examining variables that influence that behavior. This is a major limitation because theory guides the search for determinants of behavior and the subsequent interplay between research findings and application. Theory offers a systematically…

  6. ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY

    International Nuclear Information System (INIS)

    PRATER, R; PETTY, CC; LUCE, TC; HARVEY, RW; CHOI, M; LAHAYE, RJ; LIN-LIU, Y-R; LOHR, J; MURAKAMI, M; WADE, MR; WONG, K-L

    2003-01-01

    A271 ELECTRON CYCLOTRON CURRENT DRIVE IN DIII-D: EXPERIMENT AND THEORY. Experiments on the DIII-D tokamak in which the measured off-axis electron cyclotron current drive has been compared systematically to theory over a broad range of parameters have shown that the Fokker-Planck code CQL3D provides an excellent model of the relevant current drive physics. This physics understanding has been critical in optimizing the application of ECCD to high performance discharges, supporting such applications as suppression of neoclassical tearing modes and control and sustainment of the current profile

  7. A Draft Conceptual Framework of Relevant Theories to Inform Future Rigorous Research on Student Service-Learning Outcomes

    Science.gov (United States)

    Whitley, Meredith A.

    2014-01-01

    While the quality and quantity of research on service-learning has increased considerably over the past 20 years, researchers as well as governmental and funding agencies have called for more rigor in service-learning research. One key variable in improving rigor is using relevant existing theories to improve the research. The purpose of this…

  8. A categorical framework for quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Filk, T. [Institute for Physics, University of Freiburg (Germany); Parmenides Center for the Study of Thinking, Muenchen (Germany); Mueller, A. von [Parmenides Center for the Study of Thinking, Muenchen (Germany); Institute for Philosophy, University of Munich (Germany); SISSA, Trieste (Italy)

    2010-11-15

    Underlying any physical theory is a layer of conceptual frames. They connect the mathematical structures used in theoretical models with the phenomena, but they also constitute our fundamental assumptions about reality. Many of the discrepancies between quantum physics and classical physics (including Maxwell's electrodynamics and relativity) can be traced back to these categorical foundations. We argue that classical physics corresponds to the factual aspects of reality and requires a categorical framework which consists of four interdependent components: boolean logic, the linear-sequential notion of time, the principle of sufficient reason, and the dichotomy between observer and observed. None of these can be dropped without affecting the others. However, quantum theory also addresses the ''status nascendi'' of facts, i.e., their coming into being. Therefore, quantum physics requires a different conceptual framework which will be elaborated in this article. It is shown that many of its components are already present in the standard formalisms of quantum physics, but in most cases they are highlighted not so much from a conceptual perspective but more from their mathematical structures. The categorical frame underlying quantum physics includes a profoundly different notion of time which encompasses a crucial role for the present. The article introduces the concept of a categorical apparatus (a framework of interdependent categories), explores the appropriate apparatus for classical and quantum theory, and elaborates in particular on the category of non-sequential time and an extended present which seems to be relevant for a quantum theory of (space)-time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. The relevance of western crisis communication theories to authoritarian Chinese practices : a study on the SARS epidemic and the Wenchuan earthquake

    OpenAIRE

    Wang, Renna

    2009-01-01

    The theoretical field of crisis management has just been established and developed since 1970s and in the past three decades, most of such theories were western-oriented and US-dominated. Inspired by Huang, Lin and Su (Taiwan) and Lee (Hong Kong)‘s explorations of cultural context in crisis communication, this thesis applied crisis communication theories to governmental practices in the mainland China examining the relevancy between theory and practice in a non-western context. The thesis spe...

  10. Applications of Symmetry Methods to the Theory of Plasma Physics

    Directory of Open Access Journals (Sweden)

    Giampaolo Cicogna

    2006-02-01

    Full Text Available The theory of plasma physics offers a number of nontrivial examples of partial differential equations, which can be successfully treated with symmetry methods. We propose three different examples which may illustrate the reciprocal advantage of this "interaction" between plasma physics and symmetry techniques. The examples include, in particular, the complete symmetry analysis of system of two PDE's, with the determination of some conditional and partial symmetries, the construction of group-invariant solutions, and the symmetry classification of a nonlinear PDE.

  11. Inverse operator theory method and its applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing

    1993-01-01

    Inverse operator theory method, which has been developed by G. Adomian in recent years, and its applications in nonlinear physics are described systematically. The method can be an unified effective procedure for solution of nonlinear and/or stochastic continuous dynamical systems without usual restrictive assumption. It is realized by Mathematical Mechanization by us. It will have a profound on the modelling of problems of physics, mathematics, engineering, economics, biology, and so on. Some typical examples of the application are given and reviewed

  12. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, H.; Suganuma, H.; Ichie, H.; Monden, H.; Umisedo, S.

    1998-01-01

    In quark nuclear physics (QNP), where hadrons and nuclei are described in terms of quarks and gluons, confinement and chiral symmetry breaking are the most fundamental phenomena. The dual Ginzburg-Landau (DGL) theory, which contains monopole fields as the most essential degrees of freedom and their condensation in the vacuum, is able to describe both phenomena. We discuss also the recovery of the chiral symmetry and the deconfinement phase transition at finite temperature in the DGL theory. As for the connection to QCD, we study the instanton configurations in the abelian gauge a la 't Hooft. We find a close connection between instantons and QCD monopoles. We demonstrate also the signature of confinement as the appearance of long monopole trajectories in the MA gauge for the case of dense instanton configurations. (orig.)

  13. Modular Theory, Non-Commutative Geometry and Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Wicharn Lewkeeratiyutkul

    2010-08-01

    Full Text Available This paper contains the first written exposition of some ideas (announced in a previous survey on an approach to quantum gravity based on Tomita-Takesaki modular theory and A. Connes non-commutative geometry aiming at the reconstruction of spectral geometries from an operational formalism of states and categories of observables in a covariant theory. Care has been taken to provide a coverage of the relevant background on modular theory, its applications in non-commutative geometry and physics and to the detailed discussion of the main foundational issues raised by the proposal.

  14. Thirty years that shook physics the story of quantum theory

    CERN Document Server

    Gamow, George A

    1966-01-01

    ""Dr. Gamow, physicist and gifted writer, has sketched an intriguing portrait of the scientists and clashing ideas that made the quantum revolution."" - Christian Science MonitorIn 1900, German physicist Max Planck postulated that light, or radiant energy, can exist only in the form of discrete packages or quanta. This profound insight, along with Einstein's equally momentous theories of relativity, completely revolutionized man's view of matter, energy, and the nature of physics itself.In this lucid layman's introduction to quantum theory, an eminent physicist and noted popularizer of scien

  15. Development of mean field theories in nuclear physics and in desordered media

    International Nuclear Information System (INIS)

    Orland, Henri.

    1981-04-01

    This work, in two parts, deals with the development of mean field theories in nuclear physics (nuclei in balance and collisions of heavy ions) as well as in disordered media. In the first part, two different ways of tackling the problem of developments around mean field theories are explained. Possessing an approach wave function for the system, the natural idea for including the correlations is to develop the exact wave function of the system around the mean field wave function. The first two chapters show two different ways of dealing with this problem: the perturbative approach - Hartree-Fock equations with two body collisions and functional methods. In the second part: mean field theory for spin glasses. The problem for spin glasses is to construct a physically acceptable mean field theory. The importance of this problem in statistical mechanics is linked to the fact that the mean field theory provides a qualitative description of the low temperature phase and is the starting point needed for using more sophisticated methods (renormalization group). Two approaches to this problem are presented, one based on the Sherrington-Kirkpatrick model and the other based on a model of spins with purely local disorder and competitive interaction between the spins [fr

  16. Locally covariant quantum field theory and the problem of formulating the same physics in all space-times.

    Science.gov (United States)

    Fewster, Christopher J

    2015-08-06

    The framework of locally covariant quantum field theory is discussed, motivated in part using 'ignorance principles'. It is shown how theories can be represented by suitable functors, so that physical equivalence of theories may be expressed via natural isomorphisms between the corresponding functors. The inhomogeneous scalar field is used to illustrate the ideas. It is argued that there are two reasonable definitions of the local physical content associated with a locally covariant theory; when these coincide, the theory is said to be dynamically local. The status of the dynamical locality condition is reviewed, as are its applications in relation to (i) the foundational question of what it means for a theory to represent the same physics in different space-times and (ii) a no-go result on the existence of natural states. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Exploring a Theory Describing the Physics of Information Systems, Characterizing the Phenomena of Complex Information Systems

    National Research Council Canada - National Science Library

    Harmon, Scott

    2001-01-01

    This project accomplished all of its objectives: document a theory of information physics, conduct a workshop on planing experiments to test this theory, and design experiments that validate this theory...

  18. On estimating perturbative coefficients in quantum field theory and statistical physics

    International Nuclear Information System (INIS)

    Samuel, M.A.; Stanford Univ., CA

    1994-05-01

    The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent

  19. Theory-based interventions in physical activity: a systematic review of literature in Iran.

    Science.gov (United States)

    Abdi, Jalal; Eftekhar, Hassan; Estebsari, Fatemeh; Sadeghi, Roya

    2014-11-30

    Lack of physical activity is ranked fourth among the causes of human death and chronic diseases. Using models and theories to design, implement, and evaluate the health education and health promotion interventions has many advantages. Using models and theories of physical activity, we decided to systematically study the educational and promotional interventions carried out in Iran from 2003 to 2013.Three information databases were used to systematically select papers using key words including Iranian Magazine Database (MAGIRAN), Iran Medical Library (MEDLIB), and Scientific Information Database (SID). Twenty papers were selected and studied .Having been applied in 9 studies, The Trans Theoretical Model (TTM) was the most widespread model in Iran (PENDER in 3 studies, BASNEF in 2, and the Theory of Planned Behavior in 2 studies). With regards to the educational methods, almost all studies used a combination of methods. The most widely used Integrative educational method was group discussion. Only one integrated study was done. Behavior maintenance was not addressed in 75% of the studies. Almost all studies used self-reporting instruments. The effectiveness of educational methods was assessed in none of the studies. Most of the included studies had several methodological weaknesses, which hinder the validity and applicability of their results. According to the findings, the necessity of need assessment in using models, epidemiology and methodology consultation, addressing maintenance of physical activity, using other theories and models such as social marketing and social-cognitive theory, and other educational methods like empirical and complementary are suggested.

  20. Role Socialization Theory: The Sociopolitical Realities of Teaching Physical Education

    Science.gov (United States)

    Richards, K. Andrew R.

    2015-01-01

    Much has been learned about the socialization of physical education (PE) teachers using occupational socialization theory (OST). However, important to understanding any socialization process is explaining how the roles that individuals play are socially constructed and contextually bound. OST falls short of providing a comprehensive overview of…

  1. The impact of Einsteinian relativity and quantum physics theories on conceptualizations of the self in psychology

    Science.gov (United States)

    Rechberger, Elke Ruth

    1999-11-01

    Prior to the 1600s c.e., the church was the final authority for theories about the universe and humanity's role within it. However, when the mathematical theories put forth by scientists such as Copernicus and Galileo refuted traditional theological explanations about the cosmos, a shift to science as the premiere authority for theories was established, a tradition which continues to this day. In the following century, the work of Newton set forth a theory of the universe operating as a machine, where all things were potentially knowable, measurable, and predictable. His mechanistic hypotheses helped substantiate a corollary philosophy known as modernism. In the early 1900s, Einstein's theories about light and relativity began to indicate a universe significantly less absolute. His work set the stage for the development of quantum physics theories, whose hallmarks are probability, uncertainty, and complementarity. Quantum physics theories helped substantiate the philosophy known as postmodernism, where truth is nonexistent, reality is a subjectively constructed phenomenon, and the concept of an individual self is considered an illusion. Given that developments in physics have had profound impact across academic disciplines, including psychology, this study examine the effect of major revolutions in physics to corollary developments in theories about the self in psychology. It is the assertion of this work that modernist conceptualization of the self is one that is highly individualistic and defined in mechanistic terms, whereas the postmodern conceptualization of the self is significantly more socially constructed and has more interpersonally fluid, amorphous boundaries. Implications for conceptualizations of the self from either the modern or postmodern paradigm are discussed, as well as suggestions for future theory development.

  2. Theories of everything

    CERN Document Server

    Close, Frank

    2017-01-01

    Physicist Frank Close takes the reader to the frontiers of science in a vividly told investigation of revolutionary science and enterprise from the seventeenth century to the present. He looks at what has been meant by theories of everything, explores the scientific breakthroughs they have allowed, and shows the far-reaching effects they have had on crucial aspects of life and belief. Theories of everything, he argues, can be described as those which draw on all relevant branches of knowledge to explain everything known about the universe. Such accounts may reign supreme for centuries. Then, often as a result of the advances they themselves have enabled, a new discovery is made which the current theory cannot explain. A new theory is needed which inspiration, sometimes, supplies. Moving from Isaac Newton's work on gravity and motion in the seventeenth century to thermodynamics and James Clerk Maxwell's laws of electromagnetism in the nineteenth to Max Planck's and Paul Dirac's quantum physics in the twentiet...

  3. Instructors' Application of the Theory of Planned Behavior in Teaching Undergraduate Physical Education Courses

    Science.gov (United States)

    Filho, Paulo Jose Barbosa Gutierres; Monteiro, Maria Dolores Alves Ferreira; da Silva, Rudney; Hodge, Samuel R.

    2013-01-01

    The purpose of this study was to analyze adapted physical education instructors' views about the application of the theory of planned behavior (TpB) in teaching physical education undergraduate courses. Participants ("n" = 17) were instructors of adapted physical activity courses from twelve randomly selected institutions of higher…

  4. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes

    Science.gov (United States)

    Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa

    2018-01-01

    INTRODUCTION: Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. AIM: The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. METHODS: This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. RESULTS: The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). CONCLUSION: Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour. PMID:29731945

  5. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes.

    Science.gov (United States)

    Ali Morowatisharifabad, Mohammad; Abdolkarimi, Mahdi; Asadpour, Mohammad; Fathollahi, Mahmood Sheikh; Balaee, Parisa

    2018-04-15

    Theory-based education tailored to target behaviour and group can be effective in promoting physical activity. The purpose of this study was to examine the predictive power of Protection Motivation Theory on intent and behaviour of Physical Activity in Patients with Type 2 Diabetes. This descriptive study was conducted on 250 patients in Rafsanjan, Iran. To examine the scores of protection motivation theory structures, a researcher-made questionnaire was used. Its validity and reliability were confirmed. The level of physical activity was also measured by the International Short - form Physical Activity Inventory. Its validity and reliability were also approved. Data were analysed by statistical tests including correlation coefficient, chi-square, logistic regression and linear regression. The results revealed that there was a significant correlation between all the protection motivation theory constructs and the intention to do physical activity. The results showed that the Theory structures were able to predict 60% of the variance of physical activity intention. The results of logistic regression demonstrated that increase in the score of physical activity intent and self - efficacy increased the chance of higher level of physical activity by 3.4 and 1.5 times, respectively OR = (3.39, 1.54). Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour.

  6. Quantum theory and the schism in physics from the postscript to the logic of scientific discovery

    CERN Document Server

    Popper, Karl Raimund

    1982-01-01

    Quantum Theory and the Schism in Physics is one of the three volumes of Karl Popper's Postscript to the Logic of scientific Discovery. The Postscript is the culmination of Popper's work in the philosophy of physics and a new famous attack on subjectivist approaches to philosophy of science.Quantum Theory and the Schism in Physics is the third volume of the Postscript. It may be read independently, but it also forms part of Popper's interconnected argument in the Postscript. It presents Popper's classic statement on quantum physics a

  7. Task A, High energy physics program experiment and theory: Task B, High energy physics program numerical simulation

    International Nuclear Information System (INIS)

    1990-01-01

    This report discusses progress in experimental and theoretical High Energy Physics at Florida State University. Fixed target experiments, collider experiments, computing, networking, VAX upgrade, SSC preparation, detector development, and particle theory are some of the areas covered

  8. Diffusion, quantum theory, and radically elementary mathematics (MN-47)

    CERN Document Server

    Faris, William G

    2014-01-01

    Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein''s work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book''s inspiration is Princeton University mathematics professor Edward Nelson''s influential work in

  9. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  10. Development of a theory-based (PEN-3 and Health Belief Model), culturally relevant intervention on cervical cancer prevention among Latina immigrants using intervention mapping.

    Science.gov (United States)

    Scarinci, Isabel C; Bandura, Lisa; Hidalgo, Bertha; Cherrington, Andrea

    2012-01-01

    The development of efficacious theory-based, culturally relevant interventions to promote cervical cancer prevention among underserved populations is crucial to the elimination of cancer disparities. The purpose of this article is to describe the development of a theory-based, culturally relevant intervention focusing on primary (sexual risk reduction) and secondary (Pap smear) prevention of cervical cancer among Latina immigrants using intervention mapping (IM). The PEN-3 and Health Belief Model provided theoretical guidance for the intervention development and implementation. IM provides a logical five-step framework in intervention development: delineating proximal program objectives, selecting theory-based intervention methods and strategies, developing a program plan, planning for adoption in implementation, and creating evaluation plans and instruments. We first conducted an extensive literature review and qualitatively examined the sociocultural factors associated with primary and secondary prevention of cervical cancer. We then proceeded to quantitatively validate the qualitative findings, which led to development matrices linking the theoretical constructs with intervention objectives and strategies as well as evaluation. IM was a helpful tool in the development of a theory-based, culturally relevant intervention addressing primary and secondary prevention among Latina immigrants.

  11. A Test of Self-Determination Theory in School Physical Education

    Science.gov (United States)

    Standage, Martyn; Duda, Joan L.; Ntoumanis, Nikos

    2005-01-01

    Background: Contemporary research conducted in the context of school physical education (PE) has increasingly embraced various tenets of self-determination theory (Deci & Ryan, 1985, 1991). Despite this increase in research attention, some postulates of the framework remain unexplored (e.g. impact of a need-supportive climate). As such, the…

  12. Formality theory from Poisson structures to deformation quantization

    CERN Document Server

    Esposito, Chiara

    2015-01-01

    This book is a survey of the theory of formal deformation quantization of Poisson manifolds, in the formalism developed by Kontsevich. It is intended as an educational introduction for mathematical physicists who are dealing with the subject for the first time. The main topics covered are the theory of Poisson manifolds, star products and their classification, deformations of associative algebras and the formality theorem. Readers will also be familiarized with the relevant physical motivations underlying the purely mathematical construction.

  13. The Quantum Mechanics Solver How to Apply Quantum Theory to Modern Physics

    CERN Document Server

    Basdevant, Jean-Louis

    2006-01-01

    The Quantum Mechanics Solver grew from topics which are part of the final examination in quantum theory at the Ecole Polytechnique at Palaiseau near Paris, France. The aim of the text is to guide the student towards applying quantum mechanics to research problems in fields such as atomic and molecular physics, condensed matter physics, and laser physics. Advanced undergraduates and graduate students will find a rich and challenging source for improving their skills in this field.

  14. Group theory Application to the physics of condensed matter

    CERN Document Server

    Dresselhauss, M S; Jorio, A

    2007-01-01

    Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...

  15. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  16. The general practitioner's role in promoting physical activity to older adults: a review based on program theory.

    Science.gov (United States)

    Hinrichs, Timo; Brach, Michael

    2012-02-01

    Positive influences of physical activity both on many chronic diseases and on preservation of mobility are well documented. But chronically ill or mobility restricted elderly living in their own homes are difficult to reach for interventions. The general practitioner's (GP) surgery offers one of the few opportunities to give advice for physical activity to those people. We used program theory to sound out knowledge on GP-centered physical activity counseling. The "conceptual theory" (evidence for training effects in old age) and the "implementation theory" (unique position of the GP) were reviewed narratively. The "action theory" (effects of GP counseling) was reviewed systematically. According to program theory, appropriate MeSH (Medical subject headings) concepts were Aged OR Aged, 80 and over (Target group), Physicians, Family OR Primary Health Care (Implementation/Setting), Counseling OR Patient Education as Topic OR Disease Management OR Health promotion (Intervention), Exercise OR Motor Activity OR Physical Fitness OR Sports (Determinants). The resulting six review papers (Pubmed, 2000-2009) were presented using the STARLITE mnemonic. Authors agree, that the GP plays a central role in the promotion of physical activity to elderly people, but there is conflicting evidence concerning counseling effectiveness. Utilizing behavioral change strategies and the collaboration between GPs and specialised professions are recommended and currently under research.

  17. Mathematical and physical aspects of gauge theories

    International Nuclear Information System (INIS)

    Chatelet, G.; Paris-13 Univ., 93 - Saint-Denis

    1981-01-01

    We present here a survey of gauge theories, trying to relate the main mathematical and physical concepts. Part I is devoted to exhibiting parallel transport and connection as the adequate concepts for the constitution of the parametrized internal space of a particle. A covariant derivative provides the differential calculus, which is needed when one leaves the point-like description in microphysics. Part II deals with the so-called pure gauge theory and sketches the construction of the self-dual solutions of Yang-Mills equations. We briefly explain Guersey's method to get SU 2 self-dual potentials as quarternionic analytic maps from S 4 (first quarternionic projective space) into HPsub(n) (n-dimensional quarternionic projective space). Part III is devoted to the Goldstone's theorem and Higgs' mechanism used to provide a mass to gauge mesons. We describe a Salam-Weinberg model to illustrate these techniques. Part IV deals with the perturbative aspect. The Faddeev-Popov method, formerly conceived as a technique to get correct Feynmann rules, actually leads to a systematic study of the affine space of connections factored out by gauge transformations. (orig.)

  18. Theoretical nuclear physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The theoretical physics program in the Physics Division at ORNL involves research in both nuclear and atomic physics. In nuclear physics there is extensive activity in the fields of direct nuclear reactions with light- and heavy-ion projectiles, the structure of nuclei far from stability and at elevated temperatures, and the microscopic and macroscopic description of heavy-ion dynamics, including the behavior of nuclear molecules and supernuclei. New research efforts in relativistic nuclear collisions and in the study of quark-gluon plasma have continued to grow this year. The atomic theory program deals with a variety of ionization, multiple-vacancy production, and charge-exchange processes. Many of the problems are selected because of their relevance to the magnetic fusion energy program. In addition, there is a joint atomic-nuclear theory effort to study positron production during the collision of two high-Z numbers, i.e., U+U. A new Distinguished Scientist program, sponsored jointly by the University of Tennessee and ORNL, has been initiated. Among the first appointments is G.F. Bertsch in theoretical physics. As a result of this appointment, Bertsch and an associated group of four theorists split their time between UT and ORNL. In addition, the State of Tennessee has established a significant budget to support the visits of outstanding scientists to the Joint Institute for Heavy Ion Research at ORNL. This budget should permit a significant improvement in the visitor program at ORNL. Finally, the Laboratory awarded a Wigner post-doctoral Appointment to a theorist who will work in the theory group of the Physics Division

  19. The physics and mathematics of microstates in string theory: And a monstrous Farey tail

    NARCIS (Netherlands)

    de Lange, P.

    2016-01-01

    A dissertation that delves into physical and mathematical aspects of string theory. In the first part of this work, microscopic properties string theoretic black holes are investigated. The second part is concerned with the moonshine phenomenon. The theory of generalized umbral moonshine is

  20. From physical symmetries to emergent gauge symmetries

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  1. Separable boundary-value problems in physics

    CERN Document Server

    Willatzen, Morten

    2011-01-01

    Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i

  2. Vol. 1: Physics of Elementary Particles and Quantum Field Theory. General Problems

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to elementary particle physics and quantum field theory. The main attention is paid to the following problems: - development of science in Ukraine and its role in the state structures; - modern state of scientific research in Ukraine; - education and training of specialists; - history of Ukrainian physics and contribution of Ukrainian scientists in the world science; - problems of the Ukrainian scientific terminology

  3. The Place of Learning Quantum Theory in Physics Teacher Education: Motivational Elements Arising from the Context

    Science.gov (United States)

    Körhasan, Nilüfer Didis

    2015-01-01

    Quantum theory is one of the most successful theories in physics. Because of its abstract, mathematical, and counter-intuitive nature, many students have problems learning the theory, just as teachers experience difficulty in teaching it. Pedagogical research on quantum theory has mainly focused on cognitive issues. However, affective issues about…

  4. The theory of quantum information

    CERN Document Server

    Watrous, John

    2018-01-01

    This largely self-contained book on the theory of quantum information focuses on precise mathematical formulations and proofs of fundamental facts that form the foundation of the subject. It is intended for graduate students and researchers in mathematics, computer science, and theoretical physics seeking to develop a thorough understanding of key results, proof techniques, and methodologies that are relevant to a wide range of research topics within the theory of quantum information and computation. The book is accessible to readers with an understanding of basic mathematics, including linear algebra, mathematical analysis, and probability theory. An introductory chapter summarizes these necessary mathematical prerequisites, and starting from this foundation, the book includes clear and complete proofs of all results it presents. Each subsequent chapter includes challenging exercises intended to help readers to develop their own skills for discovering proofs concerning the theory of quantum information.

  5. A short course in quantum information theory. An approach from theoretical physics. 2. ed.

    International Nuclear Information System (INIS)

    Diosi, Lajos

    2011-01-01

    This short and concise primer takes the vantage point of theoretical physics and the unity of physics. It sets out to strip the burgeoning field of quantum information science to its basics by linking it to universal concepts in physics. An extensive lecture rather than a comprehensive textbook, this volume is based on courses delivered over several years to advanced undergraduate and beginning graduate students, but essentially it addresses anyone with a working knowledge of basic quantum physics. Readers will find these lectures a most adequate entry point for theoretical studies in this field. For the second edition, the authors has succeeded in adding many new topics while sticking to the conciseness of the overall approach. A new chapter on qubit thermodynamics has been added, while new sections and subsections have been incorporated in various chapter to deal with weak and time-continuous measurements, period-finding quantum algorithms and quantum error corrections. From the reviews of the first edition: ''The best things about this book are its brevity and clarity. In around 100 pages it provides a tutorial introduction to quantum information theory, including problems and solutions.. it's worth a look if you want to quickly get up to speed with the language and central concepts of quantum information theory, including the background classical information theory.'' (Craig Savage, Australian Physics, Vol. 44 (2), 2007). (orig.)

  6. Theory and application of deterministic multidimensional pointwise energy lattice physics methods

    International Nuclear Information System (INIS)

    Zerkle, M.L.

    1999-01-01

    The theory and application of deterministic, multidimensional, pointwise energy lattice physics methods are discussed. These methods may be used to solve the neutron transport equation in multidimensional geometries using near-continuous energy detail to calculate equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is described which reduces the computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  7. Evaluation of physical activity web sites for use of behavior change theories.

    Science.gov (United States)

    Doshi, Amol; Patrick, Kevin; Sallis, James F; Calfas, Karen

    2003-01-01

    Physical activity (PA) Web sites were assessed for their use of behavior change theories, including constructs of the health belief model, Transtheoretical Model, social cognitive theory, and the theory of reasoned action and planned behavior. An evaluation template for assessing PA Web sites was developed, and content validity and interrater reliability were demonstrated. Two independent raters evaluated 24 PA Web sites. Web sites varied widely in application of theory-based constructs, ranging from 5 to 48 on a 100-point scale. The most common intervention strategies were general information, social support, and realistic goal areas. Coverage of theory-based strategies was low, varying from 26% for social cognitive theory to 39% for health belief model. Overall, PA Web sites provided little assessment, feedback, or individually tailored assistance for users. They were unable to substantially tailor the on-line experience for users at different stages of change or different demographic characteristics.

  8. Physical analysis of some features of the gauge theories with Higgs sectors

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    1995-01-01

    A physical analysis of some features of the gauge theories with Higgs sectors is made. It is shown that we should assume gauge transformations in the fermion and Higgs sectors to be different (i.e., to have different charges) in order to remove contradictions arising in gauge theories with Higgs sectors. Then, the Higgs mechanism can be interpreted as some mechanism of gauge field shielding. In such a mechanism fermions remain without masses. The conclusion is made that in the standard theory of the development of the Universe, monopoles cannot survive at low temperatures. 15 refs

  9. Distribution theory with applications in engineering and physics

    CERN Document Server

    Teodorescu, Petre P; Toma, Antonela

    2013-01-01

    In this comprehensive monograph, the authors apply modern mathematical methods to the study of mechanical and physical phenomena or techniques in acoustics, optics, and electrostatics, where classical mathematical tools fail.They present a general method of approaching problems, pointing out different aspects and difficulties that may occur. With respect to the theory of distributions, only the results and the principle theorems are given as well as some mathematical results. The book also systematically deals with a large number of applications to problems of general Newtonian mechanics,

  10. 3 minutes to understand the 50 greatest theories of quantum physics

    International Nuclear Information System (INIS)

    Clegg, Brian; Ball, Philip; Clifford, Leon; Close, Frank; Hebden, Sophie; Hellemans, Alexander; Holgate, Sharon Ann; May, Andrew; Martinez, Rachel; Dubois, Richard

    2015-01-01

    This book aims at using 2 pages, 300 words and 1 image to explain each of the 50 most important theories of quantum physics. After a first part addressing the origins of the theory (Planck quanta, the photoelectric effect according to Einstein, the predictable Balmer series, the Bohr's atom, the wave/particle duality, the matter waves of De Broglie, the double quantum slit), the chapters address basic notions (quantum spin, matrix mechanics, Schroedinger's equation and cat, the Heisenberg uncertainty principle, the wave function reduction, the decoherence), light and matter physics, quantum effects and their interpretation, quantum entanglement, quantum applications, and quantum extremes. Each chapter proposes a glossary, a presentation of specific issues according to the adopted format, and a portrait of a scientist involved in the addressed topics (Niels Bohr, Erwin Schroedinger, Paul Dirac, David Bohm, John Bell, Brian Josephson, and Satyendra Nath Bose)

  11. Extended differential geometry as a basis for physical field theory

    International Nuclear Information System (INIS)

    Bruce, M.H.

    1984-01-01

    An extension of Riemann differential geometry is considered as a broadened uniform basis for physical field theory. The requirements for such a theory are set and interpreted as a generalized Ricci calculus capable of supporting certain physical affine motions and metric constraints. Both tensor and spinor languages are considered and a variational calculus is formulated within the geometry. The dominant emergent feature is the replacement of ordinary derivatives by generalized differential operators involving the usual Christoffel symbols as well as more general connection parameters. Then the Euler-Lagrange equations with constraints may be regarded as a general differential geometry and an action principle is formulated to give equations of motion in terms of generalized momentum operations. A cononical momentum tensor is employed which yields, by a generalized boundary variations of the action a set of conservation laws. The formulation is then applied to such diverse topics as the generalizing of the Dirac equation, the Lorentz and radiation terms for a charged particle, the relativistic rotator, and considerations on a geometric origin for the the Einstein energy density tensor

  12. Perspective: Sloppiness and emergent theories in physics, biology, and beyond.

    Science.gov (United States)

    Transtrum, Mark K; Machta, Benjamin B; Brown, Kevin S; Daniels, Bryan C; Myers, Christopher R; Sethna, James P

    2015-07-07

    Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.

  13. Final theory spiral-field-model. Basic ideas for a compatible physics and a consistent nature science

    International Nuclear Information System (INIS)

    Hartje, U.A.J.

    2005-01-01

    This script contains theses for an universal 'Spiral-Field-Theory' that are capable to dissolve problems in parallel from different areas which are far from each other. Starting point is the stuck principle discussion about the relationships between the Classic Physics and the Quantum Physics. Aim is the clarification of questions which remained open. In 1925 Max Planck had formulated as follows: 'The research of physics can not rest, so long not has been together-welded: on the one hand the mechanics and the electrodynamics with on the other hand the lesson of the stationary one and the radiating heat to a sole unitary theory'. The Spiral-Field-Model develops a supporting structure from General Field into which they will class the secure knowledge from experiments and well-proved theories. The most important thing of this new Final Theory is the detailed generating of all nature courses of phenomena exclusively from radiation and that in the direct meaning of the word. In the final effect the two great disciplines of the physics which are drifted from each other, become bonded together to a super ordinate theoretical building of the nature sciences. (orig.)

  14. Asymptotic behaviour of physical amplitudes in a finite field theory

    International Nuclear Information System (INIS)

    Helayel Neto, J.A.; Rajpoot, S.; Smith, A.W.

    1987-01-01

    Using the N=4 super-Yang-Mills theory softly broken by supersymmetric N=1 mass terms for matter superfields, we compute the one-loop chiral + chiral → antichiral + antichiral scattering amplitude directly in superspace. By suitable choices of the mass parameters, on can endow the model with a hierarchy of light and heavy particles, and the decoupling of the heavy sector from light-light physical amplitude is studied. We also analyze the high-energy limit of the cross-section for a two physical scalar scattering and find a (logs) behaviour, which then respects the Froissart bound. (author) [pt

  15. Physical theory and its interpretation essays in honor of Jeffrey Bub

    CERN Document Server

    Pitowsky, Itamar; Pitowsky, Itamar

    2006-01-01

    The essays in this volume were written by leading researchers on classical mechanics, statistical mechanics, quantum theory and relativity. The papers cover a number of central topics in the foundations of physics, including the role of symmetry principles in classical and quantum physics (papers by Butterfield and by Healey), Einstein's hole argument in general relativity (Korte), quantum mechanics and special relativity (Hemmo and Berkovitz, Brown and Timpson), quantum correlations (Glymour, Redei), quantum logic (Demopoulos, Isham, Stairs), and quantum probability and information (Gudder, P

  16. 278 THE RELEVANCE OF SPEECH ACT THEORY FOR ...

    African Journals Online (AJOL)

    language acquisition research. More precisely, underlying the this paper communicative will consider approachl to how second theories language teaching have been informed by the speech act theory which. Austin and Searle developed. I shall give an indication of how certain concepts that feature centrally in particular ...

  17. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  18. Recommendations for a culturally relevant Internet-based tool to promote physical activity among overweight young African American women, Alabama, 2010-2011.

    Science.gov (United States)

    Durant, Nefertiti H; Joseph, Rodney P; Cherrington, Andrea; Cuffee, Yendelela; Knight, BernNadette; Lewis, Dwight; Allison, Jeroan J

    2014-01-16

    Innovative approaches are needed to promote physical activity among young adult overweight and obese African American women. We sought to describe key elements that African American women desire in a culturally relevant Internet-based tool to promote physical activity among overweight and obese young adult African American women. A mixed-method approach combining nominal group technique and traditional focus groups was used to elicit recommendations for the development of an Internet-based physical activity promotion tool. Participants, ages 19 to 30 years, were enrolled in a major university. Nominal group technique sessions were conducted to identify themes viewed as key features for inclusion in a culturally relevant Internet-based tool. Confirmatory focus groups were conducted to verify and elicit more in-depth information on the themes. Twenty-nine women participated in nominal group (n = 13) and traditional focus group sessions (n = 16). Features that emerged to be included in a culturally relevant Internet-based physical activity promotion tool were personalized website pages, diverse body images on websites and in videos, motivational stories about physical activity and women similar to themselves in size and body shape, tips on hair care maintenance during physical activity, and online social support through social media (eg, Facebook, Twitter). Incorporating existing social media tools and motivational stories from young adult African American women in Internet-based tools may increase the feasibility, acceptability, and success of Internet-based physical activity programs in this high-risk, understudied population.

  19. Investigating Students' Perceived Discipline Relevance Subsequent to Playing Educational Computer Games: A Personal Interest and Self-Determination Theory Approach

    Science.gov (United States)

    Sorebo, Oystein; Haehre, Reidar

    2012-01-01

    The purpose of this study is to explain students' perceived relevance of playing an educational game as a means for development of discipline competence. Based on self-determination theory and the concept of personal interest, we propose that: Satisfying students' basic needs for competence, autonomy, and relatedness when playing educational games…

  20. New Applications of Resummation in Non-Abelian Gauge Theories: QED-QCD Exponentiation for LHC Physics, IR-Improved DGLAP Theory and Resummed Quantum Gravity

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    2006-01-01

    We present the elements of three applications of resummation methods in non-Abelian gauge theories: (1), QED-QCD exponentiation and shower/ME matching for LHC physics; (2), IR improvement of DGLAP theory; (3), resummed quantum gravity and the final state of Hawking radiation. In all cases, the extension of the YFS approach, originally introduced for Abelian gauge theory, to non-Abelian gauge theories, QCD and quantum general relativity, leads to new results and solutions which we briefly summarize

  1. Prediction of attendance at fitness center: a comparison between the theory of planned behavior, the social cognitive theory, and the physical activity maintenance theory.

    Science.gov (United States)

    Jekauc, Darko; Völkle, Manuel; Wagner, Matthias O; Mess, Filip; Reiner, Miriam; Renner, Britta

    2015-01-01

    In the processes of physical activity (PA) maintenance specific predictors are effective, which differ from other stages of PA development. Recently, Physical Activity Maintenance Theory (PAMT) was specifically developed for prediction of PA maintenance. The aim of the present study was to evaluate the predictability of the future behavior by the PAMT and compare it with the Theory of Planned Behavior (TPB) and Social Cognitive Theory (SCT). Participation rate in a fitness center was observed for 101 college students (53 female) aged between 19 and 32 years (M = 23.6; SD = 2.9) over 20 weeks using a magnetic card. In order to predict the pattern of participation TPB, SCT and PAMT were used. A latent class zero-inflated Poisson growth curve analysis identified two participation patterns: regular attenders and intermittent exercisers. SCT showed the highest predictive power followed by PAMT and TPB. Impeding aspects as life stress and barriers were the strongest predictors suggesting that overcoming barriers might be an important aspect for working out on a regular basis. Self-efficacy, perceived behavioral control, and social support could also significantly differentiate between the participation patterns.

  2. The nuclear shield in the 'thirty-year war' of physicists against ignorant criticism of modern physical theories

    International Nuclear Information System (INIS)

    Vizgin, Vladimir P

    1999-01-01

    This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948. (from the history of physics)

  3. VALUE RELEVANCE OF GROUP FINANCIAL STATEMENTS BASED ON ENTITY VERSUS PARENT COMPANY THEORY: EVIDENCE FROM THE LARGEST THREE EUROPEAN CAPITAL MARKETS

    OpenAIRE

    Müller Victor-Octavian

    2012-01-01

    Financial statementsn#8217; main objective is to give information on the financial position, performance and changes in financial position of the reporting entity, which is useful to investors and other users in making economic decisions. In order to be useful, financial information needs to be relevant to the decision-making process of users in general, and investors in particular. Regarding consolidated financial statements, the accounting theory knows four perspectives (theories) on which ...

  4. Symmetry breaking in superstring theories: applications in cosmology and particle physics

    International Nuclear Information System (INIS)

    Catelin-Julien, T.

    2008-10-01

    This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)

  5. Physically meaningful and not so meaningful symmetries in Chern-Simons theory

    International Nuclear Information System (INIS)

    Giavarini, G.

    1993-01-01

    We explicitly show that the Landau gauge supersymmetry of Chern-Simons theory does not have any physical significance. In fact, the difference between an effective action both BRS invariant and Landau supersymmetric and an effective action only BRS invariant is a finite field redefinition. Having established this, we use a BRS invariant regulator that defines CS theory as the large mass limit of topologically massive Yang-Mills theory to discuss the shift k → k + c v of the bare Chern-Simons parameter k in connection with the Landau supersymmetry. Finally, to convince ourselves that the shift above is not an accident of our regularization method, we comment on the fact that all BRS invariant regulators used as yet yield the same value for the shift. (orig.)

  6. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, B

    2006-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  7. Physical Acoustics in the Solid State

    CERN Document Server

    Lüthi, Bruno

    2007-01-01

    Suitable for researchers and graduate students in physics and material science, "Physical Acoustics in the Solid State" reviews the modern aspects in the field, including many experimental results, especially those involving ultrasonics. Practically all fields of solid-state physics are covered: metals, semiconductors, magnetism, superconductivity, different kinds of phase transitions, low-dimensional systems, and the quantum Hall effect. After a review of the relevant experimental techniques and an introduction to the theory of elasticity, emphasizing the symmetry aspects, applications in the various fields of condensed matter physics are presented. Also treated are Brillouin-scattering results and results from thermodynamic investigations, such as thermal expansion and specific heat.

  8. Theoretical physics. Field theory

    International Nuclear Information System (INIS)

    Landau, L.; Lifchitz, E.

    2004-01-01

    This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)

  9. String Theory, the Crisis in Particle Physics and the Ascent of Metaphoric Arguments

    Science.gov (United States)

    Schroer, Bert

    This essay presents a critical evaluation of the concepts of string theory and its impact on particle physics. The point of departure is a historical review of four decades of string theory within the broader context of six decades of failed attempts at an autonomous S matrix approach to particle theory. The central message, contained in Secs. 5 and 6, is that string theory is not what its name suggests, namely a theory of objects in space-time whose localization is string-instead of pointlike. Contrary to popular opinion, the oscillators corresponding to the Fourier models of a quantum-mechanical string do not become embedded in space-time and neither does the "range space" of a chiral conformal QFT acquire the interpretation of stringlike-localized quantum matter. Rather, string theory represents a solution to a problem which enjoyed some popularity in the 1960s: find a principle which, similar to the SO(4,2) group in the case of the hydrogen spectrum, determines an infinite component wave function with a (realistic) mass/spin spectrum. Instead of the group theory used in the old failed attempts, it creates this mass/spin spectrum by combining an internal oscillator quantum mechanics with a pointlike-localized quantum-field-theoretic object, i.e. the mass/spin tower "sits" over one point and does not arise from a wiggling string in space-time. The widespread acceptance of a theory whose interpretation has been based on metaphoric reasoning had a corroding influence on particle theory, a point which will be illustrated in the last section with some remarks of a more sociological nature. These remarks also lend additional support to observations on connections between the discourse in particle physics and the present Zeitgeist of the post-Cold War period that are made in the introduction.

  10. Drawing theories apart the dispersion of Feynman diagrams in postwar physics

    CERN Document Server

    Kaiser, David

    2005-01-01

    Winner of the 2007 Pfizer Prize from the History of Science Society. Feynman diagrams have revolutionized nearly every aspect of theoretical physics since the middle of the twentieth century. Introduced by the American physicist Richard Feynman (1918-88) soon after World War II as a means of simplifying lengthy calculations in quantum electrodynamics, they soon gained adherents in many branches of the discipline. Yet as new physicists adopted the tiny line drawings, they also adapted the diagrams and introduced their own interpretations. Drawing Theories Apart traces how generations of young theorists learned to frame their research in terms of the diagrams—and how both the diagrams and their users were molded in the process.Drawing on rich archival materials, interviews, and more than five hundred scientific articles from the period, Drawing Theories Apart uses the Feynman diagrams as a means to explore the development of American postwar physics. By focusing on the ways young physicists learned new calcul...

  11. Testing Theory of Planned Behavior and Neo-Socioanalytic Theory models of trait activity, industriousness, exercise social cognitions, exercise intentions, and physical activity in a representative U.S. sample.

    Science.gov (United States)

    Vo, Phuong T; Bogg, Tim

    2015-01-01

    Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks - the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model - termed the Disposition-Belief-Motivation model- is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement.

  12. Principles of physics from quantum field theory to classical mechanics

    CERN Document Server

    Jun, Ni

    2014-01-01

    This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...

  13. Adiabatic perturbation theory in quantum dynamics

    CERN Document Server

    Teufel, Stefan

    2003-01-01

    Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.

  14. Quantum information theory and quantum statistics

    International Nuclear Information System (INIS)

    Petz, D.

    2008-01-01

    Based on lectures given by the author, this book focuses on providing reliable introductory explanations of key concepts of quantum information theory and quantum statistics - rather than on results. The mathematically rigorous presentation is supported by numerous examples and exercises and by an appendix summarizing the relevant aspects of linear analysis. Assuming that the reader is familiar with the content of standard undergraduate courses in quantum mechanics, probability theory, linear algebra and functional analysis, the book addresses graduate students of mathematics and physics as well as theoretical and mathematical physicists. Conceived as a primer to bridge the gap between statistical physics and quantum information, a field to which the author has contributed significantly himself, it emphasizes concepts and thorough discussions of the fundamental notions to prepare the reader for deeper studies, not least through the selection of well chosen exercises. (orig.)

  15. The Continuing Relevance of Austrian Capital Theory

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul

    2012-01-01

    The article presents a speech by Professor Nicolai J. Foss of Copenhagen Business School, delivered at the Austrian Scholars Conference held on March 8, 2012 in Auburn, Alabama, in which he discussed the knowledge essays by economist Friedrich A. von Hayek, the concept of capital theory and the w......The article presents a speech by Professor Nicolai J. Foss of Copenhagen Business School, delivered at the Austrian Scholars Conference held on March 8, 2012 in Auburn, Alabama, in which he discussed the knowledge essays by economist Friedrich A. von Hayek, the concept of capital theory...... and the works of Hayek on political philosophy and cultural evolution....

  16. On a Formalization of Cantor Set Theory for Natural Models of the Physical Phenomena

    Directory of Open Access Journals (Sweden)

    Nudel'man A. S.

    2010-01-01

    Full Text Available This article presents a set theory which is an extension of ZFC . In contrast to ZFC , a new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of the proposed theory and Vdovin set theory will permit to formulate a (presumably non- contradictory axiomatic set theory which will represent the core of Cantor set theory in a maximally full manner as to the essence and the contents of the latter. This is possible due to the fact that the generalized principle of choice and the generalized continuum hypothesis are proved in Vdovin theory. The theory, being more complete than ZF and more natural according to Cantor, will allow to construct and study (in its framework only natural models of the real physical phenomena.

  17. On a Formalization of Cantor Set Theory for Natural Models of the Physical Phenomena

    Directory of Open Access Journals (Sweden)

    Nudel'man A. S.

    2010-01-01

    Full Text Available This article presents a set theory which is an extension of $ZFC$. In contrast to $ZFC$, a new theory admits absolutely non-denumerable sets. It is feasible that a symbiosis of the proposed theory and Vdovin set theory will permit to formulate a (presumably non-contradictory axiomatic set theory which will represent the core of Cantor set theory in a maximally full manner as to the essence and the contents of the latter. This is possible due to the fact that the generalized principle of choice and the generalized continuum hypothesis are proved in Vdovin theory. The theory, being more complete than $ZF$ and more natural according to Cantor, will allow to construct and study (in its framework only natural models of the real physical phenomena.

  18. Social-cognitive theories for predicting physical activity behaviours of employed women with and without young children.

    Science.gov (United States)

    Tavares, Leonor S; Plotnikoff, Ronald C; Loucaides, Constantinos

    2009-03-01

    Chronic disease interventions for women have been understudied in the workplace domain. Understanding the role of cognitions in individual behaviour can help motivate change and suggest directions for achieving improvements in health. The purpose of this study was to identify psychosocial constructs and social-cognitive theories [e.g. Transtheoretical model (TTM), Theory of Planned Behaviour (TPB), Protection Motivation Theory (PMT) and Social Cognitive Theory (SCT)] that are most salient for explaining physical activity behaviour among employed women (n = 1183). Demographic information, and social-cognitive measures related to physical activity, intention and behaviours (e.g. stage of change, energy expenditure) were assessed. A series of multiple regression analyses predicting intention, energy expenditure and stage of change were conducted separately for: (1) women with young children (n = 302), and (2) women without young children (n = 881) for each of the respective social-cognitive theories. Although taken as a whole the results were relatively similar between the two sub-groups of women for each of the socio-cognitive theories examined in this study, differences were observed in the relative contributions of the theoretical constructs between the two sub-groups. Results also indicate that self-efficacy and intention were the strongest predictors of behaviour among both women with and without young children. The explained variances (R(2)) for the theories examined in this study for different sub-groups ranged from 16 to 60%, generally reflecting what has been reported in other studies within the physical activity domain. The results of this study could be useful in guiding future research and in designing physical activity intervention programs for these specific population groups. Integrating approaches of individual lifestyle change while addressing issues related to creating supportive environments for women in various life stages is a suggested strategy

  19. Summaries of FY 1986 research in the Applied Plasma Physics Fusion Theory Program

    International Nuclear Information System (INIS)

    1987-12-01

    The Theory Program is charged with supporting the development of theories and models of plasmas for the fusion research effort. This work ranges from first-principles analysis of elementary plasma processes to empirical simulation of specific experiments. The Theory Program supports research by industrial contractors, US government laboratories, and universities. The university support also helps to fulfill the DOE mission of training scientists for the fusion program. The Theory Program is funded through the Fusion Theory Branch, Division of Applied Plasma Physics in the Office of Fusion Energy. The work is divided among 31 institutions, of which 19 are universities, five are industrial contractors, and seven are US government laboratories; see Table 1 for a complete list. The FY 1986 Theory Program budget was divided among theory types: toroidal, mirror, alternate concept, generic, and atomic. Device modeling is included among the other funding categories, and is not budgeted separately

  20. Abstracts of 4. IAEA technical meeting on the theory of plasma instabilities

    International Nuclear Information System (INIS)

    2009-05-01

    The Fourth IAEA-TM on Theory of Plasma Instabilities provided a forum for open discussion on theoretical and computational physics issues relevant to burning plasma. The meeting covered linear and non-linear theory and simulation of plasma instabilities, including core/edge turbulence, magneto-hydrodynamic (MHD) process, high energy particle driven dynamics and their effects on plasma confinement. Special attention was paid to the multi-scale interaction dynamics in better understanding the burning plasma and also to the modeling of such complex physical processes. The meeting also organized a panel session to discuss the prospect of plasma theory and simulation for future fusion research for the ITER ERA. Young scientists were enthusiastically encouraged to enjoy this session which may stimulate the research for the future. The meeting covered the following topics: (1) Overview: State of the art and importance of multi-scale physics for understanding burning plasmas; (2) Linear and nonlinear instabilities and their theoretical/computational methodologies including critical gradient problem and comparison with experiments; (3) Core/edge turbulent transport including momentum transport, turbulence-profile interaction and barrier formation, etc and their theoretical/ computational understandings; (4) Magneto-hydrodynamic (MHD) instability including energetic particle physics and their impact on confinement in burning plasmas; (5) Physics and modeling of multi-scale interactions and their impact on the plasma performance and control. Those topics were discussed with close relevance to key experimental results. A panel session 'Theoretical Plasma Physics for the ITER ERA' was organized under interdisciplinary aspects with other fields such as astrophysics and fluid dynamics. Each of the abstracts available has been indexed separately

  1. Models and methods can theory meet the B physics challenge?

    CERN Document Server

    Nierste, U

    2004-01-01

    The B physics experiments of the next generation, BTeV and LHCb, will perform measurements with an unprecedented accuracy. Theory predictions must control hadronic uncertainties with the same precision to extract the desired short-distance information successfully. I argue that this is indeed possible, discuss those theoretical methods in which hadronic uncertainties are under control and list hadronically clean observables.

  2. Physics and necessity rationalist pursuits from the Cartesian past to the quantum present

    CERN Document Server

    Darrigol, Olivier

    2014-01-01

    Can we prove the necessity of our best physical theories by rational means, without appeal to experience? This book recounts a few ingenious attempts to derive physical theories by reason only, beginning with Descartes' geometric construction of the world, and finishing with recent derivations of quantum mechanics from natural axioms. Deductions based on theological, metaphysical, or transcendental arguments are worth remembering for the ways they motivated and structured physical theory, even though we would now criticize their excessive confidence in the power of the mind. Other deductions more modestly relied on criteria for the comprehensibility of nature, including forms of measurability, causality, homogeneity, and correspondence. The central thesis of this book is that such criteria, when properly applied to idealized systems, effectively determine some of our most important theories as well as the mathematical character of the laws of physics. The relevant arguments are not purely rational, because on...

  3. Influences of personality traits and continuation intentions on physical activity participation within the theory of planned behaviour.

    Science.gov (United States)

    Chatzisarantis, Nikos L D; Hagger, Martin S

    2008-01-01

    Previous research has suggested that the theory of planned behaviour is insufficient in capturing all the antecedents of physical activity participation and that continuation intentions or personality traits may improve the predictive validity of the model. The present study examined the combined effects of continuation intentions and personality traits on health behaviour within the theory of planned behaviour. To examine these effects, 180 university students (N = 180, Male = 87, Female = 93, Age = 19.14 years, SD = 0.94) completed self-report measures of the theory of planned behaviour, personality traits and continuation intentions. After 5 weeks, perceived achievement of behavioural outcomes and actual participation in physical activities were assessed. Results supported discriminant validity between continuation intentions, conscientiousness and extroversion and indicated that perceived achievement of behavioural outcomes and continuation intentions of failure predicted physical activity participation after controlling for personality effects, past behaviour and other variables in the theory of planned behaviour. In addition, results indicated that conscientiousness moderated the effects of continuation intentions of failure on physical activity such that continuation intentions of failure predicted physical activity participation among conscientious and not among less conscientious individuals. These findings suggest that the effects of continuation intentions on health behaviour are contingent on personality characteristics.

  4. Critical behavior in continuous dimension, ε∞ theory and particle physics

    International Nuclear Information System (INIS)

    Goldfain, Ervin

    2008-01-01

    Bringing closure to the host of open questions posed by the current standard model for particle physics (SM) continues to be a major challenge for the theoretical physics community. Despite years of multiple research efforts, a consistent and comprehensive understanding of standard model parameters is missing. Our work suggests that critical dynamics of the renormalization group flow provides valuable insights into most of the unresolved issues surrounding SM. We report that the dynamics of the renormalization group flow and the topological approach of El Naschie's ε ∞ theory are viewpoints that share a common foundation. The paper concludes with a brief overview of future developments and integration efforts

  5. 'Who Thinks Abstractly?': Quantum Theory and the Architecture of Physical Concepts

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2011-01-01

    Beginning with its introduction by W. Heisenberg, quantum mechanics was often seen as an overly abstract theory, mathematically and physically, vis-a-vis classical physics or relativity. This perception was amplified by the fact that, while the quantum-mechanical formalism provided effective predictive algorithms for the probabilistic predictions concerning quantum experiments, it appeared unable to describe, even by way idealization, quantum processes themselves in space and time, in the way classical mechanics or relativity did. The aim of the present paper is to reconsider the nature of mathematical and physical abstraction in modern physics by offering an analysis of the concept of ''physical fact'' and of the concept of 'physical concept', in part by following G. W. F. Hegel's and G. Deleuze's arguments concerning the nature of conceptual thinking. In classical physics, relativity, and quantum physics alike, I argue, physical concepts are defined by the following main features - 1) their multi-component multiplicity; 2) their essential relations to problems; 3) and the interactions between physical, mathematical, and philosophical components within each concept. It is the particular character of these interactions in quantum mechanics, as defined by its essentially predictive (rather than descriptive) nature, that distinguishes it from classical physics and relativity.

  6. Exponential complexity and ontological theories of quantum mechanics

    International Nuclear Information System (INIS)

    Montina, A.

    2008-01-01

    Ontological theories of quantum mechanics describe a single system by means of well-defined classical variables and attribute the quantum uncertainties to our ignorance about the underlying reality represented by these variables. We consider the general class of ontological theories describing a quantum system by a set of variables with Markovian (either deterministic or stochastic) evolution. We provide proof that the number of continuous variables cannot be smaller than 2N-2, N being the Hilbert-space dimension. Thus, any ontological Markovian theory of quantum mechanics requires a number of variables which grows exponentially with the physical size. This result is relevant also in the framework of quantum Monte Carlo methods

  7. Worked problems in heat, thermodynamics and kinetic theory for physics students

    CERN Document Server

    Pincherle, L; Green, L L

    2013-01-01

    Worked Problems in Heat, Thermodynamics and Kinetic Theory for Physics Students is a complementary to textbooks in physics. This book is a collection of exercise problems that have been part of tutorial classes in heat and thermodynamics at the University of London. This collection of exercise problems, with answers that are fully worked out, deals with various topics. This book poses problems covering the definition of temperature such as calculating the assigned value of the temperature of boiling water under specific conditions. This text also gives example of problems dealing with the fir

  8. Reframing conceptual physics: Improving relevance to elementary education and sonography majors

    Science.gov (United States)

    LaFazia, David Gregory

    This study outlines the steps taken to reframe the Waves and Periodicity unit within a conceptual physics course. Beyond this unit reframing process, this paper explores the activities that made up the reframed unit and how each was developed and revised. The unit was reframed to improve relevance of the activities to the Elementary Education and Diagnostic Medical Sonography majors who make up the bulk of the course roster. The unit was reframed around ten design principles that were built on best practices from the literature, survey responses, and focused interviews. These principles support the selection of a biology-integrated themed approach to teaching physics. This is done through active and highly kinesthetic learning across three realms of human experience: physical, social, and cognitive. The unit materials were designed around making connections to students' future careers while requiring students to take progressively more responsibility in activities and assessments. Several support strategies are employed across these activities and assessments, including an energy-first, guided-inquiry approach to concept scaffolding and accommodations for diverse learners. Survey responses were solicited from physics instructors experienced with this population, Elementary Education and Sonography program advisors, and curriculum design, learning strategies, and educational technology experts. The reframed unit was reviewed by doctoral-level science education experts and revised to further improve the depth and transparency with which the design principles reframe the unit activities. The reframed unit contains a full unit plan, lesson plans, and full unit materials. These include classroom and online activities, assessments, and templates for future unit and lesson planning. Additional supplemental materials are provided to support Elementary Education and Sonography students and program advisors and also further promote the reframed unit materials and design

  9. A RE-AIM evaluation of theory-based physical activity interventions.

    Science.gov (United States)

    Antikainen, Iina; Ellis, Rebecca

    2011-04-01

    Although physical activity interventions have been shown to effectively modify behavior, little research has examined the potential of these interventions for adoption in real-world settings. The purpose of this literature review was to evaluate the external validity of 57 theory-based physical activity interventions using the RE-AIM framework. The physical activity interventions included were more likely to report on issues of internal, rather than external validity and on individual, rather than organizational components of the RE-AIM framework, making the translation of many interventions into practice difficult. Furthermore, most studies included motivated, healthy participants, thus reducing the generalizability of the interventions to real-world settings that provide services to more diverse populations. To determine if a given intervention is feasible and effective in translational research, more information should be reported about the factors that affect external validity.

  10. A Model of Contextual Motivation in Physical Education: Using Constructs from Self-Determination and Achievement Goal Theories To Predict Physical Activity Intentions.

    Science.gov (United States)

    Standage, Martyn; Duda, Joan L.; Ntoumanis, Nikos

    2003-01-01

    Examines a study of student motivation in physical education that incorporated constructs from achievement goal and self-determination theories. Self-determined motivation was found to positively predict, whereas amotivation was a negative predictor of leisure-time physical activity intentions. (Contains 86 references and 3 tables.) (GCP)

  11. Dual-process models of health-related behaviour and cognition: a review of theory.

    Science.gov (United States)

    Houlihan, S

    2018-03-01

    The aim of this review was to synthesise a spectrum of theories incorporating dual-process models of health-related behaviour. Review of theory, adapted loosely from Cochrane-style systematic review methodology. Inclusion criteria were specified to identify all relevant dual-process models that explain decision-making in the context of decisions made about human health. Data analysis took the form of iterative template analysis (adapted from the conceptual synthesis framework used in other reviews of theory), and in this way theories were synthesised on the basis of shared theoretical constructs and causal pathways. Analysis and synthesis proceeded in turn, instead of moving uni-directionally from analysis of individual theories to synthesis of multiple theories. Namely, the reviewer considered and reconsidered individual theories and theoretical components in generating the narrative synthesis' main findings. Drawing on systematic review methodology, 11 electronic databases were searched for relevant dual-process theories. After de-duplication, 12,198 records remained. Screening of title and abstract led to the exclusion of 12,036 records, after which 162 full-text records were assessed. Of those, 21 records were included in the review. Moving back and forth between analysis of individual theories and the synthesis of theories grouped on the basis of theme or focus yielded additional insights into the orientation of a theory to an individual. Theories could be grouped in part on their treatment of an individual as an irrational actor, as social actor, as actor in a physical environment or as a self-regulated actor. Synthesising identified theories into a general dual-process model of health-related behaviour indicated that such behaviour is the result of both propositional and unconscious reasoning driven by an individual's response to internal cues (such as heuristics, attitude and affect), physical cues (social and physical environmental stimuli) as well as

  12. Testing Theory of Planned Behavior and Neo-Socioanalytic Theory models of trait activity, industriousness, exercise social cognitions, exercise intentions, and physical activity in a representative U.S. sample

    Directory of Open Access Journals (Sweden)

    Phuong Thi Vo

    2015-08-01

    Full Text Available Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957, the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions, Social Cognitive Theory (self-efficacy, outcome expectancies, and the Transtheoretical Model (behavioral processes of change, and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks – the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model – termed the Disposition-Belief-Motivation model – is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement.

  13. Testing Theory of Planned Behavior and Neo-Socioanalytic Theory models of trait activity, industriousness, exercise social cognitions, exercise intentions, and physical activity in a representative U.S. sample

    Science.gov (United States)

    Vo, Phuong T.; Bogg, Tim

    2015-01-01

    Prior research identified assorted relations between trait and social cognition models of personality and engagement in physical activity. Using a representative U.S. sample (N = 957), the goal of the present study was to test two alternative structural models of the relationships among the extraversion-related facet of activity, the conscientiousness-related facet of industriousness, social cognitions from the Theory of Planned Behavior (perceived behavioral control, affective attitudes, subjective norms, intentions), Social Cognitive Theory (self-efficacy, outcome expectancies), and the Transtheoretical Model (behavioral processes of change), and engagement in physical activity. Path analyses with bootstrapping procedures were used to model direct and indirect effects of trait and social cognition constructs on physical activity through two distinct frameworks – the Theory of Planned Behavior and Neo-Socioanalytic Theory. While both models showed good internal fit, comparative model information criteria showed the Theory-of-Planned-Behavior-informed model provided a better fit. In the model, social cognitions fully mediated the relationships from the activity facet and industriousness to intentions for and engagement in physical activity, such that the relationships were primarily maintained by positive affective evaluations, positive expected outcomes, and confidence in overcoming barriers related to physical activity engagement. The resultant model – termed the Disposition-Belief-Motivation model– is proposed as a useful framework for organizing and integrating personality trait facets and social cognitions from various theoretical perspectives to investigate the expression of health-related behaviors, such as physical activity. Moreover, the results are discussed in terms of extending the application of the Disposition-Belief-Motivation model to longitudinal and intervention designs for physical activity engagement. PMID:26300811

  14. Predictors of Physical Activity among Adolescent Girl Students Based on the Social Cognitive Theory.

    Science.gov (United States)

    Ardestani, Monasadat; Niknami, Shamsaddin; Hidarnia, Alireza; Hajizadeh, Ebrahim

    2015-01-01

    The importance of increasing adolescence girl's level of physical activity is recognized as a priority for having a healthy lifestyle. However, adolescent girls especially Iranian, are at high risk for physical inactivity. Social Cognitive Theory (SCT) is a successful theory to explain physical activity behavior. The aim of this study was to determine the predictors of physical activity based on the SCT. This cross-sectional study was conducted among 400 adolescent girls (15-16 yr old) in Tehran, Iran (2013). The participants were randomly chosen with multistage sampling. The SCT constructs consisted of self-efficacy, self-regulation, social support, outcome expectancy, and self-efficacy to overcoming impediments. Statistical analysis was carried out applying SPSS: 16, LISREL 8.8. Stepwise regression was used to test predictors of behavior. Pearson correlation was assessed. Self efficacy to overcoming impediments was the main construct to predict physical activity (Beta=0.37). Other determinants were self-efficacy (Beta=0.29), family support (beta=0.14), outcome expectancy (beta=0.13), friend support (beta=0.12), and self-regulation (beta=0.11), respectively. In general, the SCT questionnaire determined 0.85 variation of physical activity behavior. All of the constructs had direct significant relation to physical activity behavior (P<0.001). The constructs of SCT provide a suitable framework to perform promoting physical activity programs and self-efficacy to overcoming impediments and self-efficacy are the best predictors of physical activity in adolescent girls.

  15. Health behaviour change theories: contributions to an ICF-based behavioural exercise therapy for individuals with chronic diseases.

    Science.gov (United States)

    Geidl, Wolfgang; Semrau, Jana; Pfeifer, Klaus

    2014-01-01

    The purpose of this perspective is (1) to incorporate recent psychological health behaviour change (HBC) theories into exercise therapeutic programmes, and (2) to introduce the International Classification of Functioning (ICF)-based concept of a behavioural exercise therapy (BET). Relevant personal modifiable factors of physical activity (PA) were identified based on three recent psychological HBC theories. Following the principles of intervention mapping, a matrix of proximal programme objectives specifies desirable parameter values for each personal factor. As a result of analysing reviews on behavioural techniques and intervention programmes of the German rehabilitation setting, we identified exercise-related techniques that impact the personal determinants. Finally, the techniques were integrated into an ICF-based BET concept. Individuals' attitudes, skills, emotions, beliefs and knowledge are important personal factors of PA behaviour. BET systematically addresses these personal factors by a systematic combination of adequate exercise contents with related behavioural techniques. The presented 28 intervention techniques serve as a theory-driven "tool box" for designing complex BET programmes to promote PA. The current paper highlights the usefulness of theory-based integrative research in the field of exercise therapy, offers explicit methods and contents for physical therapists to promote PA behaviour, and introduces the ICF-based conceptual idea of a BET. Implications for Rehabilitation Irrespective of the clients' indication, therapeutic exercise programmes should incorporate effective, theory-based approaches to promote physical activity. Central determinants of physical activity behaviour are a number of personal factors: individuals' attitudes, skills, emotions, beliefs and knowledge. Clinicians implementing exercise therapy should set it within a wider theoretical framework including the personal factors that influence physical activity. To increase

  16. The physics of flocking: Correlation as a compass from experiments to theory

    Science.gov (United States)

    Cavagna, Andrea; Giardina, Irene; Grigera, Tomás S.

    2018-01-01

    inertia to existing theories of flocking. We finish with the definition and analysis of space-time correlations and their relevance to the detection of inertial behavior in the absence of external perturbations.

  17. The topology of Double Field Theory

    Science.gov (United States)

    Hassler, Falk

    2018-04-01

    We describe the doubled space of Double Field Theory as a group manifold G with an arbitrary generalized metric. Local information from the latter is not relevant to our discussion and so G only captures the topology of the doubled space. Strong Constraint solutions are maximal isotropic submanifold M in G. We construct them and their Generalized Geometry in Double Field Theory on Group Manifolds. In general, G admits different physical subspace M which are Poisson-Lie T-dual to each other. By studying two examples, we reproduce the topology changes induced by T-duality with non-trivial H-flux which were discussed by Bouwknegt, Evslin and Mathai [1].

  18. Geometric Lagrangian approach to the physical degree of freedom count in field theory

    Science.gov (United States)

    Díaz, Bogar; Montesinos, Merced

    2018-05-01

    To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.

  19. Small numbers in supersymmetric theories of nature

    International Nuclear Information System (INIS)

    Graesser, Michael L.

    1999-01-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject

  20. Evidence, theory and context: Using intervention mapping to develop a worksite physical activity intervention

    OpenAIRE

    McEachan, RRC; Lawton, RJ; Jackson, C; Conner, M; Lunt, J

    2008-01-01

    Abstract Background The workplace is an ideal setting for health promotion. Helping employees to be more physically active can not only improve their physical and mental health, but can also have economic benefits such as reduced sickness absence. The current paper describes the development of a three month theory-based intervention that aims to increase levels of moderate intensity physical activity amongst employees in sedentary occupations. Methods The intervention was developed using an i...

  1. Life is physics and chemistry and communication.

    Science.gov (United States)

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.

  2. From chaos to unification: U theory vs. M theory

    International Nuclear Information System (INIS)

    Ye, Fred Y.

    2009-01-01

    A unified physical theory called U theory, that is different from M theory, is defined and characterized. U theory, which includes spinor and twistor theory, loop quantum gravity, causal dynamical triangulations, E-infinity unification theory, and Clifford-Finslerian unifications, is based on physical tradition and experimental foundations. In contrast, M theory pays more attention to mathematical forms. While M theory is characterized by supersymmetry string theory, U theory is characterized by non-supersymmetry unified field theory.

  3. Physics from multidimensional gauge theories

    International Nuclear Information System (INIS)

    Forgacs, P.; Lust, D.; Zoupanos, G.

    1986-01-01

    The authors motivate high dimensional theories by recalling the original Kaluza-Klein proposal. They review the dimensional reduction of symmetric gauge theories and they present the results of the attempts to obtain realistic description of elementary particles interactions starting from symmetric gauge theories in high dimensions

  4. Constraint theory, singular lagrangians and multitemporal dynamics

    International Nuclear Information System (INIS)

    Lusanna, L.

    1988-01-01

    Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory

  5. Spatial mathematics theory and practice through mapping

    CERN Document Server

    Arlinghaus, Sandra Lach

    2013-01-01

    In terms of statistics, GIS offers many connections. With GIS, data are gathered, displayed, summarized, examined, and interpreted to discover patterns. Spatial Mathematics: Theory and Practice through Mapping uses GIS as a platform to teach mathematical concepts and skills through visualization of numbers. It examines theory and practice from disparate academic disciplines such as geography, mathematics, physics, and general social science. This approach allows students to grapple with biodiversity, crime, natural hazards, climate, energy, water, and other relevant real-world issues of the twenty-first century. Includes QR Codes Linked to Animated Maps, a Mapping Activity Site, or to an Interactive Webpage, Creating an Interactive Resource That Stays Relevant The book integrates competing philosophical views of the world: synthesis and analysis. These two approaches yield different results and employ different tools. This book considers both approaches to looking at real-world issues that have mathematics as...

  6. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  7. Basic quantum theory and measurement from the viewpoint of local quantum physics

    International Nuclear Information System (INIS)

    Schroer, Bert

    1999-04-01

    Several aspects of the manifestation of the causality principle in LQP (local quantum physics) are reviewed or presented. Particular emphasis is given to those properties which are typical for LQP in the sense that they do go beyond the structure of general quantum theory and even escape the Lagrangian quantization methods of standard QFT. The most remarkable are those relating causality to the modular Tomita-Takesaki theory, since they bring in the basic concepts of antiparticles, charge superselections as well as internal and external (geometric and hidden) symmetries. (author)

  8. Modifying attitude and intention toward regular physical activity using protection motivation theory: a randomized controlled trial.

    Science.gov (United States)

    Mirkarimi, Kamal; Eri, Maryam; Ghanbari, Mohammad R; Kabir, Mohammad J; Raeisi, Mojtaba; Ozouni-Davaji, Rahman B; Aryaie, Mohammad; Charkazi, Abdurrahman

    2017-10-30

    We were guided by the Protection Motivation Theory to test the motivational interviewing effects on attitude and intention of obese and overweight women to do regular physical activity. In a randomized controlled trial, we selected using convenience sampling 60 overweight and obese women attending health centres. The women were allocated to 2 groups of 30 receiving a standard weight-control programme or motivational interviewing. All constructs of the theory (perceived susceptibility, severity, self-efficacy and response efficacy) and all anthropometric characteristics (except body mass index) were significantly different between the groups at 3 study times. The strongest predictors of intention to do regular physical exercise were perceived response efficacy and attitude at 2- and 6-months follow-up. We showed that targeting motivational interviewing with an emphasis on Protection Motivation Theory constructs appeared to be beneficial for designing and developing appropriate intervention to improve physical activity status among women with overweight and obesity.

  9. Lectures on gas theory

    CERN Document Server

    Boltzmann, Ludwig

    2011-01-01

    One of the great masterpieces of theoretical physics, this classic work contains a comprehensive exposition of the kinetic theory of gases that is still relevant today, nearly 100 years after its first publication. Although the modifications of quantum mechanics have rendered some parts of the work obsolete, many of the topics dealt with still yield to the classical-mechanics approach outlined by Boltzmann; moreover, a variety of problems in aerodynamics, nuclear reactors, and thermonuclear power generation are best solved by Boltzmann's famous transport equation.The work is divided into two

  10. Short- and Long-Term Theory-Based Predictors of Physical Activity in Women Who Participated in a Weight-Management Program

    Science.gov (United States)

    Wasserkampf, A.; Silva, M. N.; Santos, I. C.; Carraça, E. V.; Meis, J. J. M.; Kremers, S. P. J.; Teixeira, P. J.

    2014-01-01

    This study analyzed psychosocial predictors of the Theory of Planned Behavior (TPB) and Self-Determination Theory (SDT) and evaluated their associations with short- and long-term moderate plus vigorous physical activity (MVPA) and lifestyle physical activity (PA) outcomes in women who underwent a weight-management program. 221 participants (age…

  11. N=2, 4 supersymmetric gauge field theory in two-time physics

    International Nuclear Information System (INIS)

    Bars, Itzhak; Kuo, Y.-C.

    2009-01-01

    In the context of two-time physics in 4+2 dimensions we construct the most general N=2, 4 supersymmetric Yang-Mills gauge theories for any gauge group G. This builds on our previous work for N=1 supersymmetry (SUSY). The action, the conserved SUSY currents, and the SU(N) covariant SUSY transformation laws are presented for both N=2 and N=4. When the equations of motion are used the SUSY transformations close to the supergroup SU(2,2|N) with N=1, 2, 4. The SU(2,2)=SO(4,2) subsymmetry is realized linearly on 4+2 dimensional flat spacetime. All fields, including vectors and spinors, are in 4+2 dimensions. The extra gauge symmetries in 2T field theory, together with the kinematic constraints that follow from the action, remove all the ghosts to give a unitary theory. By choosing gauges and solving the kinematic equations, the 2T field theory in 4+2 flat spacetime can be reduced to various shadows in various 3+1 dimensional (generally curved) spacetimes. These shadows are related to each other by dualities. The conformal shadows of our theories in flat 3+1 dimensions coincide with the well known counterpart N=1, 2, 4 supersymmetric massless renormalizable field theories in 3+1 dimensions. It is expected that our more symmetric new structures in 4+2 spacetime may be useful for nonperturbative or exact solutions of these theories.

  12. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    International Nuclear Information System (INIS)

    Kulkarni, Suchita C.

    2011-01-01

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  13. Combining theory and observations. A sample study of the interplay between cosmology and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Suchita C.

    2011-08-08

    We look at various methods of exploring the connection between particle physics and cosmology. We focus on various aspects of dark matter analysis. We begin with the smallest scales and look at collider phenomenology first. We discuss how the analysis of CP-properties of particles within Supersymmetry, one of the most accepted theories giving us a dark matter candidate. For this matter we take a specific case of the CP-violation in the super-partner of the tau lepton, the stau. Going slightly more towards astroparticle physics, we next study can the dark matter in the Universe be semi-relativistic. Thus, we use our prior knowledge of the cosmic scale properties of dark matter to draw implications for particle physics. In the next step, we look at large scales and examine the evolution of relationship between dark matter haloes and the background dark matter density fields. We use methods similar to field theory techniques of particle physics to understand this evolution of mapping. (orig.)

  14. Asymptotic freedom in the theory of the strong interaction. Comment on the nobel prize in physics 2004

    International Nuclear Information System (INIS)

    Zhang Zhaoxi

    2005-01-01

    The 2004 Nobel Prize in Physics was awarded to David J. Gross, Frank Wilczek and H. David Politzer for their decisive contributions to the theory of the asymptotic freedom of the strong interaction (a fundamental interaction). The fundamental elements of quantum chromodynamics (QCD) and the theory of the strong interaction are briefly reviewed in their historical context. How to achieve asymptotic freedom is introduced and its physical meaning explained. The latest experimental tests of asymptotic freedom are presented, and it is shown that the theoretical prediction agrees excellently with the experimental measurements. Perturbative QCD which is based on the asymptotic freedom is outlined. It is pointed out that the theoretical discovery and experimental proof of the asymptotic freedom are crucial for QCD to be the correct theory of strong interaction. Certain frontier research areas of QCD, such as 'color confinement', are mentioned. The discovery and confirmation of asymptotic freedom has indeed deeply affected particle physics, and has led to QCD becoming a main content of the standard model, and to further development of the so-called grand unification theories of interactions. (author)

  15. Isomorph theory of physical aging

    Science.gov (United States)

    Dyre, Jeppe C.

    2018-04-01

    This paper derives and discusses the configuration-space Langevin equation describing a physically aging R-simple system and the corresponding Smoluchowski equation. Externally controlled thermodynamic variables like temperature, density, and pressure enter the description via the single parameter Ts/T, in which T is the bath temperature and Ts is the "systemic" temperature defined at any time t as the thermodynamic equilibrium temperature of the state point with density ρ(t) and potential energy U(t). In equilibrium, Ts ≅ T with fluctuations that vanish in the thermodynamic limit. In contrast to Tool's fictive temperature and other effective temperatures in glass science, the systemic temperature is defined for any configuration with a well-defined density, even if it is not close to equilibrium. Density and systemic temperature define an aging phase diagram, in which the aging system traces out a curve. Predictions are discussed for aging following various density-temperature and pressure-temperature jumps from one equilibrium state to another, as well as for a few other scenarios. The proposed theory implies that R-simple glass-forming liquids are characterized by the dynamic Prigogine-Defay ratio being equal to unity.

  16. A Future of Communication Theory: Systems Theory.

    Science.gov (United States)

    Lindsey, Georg N.

    Concepts of general systems theory, cybernetics and the like may provide the methodology for communication theory to move from a level of technology to a level of pure science. It was the purpose of this paper to (1) demonstrate the necessity of applying systems theory to the construction of communication theory, (2) review relevant systems…

  17. On the Theory and Physics of the Aether

    Directory of Open Access Journals (Sweden)

    Rughede O. D.

    2006-01-01

    Full Text Available Physical Space is identified as the universal Aether Space. An Aether Equation is deduced, predicting the Temperature of the Cosmic Background Radiation T(CMBR, and indicating that G and c are universal dependent variables. The strong nuclear force is found to be a strong gravitational force at extreme energy densities of the neutron, indicating a Grand Unified Theory, when gravity is a process of enduring exchange of radiant energy between all astrophysical objects. The big bang hypothesis is refuted by interpretation of the Hubble redshift as evidence of gravitational work. Conditions for application of STR and GTR in the scientific cosmological research are deduced.

  18. The Personal Relevance of the Social Studies.

    Science.gov (United States)

    VanSickle, Ronald L.

    1990-01-01

    Conceptualizes a personal-relevance framework derived from Ronald L. VanSickle's five areas of life integrated with four general motivating goals from Abraham Maslow's hierarchy of needs and Richard and Patricia Schmuck's social motivation theory. Illustrates ways to apply the personal relevance framework to make social studies more relevant to…

  19. Basic concepts in physics from the cosmos to quarks

    CERN Document Server

    Chaichian, Masud; Tureanu, Anca

    2014-01-01

    "Basic Concepts in Physics: From the Cosmos to Quarks" is the outcome of the authors' long and varied teaching experience in different countries and for different audiences, and gives an accessible and eminently readable introduction to all the main ideas of modern physics. The book’s fresh approach, using a novel combination of historical and conceptual viewpoints, makes it ideal complementary reading to more standard textbooks. The first five chapters are devoted to classical physics, from planetary motion to special relativity, always keeping in mind its relevance to questions of contemporary interest. The next six chapters deal mainly with newer developments in physics, from quantum theory and general relativity to grand unified theories, and the book concludes by discussing the role of physics in living systems. A basic grounding in mathematics is required of the reader, but technicalities are avoided as far as possible; thus complex calculations are omitted so long as the essential ideas remain clear....

  20. On some aspects of the geometry of differential equations in physics

    OpenAIRE

    Gràcia, Xavier; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso

    2004-01-01

    In this review paper, we consider three kinds of systems of differential equations, which are relevant in physics, control theory and other applications in engineering and applied mathematics; namely: Hamilton equations, singular differential equations, and partial differential equations in field theories. The geometric structures underlying these systems are presented and commented. The main results concerning these structures are stated and discussed, as well as their influence on the study...

  1. Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario

    2004-09-21

    Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of

  2. Perspectives on theory at the interface of physics and biology

    Science.gov (United States)

    Bialek, William

    2018-01-01

    Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.

  3. The Predictive Effects of Protection Motivation Theory on Intention and Behaviour of Physical Activity in Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Morowatisharifabad

    2018-03-01

    CONCLUSION: Considering the ability of protection motivation theory structures to explain the physical activity behaviour, interventional designs are suggested based on the structures of this theory, especially to improve self -efficacy as the most powerful factor in predicting physical activity intention and behaviour.

  4. 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics

    CERN Document Server

    Passante, Roberto; Trapani, Camillo

    2016-01-01

    This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.

  5. The relevance of ''theory rich'' bridge assumptions

    NARCIS (Netherlands)

    Lindenberg, S

    1996-01-01

    Actor models are increasingly being used as a form of theory building in sociology because they can better represent the caul mechanisms that connect macro variables. However, actor models need additional assumptions, especially so-called bridge assumptions, for filling in the relatively empty

  6. Analysis of deposit of physiological and psychological theories of forming motive skills on development of theory of teaching to the physical drills

    Directory of Open Access Journals (Sweden)

    Khudolii O.N.

    2010-06-01

    Full Text Available Influence of different theories is certain on the construction of process of teaching motive actions of young gymnasts. The results of complete factor experiment are presented. They allowed to formulate principle settings to the construction of process of teaching the physical drills of young gymnasts at the age 7-13 years old. On the construction of teaching process influences more in all: theory of functional systems (43%, р<0,001, theory of construction of motions (41%,р<0,001, theory of management mastering of knowledge, forming actions and concepts (2,6%, р<0,05. The positive effect of teaching depends on the successive decision of tasks of teaching and rational application of methods.

  7. Micro-economic analysis of the physical constrained markets: game theory application to competitive electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Bompard, E.; Ma, Y.C. [Politecnico di Torino, Dept. of Electrical Engineering, Torino (Italy); Ragazzi, E. [CERIS, Institute for Economic Research on Firms and Growth, CNR, National Research Council, Moncalieri, TO (Italy)

    2006-03-15

    Competition has been introduced in the electricity markets with the goal of reducing prices and improving efficiency. The basic idea which stays behind this choice is that, in competitive markets, a greater quantity of the good is exchanged at a lower price, leading to higher market efficiency. Electricity markets are pretty different from other commodities mainly due to the physical constraints related to the network structure that may impact the market performance. The network structure of the system on which the economic transactions needs to be undertaken poses strict physical and operational constraints. Strategic interactions among producers that game the market with the objective of maximizing their producer surplus must be taken into account when modeling competitive electricity markets. The physical constraints, specific of the electricity markets, provide additional opportunity of gaming to the market players. Game theory provides a tool to model such a context. This paper discussed the application of game theory to physical constrained electricity markets with the goal of providing tools for assessing the market performance and pinpointing the critical network constraints that may impact the market efficiency. The basic models of game theory specifically designed to represent the electricity markets will be presented. IEEE30 bus test system of the constrained electricity market will be discussed to show the network impacts on the market performances in presence of strategic bidding behavior of the producers. (authors)

  8. Micro-economic analysis of the physical constrained markets: game theory application to competitive electricity markets

    Science.gov (United States)

    Bompard, E.; Ma, Y. C.; Ragazzi, E.

    2006-03-01

    Competition has been introduced in the electricity markets with the goal of reducing prices and improving efficiency. The basic idea which stays behind this choice is that, in competitive markets, a greater quantity of the good is exchanged at a lower price, leading to higher market efficiency. Electricity markets are pretty different from other commodities mainly due to the physical constraints related to the network structure that may impact the market performance. The network structure of the system on which the economic transactions need to be undertaken poses strict physical and operational constraints. Strategic interactions among producers that game the market with the objective of maximizing their producer surplus must be taken into account when modeling competitive electricity markets. The physical constraints, specific of the electricity markets, provide additional opportunity of gaming to the market players. Game theory provides a tool to model such a context. This paper discussed the application of game theory to physical constrained electricity markets with the goal of providing tools for assessing the market performance and pinpointing the critical network constraints that may impact the market efficiency. The basic models of game theory specifically designed to represent the electricity markets will be presented. IEEE30 bus test system of the constrained electricity market will be discussed to show the network impacts on the market performances in presence of strategic bidding behavior of the producers.

  9. Interpreting mathematics in physics: Charting the applications of SU(2) in 20th century physics

    International Nuclear Information System (INIS)

    Anderson, Ronald; Joshi, G.C.

    2008-01-01

    The role mathematics plays within physics has been of sustained interest for physicists as well as for philosophers and historians of science. We explore this topic by tracing the role the mathematical structure associated with SU(2) has played in three key episodes in 20th century physics - intrinsic spin, isospin, and gauge theory and electroweak unification. We also briefly consider its role in loop quantum gravity. Each episode has led to profound and new physical notions of a space other than the traditional ones of space and spacetime, and each has had associated with it a complex and in places, contested history. The episodes also reveal ways mathematical structures provide resources for new physical theorizing and we propose our study as a contribution to a need Roger Penrose has identified to develop a 'profoundly sensitive aesthetic' sense for locating physically relevant mathematics

  10. Theory and application of the RAZOR two-dimensional continuous energy lattice physics code

    International Nuclear Information System (INIS)

    Zerkle, M.L.; Abu-Shumays, I.K.; Ott, M.W.; Winwood, J.P.

    1997-01-01

    The theory and application of the RAZOR two-dimensional, continuous energy lattice physics code are discussed. RAZOR solves the continuous energy neutron transport equation in one- and two-dimensional geometries, and calculates equivalent few-group diffusion theory constants that rigorously account for spatial and spectral self-shielding effects. A dual energy resolution slowing down algorithm is used to reduce computer memory and disk storage requirements for the slowing down calculation. Results are presented for a 2D BWR pin cell depletion benchmark problem

  11. Making Theory Relevant: The Gender Attitude and Belief Inventory

    Science.gov (United States)

    McCabe, Janice

    2013-01-01

    This article describes and evaluates the Gender Attitude and Belief Inventory (GABI), a teaching tool designed to aid students in (a) realizing how sociological theory links to their personal beliefs and (b) exploring any combination of 11 frequently used theoretical perspectives on gender, including both conservative theories (physiological,…

  12. FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Papenbrock, Thomas [Univ. of Tennessee, Knoxville, TN (United States)

    2017-03-22

    FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.

  13. Introduction to Gyrokinetic Theory with Applications in Magnetic Confinement Research in Plasma Physics

    International Nuclear Information System (INIS)

    Tang, W.M.

    2005-01-01

    The present lecture provides an introduction to the subject of gyrokinetic theory with applications in the area of magnetic confinement research in plasma physics--the research arena from which this formalism was originally developed. It was presented as a component of the ''Short Course in Kinetic Theory within the Thematic Program in Partial Differential Equations'' held at the Fields Institute for Research in Mathematical Science (24 March 2004). This lecture also discusses the connection between the gyrokinetic formalism and powerful modern numerical simulations. Indeed, simulation, which provides a natural bridge between theory and experiment, is an essential modern tool for understanding complex plasma behavior. Progress has been stimulated in particular by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modeling. This was enabled by two key factors: (i) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (ii) access to powerful new computational resources

  14. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  15. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

  16. Physics of automated driving in framework of three-phase traffic theory.

    Science.gov (United States)

    Kerner, Boris S

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  17. Physics of automated driving in framework of three-phase traffic theory

    Science.gov (United States)

    Kerner, Boris S.

    2018-04-01

    We have revealed physical features of automated driving in the framework of the three-phase traffic theory for which there is no fixed time headway to the preceding vehicle. A comparison with the classical model approach to automated driving for which an automated driving vehicle tries to reach a fixed (desired or "optimal") time headway to the preceding vehicle has been made. It turns out that automated driving in the framework of the three-phase traffic theory can exhibit the following advantages in comparison with the classical model of automated driving: (i) The absence of string instability. (ii) Considerably smaller speed disturbances at road bottlenecks. (iii) Automated driving vehicles based on the three-phase theory can decrease the probability of traffic breakdown at the bottleneck in mixed traffic flow consisting of human driving and automated driving vehicles; on the contrary, even a single automated driving vehicle based on the classical approach can provoke traffic breakdown at the bottleneck in mixed traffic flow.

  18. Exploring the Relationship between Self-Determination Theory, Adults' Barriers to Exercise, and Physical Activity

    Science.gov (United States)

    Ball, James W.; Bice, Matthew R.; Maljak, Kimberly A.

    2017-01-01

    Physical activity is a preventative measure that can help decrease obesity trends. However, many individuals struggle to live a physically active lifestyle. The purpose of this study was to explore the relationships between Self-Determination Theory, adults' barriers to exercise, and those who have met and have not met the Center for Disease…

  19. CP Studies and Non-Standard Higgs Physics

    DEFF Research Database (Denmark)

    Kraml, S.; Accomando, E.; G. Akeroyd, A.

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state......, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories...

  20. MITP Workshop on Low-Energy Precision Physics

    CERN Document Server

    2013-01-01

    The scientific program will be focussed on the theory of low-energy precision physics relevant to the MESA and TRIGA initiatives. Topics include searches for TeV-scale physics beyond the Standard Model via ultra-precise measurements of parity-violating electron scattering asymmetries, determinations of neutron decay parameters via precision measurements of its lifetime and decay asymmetries, and searches for EDMs of nucleons, nuclei and atoms. The necessary high-precision theoretical tools to analyse these experiments, which include advanced calculations of radiative corrections, will be explored and developed.

  1. Objectification Theory: Of Relevance for Eating Disorder Researchers and Clinicians?

    Science.gov (United States)

    Tiggemann, Marika

    2013-01-01

    Background: There is a large and expanding body of research on Objectification Theory. Central to the theory is the proposition that self-objectification results in shame and anxiety surrounding the body, and as a consequence, the development of eating disorders. However, the theory and research have been developed and reported in the gender and…

  2. Mathematical gauge theory with applications to the standard model of particle physics

    CERN Document Server

    Hamilton, Mark J D

    2017-01-01

    The Standard Model is the foundation of modern particle and high energy physics. This book explains the mathematical background behind the Standard Model, translating ideas from physics into a mathematical language and vice versa. The first part of the book covers the mathematical theory of Lie groups and Lie algebras, fibre bundles, connections, curvature and spinors. The second part then gives a detailed exposition of how these concepts are applied in physics, concerning topics such as the Lagrangians of gauge and matter fields, spontaneous symmetry breaking, the Higgs boson and mass generation of gauge bosons and fermions. The book also contains a chapter on advanced and modern topics in particle physics, such as neutrino masses, CP violation and Grand Unification. This carefully written textbook is aimed at graduate students of mathematics and physics. It contains numerous examples and more than 150 exercises, making it suitable for self-study and use alongside lecture courses. Only a basic knowledge of d...

  3. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  4. A topos foundation for theories of physics: III. The representation of physical quantities with arrows δo(A):Σ lowbar →Rsccue lowbar

    International Nuclear Information System (INIS)

    Doering, A.; Isham, C. J.

    2008-01-01

    This paper is the third in a series whose goal is to develop a fundamentally new way of viewing theories of physics. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. In Paper II, we studied the topos representations of the propositional language PL(S) for the case of quantum theory, and in the present paper we do the same thing for the, more extensive, local language L(S). One of the main achievements is to find a topos representation for self-adjoint operators. This involves showing that, for any physical quantity A, there is an arrow δ o (A):Σ lowbar →R sccue lowbar , where R sccue lowbar is the quantity-value object for this theory. The construction of δ o (A) is an extension of the daseinisation of projection operators that was discussed in Paper II. The object R sccue lowbar is a monoid object only in the topos, τ φ =Sets V(H) op , of the theory, and to enhance the applicability of the formalism, we apply to R sccue lowbar a topos analog of the Grothendieck extension of a monoid to a group. The resulting object, k(R sccue lowbar ), is an abelian group object in τ φ . We also discuss another candidate, R ↔ lowbar , for the quantity-value object. In this presheaf, both inner and outer daseinisations are used in a symmetric way. Finally, there is a brief discussion of the role of unitary operators in the quantum topos scheme

  5. The foundation of Piaget's theories: mental and physical action.

    Science.gov (United States)

    Beilin, H; Fireman, G

    1999-01-01

    Piaget's late theory of action and action implication was the realization of a long history of development. A review of that history shows the central place of action in all of his theoretical assertions, despite the waxing and waning of other important features of his theories. Action was said to be the primary source of knowledge with perception and language in secondary roles. Action is for the most part not only organized but there is logic in action. Action, which is at first physical, becomes internalized and transformed into mental action and mental representation, largely in the development of the symbolic or semiotic function in the sensorimotor period. A number of alternative theories of cognitive development place primary emphasis on mental representation. Piaget provided it with an important place as well, but subordinated it to mental action in the form of operations. In this, as Russell claims, he paralleled Schopenhauer's distinction between representation and will. Piaget's theory of action was intimately related to the gradual development of intentionality in childhood. Intentions were tied to actions by way of the conscious awareness of goals and the means to achieve them. Mental action, following the sensorimotor period, was limited in its logical form to semilogical or one-way functions. These forms were said by Piaget to lack logical reversibility, which was achieved only in the sixth or seventh year, in concrete operations. Mental action was not to be fully realized until the development of formal operations, with hypothetical reasoning, in adolescence, according to the classical Piagetian formulation. This view of the child's logical development, which relied heavily on truth-table (extensional) logic, underwent a number of changes. First from the addition of other logics: category theory and the theory of functions among them. In his last theory, however, an even more radical change occurred. With the collaboration of R. Garcia, he proposed

  6. Physics of energetic ions

    International Nuclear Information System (INIS)

    1999-01-01

    Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor. (author)

  7. Toward convergence of the variational mass expansion in asymptotically free theories

    CERN Document Server

    Kneur, J L

    2001-01-01

    We re-examine a modification of perturbative expansions, valid for asymptotically free theories, producing "variationally improved" expansions of physical quantities relevant to dynamical (chiral) symmetry breaking. The large order behaviour of this expansion is shown to be drastically improved, for reasons analogous to the convergence properties of the delta-expansion of the anharmonic oscillator.

  8. Design of the Model of Constructivist Learning Theory for Moral Education in Physical Education Teaching

    Science.gov (United States)

    Wang, Chenyu

    2011-01-01

    In order to achieve better effect of moral education in physical education teaching, this article employed constructivist learning theory to design the model of moral education according to the characteristics of physical education teaching, in order that the majority of P.E. teachers draw lessons from it in their teaching practice, and service to…

  9. Overview of the first workshop on alpha particle physics in TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Biglari, H.

    1991-07-01

    The ''First Workshop on Alpha Physics in TFTR'' was held at the Princeton Plasma Physics Lab March 28--29, 1991. The motivation for this meeting was to clarify and strengthen the TFTR alpha physics program, and to increase the involvement of the fusion community outside PPPL in the TFTR D-T experiments. Therefore the meeting was sharply focused on alpha physics relevant to the upcoming TFTR D-T simulation, and was asked to devote half of his talk to specific TFTR issues. The Workshop consisted of 27 talks on: (1) experimental possibilities; (2) theoretical possibilities; (3) diagnostic possibilities; (4) relevance for future machines; and (5) discussion/summary session. This summary contains a brief sampling of the new results and ideas brought out by these talks, followed by two more general overviews of the status of experiment and theory

  10. Calculation of TC in a normal-superconductor bilayer using the microscopic-based Usadel theory

    International Nuclear Information System (INIS)

    Martinis, John M.; Hilton, G.C.; Irwin, K.D.; Wollman, D.A.

    2000-01-01

    The Usadel equations give a theory of superconductivity, valid in the diffusive limit, that is a generalization of the microscopic equations of the BCS theory. Because the theory is expressed in a tractable and physical form, even experimentalists can analytically and numerically calculate detailed properties of superconductors in physically relevant geometries. Here, we describe the Usadel equations and review their solution in the case of predicting the transition temperature T C of a thin normal-superconductor bilayer. We also extend this calculation for thicker bilayers to show the dependence on the resistivity of the films. These results, which show a dependence on both the interface resistance and heat capacity of the films, provide important guidance on fabricating bilayers with reproducible transition temperatures

  11. Heat and Kinetic Theory in 19th-Century Physics Textbooks: The Case of Spain

    OpenAIRE

    Vaquero, J. M.; Santos, A.

    2000-01-01

    Spain was a scientifically backward country in the early 19th-century. The causes were various political events, the War of Independence, and the reign of Fernando VII. The introduction of contemporary physics into textbooks was therefore a slow process. An analysis of the contents of 19th-century Spanish textbooks is here presented, centred on imponderable fluids, the concept of energy, the mechanical theory of heat, and the kinetic theory of gases.

  12. Revised Robertson's test theory of special relativity: space-time structure and dynamics

    International Nuclear Information System (INIS)

    Vargas, J.G.; Torr, D.G.

    1986-01-01

    The experimental testing of the Lorentz transformations is based on a family of sets of coordinate transformations that do not comply in general with the principle of equivalence of the inertial frames. The Lorentz and Galilean sets of transformations are the only member sets of the family that satisfy this principle. In the neighborhood of regular points of space-time, all members in the family are assumed to comply with local homogeneity of space-time and isotropy of space in at least one free-falling elevator, to be denoted as Robertson's ab initio rest frame (H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949)). Without any further assumptions, it is shown that Robertson's rest frame becomes a preferred frame for all member sets of the Robertson family except for, again, Galilean and Einstein's relativities. If one now assumes the validity of Maxwell-Lorentz electrodynamics in the preferred frame, a different electrodynamics spontaneously emerges for each set of transformations. The flat space-time of relativity retains its relevance, which permits an obvious generalization, in a Robertson context, of Dirac's theory of the electron and Einstein's gravitation. The family of theories thus obtained constitutes a covering theory of relativistic physics. A technique is developed to move back and forth between Einstein's relativity and the different members of the family of theories. It permits great simplifications in the analysis of relativistic experiments with relevant ''Robertson's subfamilies.'' It is shown how to adapt the Clifford algebra version of standard physics for use with the covering theory and, in particular, with the covering Dirac theory

  13. Statistical physics and computational methods for evolutionary game theory

    CERN Document Server

    Javarone, Marco Alberto

    2018-01-01

    This book presents an introduction to Evolutionary Game Theory (EGT) which is an emerging field in the area of complex systems attracting the attention of researchers from disparate scientific communities. EGT allows one to represent and study several complex phenomena, such as the emergence of cooperation in social systems, the role of conformity in shaping the equilibrium of a population, and the dynamics in biological and ecological systems. Since EGT models belong to the area of complex systems, statistical physics constitutes a fundamental ingredient for investigating their behavior. At the same time, the complexity of some EGT models, such as those realized by means of agent-based methods, often require the implementation of numerical simulations. Therefore, beyond providing an introduction to EGT, this book gives a brief overview of the main statistical physics tools (such as phase transitions and the Ising model) and computational strategies for simulating evolutionary games (such as Monte Carlo algor...

  14. O(5) x U(1) electro weak gauge theory and the relevance of the Cabibbo angle in CP violation in K-decays

    International Nuclear Information System (INIS)

    Samiullah, M.

    1987-11-01

    Some of the relevant mathematics of O(5)xU(1) electro weak gauge theory is briefly sketched. The O(5)xU(1) model is presented. To facilitate the discussion of CP-violation in K-decays the relevant Lagrangian is given in several alternative forms. It is shown that in the CP-violating part of the Lagrangian, by a redefinition of quark phases, the coupling of the CP eigenstates K 1 and K 2 cannot be broken. However, if the Cabibbo angle were not present, the states K 1 and K 2 would decouple and the theory would become CP-invariant. Such a result was also reported by Deshpande et al. working with a different formalism. Relating the mixing parameters θ and φ to the parameters ε 1 and ε 2 it is shown that when ε 1 =ε 2 =ε, ε reduces to the usual CP-violating and CPT conserving parameter. (author). 14 refs

  15. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything.

    Science.gov (United States)

    Bays, Harold

    2005-05-01

    Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.

  16. Evaluation methodology based on physical security assessment results: a utility theory approach

    International Nuclear Information System (INIS)

    Bennett, H.A.; Olascoaga, M.T.

    1978-03-01

    This report describes an evaluation methodology which aggregates physical security assessment results for nuclear facilities into an overall measure of adequacy. This methodology utilizes utility theory and conforms to a hierarchical structure developed by the NRC. Implementation of the methodology is illustrated by several examples. Recommendations for improvements in the evaluation process are given

  17. Review of current drive theory: selected topics

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1993-01-01

    Two themes in current drive theory in tokamaks are reviewed, both relevant to the progression of tokamak experiments toward the reactor regime. First, the physics of the tail electrons is reviewed. These electrons are capable of carrying enormous rf-driven electric current, and, in the course of current-drive experiments worldwide not only has the current drive effect been demonstrated, but the underlying physical description of these tail electrons has been established. Second, anticipating the presence of the energetic alpha particles that result from D-T reactions in a reactor, certain mechanisms through which these alpha particles can be used to facilitate current-drive are reviewed. (Author)

  18. String Theory and M-Theory

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  19. New Trends in high-energy physics (experiment, phenomenology, theory). Proceedings of the International Conference

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Bugrij, G.V.; Jenkovszky, L.L.

    2001-01-01

    The subject of 'New Trends in High-Energy Physics' conference has been gradually extended (the number of participants still remain limited), now including: elastic and diffractive scattering of hadrons and nuclei, deep inelastic scattering and multiparticle dynamics, collective properties of the strongly interacting matter, heavy flavours and hadron spectroscopy, duality, strings and confinement, the standard model (and beyond), advances in quantum field theory, as well as new physics at future colliders

  20. Theories of risk and safety: what is their relevance to nursing?

    Science.gov (United States)

    Cooke, Hannah

    2009-03-01

    The aim of this paper is to review key theories of risk and safety and their implications for nursing. The concept of of patient safety has only recently risen to prominence as an organising principle in healthcare. The paper considers the wider social context in which contemporary concepts of risk and safety have developed. In particular it looks at sociological debates about the rise of risk culture and the risk society and their influence on the patient safety movement. The paper discusses three bodies of theory which have attempted to explain the management of risk and safety in organisations: normal accident theory, high reliability theory, and grid-group cultural theory. It examine debates between these theories and their implications for healthcare. It discusses reasons for the dominance of high reliability theory in healthcare and its strengths and limitations. The paper suggest that high reliability theory has particular difficulties in explaining some aspects of organisational culture. It also suggest that the implementation of high reliability theory in healthcare has involved over reliance on numerical indicators. It suggests that patient safety could be improved by openness to a wider range of theoretical perspectives.

  1. Quantum theory from a nonlinear perspective Riccati equations in fundamental physics

    CERN Document Server

    Schuch, Dieter

    2018-01-01

    This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in ...

  2. The complex itinerary of Leibniz’s planetary theory physical convictions, metaphysical principles and Keplerian inspiration

    CERN Document Server

    Bussotti, Paolo

    2015-01-01

    This book presents new insights into Leibniz’s research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler’s influence on Leibniz’s planetary theory and, more generally, on Leibniz’s concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz’s works provide a frame of reference. The book then goes on to discuss research on Leibniz’s conception of gravity and the connection between Leibniz and Kepler. .

  3. Proceedings 20. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2014-01-01

    The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  4. Interpreting mathematics in physics: Charting the applications of SU(2) in 20th century physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ronald [Department of Philosophy, Boston College, Chestnut Hill, MA 02467 (United States)], E-mail: ronald.anderson@bc.edu; Joshi, G.C. [School of Physics, University of Melbourne, Victoria 3010 (Australia)], E-mail: joshi@physics.unimelb.edu.au

    2008-04-15

    The role mathematics plays within physics has been of sustained interest for physicists as well as for philosophers and historians of science. We explore this topic by tracing the role the mathematical structure associated with SU(2) has played in three key episodes in 20th century physics - intrinsic spin, isospin, and gauge theory and electroweak unification. We also briefly consider its role in loop quantum gravity. Each episode has led to profound and new physical notions of a space other than the traditional ones of space and spacetime, and each has had associated with it a complex and in places, contested history. The episodes also reveal ways mathematical structures provide resources for new physical theorizing and we propose our study as a contribution to a need Roger Penrose has identified to develop a 'profoundly sensitive aesthetic' sense for locating physically relevant mathematics.

  5. The estimation of effective doses using measurement of several relevant physical parameters from radon exposures

    International Nuclear Information System (INIS)

    Ridzikova, A; Fronka, A.; Maly, B.; Moucka, L.

    2003-01-01

    In the present investigation, we will be study the dose relevant factors from continual monitoring in real homes into account getting more accurate estimation of 222 Rn the effective dose. The dose relevant parameters include the radon concentration, the equilibrium factor (f), the fraction (fp) of unattached radon decay products and real time occupancy people in home. The result of the measurement are the time courses of radon concentration that are based on estimation effective doses together with assessment of the real time occupancy people indoor. We found out by analysis that year effective dose is lower than effective dose estimated by ICRP recommendation from the integral measurement that included only average radon concentration. Our analysis of estimation effective doses using measurement of several physical parameters was made only in one case and for the better specification is important to measure in different real occupancy houses. (authors)

  6. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  7. New applications of neutron noise theory in power reactor physics

    International Nuclear Information System (INIS)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  8. The Physics of Structural Phase Transitions

    CERN Document Server

    Fujimoto, Minoru

    2005-01-01

    Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process that is typically nonlinear. Intended for readers with prior knowledge of basic condensed-matter physics, this book emphasizes the physics behind spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the text discusses the nature of order variables in collective motion in structural phase transitions, where a singularity in such a collective mode is responsible for lattice instability as revealed by soft phonons. In this book, critical anomalies at second-order structural transitions are first analyzed with the condensate model. Discussions on the nonlinear ordering mechanism are followed with the soliton theory, thereby interpreting the role of long-range order. Relevant details for nonlinear mathematics are therefore given for minimum necessity. The text also discusses experimental methods fo...

  9. The Theory of Optimal Taxation: What is the Policy Relevance?

    OpenAIRE

    Birch Sørensen, Peter

    2006-01-01

    The paper discusses the implications of optimal tax theory for the debates on uniform commodity taxation and neutral capital income taxation. While strong administrative and political economy arguments in favor of uniform and neutral taxation remain, recent advances in optimal tax theory suggest that the information needed to implement the differentiated taxation prescribed by optimal tax theory may be easier to obtain than previously believed. The paper also points to the strong similarity b...

  10. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  11. Numerical perturbative methods in the quantum theory of physical systems

    International Nuclear Information System (INIS)

    Adam, G.

    1980-01-01

    During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)

  12. Physical activity: The importance of the extended theory of planned behavior, in type 2 diabetes patients.

    Science.gov (United States)

    Ferreira, Gabriela; Pereira, M Graça

    2017-09-01

    This study focused on the contribution of the extended theory of planned behavior regarding intention to perform physical activity, adherence to physical activity, and its mediator role in the relationship between trust in the physician and adherence to physical activity, in a sample of 120 patients with type 2 diabetes. The results revealed that positive attitudes and perception of control predicted a stronger intention to do physical activity. The intention to do physical activity was the only predictor of adherence to physical activity. Planning mediated the relationship between trust in the physician and adherence. Implications for patients with type 2 diabetes are discussed.

  13. Phase transitions and elementary-particle physics

    International Nuclear Information System (INIS)

    Creutz, M.

    1981-01-01

    The reason physicists have recently taken an intense interest in the statistical mechanics of certain lattice models is reviewed. Phase transitions in these systems are of direct relevance to whether the gauge theory of interacting quarks and gluons can prevent the quark as appearing as a free isolated object. Monte Carlo simulation techniques have given the strongest evidence for the confinement phenomenon and are beginning to make numerical predictions in strong interaction physics

  14. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  15. Teaching Interaction Design and Children: Understanding the Relevance of Theory for Design

    Directory of Open Access Journals (Sweden)

    Tilde Bekker

    2014-08-01

    Full Text Available In this paper we address the challenge of teaching interaction design for children’s products especially pertaining to bridging the gap between child development theories and interaction design issues. We describe our experiences from developing a one-week course on interaction design and children, that is part of a competency based Masters program in design. We conclude that key elements in this course, to support learning how to incorporate theoretical knowledge in design, are a providing design tool that covers a child developmental model of four domains (cognitive, social, emotional and physical , such as the Developmentally Situated Design cards for creating child personas and design concepts b using a design exercise c giving students the possibility to work on several iterations d giving students more than one age-group to work with in the project, and e providing the students with an evaluation protocol.

  16. Use of Theory in Behavior Change Interventions: An Analysis of Programs to Increase Physical Activity in Posttreatment Breast Cancer Survivors

    Science.gov (United States)

    Bluethmann, Shirley M.; Bartholomew, L. Kay; Murphy, Caitlin C.; Vernon, Sally W.

    2017-01-01

    Objective: Theory use may enhance effectiveness of behavioral interventions, yet critics question whether theory-based interventions have been sufficiently scrutinized. This study applied a framework to evaluate theory use in physical activity interventions for breast cancer survivors. The aims were to (1) evaluate theory application intensity and…

  17. Impact of flavor and Higgs physics on theories beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, Sandro

    2013-02-13

    Quantum effects of physics beyond the Standard Model receive strong indirect constraints from precisely measured collider observables. In the conceptual part of this thesis, we apply the generic relations between particle interactions in perturbatively unitary theories to calculate one-loop amplitudes for flavor physics. We provide template results applicable for any model of this class. We also investigate example models that are partly and such that are not perturbatively unitary: the Littlest Higgs model and Randall-Sundrum models. The latter have a unique coupling structure, which we cover exhaustively. We find strong constraints on the Randall-Sundrum models and numerically compare those from flavor, electroweak precision, and Higgs physics by performing detailed parameter scans. We observe interesting correlations between flavor observables, and we find that constraints from Higgs production and decays are already competitive.

  18. Impact of flavor and Higgs physics on theories beyond the standard model

    International Nuclear Information System (INIS)

    Casagrande, Sandro

    2013-01-01

    Quantum effects of physics beyond the Standard Model receive strong indirect constraints from precisely measured collider observables. In the conceptual part of this thesis, we apply the generic relations between particle interactions in perturbatively unitary theories to calculate one-loop amplitudes for flavor physics. We provide template results applicable for any model of this class. We also investigate example models that are partly and such that are not perturbatively unitary: the Littlest Higgs model and Randall-Sundrum models. The latter have a unique coupling structure, which we cover exhaustively. We find strong constraints on the Randall-Sundrum models and numerically compare those from flavor, electroweak precision, and Higgs physics by performing detailed parameter scans. We observe interesting correlations between flavor observables, and we find that constraints from Higgs production and decays are already competitive.

  19. Is QCD relevant to nuclear physics

    International Nuclear Information System (INIS)

    Thomas, A.W.

    1985-01-01

    A review is given of recent work on baryon structure in a number of QCD-motivated models. After establishing a prima facie case that the quark model should be relevant in a consistent description of the nucleus over a wide range of momentum transfer, the author looks for experimental confirmation. The discussion includes the search for exotic states, for a six quark component of the deuteron, and an up to date report on the interpretation of the EMC effect. (Auth.)

  20. Physical Unclonable Functions in Theory and Practice

    CERN Document Server

    Böhm, Christoph

    2013-01-01

    In Physical Unclonable Functions in Theory and Practice, the authors present an in-depth overview of various topics concerning PUFs, providing theoretical background and application details. This book concentrates on the practical issues of PUF hardware design, focusing on dedicated microelectronic PUF circuits. Additionally, the authors discuss the whole process of circuit design, layout and chip verification. The book also offers coverage of: Different published approaches focusing on dedicated microelectronic PUF circuits Specification of PUF circuits and different error rate reducing pre-selection techniques General design issues and minimizing error rate from the circuit’s perspective Transistor modeling issues of Montecarlo mismatch simulation and solutions Examples of PUF circuits including an accurate description of the circuits and testing/measurement results  This monograph gives insight into PUFs in general and provides knowledge in the field of PUF circuit design and implementation. It coul...

  1. Physically based rendering from theory to implementation

    CERN Document Server

    Pharr, Matt

    2010-01-01

    "Physically Based Rendering, 2nd Edition" describes both the mathematical theory behind a modern photorealistic rendering system as well as its practical implementation. A method - known as 'literate programming'- combines human-readable documentation and source code into a single reference that is specifically designed to aid comprehension. The result is a stunning achievement in graphics education. Through the ideas and software in this book, you will learn to design and employ a full-featured rendering system for creating stunning imagery. This book features new sections on subsurface scattering, Metropolis light transport, precomputed light transport, multispectral rendering, and much more. It includes a companion site complete with source code for the rendering system described in the book, with support for Windows, OS X, and Linux. Code and text are tightly woven together through a unique indexing feature that lists each function, variable, and method on the page that they are first described.

  2. Application of the heuristically based GPT theory to termohydraulic problems

    International Nuclear Information System (INIS)

    Alvim, A.C.M.

    1988-01-01

    Application of heuristically based generalized perturbation theory (GPT) to the thermohydraulic (generally nonlinear) field is here illustrated. After a short description of the general methodology, the (linear) equations governing the importance function relevant to a generic multichannel problem are derived, within the physical model adopted in the COBRA IV-I Code. These equations are put in a form which should benefit of the calculational scheme of the original COBRA Code in the sense that only minor changes of it (mostly implying physical constants and source terms redefinitions) should be necessary for their solutions. (author) [pt

  3. Building a multiple modality, theory-based physical activity intervention: The development of CardiACTION!

    Science.gov (United States)

    Estabrooks, Paul A; Glasgow, Russ E; Xu, Stan; Dzewaltowski, David A; Lee, Rebecca E; Thomas, Deborah; Almeida, Fabio A; Thayer, Amy N; Smith-Ray, Renae L

    2011-01-01

    OBJECTIVES: Despite the widely acknowledged benefits of regular physical activity (PA), specific goals for increased population levels of PA, and strongly recommended strategies to promote PA, there is no evidence suggesting that the prevalence of PA is improving. If PA intervention research is to be improved, theory should be used as the basis for intervention development, participant context or environment should be considered in the process, and intervention characteristics that will heighten the likelihood of translation into practice should be implemented (e.g., ease of implementation, low human resource costs). The purpose of this paper is to describe the implementation of the aforementioned concepts within the intervention development process associated with CardiACTION an ongoing randomized 2 × 2 factorial trial. METHODS: The Ecological Model of Physical Activity integrated with Protection Motivation Theory was used to inform the design of the interventions. This integrated model was selected to allow for the development of theory-based individual, environmental, and individually + environmentally targeted physical activity interventions. All intervention strategies were matched to proposed mediators of behavior change. Strategies were then matched to the most appropriate interactive technology (i.e., interactive computer session, automated telephone counseling, and tailored mailings) delivery channel. CONCLUSIONS: The potential implications of this study include determining the independent and combined influence of individual and environment mechanisms of behavior change on intervention effectiveness. In addition, all intervention models are developed to be scalable and disseminable to a broad audience at a low cost.

  4. Differential geometry and mathematical physics

    CERN Document Server

    Rudolph, Gerd

    Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous d...

  5. The effect of theory-based interventions on physical activity participation among overweight/obese individuals: a systematic review.

    Science.gov (United States)

    Bélanger-Gravel, A; Godin, G; Vézina-Im, L-A; Amireault, S; Poirier, P

    2011-06-01

    Little attention has been paid to the evaluation of the long-term impact of theory-based interventions on physical activity participation among overweight/obese individuals after the interventions have ended. The primary aim of this systematic review was to investigate the long-term effectiveness of theory-based interventions increasing physical activity and identify the most effective techniques for behaviour change among overweight/obese individuals. The secondary aim was to investigate the effect of these interventions on theoretical variables. Eighteen studies were reviewed. Among these studies, three reported significant short-term and two long-term effects of interventions on physical activity participation. Most of the studies observed a significant short- or long-term effect of time on this behaviour. Theoretical frameworks most often applied included the Behavioural Model and the Social Learning/Cognitive Theory. However, few of the studies reported any impact on theoretical variables. The most prevalent techniques consisted of providing opportunities for social comparison and instruction as well as self-monitoring. Leading techniques differentiating the experimental group from the control group included prompting practice and intentions formation and barriers identification. Although the combination of these three techniques appears successful, the long-term impact of theory-based interventions remains ambiguous. © 2010 The Authors. obesity reviews © 2010 International Association for the Study of Obesity.

  6. Mediation of effects of a theory-based behavioral intervention on self-reported physical activity in South African men.

    Science.gov (United States)

    Jemmott, John B; Stephens-Shields, Alisa; O'Leary, Ann; Jemmott, Loretta Sweet; Teitelman, Anne; Ngwane, Zolani; Mtose, Xoliswa

    2015-03-01

    Increasing physical activity is an important public-health goal worldwide, but there are few published mediation analyses of physical-activity interventions in low-to-middle-income countries like South Africa undergoing a health transition involving markedly increased mortality from non-communicable diseases. This article reports secondary analyses on the mediation of a theory-of-planned-behavior-based behavioral intervention that increased self-reported physical activity in a trial with 1181 men in Eastern Cape Province, South Africa. Twenty-two matched-pairs of neighborhoods were randomly selected. Within pairs, neighborhoods were randomized to a health-promotion intervention or an attention-matched control intervention with baseline, immediate-post, and 6- and 12-month post-intervention assessments. Theory-of-planned-behavior constructs measured immediately post-intervention were tested as potential mediators of the primary outcome, self-reported physical activity averaged over the 6- and 12-month post-intervention assessments, using a product-of-coefficients approach in a generalized-estimating-equations framework. Data were collected in 2007-2010. Attitude, subjective norm, self-efficacy, and intention were significant mediators of intervention-induced increases in self-reported physical activity. The descriptive norm, not affected by the intervention, was not a mediator, but predicted increased self-reported physical activity. The results suggest that interventions targeting theory-of-planned-behavior constructs may contribute to efforts to increase physical activity to reduce the burden of non-communicable diseases among South African men. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Physics on all scales. Scalar-tensor theories of quantum gravity in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Henz, Tobias

    2016-05-10

    In this thesis, we investigate dilaton quantum gravity using a functional renormalization group approach. We derive and discuss flow equations both in the background field approximation and using a vertex expansion as well as solve the fixed point equations globally to show how realistic gravity, connecting ultraviolet and infrared physics, can be realized on a pure fixed point trajectory by virtue of spontaneous breaking of scale invariance. The emerging physical system features a dynamically generated moving Planck scale resembling the Newton coupling as well as slow roll inflation with an exponentially decreasing effective cosmological constant that vanishes completely in the infrared. The moving Planck scale might make quantum gravity experimentally accessible at a different energy scale than previously believed. We therefore not only provide further evidence for the existence of a consistent quantum theory of gravity based on general relativity, but also offer potential solutions towards the hierarchy and cosmological constant problems, thereby opening up exciting opportunities for further research.

  8. Middle-aged women's preferred theory-based features in mobile physical activity applications.

    Science.gov (United States)

    Ehlers, Diane K; Huberty, Jennifer L

    2014-09-01

    The purpose of this study was to describe which theory-based behavioral and technological features middle-aged women prefer to be included in a mobile application designed to help them adopt and maintain regular physical activity (PA). Women aged 30 to 64 years (N = 120) completed an online survey measuring their demographics and mobile PA application preferences. The survey was developed upon behavioral principles of Social Cognitive Theory, recent mobile app research, and technology adoption principles of the Unified Theory of Acceptance and Use of Technology. Frequencies were calculated and content analyses conducted to identify which features women most preferred. Behavioral features that help women self-regulate their PA (PA tracking, goal-setting, progress monitoring) were most preferred. Technological features that enhance perceived effort expectancy and playfulness were most preferred. Many women reported the desire to interact and compete with others through the application. Theory-based PA self-regulation features and theory-based design features that improve perceived effort expectancy and playfulness may be most beneficial in a mobile PA application for middle-aged women. Opportunities to interact with other people and the employment of social, game-like activities may also be attractive. Interdisciplinary engagement of experts in PA behavior change, technology adoption, and software development is needed.

  9. Teaching possibilities of some elements of Albert Einstein's Gravitation theory in frame of physics courses taught at technical universities

    International Nuclear Information System (INIS)

    Iordache, Dan-Alexandru

    2005-01-01

    As in the period of creation of the 'monumental' works of A. Einstein (1905-1920, mainly), when many outstanding physicists [theoreticians, inclusively, as Albert Einstein (alumni of the Polytechnics from Geneva), as Paul Adrian Maurice Dirac, Alexandru Proca (alumni of Bucharest Polytechnics), et al., finished their academic studies to different Polytechnics Universities, presently many students of technical Universities obtained (as high-school students) some outstanding results in the Physics field. Particularly, the leadership of the Faculty of Control Systems and Computers of the Bucharest University has found that 'the best students in their divisions are winners at the Physics Olympics Contests'. These students and many of their colleagues (those with special scientific aptitudes) want to know more details about the most difficult scientific creation of Albert Einstein: the Gravitation Theory. Taking into account that the Einstein's Gravitation Theory is particularly difficult (from mathematical point of view, especially), and the duration of the Physics study in our technical universities is so restricted (totally 42 to 98 teaching hours, depending on the technical division profile), we have to answer to the question: what elements of the Einstein's gravity theory could be presented in frame of Physics courses taught in our technical universities? After accomplishing our analysis, we concluded as possible and useful - for the scientific training of the best students 'engineers' - the assimilation of the following elements of the Einstein's gravity theory: - The time and space concepts in the Einstein's gravitation theory, in connection with the equation of electromagnetic waves in ideal media and - eventually - in relation with the Larmor's theory of the electrical dipole radiation [which needs the expressions in curvilinear coordinates of the gradient and divergence (the main elements of the mathematical theory of fields)]; - The applications of the

  10. Proceedings of the XXVI international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Doerfel, B.; Wieczorek, E.

    1993-02-01

    These proceedings contain most of the invited talks and short communications presented at the XXVI th International Symposium Ahrenshoop on the Theory of Elementary Particles which took place from September 9 th to 13 th , 1992 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University Berlin, the Institute for Theoretical Physics of the University Hannover, the Sektion Physik of the University Munich, and DESY - Institute for High Energy Physics Zeuthen. See hints under the relevant topics. (orig.)

  11. Brief Report: The Theory of Planned Behaviour Applied to Physical Activity in Young People Who Smoke

    Science.gov (United States)

    Everson, Emma S.; Daley, Amanda J.; Ussher, Michael

    2007-01-01

    It has been hypothesised that physical activity may be useful as a smoking cessation intervention for young adults. In order to inform such interventions, this study evaluated the theory of planned behaviour (TPB) for understanding physical activity behaviour in young smokers. Regular smokers aged 16-19 years (N=124), self-reported physical…

  12. The Relationship between Chinese High School Students' Implicit Theories of Ability in Sports and Perceived Enjoyment in Physical Education

    Science.gov (United States)

    Zhao, Qi; Li, Weidong

    2016-01-01

    According to theory, students' implicit theories of ability can affect their motivation and engagement in physical education (PE). Limited research has been conducted to examine the relationships between implicit theories of ability and motivation and engagement among K-12 students in PE. Our study examined the relationship between implicit…

  13. Policy-Making Theory as an Analytical Framework in Policy Analysis: Implications for Research Design and Professional Advocacy.

    Science.gov (United States)

    Sheldon, Michael R

    2016-01-01

    Policy studies are a recent addition to the American Physical Therapy Association's Research Agenda and are critical to our understanding of various federal, state, local, and organizational policies on the provision of physical therapist services across the continuum of care. Policy analyses that help to advance the profession's various policy agendas will require relevant theoretical frameworks to be credible. The purpose of this perspective article is to: (1) demonstrate the use of a policy-making theory as an analytical framework in a policy analysis and (2) discuss how sound policy analysis can assist physical therapists in becoming more effective change agents, policy advocates, and partners with other relevant stakeholder groups. An exploratory study of state agency policy responses to address work-related musculoskeletal disorders is provided as a contemporary example to illustrate key points and to demonstrate the importance of selecting a relevant analytical framework based on the context of the policy issue under investigation. © 2016 American Physical Therapy Association.

  14. High energy physics program: Task A, Experiment and theory; Task B, Numerical simulation

    International Nuclear Information System (INIS)

    1993-01-01

    This report discusses research in High Energy Physics at Florida State University. Contained in this paper are: highlights of activities during the past few years; five year summary; fixed target experiments; collider experiments; SSC preparation, detector development and detector construction; computing, networking and VAX upgrade to ALPHA; and particle theory programs

  15. New Trends in high-energy physics (experiment, phenomenology, theory). Proceedings of the International School-Conference

    International Nuclear Information System (INIS)

    Bogolyubov, P.N.; Jenkovszky, L.L.

    2000-01-01

    The subject of 'New Trends in High-Energy Physics' conference has been gradually extended now including: elastic and diffractive scattering of hadrons and nuclei, deep inelastic scattering and multiparticle dynamics, collective properties of the strongly interacting matter, heavy flavours and hadron spectroscopy, duality, strings an confinement, the standard model (and beyond), advances in quantum field theory, as well as new physics at future colliders

  16. High Energy Physics Model Database - HEPMDB - Towards decoding the underlying theory at the LHC

    International Nuclear Information System (INIS)

    Bondarenko, M.; Belyaev, A.; Basso, L.; Boos, E.; Bunichev, V.; Sekhar Chivukula, R.; Christensen, D.; Cox, S.; De Roeck, A.; Moretti, S.; Pukhov, A.; Sekmen, S.; Semenov, A.; Simmons, E.H.; Shepherd-Themistocleus, C.; Speckner, C.

    2012-01-01

    We present here the first stage of development of the High Energy Physics Model Data-Base (HEPMDB) which is a convenient centralized storage environment for HEP (High Energy Physics) models, and can accommodate, via web interface to the HPC cluster, the validation of models, evaluation of LHC predictions and event generation-simulation chain. The ultimate goal of HEPMDB is to perform an effective LHC data interpretation isolating the most successful theory for explaining LHC observations. (authors)

  17. Cross-cultural relevance of the Interpersonal Theory of suicide across Korean and U.S. undergraduate students.

    Science.gov (United States)

    Suh, Sooyeon; Ebesutani, Chad K; Hagan, Christopher R; Rogers, Megan L; Hom, Melanie A; Ringer, Fallon B; Bernert, Rebecca A; Kim, Soohyun; Joiner, Thomas E

    2017-05-01

    This study investigated the cross-cultural relevance and validity of the Interpersonal Theory of Suicide (ITS) utilizing young adult samples from South Korea (n =554) and the United States (U.S.; n =390). To examine the ITS, all participants completed self-report questionnaires measuring Thwarted Belongingness, Perceived Burdensomeness, and Capability for Suicide. We examined whether each construct significantly predicted the severity of suicidal risk in both samples. We also determined whether the strength of the effects of Thwarted Belongingness and Perceived Burdensomeness on suicidal ideation differed between the two samples due to the greater degree of importance placed on interpersonal relationships in collectivistic cultures such as South Korea. Structural equation modeling was used to examine these hypotheses. Thwarted Belongingness, Perceived Burdensomeness, and Capability for Suicide significantly predicted elevated suicidal risk. However, there were no significant differences in the paths from Thwarted Belongingness or Perceived Burdensomeness to suicide risk between the South Korean and U.S. These findings support the cross-cultural relevance and applicability of the ITS, whereby Thwarted Belongingness and Perceived Burdensomeness serve as indicators of suicide risk in both Western (U.S.) and East Asian (Korean) samples. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Application of Canonical Effective Methods to Background-Independent Theories

    Science.gov (United States)

    Buyukcam, Umut

    Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.

  19. Relevance Theory in advertisement translation%关联视角下的广告翻译

    Institute of Scientific and Technical Information of China (English)

    杨春辉

    2013-01-01

    As international trade develops at fast rate ,advertisement translation provides important package for the product to enter the international market .In the essay ,the author discusses the application of the Relevance Theory in translation ,makes an cognitive anal-ysis of strategies of advertisement translation ,summarizes regular ways of advertisement translation .%  随着国际贸易的飞速发展,广告翻译成为商品打入新市场的一个重要包装。运用关联理论对广告翻译策略的合理性进行认知方面的分析,总结了关联理论指导下广告翻译常用的方法。

  20. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    Science.gov (United States)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  1. Physics on the fringe smoke rings, circlons, and alternative theories of everything

    CERN Document Server

    Wertheim, Margaret

    2011-01-01

    For the past fifteen years, acclaimed science writer Margaret Wertheim has been collecting the works of "outsider physicists," many without formal training and all convinced that they have found true alternative theories of the universe. Jim Carter, the Einstein of outsiders, has developed his own complete theory of matter and energy and gravity that he demonstrates with experiments in his backyard‚ with garbage cans and a disco fog machine he makes smoke rings to test his ideas about atoms. Captivated by the imaginative power of his theories and his resolutely DIY attitude, Wertheim has been following Carter's progress for the past decade. Centuries ago, natural philosophers puzzled out the laws of nature using the tools of observation and experimentation. Today, theoretical physics has become mathematically inscrutable, accessible only to an elite few. In rejecting this abstraction, outsider theorists insist that nature speaks a language we can all understand. Through a profoundly human profile of Jim Ca...

  2. Effect of health education program on promoting physical activity among diabetic women in Mashhad, Iran: applying social cognitive theory.

    Science.gov (United States)

    Mahdizadeh, Mehri; Peymam, Nooshin; Taghipour, Ali; Esmaily, Habibolah; Mahdizadeh, Seyed Mousa

    2013-05-29

    Physical activity regularly is one of the important aspects of healthy lifestyle, which has an essential role in reducing the burden of disease and death. Diabetes is a typical general health problem. The aim of this study to determine the effect of education based on social cognitive theory on promoting physical activity among women with diabetes II in Iran. In this randomized control study, 82 diabetic females were randomly selected then were assigned into two groups: intervention (n=41) and control (n=41). Educational intervention was planned then performed during 7 sessions of 60-min in accordance with social-cognitive theory (SCT). The participants were asked to fill in the questionnaires in educational evaluation before and immediately after intervention and the follow up (10 weeks later). The data were analyzed through Repeated Measures ANOVA, Friedman, independence t and Mann-Whitney tests. The mean age among the participants was 48.37±5.67 yr also the body mass index was 28.69±3.95. In the intervention group, light physical activity and sedentary behavior reduced from 56.1% (23 individuals) to 14.6% (6 individuals) in the following up stage. There was significant improvement across time in the mean of minute's physical activity (P=0.042). There were significant differences in the mean's constructs of the Social-cognitive theory (SCT) (Psocial cognitive theory can lead to promote physical activity among women with diabetes II through changes in the theoretical constructs.

  3. Nonconservative stability problems of modern physics

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics.The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics.

  4. Theory and experiment in gravitational physics

    Science.gov (United States)

    Will, C. M.

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  5. Special theory of relativity

    CERN Document Server

    Kilmister, Clive William

    1970-01-01

    Special Theory of Relativity provides a discussion of the special theory of relativity. Special relativity is not, like other scientific theories, a statement about the matter that forms the physical world, but has the form of a condition that the explicit physical theories must satisfy. It is thus a form of description, playing to some extent the role of the grammar of physics, prescribing which combinations of theoretical statements are admissible as descriptions of the physical world. Thus, to describe it, one needs also to describe those specific theories and to say how much they are limit

  6. Gas treating absorption theory and practice

    CERN Document Server

    Eimer, Dag

    2014-01-01

    Gas Treating: Absorption Theory and Practice provides an introduction to the treatment of natural gas, synthesis gas and flue gas, addressing why it is necessary and the challenges involved.  The book concentrates in particular on the absorption-desorption process and mass transfer coupled with chemical reaction. Following a general introduction to gas treatment, the chemistry of CO2, H2S and amine systems is described, and selected topics from physical chemistry with relevance to gas treating are presented. Thereafter the absorption process is discussed in detail, column hardware is explain

  7. Formation of the theory and practice of physical education in the Soviet Ukraine through the prism of reforming pedagogy (1920 - 1930.

    Directory of Open Access Journals (Sweden)

    Lukjanchenko M.I.

    2010-12-01

    Full Text Available In the article has been analysed the development of physical education in the 20th of XX century in Ukraine. It is set that physical education in the period named above is selected as a general pedagogical problem; the main trends in theory and practice of physical education have been revealed. Basic progress of theory and practice of physical education trends are considered. It is certain that sports and mass work with young people and physical education had military direction, the purpose of which was education of man-patriot, able to protect Fatherland. Maintenance of science is exposed «pedology».

  8. Quantum field theory I: Basics in mathematics and physics. A bridge between mathematicians and physicists

    International Nuclear Information System (INIS)

    Zeidler, Eberhard

    2009-01-01

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics. (orig.)

  9. Quantum field theory I: Basics in mathematics and physics. A bridge between mathematicians and physicists

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Eberhard [Max-Planck-Institut fuer Mathematik in den Naturwissenschaften, Leipzig (Germany)

    2009-07-01

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics. (orig.)

  10. Causal and Epistemic Relevance in Appeals to Authority

    Directory of Open Access Journals (Sweden)

    Sebastiano Lommi

    2015-05-01

    Full Text Available Appeals to authority have a long tradition in the history of argumentation theory. During the Middle Age they were considered legitimate and sound arguments, but after Locke’s treatment in the Essay Concerning Human Understanding their legitimacy has come under question. Traditionally, arguments from authority were considered informal arguments, but since the important work of Charles Hamblin (Hamblin, 1970 many attempts to provide a form for them have been done. The most convincing of them is the presumptive form developed by Douglas Walton and John Woods (Woods, Walton, 1974 that aims at taking into account the relevant contextual aspects in assessing the provisional validity of an appeal to authority. The soundness of an appeal depends on its meeting the adequacy conditions set to scrutinize all the relevant questions. I want to claim that this approach is compatible with the analysis of arguments in terms of relevance advanced by David Hitchcock (Hitchcock, 1992. He claims that relevance is a triadic relation between two items and a context. The first item is relevant to the second one in a given context. Different types of relevance relation exist, namely causal relevance and epistemic relevance. “Something is [causally] relevant to an outcome in a given situation if it helps to cause that outcome in the situation” (Hitchcock, 1992, p. 253, whereas it is epistemically relevant when it helps to achieve an epistemic goal in a given situation. I claim that we can adapt this conception to Walton and Krabbe’s theory of dialogue type (Walton, Krabbe, 1995, seeing the items of a relevance relation as the argument and its consequence and the context as the type of dialogue in which these arguments are advanced. According to this perspective, an argument from authority that meets the adequacy conditions has to be considered legitimate because it is an epistemically relevant relation. Therefore, my conclusion is that an analysis of appeals to

  11. Proceedings of the 19th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2013-01-01

    The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  12. Selecting relevant and feasible measurement instruments for the revised Dutch clinical practice guideline for physical therapy in patients after stroke

    NARCIS (Netherlands)

    Otterman, Nicoline; Veerbeek, Janne; Schiemanck, Sven; van der Wees, Philip; Nollet, Frans; Kwakkel, Gert

    2017-01-01

    Purpose: To select relevant and feasible instruments for the revision of the Dutch clinical practice guideline for physical therapy in patients with stroke. Methods: In this implementation study a comprehensive proposal for ICF categories and matching instruments was developed, based on reliability

  13. Selecting relevant and feasible measurement instruments for the revised Dutch clinical practice guideline for physical therapy in patients after stroke

    NARCIS (Netherlands)

    Otterman, N.; Veerbeek, J.; Schiemanck, S.; Wees, P.J. van der; Nollet, F.; Kwakkel, G.

    2017-01-01

    PURPOSE: To select relevant and feasible instruments for the revision of the Dutch clinical practice guideline for physical therapy in patients with stroke. METHODS: In this implementation study a comprehensive proposal for ICF categories and matching instruments was developed, based on reliability

  14. Hispanic Culture and Relational Cultural Theory

    Science.gov (United States)

    Ruiz, Elizabeth

    2005-01-01

    Traditional personality theories do not consider the impact of culture on personality development. Yet, to provide culturally relevant services to the increasing Hispanic population in the U.S., more culturally relevant theories must be identified. This paper presents Relational Cultural Theory (RCT) as an alternative model to understanding…

  15. Evidence, theory and context: using intervention mapping to develop a worksite physical activity intervention.

    Science.gov (United States)

    McEachan, Rosemary R C; Lawton, Rebecca J; Jackson, Cath; Conner, Mark; Lunt, Jennifer

    2008-09-22

    The workplace is an ideal setting for health promotion. Helping employees to be more physically active can not only improve their physical and mental health, but can also have economic benefits such as reduced sickness absence. The current paper describes the development of a three month theory-based intervention that aims to increase levels of moderate intensity physical activity amongst employees in sedentary occupations. The intervention was developed using an intervention mapping protocol. The intervention was also informed by previous literature, qualitative focus groups, an expert steering group, and feedback from key contacts within a range of organisations. The intervention was designed to target awareness (e.g. provision of information), motivation (e.g. goal setting, social support) and environment (e.g. management support) and to address behavioural (e.g. increasing moderate physical activity in work) and interpersonal outcomes (e.g. encourage colleagues to be more physically active). The intervention can be implemented by local facilitators without the requirement for a large investment of resources. A facilitator manual was developed which listed step by step instructions on how to implement each component along with a suggested timetable. Although time consuming, intervention mapping was found to be a useful tool for developing a theory based intervention. The length of this process has implications for the way in which funding bodies allow for the development of interventions as part of their funding policy. The intervention will be evaluated in a cluster randomised trial involving 1350 employees from 5 different organisations, results available September 2009.

  16. Evidence, Theory and Context: Using intervention mapping to develop a worksite physical activity intervention

    Directory of Open Access Journals (Sweden)

    Conner Mark

    2008-09-01

    Full Text Available Abstract Background The workplace is an ideal setting for health promotion. Helping employees to be more physically active can not only improve their physical and mental health, but can also have economic benefits such as reduced sickness absence. The current paper describes the development of a three month theory-based intervention that aims to increase levels of moderate intensity physical activity amongst employees in sedentary occupations. Methods The intervention was developed using an intervention mapping protocol. The intervention was also informed by previous literature, qualitative focus groups, an expert steering group, and feedback from key contacts within a range of organisations. Results The intervention was designed to target awareness (e.g. provision of information, motivation (e.g. goal setting, social support and environment (e.g. management support and to address behavioural (e.g. increasing moderate physical activity in work and interpersonal outcomes (e.g. encourage colleagues to be more physically active. The intervention can be implemented by local facilitators without the requirement for a large investment of resources. A facilitator manual was developed which listed step by step instructions on how to implement each component along with a suggested timetable. Conclusion Although time consuming, intervention mapping was found to be a useful tool for developing a theory based intervention. The length of this process has implications for the way in which funding bodies allow for the development of interventions as part of their funding policy. The intervention will be evaluated in a cluster randomised trial involving 1350 employees from 5 different organisations, results available September 2009.

  17. Psychosocial correlates to high school girls' leisure-time physical activity: a test of the theory of planned behavior.

    Science.gov (United States)

    Kerner, Matthew S; Kurrant, Anthony B

    2003-12-01

    This study was designed to test the efficacy of the theory of planned behavior in predicting intention to engage in leisure-time physical activity and leisure-time physical activity behavior of high school girls. Rating scales were used for assessing attitude to leisure-time physical activity, subjective norm, perceived control, and intention to engage in leisure-time physical activity among 129 ninth through twelfth graders. Leisure-time physical activity was obtained from 3-wk. diaries. The first hierarchical multiple regression indicated that perceived control added (R2 change = .033) to the contributions of attitude to leisure-time physical activity and subjective norm in accounting for 50.7% of the total variance of intention to engage in leisure-time physical activity. The second regression analysis indicated that almost 10% of the variance of leisure-time physical activity was explicated by intention to engage in leisure-time physical activity and perceived control, with perceived control contributing 6.4%. From both academic and theoretical standpoints, our findings support the theory of planned behavior, although quantitatively the variance of leisure-time physical activity was not well-accounted for. In addition, considering the small percentage increase in variance explained by the addition of perceived control explaining variance of intention to engage in leisure-time physical activity, the pragmatism of implementing the measure of perceived control is questionable for this population.

  18. Chandrasekhar limit: an elementary approach based on classical physics and quantum theory

    Science.gov (United States)

    Pinochet, Jorge; Van Sint Jan, Michael

    2016-05-01

    In a brief article published in 1931, Subrahmanyan Chandrasekhar made public an important astronomical discovery. In his article, the then young Indian astrophysicist introduced what is now known as the Chandrasekhar limit. This limit establishes the maximum mass of a stellar remnant beyond which the repulsion force between electrons due to the exclusion principle can no longer stop the gravitational collapse. In the present article, we create an elemental approximation to the Chandrasekhar limit, accessible to non-graduate science and engineering students. The article focuses especially on clarifying the origins of Chandrasekhar’s discovery and the underlying physical concepts. Throughout the article, only basic algebra is used as well as some general notions of classical physics and quantum theory.

  19. A Grounded Theory Approach to Physical Activity and Advanced Cancer

    Directory of Open Access Journals (Sweden)

    Sonya S. Lowe

    2015-11-01

    Full Text Available Background: Physical activity has demonstrated benefits in cancer-related fatigue and physical functioning in early-stage cancer patients, however the role of physical activity at the end stage of cancer has not been established. To challenge positivist–empiricist assumptions, I am seeking to develop a new theoretical framework that is grounded in the advanced cancer patient’s experience of activity. Aim: To gain an in-depth understanding of the experience of activity and quality of life in advanced cancer patients. Objectives: (1 To explore the meaning of activity for advanced cancer patients in the context of their day-to-day life, (2 to elicit advanced cancer patients’ perceptions of activity with respect to their quality of life, and (3 to elicit advanced cancer patients’ views of barriers and facilitators to activity in the context of their day-to-day life. Study Design: A two-phase, cross-sectional, qualitative study will be conducted through the postpositivist lens of subtle realism and informed by the principles of grounded theory methods. Study Methods: Advanced cancer patients will be recruited through the outpatient department of a tertiary cancer center. For Phase one, participants will wear an activPAL™ activity monitor and fill out a daily record sheet for seven days duration. For Phase two, the activity monitor output and daily record sheets will be used as qualitative probes for face-to-face, semistructured interviews. Concurrent coding, constant comparative analysis, and theoretical sampling will continue with the aim of achieving as close as possible to theoretical saturation. Ethics and Discussion: Ethical and scientific approval will be obtained by all local institutional review boards prior to study commencement. The findings will generate new mid-level theory about the experience of activity and quality of life in advanced cancer patients and aid in the development of a new theoretical framework for designing

  20. Properties of the eleven dimensional supermembrane theory

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1987-09-01

    We study in detail the structure of the Lorentz covariant, spacetime supersymmetric 11-dimensional supermembrane theory. We show that for a flat spacetime background, the spacetime supersymmetry becomes an N=8 world volume (rigid) supersymmetry in a ''physical'' gauge; we also present the field equations and transformation rules in a ''lightcone'' gauge. We semiclassically quantize the closed toroidal supermembrane on a spacetime (Minkowski) 4 x (flat 7-torus), and review some mathematical results that are relevant for path integral quantization. (author). 52 refs, 1 fig

  1. Properties of the eleven-dimensional supermembrane theory

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    We study in detail the structure of the Lorentz covariant, spacetime supersymmetric 11-dimensional supermembrane theory. We show that for a flate spacetime background, the spacetime supersymmetry becomes an N = 8 world volume (rigid) supersymmetry in a ''physical'' gauge; we also present the field equations and transformation rules in a ''lightcone'' gauge. We semiclassically quantize the closed torodial supermembrane on a spactime (Minkowski) 4 x (flat 7-torus), and review some mathematical results that are relevant for path integral quantization. copyright 1988 Academic Press, Inc

  2. On physical states in 2d (topological) gravity

    International Nuclear Information System (INIS)

    Bouwknegt, P.; McCarthy, J.; Pilch, K.

    1993-01-01

    We review the BRST computation of physical states in various 2d gravity theories. First we discuss the cohomology relevant for 2d gravity coupled to c ≤ 1 conformal matter. We then use these results to compute the cohomology of a c=26 βγ-system, i.e. restricted 2d topological gravity. We also comment on the cohomology for the complete 2d topological gravity. (author). 39 refs

  3. Flux-limited diffusion coefficients in reactor physics applications

    International Nuclear Information System (INIS)

    Pounders, J.; Rahnema, F.; Szilard, R.

    2007-01-01

    Flux-limited diffusion theory has been successfully applied to problems in radiative transfer and radiation hydrodynamics, but its relevance to reactor physics has not yet been explored. The current investigation compares the performance of a flux-limited diffusion coefficient against the traditionally defined transport cross section. A one-dimensional BWR benchmark problem is examined at both the assembly and full-core level with varying degrees of heterogeneity. (authors)

  4. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.

    Science.gov (United States)

    Capra, Fritjof

    1979-01-01

    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  5. A brief history of string theory. From dual models to M-theory

    International Nuclear Information System (INIS)

    Rickles, Dean

    2014-01-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  6. Exploring possible selves in a first-year physics foundation class: Engaging students by establishing relevance

    Directory of Open Access Journals (Sweden)

    Dawn Bennett

    2016-03-01

    Full Text Available Students often complain that they cannot see the relevance of what they are being taught in foundation physics classes. While revising and adjusting the curriculum and teaching are important, this study suggests it might also be useful to help students view their learning in relation to their future career aspirations. This paper reports on a study conducted with first-year students enrolled in a compulsory foundation physics unit with a history of low pass rates. Working within a “possible selves” framework, activities were designed to help students position their learning in relation to possible future lives and careers. Two cohorts of students (N=93 engaged in an intensive workshop comprising multiple activities relating to self and career. Self-reflection worksheets were analyzed using content analysis. The results indicate that students experience immediate benefits from these activities through self-reflection on the current self, future possible professional selves, and the role of current studies in narrowing the gap between the two.

  7. Theory-based physical activity beliefs by race and activity levels among older adults.

    Science.gov (United States)

    Kosma, Maria; Cardinal, Bradley J

    2016-01-01

    Given the benefits of physical activity and the high proportion of inactivity among older adults, the purpose was to elicit theory-based behavioral, normative, and control physical activity beliefs among 140 educationally and economically diverse older adults and compare their beliefs by race (Blacks vs. Whites) and physical activity levels (inactive/underactive vs. highly active individuals). This was an elicitation study that took place in eight, mostly rural community settings in a Southeastern US state, such as Council of Aging Offices, retirement centers, and churches. Participants' behavioral, normative, and control beliefs were elicited via in person interviews. A valid and reliable questionnaire was also used to assess their physical activity levels. According to the content analysis, inactive/underactive participants reported fewer physical activity advantages than highly active participants. Common physical activity advantages between the two groups were overall health, emotional functioning, and physical functioning. Similar physical activity advantages were reported among Blacks and Whites with overall health being the most important advantage. The most common physical activity disadvantages and barriers for all four groups were falls, injuries, pain, and health issues. Inactive/underactive individuals and Blacks tended to report more disadvantages and barriers than their peers. Common physical activity supporters were family members, friends and peers, and health-care professionals. In their physical activity motivational programs, health promoters should reinforce physical activity benefits, social support, access to activity programs, and safety when intervening among older adults.

  8. The standard theory of particle physics Essays to celebrate CERN’s 60th anniversary

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.

  9. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  10. Introduction to the special issue Hermann Weyl and the philosophy of the 'New Physics'

    Science.gov (United States)

    De Bianchi, Silvia; Catren, Gabriel

    2018-02-01

    This Special Issue Hermann Weyl and the Philosophy of the 'New Physics' has two main objectives: first, to shed fresh light on the relevance of Weyl's work for modern physics and, second, to evaluate the importance of Weyl's work and ideas for contemporary philosophy of physics. Regarding the first objective, this Special Issue emphasizes aspects of Weyl's work (e.g. his work on spinors in n dimensions) whose importance has recently been emerging in research fields across both mathematical and experimental physics, as well as in the history and philosophy of physics. Regarding the second objective, this Special Issue addresses the relevance of Weyl's ideas regarding important open problems in the philosophy of physics, such as the problem of characterizing scientific objectivity and the problem of providing a satisfactory interpretation of fundamental symmetries in gauge theories and quantum mechanics. In this Introduction, we sketch the state of the art in Weyl studies and we summarize the content of the contributions to the present volume.

  11. The Relevance of Social Theory in the Practice of Environmental Management.

    Science.gov (United States)

    Meissner, Richard

    2016-10-01

    In this paper I argue that the dominance of certain paradigms and theories on policies can have an influence on the value added by impact assessments. A link exists between paradigms and theories and policies and consequently the practices humans develop to tackle real world problems. I also argue that different types of thinking (contained in paradigms and theories) need to be integrated, at least at the scientific level, to enhance our understanding of social phenomena. This in turn can have a positive influence on policy processes that follow impact assessment recommendations. I am not arguing for the adoption of theoretical positions by practitioners, Instead, I contend that if impact assessments are informed by a variety of paradigms and theories, the policy practitioner might have a better understanding of the issue and the moral choices he or she needs to make. I will highlight the connection between theory and policies with practical examples from the social impact assessment of the De Hoop Dam, which was constructed on the Steelpoort River. I also argue for an integration of different theories to give a deeper understanding of real world problems.

  12. Physics of the human mind

    CERN Document Server

    Lubashevsky, Ihor

    2017-01-01

    This book tackles the challenging question which mathematical formalisms and possibly new physical notions should be developed for quantitatively describing human cognition and behavior, in addition to the ones already developed in the physical and cognitive sciences. Indeed, physics is widely used in modeling social systems, where, in particular, new branches of science such as sociophysics and econophysics have arisen. However, many if not most characteristic features of humans like willingness, emotions, memory, future prediction, and moral norms, to name but a few, are not yet properly reflected in the paradigms of physical thought and theory. The choice of a relevant formalism for modeling mental phenomena requires the comprehension of the general philosophical questions related to the mind-body problem. Plausible answers to these questions are investigated and reviewed, notions and concepts to be used or to be taken into account are developed and some challenging questions are posed as open problems. Th...

  13. Axiomatic field theory and quantum electrodynamics: the massive case

    International Nuclear Information System (INIS)

    Steinmann, O.

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(μν) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(μ); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(μν) with the current Jsub(μ). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(μ) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely

  14. Nonlocal microscopic theory of quantum friction between parallel metallic slabs

    International Nuclear Information System (INIS)

    Despoja, Vito; Echenique, Pedro M.; Sunjic, Marijan

    2011-01-01

    We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.

  15. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  16. Field theories in condensed matter physics

    Science.gov (United States)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  17. The physics of atoms and quanta introduction to experiments and theory

    CERN Document Server

    Haken, Hermann; Brewer, William D

    2005-01-01

    The Physics of Atoms and Quanta is a thorough introduction to experiments and theory in this field. Every classical and modern aspect is included and discussed in detail. The new edition is completely revised, new sections on atoms in strong electric fields and high magnetic fields complete the comprehensive coverage of all topics related to atoms and quanta. All new developments, such as new experiments on quantum entanglement, the quantum computer, quantum information, the Einstein-Podolsky-Rosen paradoxon, Bell's inequality, Schrödinger's cat, decoherence, Bose-Einstein-Condensation and the atom laser are discussed. Over 170 problems and their solutions help deepen the insight in this subject area and make this book a real study text. The second and more advanced book by the same authors entitled "Molecular Physics and Elements of Quantum Chemistry" is the completion of this unique textbook.

  18. Performance grading and motivational functioning and fear in physical education: A self-determination theory perspective

    NARCIS (Netherlands)

    Krijgsman, C.A.; Vansteenkiste, Maarten; van Tartwijk, J.W.F.; Maes, Jolien; Borghouts, Lars; Cardon, Greet; Mainhard, M.T.; Haerens, Leen

    2017-01-01

    Grounded in self-determination theory, the present study examines the explanatory role of students' perceived need satisfaction and need frustration in the relationship between performance grading (versus non-grading) and students' motivation and fear in a real-life educational physical education

  19. Theory Advances in BSM Physics

    CERN Document Server

    McCullough, Matthew

    2016-01-01

    Rather than attempting to summarise the full spectrum of recent advances in Beyond the Standard Model (BSM) theory, which are many, in this talk I will instead take the opportunity to focus on two frameworks related to the hierarchy problem currently receiving significant attention. They are the `Twin Higgs' and the `Relaxion'. I will summarise the basic underlying structure of these theories at a non-expert level and highlight some interesting phenomenological signatures or outstanding problems.

  20. The trouble with physics the rise of string theory, the fall of a science, and what comes next

    CERN Document Server

    Smolin, Lee

    2006-01-01

    In this groundbreaking book, the renowned theoretical physicist Lee Smolin argues that physics - the basis for all other sciences - has lost its way. For more than two centuries, our understanding of the laws of nature expanded rapidly. But today, despite our best efforts, we know nothing more about these laws than we knew in the 1970s. Why is physics suddenly in trouble? And what can we do about it? One of the major problems, according to Smolin, is string theory: an ambitious attempt to formulate a "theory of everything" that explains all the particles and forces of nature and how the univer

  1. Empirical and pragmatic adequacy of grounded theory: Advancing nurse empowerment theory for nurses' practice.

    Science.gov (United States)

    Udod, Sonia A; Racine, Louise

    2017-12-01

    To draw on the findings of a grounded theory study aimed at exploring how power is exercised in nurse-manager relationships in the hospital setting, this paper examines the empirical and pragmatic adequacy of grounded theory as a methodology to advance the concept of empowerment in the area of nursing leadership and management. The evidence on staff nurse empowerment has highlighted the magnitude of individual and organisational outcomes, but has not fully explicated the micro-level processes underlying how power is exercised, shared or created within the nurse-manager relationship. Although grounded theory is a widely adopted nursing research methodology, it remains less used in nursing leadership because of the dominance of quantitative approaches to research. Grounded theory methodology provides the empirical and pragmatic relevance to inform nursing practice and policy. Grounded theory is a relevant qualitative approach to use in leadership research as it provides a fine and detailed analysis of the process underlying complexity and bureaucracy. Discursive paper. A critical examination of the empirical and pragmatic relevance of grounded theory by (Corbin & Strauss, , ) as a method for analysing and solving problems in nurses' practice is provided. This paper provides evidence to support the empirical and pragmatic adequacy of grounded theory methodology. Although the application of the ontological, epistemological and methodological assumptions of grounded theory is challenging, this methodology is useful to address real-life problems in nursing practice by developing theoretical explanations of nurse empowerment, or lack thereof, in the workplace. Grounded theory represents a relevant methodology to inform nursing leadership research. Grounded theory is anchored in the reality of practice. The strength of grounded theory is to provide results that can be readily applied to clinical practice and policy as they arise from problems that affect practice and that

  2. Understanding of Accountancy Graduates on the Relevant Concepts Taught in the Subject Accounting Theory at HEI in Greater Florianópolis

    Directory of Open Access Journals (Sweden)

    Fabiana Frigo Souza

    2017-03-01

    Full Text Available This research aims to identify the understanding of the undergraduate students in Accountancy about the relevant concepts taught in the discipline Accounting Theory. To reach this goal, a questionnaire was sent to selected institutions or applied in person, obtaining a total of 65 respondents who had already studied Accounting Theory. The results of this research show that students perceive the concepts related to the discipline in a way more linked to standardization and that, for most respondents, the discipline Accounting Theory was considered of fundamental importance and should not be eliminated. In addition, it cannot be affirmed that there is a relationship between the area and the time of action of the respondents and their perceptions regarding the concepts of the discipline. It was also observed that there is little discussion about some subjects, in which some students are totally unaware, like in the case of Agency Theory and Earnings Management, which may indicate a gap in the teaching of the discipline. For future research, the analysis of distance learning is suggested, as well as research that seeks to analyze the existence of this possible gap observed.

  3. Promoting participation in physical activity using framed messages: an application of prospect theory.

    Science.gov (United States)

    Latimer, Amy E; Rench, Tara A; Rivers, Susan E; Katulak, Nicole A; Materese, Stephanie A; Cadmus, Lisa; Hicks, Althea; Keany Hodorowski, Julie; Salovey, Peter

    2008-11-01

    Messages designed to motivate participation in physical activity usually emphasize the benefits of physical activity (gain-framed) as well as the costs of inactivity (loss-framed). The framing implications of prospect theory suggest that the effectiveness of these messages could be enhanced by providing gain-framed information only. We compared the effectiveness of gain-, loss-, and mixed-framed messages for promoting moderate to vigorous physical activity. Randomized trial. Sedentary, healthy callers to the US National Cancer Institute's Cancer Information Service (N=322) received gain-, loss-, or mixed-framed messages on three occasions (baseline, Week 1, and Week 5). Social cognitive variables and self-reported physical activity were assessed at baseline, Week 2, and Week 9. Separate regression analyses were conducted to examine message effects at each assessment point. At Week 2, gain- and mixed-framed messages resulted in stronger intentions and greater self-efficacy than loss-framed messages. At Week 9, gain-framed messages resulted in greater physical activity participation than loss- or mixed-framed messages. Social cognitive variables at Week 2 did not mediate the Week 9 framing effects on physical activity participation. Using gain-framed messages exclusively may be a means of increasing the efficacy of physical activity materials.

  4. Social Physique Anxiety and Intention to Be Physically Active: A Self-Determination Theory Approach

    Science.gov (United States)

    Sicilia, Álvaro; Sáenz-Alvarez, Piedad; González-Cutre, David; Ferriz, Roberto

    2016-01-01

    Purpose: Based on self-determination theory, the purpose of this study was to analyze the relationship between social physique anxiety and intention to be physically active, while taking into account the mediating effects of the basic psychological needs and behavioral regulations in exercise. Method: Having obtained parents' prior consent, 390…

  5. An application of vector coherent state theory to the SO95) proton-neutron quasi-spin algebra

    International Nuclear Information System (INIS)

    Berej, W.

    2002-01-01

    Vector coherent state theory (VCS), developed for computing Lie group and Lie algebra representations and coupling coefficients, has been used for many groups of interest an actual physics applications. It is shown that VCS construction of a rotor type can be performed for the SO(5) ∼ Sp(4) quasi-spin group where the relevant physical subgroup SU(2) x U(1) is generalized by the isospin operators and the number of particle operators [ru

  6. Quantum non-locality and relativity metaphysical intimations of modern physics

    CERN Document Server

    Maudlin, Tim

    2011-01-01

    The third edition of Quantum Non-Locality and Relativity has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. A new edition of the premier philosophical study of Bell's Theorem and its implication for the relativistic account of space and timeDiscusses Roderich Tumiulka's explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell's inequality. Discusses the "Free Will Theorem" of John Conway and Simon KochenIntroduces philosophers to the relevant physics and demonstra

  7. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  8. Physics, philosophy, and the nature of reality.

    Science.gov (United States)

    Maudlin, Tim

    2015-12-01

    Both science and philosophy have been characterized as seeking to understand the nature of reality. They are sometimes even pitted against each other, suggesting that the success of science undermines the relevance of philosophy. But attending to the sort of understanding or explanation being sought offers a different picture: contemporary physics as practiced sometimes fails to provide a clear physical account of the world. This lies at the root of the dissatisfaction with standard quantum theory expressed by Einstein, Schrödinger, and John Bell. As an example, close consideration of Schrödinger's famous cat example suggests that physicists often have missed his point. What a philosophical disposition can contribute is not alternative physics, but rather the sort of careful attention to argument needed to extract a physical picture from a mathematical formalism. © 2015 New York Academy of Sciences.

  9. Early germs of quantum field theory in the history of quantum physics

    International Nuclear Information System (INIS)

    Hund, F.

    1983-01-01

    The main concepts of quantum electrodynamics: duality of fields and particles, field quanta, antiparticles, creation and annihilation of particles, reactions based on a coupling, these concepts are common for all quantum field theory. Roots and germs of them we find already in the early history of quantum physics. Up to creation and physical understanding of quantum mechanics (1927) we can distinguish three steps. The first, ranging from black body radiation to specific heat (1900-1913) was essentially low temperature physics; h became the natural unity for counting cases in statistics. The second step was search for atomic mechanics (19131925): it was guided by a special law of atomic spectra, the combination principle ν=F (n,1...) - F (n',1'...); The third step (1923-1927), De Broglie's transfer of duality from light to matter, Schrodinger's equation, the concept of probability amplitudes, led to a general mathematical formalism and its physical understanding. During the first of these historical steps duality of light was detected and a sort of quantization of the light field took place; during the second step this duality remained in the background; during the third step duality of light and matter were seen as the center of quantum physics

  10. Promoting physical activity: development and testing of self-determination theory-based interventions

    Science.gov (United States)

    2012-01-01

    A growing number of studies have pulled from Deci and Ryan's Self-Determination Theory to design interventions targeting health behavior change. More recently, researchers have begun using SDT to promote the adoption and maintenance of an active lifestyle. In this review, we aim to highlight how researchers and practitioners can draw from the SDT framework to develop, implement, and evaluate intervention efforts centered on increasing physical activity levels in different contexts and different populations. In the present paper, the rationale for using SDT to foster physical activity engagement is briefly reviewed before particular attention is given to three recent randomized controlled trials, the Canadian Physical Activity Counseling (PAC) Trial, the Empower trial from the UK, and the Portuguese PESO (Promotion of Health and Exercise in Obesity) trial, each of which focused on promoting physical activity behavior. The SDT-based intervention components, procedures, and participants are highlighted, and the key findings that have emanated from these three trials are presented. Lastly, we outline some of the limitations of the work conducted to date in this area and we acknowledge the challenges that arise when attempting to design, deliver, and test SDT-grounded interventions in the context of physical activity promotion. PMID:22385751

  11. Robert Dicke and the naissance of experimental gravity physics, 1957-1967

    Science.gov (United States)

    Peebles, Phillip James Edwin

    2017-06-01

    The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of developments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of natural science. The role of contingency is illustrated by Robert Dicke's decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The review also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach's Principle and Dirac's Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity. I conclude by offering lessons from this history, some peculiar to the study of gravity physics during the naissance, some of more general relevance. The central lesson, which is familiar but not always well advertised, is that physical theories can be empirically established, sometimes with surprising results.

  12. The Problem of Probability: An Examination and Refutation of Hjørland’s Relevance Equation

    DEFF Research Database (Denmark)

    Nicolaisen, Jeppe

    2017-01-01

    Introduction. The paper presents a critical examination of Professor Birger Hjørland’s relevance equation: Something (A) is relevant to a task (T) if it increases the likelihood of accomplishing the goal (G), which is implied by T. Method. Two theories of probability logic (the logical theory...... and the intersubjective theory) are briefly reviewed and then applied to Hjørland’s equation. Analysis. Focusing on how these theories warrant the probability assumption makes it possible to detect deficiencies in Hjørland’s equation, based as it is on probability logic. Results. Regardless of the kind of logic applied...... to warrant the probability assumption of Hjørland’s equation, the outcome of using it to determine the relevance of any A to any T is found to have quite bizarre consequences: Either nothing is relevant or everything is relevant. Conclusion. Contrary to Hjørland’s claim that his relevance equation applies...

  13. A brief history of string theory. From dual models to M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Rickles, Dean [Sydney Univ. (Australia). Unit for History and Philosophy of Science

    2014-04-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  14. The Viewpoints of Physics Teacher Candidates towards the Concepts in Special Theory of Relativity and Their Evaluation Designs

    Science.gov (United States)

    Turgut, Umit; Gurbuz, Fatih; Salar, Riza; Toman, Ufuk

    2013-01-01

    In this study, the viewpoints of physics teacher candidates at undergraduate level towards the concepts in special theory of relativity and the interpretations they made about these concepts were investigated. The viewpoints of the teacher candidates towards the concepts in the subject of special theory of relativity were revealed with six open…

  15. Cardiovascular risk profile: Cross-sectional analysis of motivational determinants, physical fitness and physical activity

    Directory of Open Access Journals (Sweden)

    Kiers Henri

    2010-10-01

    Full Text Available Abstract Background Cardiovascular risk factors are associated with physical fitness and, to a lesser extent, physical activity. Lifestyle interventions directed at enhancing physical fitness in order to decrease the risk of cardiovascular diseases should be extended. To enable the development of effective lifestyle interventions for people with cardiovascular risk factors, we investigated motivational, social-cognitive determinants derived from the Theory of Planned Behavior (TPB and other relevant social psychological theories, next to physical activity and physical fitness. Methods In the cross-sectional Utrecht Police Lifestyle Intervention Fitness and Training (UP-LIFT study, 1298 employees (aged 18 to 62 were asked to complete online questionnaires regarding social-cognitive variables and physical activity. Cardiovascular risk factors and physical fitness (peak VO2 were measured. Results For people with one or more cardiovascular risk factors (78.7% of the total population, social-cognitive variables accounted for 39% (p In addition to the prediction of intention to engage in physical activity and physical active behavior, we explored the impact of the intensity of physical activity. The intentsity of physical activity was only significantly related to physical active behavior (beta = .253, p 2 = .06, p 2 = .23, p For people with one or more cardiovascular risk factors, 39.9% had positive intentions to engage in physical activity and were also physically active, and 10.5% had a low intentions but were physically active. 37.7% had low intentions and were physically inactive, and about 11.9% had high intentions but were physically inactive. Conclusions This study contributes to our ability to optimize cardiovascular risk profiles by demonstrating an important association between physical fitness and social-cognitive variables. Physical fitness can be predicted by physical active behavior as well as by self-efficacy and the intensity of

  16. Classical field theory on electrodynamics, non-abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2018-01-01

    Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...

  17. Quantum field theories in two dimensions collected works of Alexei Zamolodchikov

    CERN Document Server

    Pugai, Yaroslav; Zamolodchikov, Alexander

    2012-01-01

    Volume 1 is a collection of reprinted works of Alexei Zamolodchikov who was a prominent theoretical physicist of his time. It contains his works on conformal field theories, 2D quantum gravity, and Liouville theory. These original contributions of Alexei Zamolodchikov have a profound effect on shaping the fast developing areas of theoretical physics. His ideas are expressed lucidly, such as the recursive relation for conformal blocks and the structure of conformal bootstrap in Liouville theory, including the boundary Liouville theory. These ideas are at the foundation of the subject and they are of great interest to a wide community of physicists and mathematicians working in diverse areas. This volume is a part of the 2-volume collection of remarkable research papers that can be used as an advanced textbook by graduate students specializing in string theory, conformal field theory and integrable models of QFT. It is also highly relevant to experts in these fields. Volume 2 includes Alexei Zamolodchikov's w...

  18. Rigorous Quantum Field Theory A Festschrift for Jacques Bros

    CERN Document Server

    Monvel, Anne Boutet; Iagolnitzer, Daniel; Moschella, Ugo

    2007-01-01

    Jacques Bros has greatly advanced our present understanding of rigorous quantum field theory through numerous fundamental contributions. This book arose from an international symposium held in honour of Jacques Bros on the occasion of his 70th birthday, at the Department of Theoretical Physics of the CEA in Saclay, France. The impact of the work of Jacques Bros is evident in several articles in this book. Quantum fields are regarded as genuine mathematical objects, whose various properties and relevant physical interpretations must be studied in a well-defined mathematical framework. The key topics in this volume include analytic structures of Quantum Field Theory (QFT), renormalization group methods, gauge QFT, stability properties and extension of the axiomatic framework, QFT on models of curved spacetimes, QFT on noncommutative Minkowski spacetime. Contributors: D. Bahns, M. Bertola, R. Brunetti, D. Buchholz, A. Connes, F. Corbetta, S. Doplicher, M. Dubois-Violette, M. Dütsch, H. Epstein, C.J. Fewster, K....

  19. Formal and physical equivalence in two cases in contemporary quantum physics

    Science.gov (United States)

    Fraser, Doreen

    2017-08-01

    The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation-a mathematical transformation that takes the time variable t to negative imaginary time-it-was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a "translation manual" between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in

  20. SEASONAL DIFFERENCES IN PHYSICAL ACTIVITY AND SEDENTARY PATTERNS: THE RELEVANCE OF THE PA CONTEXT

    Directory of Open Access Journals (Sweden)

    Pedro Silva

    2011-03-01

    Full Text Available The aim of this pilot study was to characterize seasonal variation in the moderate to vigorous physical activity (MVPA and sedentary behavior of Portuguese school youth, and understand the influence of activity choices and settings. The participants in this study were 24 students, aged 10-13 years. Accelerometers measured daily PA over 7 consecutive days, in different seasons May - June and January - February. In summer, boys accumulated more minutes in MVPA (928 minutes/week than girls (793 minutes/week. In winter the pattern was reversed with girls accumulating more activity than boys (736 minutes/week vs. 598 minutes/week. The repeated measures ANOVA revealed significant effects for season (F = 5.98, p = 0.023 and in- school vs. out-of-school (F = 6.53, p = 0.018. Youth were more active in the summer and activity levels were higher after school than in school. Summer season provided relevant contexts for youth physical activity accumulation. Winter season may have been a significant barrier to boy's preferred PA context. Differences in choices of outdoor or indoor PA, after school, explained the gender differences in seasonal activity patterns