Hyperfine phononic frequency comb
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
Optical frequency combs [1-8] have resulted in significant advances in optical frequency metrology and found wide application to precise physical measurements [1-4, 9] and molecular fingerprinting [8]. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this letter, we report the first clear experimental evidence for a phononic frequency comb. In contrast to the Kerr nonlinearity [10] in optical frequency comb formation, the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an auto-parametrically excited sub-harmonic mode [16]. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define attributes to control the features [17-18] associated with comb formation in such a system. Further, the interplay between these nonlinear resonances and the well-known Duffing phenomenon [12-14] is also observed. The present...
Phononic crystals and elastodynamics: Some relevant points
N. Aravantinos-Zafiris
2014-12-01
Full Text Available In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Phononic crystals and elastodynamics: Some relevant points
Aravantinos-Zafiris, N. [Dept. of Materials Science, University of Patras, Patras 26504 (Greece); Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Lixouri, 28200 (Greece); Sigalas, M. M. [Dept. of Materials Science, University of Patras, Patras 26504 (Greece); Kafesaki, M. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1387, 70013 Heraklion, Crete (Greece); Dept. of Materials Science and Technology, Univ. of Crete (Greece); Economou, E. N. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1387, 70013 Heraklion, Crete (Greece); Dept. of Physics, Univ. of Crete (Greece)
2014-12-15
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Phononic Frequency Comb via Intrinsic Three-Wave Mixing
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2017-01-01
Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.
Homogenization of Two-Dimensional Phononic Crystals at Low Frequencies
NI Qing; CHENG Jian-Chun
2005-01-01
@@ Effective velocities of elastic waves propagating in two-dimensional phononic crystal at low frequencies are analysed theoretically, and exact analytical formulas for effective velocities of elastic waves are derived according to the method presented by Krokhin et al. [Phys. Rev. Lett. 91 (2003) 264302]. Numerical calculations for phononic crystals consisted of array of Pb cylinders embedded in epoxy show that the composites have distinct anisotropy at low filling fraction. The anisotropy increases as the filling fraction increases, while as the filling fraction closes to the limitation, the anisotropy decreases.
Microwave-frequency electromechanical resonators incorporating phononic crystals
Satzinger, K. J.; Peairs, G.; Vainsencher, A.; Cleland, A. N.
Piezoelectric micromechanical resonators at gigahertz frequencies have been operated in the quantum limit, with quantum control and measurement achieved using superconducting qubits. However, experiments to date have been limited by mechanical dissipation, due to a combination of internal and radiative losses. In this talk, we explore the incorporation of phononic crystals into resonator designs. In phononic crystals, periodic patterning manipulates the acoustic band structure of the material. Through appropriately chosen geometries, these periodic patterns lead to full acoustic bandgaps which can be used to greatly reduce radiation losses from resonant structures. Alternatively, the crystal geometry can be manipulated to allow isolated modes within the bandgap, giving fine control over the spatial structure of the resonator modes. In this talk, we will describe the design, fabrication, and measurement of resonators with phononic crystals.
Temperature dependence of the Raman-active phonon frequencies in indium sulfide
Gasanly, N. M.; Özkan, H.; Aydinli, A.; Yilmaz, İ.
1999-03-01
The temperature dependence of the Raman-active mode frequencies in indium sulfide was measured in the range from 10 to 300 K. The analysis of the temperature dependence of the A g intralayer optical modes show that Raman frequency shift results from the change of harmonic frequency with volume expansion and anharmonic coupling to phonons of other branches. The pure-temperature contribution (phonon-phonon coupling) is due to three- and four-phonon processes.
Phonon-magnon resonant processes with relevance to acoustic spin pumping
Deymier, P. A.
2014-12-23
The recently described phenomenon of resonant acoustic spin pumping is due to resonant coupling between an incident elastic wave and spin waves in a ferromagnetic medium. A classical one-dimensional discrete model of a ferromagnet with two forms of magnetoelastic coupling is treated to shed light on the conditions for resonance between phonons and magnons. Nonlinear phonon-magnon interactions in the case of a coupling restricted to diagonal terms in the components of the spin degrees of freedom are analyzed within the framework of the multiple timescale perturbation theory. In that case, one-phonon-two-magnon resonances are the dominant mechanism for pumping. The effect of coupling on the dispersion relations depends on the square of the amplitude of the phonon and magnon excitations. A straightforward analysis of a linear phonon-magnon interaction in the case of a magnetoelastic coupling restricted to off-diagonal terms in the components of the spins shows a one-phonon to one-magnon resonance as the pumping mechanism. The resonant dispersion relations are independent of the amplitude of the waves. In both cases, when an elastic wave with a fixed frequency is used to stimulate magnons, application of an external magnetic field can be used to approach resonant conditions. Both resonance conditions exhibit the same type of dependency on the strength of an applied magnetic field.
High-frequency homogenization of zero frequency stop band photonic and phononic crystals
Antonakakis, Tryfon; Guenneau, Sebastien
2013-01-01
We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...
Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy.
Cao, Yue; Chen, Shiyou; Li, Yadong; Gao, Yi; Yang, Deheng; Shen, Yuen Ron; Liu, Wei-Tao
2016-09-01
Surface active sites of crystals often govern their relevant surface chemistry, yet to monitor them in situ in real atmosphere remains a challenge. Using surface-specific sum-frequency spectroscopy, we identified the surface phonon mode associated with the active sites of undercoordinated titanium ions and conjoint oxygen vacancies, and used it to monitor them on anatase (TiO2) (101) under ambient conditions. In conjunction with theory, we determined related surface structure around the active sites and tracked the evolution of oxygen vacancies under ultraviolet irradiation. We further found that unlike in vacuum, the surface oxygen vacancies, which dominate the surface reactivity, are strongly regulated by ambient gas molecules, including methanol and water, as well as weakly associated species, such as nitrogen and hydrogen. The result revealed a rich interplay between prevailing ambient species and surface reactivity, which can be omnipresent in environmental and catalytic applications of titanium dioxides.
Transmission Frequency Properties of Elastic Waves along a Hetero-Phononic Crystal Waveguide
YAO Yuan-Wei; HOU Zhi-Lin; LIU You-Yan
2007-01-01
We investigate the propagation properties of hetero-phononic crystal waveguides by the improved eigen-mode matching theory, which can be used at same time to calculate both the transmission (reflection) coefficient and band structure. The numerical results show that the transmission frequency range is the same as the common range for two uniform waveguides composing the hetero-system, and the gap of any composite waveguide is also the gap of the hetero-phononic crystals waveguide.
Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene
Bhalla, Pankaj
2017-03-01
We study the effect of the electron-phonon interaction on the finite frequency dependent electronic thermal conductivity of two dimensional graphene. We calculate it for various acoustic phonons present in graphene and characterized by different dispersion relations using the memory function approach. It is found that the electronic thermal conductivity κe (T) in the zero frequency limit follows different power law for the longitudinal/transverse and the flexural acoustic phonons. For the longitudinal/transverse phonons, κe (T) ∼T-1 at the low temperature and saturates at the high temperature. These signatures qualitatively agree with the results calculated by solving the Boltzmann equation analytically and numerically. Similarly, for the flexural phonons, we find that κe (T) shows T 1 / 2 law at the low temperature and then saturates at the high temperature. In the finite frequency regime, we observe that the real part of the electronic thermal conductivity, Re [κe (ω , T) ] follows ω-2 behavior at the low frequency and becomes frequency independent at the high frequency.
Nonlinear control of high-frequency phonons in spider silk
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Ayrinhac, S; Devos, A; Le Louarn, A; Mante, P-A; Emery, P
2010-10-15
We show that the propagation of coherent acoustic phonons generated by femtosecond optical excitation can be clearly resolved using a probe laser in the middle UV (MUV) range. The MUV probe is easily produced from a high-repetition-rate femtosecond laser and a homemade frequency tripler. We present various experimental results that demonstrate efficient and high frequency detection of acoustic phonons. Thus, we show that the MUV range offers a unique way to reach higher frequencies and probe smaller objects in ultrafast acoustics.
Investigation of the Phonon Frequency Shifts in ZnO Quantum Dots
Alim, Khan A.
2005-03-01
Nanostructures made of ZnO have recently attracted attention due to their proposed applications in low-voltage and short-wavelength electro-optical devices. However, the origin of the observed phonon frequency shifts in such nanostructures is not always understood. We carried out both resonant and non-resonant Raman measurements for 20 nm-diameter ZnO quantum dots (QDs) and bulk ZnO reference samples [1]. A comparison with a recently developed theory [2], allowed us to clarify the origin of the phonon frequency shifts in ZnO QDs. It was found that the phonon confinement results in phonon frequency shifts of only few cm-1. At the same time, the UV laser heating of the QD ensemble was found to induce a large red shift of phonon frequencies for up to 14 cm-1. The authors acknowledge the support of MARCO and its Functional Engineered Nano Architectonics (FENA) Focus Center. [1] K.A. Alim, V.A. Fonoberov, and A.A. Balandin, Appl. Phys. Lett., in review (2004). [2] V.A. Fonoberov and A.A. Balandin, Phys. Stat. Solidi C 1, 2650 (2004); cond-mat/0405681; cond-mat/0411742.
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
Experimental evidence of high-frequency complete elastic bandgap in pillar-based phononic slabs
Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali A.; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Khelif, Abdelkrim [Institut FEMTO-ST, Université de Franche-Comté, CNRS, 32 Avenue de l' Observatoire, 25044 Besançon Cedex (France)
2014-12-08
We present strong experimental evidence for the existence of a complete phononic bandgap, for Lamb waves, in the high frequency regime (i.e., 800 MHz) for a pillar-based phononic crystal (PnC) membrane with a triangular lattice of gold pillars on top. The membrane is composed of an aluminum nitride film stacked on thin molybdenum and silicon layers. Experimental characterization shows a large attenuation of at least 20 dB in the three major crystallographic directions of the PnC lattice in the frequency range of 760 MHz–820 MHz, which is in agreement with our finite element simulations of the PnC bandgap. The results of experiments are analyzed and the physics behind the attenuation in different spectral windows is explained methodically by assessing the type of Bloch modes and the in-plane symmetry of the displacement profile.
High-speed phonon imaging using frequency-multiplexed kinetic inductance detectors
Swenson, L J; Benoit, A; Roesch, M; Yung, C ~S; Bideaud, A; Monfardini, A
2010-01-01
We present a measurement of phonon propagation in a silicon wafer utilizing an array of frequency-multiplexed superconducting resonators coupled to a single transmission line. The electronic readout permits fully synchronous array sampling with a per-resonator bandwidth of 1.2 MHz, allowing sub-$\\mu$s array imaging. This technological achievement is potentially vital in a variety of low-temperature applications, including single-photon counting, quantum-computing and dark-matter searches.
B Ojha; P Nayak; S N Behera
2000-02-01
The electron–phonon interaction in the periodic Anderson model (PAM) is considered. The PAM incorporates the effect of onsite Coulomb interaction () between -electrons. The inﬂuence of Coulomb correlation on the phonon response of the system is studied by evaluating the phonon spectral function for various parameters of the model. The numerical evaluation of the spectral function is carried out in the long wavelength limit at ﬁnite temperatures keeping only linear terms in . The observed behaviour is found to agree well with the general features obtained experimentally for some heavy fermion (HF) systems.
Terahertz-frequency magnon-phonon-polaritons in the strong coupling regime
Sivarajah, Prasahnt; Xiang, Maolin; Ren, Wei; Kamba, Stanislav; Cao, Shixun; Nelson, Keith A
2016-01-01
Strong coupling between light and matter occurs when the two interact strongly enough to form new hybrid modes called polaritons. Here we report on the strong coupling of both the electric and magnetic degrees of freedom to an ultrafast terahertz (THz) frequency electromagnetic wave. In our system, optical phonons in a slab of ferroelectric lithium niobate (LiNbO$_3$) are strongly coupled to a THz electric field to form phonon-polaritons, which are simultaneously strongly coupled to magnons in an adjacent slab of canted antiferromagnetic erbium orthoferrite (ErFeO$_3$) via the THz magnetic field. The strong coupling leads to the formation of new magnon-phonon-polariton modes, which we experimentally observe in the wavevector-frequency dispersion curve as an avoided crossing and in the time-domain as a normal-mode beating. Our simple yet versatile on-chip waveguide platform provides a promising avenue by which to explore both ultrafast THz spintronics applications and the quantum nature of the interaction.
Dynamical control of electron-phonon interactions with high-frequency light
Dutreix, C.; Katsnelson, M. I.
2017-01-01
This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.
Kumar, Sunil; Kamaraju, N; Karthikeyan, B; Tondusson, M; Freysz, E; Sood, A K
2010-07-01
Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly(vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles.
Thermostimulated THz Radiation Emission of GaAs at Surface Plasmon-Phonon Polariton Frequencies
Edmundas ŠIRMULIS
2014-06-01
Full Text Available The THz radiation reflection, absorption and emission spectra of conductive n-GaAs/air surface are considered. The influence of thermostimulated surface plasmon-phonon (SPP polariton oscillations on THz radiation reflection, absorption and emission of high conductivity GaAs polished plates with electron density n = 7∙1017 cm–3 and 4∙1018 cm–3 and thickness of 350 mm is studied experimentally. The frequencies of thermostimulated transverse and longitudinal optical phonons and SPP oscillations, which characterize a heated lattice state, were determined. It is found that the heated highly doped interface layer (GaAs/air emits the THz radiation at selected frequencies of SPP oscillations in the (7 – 8 THz and (10 – 15 THz ranges. It is shown that thermal heating of the GaAs/air interface enhances the absorption of the incident THz radiation. The huge decrease of the incident radiation reflectivity at the SPP frequencies with an increase of GaAs temperature is observed experimentally. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6318
Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Xin, Hang
2016-10-01
Using FEM, we theoretically study the vibration properties of radial phononic crystal (RPC) with annular soft material. The band structures, transmission spectra, and displacement fields of eigenmode are given to estimate the starting and cut-off frequency of band gaps. Numerical calculation results show that RPC with annular soft material can yield low-frequency band gaps below 350 Hz. Annular soft material decreases equivalent stiffness of the whole structure effectively, and makes corresponding band gaps move to the lower frequency range. Physical mechanism behind band gaps is the coupling effect between long or traveling wave in plate matrix and the vibrations of corrugations. By changing geometrical dimensions of plate thickness e, the length of silicone rubber h2, and the corrugation width b, we can control the location and width of the first band gap. These research conclusions of RPC structure with annular soft material can potentially be applied to optimize band gaps, generate filters, and design acoustic devices.
El-Kady, Ihab F.; Olsson, Roy H.
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Phononic High Harmonic Generation
Ganesan, Adarsh; Seshia, Ashwin A
2016-01-01
This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subsequently, the down-conversion of second harmonic phonons into first harmonic phonons and conversion of first and second harmonic phonons into third harmonic phonons occur. On the similar lines, an eventual conversion of third harmonic phonons to high orders is also observed to commence. This surprising physical pathway for phononic low-order to high-order harmonic conversion may find general relevance to other physical systems.
Leman, Steven W
2012-09-01
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Leman, Steven W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2012-09-15
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Zhao, J.; Boyko, O. [UPMC Univ Paris 06, UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris (France); Bonello, B., E-mail: bernard.bonello@insp.jussieu.fr [CNRS, UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris (France)
2014-12-15
This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.
J. Zhao
2014-12-01
Full Text Available This work deals with an analytical and numerical study of the focusing of the lowest order anti-symmetric Lamb wave in gradient index phononic crystals. Computing the ray trajectories of the elastic beam allowed us to analyze the lateral dimensions and shape of the focus, either in the inner or behind the phononic crystal-based acoustic lenses, for frequencies within a broad range in the first band. We analyzed and discussed the focusing behaviors inside the acoustic lenses where the focalization at sub-wavelength scale was achieved. The focalization behind the gradient index phononic crystal is shown to be efficient as well: we report on FMHM = 0.63λ at 11MHz.
Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Yu Dian-Long
2006-01-01
The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sanchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure, and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.
Gerecht, Eyal
NbN HEB mixers represent a promising approach for achieving receiver noise temperatures of a few times the quantum noise limit at frequencies above 1 THz. NbN HEB devices have been shown to have sufficient bandwidth for applications in astronomy, remote sensing, and plasma diagnostics in the FIR range. The NbN HEB is a phonon cooled bolometer in which the energy is transfered from the hot electrons to the substrate via inelastic collisions with phonons. The development of an NbN HEB mixer contained two steps: (1) implementing mixing in a comparatively large 'direct-coupled' prototype device which required LO power of a few milliwatts, and (2) optimization of the first step by the development of an 'antenna-coupled' (quasi-optically coupled) device with an LO power level of less than one μ W. The LO power was coupled to the antenna via an extended hemispherical lens (1.3 mm in diameter). The design, fabrication, and measurement stages were performed by a collaborative effort between a Russian team from the Department of Physics at Moscow State Pedagogical University in Moscow, the Submillimeter Technology Laboratory at UMass/Lowell and the Department of Electrical and Computer Engineering at UMass/Amherst. Mixing at 2.5 THz was demonstrated for the first time using the direct-coupled device achieving an intrinsic conversion loss of 23 dB. Sufficient level of LO power coupling at four different frequencies was demonstrated with the antenna-coupled device. The antenna/lens configuration has performed as well as expected insuring coupling to LO power of less than one μW. A 3 dB conversion gain was demonstrated with the antenna-coupled device using a laser LO at 1.56 THz with an IF frequency of 500 KHz. A second laser was utilized as the rf source. Noise temperature for the NbN HEB mixer receiver of 5800 K has been demonstrated over the 1.25-1.75 GHz IF band. The mixer temperature was 2500 K and the total conversion loss was 27 dB. Further optimization of the receiver
Frequency degeneracy of acoustic waves in two-dimensional phononic crystals
Darinskii, A N [Institute of Crystallography RAS, Leninskiy pr. 59, Moscow, 119333 (Russian Federation); Le Clezio, E [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France); Feuillard, G [Universite Francois Rabelais de Tours, ENI Val de Loire, LUSSI, FRE CNRS 2448, rue de la Chocolaterie, BP3410, 41034 Blois (France)
2007-12-15
Degeneracies of acoustic wave spectra in 2D phononic crystals (PC) and PC slabs are studied. A PC structure is constituted of parallel steel rods immersed into water and forming the quadratic lattice. Given the projection k{sub z} of the wave vector on the direction of rods, the bulk wave spectrum of the infinite PC is a set of frequency surfaces f{sub i}(k{sub x}, k{sub y}), i = 1,2,..., where k{sub x,y} are the components of the wave vector in the plane perpendicular to the rods. An investigation is performed of the shape of frequency surfaces in the vicinity of points (k{sub dx}, k{sub dy}), where these surfaces fall into contact. In addition, the evolution of the degeneracy with changing rod radius and cross-section shape is examined. Degeneracy in the spectrum of leaky modes propagating along a single waveguide in a PC slab is also investigated.
Gorshkov, V. N.; Navadeh, N.; Fallah, A. S.
2017-09-01
Phononic metamaterials are synthesised materials in which locally resonant units are arranged in a particular geometry of a substratum lattice and connected in a predefined topology. This study investigates dispersion surfaces in two-dimensional anisotropic acoustic metamaterials involving mass-in-mass units connected by massless springs in K3 topology. The reasons behind the particular choice of this topology are explained. Two sets of solutions for the eigenvalue problem | {\\boldsymbol{D}}({ω }2,{\\boldsymbol{k}})| =0 are obtained and the existence of absolutely different mechanisms of gap formation between acoustic and optical surface frequencies is shown as a bright display of quantum effects like strong coupling, energy splitting, and level crossings in classical mechanical systems. It has been concluded that a single dimensionless parameter i.e. relative mass controls the order of formation of gaps between different frequency surfaces. If the internal mass of the locally resonant mass-in-mass unit, m, increases relative to its external mass, M, then the coupling between the internal and external vibrations in the whole system rises sharply, and a threshold {μ }* is reached so that for m/M> {μ }* the optical vibrations break the continuous spectrum of ‘acoustic phonons’ creating the gap between them for any value of other system parameters. The methods to control gap parameters and polarisation properties of the optical vibrations created over these gaps were investigated. Dependencies of morphology and width of gaps for several anisotropic cases have been expounded and the physical meaning of singularity at the point of tangential contact between two adjacent frequency surfaces has been provided. Repulsion between different frequency band curves, as planar projections of surfaces, has been explained. The limiting case of isotropy has been discussed and it has been shown that, in the isotropic case, the lower gap always forms, irrespective of the value
Thickness-dependent coherent phonon frequency in ultrathin FeSe/SrTiO_{3} films
Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, Jonathan A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, Dominik [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kemper, Alexander F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, James J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Schmitt, Felix T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Li, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Moore, Rob G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Kirchmann, Patrick S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Zhi -Xun [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
2015-06-01
Ultrathin FeSe films grown on SrTiO_{3} substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO_{3} films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump–probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A_{1g} phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.
1990-01-01
An atomic lattice in its ground state is excited by the rapid displacement and release of an atomic constituent. The time dependence of the energy transfer to other constituents is studied by using a phonon dispersion relation that is linear in frequency and propagation vector components.
Manipulation of Phonons with Phononic Crystals
Leseman, Zayd Chad [Univ. of New Mexico, Albuquerque, NM (United States)
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
Magnetic influence on frequency of soft-phonon mode in incipient ferroelectric EuTiO3
Jiang, Qing; Wu, Hua
2003-02-01
The dielectric constant of the incipient ferroelectric EuTiO3 exhibits a sharp decrease at about 5.5 K, at which temperature antiferromagnetic ordering of the Eu spins simultaneously appears, indicating coupling between the magnetism and dielectric properties. This may be attributed to the modification of the soft-phonon mode T1μ, which is the main contribution to the large dielectric constant, by the Eu spins (7μB per Eu). By adding the coupling term between the magnetic and electrical subsystems as -g∑l∑ql2S⃗iṡS⃗j we show that the variation of the frequency of soft-phonon mode depends on the spin correlation between the nearest-neighbors Eu spins and is substantially changed under a magnetic field.
Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal
Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.
2016-07-01
This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.
Zhou, Yanguang; Hu, Ming
2017-03-01
Understanding phonon transport across interfaces serves as a major tool to advance a diverse spectrum of fundamental and applied research. Unlike bulk materials, where the three-phonon scattering process is relatively straightforward to investigate, little research has been dedicated to the detailed analysis of the three-phonon scattering process at interfaces due to the complexity of interfaces and the mismatch of phonon dispersions of the two connecting parts. Based on the nonequilibrium molecular dynamics simulation, which is one of the most popular approaches to investigate the thermal conductance, we develop an explicit theoretical framework by considering the full third-order force constants field to quantify the two- and three-phonon scattering at interfaces. Bulk Ar is used as a benchmark to validate the computational scheme by comparing the results with those using the all-order phonon scattering method [frequency-dependent directly decomposed method; Y. Zhou and M. Hu, Phys. Rev. B 92, 195205 (2015), 10.1103/PhysRevB.92.195205]. Then, Ar-heavy Ar and Si-Ge interfaces are studied and the respective role of two- and three-phonon scattering processes is quantitatively characterized at different temperatures. Moreover, all four different types of the three-phonon scattering process are explicitly evaluated. The method developed herein for splitting the two- and three-phonon scattering processes in the interfacial heat transport is expected to advance our understanding of the phonon process at interfaces, and will facilitate designing high-performance interfacial structures in terms of efficient thermal management.
Georgiev, M; Polyanski, I; Petrova, P T; Tsintsarska, S; Gochev, A
2001-01-01
We consider the dynamic interlayer charge transfer across apex oxygens between CuO sub 2 planes in single-layered high-T sub c superconductors. Phonon-coupled axial transfer rates are derived by means of the reaction-rate method. They lead straightforwardly to temperature dependences for the axial resistivity. Doping and temperature dependences are also derived for the renormalized frequencies of phonon modes coupled to the interlayer charge transfer. Our results are compared with experimentally observed dependences. (author)
Wang, X. P.; Jiang, P.; Song, A. L.
2016-09-01
In this paper, the low-frequency and tuning characteristic of band gap in a two-dimensional phononic crystal structure, consisting of a square array of aluminum cylindrical stubs deposited on both sides of a thin rubber plate with slit structure, are investigated. Using the finite element method, the dispersion relationships and power transmission spectra of this structure are calculated. In contrast to a typical phononic crystal without slit structure, the proposed slit structure shows band gaps at lower frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the lowest band gaps. Additionally, the influence of the slit parameters and stub parameters on the band gaps in slit structure are investigated. The geometrical parameters of the slits and stubs were found to influence the band gaps; this is critical to understand for practical applications. These results will help in fabricating phononic crystal structures whose band frequency can be modulated at lower frequencies.
Sven M. Ivansson
2009-01-01
Full Text Available Phononic crystals (PCs can be used as acoustic frequency selective insulators and filters. In a two-dimensional (2D PC, cylindrical scatterers with a common axis direction are located periodically in a host medium. In the present paper, the layer multiple-scattering (LMS computational method for wave propagation through 2D PC slabs is formulated and implemented for general 3D incident-wave directions and polarizations. Extensions are made to slabs with cylindrical scatterers of different types within each layer. As an application, the problem is considered to design such a slab with small sound transmittance within a given frequency band and solid angle region for the direction of the incident plane wave. The design problem, with variable parameters characterizing the scatterer geometry and material, is solved by differential evolution, a global optimization algorithm for efficiently navigating parameter landscapes. The efficacy of the procedure is illustrated by comparison to a direct Monte Carlo method.
Deterministic Single-Phonon Source Triggered by a Single Photon
Söllner, Immo; Lodahl, Peter
2016-01-01
We propose a scheme that enables the deterministic generation of single phonons at GHz frequencies triggered by single photons in the near infrared. This process is mediated by a quantum dot embedded on-chip in an opto-mechanical circuit, which allows for the simultaneous control of the relevant photonic and phononic frequencies. We devise new opto-mechanical circuit elements that constitute the necessary building blocks for the proposed scheme and are readily implementable within the current state-of-the-art of nano-fabrication. This will open new avenues for implementing quantum functionalities based on phonons as an on-chip quantum bus.
Raeliarijaona, Aldo; Fu, Huaxiang
2015-09-01
Ultraviolet Raman spectroscopy revealed the existence of an unusual large-frequency shift occurring to a nonsoft mode of E (TO4 ) when BaTiO3 is strained to a SrTiO3 substrate [D. Tenne et al., Science 313, 1614 (2006), 10.1126/science.1130306]. It raised two interesting questions: (i) whether there are other nonsoft modes that possess similar or even larger strain-induced frequency shifts and (ii) how the mode sequence is altered by these shifts in frequency. Note that mode sequence is also pivotal in correctly indexing and assigning the spectroscopy peaks observed in all Raman experiments. By mapping out the evolutions of individual phonon modes as a function of strain using first-principles density functional perturbation calculations, we determine the mode sequence and strain-induced phonon frequency shifts in prototypical BaTiO3. Our study reveals that the mode sequence is drastically different when BaTiO3 is strained to SrTiO3 compared to that in the unstrained structure, caused by multiple mode crossings. Furthermore, we predict that three other nonsoft modes, A1(TO2), E (LO4 ), and A1(TO3), display even larger strain-induced frequency shifts than E (TO4 ). The strain responses of individual modes are found to be highly mode specific, and a mechanism that regulates the magnitude of the frequency shift is provided. As another key outcome of this study, we tackle a long-standing problem of LO-TO splitting in ferroelectrics. A rigorous definition for the LO-TO splitting is formulated, which allows this critical quantity to be calculated quantitatively. The definition immediately reveals a new finding; that is, a large LO-TO splitting not only exists for E (LO4 ), which is previously known and originates from a soft mode, it also occurs for a nonsoft A1(LO3) mode. The LO-TO splitting is shown to decrease drastically with compressive strain, and this decrease cannot be explained by the Born effective charges and high-frequency dielectric constants.
Phonon manipulation with phononic crystals.
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
In this work, we demonstrated engineered modification of propagation of thermal phonons, i.e. at THz frequencies, using phononic crystals. This work combined theoretical work at Sandia National Laboratories, the University of New Mexico, the University of Colorado Boulder, and Carnegie Mellon University; the MESA fabrication facilities at Sandia; and the microfabrication facilities at UNM to produce world-leading control of phonon propagation in silicon at frequencies up to 3 THz. These efforts culminated in a dramatic reduction in the thermal conductivity of silicon using phononic crystals by a factor of almost 30 as compared with the bulk value, and about 6 as compared with an unpatterned slab of the same thickness. This work represents a revolutionary advance in the engineering of thermoelectric materials for optimal, high-ZT performance. We have demonstrated the significant reduction of the thermal conductivity of silicon using phononic crystal structuring using MEMS-compatible fabrication techniques and in a planar platform that is amenable to integration with typical microelectronic systems. The measured reduction in thermal conductivity as compared to bulk silicon was about a factor of 20 in the cross-plane direction [26], and a factor of 6 in the in-plane direction. Since the electrical conductivity was only reduced by a corresponding factor of about 3 due to the removal of conductive material (i.e., porosity), and the Seebeck coefficient should remain constant as an intrinsic material property, this corresponds to an effective enhancement in ZT by a factor of 2. Given the number of papers in literature devoted to only a small, incremental change in ZT, the ability to boost the ZT of a material by a factor of 2 simply by reducing thermal conductivity is groundbreaking. The results in this work were obtained using silicon, a material that has benefitted from enormous interest in the microelectronics industry and that has a fairly large thermoelectric power
Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L
2005-03-25
In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.
Evolution of the phonon density of states of LaCoO3 over the spin state transition
Golosova, N. O. [Joint Institute for Nuclear Research, Dubna, Russia; Kozlenko, D. P. [Joint Institute for Nuclear Research, Dubna, Russia; Kolesnikov, Alexander I [ORNL; Kazimirov, V. Yu. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, M. B. [St. Petersburg State University, St. Petersburg, Russia; Jirak, Z. [Institute of Physics, Czech Republic; Savenko, B. N. [Joint Institute for Nuclear Research, Dubna, Russia
2011-01-01
The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spin state transition and relevant orbital-phonon coupling.
Low-frequency phonons of few-layer graphene within a tight-binding model
Popov, Valentin N.; Van Alsenoy, Christian
2014-12-01
Few-layer graphene is a layered carbon material with covalent bonding in the layers and weak van der Waals interactions between the layers. The interlayer energy is more than two orders of magnitude smaller than the intralayer one, which hinders the description of the static and dynamic properties within electron band structure models. We overcome this difficulty by introducing two sets of matrix elements—one set for the covalent bonds in the graphene layers and another one for the van der Waals interactions between adjacent graphene layers in a tight-binding model of the band structure. Both sets of matrix elements are derived from an ab initio study on carbon dimers. The matrix elements are applied in the calculation of the phonon dispersion of graphite and few-layer graphene with AB and ABC layer stacking. The results for few-layer graphene with AB stacking agree well with the available experimental data, which justifies the application of the matrix elements to other layered carbon structures with van der Waals interactions such as few-layer graphene nanoribbons, multiwall carbon nanotubes, and carbon onions.
Phononic crystals of poroelastic spheres
Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.
2016-11-01
An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.
Ultrawide low frequency band gap of phononic crystal in nacreous composite material
Yin, J.; Huang, J.; Zhang, S., E-mail: zhangs@dlut.edu.cn; Zhang, H.W.; Chen, B.S.
2014-06-27
The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model.
Chakraborty, A., E-mail: juimaha@yahoo.co [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Sarkar, C.K. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India)
2011-04-01
The small signal high-frequency ac mobility of hot electrons in n-GaN in the extreme quantum limit at low- and high-temperatures has been calculated considering the non-equilibrium phonon distribution as well as the thermal phonon distributions. The energy loss rate has been calculated considering the dominance of the piezo electric coupling scattering and the polar optical phonon scattering while the momentum loss rate has been calculated considering the acoustic phonon scattering via deformation potential and the piezo electric coupling and the dislocation scattering.
Temperature dependence of low-frequency optical phonons in TlInS{sub 2}
Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)
2015-06-15
The unpolarized Stocks component of the Raman spectra of the layered ternary thallium dichalcogenide, TlInS{sub 2} was studied with the aid of a Raman confocal microscope system in the low-frequency region of 35-150 cm{sup -1} over the temperature range that embraced the region of the successive phase transitions in this crystal. The observed spectra were deconvoluted into Lorentzian peaks to single-out the contribution of each Raman mode. The temperature dependence of the Raman frequency and broadening associated with each mode was then obtained. The irregular temperature behaviour of most modes was disclosed in the proximity of phase transitions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
1990-01-01
The gap between the nonlocalized lattice-phonon description and the localized Einstein oscillator treatment is filled by transforming the phonon Hamiltonian back to the particle variables. The particle-coordinate, normalized, wave function for the phonon vacuum state is exhibited.
Birefringent phononic structures
I. E. Psarobas
2014-12-01
Full Text Available Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
Toulouse, J.; Iolin, E.; Hennion, B.; Petitgrand, D.; Erwin, R.
2016-12-01
The damping (Γ a ) of the transverse acoustic (TA) phonon in single crystals of the relaxor KT a1 -xN bxO3 with x =0.15 -0.17 was studied by means of high resolution inelastic cold neutron scattering near the (200) Brillouin Zone (BZ) point where diffuse scattering is absent, although it is present near (110). In a wide range of temperatures centered on the phase transition, T =195 K ÷108 K , the TA phonon width (damping) exhibits a step increase around momentum q =0.07 , goes through a shallow maximum at q =0.09 -0.12 , and remains high above and up to the highest momentum studied of q =0.16 . These experimental results are explained in terms of a resonant interaction between the TA phonon and the collective or correlated reorientation through tunneling of the off-center N b+5 ions. The observed TA damping is successfully reproduced in a simple model that includes an interaction between the TA phonon and a dispersionless localized mode (LM) with frequency ωL and damping ΓL(ΓLBZ point is also maximum and the dielectric susceptibility exhibits the relaxor behavior. The maximum value of M appears to be due to the increasing number of polar nanodomains. In support of the proposed model, the observed value of ωL≈0.7 THz is found to be similar to the estimate previously obtained by Girshberg and Yacoby [J. Phys.: Condens. Matter 24, 015901 (2012)], 10.1088/0953-8984/24/1/015901. Alternatively, the TA phonon damping can be successfully fitted in the framework of an empirical Havriliak-Negami (HN) relaxation model that includes a strong resonancelike transient contribution.
Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
Nunes, O. A. C.
2014-06-01
We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate RPA ,DA scales with TBGS -1 (S =PA,DA), TBGS being the Block -Gru¨neisen temperature. In the high-T Block -Gru¨neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio RPA/RDA scales with ≈1/√n , n being the carrier concentration. We found that only for carrier concentration n ≤1010cm-2, RPA/RDA>1. In the low-T Block -Gru¨neisen regime, and for n =1010cm-2, the ratio RPA/RDA scales with TBGDA/TBGPA≈7.5 and RPA/RDA>1. In this regime, PA phonon dominates the electron scattering and RPA/RDA<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.
O. Rafil; M. Tamine; B. Bourahla; R. Tigrine; S. Amoudache; A. Khater
2006-01-01
We have theoretically resolved phonon excitations in quasi-two-dimensional organic crystals of polyacenic semiconductor material which may be obtained by the pyrolytic treatment of phenol-formaldehyde resin. A model for studying the dynamical properties using three polyacene chains is proposed with the aim to present the vibrational properties of this structure. It employs the formalism of solid states in two dimensions which admit phonons. A simulation process of the two-dimensional lattice structure shows that elastic waves may explain the existence of vibrational modes in the frequency range 100-400 cm-1. The presence of acoustic and optical like phonons is discussed in terms of the elastic force constants. A hyperfine resonance structure is obtained. It allows the analysis of the dynamical evolution in thin films of polyacene. It is found that the behavior of the phonon density of states exhibits resonance between modes in the structure.
Shcherbakov, Alexandre S; Arellanes, Adan Omar
2017-04-20
We present a principally new acousto-optical cell providing an advanced wideband spectrum analysis of ultra-high frequency radio-wave signals. For the first time, we apply a recently developed approach with the tilt angle to a one-phonon non-collinear anomalous light scattering. In contrast to earlier cases, now one can exploit a regime with the fixed optical wavelength for processing a great number of acoustic frequencies simultaneously in the linear regime. The chosen rutile-crystal combines a moderate acoustic velocity with low acoustic attenuation and allows us wide-band data processing within GHz-frequency acoustic waves. We have created and experimentally tested a 6-cm aperture rutile-made acousto-optical cell providing the central frequency 2.0 GHz, frequency bandwidth ∼0.52 GHz with the frequency resolution about 68.3 kHz, and ∼7620 resolvable spots. A similar cell permits designing an advanced ultra-high-frequency arm within a recently developed multi-band radio-wave acousto-optical spectrometer for astrophysical studies. This spectrometer is intended to operate with a few parallel optical arms for processing the multi-frequency data flows within astrophysical observations. Keeping all the instrument's advantages of the previous schematic arrangement, now one can create the highest-frequency arm using the developed rutile-based acousto-optical cell. It permits optimizing the performances inherent in that arm via regulation of both the central frequency and the frequency bandwidth for spectrum analysis.
Li, Suobin; Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Li, Yinggang [Key Laboratory of High Performance Ship Technology of Ministry of Education, Wuhan University of Technology, Wuhan, 430070 (China); Chen, Weihua [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)
2016-06-03
We studied the expansion of locally resonant complete band gaps in two-dimensional phononic crystals (PCs) using a double-sided stubbed composite PC plate with composite stubs. Results show that the introduction of the proposed structure gives rise to a significant expansion of the relative bandwidth by a factor of 1.5 and decreases the opening location of the first complete band gap by a factor of 3 compared to the classic double-sided stubbed PC plate with composite stubs. Furthermore, more band gaps appear in the lower-frequency range (0.006). These phenomena can be attributed to the strong coupling between the “analogous rigid mode” of the stub and the anti-symmetric Lamb modes of the plate. The “analogous rigid mode” of the stub is produced by strengthening the localized resonance effect of the composite plates through the double-sided stubs, and is further strengthened through the introduction of composite stubs. The “analogous rigid mode” of the stubs expands the out-of-plane band gap, which overlaps with in-plane band gap in the lower-frequency range. As a result, the complete band gap is expanded and more complete band gaps appear. - Highlights: • Expansion of lower-frequency locally resonant BGs using novel composite phononic crystals plates. • The proposed structure expands the relative bandwidth 1.5 times compared to classic doubled-sided stubbed PC plates. • The opening location of the first complete BG decreases 3 times compared to the classic doubled-sided stubbed PC plates. • The concept “analogous rigid mode” is put forward to explain the expansion of lower-frequency BGs.
Wette, Frederik
1991-01-01
In recent years substantial progress has been made in the detection of surface phonons owing to considerable improvements in inelastic rare gas scattering tech niques and electron energy loss spectroscopy. With these methods it has become possible to measure surface vibrations in a wide energy range for all wave vectors in the two-dimensional Brillouin zone and thus to deduce the complete surface phonon dispersion curves. Inelastic atomic beam scattering and electron energy loss spectroscopy have started to play a role in the study of surface phonons similar to the one played by inelastic neutron scattering in the investigation of bulk phonons in the last thirty years. Detailed comparison between experimen tal results and theoretical studies of inelastic surface scattering and of surface phonons has now become feasible. It is therefore possible to test and to improve the details of interaction models which have been worked out theoretically in the last few decades. At this point we felt that a concise, co...
Interaction of coherent phonons with defects and elementary excitations
Hase, Muneaki [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573 (Japan); Kitajima, Masahiro, E-mail: mhase@bk.tsukuba.ac.j, E-mail: kitaji@nda.ac.j [Department of Applied Physics, School of Applied Science, National Defense Academy of Japan, Hashirimizu 1-10-20, Yokosuka, Kanagawa 239-8686 (Japan)
2010-02-24
We present an overview of the feasibility of using coherent phonon spectroscopy to study interaction dynamics of excited lattice vibrations with their environments. By exploiting the features of coherent phonons with a pump-probe technique, one can study lattice motions in a sub-picosecond time range. The dephasing properties tell us not only about interaction dynamics with carriers (electrons and holes) or thermal phonons but also about point defects in crystals. Modulations of the coherent phonon amplitude by more than two modes are closely related to phonon-carrier or phonon-phonon interferences. Related to this phenomenon, formation of coherent phonons at higher harmonics gives direct evidence for phonon-phonon couplings. A combined study of coherent phonons and ultrafast carrier response can be useful for understanding phonon-carrier interaction dynamics. For metals like zinc, nonequilibrium electrons may dominate the dynamics of both relaxation and generation of coherent phonons. The frequency chirp of coherent phonons can be a direct measure of how and when phonon-phonon and phonon-carrier couplings occur. Carbon nanotubes show some complicated behavior due to the existence of many modes with different symmetries, resulting in superposition or interference. To illustrate one of the most interesting applications, the selective excitation of specific phonon modes through the use of a pulse train technique is shown. (topical review)
Phonon-Assisted Resonant Tunnelling through a Triple-Quantum-Dot: a Phonon-Signal Detector
SHEN Xiao-Yun; DONG Bing; LEI Xiao-lin
2008-01-01
We study the effect of electron-phonon interaction on current and zero-frequency shot noise in resonant tunnelling through a series triple-quantum-dot coupling to a local phonon mode by means of a nonperturbative mapping technique along with the Green function formulation.By fixing the energy difference between the first two quantum dots to be equal to phonon frequency and sweeping the level of the third quantum dot,we find a largely enhanced current spectrum due to phonon effect,and in particular we predict current peaks corresponding to phonon-absorption and phonon-emission assisted resonant tunnelling processes,which show that this system can be acted as a sensitive phonon-signal detector or as a cascade phonon generator.
Bagnall, Kevin R.; Dreyer, Cyrus E.; Vanderbilt, David; Wang, Evelyn N.
2016-10-01
Due to the high dissipated power densities in gallium nitride (GaN) high electron mobility transistors (HEMTs), temperature measurement techniques with high spatial resolution, such as micro-Raman thermography, are critical for ensuring device reliability. However, accurately determining the temperature rise in the ON state of a transistor from shifts in the Raman peak positions requires careful decoupling of the simultaneous effects of temperature, stress, strain, and electric field on the optical phonon frequencies. Although it is well-known that the vertical electric field in the GaN epilayers can shift the Raman peak positions through the strain and/or stress induced by the inverse piezoelectric (IPE) effect, previous studies have not shown quantitative agreement between the strain and/or stress components derived from micro-Raman measurements and those predicted by electro-mechanical models. We attribute this discrepancy to the fact that previous studies have not considered the impact of the electric field on the optical phonon frequencies of wurtzite GaN apart from the IPE effect, which results from changes in the atomic coordinates within the crystal basis and in the electronic configuration. Using density functional theory, we calculated the zone center E2 (high), A1 (LO), and E2 (low) modes to shift by -1.39 cm-1/(MV/cm), 2.16 cm-1/(MV/cm), and -0.36 cm-1/(MV/cm), respectively, due to an electric field component along the c -axis, which are an order of magnitude larger than the shifts associated with the IPE effect. Then, we measured changes in the E2 (high) and A1 (LO) Raman peak positions with ≈1 μm spatial resolution in GaN HEMTs biased in the pinched OFF state and showed good agreement between the strain, stress, and electric field components derived from the measurements and our 3D electro-mechanical model. This study helps to explain the reason the pinched OFF state is a suitable reference for removing the contributions of the electric field and
Mannarelli, Massimo
2013-01-01
We analyze the effect of restricted geometries on the contribution of Nambu-Goldstone bosons (phonons) to the shear viscosity, $\\eta$, of a superfluid. For illustrative purpose we examine a simplified system consisting of a circular boundary of radius $R$, confining a two-dimensional rarefied gas of phonons. Considering the Maxwell-type conditions, we show that phonons that are not in equilibrium with the boundary and that are not specularly reflected exert a shear stress on the boundary. In this case it is possible to define an effective (ballistic) shear viscosity coefficient $\\eta \\propto \\rho_{\\rm ph} \\chi R$, where $\\rho_{\\rm ph}$ is the density of phonons and $\\chi$ is a parameter which characterizes the type of scattering at the boundary. For an optically trapped superfluid our results corroborate the findings of Refs. \\cite{Mannarelli:2012su, Mannarelli:2012eg}, which imply that at very low temperature the shear viscosity correlates with the size of the optical trap and decreases with decreasing tempe...
Coherent phonon optics in a chip with an electrically controlled active device.
Poyser, Caroline L; Akimov, Andrey V; Campion, Richard P; Kent, Anthony J
2015-02-05
Phonon optics concerns operations with high-frequency acoustic waves in solid media in a similar way to how traditional optics operates with the light beams (i.e. photons). Phonon optics experiments with coherent terahertz and sub-terahertz phonons promise a revolution in various technical applications related to high-frequency acoustics, imaging, and heat transport. Previously, phonon optics used passive methods for manipulations with propagating phonon beams that did not enable their external control. Here we fabricate a phononic chip, which includes a generator of coherent monochromatic phonons with frequency 378 GHz, a sensitive coherent phonon detector, and an active layer: a doped semiconductor superlattice, with electrical contacts, inserted into the phonon propagation path. In the experiments, we demonstrate the modulation of the coherent phonon flux by an external electrical bias applied to the active layer. Phonon optics using external control broadens the spectrum of prospective applications of phononics on the nanometer scale.
Model for topological phononics and phonon diode
Liu, Yizhou; Xu, Yong; Zhang, Shou-Cheng; Duan, Wenhui
2017-08-01
The quantum anomalous Hall effect, an exotic topological state first theoretically predicted by Haldane and recently experimentally observed, has attracted enormous interest for low-power-consumption electronics. In this work, we derived a Schrödinger-like equation of phonons, where topology-related quantities, time-reversal symmetry, and its breaking can be naturally introduced similar to the process for electrons. Furthermore, we proposed a phononic analog of the Haldane model, which makes the novel quantum (anomalous) Hall-like phonon states characterized by one-way gapless edge modes immune to scattering. The topologically nontrivial phonon states are useful not only for conducting phonons without dissipation but also for designing highly efficient phononic devices, like an ideal phonon diode, which could find important applications in future phononics.
Engineering dissipation with phononic spectral hole burning
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Resonant tunneling in a pulsed phonon field
Kral, P.; Jauho, Antti-Pekka
1999-01-01
, The nonequilibrium spectral function for the resonance displays the formation and decay of the phonon sidebands on ultrashort time scales. The time-dependent tunneling current through the individual phonon satellites reflects this quasiparticle formation by oscillations, whose time scale is set by the frequency...
Varshney, Dinesh; Yogi, A.; Choudhary, K. K.
2010-12-01
In this paper, we undertake a quantitative analysis of observed temperature-dependent in-plane normal state electrical resistivity of single crystal YBa 2Cu 4O 8. The analysis is within the framework of classical electron-phonon i.e., Bloch-Gruneisen model of resistivity. It is based on the inherent acoustic (low frequency) phonons ( ω ac) as well as high frequency optical phonons ( ω op), the contributions to the phonon resistivity were first estimated. The optical phonons of the oxygen breathing mode yields a relatively larger contribution to the resistivity compared to the contribution of acoustic phonons. Estimated contribution to in-plane electrical resistivity by considering both phonons i.e., ω ac and ω op, along with the zero-limited resistivity, when subtracted from single crystal data infers a quadratic temperature dependence over most of the temperature range [80 ⩽ T ⩽ 300]. Quadratic temperature dependence of ρ diff. = [ ρ exp - { ρ0 + ρ e-ph (= ρ ac + ρ op)}] is understood in terms of electron-electron inelastic scattering. The relevant energy gap expressions within the Nambu-Eliashberg approach are solved imposing experimental constraints on their solution (critical temperature T c). It is found that the indirect-exchange formalism provides a unique set of electronic parameters [electron-phonon ( λ ph), electron-charge fluctuations ( λ pl), electron-electron ( μ) and Coulomb screening parameter ( μ*)] which, in particular, reproduce the reported value of T c.
Optical phonons in Ge quantum dots obtained on Si(111)
Talochkin, A B
2002-01-01
The light combination scattering on the optical phonons in the Ge quantum dots, obtained on the Si surface of the (111) orientation through the molecular-beam epitaxy, is studied. The series of lines, connected with the phonon spectrum quantization, was observed. It is shown, that the phonon modes frequencies are well described by the elastic properties and dispersion of the voluminous Ge optical phonons. The value of the Ge quantum dots deformation is determined
The phonon and thermal properties of a ladder nanostructure
M Mardaani
2011-12-01
Full Text Available In this paper, we study the phonon thermal properties of a ladder nanostructure in harmonic approximation. We present a model consisting of two infinite chains with different masses. Then, we investigate the effect of different masses on the phonon spectrum. Moreover, as a specific case, in the absence of the second neighbor interaction, we calculate the phonon density of states/modes. Finally, we consider the thermal conductivity of the system. The results show that the phonon spectrum shifts down to the lower frequencies by increasing the masses. Furthermore, a frequency gap appears in the phonon spectrum. By increasing the springs constants, the thermal conductance decreases.
Optimal design of tunable phononic bandgap plates under equibiaxial stretch
Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.
2016-05-01
Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite
Frequency of retromolar foramen and local anesthetic relevance. A literature review.
Maysa Brandt
2012-07-01
Full Text Available The retromolar foramen is a hole accessory jaw in the retromolar trigone zone. The knowledge of this variation is important for the presence of anatomical structures that enter via the foramen and can serve as via local anesthetic or be affected during surgical procedures. Objective: To determine the frequency of the retromolar foramen in dried humans mandibles and its association with local anesthesia reviewed in scientific literature. Methods: A descriptive study by systematic literature review. We analyzed articles related to the location of retromolar foramina in the MEDLINE and SciELO databases. Author name, sample number, gender, frequency and source side foramina were registred. We analyzed the clinic relevance about to presence of the retromolar foramen. Results: 55 articles, of which only 5(9% were selected. Between 40 to 475 mandibles humans was analized which the presence of the retromolar foramen ranged between 7.8% and 25%. The authors define the use of the foramen for the application of anesthetic techniques and ancillary care in third molar surgery. Conclusion: Accessory foramina occurs in a low percentage. However, it could be an important element for local anesthesia or surgical treatment of the area.
Molecular dynamics study of phonon screening in graphene
Javvaji, Brahmanandam; Roy Mahapatra, D.; Raha, S.
2014-04-01
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phononmode is excited fromone end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
Scattering of phonons by dislocations
Anderson, A. C.
1979-01-01
By 1950, an explicit effort had been launched to use lattice thermal conductivity measurements in the investigation of defect structures in solids. This technique has been highly successful, especially when combined with the measurements of other properties such as optical absorption. One exception has been the study of dislocations. Although dislocations have a profound effect on the phonon thermal conductivity, the mechanisms of the phonon-dislocation interaction are poorly understood. The most basic questions are still debated in the literature. It therefore is pointless to attempt a quantitative comparison between an extensive accumulation of experimental data on the one hand, and the numerous theoretical models on the other. Instead, this chapter will attempt to glean a few qualitative conclusions from the existing experimental data. These results will then be compared with two general models which incorporate, in a qualitative manner, most of the proposed theories of the phonon-dislocation interaction. Until very recently, measurement of thermal conductivity was the only means available to probe the interaction between phonons and defects at phonon frequencies above the standard ultrasonic range of approx. = 10/sup 9/ Hz. The introductory paragraphs provide a brief review of the thermal-conductivity technique and the problems which are encountered in practice. There is also a brief presentation of the theoretical models and the complications that may occur in more realistic situations.
Yudistira, D; Boes, A; Djafari-Rouhani, B; Pennec, Y; Yeo, L Y; Mitchell, A; Friend, J R
2014-11-21
We theoretically and experimentally demonstrate the existence of complete surface acoustic wave band gaps in surface phonon-polariton phononic crystals, in a completely monolithic structure formed from a two-dimensional honeycomb array of hexagonal shape domain-inverted inclusions in single crystal piezoelectric Z-cut lithium niobate. The band gaps appear at a frequency of about twice the Bragg band gap at the center of the Brillouin zone, formed through phonon-polariton coupling. The structure is mechanically, electromagnetically, and topographically homogeneous, without any physical alteration of the surface, offering an ideal platform for many acoustic wave applications for photonics, phononics, and microfluidics.
TOPICAL REVIEW: Interaction of coherent phonons with defects and elementary excitations
Hase, Muneaki; Kitajima, Masahiro
2010-02-01
We present an overview of the feasibility of using coherent phonon spectroscopy to study interaction dynamics of excited lattice vibrations with their environments. By exploiting the features of coherent phonons with a pump-probe technique, one can study lattice motions in a sub-picosecond time range. The dephasing properties tell us not only about interaction dynamics with carriers (electrons and holes) or thermal phonons but also about point defects in crystals. Modulations of the coherent phonon amplitude by more than two modes are closely related to phonon-carrier or phonon-phonon interferences. Related to this phenomenon, formation of coherent phonons at higher harmonics gives direct evidence for phonon-phonon couplings. A combined study of coherent phonons and ultrafast carrier response can be useful for understanding phonon-carrier interaction dynamics. For metals like zinc, nonequilibrium electrons may dominate the dynamics of both relaxation and generation of coherent phonons. The frequency chirp of coherent phonons can be a direct measure of how and when phonon-phonon and phonon-carrier couplings occur. Carbon nanotubes show some complicated behavior due to the existence of many modes with different symmetries, resulting in superposition or interference. To illustrate one of the most interesting applications, the selective excitation of specific phonon modes through the use of a pulse train technique is shown.
1991-01-01
The concepts of source and quantum action principle are used to produce the phonon Green's function appropriate for an initial phonon vacuum state. An application to the Mossbauer effect is presented.
Intrinsic variability in the eddying ocean at low frequency: climate-relevant fingerprints.
Penduff, T.; Gregorio, S.; Juza, M.; Barnier, B.; Dewar, W. K.; Molines, J.-M.
2012-04-01
Idealized studies (see the review by e.g. Dijkstra and Ghil, 2005) have shown that the nonlinear ocean circulation spontaneously generates low-frequency variability under constant atmospheric forcing. This phenomenon is chaotic and gets stronger with increasing Reynolds number. In the eddying regime, this intrinsic ocean variability has typical timescales of 1-10 years, and particularly affects the horizontal circulation. Nonlinear processes have been proposed to explain its generation, e.g. eddy-eddy interactions (Arbic et al. 2011), eddy PV fluxes or turbulent rectification (Spall 1996; Dewar 2003; Berloff et al 2007). Identifying the magnitude, spatial structure and fingerprints of this intrinsic chaotic variability in the real ocean would have important implications (e.g. for climate monitoring/hindcasting/forecasting, model assessment, etc). This can hardly be done from observations only since intrinsic and atmospherically-forced variabilities are entangled, but may be attempted from recent global, high-resolution, multi-decadal Ocean General Circulation Model simulations. In this presentation, we address the issues mentioned above by comparing a 327-year seasonally-forced simulation (no interannual forcing) performed with the Drakkar NEMO-based global 1/4° model, with its 50-year counterpart driven by a realistic forcing including the full range of timescales (i.e. with interannual forcing). Our seasonally-forced simulation reveals the imprint of the intrinsic interannual variability on various climate-relevant ocean variables, e.g. sea-level anomalies, sea-surface temperature, mixed layer depth, meridional overturning streamfunction. Comparing these intrinsic variances with their total counterpart (from the second simulation) then provides us with estimates of this chaotic component's fingerprint on climate-related variabilities. We show that intrinsic variances, which are negligeable in laminar IPCC-like (~2°) ocean models, may exceed their
程正富; 郑瑞伦
2016-01-01
在哈里森键联轨道法框架下,考虑到原子的短程相互作用和原子的非简谐振动,应用固体物理理论和方法,得到了石墨烯的力常数、杨氏模量、扭曲模量、泊松系数以及声子频率随温度的变化关系,探讨了非简谐振动对它们的影响.结果表明：1)杨氏模量与声子频率等随温度变化并遵从一定的规律,其中力常数、杨氏模量、扭曲模量随温度升高而增大,但变化较小；声子频率随温度升高而增大但变化较快；泊松系数随温度升高而较快地减小；2)石墨烯原子具有沿键长方向的纵振动和垂直键长方向的横振动,但以纵振动为主,纵振动的非简谐效应远大于横振动,横振动的简谐系数ε′0和第二非谐系数ε′2均小于纵振动的相应值ε0,ε2；比值为ε0/ε′0≈8.477,ε2/ε′2≈156；3)若不考虑非简谐振动项,则石墨烯的力常数、杨氏模量和扭曲模量、泊松系数、声子频率均为常量,与实验不符合；同时考虑到原子的第一、二非简谐振动项后,它们均随温度升高而变化,而且温度愈高,原子振动的非简谐效应愈显著.本文的结果与文献的实验结果符合较好.%In the frame of the Harrison bonded-orbital method, the variations of the force constant, the Young modulus, the torsional modulus and the phonon frequency with temperature are given through the relevant theory or method of the solid state physics with considering the non-harmonic effect and the short-range interaction of atoms. Results show that the force constant, the Young modulus, the torsional modulus, the phonon frequency and the Poisson’s coeffcient all vary with temperature. The results show that the first three quantities increase with temperature but not very much;the phonon frequency increases with temperature rapidly;the Poisson’s coeffcient decreases fast with the increase of temperature. There are transverse vibrations along the direction
The low frequency Western Mediterranean summer variability: relevance, feedbacks and predictability.
Jose, Ortizbevia Maria; Antonio, Ruizdeelvira; Francisco Jose, Alvarez-Garcia; Miguel, Tasambay-Salazar
2016-04-01
In a recent study, OrtizBeviá et al. (2012) have defined a seasonal index, the Western Mediterranean Index, in order to characterize the Western Mediterranean summer variability. They have found there a statistically significant feedback between the Mediterranean and the North Pacific variability, characterized by the Pacific North America Mode Index. They have detected also a feedback between the Western Mediterranean in summer and the variability of some areas of the North Atlantic basin. Based on these statistical linear relationship they proposed a model to forecast the part of the Western Mediterranean variability represented by the Western Mediterranean Index in summer and autumn and validate it through some hindcast experiments, with a moderate, but significant skill. OrtizBeviá et al.(2012) presented also the evidence of the existence of a low frequency, multidecadal component in the Western Mediterranean summer variability. In the work to be presented here we extend the previous one, focusing on the long term variability. We perform similar statistical analysis on selected data fields that span more than 100 years. We add a second index to the characterisation of the Western Mediterranean variability and are then able to show the relevance of the Western Mediterranean summer variability for european air temperature and precipitation seasonal anomalies. Our analyses show that the variability represented by two North Atlantic Indexes play a key role in the Western Mediterranean summer variability. They also proof the existence of a feedback between this variability and that of the Pacific North America Mode, for an extended period of more than 140 years. The performance of the different predictive models built on the basis of those linear relationships are tested in a series of hindcast experiments. References Ortiz Beviá, M. J.; Alvarez García
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Veronika Vielsmeier; Astrid Lehner; Jürgen Strutz; Thomas Steffens; Kreuzer, Peter M; Martin Schecklmann; Michael Landgrebe; Berthold Langguth; Tobias Kleinjung
2015-01-01
Objective. The majority of tinnitus patients suffer from hearing loss. But a subgroup of tinnitus patients show normal hearing thresholds in the conventional pure-tone audiometry (125 Hz–8 kHz). Here we explored whether the results of the high frequency audiometry (>8 kHz) provide relevant additional information in tinnitus patients with normal conventional audiometry by comparing those with normal and pathological high frequency audiometry with respect to their demographic and clinical chara...
Nanoscale pillar hypersonic surface phononic crystals
Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.
2016-09-01
We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.
Phonon Cooling by an Optomechanical Heat Pump.
Dong, Ying; Bariani, F; Meystre, P
2015-11-27
We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.
A Comprehensive Approach to Phonon Control for Enhanced Device Performance
2006-07-12
that moving the power density in time domain experiments, it is possible to go from the renormalized frequency (at power P1) to the bare frequency (at...function in the infrared and, thereby, renormalizes the frequency of the optical modes; see the energy level diagram in Fig. 9(left). In particular, a...filled electronic trap with an allowed transition frequency larger than the bare optical phonon frequency, will push the effective optical phonon
da Silva, Carlos; Saiz, Fernan; Romero, David A.; Amon, Cristina H.
2016-03-01
Promoting coherent transport of phonons at material interfaces is a promising strategy for controlling thermal transport in nanostructures and an alternative to traditional methods based on structural defects. Coherent transport is particularly relevant in short-period heterostructures with smooth interfaces and long-wavelength heat-carrying phonons, such as two-dimensional superlattices of graphene and boron nitride. In this work, we predict phonon properties and thermal conductivities in these superlattices using a normal mode decomposition approach. We study the variation of the frequency dependence of these properties with the periodicity and interface configuration (zigzag and armchair) for superlattices with period lengths within the coherent regime. Our results showed that the thermal conductivity decreases significantly from the first period length (0.44 nm) to the second period length (0.87 nm), 13% across the interfaces and 16% along the interfaces. For greater periods, the conductivity across the interfaces continues decreasing at a smaller rate of 11 W/mK per period length increase (0.43 nm), driven by changes in the phonon group velocities (coherent effects). In contrast, the conductivity along the interfaces slightly recovers at a rate of 2 W/mK per period, driven by changes in the phonon relaxation times (diffusive effects). By changing the interface configuration from armchair to zigzag, the conductivities for all period lengths increase by approximately 7% across the interfaces and 19% along the interfaces.
Vielsmeier, Veronika; Lehner, Astrid; Strutz, Jürgen; Steffens, Thomas; Kreuzer, Peter M; Schecklmann, Martin; Landgrebe, Michael; Langguth, Berthold; Kleinjung, Tobias
2015-01-01
The majority of tinnitus patients suffer from hearing loss. But a subgroup of tinnitus patients show normal hearing thresholds in the conventional pure-tone audiometry (125 Hz-8 kHz). Here we explored whether the results of the high frequency audiometry (>8 kHz) provide relevant additional information in tinnitus patients with normal conventional audiometry by comparing those with normal and pathological high frequency audiometry with respect to their demographic and clinical characteristics. From the database of the Tinnitus Clinic at Regensburg we identified 75 patients with normal hearing thresholds in the conventional pure-tone audiometry. We contrasted these patients with normal and pathological high-frequency audiogram and compared them with respect to gender, age, tinnitus severity, pitch, laterality and duration, comorbid symptoms and triggers for tinnitus onset. Patients with pathological high frequency audiometry were significantly older and had higher scores on the tinnitus questionnaires in comparison to patients with normal high frequency audiometry. Furthermore, there was an association of high frequency audiometry with the laterality of tinnitus. In tinnitus patients with normal pure-tone audiometry the high frequency audiometry provides useful additional information. The association between tinnitus laterality and asymmetry of the high frequency audiometry suggests a potential causal role for the high frequency hearing loss in tinnitus etiopathogenesis.
Veronika Vielsmeier
2015-01-01
Full Text Available Objective. The majority of tinnitus patients suffer from hearing loss. But a subgroup of tinnitus patients show normal hearing thresholds in the conventional pure-tone audiometry (125 Hz–8 kHz. Here we explored whether the results of the high frequency audiometry (>8 kHz provide relevant additional information in tinnitus patients with normal conventional audiometry by comparing those with normal and pathological high frequency audiometry with respect to their demographic and clinical characteristics. Subjects and Methods. From the database of the Tinnitus Clinic at Regensburg we identified 75 patients with normal hearing thresholds in the conventional pure-tone audiometry. We contrasted these patients with normal and pathological high-frequency audiogram and compared them with respect to gender, age, tinnitus severity, pitch, laterality and duration, comorbid symptoms and triggers for tinnitus onset. Results. Patients with pathological high frequency audiometry were significantly older and had higher scores on the tinnitus questionnaires in comparison to patients with normal high frequency audiometry. Furthermore, there was an association of high frequency audiometry with the laterality of tinnitus. Conclusion. In tinnitus patients with normal pure-tone audiometry the high frequency audiometry provides useful additional information. The association between tinnitus laterality and asymmetry of the high frequency audiometry suggests a potential causal role for the high frequency hearing loss in tinnitus etiopathogenesis.
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
High-frequency oscillations in Parkinson's disease: spatial distribution and clinical relevance.
Wang, Jing; Hirschmann, Jan; Elben, Saskia; Hartmann, Christian J; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons
2014-09-01
The pathophysiology of Parkinson's disease (PD) has been related to excessive beta band oscillations in the basal ganglia. Recent recordings from the subthalamic nucleus of PD patients showed that beta oscillations show strong cross-frequency coupling with high-frequency oscillations (>200 Hz). However, little is known about the characteristics and functional properties of these oscillations. We studied the spatial distribution of high-frequency oscillations and their relation to PD motor symptoms. We included 10 PD patients in medication OFF who underwent implantation of deep brain stimulation (DBS) electrodes. Intraoperative five-channel microelectrode recordings were performed at 9 to 10 recording sites within the subthalamic nucleus and its immediate surroundings. We found a focal spatial distribution of high-frequency oscillations with highest power 2 mm below the dorsolateral border of the subthalamic nucleus. Within the subthalamic nucleus, power peaked slightly anterior to the DBS target site. In addition, contralateral akinesia/rigidity scores were negatively correlated with high-frequency oscillation power. Our results demonstrate a focal origin of high-frequency oscillations within the subthalamic nucleus and provide further evidence for their functional association with motor state. © 2014 International Parkinson and Movement Disorder Society.
Souvatzis, P; Rudin, S P [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bjoerkman, T; Eriksson, O [Department of Physics, Uppsala University, Box 530, SE-75121, Uppsala (Sweden); Andersson, P [FOI, Swedish Defence Research Agency, SE-164 90 Stockholm (Sweden); Katsnelson, M I [Institute for Molecules and Materials, Radboud University Nijmegen, NL-6525 ED, Nijmegen (Netherlands)], E-mail: petros.souvatzis@gmail.com
2009-04-29
A recently developed self-consistent ab initio lattice dynamical method has been applied to the high temperature body centered cubic (bcc) phase of La and Th, which are dynamically unstable at low temperatures. The bcc phase of these metals is found to be stabilized by phonon-phonon interactions. The calculated high temperature phonon frequencies for La are found to be in good agreement with the corresponding experimental data.
Phonon engineering for nanostructures.
Aubry, Sylvie (Stanford University); Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H. (Idaho National Laboratory); Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
L Pintschovius; F Weber; W Reichardt; A Kreyssig; R Heid; D Reznik; O Stockert; K Hradil
2008-10-01
Phonons in a metal interact with conduction electrons which give rise to a finite linewidth. In the normal state, this leads to a Lorentzian shape of the phonon line. Density functional theory is able to predict the phonon linewidths as a function of wave vector for each branch of the phonon dispersion. An experimental verification of such predictions is feasible only for compounds with very strong electron–phonon coupling. YN2B2C was chosen as a test example because it is a conventional superconductor with a fairly high c (15.2 K). Inelastic neutron scattering experiments did largely confirm the theoretical predictions. Moreover, they revealed a strong temperature dependence of the linewidths of some phonons with particularly strong electron–phonon coupling which can as yet only qualitatively be accounted for by theory. For such phonons, marked changes of the phonon frequencies and linewidths were observed from room temperature down to 15 K. Further changes were observed on entering into the superconducting state. These changes can, however, not be described simply by a change of the phonon linewidth.
Engineering interactions between superconducting qubits and phononic nanostructures
Arrangoiz-Arriola, Patricio; Safavi-Naeini, Amir H.
2016-12-01
Nanomechanical systems can support highly coherent microwave-frequency excitations at cryogenic temperatures. However, generating sufficient coupling between these devices and superconducting quantum circuits is challenging due to the vastly different length scales of acoustic and electromagnetic excitations. Here we demonstrate a general method for calculating piezoelectric interactions between quantum circuits and arbitrary phononic nanostructures. We illustrate our technique by studying the coupling between a transmon qubit and bulk acoustic-wave, Lamb-wave, and phononic crystal resonators, and show that very large coupling rates are possible in all three cases. Our results suggest a route to phononic circuits and systems that are nonlinear at the single-phonon level.
Frequency and Prognostic Relevance of FLT3 Mutations in Saudi Acute Myeloid Leukemia Patients
Ghaleb Elyamany
2014-01-01
Full Text Available The Fms-like tyrosine kinase-3 (FLT3 is a receptor tyrosine kinase that plays a key role in cell survival, proliferation, and differentiation of hematopoietic stem cells. Mutations of FLT3 were first described in 1997 and account for the most frequent molecular mutations in acute myeloid leukemia (AML. AML patients with FLT3 internal tandem duplication (ITD mutations have poor cure rates the prognostic significance of point mutations; tyrosine kinase domain (TKD is still unclear. We analyzed the frequency of FLT3 mutations (ITD and D835 in patients with AML at diagnosis; no sufficient data currently exist regarding FLT3 mutations in Saudi AML patients. This study was aimed at evaluating the frequency of FLT3 mutations in patients with AML and its significance for prognosis. The frequency of FLT3 mutations in our study (18.56% was lower than many of the reported studies, FLT3-ITD mutations were observed in 14.4%, and FLT3-TKD in 4.1%, of 97 newly diagnosed AML patients (82 adult and 15 pediatric. Our data show significant increase of FLT3 mutations in male more than female (13 male, 5 female. Our results support the view that FLT3-ITD mutation has strong prognostic factor in AML patients and is associated with high rate of relapse, and high leucocytes and blast count at diagnosis and relapse.
Coupled bloch-phonon oscillations in semiconductor superlattices
Dekorsy; Bartels; Kurz; Kohler; Hey; Ploog
2000-07-31
We investigate coherent Bloch oscillations in GaAs/AlxGa1-xAs superlattices with electronic miniband widths larger than the optical phonon energy. In these superlattices the Bloch frequency can be tuned into resonance with the optical phonon. Close to resonance a direct coupling of Bloch oscillations to LO phonons is observed which gives rise to the coherent excitation of LO phonons. The density necessary for driving coherent LO phonons via Bloch oscillations is about 2 orders of magnitude smaller than the density necessary to drive coherent LO phonons in bulk GaAs. The experimental observations are confirmed by the theoretical description of this phenomenon [A.W. Ghosh et al., Phys. Rev. Lett. 85, 1084 (2000)].
Phonon transport in perovskite SrTiO3 from first principles
Feng, Lei; Shiomi, Junichiro
2015-01-01
We investigate phonon transport in perovskite strontium titanate (SrTiO3) which is stable above its phase transition temperature (~105 K) by using first-principles molecular dynamics and anharmonic lattice dynamics. Unlike conventional ground-state-based perturbation methods that give imaginary phonon frequencies, the current calculation reproduces stable phonon dispersion relations observed in experiments. We find the contribution of optical phonons to overall lattice thermal conductivity is larger than 60%, markedly different from the usual picture with dominant contribution from acoustic phonons. The mode- and pseudopotential-dependence analysis suggests the strong attenuation of acoustic phonons transport originated from strong anharmonic coupling with the transversely-polarized ferroelectric modes.
Temperature dependent magnon-phonon coupling in bcc Fe from theory and experiment.
Körmann, F; Grabowski, B; Dutta, B; Hickel, T; Mauger, L; Fultz, B; Neugebauer, J
2014-10-17
An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits.
Li, Yanfu; Liu, Hongli; Ma, Ziji
2016-10-01
Rail corrugation dynamic measurement techniques are critical to guarantee transport security and guide rail maintenance. During the inspection process, low-frequency trends caused by rail fluctuation are usually superimposed on rail corrugation and seriously affect the assessment of rail maintenance quality. In order to extract and remove the nonlinear and non-stationary trends from original mixed signals, a hybrid model based ensemble empirical mode decomposition (EEMD) and modified principal component analysis (MPCA) is proposed in this paper. Compared with the existing de-trending methods based on EMD, this method first considers low-frequency intrinsic mode functions (IMFs) thought to be underlying trend components that maybe contain some unrelated components, such as white noise and low-frequency signal itself, and proposes to use PCA to accurately extract the pure trends from the IMFs containing multiple components. On the other hand, due to the energy contribution ratio between trends and mixed signals is prior unknown, and the principal components (PCs) decomposed by PCA are arranged in order of energy reduction without considering frequency distribution, the proposed method modifies traditional PCA and just selects relevant low-frequency PCs to reconstruct the trends based on the zero-crossing numbers (ZCN) of each PC. Extensive tests are presented to illustrate the effectiveness of the proposed method. The results show the proposed EEMD-PCA-ZCN is an effective tool for trend extraction of rail corrugation measured dynamically.
Frequency of sternal foramen evaluated by MDCT: a minor variation of great relevance.
Babinski, Marcio A; de Lemos, Leandro; Babinski, Monique S D; Gonçalves, Marianna V T; De Paula, Rafael C; Fernandes, Rodrigo M P
2015-04-01
Due to inadvertent cardiac or great vessel injury, sternal foramina may pose as a great hazard during sternal puncture. They can also be misinterpreted as osteolytic lesions in cross-sectional imaging of the sternum. The distribution of these variations differs between populations, but data from Brazilians are scarcely reported. Therefore, this study aimed to verify the frequency of midline sternal foramen and double-ended xiphoid process, as developmental variations, in order to avoid fatal complications following sternal puncture of sternal acupuncture treatment. A total of 114 chest computed tomograms were evaluated. The frequency of midline sternal foramen in a complication risk bearing feature is of approximately 10.5%. The double-ended xiphoid process was present in 17.5%. We conclude that sternal acupuncture should be planned in the region of corpus-previous CT should be done to rule out this variation. Furthermore, we strongly recommend the acupuncture technique which prescribes a safe superficial-oblique approach to the sternum.
Phonon-induced polariton superlattices
de Lima, Jr., M. M.; Poel, Mike van der; Santos, P. V.;
2006-01-01
We show that the coherent interaction between microcavity polaritons and externally stimulated acoustic phonons forms a tunable polariton superlattice with a folded energy dispersion determined by the phonon population and wavelength. Under high phonon concentration, the strong confinement of the...... of the optical and excitonic polariton components in the phonon potential creates weakly coupled polariton wires with a virtually flat energy dispersion....
Swinteck, Nichlas Z.
This dissertation contains research directed at investigating the behavior and properties of a class of composite materials known as phononic crystals. Two categories of phononic crystals are explicitly investigated: (I) elastic phononic crystals and (II) nano-scale phononic crystals. For elastic phononic crystals, attention is directed at two-dimensional structures. Two specific structures are evaluated (1) a two-dimensional configuration consisting of a square array of cylindrical Polyvinylchloride inclusions in air and (2) a two-dimensional configuration consisting of a square array of steel cylindrical inclusions in epoxy. For the first configuration, a theoretical model is developed to ascertain the necessary band structure and equi-frequency contour features for the realization of phase control between propagating acoustic waves. In contrasting this phononic crystal with a reference system, it is shown that phononic crystals with equifrequency contours showing non-collinear wave and group velocity vectors are ideal systems for controlling the phase between propagating acoustic waves. For the second configuration, it is demonstrated that multiple functions can be realized of a solid/solid phononic crystal. The epoxy/steel phononic crystal is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device and (6) a k-space multiplexer. To transition between macro-scale systems (elastic phononic crystals) and nano-scale systems (nano-phononic crystals), a toy model of a one-dimensional chain of masses connected with non-linear, anharmonic springs is utilized. The implementation of this model introduces critical ideas unique to nano-scale systems, particularly the concept of phonon mode lifetime. The nano-scale phononic crystal of interest is a graphene sheet with periodically spaced holes in a triangular array. It is found through equilibrium
Self-control and frequency of model presentation: effects on learning a ballet passé relevé.
Fagundes, Julie; Chen, David D; Laguna, Patricia
2013-08-01
The purpose of this experiment was to examine the combined effects of self-control and frequency of model presentation on learning a complex motor skill, i.e., ballet passé relevé. Before practice started self-control participants were asked to choose two viewings or six viewings (before practice and then every five trials) and the externally controlled groups were yoked to their self-control counterparts. All participants completed 15 acquisition trials followed by 5 trials for the immediate and 5 trials for the delayed retention tests 48 hours later. Dependent variables included cognitive representation scores, physical reproduction rankings, and balance time. Statistical analyses indicated that under limited physical practice conditions self-control and higher frequency of model presentation facilitated the development of cognitive representation and did not produce further benefits in movement reproductions and balance time. The results were discussed with respect to the social cognitive theory.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
ZHANG Li
2011-01-01
Within the framework of the macroscopic dielectric continuum model and Loudon's uniaxial crystal model,the phonon modes of a wurtzite/zinc-blende one-dimensional (ID) cylindrical nanowire (NW) are derived and studied.The analytical phonon states of phonon modes are given.It is found that there exist two types of polar phonon modes,i.e.interface optical (IO) phonon modes and the quasi-confined (QC) phonon modes existing in 1D wurtzite/zinc-blende NWs.Via the standard procedure of field quantization, the Frohlich electron-phonon interaction Hamiltonians are obtained.Numerical calculations of dispersive behavior of these phonon modes on a wurtzite/zinc-blende ZnO/MgO NW are performed.The frequency ranges of the I0 and QC phonon modes of the ZnO/MgO NWs are analyzed and discussed.It is found that the IO modes only exist in one frequency range, while QC modes may appear in three frequency ranges.The dispersive properties of the IO and QC modes on the free wave-number kz and the azimuthal quantum number m are discussed.The analytical Hamiltonians of electron-phonon interaction obtained here are quite useful for further investigating phonon influence on optoelectronics properties of wurtzite/zinc-blende 1D NW structures.
Mwakikunga, BW
2012-07-01
Full Text Available mode calle argue t replacin ciall thi mor numerica i t Followin t an t 2 replace in W structure surfac bee alen | an sion [26 hav phonon ria i tudina? phonon give tivel ? ? GaP@Ga Xion Recently reporte frequenc...] and explained by Gupta et al. [30] and by g et al. [31,32] in rectangular cross-section nanowires of ZnS. , SO phonons from 50-nm thick GaN nano-ribbons were d [33]. Although, Xiong et al. [34] has reviewed SO phonon y to relate SO phonons to the particle...
Geometrical tuning of thermal phonon spectrum in nanoribbons
Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay
2016-03-01
Phonon spectral energy transmission in silicon nanoribbons is investigated using Monte-Carlo simulations in the boundary scattering regime by changing the length and width geometrical parameters. We show that the transition frequency from specular scattering to diffuse scattering is inversely proportional to the edge roughness σ with a geometry independent factor of proportionality. The increase of the length over width ratio \\zeta leads to a decrease of the energy transmission in the diffuse scattering regime which evolves as {{≤ft(1+{{\\zeta}0.59}\\right)}-1} . This trend is explained by developing a model of phonon energy transmission in the fully diffuse scattering regime which takes into account the probability for a diffusively scattered phonon to be directly transmitted from any position on the edge of the nanoribbon. This model establishes the importance of the solid angles in the energy transmission evolution with \\zeta . The transition from unity energy transmission in the specular scattering regime to reduced transmission in the diffuse scattering regime constitutes a low-pass frequency filter for phonons. Our simulations show an energy rejection rate better than 90% for high \\zeta , which paves the way for potential high performance filters. Filtering out high frequency phonons is of significant interest for phononic crystal applications, which use band engineering of phonons in the wave regime with low frequencies.
The optical phonon spectrum of SmFeAsO
Marini, C.; Mirri, C.; Profeta, G.; Lupi, S.; Di Castro, D.; Sopracase, R.; Postorino, P.; Calvani, P.; Perucchi, A.; Massidda, S.; Tropeano, G. M.; Putti, M.; Martinelli, A.; Palenzona, A.; Dore, P.
2008-01-01
We measured the Raman and the Infrared phonon spectrum of SmFeAsO polycrystalline samples. We also performed Density Functional Theory calculations within the pseudopotential approximation to obtain the structural and dynamical lattice properties of both the SmFeAsO and the prototype LaFeAsO compounds. The measured Raman and Infrared phonon frequencies are well predicted by the optical phonon frequencies computed at the Gamma point, showing the capability of the employed ab-initio methods to ...
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Far infrared absorption by acoustic phonons in titanium dioxide nanopowders
Murray, Daniel B.; Netting, Caleb H.; Saviot, Lucien; Pighini, Catherine; Millot, Nadine; Aymes, Daniel; Liu, Hsiang-Lin
2006-01-01
We report spectral features of far infrared electromagnetic radiation absorption in anatase TiO2 nanopowders which we attribute to absorption by acoustic phonon modes of nanoparticles. The frequency of peak excess absorption above the background level corresponds to the predicted frequency of the dipolar acoustic phonon from continuum elastic theory. The intensity of the absorption cannot be accounted for in a continuum elastic dielectric description of the nanoparticle material. Quantum mech...
Phonon tunneling through a double barrier system
Villegas, Diosdado [Departamento de Física, Universidad Central “Marta Abreu” de Las Villas, CP 54830, Santa Clara, Villa Clara (Cuba); Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico); León-Pérez, Fernando de [Centro Universitario de la Defensa de Zaragoza, Ctra. de Huesca s/n, E-50090 Zaragoza (Spain); Pérez-Álvarez, R. [Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca (Mexico); Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110A, Ciudad Universitaria, 72570 Puebla (Mexico)
2015-04-15
The tunneling of optical and acoustic phonons at normal incidence on a double-barrier is studied in this paper. Transmission coefficients and resonance conditions are derived theoretically under the assumption that the long-wavelength approximation is valid. It is shown that the behavior of the transmission coefficients for the symmetric double barrier has a Lorentzian form close to resonant frequencies and that Breit–Wigner's formula have a general validity in one-dimensional phonon tunneling. Authors also study the so-called generalized Hartman effect in the tunneling of long-wavelength phonons and show that this effect is a numerical artifact resulting from taking the opaque limit before exploring the variation with a finite barrier width. This study could be useful for the design of acoustic devices.
吴健; 白晓春; 肖勇; 耿明昕; 郁殿龙; 温激鸿
2016-01-01
A multi-frequency locally resonant (LR) phononic plate is proposed in this paper. The phononic plate consists of periodic arrays of multiple double-cantilevered thin beams attached to a thin homogeneous plate. This proposed phononic plate is simplified and modeled using a plane wave expansion method to enable the calculation of flexural wave band structures. The band gap behavior of the phononic plate is analyzed comprehensively. In addition, an experimental specimen is fabricated using a square aluminum plate with a thickness of 0.9 mm and an area of 840 mm × 840 mm, and attached to the specimens as periodic arrays of two types of double-cantilevered thin beams made of the same material as the host plate. And the specimen is measured by using a scanning laser Doppler vibrometer to verify the theoretical predictions of band gaps. Investigations of this paper yield the following findings and conclusions. 1) Due to the interaction of low-frequency vibrational modes of attached multiple double-cantilevered beams and flexural vibration of the host plate, the proposed multi-frequency LR phononic plate can exhibit multiple low-frequency flexural wave band gaps (stop bands). It is also found that the band gaps of a multi-frequency LR phononic plate, especially those appearing in a lower frequency range, are generally narrower than that of a single-frequency LR phononic plate with the same type of double-cantilevered beams. 2) The frequency location of band gaps moves to higher frequency range when the thickness of the double-cantilevered beams is increased, or when the length of the double-cantilevered beams is decreased. It is also shown that a very small variation of the thickness (e.g., 0.1 mm) may lead to significant changes of frequency position of the band gaps. 3) When the width of the double-cantilevered beams is enlarged or the number of the double-cantilevered beams is increased, the lower band gap edge will move to a lower frequency range, while the upper band
Coherent phonons in carbon based nanostructures
Sanders, G. D.; Nugraha, A. R. T.; Sato, K.; Kim, J.-H.; Lim, Y.-S.; Kono, J.; Saito, R.; Stanton, C. J.
2014-06-01
We have developed a theory for the generation and detection of coherent phonons in carbon based nanotstructures such as single walled nanotubes (SWNTs), graphene, and graphene nanoribbons. Coherent phonons are generated via the deformation potential electron/hole-phonon interaction with ultrafast photo-excited carriers. They modulate the reflectance or absorption of an optical probe pules on a THz time scale and might be useful for optical modulators. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire Brillouin zone while the phonon states are treated using valence force field models which include bond stretching, in-plane and out-of-plane bond bending, and bond twisting interactions up to fourth neighbor distances. We compare our theory to experiments for the low frequency radial breathing mode (RBM) in micelle suspended single-walled nanotubes (SWNTs). The analysis of such data provides a wealth of information on the dynamics and interplay of photons, phonons and electrons in these carbon based nanostructures.
Strong coupling of Rydberg atoms and surface phonon polaritons on piezoelectric superlattices
Sheng, Jiteng; Shaffer, James P
2016-01-01
We propose a hybrid quantum system where the strong coupling regime can be achieved between a Rydberg atomic ensemble and propagating surface phonon polaritons on a piezoelectric superlattice. By exploiting the large electric dipole moment and long lifetime of Rydberg atoms as well as tightly confined surface phonon polariton modes, it is possible to achieve a coupling constant far exceeding the relevant decay rates. The frequency of the surface mode can be selected so it is resonant with a Rydberg transition by engineering the piezoelectric superlattice. We describe a way to observe the Rabi splitting associated with the strong coupling regime under realistic experimental conditions. The system can be viewed as a new type of optomechanical system.
Phonons in Ge/Si superlattices with Ge quantum dots
Milekhin, A G; Pchelyakov, O P; Schulze, S; Zahn, D R T
2001-01-01
Ge/Si superlattices with Ge quantum dots obtained by means of molecular-beam epitaxy were investigated by means of light Raman scattering under resonance conditions. These structures are shown to have oscillation properties of both two-dimensional and zero-dimensional objects. Within spectrum low-frequency range one observes twisted acoustic phonons (up to 15 order) typical for planar superlattices. Lines of acoustic phonons are overlapped with a wide band of continuous emission. Analysis of frequencies of Ge and Ge-Si optical phonons shows that Ge quantum dots are pseudoamorphous ones and mixing of Ge and Si atoms is a negligible one. One detected low-frequency shift of longitudinal optical phonons at laser excitation energy increase (2.54-2.71 eV)
X. Ding
2015-05-01
Full Text Available Thermal conductivity of ferroelastic device materials can be reversibly controlled by strain. The nucleation and growth of twin boundaries reduces thermal conductivity if the heat flow is perpendicular to the twin wall. The twin walls act as phonon barriers whereby the thermal conductivity decreases linearly with the number of such phonon barriers. Ferroelastic materials also show elasto-caloric properties with a high frequency dynamics. The upper frequency limit is determined by heat generation on a time scale, which is some 5 orders of magnitude below the typical bulk phonon times. Some of these nano-structural processes are irreversible under stress release (but remain reversible under temperature cycling, in particular the annihilation of needle domains that are a key indicator for ferroelastic behaviour in multiferroic materials.
Vasseur, J. O.; Deymier, P. A.; Khelif, A.; Lambin, Ph.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L.; Fettouhi, N.; Zemmouri, J.
2002-05-01
The propagation of acoustic waves in a two-dimensional composite medium constituted of a square array of parallel copper cylinders in air is investigated both theoretically and experimentally. The band structure is calculated with the plane wave expansion (PWE) method by imposing the condition of elastic rigidity to the solid inclusions. The PWE results are then compared to the transmission coefficients computed with the finite difference time domain (FDTD) method for finite thickness composite samples. In the low frequency regime, the band structure calculations agree with the FDTD results indicating that the assumption of infinitely rigid inclusion retains the validity of the PWE results to this frequency domain. These calculations predict that this composite material possesses a large absolute forbidden band in the domain of the audible frequencies. The FDTD spectra reveal also that hollow and filled cylinders produce very similar sound transmission suggesting the possibility of realizing light, effective sonic insulators. Experimental measurements show that the transmission through an array of hollow Cu cylinders drops to noise level throughout frequency interval in good agreement with the calculated forbidden band.
Phonon waveguides for electromechanical circuits
Hatanaka, D.; Mahboob, I.; Onomitsu, K.; Yamaguchi, H.
2014-07-01
Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.
Perrin, Bernard
2007-06-01
The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how phonons can help tracking dark matter. These 328 presentations gave rise to 185 articles
Nagy, Agnes; Sipeky, Csilla; Szalai, Renata; Melegh, Bela Imre; Matyas, Petra; Ganczer, Alma; Toth, Kalman; Melegh, Bela
2015-09-03
SLCO1B1 polymorphisms are relevant in statin pharmacokinetics. Aim of this study was to investigate the genetic variability and haplotype profile of SLCO1B1 polymorphisms in Roma and Hungarian populations. Genotypes of 470 Roma and 442 Hungarian subjects for c.388A > G, c.521T > C and c.1498-1331T > C polymorphisms were determined by PCR-RFLP assay. Using these SNPs eight different haplotypes could be differentiated. Differences were found between Roma and Hungarians in SLCO1B1 388AA (24.5 vs. 45.5 %), GG (33.4 vs. 17.9 %) genotypes, AG + GG (75.5 vs. 54.5 %) carriers, in G allele frequency (0.545 vs. 0.362), respectively (p Roma (43.6 %) and in Hungarian (59.1 %) samples. The ht6 (GCT) was not present in Roma population samples Haplotype analyses showed striking differences between the Roma and Hungarian samples in ht4 (ATT, 37.2 % vs 20.8 %), ht5 (GCC, 1.15 % vs. 3.62 %) and ht8 (GTT, 43.6 % vs. 59.1 %) haplotypes (p Roma the 388A was found to be the minor allele contrary to Indians (India). The minor allele frequency of 521T > C and 1498-1331T > C SNPs are almost three times higher in Romas than in Indians (Singapore and Gujarati, respectively). Observed allele frequency for 1498-1331T > C polymorphism reflects the measured average European rates in Hungarians. The results can be applied in population specific treatment algorithms when developing effective programs for statin therapy.
Electron-phonon coupling and the soft phonon mode in TiSe{<_2}.
Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Karapetrov, G.; Hott, R.; Heid, R.; Bohnen, K.-P.; Alatas, A. (Materials Science Division); ( XSD); (Institut fur Festkorperphysik)
2011-01-01
We report high-resolution inelastic x-ray measurements of the soft phonon mode in the charge-density-wave compound TiSe{sub 2}. We observe a complete softening of a transverse optic phonon at the L point, i.e., q = (0.5,0,0.5), at T {approx} T{sub CDW}. Detailed ab initio calculations for the electronic and lattice dynamical properties of TiSe{sub 2} are in quantitative agreement with experimental frequencies for the soft phonon mode. The observed broad range of renormalized phonon frequencies, (0.3,0,0.5) {<=} q {<=} (0.5,0,0.5), is directly related to a broad peak in the electronic susceptibility stabilizing the charge-density-wave ordered state. Our analysis demonstrates that a conventional electron-phonon coupling mechanism can explain a structural instability and the charge-density-wave order in TiSe{sub 2} although other mechanisms might further boost the transition temperature.
Sound and noisy light: Optical control of phonons in photoswitchable structures
Sklan, Sophia R.; Grossman, Jeffrey C.
2015-10-01
We present a means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident on the lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore, modulation of the phonon band structure at high frequencies results in a strong confinement of phonons. The applications of this regime for phonon waveguides, vibrational energy storage, and phononic transistors is examined.
Sound and Noisy Light: Optical Control of Phonons in Photo-switchable Structures
Sklan, Sophia; Grossman, Jeffrey
2015-03-01
We present a novel means of controlling phonons via optical tuning. Taking as a model an array of photoresponsive materials (photoswitches) embedded in a matrix, we numerically analyze the vibrational response of an array of bistable harmonic oscillators with stochastic spring constants. Changing the intensity of light incident on the lattice directly controls the composition of the lattice and therefore the speed of sound. Furthermore, modulation of the phonon bandstructure at high frequencies results in a strong confinement of phonons. The applications of this regime for phonon wave-guides, vibrational energy storage, and phononic transistors is examined. Support provided by NSF GRF Grant No. 1122374.
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Anharmonic effects in light scattering due to optical phonons in silicon
Balkanski, M.; Wallis, R. F.; Haro, E.
1983-08-01
Systematic measurements by light scattering of the linewidth and frequency shift of the q-->=0 optical phonon in silicon over the temperature range of 5-1400 K are presented. Both the linewidth and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indicates the necessity of including terms in the phonon proper self-energy corresponding to four-phonon anharmonic processes.
A moment model for phonon transport at room temperature
Mohammadzadeh, Alireza; Struchtrup, Henning
2017-01-01
Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also, the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system. A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave vector of phonons. As an example, a system of moment equations, consisting of three directional and seven frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is obtained.
Lifetimes of confined acoustic phonons in ultrathin silicon membranes.
Cuffe, J; Ristow, O; Chávez, E; Shchepetov, A; Chapuis, P-O; Alzina, F; Hettich, M; Prunnila, M; Ahopelto, J; Dekorsy, T; Sotomayor Torres, C M
2013-03-01
We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ~4.7 ns to 5 ps with decreasing membrane thickness from ~194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.
Single phase 3D phononic band gap material.
Warmuth, Franziska; Wormser, Maximilian; Körner, Carolin
2017-06-19
Phononic band gap materials are capable of prohibiting the propagation of mechanical waves in certain frequency ranges. Band gaps are produced by combining different phases with different properties within one material. In this paper, we present a novel cellular material consisting of only one phase with a phononic band gap. Different phases are modelled by lattice structure design based on eigenmode analysis. Test samples are built from a titanium alloy using selective electron beam melting. For the first time, the predicted phononic band gaps via FEM simulation are experimentally verified. In addition, it is shown how the position and extension of the band gaps can be tuned by utilizing knowledge-based design.
Bloch oscillations of THz acoustic phonons in coupled nanocavity structures.
Lanzillotti-Kimura, N D; Fainstein, A; Perrin, B; Jusserand, B; Mauguin, O; Largeau, L; Lemaître, A
2010-05-14
Nanophononic Bloch oscillations and Wannier-Stark ladders have been recently predicted to exist in specifically tailored structures formed by coupled nanocavities. Using pump-probe coherent phonon generation techniques we demonstrate that Bloch oscillations of terahertz acoustic phonons can be directly generated and probed in these complex nanostructures. In addition, by Fourier transforming the time traces we had access to the proper eigenmodes in the frequency domain, thus evidencing the related Wannier-Stark ladder. The observed Bloch oscillation dynamics are compared with simulations based on a model description of the coherent phonon generation and photoelastic detection processes.
Phononic crystals fundamentals and applications
Adibi, Ali
2016-01-01
This book provides an in-depth analysis as well as an overview of phononic crystals. This book discusses numerous techniques for the analysis of phononic crystals and covers, among other material, sonic and ultrasonic structures, hypersonic planar structures and their characterization, and novel applications of phononic crystals. This is an ideal book for those working with micro and nanotechnology, MEMS (microelectromechanical systems), and acoustic devices. This book also: Presents an introduction to the fundamentals and properties of phononic crystals Covers simulation techniques for the analysis of phononic crystals Discusses sonic and ultrasonic, hypersonic and planar, and three-dimensional phononic crystal structures Illustrates how phononic crystal structures are being deployed in communication systems and sensing systems.
Phonon dispersion and electron-phonon coupling in MgB2 and AlB2.
Bohnen, K P; Heid, R; Renker, B
2001-06-18
We present a first principles investigation of the lattice dynamics and electron-phonon coupling of the superconductor MgB2 and the isostructural AlB2 within the framework of density functional perturbation theory using a mixed-basis pseudopotential method. Complete phonon dispersion curves and Eliashberg functions alpha2F are calculated for both systems. The main differences are related to high frequency in-plane boron vibrations, which are strongly softened in MgB2 and exhibit an exceptionally strong electron-phonon coupling. We also report on Raman measurements, which support the theoretical findings. Implications for the superconducting transition temperature are briefly discussed.
On-chip photonic-phononic emitter-receiver apparatus
Cox, Jonathan Albert; Jarecki, Jr., Robert L.; Rakich, Peter Thomas; Wang, Zheng; Shin, Heedeuk; Siddiqui, Aleem; Starbuck, Andrew Lea
2017-07-04
A radio-frequency photonic devices employs photon-phonon coupling for information transfer. The device includes a membrane in which a two-dimensionally periodic phononic crystal (PnC) structure is patterned. The device also includes at least a first optical waveguide embedded in the membrane. At least a first line-defect region interrupts the PnC structure. The first optical waveguide is embedded within the line-defect region.
Nomura, Yusuke; Arita, Ryotaro
2015-12-01
We formulate an ab initio downfolding scheme for electron-phonon-coupled systems. In this scheme, we calculate partially renormalized phonon frequencies and electron-phonon coupling, which include the screening effects of high-energy electrons, to construct a realistic Hamiltonian consisting of low-energy electron and phonon degrees of freedom. We show that our scheme can be implemented by slightly modifying the density functional-perturbation theory (DFPT), which is one of the standard methods for calculating phonon properties from first principles. Our scheme, which we call the constrained DFPT, can be applied to various phonon-related problems, such as superconductivity, electron and thermal transport, thermoelectricity, piezoelectricity, dielectricity, and multiferroicity. We believe that the constrained DFPT provides a firm basis for the understanding of the role of phonons in strongly correlated materials. Here, we apply the scheme to fullerene superconductors and discuss how the realistic low-energy Hamiltonian is constructed.
Polar phonon mixing in magnetoelectric EuTiO3
Goian, V.; Kamba, S.; Hlinka, J.; Vaněk, P.; Belik, A. A.; Kolodiazhnyi, T.; Petzelt, J.
2009-10-01
Infrared reflectivity spectra of antiferromagnetic incipient ferroelectric EuTiO3 were investigated up to 600 K. Three polar phonons typical for the cubic perovskite Pmbar {3}m structure were observed. Analysis of phonon plasma frequencies showed that the lowest-energy TO1 phonon corresponds predominantly to the Slater mode describing vibration of Ti cations against the oxygen octahedra and the TO2 phonon expresses vibrations of the Eu cation against the TiO6 octahedra. The highest frequency TO4 phonon represents O-octahedra bending. Incipient ferroelectric behavior of the permittivity is caused by pronounced softening of the TO1 phonon, which is coupled to the TO2 mode. Although the Eu cations are not involved in the TO1 mode, the spin ordering of the 4f electrons at Eu cations has influence on the frequency of the TO1 mode due to Eu-O-Eu super-exchange interaction. This is probably responsible for the 7% change of the permittivity induced by the magnetic field in the antiferromagnetic phase, as reported by Katsufuji and Takagi [Phys. Rev. B 64, 054415 (2001)].
Lee, Myeong H.; Troisi, Alessandro
2017-02-01
It has been reported in recent years that vibronic resonance between vibrational energy of the intramolecular nuclear mode and excitation-energy difference is crucial to enhance excitation energy transport in light harvesting proteins. Here we investigate how vibronic enhancement induced by vibronic resonance is influenced by the details of local and non-local exciton-phonon interactions. We study a heterodimer model with parameters relevant to the light-harvesting proteins with the surrogate Hamiltonian quantum dynamics method in a vibronic basis. In addition, the impact of field-driven excitation on the efficiency of population transfer is compared with the instantaneous excitation, and the effect of multi-mode vibronic coupling is presented in comparison with the coupling to a single effective vibrational mode. We find that vibronic enhancement of site population transfer is strongly suppressed with the increase of non-local exciton-phonon interaction and increasing the number of strongly coupled high-frequency vibrational modes leads to a further decrease in vibronic enhancement. Our results indicate that vibronic enhancement is present but may be much smaller than previously thought and therefore care needs to be taken when interpreting its role in excitation energy transport. Our results also suggest that non-local exciton-phonon coupling, which is related to the fluctuation of the excitonic coupling, may be as important as local exciton-phonon coupling and should be included in any quantum dynamics model.
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
Optical Conductivity of Graphene Sheet Including Electron-Phonon Interaction
Hamze Mousavi
2012-01-01
Using an expression of optical conductivity, based on the linear response theory, the Green＇s function technique and within the Holstein Hamiltonian model, the effect of electron-phonon interaction on the optical conductivity of graphene plane is studied. It is found that the electron-phonon coupling increases the optical conductivity of graphene sheet in the low frequency region due to decreasing quasiparticle weight of electron excitation while the optical conductivity reduces in the high frequency region. The latter is due to role of electrical field＇s frequency.
Phonon-assisted decoherence and tunneling in quantum dot molecules
Grodecka-Grad, Anna; Foerstner, Jens
2011-01-01
We study the influence of the phonon environment on the electron dynamics in a doped quantum dot molecule. A non-perturbative quantum kinetic theory based on correlation expansion is used in order to describe both diagonal and off-diagonal electron-phonon couplings representing real and virtual...... processes with relevant acoustic phonons. We show that the relaxation is dominated by phonon-assisted electron tunneling between constituent quantum dots and occurs on a picosecond time scale. The dependence of the time evolution of the quantum dot occupation probabilities on the energy mismatch between...... the quantum dots is studied in detail. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)...
Jarius Sven
2010-09-01
Full Text Available Abstract Background In 70-80% of cases, neuromyelitis optica (NMO is associated with highly specific serum auto-antibodies to aquaporin-4 (termed AQP4-Ab or NMO-IgG. Recent evidence strongly suggests that AQP4-Ab are directly involved in the immunopathogenesis of NMO. Objective To assess the frequency, syndrome specificity, diagnostic relevance, and origin of cerebrospinal fluid (CSF AQP4-Ab in patients with NMO spectrum disorders (NMOSD. Methods 87 CSF samples from 37 patients with NMOSD and 42 controls with other neurological diseases were tested for AQP4-Ab in a cell based assay using recombinant human AQP4. Twenty-three paired CSF and serum samples from AQP4-Ab seropositive NMOSD patients were further analysed for intrathecal IgG synthesis to AQP4. Results AQP4-Ab were detectable in 68% of CSF samples from AQP4-Ab seropositive patients with NMOSD, but in none of the CSF samples from AQP4-Ab seronegative patients with NMOSD and in none of the control samples. Acute disease relapse within 30 days prior to lumbar puncture, AQP4-Ab serum titres >1:250, and blood-CSF barrier dysfunction, but not treatment status, predicted CSF AQP4-Ab positivity. A positive AQP4-specific antibody index was present in 1/23 samples analysed. Conclusions AQP4-Ab are detectable in the CSF of most patients with NMOSD, mainly during relapse, and are highly specific for this condition. In the cohort analysed in this study, testing for CSF AQP4-Ab did not improve the sensitivity and specificity of the current diagnostic criteria for NMO. The substantial lack of intrathecal AQP4-Ab synthesis in patients with NMOSD may reflect the unique localisation of the target antigen at the blood brain barrier, and is important for our understanding of the immunopathogenesis of the disease.
Biagini, Elena; Lofiego, Carla; Ferlito, Marinella; Fattori, Rossella; Rocchi, Guido; Graziosi, Maddalena; Lovato, Luigi; di Diodoro, Lara; Cooke, Robin M T; Petracci, Elisabetta; Bacchi-Reggiani, Letizia; Zannoli, Romano; Branzi, Angelo; Rapezzi, Claudio
2007-09-15
We investigated frequency/characteristics of acute coronary syndrome-like (ACS-like) electrocardiographic (ECG) profiles among patients with a final diagnosis of acute aortic syndrome (AAS), and explored pathophysiologic determinants and prognostic relevance within each Stanford subtype. We blindly reviewed presentation electrocardiograms of 233 consecutive patients with final diagnosis of AAS (164 Stanford type A) at a regional treatment center. Prevalence of ACS-like ECG findings was 27% (type A, 26%, type B, 29%); most were non-ST-elevation myocardial infarction-like. Patients with ACS-like ECG findings more often had coronary ostia involvement (p=0.002), pleural effusion (p=0.02), significant aortic regurgitation (p=0.01), and troponin positivity (p=0.001). ACS-like ECG profile in type A disease was independently associated with coronary ostia involvement (odds ratio [OR] 5.27, 95% confidence interval [CI] 1.75 to 15.88). ACS-like ECG profile predicted in-hospital mortality (OR 2.90, 95% CI 1.24 to 6.12), as did age (each incremental 10-year: OR 1.59, 95% CI 1.14 to 2.22), and syncope at presentation (OR 2.90, 95% CI 1.16 to 7.24). In conclusion, about 25% of our AAS patients (in either Stanford subtype) presented ACS-like ECG patterns-often with non-ST-elevation myocardial infarction characteristics-which could cause misdiagnosis. ACS-like ECG profile was associated with more complicated disease, and in type A disease was a strong independent predictor of in-hospital mortality.
Coherent phonon decay and the boron isotope effect for MgB2.
Alarco, Jose A; Talbot, Peter C; Mackinnon, Ian D R
2014-12-14
Ab initio DFT calculations for the phonon dispersion (PD) and the phonon density of states (PDOS) of the two isotopic forms ((10)B and (11)B) of MgB2 demonstrate that use of a reduced symmetry super-lattice provides an improved approximation to the dynamical, phonon-distorted P6/mmm crystal structure. Construction of phonon frequency plots using calculated values for these isotopic forms gives linear trends with integer multiples of a base frequency that change in slope in a manner consistent with the isotope effect (IE). Spectral parameters inferred from this method are similar to that determined experimentally for the pure isotopic forms of MgB2. Comparison with AlB2 demonstrates that a coherent phonon decay down to acoustic modes is not possible for this metal. Coherent acoustic phonon decay may be an important contributor to superconductivity for MgB2.
Phononic crystals with one-dimensional defect as sensor materials
Aly, Arafa H.; Mehaney, Ahmed
2017-09-01
Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.
Phononic crystals with one-dimensional defect as sensor materials
Aly, Arafa H.; Mehaney, Ahmed
2017-04-01
Recently, sensor technology has attracted great attention in many fields due to its importance in many engineering applications. In the present work, we introduce a study using the innovative properties of phononic crystals in enhancing a new type of sensors based on the intensity of transmitted frequencies inside the phononic band gaps. Based on the transfer matrix method and Bloch theory, the expressions of the reflection coefficient and dispersion relation are presented. Firstly, the influences of filling fraction ratio and the angle of incidence on the band gap width are discussed. Secondly, the localization of waves inside band gaps is discussed by enhancing the properties of the defected phononic crystal. Compared to the periodic structure, localization modes involved within the band structure of phononic crystals with one and two defect layers are presented and compared. Trapped localized modes can be detected easily and provide more information about defected structures. Such method could increase the knowledge of manufacturing defects by measuring the intensity of propagated waves in the resonant cavities and waveguides. Moreover, several factors enhance the role of the defect layer on the transmission properties of defected phononic crystals are presented. The acoustic band gap can be used to detect or sense the type of liquids filling the defect layer. The liquids make specific resonant modes through the phononic band gaps that related to the properties of each liquid. The frequency where the maximum resonant modes occur is correlated to material properties and allows to determine several parameters such as the type of an unknown material.
Influence of mass contrast in alloy phonon scattering
Shiga, Takuma; Shiomi, Junichiro
2015-01-01
We have investigated the effect of mass contrast on alloy phonon scattering in mass-substituted Lennard-Jones crystals. By calculating the mass-difference phonon scattering rate using a modal analysis method based on molecular dynamics, we have identified the applicability and limits of the widely-used mass-difference perturbation model in terms of magnitude and sign of the mass difference. The result of a phonon -mode-dependent analysis reveals that the critical phonon frequency, above which the mass-difference perturbation theory fails, decreases with the magnitude of the mass difference independently of its sign. This gives rise to a critical mass contrast, above which the mass-difference perturbation model noticeably underestimates the lattice thermal conductivity.
Electron-phonon relaxation time in ultrathin tungsten silicon film
Sidorova, M; Korneev, A; Chulkova, G; Korneeva, Yu; Mikhailov, M; Devizenko, Yu; Kozorezov, A; Goltsman, G
2016-01-01
Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.
Phonons in Quantum-Dot Quantum Well
QINGuo-Yi
2004-01-01
Phonon modes of A1As/GaAs/A1As and GaAs/A1As/metal Pb quantum-dot quantum wells (QDQW's) with the whole scale up to 90 AО are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AlAs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (Г)-like modes of QDQW's that have maximum bulk GaAs-LO (Г) parentages in all modes covering thewhole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting thestructure parameters. In A1As/GaAs/A1As, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/A1As/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model The frequency spectra in both GaAs-like andAlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 AО Defects at metal/A1As interface have significant influence to AlAs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.
Phonons in Quantum-Dot Quantum Well
QIN Guo-Yi
2004-01-01
Phonon modes of AlAs/GaAs/AlAs and GaAs/AlAs/metal Pb quantum-dot quantum wells (QDQW's)with the whole scale up to 90 A are calculated by using valence force field model (VFFM) based on group theory.Their optical frequency spectra are divided into two nonoverlapping bands, the AMs-like band and the GaAs-like band,originated from and having frequency interval inside the bulk AlAs optical band and bulk GaAs optical band, respectively.The GaAs-LO (F)-like modes of QDQW's that have maximum bulk GaAs-LO (F) parentages in all modes covering the whole frequency region and all symmetries have always A1 symmetry. Its frequency is controllable by adjusting the structure parameters. In AlAs/GaAs/AlAs, it may be controlled to meet any designed frequency in GaAs-like band.The results on GaAs/AMs/metal Pb QDQW's show the same effect of reducing in interface optical phonons by using the metal/semiconductor interface revealed ever by macroscopic model. The frequency spectra in both GaAs-like and AlAs-like optical phonon bands are independent of the thickness of Pb shell as long as the thickness of Pb shell is no less than 5 A. Defects at metal/AlAs interface have significant influence to AMs-like optical modes but have only minor influence to GaAs-like optical modes. All these results are important for the studying of the e-ph interaction in QD structures.
Nonlocal dynamics of dissipative phononic fluids
Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas
2017-06-01
We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.
Structural Properties and Phonon dispertion of NACl
R. Khoda-Bakhsh
2001-06-01
Full Text Available Although many phenomena in condensed matter Physics can be understood on the basis of a model, there are also considerable number of physical properties of solid which can not be explained except in the framework of lattice dynamics. We have calculated the phonon frequencies of Na Cl, using an approach which is a combination of frozen phonon and force constants methods in the framework of density functional pseudopotential theory. The dispersion relation curves, were calculated along symmetry direction Δ, Σ and Ù. We also calculated Grunesein parameters for all modes at X and L points in Brillion zone. The calcutions are made in the framework of density functional and pseudopotential theory, using super cell method, with the valence orbitals expanded in plane waves.
Superconductivity and electrical resistivity in alkali metal doped fullerides: Phonon mechanism
Dinesh Varshney; A Dube; K K Choudhary; R K Singh
2005-04-01
We consider a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. We first study the intercage interactions between the adjacent C60 cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C60 phonons. Electronic parameter as repulsive parameter and the attractive coupling strength are obtained within the random phase approximation. Transition temperature, c, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C60 phonons as 5 K, which is much lower as compared to reported c (≈ 20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. To illustrate the usefulness of the above approach, the carbon isotope exponent and the pressure effect are also estimated. Temperature dependence of electrical resistivity is then analysed within the same model phonon spectrum. It is inferred from the two-peak model for phonon density of states that high frequency intramolecular phonon modes play a major role in pairing mechanism with possibly some contribution from alkali-C60 phonon to describe most of the superconducting and normal state properties of doped fullerides.
The origin of phonon anharmonicity in MgB{sub 2} and related compounds
Boeri, L [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Bachelet, G B [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Cappelluti, E [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy); Pietronero, L [INFM Center for Statistical Mechanics and Complexity and Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Piazzale A. Moro 2, 00185 Rome (Italy)
2003-02-01
The recent discovery of a superconducting transition at 39 K in MgB{sub 2} - made of alternating Mg and graphene-like B planes - has raised great interest, for both its technological and theoretical implications. It was clear since the very beginning that the properties of this material are related to an anomalous coupling between the charge carriers in the {sigma} bands - due to in-plane bonds between Boron atoms - and the phonon mode (E{sub 2g}) which involves in-plane vibrations of the B ions. Theoretical studies have thus been focused on the search for possible anomalies in the e-ph coupling: one of the first results was the discovery that the E{sub 2g} phonon is highly anharmonic, but the connection between anharmonicity and T{sub c} in this material is still a controversial point. We first present a detailed first-principles study of the E{sub 2g} phonon anharmonicity in MgB{sub 2} and analogous compounds which are not superconducting, AlB{sub 2} and graphite, and in a hypothetical hole-doped graphite (C{sup 2+}{sub 2}); we then introduce an analytical model which allows us to relate the onset of anharmonicity with the small Fermi energy of the carriers in {sigma} bands. Our study suggests a possible relation between anharmonicity and non-adiabaticity; non-adiabatic effects, which can lead to a sensible increase of T{sub c} with respect to values predicted by conventional theory, become in fact relevant when phonon frequencies are comparable to electronic energy scales.
Tunable Topological Phononic Crystals
Chen, Ze-Guo
2016-05-27
Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.
Kosevich, Yury; Han, Haoxue; Volz, Sebastian
2014-03-01
We study theoretically phonon transmission through the interface between two solid crystals, which contains heavy isotopic impurities and/or soft-force-constant defects. We perform analytical calculations of plane wave transmission and numerical molecular dynamics simulation of wave packet transmission, which give consistent with each other results. If the impurities do not fill completely the interface plane, longitudinal and transverse phonons have two passes to cross such interface, through the host and through the impurity atoms bonds. Destructive interference between these passes can result in total resonance reflection of the phonon. The phonon transmission antiresonance is followed by phonon reflection antiresonance at higher frequency. The random distribution of the defects at the interface and nonlinearity of atomic bonds do not deteriorate the reflection and transmission antiresonances. Such Fano-like phonon interference antiresonances can affect heat transport through interfaces and contacts between nanostructures with impurities. The antiresonances are realized in phonon transmission through a planar defect in Si crystal with segregated Ge atoms. The phonon antiresonances can be considered as interference phenomena in atomic-scale phononic metamaterials.
Vibration Spectrums of Polar Interface Optical Phonons in GaAs/AlAs Cylindrical Quantum Dots
ZHANG Li
2005-01-01
The dispersions of the top interface optical phonons and the side interface optical phonons in cylindrical quantum dots are solved by using the dielectric continuum model. Our calculation mainly focuses on the frequency dependence of the IO phonon modes on the wave-vector and quantum number in the cylindrical quantum dot system.Results reveal that the frequency of top interface optical phonon sensitively depends on the discrete wave-vector in z direction and the azimuthal quantum number, while that of the side interface optical phonon mode depends on the radial and azimuthal quantum numbers. These features are obviously different from those in quantum well, quantum well wire,and spherical quantum dot systems. The limited frequencies of interface optical modes for the large wave-vector or quantum number approach two certain constant values, and the math and physical reasons for this feature have been explained reasonably.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zav'Yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.
Theory of phonon properties in doped and undoped CuO nanoparticles
Bahoosh, S. G.; Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.
2012-07-01
We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin-phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects.
Experimental evidence of zone-center optical phonon softening by accumulating holes in thin Ge
Kabuyanagi, Shoichi; Nishimura, Tomonori; Yajima, Takeaki; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan)
2016-01-15
We discuss the impact of free carriers on the zone-center optical phonon frequency in germanium (Ge). By taking advantage of the Ge-on-insulator structure, we measured the Raman spectroscopy by applying back-gate bias. Phonon softening by accumulating holes in Ge film was clearly observed. This fact strongly suggests that the phonon softening in heavily-doped Ge is mainly attributed to the free carrier effect rather than the dopant atom counterpart. Furthermore, we propose that the free carrier effect on phonon softening is simply understandable from the viewpoint of covalent bonding modification by free carriers.
Evarestov, Robert A.; Blokhin, Evgeny; Gryaznov, Denis; Kotomin, Eugene A.; Maier, Joachim
2011-04-01
The atomic, electronic structure and phonon frequencies have been calculated in cubic and low-temperature tetragonal SrTiO3 phases at the ab initio level. We demonstrate that the use of the hybrid exchange-correlation PBE0 functional gives the best agreement with experimental data. The results for the standard generalized gradient approximation (PBE) and hybrid PBE0 functionals are compared for the two types of approaches: a linear combination of atomic orbitals (CRYSTAL09 computer code) and plane waves (VASP5.2 code). The relation between cubic and tetragonal phases and the relevant antiferrodistortive phase transition is discussed in terms of group theory and is illustrated with analysis of calculated soft-mode frequencies at the Γ and R points in the Brillouin zone. Based on phonon calculations, the temperature dependence of the heat capacity is in good agreement with experiment.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Yuan Xiaozhong [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China)]. E-mail: yxz@sjtu.edu.cn; Zhu Kadi [Department of Physics, Institute of Quantum Optics and Quantum Information, Shanghai Jiao Tong University, Shanghai 200240 (China); Li Waisang [Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong (China)
2004-08-30
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Foerster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
Influences of strong exciton-phonon interaction on two coupled quantum dots within cavity QED
Yuan, Xiao-Zhong; Zhu, Ka-Di; Li, Wai-Sang
2004-08-01
For two coupled quantum dots within cavity QED, we show that the exciton-phonon interaction reduces the Rabi frequency and Förster interaction even at absolute zero temperature. The exciton-phonon interaction also makes an additional contribution to the static exciton-exciton dipole interaction energy.
A 1D Optomechanical crystal with a complete phononic band gap
Gomis-Bresco, J; Oudich, M; El-Jallal, S; Griol, A; Puerto, D; Chavez, E; Pennec, Y; Djafari-Rouhani, B; Alzina, F; Martínez, A; Torres, C M Sotomayor
2014-01-01
Recent years have witnessed the boom of cavity optomechanics, which exploits the confinement and coupling of optical waves and mechanical vibrations at the nanoscale. Amongst the different physical implementations,optomechanical (OM) crystals built on semiconductor slabs are particularly interesting since they enable the integration and manipulation of multiple OM elements in a single chip and provide GHz phonons suitable for coherent phonon manipulation. Different demonstrations of coupling of infrared photons and GHz phonons in cavities created by inserting defects on OM crystals have been performed. However, the considered structures do not show a complete phononic bandgap at the frequencies of interest, which in principle should allow longer dephasing time, since acoustic leakage is minimized. In this work we demonstrate the excitation of acoustic modes in a 1D OM crystal properly designed to display a full phononic bandgap for acoustic modes at about 4 GHz. The confined phonons have an OM coupling rangin...
Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit
Xu, Xun-Wei; Liu, Yu-xi
2016-01-01
We study phonon statistics in a nanomechanical resonator (NAMR) which is resonantly coupled to a qubit. We find that there are two different mechanisms for phonon blockade in such a resonantly coupled NAMR-qubit system. One is due to the strong anharmonicity of the NAMR-qubit system with large coupling strength; the other one is due to the destructive interference between different paths for two-phonon excitation in the NAMR-qubit system with a moderate coupling strength. In order to enlarge the mean phonon number for strong phonon antibunching with a moderate NAMR-qubit coupling strength, we assume that two external driving fields are applied to the NAMR and qubit, respectively. In this case, we find that the phonon blockades under two mechanisms can appear at the same frequency regime by optimizing the strength ratio and phase difference of the two external driving fields.
Kamaraju, N.; Kumar, Sunil; Anija, M.; Sood, A. K.
2010-11-01
We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A1 coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of ˜1.4×1021cm-3 and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as ˜0.24Å . Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6×1018cm-3 , we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.
de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan
2010-01-01
In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in cosmetic
de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan
2010-01-01
In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in cosmetic
de Groot, Anton C.; White, Ian R.; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan
2010-01-01
In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in
Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses
Merlin, Roberto
2006-03-01
Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an
Wong, Joe
2004-03-01
The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)
Gravitational Perturbation in Topological Phonon Space
李芳昱; 罗俊; 唐孟希
1994-01-01
The effect of gravitational wave (GW) on phonon in crystal lattice space with spiral dislocation is expressed as a gravitational perturbation in topological phonon space with background of the spiral dislocation.This is a new-type effect form of the GW field to the phonon.The corresponding phonon solutions are given.
Phonon spectrum, thermal expansion and heat capacity of UO{sub 2} from first-principles
Yun, Younsuk, E-mail: younsuk.yun@psi.ch [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Laboratory of Reactor Physics and Systems Behaviour, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Legut, Dominik [Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15, CZ-708 33 Ostrava (Czech Republic); Atomistic Modeling and Design of Materials, University of Leoben, Leoben (Austria); Oppeneer, Peter M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)
2012-07-15
We report first-principles calculations of the phonon dispersion spectrum, thermal expansion, and heat capacity of uranium dioxide. The so-called direct method, based on the quasiharmonic approximation, is used to calculate the phonon frequencies within a density functional framework for the electronic structure. The phonon dispersions calculated at the theoretical equilibrium volume agree well with experimental dispersions. The computed phonon density of states (DOSs) compare reasonably well with measured data, as do also the calculated frequencies of the Raman and infrared active modes including the LO/TO splitting. To study the pressure dependence of the phonon frequencies we calculate phonon dispersions for several lattice constants. Our computed phonon spectra demonstrate the opening of a gap between the optical and acoustic modes induced by pressure. Taking into account the phonon contribution to the total free energy of UO{sub 2} its thermal expansion coefficient and heat capacity have been computed from first-principles. Both quantities are in good agreement with available experimental data for temperatures up to about 500 K.
Large scale phononic metamaterials for seismic isolation
Aravantinos-Zafiris, N. [Department of Sound and Musical Instruments Technology, Ionian Islands Technological Educational Institute, Stylianou Typaldou ave., Lixouri 28200 (Greece); Sigalas, M. M. [Department of Materials Science, University of Patras, Patras 26504 (Greece)
2015-08-14
In this work, we numerically examine structures that could be characterized as large scale phononic metamaterials. These novel structures could have band gaps in the frequency spectrum of seismic waves when their dimensions are chosen appropriately, thus raising the belief that they could be serious candidates for seismic isolation structures. Different and easy to fabricate structures were examined made from construction materials such as concrete and steel. The well-known finite difference time domain method is used in our calculations in order to calculate the band structures of the proposed metamaterials.
Xu, Zhi-Jie
2015-01-01
We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics (MD) simulations. Locally dominant phonon modes (k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium (LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes (k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution (or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems. Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode (k = 0) is excited first and gradually expanding to the highest mode (kmax(x,t)), where kmax(x,t) can only asymptotically approach the maximum mode kB of the first Brillouin zone (kmax(x,t) → kB). No energy distributed into modes with kmax(x,t) proportional to the sound speed
Effects of optical phonon interaction on dynamical valley polarization in graphene
Fahandezh Saadi, M.; Shirkani, H.; Golshan, M. M.
2017-01-01
The present report is concerned with the dynamical behavior of π-electronic valley states, under the interaction with transverse zone-boundary optical phonons, in graphene. It is assumed that the phonons are thermal and obey the Bose-Einstein distribution, while the π-electrons are initially prepared in an experimentally realizable particular valley state. In our study, we take the view that such a mixture is completely described by a time-dependent density operator which is then determined, to the second-order of perturbation, from the governing Schrödinger equation. Employing the density operator so calculated, an analytical expression for the valley polarization, as a function of time, phonon frequency and temperature, is obtained. The results, accompanying with illustrative figures, reveal that the π-electrons, through the elastic exchange of energy with phonons, change the valley states periodically with characteristics that strongly depend upon the temperature. It is in particular shown that as the temperature is raised, the time-averaged valley polarization approaches zero, as expected. Our calculations also show that the amplitude of valley oscillations is solely determined by the temperature and phonon frequency: an increase in the temperature enlarges the amplitudes in contrast to the phonon frequency which does the reverse. Along these lines, moreover, we demonstrate that the frequency of valley oscillations is determined by the electronic momentum deviation from the valley states, along with the phonon frequency.
Volodin, V. A., E-mail: volodin@isp.nsc.ru [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Sachkov, V. A. [Russian Academy of Sciences, Omsk Scientific Center, Siberian Branch (Russian Federation); Sinyukov, M. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-05-15
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.
Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.
2015-05-01
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.
Phonon-drag effects on thermoelectric power
Wu, M. W.; Horing, N. J. M.; Cui, H. L.
1995-01-01
We carry out a calculation of the phonon-drag contribution $S_g$ to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at hi...
Phonons with orbital angular momentum
Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
WAVE PROPAGATION IN TWO-DIMENSIONAL DISORDERED PIEZOELECTRIC PHONONIC CRYSTALS
Jinqiang Li; Fengming Li; Yuesheng Wang; Kikuo Kishimoto
2008-01-01
The wave propagation is studied in two-dimensional disordered piezoelectric phononie crystals using the finite-difference time-domain (FDTD) method. For different eases of disorder,the transmission coefficients are calculated. The influences of disorders on band gaps are investigated. The results show that the disorder in the piezoelectric phononic crystals has more significant influences on the band gap in the low frequency regions than in the high frequency ones. The relation between the width of band gap and the direction of position disorder is also discussed. When the position disorder is along the direction perpendicular to the wave transmission, the piezoelectric phononic crystals have wider band gaps at low frequency regions than the case of position disorder being along the wave transmission direction. It can also be found that the effect of. size disorder on band gaps is analogous to that of location disorder. When the perturbation coefficient is big, it has more pronounced effects on the pass bands in the piezoelectric phononic crystals with both size and location disorders than in the piezoelectric phononic crystals with single disorder.In higher frequency regions the piezoelectric effect reduces the transmission coefficients. But for larger disorder degree, the effects of the piezoelectricity will be reduced.
Phonon-enhanced crystal growth and lattice healing
Buonassisi, Anthony; Bertoni, Mariana; Newman, Bonna
2013-05-28
A system for modifying dislocation distributions in semiconductor materials is provided. The system includes one or more vibrational sources for producing at least one excitation of vibrational mode having phonon frequencies so as to enhance dislocation motion through a crystal lattice.
Streyer, W.; Law, S.; Rosenberg, A.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C.; Podolskiy, V. A. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Hoffman, A. J. [Department of Electrical Engineering, University of Notre Dame, South Bend, Indiana 46556 (United States)
2014-03-31
We demonstrate excitation of surface phonon polaritons on patterned gallium phosphide surfaces. Control over the light-polariton coupling frequencies is demonstrated by changing the pattern periodicity and used to experimentally determine the gallium phosphide surface phonon polariton dispersion curve. Selective emission via out-coupling of thermally excited surface phonon polaritons is experimentally demonstrated. Samples are characterized experimentally by Fourier transform infrared reflection and emission spectroscopy, and modeled using finite element techniques and rigorous coupled wave analysis. The use of phonon resonances for control of emissivity and excitation of bound surface waves offers a potential tool for the exploration of long-wavelength Reststrahlen band frequencies.
Theory of phonon properties in doped and undoped CuO nanoparticles
Bahoosh, S.G. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)
2012-07-02
We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects. -- Highlights: ► The phonon properties of CuO nanoparticles are studied using a miscroscopic model. ► The phonon energy decreases whereas the damping increases with decreasing of particle size. ► It is shown the importance of the anharmonic spin–phonon interaction. ► By doping with RE-ions the phonon energy is reduced, whereas with TM-ions it is enhanced. ► The phonon damping is always enhanced through the ion doping effects.
Edge waves and resonances in two-dimensional phononic crystal plates
Hsu, Jin-Chen; Hsu, Chih-Hsun
2015-05-01
We present a numerical study on phononic band gaps and resonances occurring at the edge of a semi-infinite two-dimensional (2D) phononic crystal plate. The edge supports localized edge waves coupling to evanescent phononic plate modes that decay exponentially into the semi-infinite phononic crystal plate. The band-gap range and the number of edge-wave eigenmodes can be tailored by tuning the distance between the edge and the semi-infinite 2D phononic lattice. As a result, a phononic band gap for simultaneous edge waves and plate waves is created, and phononic cavities beside the edge can be built to support high-frequency edge resonances. We design an L3 edge cavity and analyze its resonance characteristics. Based on the band gap, high quality factor and strong confinement of resonant edge modes are achieved. The results enable enhanced control over acoustic energy flow in phononic crystal plates, which can be used in designing micro and nanoscale resonant devices and coupling of edge resonances to other types of phononic or photonic crystal cavities.
Raman spectrum of Si nanowires: temperature and phonon confinement effects
Anaya, J.; Torres, A.; Hortelano, V.; Jiménez, J.; Prieto, A. C.; Rodríguez, A.; Rodríguez, T.; Rogel, R.; Pichon, L.
2014-03-01
The Raman spectrum of Si nanowires (NWs) is a matter of controversy. Usually, the one-phonon band appears broadened and shifted. This behaviour is interpreted in terms of phonon confinement; however, similar effects are observed for NWs with dimensions for which phonon confinement does not play any relevant role. In this context, the temperature increase induced by the laser beam is recognized to play a capital role in the shape of the spectrum. The analysis of the Raman spectrum, under the influence of the heating induced by the laser beam, is strongly dependent on the excitation conditions and the properties of the NWs. We present herein an analysis of the Raman spectrum of Si NWs based on a study of the interaction between the laser beam and the NWs, for both ensembles of NWs and individual NWs, taking account of the temperature increase in the NWs under the focused laser beam and the dimensions of the NWs.
Coherent phonon coupling to individual Bloch states in photoexcited bismuth.
Papalazarou, E; Faure, J; Mauchain, J; Marsi, M; Taleb-Ibrahimi, A; Reshetnyak, I; van Roekeghem, A; Timrov, I; Vast, N; Arnaud, B; Perfetti, L
2012-06-22
We investigate the temporal evolution of the electronic states at the bismuth (111) surface by means of time- and angle-resolved photoelectron spectroscopy. The binding energy of bulklike bands oscillates with the frequency of the A(1g) phonon mode, whereas surface states are insensitive to the coherent displacement of the lattice. A strong dependence of the oscillation amplitude on the electronic wave vector is correctly reproduced by ab initio calculations of electron-phonon coupling. Besides these oscillations, all the electronic states also display a photoinduced shift towards higher binding energy whose dynamics follows the evolution of the electronic temperature.
Photonic and phononic quasicrystals
Steurer, Walter; Sutter-Widmer, Daniel [Laboratory of Crystallography, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)
2007-07-07
This review focuses on the peculiarities of quasiperiodic order for the properties of photonic and phononic (sonic) heterostructures. The most beneficial feature of quasiperiodicity is that it can combine perfectly ordered structures with purely point-diffractive spectra of arbitrarily high rotational symmetry. Both are prerequisites for the construction of isotropic band gap composites, in particular from materials with low index contrast, which are required for numerous applications. Another interesting property of quasiperiodic structures is their scaling symmetry, which may be exploited to create spectral gaps in the sub-wavelength regime. This review covers structure/property relationships of heterostructures based on one-dimensional (1D) substitutional sequences such as the Fibonacci, Thue-Morse, period-doubling, Rudin-Shapiro and Cantor sequence as well as on 1D modulated structures, further on 2D tilings with 8-, 10-, 12- and 14-fold symmetry as well as on the pinwheel tiling, the Sierpinski gasket and on curvilinear tilings and, finally, on the 3D icosahedral Penrose tiling. (topical review)
Hague, J P
2003-01-01
I apply the newly developed dynamical cluster approximation (DCA) to the calculation of the electron and phonon dispersions in the two-dimensional Holstein model. In contrast to previous work, the DCA enables the effects of spatial fluctuations (non-local corrections) to be examined. Approximations neglecting and incorporating lowest-order vertex corrections are investigated. I calculate the phonon density of states, the renormalized phonon dispersion, the electron dispersion and electron spectral functions. I demonstrate how vertex corrections stabilize the solution, stopping a catastrophic softening of the (pi, pi) phonon mode. A kink in the electron dispersion is found in the normal state along the (zeta, zeta) symmetry direction in both the vertex- and non-vertex-corrected theories for low phonon frequencies, corresponding directly to the renormalized phonon frequency at the (pi, 0) point. This kink is accompanied by a sudden drop in the quasi-particle lifetime. Vertex and non-local corrections enhance th...
Pi, T. W.; Chen, W. S.; Lin, Y. H.; Cheng, Y. T.; Wei, G. J.; Lin, K. Y.; Cheng, C.-P.; Kwo, J.; Hong, M.
2017-01-01
This study investigates the origin of long-puzzled high frequency dispersion on the accumulation region of capacitance-voltage characteristics in an n-type GaAs-based metal-oxide-semiconductor. Probed adatoms with a high Pauling electronegativity, Ag and Au, unexpectedly donate charge to the contacted As/Ga atoms of as-grown α2 GaAs(001)-2 × 4 surfaces. The GaAs surface atoms behave as charge acceptors, and if not properly passivated, they would trap those electrons accumulated at the oxide and semiconductor interface under a positive bias. The exemplified core-level spectra of the Al2O3/n-GaAs(001)-2 × 4 and the Al2O3/n-GaAs(001)-4 × 6 interfaces exhibit remnant of pristine surface As emission, thereby causing high frequency dispersion in the accumulation region. For the p-type GaAs, electrons under a negatively biased condition are expelled from the interface, thereby avoiding becoming trapped.
High temperature phonon dispersion in graphene using classical molecular dynamics
Anees, P., E-mail: anees@igcar.gov.in; Panigrahi, B. K. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Valsakumar, M. C., E-mail: anees@igcar.gov.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad-500046 (India)
2014-04-24
Phonon dispersion and phonon density of states of graphene are calculated using classical molecular dynamics simulations. In this method, the dynamical matrix is constructed based on linear response theory by computing the displacement of atoms during the simulations. The computed phonon dispersions show excellent agreement with experiments. The simulations are done in both NVT and NPT ensembles at 300 K and found that the LO/TO modes are getting hardened at the Γ point. The NPT ensemble simulations capture the anharmonicity of the crystal accurately and the hardening of LO/TO modes is more pronounced. We also found that at 300 K the C-C bond length reduces below the equilibrium value and the ZA bending mode frequency becomes imaginary close to Γ along K-Γ direction, which indicates instability of the flat 2D graphene sheets.
Bonoli, Paul
2014-10-01
This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.
Phonon spectrum of single-walled boron nitride nanotubes
Xiao Yang; Yan Xiao-Hong; Cao Jue-Xian; Mao Yu-Liang; Xiang Jun
2004-01-01
Based on a force constant model, we investigated the phonon spectrum and then specific heat of single-walled boron nitride nanotubes. The results show that the frequencies of Raman and infrared active modes decrease with increasing diameter in the low frequency, which is consistent with the results calculated by density functional theory.The fitting formulae for diameter and chirality dependence of specific heat at 300K are given.
Phononics in low-dimensional materials
Alexander A. Balandin
2012-06-01
Full Text Available Phonons – quanta of crystal lattice vibrations – reveal themselves in all electrical, thermal, and optical phenomena in materials. Nanostructures open exciting opportunities for tuning the phonon energy spectrum and related material properties for specific applications. The possibilities for controlled modification of the phonon interactions and transport – referred to as phonon engineering or phononics – increased even further with the advent of graphene and two-dimensional van der Waals materials. We describe methods for tuning the phonon spectrum and engineering the thermal properties of the low-dimensional materials via ribbon edges, grain boundaries, isotope composition, defect concentration, and atomic-plane orientation.
Viennas, Emmanouil; Komianou, Angeliki; Mizzi, Clint; Stojiljkovic, Maja; Mitropoulou, Christina; Muilu, Juha; Vihinen, Mauno; Grypioti, Panagiota; Papadaki, Styliani; Pavlidis, Cristiana; Zukic, Branka; Katsila, Theodora; van der Spek, Peter J; Pavlovic, Sonja; Tzimas, Giannis; Patrinos, George P
2017-01-04
FINDbase (http://www.findbase.org) is a comprehensive data repository that records the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants leading mostly to monogenic disorders and pharmacogenomics biomarkers. The database also records the incidence of rare genetic diseases in various populations, all in well-distinct data modules. Here, we report extensive data content updates in all data modules, with direct implications to clinical pharmacogenomics. Also, we report significant new developments in FINDbase, namely (i) the release of a new version of the ETHNOS software that catalyzes development curation of national/ethnic genetic databases, (ii) the migration of all FINDbase data content into 90 distinct national/ethnic mutation databases, all built around Microsoft's PivotViewer (http://www.getpivot.com) software (iii) new data visualization tools and (iv) the interrelation of FINDbase with DruGeVar database with direct implications in clinical pharmacogenomics. The abovementioned updates further enhance the impact of FINDbase, as a key resource for Genomic Medicine applications.
Double Dirac cones in phononic crystals
Li, Yan
2014-07-07
A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a perturbation method, we demonstrate that the double Dirac cone is composed of two identical and overlapping Dirac cones whose linear slopes can also be accurately predicted from the method. Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped onto a slab of zero refractive index material by using a standard retrieval method. Total transmission without phase change and energy tunneling at the double Dirac point frequency are unambiguously demonstrated by two examples. Potential applications can be expected in diverse fields such as acoustic wave manipulations and energy flow control.
Using high pressure to study thermal transport and phonon scattering mechanisms
Hohensee, Gregory Thomas
The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine
Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond
Kepesidis, K. V.; Lemonde, M.-A.; Norambuena, A.; Maze, J. R.; Rabl, P.
2016-12-01
We study a setup where a single negatively-charged silicon-vacancy center in diamond is magnetically coupled to a low-frequency mechanical bending mode and via strain to the high-frequency phonon continuum of a semiclamped diamond beam. We show that under appropriate microwave driving conditions, this setup can be used to induce a laser-cooling-like effect for the low-frequency mechanical vibrations, where the high-frequency longitudinal compression modes of the beam serve as an intrinsic low-temperature reservoir. We evaluate the experimental conditions under which cooling close to the quantum ground state can be achieved and describe an extended scheme for the preparation of a stationary entangled state between two mechanical modes. By relying on intrinsic properties of the mechanical beam only, this approach offers an interesting alternative for quantum manipulation schemes of mechanical systems, where otherwise efficient optomechanical interactions are not available.
Inverted point-contact spectrum of electron-phonon interactions in arsenic homocontacts
Khotkevich, A. V.; Krasnyi, A. S.
2016-04-01
The point-contact (microcontact) spectra (second derivatives of the current-voltage characteristics) of As/As point homocontacts are measured at liquid helium temperatures. Inversion of the sign of the point-contact spectrum is observed as a result of the destruction of electron localization in the arsenic contacts owing to electron-phonon interactions. The point-contact spectrum contains two major peaks at energies of 10 and 25 meV. The boundary of the single-phonon part of the spectrum corresponds to 34 meV. This agrees with available data on the density of phonon states. Assuming that the inverted point-contact spectrum reflects features of the electro-phonon interaction spectral function, the mean-square frequency of the phonons is calculated and the Debye temperature is estimated.
Phonon-based scalable platform for chip-scale quantum computing
Reinke, Charles M.; El-Kady, Ihab
2016-12-01
We present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton, may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.
Dispersion and absorption in one-dimensional nonlinear lattices: A resonance phonon approach
Xu, Lubo; Wang, Lei
2016-09-01
Based on the linear response theory, we propose a resonance phonon (r-ph) approach to study the renormalized phonons in a few one-dimensional nonlinear lattices. Compared with the existing anharmonic phonon (a-ph) approach, the dispersion relations derived from this approach agree with the expectations of the effective phonon (e-ph) theory much better. The application is also largely extended, i.e., it is applicable in many extreme situations, e.g., high frequency, high temperature, etc., where the existing one can hardly work. Furthermore, two separated phonon branches (one acoustic and one optical) with a clear gap in between can be observed by the r-ph approach in a diatomic anharmonic lattice. While only one combined branch can be detected in the same lattice with both the a-ph approach and the e-ph theory.
Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN
Cuscó, Ramon; Gil, Bernard; Cassabois, Guillaume; Artús, Luis
2016-10-01
We present a Raman scattering study of optical phonons in hexagonal BN for temperatures ranging from 80 to 600 K. The experiments were performed on high-quality, single-crystalline hexagonal BN platelets. The observed temperature dependence of the frequencies and linewidths of both Raman active E2 g optical phonons is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional theory calculations. With increasing temperature, the E2g high mode displays strong anharmonic interactions, with a linewidth increase that indicates an important contribution of four-phonon processes and a marked frequency downshift that can be attributed to a substantial effect of the four-phonon scattering processes (quartic anharmonicity). In contrast, the E2g low mode displays a very narrow linewidth and weak anharmonic interactions, with a frequency downshift that is primarily accounted for by the thermal expansion of the interlayer spacing.
Phonon spectra in quantum wires
Ilić Dušan
2007-01-01
Full Text Available Green's function method, adjusted to bound crystalline structures, was applied to obtain the phonon dispersion law in quantum wires. The condition of the existence of small mechanical atom movements defining phonon spectra can be found by solving the secular equation. This problem was presented graphically for different boundary parameters. The presence of boundaries, as well as the change of boundary parameters, leads to the appearance of new properties of the layered structure. The most important feature is that, beside the allowed energy zones (which are continuous as in the bulk structure, zones of forbidden states appear. Different values of the boundary parameters lead to the appearance of lower and upper energy gaps, or dispersion branches spreading out of the bulk energy zone. The spectra of phonons in corresponding unbound structures were correlated to those in bound structures.
A quantum cascade phonon-polariton laser
Ohtani, Keita; Bosco, Lorenzo; Beck, Mattias; Faist, Jérôme
2016-01-01
We report a laser that coherently emits phonon-polaritons, quasi-particles arising from the coupling between photons and transverse optical phonons. The gain is provided by an intersubband transition in a quantum cascade structure. The polaritons at h$\
Phonon creation by gravitational waves
Sabín, Carlos; Ahmadi, Mehdi; Fuentes, Ivette
2014-01-01
We show that gravitational waves create phonons in a Bose-Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances that correspond to the dynamical Casimir effect in a BEC phononic field contained in a cavity-type trap. We propose to use this effect to detect gravitational waves. The amplitude of the wave can be estimated applying recently developed relativistic quantum metrology techniques. We provide the optimal precision bound on the estimation of the wave's amplitude. Finally, we show that the parameter regime required to detect gravitational waves with this technique is within experimental reach.
Phonon spectrum and correlations in a transonic flow of an atomic Bose gas
Michel, Florent
2016-01-01
Motivated by a recent experiment of J.~Steinhauer, we reconsider the properties of the phonons spontaneously emitted in stationary transonic flows. The latter are described by "waterfall" configurations which form a one-parameter family of stable flows. For parameters close to their experimental values, in spite of high gradients near the sonic horizon, the spectrum is accurately planckian in the relevant frequency domain, where the temperature differs from the relativistic prediction by less than $10 \\%$. We then study the density correlations across the sonic horizon and the non-separable character of the final state. We show that the relativistic expressions provide accurate approximations when the initial temperature is not too high. We also show that the phases of the scattering coefficients introduce a finite shift of the location of the correlations which was so far overlooked. This shift is due to the asymmetry of the near-horizon flow, and persists in the dispersion-less regime.
Transversal confined polar optical phonons in spherical quantum-dot/quantum-well nanostructures
Comas, F.; Trallero-Giner, C.; Prado, S. J.; Marques, G. E.; Roca, E.
2006-02-01
Confined polar optical phonons are studied in a spherical quantum-dot/quantum-well (QD/QW) nanostructure by using an approach that takes into account the coupling of electromechanical oscillations and is valid in the long-wave limit. This approach was developed a few years ago and provides results beyond the usually applied dielectric continuum approach (DCA), where just the electric aspect of the oscillations is considered. In the present paper we limit ourselves to the study of the so-called uncoupled modes, having a purely transversal character and not involving an electric potential. We display the dispersion curves for the frequencies considering three possible nanostructures, which show different bulk phonon curvatures near the Brillouin zone -point and have been actually grown: ZnS/CdSe, CdSe/CdS and CdS/HgS. A detailed discussion of the results obtained is made, emphasizing the novelties provided by our treatment and the relevance of infrared spectroscopy in the characterization of the geometrical features of the QD/QW nanostructure.
Band Gap and Waveguide States in Two-Dimensional Disorder Phononic Crystals
LI Xiao-Chun; LIU Zheng-You; LIANG Hong-Yu; XIAO Qing-Wu
2006-01-01
@@ The influences of the configurational disorders on phononic band gaps and on waveguide modes are investigated for the two-dimensional phononic crystals consisting of water cylinders periodically arrayed in mercury. Two types of conflgurational disorders, relevant to the cylinder position and cylinder size respectively, are taken into account. It is found that the phononic band gap and the guide band are sensitive to the disorders, and generally become narrower with the increasing disorders. It is also found that the waveguide side walls without disorder can significantly prevent the guide modes in the waveguide from influence by the disorders in the crystals to a large amount.
Semi-Dirac points in phononic crystals
Zhang, Xiujuan
2014-01-01
A semi-Dirac cone refers to a peculiar type of dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. It was originally discovered in electron systems, in which the associated quasi-particles are massless along one direction, like those in graphene, but effective-mass-like along the other. It was reported that a semi-Dirac point is associated with the topological phase transition between a semi-metallic phase and a band insulator. Very recently, the classical analogy of a semi-Dirac cone has been reported in an electromagnetic system. Here, we demonstrate that, by accidental degeneracy, two-dimensional phononic crystals consisting of square arrays of elliptical cylinders embedded in water are also able to produce the particular dispersion relation of a semi-Dirac cone in the center of the Brillouin zone. A perturbation method is used to evaluate the linear slope and to affirm that the dispersion relation is a semi-Dirac type. If the scatterers are made of rubber, in which the acoustic wave velocity is lower than that in water, the semi-Dirac dispersion can be characterized by an effective medium theory. The effective medium parameters link the semi-Dirac point to a topological transition in the iso-frequency surface of the phononic crystal, in which an open hyperbola is changed into a closed ellipse. This topological transition results in drastic change in wave manipulation. On the other hand, the theory also reveals that the phononic crystal is a double-zero-index material along the x-direction and photonic-band-edge material along the perpendicular direction (y-direction). If the scatterers are made of steel, in which the acoustic wave velocity is higher than that in water, the effective medium description fails, even though the semi-Dirac dispersion relation looks similar to that in the previous case. Therefore different wave transport behavior is expected. The semi-Dirac points in phononic crystals described in
Raman electron spin-lattice relaxation with the Debye-type and with real phonon spectra in crystals.
Hoffmann, Stanislaw K; Lijewski, Stefan
2013-02-01
Electron spin-lattice relaxation temperature dependence was measured for Ti(2+) (S=1) and for Cu(2+) (S=1/2) ions in SrF(2) single crystal by electron spin echo method in temperature range 4-109K. The spin relaxation was governed by the two-phonon Raman processes. The relaxation theory is outlined and presented in a form suitable for applying with real phonon spectra. The experimental relaxation results were described using Debye-type phonon spectrum and the real phonon spectrum of SrF(2) crystal. The Debye approximation does not fit well the results for SrF(2) both at low and at high temperature. The relaxation rate is faster than that predicted by Debye-type phonon spectrum at low temperatures where excess of lattice vibrations over the Debye model exists but is slower at higher temperatures (above 50K) where density of phonon states continuously decreases when approaching to the maximal acoustic phonon frequency. The expected deviation from Debye approximation was analyzed also for Cu(2+) in NaCl and MgSiO(3) crystals for which phonon spectra are available. The fitting with the real phonon spectrum allowed us to calculate spin-phonon coupling parameter as 267 cm(-1) for Ti(2+) and 1285 cm(-1) for Cu(2+) in SrF(2).
Yang, Jia-Yue; Qin, Guangzhao; Hu, Ming
2016-12-01
The macroscopic thermal transport is fundamentally determined by the intrinsic interactions among microscopic electrons and phonons. In conventional insulators and semiconductors, phonons dominate the thermal transport, and the contribution of electron-phonon interaction (EPI) is negligible. However, in polar semiconductors, the Fröhlich electron-phonon coupling is strong and its influence on phononic thermal transport is of great significance. In this work, the effect of EPI on phonon dispersion and lattice thermal conductivity of wurtzite gallium nitride (GaN) is comprehensively investigated from the atomistic level by performing first-principles calculations. Due to the existence of relatively large electronegativity difference between Ga and N atoms, the Fröhlich coupling in wurtzite GaN is remarkably strong. Consequently, the lattice thermal conductivity of natural wurtzite GaN at room temperature is reduced by ˜24%-34% when including EPI, and the resulted thermal conductivity value is in better agreement with experiments. Furthermore, the scattering rate of phonons due to EPI, the intrinsic phonon-phonon interaction (PPI) as well as isotope disorder is computed and analyzed. It shows that the EPI scattering rate is comparable to PPI for low-frequency heat-carrying phonons. This work attempts to explore the mechanism of thermal transport beyond intrinsic PPI for polar semiconductors, with a great potential of thermal conductivity engineering for desired performance.
Coherent phonons in carbon nanotubes and graphene
Kim, J.-H.; Nugraha, A. R. T.; Booshehri, L. G.; Hároz, E. H.; Sato, K.; Sanders, G. D.; Yee, K.-J.; Lim, Y.-S.; Stanton, C. J.; Saito, R.; Kono, J.
2013-02-01
We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite specific-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n + m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.
Extended phonon collapse and the origin of the charge-density-wave in NbSe{sub 2}.
Weber, F.; Rosenkranz, S.; Castellan, J.-P.; Osborn, R.; Hott, R.; Heid, R.; Bohnen, K.-P.; Egami, T.; Said, A. H.; Reznik, D. (X-Ray Science Division); ( MSD); (Karlsruhe Inst. of Tech.); (Univ. of Tennessee); (Univ. of Colorado at Boulder)
2011-01-01
We report inelastic x-ray scattering measurements of the temperature dependence of phonon dispersion in the prototypical charge-density-wave (CDW) compound 2H-NbSe{sub 2}. Surprisingly, acoustic phonons soften to zero frequency and become overdamped over an extended region around the CDW wave vector. This extended phonon collapse is dramatically different from the sharp cusp in the phonon dispersion expected from Fermi surface nesting. Instead, our experiments, combined with ab initio calculations, show that it is the wave vector dependence of the electron-phonon coupling that drives the CDW formation in 2H-NbSe{sub 2} and determines its periodicity. This mechanism explains the so far enigmatic behavior of CDW in 2H-NbSe{sub 2} and may provide a new approach to other strongly correlated systems where electron-phonon coupling is important.
Otelaja, O. O. [School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853 (United States); Robinson, R. D., E-mail: rdr82@cornell.edu [Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853 (United States)
2015-10-26
In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.
Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides
Razi Dehghannasiri
2016-12-01
Full Text Available In this letter, we demonstrate a new design for integrated phononic crystal (PnC resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap. The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.
Integrated phononic crystal resonators based on adiabatically-terminated phononic crystal waveguides
Dehghannasiri, Razi; Pourabolghasem, Reza; Eftekhar, Ali Asghar; Adibi, Ali
2016-12-01
In this letter, we demonstrate a new design for integrated phononic crystal (PnC) resonators based on confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this architecture, a PnC waveguide that supports a single mode at the desired resonance frequencies is terminated by two waveguide sections with no propagating mode at those frequencies (i.e., have mode gap). The proposed PnC resonators are designed through combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain) analysis to achieve a smooth mode envelope. This design approach can benefit both membrane-based and surface-acoustic-wave-based architectures by confining the mode spreading in k-domain that leads to improved electromechanical excitation/detection coupling and reduced loss through propagating bulk modes.
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Phonon-Mediated Nonclassical Interference in Diamond
England, Duncan G.; Fisher, Kent A. G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Heshami, Khabat; Resch, Kevin J.; Sussman, Benjamin J.
2016-08-01
Quantum interference of single photons is a fundamental aspect of many photonic quantum processing and communication protocols. Interference requires that the multiple pathways through an interferometer be temporally indistinguishable to within the coherence time of the photon. In this Letter, we use a diamond quantum memory to demonstrate interference between quantum pathways, initially temporally separated by many multiples of the optical coherence time. The quantum memory can be viewed as a light-matter beam splitter, mapping a THz-bandwidth single photon to a variable superposition of the output optical mode and stored phononic mode. Because the memory acts both as a beam splitter and as a buffer, the relevant coherence time for interference is not that of the photon, but rather that of the memory. We use this mechanism to demonstrate nonclassical single-photon and two-photon interference between quantum pathways initially separated by several picoseconds, even though the duration of the photons themselves is just ˜250 fs .
Phonon contribution to the shear viscosity of a superfluid Fermi gas in the unitarity limit
Mannarelli, Massimo [I.N.F.N., Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Tolos, Laura, E-mail: tolos@ice.csic.es [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany)
2013-09-15
We present a detailed analysis of the contribution of small-angle Nambu–Goldstone boson (phonon) collisions to the shear viscosity, η, in a superfluid atomic Fermi gas close to the unitarity limit. We show that the experimental values of the shear viscosity coefficient to entropy ratio, η/s, obtained at the lowest reached temperature can be reproduced assuming that phonons give the leading contribution to η. The phonon contribution is evaluated considering 1↔2 processes and taking into account the finite size of the experimental system. In particular, for very low temperatures, T≲0.1T{sub F}, we find that phonons are ballistic and the contribution of phonons to the shear viscosity is determined by the processes that take place at the interface between the superfluid and the normal phase. This result is independent of the detailed form of the phonon dispersion law and leads to two testable predictions: the shear viscosity should correlate with the size of the optical trap and it should decrease with decreasing temperature. For higher temperatures the detailed form of the phonon dispersion law becomes relevant and, within our model, we find that the experimental data for η/s can be reproduced assuming that phonons have an anomalous dispersion law. -- Highlights: •We study the contribution of phonons to shear viscosity of a cold Fermi gas at unitary. •The shear viscosity to entropy ratio (η/s) is reproduced for T<∼0.1T{sub F}. •For very low temperatures η/s correlates with the size of the optical trap. •We explain η/s for T>∼0.1T{sub F} assuming an anomalous dispersion law for phonons.
Quantum Dot Cavity-QED in the Presence of Strong Electron-Phonon Interactions
Wilson-Rae, I
2001-01-01
A quantum dot strongly coupled to a single high finesse optical microcavity mode constitutes a new fundamental system for quantum optics. Here, the effect of exciton-phonon interactions on reversible quantum-dot cavity coupling is analysed without making Born-Markov approximation. The analysis is based on techniques that have been used to study the ``spin boson'' Hamiltonian. Observability of vacuum-Rabi splitting depends on the strength and the frequency dependence of the spectral density function characterizing the interactions with phonons, both of which can be influenced by phonon confinement.
The influence of anharmonic phonons on the isotope effect in high-{Tc} oxides
Crespi, V.H.; Cohen, M.L.
1992-01-01
Anharmonic phonons are examined to study the unusual isotope effect exponents for the high-{Tc} oxides. Within a simple model of anharmonicity, the mass dependences of the electron-phonon coupling constant {lambda} and the phonon frequency determine the isotope effect exponent {alpha} as a function of coupling strength. A model in which the outer wells of a multiple-well potential deepen as the orthorhombic/low temperature tetragonal phase transition in La{sub 2-x}M{sub x}CuO{sub 4} is approached is consistent with some experimentally observed variations in {Tc} and {alpha}. 10 refs.
The influence of anharmonic phonons on the isotope effect in high- Tc oxides
Crespi, V.H.; Cohen, M.L.
1992-01-01
Anharmonic phonons are examined to study the unusual isotope effect exponents for the high-{Tc} oxides. Within a simple model of anharmonicity, the mass dependences of the electron-phonon coupling constant {lambda} and the phonon frequency determine the isotope effect exponent {alpha} as a function of coupling strength. A model in which the outer wells of a multiple-well potential deepen as the orthorhombic/low temperature tetragonal phase transition in La{sub 2-x}M{sub x}CuO{sub 4} is approached is consistent with some experimentally observed variations in {Tc} and {alpha}. 10 refs.
Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study
Perera, Dilina, E-mail: dilinanp@physast.uga.edu; Landau, David P. [Center for Simulational Physics, The University of Georgia, Georgia 30602 (United States); Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Brown, Gregory [Florida State University, Tallahassee, Florida 32306 (United States)
2014-05-07
Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Phonon-magnon interactions in BCC iron: A combined molecular and spin dynamics study
Perera, Meewanage Dilina N [ORNL; Landau, David P [University of Georgia, Athens, GA; Nicholson, Don M [ORNL; Stocks, George Malcolm [ORNL; Eisenbach, Markus [ORNL; Yin, Junqi [ORNL; Brown, Greg [ORNL
2014-01-01
Combining an atomistic many-body potential with a classical spin Hamiltonian pa- rameterized by first principles calculations, molecular-spin dynamics computer sim- ulations were performed to investigate phonon-magnon interactions in BCC iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, addi- tional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap
Alegre, Thiago P Mayer; Winger, Martin; Painter, Oskar
2010-01-01
A fully planar two-dimensional optomechanical crystal formed in a silicon microchip is used to create a structure devoid of phonons in the GHz frequency range. A nanoscale photonic crystal cavity is placed inside the phononic bandgap crystal in order to probe the properties of the localized acoustic modes. By studying the trends in mechanical damping, mode density, and optomechanical coupling strength of the acoustic resonances over an array of structures with varying geometric properties, clear evidence of a complete phononic bandgap is shown.
Nonlinear phononics using atomically thin membranes
Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander
2014-09-01
Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.
Renormalization effects and phonon density of states in high temperature superconductors
Vinod Ashokan
2013-02-01
Full Text Available Using the versatile double time thermodynamic Green's function approach based on many body theory the renormalized frequencies, phonon energy line widths, shifts and phonon density of states (PDOS are investigated via a newly formulated Hamiltonian (does not include BCS type Hamiltonian that includes the effects of electron-phonon, anharmonicities and that of isotopic impurities. The automatic appearance of pairons, temperature, impurity and electron-phonon coupling of renormalized frequencies, widths, shifts and PDOS emerges as a characteristic feature of present theory. The numerical investigations on PDOS for the YBa2Cu3O7 − δ crystal predicts several new feature of high temperature superconductors (HTS and agreements with experimental observations.
Bloch wave deafness and modal conversion at a phononic crystal boundary
Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.
2011-12-01
We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.
Bloch wave deafness and modal conversion at a phononic crystal boundary
Vincent Laude
2011-12-01
Full Text Available We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.
Control of coherent information via on chip photonic-phononic emitter-receivers
Shin, Heedeuk; Jarecki, Robert; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2014-01-01
Rapid progress in silicon photonics has fostered numerous chip-scale sensing, computing, and signal processing technologies. However, many crucial filtering and signal delay operations are difficult to perform with all-optical devices. Unlike photons propagating at luminal speeds, GHz-acoustic phonons with slow velocity allow information to be stored, filtered, and delayed over comparatively smaller length-scales with remarkable fidelity. Hence, controllable and efficient coupling between coherent photons and phonons enables new signal processing technologies that greatly enhance the performance and potential impact of silicon photonics. Here, we demonstrate a novel mechanism for coherent information processing based on traveling-wave photon-phonon transduction, which achieves a phonon emit-and-receive process between distinct nanophotonic waveguides. Using this device physics-which can support 1-20GHz frequencies-we create wavelength-insensitive radio-frequency photonic filters with an unrivaled combination ...
Enhancement of coherent acoustic phonons in InGaN multiple quantum wells
Hafiz, Shopan D.; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit
2015-03-01
Enhancement of coherent zone folded longitudinal acoustic phonon (ZFLAP) oscillations at terahertz frequencies was demonstrated in InGaN multiple quantum wells (MQWs) by using wavelength degenerate time resolved differential transmission spectroscopy. Screening of the piezoelectric field in InGaN MQWs by photogenerated carriers upon femtosecond pulse excitation gave rise to terahertz ZFLAPs, which were monitored at the Brillouin zone center in the transmission geometry. MQWs composed of 10 pairs InxGa1-xN wells and In0.03Ga0.97N barriers provided coherent phonon frequencies of 0.69-0.80 THz depending on the period of MQWs. Dependences of ZFLAP amplitude on excitation density and wavelength were also investigated. Possibility of achieving phonon cavity, incorporating a MQW placed between two AlN/GaN phonon mirrors designed to exhibit large acoustic gaps at the zone center, was also explored.
Theory of coherent phonons in graphene
Sanders, G. D.; Stanton, C. J.; Kim, J.-H.; Yee, K.-J.; Jung, M. H.; Hong, B. H.; Haroz, E. H.; Kono, J.
2011-03-01
We develop a theory for the generation and detection of coherent phonons in graphene. Coherent phonons are generated via the deformation potential electron-phonon interaction with photogenerated carriers. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire graphene Brillouin zone while the phonon states are treated in a valence force field model. The equations of motion for the coherent phonon amplitudes are obtained in a density matrix formalism and we find that the coherent phonon amplitudes satisfy driven oscillator equations for each value of the phonon wavevector. Comparison is made with recent experimental measurements. Supported by NSF through grants OISE-0530220 and DMR-0706313 and the ONR through grant ONR-00075094, and the Robert A. Welch Foundation through grant No. C-1509.
Multifunctional solid/solid phononic crystal
Swinteck, N.; Vasseur, J. O.; Hladky-Hennion, A. C.; Croënne, C.; Bringuier, S.; Deymier, P. A.
2012-07-01
A two-dimensional, solid/solid phononic crystal (PC) comprised a square array of steel cylinders in epoxy is shown to perform a variety of spectral, wave vector, and phase-space functions. Over a range of operating frequencies, the PC's elastic band structure shows uniquely shaped equifrequency contours that are only accessible to excitations of longitudinal polarization. Under this condition, the PC is shown to behave as (1) an acoustic wave collimator, (2) a defect-less wave guide, (3) a directional source for elastic waves, (4) an acoustic beam splitter, (5) a phase-control device, and (6) a k-space multiplexer. Wave vector diagrams and finite-difference time-domain simulations are employed to authenticate the above mentioned capabilities.
Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations
Litvinchuk, A. P.
2009-08-01
The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.
Hybrid density functional theory LCAO calculations on phonons in Ba (Ti,Zr,Hf) O3
Evaestov, Robert A
2010-01-01
Phonon frequencies at {\\Gamma},X,M,R-points of Brilloin zone in cubic phase of Ba(Ti,Zr,Hf)O3 were first time calculated by frozen phonon method using density functional theory (DFT) with hybrid exchange correlation functional PBE0. The calculations use linear combination of atomic orbitals (LCAO) basis functions as implemented in CRYSTAL09 computer code. The Powell algorithm was applied for basis set optimization. In agreement with the experimental observations the structural instability via...
Density of phonon states in the light-harvesting complex II of green plants
Pieper, J K; Irrgang, K D; Renger, G
2002-01-01
In photosynthetic antenna complexes, the coupling of electronic transitions to low-frequency vibrations of the protein matrix (phonons) plays an essential role in light absorption and ultra-fast excitation energy transfer (EET). The model calculations presented here indicate that inelastic neutron scattering experiments provide invaluable information on the phonon density of states for light-harvesting complex II, which may permit a consistent interpretation of contradictory results from high-resolution optical spectroscopy. (orig.)
Dynamics of vortices in neutral superfluids with noninteracting phonons
Fortin, Jean-Yves
2001-05-01
The transverse force on an isolated and moving vortex in a neutral superfluid at rest is evaluated at finite temperature in the case of noninteracting phonons. Using the Thouless, Ao, Niu (TAN) [Phys. Rev. Lett. 76, 3758 (1996)] general theory, we show that the transverse force is exactly equal to the superfluid Magnus force. We extend this theory in the case of a slowly moving vortex on a circular trajectory, and find an additional contribution coming from the centrifugal reaction. This term gives a negative vortex mass due to the phonons and diverges logarithmically at low frequency. The friction force is also evaluated for zero and finite frequencies, and compared with the scattering theory.
A holographic perspective on phonons and pseudo-phonons
Amoretti, Andrea; Argurio, Riccardo; Musso, Daniele; Zayas, Leopoldo A Pando
2016-01-01
We analyze the concomitant spontaneous breaking of translation and conformal symmetries by introducing in a CFT a complex scalar operator that acquires a spatially dependent expectation value. The model, inspired by the holographic Q-lattice, provides a privileged setup to study the emergence of phonons from a spontaneous translational symmetry breaking in a conformal field theory and offers valuable hints for the treatment of phonons in QFT at large. We first analyze the Ward identity structure by means of standard QFT techniques, considering both spontaneous and explicit symmetry breaking. Next, by implementing holographic renormalization, we show that the same set of Ward identities holds in the holographic Q-lattice. Eventually, relying on the holographic and QFT results, we study the correlators realizing the symmetry breaking pattern and how they encode information about the low-energy spectrum.
Kang, Hyung Sun; Koh, Young Ha; Jin, Jae Sik [Chosun Univ., Kwangju (Korea, Republic of)
2016-02-15
The primary concern of this research is to examine the phonon mean free path (MFP) spectrum contribution to heat conduction. The size effect of materials is determined by phonon MFP, and the size effect appears when the phonon MFP is similar to or less than the characteristic length of materials. Therefore, knowledge of the phonon MFP is essential to increase or decrease the heat conduction of a material for engineering applications, such as micro/nanosystems. In this study, frequency dependence of the phonon transport is considered using the Boltzmann transport equation based on a full phonon dispersion model. Additionally, the phonon MFP spectrums of in-plane and out-of plane heat transport are investigated by varying the film thickness of the silicon layer from 41 nm to 177 nm. This will increase the understanding of anisotropic heat conduction in a SOI (Silicon-on-Insulator) transistor.
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Measuring phonons in protein crystals
Niessen, Katherine A.; Snell, Edward; Markelz, A. G.
2013-03-01
Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.
Kirschner, Matthew S.; Lethiec, Clotilde M.; Lin, Xiao-Min; Schatz, George C.; Chen, Lin X.; Schaller, Richard D.
2016-05-18
Localized surface plasmon resonances (LSPRs) arising from metallic nanoparticles offer an array of prospective applications that range from chemical sensing to biotherapies. Bipyramidal particles exhibit particularly narrow ensemble LSPR resonances that reflect small dispersity of size and shape but until recently were only synthetically accessible over a limited range of sizes with corresponding aspect ratios. Narrow size dispersion offers the opportunity to examine ensemble dynamical phenomena such as coherent phonons that induce periodic oscillations of the LSPR energy. Here, we characterize transient optical behavior of a large range of gold bipyramid sizes, as well as higher aspect ratio nanojavelin ensembles with specific attention to the lowest-order acoustic phonon mode of these nanoparticles. We report coherent phonon-driven oscillations of the LSPR position for particles with resonances spanning 670 to 1330 nm. Nanojavelins were shown to behave similarly to bipyramids but offer the prospect of separate control over LSPR energy and coherent phonon oscillation period. We develop a new methodology for quantitatively measuring mechanical expansion caused by photogenerated coherent phonons. Using this method, we find an elongation of approximately 1% per photon absorbed per unit cell and that particle expansion along the lowest frequency acoustic phonon mode is linearly proportional to excitation fluence for the fluence range studied. These characterizations provide insight regarding means to manipulate phonon period and transient mechanical deformation.
Optical phonon dynamics and electronic fluctuations in the Dirac semimetal C d3A s2
Sharafeev, A.; Gnezdilov, V.; Sankar, R.; Chou, F. C.; Lemmens, P.
2017-06-01
Raman scattering in the three-dimensional Dirac semimetal C d3A s2 shows an intricate interplay of electronic and phonon degrees of freedom. We observe resonant phonon scattering due to interband transitions, an anomalous anharmonicity of phonon frequency and intensity, as well as quasielastic (E ˜0 ) electronic scattering. The latter two effects are governed by a characteristic temperature scale T*˜100 K that is related to mutual fluctuations of lattice and electronic degrees of freedom. A refined analysis shows that this characteristic temperature corresponds to the energy of optical phonons which couple to interband transitions in the Dirac states of C d3A s2 . As electron-phonon coupling in a topological semimetal is primarily related to phonons with finite momenta, the back action on the optical phonons is only observed as anharmonicities via multiphonon processes involving a broad range of momenta. The resulting energy density fluctuations of the coupled system have previously only been observed in low dimensional or frustrated spin systems with suppressed long range ordering.
Jalón Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo
2015-04-01
Sediment dynamics in estuaries are complex and strongly variable over time scales ranging from seconds to years. Various forcings (turbulence, tides, river inflow, wind waves, morphological and climatic changes) may cause the temporal and spatial variability of suspended sediment (SS) concentrations. The evaluation of these SS dynamics by in-situ measurements have traditionally faced three difficulties: (1) the quantification of low-frequency variability that requires continuous measures over long time periods; (2) inevitable gaps in data limiting the post-processing; (3) the need for recording other environmental variables in the same period and at a coherent sampling frequency. To record a high-frequency and long-term turbidity dataset, an automatic monitoring network (MAGEST) has been implemented in the Gironde estuary, a macrotidal and highly turbid system in the South-West France, in 2004. This 10-year turbidity time series is rather unique in European estuaries, enabling the evaluation of SS dynamics at all the significant time scales in one single analysis of the dataset. To achieve this, several methodologies of data analysis using different approaches are available, but their relevance, especially for the more recently developed ones, is almost unexplored. In this work, we present the test of four spectral techniques to the analysis of a high-frequency turbidity time series of an estuary such as the Gironde, to discuss advantages and limitations of each method. We compare the Power Spectral Analysis (PSA), the Singular Spectral Analysis (SSA), the Wavelet Transform (WT) and the Empirical Mode Decomposition (EMD). Advantages and limitations of each method are evaluated on the basis of five criteria: efficiency for incomplete time series, appropriateness for time-varying analysis, ability to recognize processes without the need of complementary environmental variables, capacity to calculate the relative importance of processes, and capacity to identify long
Investigation of quasi-one-dimensional finite phononic crystal with conical section
Zhiqiang Fu; Shuyu Lin; Shi Chen; Xiaojun Xian; Chenghui Wang
2014-12-01
In this paper, we studied the propagation of elastic longitudinal waves in quasi-onedimensional (1D) finite phononic crystal with conical section, and derived expressions of frequencyresponse functions. It is found that, contrary to the 1D phononic crystal with a constant section, the value of attenuation inside the band gaps decreases quickly when cross-sectional area increases, and the initial frequency also decreases, but the cut-off frequency increases, thus the width of the band gap increases. The effects of lattice constant and the filling fraction on the band gap are also analysed, and the change trends of the initial frequency and cut-off frequency are consistent with those of constant section. It is shown that the results using this method are in good agreement with the results analysed by the finite element software, ANSYS.We hope that the results will be helpful in practical applications of phononic crystals.
Rabi Oscillation of Exciton Dressed by Phonons In a Quantum Dot
李惠生; 朱卡的
2003-01-01
The effect of strong exciton-phonon interaction on the excitonic Rabi oscillations in a coherently driven quantum dot in a high-Q single mode cavity is investigated theoretically. We show that the Rabi oscillation of exciton dressed by phonons can persists with the Rabi frequency ge-λ/2 at absolute zero temperature, where g is the single-photon Rabi frequency and λ is the Huang-Rhys factor. The results also present that such coherent oscillations can be modified by manipulating the Rabi frequency of the driving field.
Gasanly, N. M.; Aydinli, A.; Aydinli, A.; Kocabaş, C.; Özkan, H.
The temperature dependencies (10-300 K) of the eight Raman-active mode frequencies and linewidths in GaSe0.5S0.5 layered crystal have been measured in the frequency range from 10 to 320 cm-1. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison of the experimental data with the theories of the shift and broadening of the interlayer and intralayer phonon lines showed that the temperature dependencies can be explained by the contributions from thermal expansion, lattice anharmonicity and crystal disorder. The purely anharmonic contribution (phonon-phonon coupling) is found to be due to three-phonon processes. It was established that the effect of crystal disorder on the broadening of phonon lines is greater for GaSe0.5S0.5 than for binary compounds GaSe and GaS.
Circular Phonon Dichroism in Weyl Semimetals
Liu, Donghao; Shi, Junren
2017-08-01
We derive the phonon dynamics of magnetic metals in the presence of strong spin-orbit coupling. We show that both a dissipationless viscosity and a dissipative viscosity arise in the dynamics. While the dissipationless viscosity splits the dispersion of left-handed and right-handed circularly polarized phonons, the dissipative viscosity damps them differently, inducing circular phonon dichroism. The effect offers a new degree of manipulation of phonons, i.e., the control of the phonon polarization. We investigate the effect in Weyl semimetals. We find that there exists strong circular phonon dichroism in Weyl semimetals breaking both the time-reversal and the inversion symmetry, making them potential materials for realizing the acoustic circular polarizer.
2005-05-09
Carbon Nanotubes with Enhanced K(T) CNT in CNT Yarns and Oriented CNT bucky- aerogels 4Anvar A. Zakhidov, University of Texas at Dallas Our Main...CNT Fibers and Yarns and - Oriented CNT-ribbon aerogels 50Anvar A. Zakhidov, University of Texas at Dallas PHONON TRANSISTOR in NANOTUBE FIBERS with...100µm) of copper and gold are much lower: Dcopper = 117 mm2/s, Dgold = 130 mm2/s. 60Anvar A. Zakhidov, University of Texas at Dallas Multifunctional
Heat flux induced blueshift of dominant phonon wavelength and its impact on thermal conductivity
Aymeric Ramiere
2017-01-01
Full Text Available The concept of dominant phonon wavelength is investigated in systems submitted to a heat flux at low temperatures. Using spectral energy distributions, a treatment of two-dimensional and three-dimensional structures is conducted in parallel. We demonstrate a significant reduction of the dominant phonon wavelength, up to 62%, due to a displacement of the phonon spectrum towards higher frequencies in presence of a heat flux. We name this phenomenon blueshift effect. A formula is provided to directly calculate the corrected dominant phonon wavelength. We illustrate the impact of the blueshift effect by showing that a temperature gradient of 10% at 4K yields a 20% reduction in the thermal conductivity. Therefore, ignoring the blueshift effect in a thermal model can notably alter the physical interpretation of measurements. The results suggest that an appropriate heat flux environment can improve thermoelectric device performances.
Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons
Albrecht, A.; Retzker, A.; Jelezko, F.; Plenio, M. B.
2013-08-01
Realizing controlled quantum dynamics via the magnetic interactions between colour centres in diamond remains a challenge despite recent demonstrations for nanometre separated pairs. Here we propose to use the intrinsic acoustical phonons in diamond as a data bus for accomplishing this task. We show that for nanodiamonds the electron-phonon coupling can take significant values that together with mode frequencies in the THz range can serve as a resource for conditional gate operations. Based on these results, we analyse how to use this phonon-induced interaction for constructing quantum gates among the electron-spin triplet ground states, introducing the phonon dependence via Raman transitions. Combined with decoupling pulses this offers the possibility for creating entangled states within nanodiamonds on the scale of several tens of nanometres, a promising prerequisite for quantum sensing applications.
Theoretical approach to the phonon modes and specific heat of germanium nanowires
Trejo, A.; López-Palacios, L.; Vázquez-Medina, R.; Cruz-Irisson, M., E-mail: irisson@ipn.mx
2014-11-15
The phonon modes and specific heat of Ge nanowires were computed using a first principles density functional theory scheme with a generalized gradient approximation and finite-displacement supercell algorithms. The nanowires were modeled in three different directions: [001], [111], and [110], using the supercell technique. All surface dangling bonds were saturated with Hydrogen atoms. The results show that the specific heat of the GeNWs at room temperature increases as the nanowire diameter decreases, regardless the orientation due to the phonon confinement and surface passivation. Also the phonon confinement effects could be observed since the highest optical phonon modes in the Ge vibration interval shifted to a lower frequency compared to their bulk counterparts.
Ab initio calculations of phonon dispersion and lattice dynamics in TlGaTe{sub 2}
Jafarova, Vusala; Orudzhev, Guseyn; Alekperov, Oktay; Mamedov, Nazim; Abdullayev, Nadir; Najafov, Arzu [Institute of Physics (Innovation Sector), 33 H. Javid ave, Baku 1143 (Azerbaijan); Paucar, Raul [Institute of Physics (Innovation Sector), 33 H. Javid ave, Baku 1143 (Azerbaijan); Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Shim, YongGu [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Wakita, Kazuki [Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan)
2015-06-15
This work reports the results of DFT-based calculations of phonon spectra of TlGaTe{sub 2}. The dispersion of phonon bands was calculated along the directions of Brillouin zone (BZ) that include symmetry points. The calculated phonon frequencies at the centre of BZ were compared with those obtained by Raman spectroscopy with the aid of a confocal laser microscopy system. A fairly good agreement between the calculated and experimental data was found. Complimentary, molar heat capacity at constant volume and Debye temperature were calculated in the range 5/500 K on the base of the obtained phonon density of states. The obtained temperature dependencies were compared with available experimental data.The results of comparison were satisfactory. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Electron-phonon interactions from first principles
Giustino, Feliciano
2017-01-01
This article reviews the theory of electron-phonon interactions in solids from the point of view of ab initio calculations. While the electron-phonon interaction has been studied for almost a century, predictive nonempirical calculations have become feasible only during the past two decades. Today it is possible to calculate from first principles many materials properties related to the electron-phonon interaction, including the critical temperature of conventional superconductors, the carrier mobility in semiconductors, the temperature dependence of optical spectra in direct and indirect-gap semiconductors, the relaxation rates of photoexcited carriers, the electron mass renormalization in angle-resolved photoelectron spectra, and the nonadiabatic corrections to phonon dispersion relations. In this article a review of the theoretical and computational framework underlying modern electron-phonon calculations from first principles as well as landmark investigations of the electron-phonon interaction in real materials is given. The first part of the article summarizes the elementary theory of electron-phonon interactions and their calculations based on density-functional theory. The second part discusses a general field-theoretic formulation of the electron-phonon problem and establishes the connection with practical first-principles calculations. The third part reviews a number of recent investigations of electron-phonon interactions in the areas of vibrational spectroscopy, photoelectron spectroscopy, optical spectroscopy, transport, and superconductivity.
Koyama, Y; Okamura, H; Kohmoto, T [Graduate School of Science, Kobe University, Kobe 657-8501 (Japan); Moriyasu, T [Graduate School of Science and Technology, Kobe University, Kobe 657-8501 (Japan); Yamada, Y [Institute for Chemical Research, Kyoto University, Kyoto 611-0011 (Japan); Tanaka, K, E-mail: kohmoto@kobe-u.ac.j [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)
2009-02-01
Photo-induced effect in Ca-doped SrTiO{sub 3} was investigated by observing coherent phonons. Coherent phonons of soft modes were studied by using ultrafast polarization spectroscopy. Under an ultraviolet (UV) illumination, a shift of the ferroelectric phase transition point at 28 K toward the lower temperature side was observed, and a decrease of phonon frequencies after the UV illumination was found.
Influence of the electron-phonon iinteraction on phonon heat conduction in a molecular nanowire
Galović Slobodanka P.
2006-01-01
Full Text Available A model for phonon heat conduction in a molecular nanowire is developed. The calculation takes into account modification of the acoustic phonon dispersion relation due to the electron-phonon interaction. The results obtained are compared with models based upon a simpler, Callaway formula.
Anharmonic phonons and the isotope effect in superconductivity
Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, Berkeley, CA (USA) Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA (USA)); Penn, D.R. (National Institute of Standards and Technology, Gaithersburg, MD (USA))
1991-06-01
Anharmonic interionic potentials are examined in an Einstein model to study the unusual isotope-effect exponents for the high-{ital T}{sub {ital c}} oxides. The mass dependences of the electron-phonon coupling constant {lambda} and the average phonon frequency {radical}{l angle}{omega}{sup 2}{r angle} are computed from weighted sums over the oscillator levels. The isotope-effect exponent is depressed below 1/2 by either a double-well potential or a potential with positive quadratic and quartic parts. Numerical solutions of Schroedinger's equation for double-well potentials produce {lambda}'s in the range 1.5--4 for a material with a vanishing isotope-effect parameter {alpha}. However, low phonon frequencies limit {ital T}{sub {ital c}} to roughly 15 K. A negative quartic perturbation to a harmonic well can increase {alpha} above 1/2. In the extreme-strong-coupling limit, {alpha} is 1/2, regardless of anharmonicity.
Phonon impedance matching: minimizing interfacial thermal resistance of thin films
Polanco, Carlos; Zhang, Jingjie; Ghosh, Avik
2014-03-01
The challenge to minimize interfacial thermal resistance is to allow a broad band spectrum of phonons, with non-linear dispersion and well defined translational and rotational symmetries, to cross the interface. We explain how to minimize this resistance using a frequency dependent broadening matrix that generalizes the notion of acoustic impedance to the whole phonon spectrum including symmetries. We show how to ``match'' two given materials by joining them with a single atomic layer, with a multilayer material and with a graded superlattice. Atomic layer ``matching'' requires a layer with a mass close to the arithmetic mean (or spring constant close to the harmonic mean) to favor high frequency phonon transmission. For multilayer ``matching,'' we want a material with a broadening close to the geometric mean to maximize transmission peaks. For graded superlattices, a continuous sequence of geometric means translates to an exponentially varying broadening that generates a wide-band antireflection coating for both the coherent and incoherent limits. Our results are supported by ``first principles'' calculations of thermal conductance for GaAs / Gax Al1 - x As / AlAs thin films using the Non-Equilibrium Greens Function formalism coupled with Density Functional Perturbation Theory. NSF-CAREER (QMHP 1028883), NSF-IDR (CBET 1134311), XSEDE.
Phonon scattering at SWCNT–SWCNT junctions in branched carbon nanotube networks
Park, Jungkyu [Case Western Reserve University, Department of Mechanical and Aerospace Engineering (United States); Lee, Jonghoon [Wright Patterson Air Force Base, Air Force Research Laboratory (United States); Prakash, Vikas, E-mail: vikas.prakash@case.edu [Case Western Reserve University, Department of Mechanical and Aerospace Engineering (United States)
2015-01-15
In this research article, we analyze phonon scattering in branched single-walled carbon nanotube (SWCNT) networks with SWCNT–SWCNT T- and X- junctions using the wave packet method. Five phonon branches including the longitudinal acoustic, twisting, transverse acoustic, radial breathing, and flexural optical modes are selected to study energy reflection, ramification, and transmission through T- and X-junctions with (6,6) and (4,4) SWCNTs. The results of the simulations indicate that the diameter of SWCNTs affects phonon scattering at carbon nanotube junctions; T-junctions of (6,6) SWCNTs transmit energy more efficiently when compared to T-junctions with (4,4) SWCNTs. In addition, T-junctions of both (6,6) and (4,4) SWCNTs transmit vibrational energy more efficiently when compared to X-junctions in the same phonon frequency range—for example, in the case of the longitudinal acoustic branch, the average energy transmission at T-junctions for low-frequency phonons (lower than 6 THz) was found to be 1.8–2.4 times higher [for the case of (6.6) and (4,4) SWCNTs, respectively] when compared to the X-junctions. It is also observed that energy transmission at the T-junctions shows a dependency on the phonon group velocity with the higher group velocity phonons showing higher energy transmission; however, for the case of the X-junctions, there is little or no correlation observed between the group velocity and energy transmission indicating a complete energy redistribution of the incoming phonons at the junction. Moreover, for the SWCNT–SWCNT branched networks, the energy ramification at the T-junctions was found to be very similar to that at the X-junctions for both (6,6) and (4,4) SWCNTs indicating transverse thermal transport at the X-junctions to be as efficient as the T-junctions.
Band structures in Sierpinski triangle fractal porous phononic crystals
Wang, Kai; Liu, Ying, E-mail: yliu5@bjtu.edu.cn; Liang, Tianshu
2016-10-01
In this paper, the band structures in Sierpinski triangle fractal porous phononic crystals (FPPCs) are studied with the aim to clarify the effect of fractal hierarchy on the band structures. Firstly, one kind of FPPCs based on Sierpinski triangle routine is proposed. Then the influence of the porosity on the elastic wave dispersion in Sierpinski triangle FPPCs is investigated. The sensitivity of the band structures to the fractal hierarchy is discussed in detail. The results show that the increase of the hierarchy increases the sensitivity of ABG (Absolute band gap) central frequency to the porosity. But further increase of the fractal hierarchy weakens this sensitivity. On the same hierarchy, wider ABGs could be opened in Sierpinski equilateral triangle FPPC; whilst, a lower ABG could be opened at lower porosity in Sierpinski right-angled isosceles FPPCs. These results will provide a meaningful guidance in tuning band structures in porous phononic crystals by fractal design.
Signature of electron-phonon interaction in high temperature superconductors
Vinod Ashokan
2011-09-01
Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.
Extreme electron-phonon coupling in magnetic rubidium sesquioxide
de Groot, Robert; Attema, Jisk; Riyadi, S.; Blake, Greame; de Wijs, Gilles; Palstra, Thomas
2008-03-01
Rb2O3 is a black, opaque oxide. Early work suggests that the stability range of the sesquioxide phase in the rubidium-oxygen phase diagram is rather broad. Rb2O3 remains cubic down to the lowest temperature measured (5 K). The oxygens form dumbbells with interatomic distances in between those of peroxide and superoxide anions, and strong athermal motion persists down to low temperatures. [1] Electronic-structure calculations show that the dynamics at low temperature is caused by 6 phonon modes of zero frequency, which induce a very strong electron-phonon interaction. The softness of half of these modes is suppressed by the application of pressure. Calculated using the average oxygen positions, rubidium sesquioxide is a half-metallic ferromagnet. [2] [1] CR CHIM (11-13): 591-594 NOV 1999[2] JACS 127 (46): 16325-16328 NOV 23 2005
Modification of the G-phonon mode of graphene by nitrogen doping
Lukashev, Pavel V., E-mail: pavel.lukashev@uni.edu; Hurley, Noah [Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614 (United States); Zhao, Liuyan; Pasupathy, Abhay [Department of Physics, Columbia University, New York, New York 10027 (United States); Paudel, Tula R.; Tsymbal, Evgeny Y. [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States); Schiros, Theanne [Materials Research Science and Engineering Center, Columbia University, New York, NY 10027 (United States); Department of Science and Mathematics, Fashion Institute of Technology, New York, NY 10001 (United States); Pinczuk, Aron [Department of Physics, Columbia University, New York, New York 10027 (United States); Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); He, Rui, E-mail: rui.he@uni.edu [Department of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614 (United States); Department of Physics, Columbia University, New York, New York 10027 (United States)
2016-01-25
The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. We show that the bond length change and the long range interaction of point defects are possible mechanisms responsible for the oscillatory behavior of the G frequency as a function of nitrogen concentration. At the same time, Friedel charge oscillations are unlikely to contribute to this behavior.
Huang, Wen Deng, E-mail: wdhuang2005@163.com [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); Chen, Guang De; Ye, Hong Gang [MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, Xi' an, 710049 (China); Ren, Ya Jie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)
2014-06-27
The interface optical phonons and its ternary effects in onion-like quantum dots are studied by using dielectric continuum model and the modified random-element isodisplacement model. The dispersion relations, the electron–phonon interactions and ternary effects on the interface optical phonons are calculated in the GaN/Al{sub x}Ga{sub 1−x}N onion-like quantum dots. The results show that aluminium concentration has important influence on the interface optical phonons and electron–phonon interactions in GaN/Al{sub x}Ga{sub 1−x}N onion-like quantum dots. The frequencies of interface optical phonons and electron–phonon coupling strengths change linearly with increase of aluminium concentration in high frequency range, and do not change linearly with increasing aluminium concentration in low frequency range. - Highlights: • The random-element isodisplacement model and dielectric continuum model are used. • The ternary effects on IO phonons in onion-like GaN/Al{sub x}Ga{sub 1−x}N QDs are studied. • The ternary effects on electron–IO phonon coupling in QDs are studied.
Soda Cans Metamaterial: A Subwavelength-Scaled Phononic Crystal
Fabrice Lemoult
2016-07-01
Full Text Available Photonic or phononic crystals and metamaterials, due to their very different typical spatial scales—wavelength and deep subwavelength—and underlying physical mechanisms—Bragg interferences or local resonances—, are often considered to be very different composite media. As such, while the former are commonly used to manipulate and control waves at the scale of the unit cell, i.e., wavelength, the latter are usually considered for their effective properties. Yet we have shown in the last few years that under some approximations, metamaterials can be used as photonic or phononic crystals, with the great advantage that they are much more compact. In this review, we will concentrate on metamaterials made out of soda cans, that is, Helmholtz resonators of deep subwavelength dimensions. We will first show that their properties can be understood, likewise phononic crystals, as resulting from interferences only, through multiple scattering effects and Fano interferences. Then, we will demonstrate that below the resonance frequency of its unit cell, a soda can metamaterial supports a band of subwavelength varying modes, which can be excited coherently using time reversal, in order to beat the diffraction limit from the far field. Above this frequency, the metamaterial supports a band gap, which we will use to demonstrate cavities and waveguides, very similar to those obtained in phononic crystals, albeit of deep subwavelength dimensions. We will finally show that multiple scattering can be taken advantage of in these metamaterials, by correctly structuring them. This allows to turn a metamaterial with a single negative effective property into a negative index metamaterial, which refracts waves negatively, hence acting as a superlens.
Dynamical stabilization by phonon-phonon interaction exemplified in cubic zirconia
Souvatsos, [etrps G [Los Alamos National Laboratory; Rudin, Sven P [Los Alamos National Laboratory
2008-01-01
Cubic zirconia exhibits a soft phonon mode (X{sup -}{sub 2}), which becomes dynamically unstable at low temperatures. Previous ab initio invest.igations into the temperature-induced stabilization of the soft mode treated it as an independent anharmonic oscillator. Calculations presented here, using the self consistent ab initio lattice dynamical (SCAILD) method to evaluate the phonons at 2570 K, show that the soft mode should not be treated independently of other phonon modes. Phonon-phonon interactions stabilize the X{sup -}{sub 2} mode. Furthermore, the effective potential experienced by the mode takes on a quadratic form.
Splash, pop, sizzle: Information processing with phononic computing
Sophia R. Sklan
2015-05-01
Full Text Available Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic.
Wavevector dependent electron -phonon coupling drives the CDW formation in TbTe3
Rosenkranz, S.; Maschek, M.; Weber, F.; Heid, R.; Said, A. H.; Giraldo-Gallo, P.; Fisher, I. R.
2015-03-01
The charge density wave (CDW) transition in the rare-earth tritellurides RTe3 (R =rare earth) is commonly assumed to originate from a textbook Fermi surface nesting instability. Contrary to this weak coupling scenario, our investigation of the soft phonon mode in TbTe3 provides direct evidence that the periodicity of the CDW superstructure in this canonical compound is defined by a strong momentum dependence of the electron-phonon coupling. Our high-resolution inelastic x-ray measurements reveal a renormalization of the soft-phonon energy and a strong broadening of the soft-phonon linewidth over a large part of reciprocal space adjacent to the CDW ordering vector. Our detailed theoretical calculations reproduce these observations very well and show that the position in reciprocal space of the phonon renormalization, and with it the CDW order wavevector, is not related to Fermi surface nesting. Our results demonstrate the importance of strongly momentum dependent electron-phonon coupling in defining the CDW order, which could also be relevant to many other systems. Work supported by U.S. DOE BES-MSE.
Phonon dispersion relation of liquid metals
P B Thakor; P N Gajjar; A R Jani
2009-06-01
The phonon dispersion curves of some liquid metals, viz. Na ( = 1), Mg ( = 2), Al ( = 3) and Pb ( = 4), have been computed using our model potential. The charged hard sphere (CHS) reference system is applied to describe the structural information. Our model potential along with CHS reference system is capable of explaining the phonon dispersion relation for monovalent, divalent, trivalent and tetravalent liquid metals.
Anharmonic phonons and high-temperature superconductivity
Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))
1993-07-01
We examine a simple model of anharmonic phonons with application to the superconducting isotope effect. Linear and quadratic electron-phonon coupling are considered for various model potentials. The results of the model calculations are compared with the high-temperature superconductors La[sub 2[minus][ital x
Konar, Aniruddha; Fang, Tian; Jena, Debdeep
2010-03-01
Surface phonons (SO-phonons) arise at the boundary of two different dielectric mediums. Though the effect of electron-surface phonon scattering on low-filed charge transport has been studied extensively for thin Si-MOSFET [1] and graphene [2], its effect on the 1D nanowire devices has not studied so far. Vibrating diploes in polar gate-dielectric induces a time-varying potential inside the nanowires. The frequencies of these time-varying fields have been calculated by implementing electrostatic boundary conditions at different interfaces of nanowire-dielectric-metal system. Our calculation shows that the electron-SO phonon interaction strength decays exponentially from the gate-nanowire interface towards the nanowire axis. Electron-SO phonon scattering rate has been calculated using Boltzmann transport equation under relaxation time approximation. We find that for thin nanowires (radius 1-20 nm), electron-SO phonon scattering rate is comparable to other dominant scattering mechanisms (such as impurity and bulk optical phonon scatterings) and reduces carrier mobility significantly. Calculating surface-phonon limited mobility of Si nanowires on various available common dielectrics, we have predicted the optimum choice of gate-dielectrics for nanowire-based electronic devices. [4pt] [1] M. V. Fischetti et. al J. Appl. Phys. 90 4581 (2001). [0pt] [2] A. Konar et. al. arXiv: 0902.0819.
The phonon Hall effect: theory and application
Zhang Lifa; Wang Jiansheng; Li Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Ren Jie [NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456 (Singapore)
2011-08-03
We present a systematic theory of the phonon Hall effect in a ballistic crystal lattice system, and apply it on the kagome lattice which is ubiquitous in various real materials. By proposing a proper second quantization for the non-Hermitian in the polarization-vector space, we obtain a new heat current density operator with two separate contributions: the normal velocity responsible for the longitudinal phonon transport, and the anomalous velocity manifesting itself as the Hall effect of transverse phonon transport. As exemplified in kagome lattices, our theory predicts that the direction of Hall conductivity at low magnetic field can be reversed by tuning the temperatures, which we hope can be verified by experiments in the future. Three phonon-Hall-conductivity singularities induced by phonon-band-topology change are discovered as well, which correspond to the degeneracies at three different symmetric center points, {Gamma}, K, X, in the wavevector space of the kagome lattice.
Ultrafast Structure Switching through Nonlinear Phononics
Juraschek, D. M.; Fechner, M.; Spaldin, N. A.
2017-02-01
We describe a mechanism by which nonlinear phononics allows ultrafast coherent and directional control of transient structural distortions. With ErFeO3 as a model system, we use density functional theory to calculate the structural properties as input into an anharmonic phonon model that describes the response of the system to a pulsed optical excitation. We find that the trilinear coupling of two orthogonal infrared-active phonons to a Raman-active phonon causes a transient distortion of the lattice. In contrast to the quadratic-linear coupling that has been previously explored, the direction of the distortion is determined by the polarization of the exciting light, introducing a novel mechanism for nonlinear phononic switching. Since the occurrence of the coupling is determined by the symmetry of the system we propose that it is a universal feature of orthorhombic and tetragonal perovskites.
Yu, Chung; Chong, Yat C.; Fong, Chee K.
1989-06-01
Interaction of GHz and MHz radiation with CO2 laser propagation in a silver halide fiber using sBs based phonon coupling is furthet investigated. The external signal serves to both probe and enhance laser generated sBs phonons in the fiber. Efficient coupling of microwave radiation into the fiber is accomplished by placing the fiber in a hollow metallic waveguide, designed and constructed to transmit the dominant mode in the 0.9-2.0 GHz band. MHz radiation is conveniently coupled into the fiber using the guided microwave radiation as carrier. Phonon emissions from the fiber under CO2 laser pumping are first established on a spectrum analyzer; low frequency generators ale then tuned to match these frequencies and their maximum interaction recorded. Such interactions are systematically studied by monitoring the amplitude and waveform of the reflected and transmitted laser pulse at various power levels and frequencies of the externally coupled radiation. A plot of reflected laser power versus incident laser power reveals a distinct sBs generated phonon threshold. Variouslaunch directions of the GHz and MHz radiation with respect to the direction of laser propagation are realized to verify theory governing sBs interactions. The MHz radiation and its associated phonons in the fiber are convenient tools for probing sBs related phenomenon in infrared fibers.
Nonsymmorphic Phononic Metamaterials: shaping waves over multiple length scales
Koh, Cheongyang; Thomas, Edwin
2012-02-01
The vector nature of the phonon makes rational design of phononic metamaterials challenging, despite potential in unique wave propagation behavior, such as negative refraction and hyper-lensing. While most designs to date focus on the ``meta-atom'' (building block) design, their ``spatial arrangement'' (non-locality) is equally instrumental in dispersion engineering. Here, we present a generalized design framework (DF) for PMM design, utilizing both ``global'' and ``local'' symmetry concepts. We demonstrate, utilizing specific properties of nonsymmorphic plane groups, PMMs possessing i) a low-frequency in-plane complete spectral gap (ICSG) of 102% (CSG of 88%), ii) a set of polychromatic ICSGs totaling over 100% in normalized gap size. Within the same DF, we further integrate broken symmetry states (BSS) (edge states, waveguides, etc) with designed polarization, (de)localization and group velocities. In particular, we demonstrate how these BSS may be utilized to elucidate signatures of complex polarization fields through phonon-structure interactions, leading to interesting applications in elastic-wave imaging, as well as information retrieval by probing polarization states of scattering bodies over multiple scales.
Theory of Raman Scattering by Phonons in Germanium Nanostructures
Wang-Chen Chumin
2007-01-01
Full Text Available AbstractWithin the linear response theory, a local bond-polarization model based on the displacement–displacement Green’s function and the Born potential including central and non-central interatomic forces is used to investigate the Raman response and the phonon band structure of Ge nanostructures. In particular, a supercell model is employed, in which along the [001] direction empty-column pores and nanowires are constructed preserving the crystalline Ge atomic structure. An advantage of this model is the interconnection between Ge nanocrystals in porous Ge and then, all the phonon states are delocalized. The results of both porous Ge and nanowires show a shift of the highest-energy Raman peak toward lower frequencies with respect to the Raman response of bulk crystalline Ge. This fact could be related to the confinement of phonons and is in good agreement with the experimental data. Finally, a detailed discussion of the dynamical matrix is given in the appendix section.
Sideband Raman Cooling of Optical Phonons in Semiconductors
Zhang, Jun; Kwek, Leong Chuan; Xiong, Qihua
2014-03-01
Last century has witnessed a tremendous success of laser cooling technology from trapped atomic ions to solid-state optical refrigeration. As one of the laser cooling techniques, sideband Raman cooling plays an important role in quantum ground state preparation, coherent quantum-state manipulation and quantum phenomena study. However, those studies still limited in trapped atomic ions and cavity optomechanics, which need be cooled it below than 0.1 Kelvin even tens of nano-Kelvin due to very low frequency of phonons from several kHz to GHz. Here we report sideband Raman cooling and heating experiments of longitudinal optical phonon (LOP) with a 6.23 THz in semiconductor ZnTe nano-ribbons. By using of red-sideband laser, we cool the LOP from 225 to 55 Kelvin, corresponding to an average occupation number reduced from 0.36 to 0.005. We also observe a LOPs heating from 230 to 384 Kelvin with a blue-sideband pumping. Our experiment opens a possibility of all solid state quantum applications using semiconductor optical phonon mediated coupling at room temperature. We gratefully acknowledge funding from Singapore NRF, MOE and NTU.
Stress Wave Isolation by Purely Mechanical Topological Phononic Crystals
Chaunsali, Rajesh; Li, Feng; Yang, Jinkyu
2016-08-01
We present an active, purely mechanical stress wave isolator that consists of short cylindrical particles arranged in a helical architecture. This phononic structure allows us to change inter-particle stiffness dynamically by controlling the contact angles of the cylinders. We use torsional travelling waves to control the contact angles, thereby imposing a desired spatio-temporal stiffness variation to the phononic crystal along the longitudinal direction. Such torsional excitation is a form of parametric pumping in the system, which results in the breakage of the time-reversal symmetry. We report that, in quasi-static sense, the system shows topologically non-trivial band-gaps. However, in a dynamic regime where the pumping effect is significant, these band-gaps become asymmetric with respect to the frequency and wavenumber domains in the dispersion relationship. By using numerical simulations, we show that such asymmetry has a direct correspondence to the topological invariant, i.e., Chern number, of the system. We propose that this asymmetry, accompanied by selective inter-band transition, can be utilized for directional isolation of the stress wave propagating along the phononic crystal.
Carmine Antonio Perroni
2014-03-01
Full Text Available Spectral and transport properties of small molecule single-crystal organic semiconductors have been theoretically analyzed focusing on oligoacenes, in particular on the series from naphthalene to rubrene and pentacene, aiming to show that the inclusion of different electron-phonon couplings is of paramount importance to interpret accurately the properties of prototype organic semiconductors. While in the case of rubrene, the coupling between charge carriers and low frequency inter-molecular modes is sufficient for a satisfactory description of spectral and transport properties, the inclusion of electron coupling to both low-frequency inter-molecular and high-frequency intra-molecular vibrational modes is needed to account for the temperature dependence of transport properties in smaller oligoacenes. For rubrene, a very accurate analysis in the relevant experimental configuration has allowed for the clarification of the origin of the temperature-dependent mobility observed in these organic semiconductors. With increasing temperature, the chemical potential moves into the tail of the density of states corresponding to localized states, but this is not enough to drive the system into an insulating state. The mobility along different crystallographic directions has been calculated, including vertex corrections that give rise to a transport lifetime one order of magnitude smaller than the spectral lifetime of the states involved in the transport mechanism. The mobility always exhibits a power-law behavior as a function of temperature, in agreement with experiments in rubrene. In systems gated with polarizable dielectrics, the electron coupling to interface vibrational modes of the gate has to be included in addition to the intrinsic electron-phonon interaction. While the intrinsic bulk electron-phonon interaction affects the behavior of mobility in the coherent regime below room temperature, the coupling with interface modes is dominant for the
Topologically distinct Feynman diagrams for mass operator in electron-phonon interaction
C.C. Tovstyuk
2009-01-01
Full Text Available The new method for designing topologically distinct Feynman diagrams for electron's mass operator in electron-phonon interaction is developed using the permutation group theory. The carried out classification of DPs allows to choose the classes, corresponding to disconnected diagrams, to singly connected diagrams, direct ("tadpole" diagrams, to diagrams corresponding to phonon Green functions. After this classification the set of considered double permutations is reduced to one class since only these are relevant to mass operator. We derive analytical expressions which allow to identify the DP, and to choose the phonon components, which are not accepted in every type. To avoid repetition of asymmetric diagrams, which correspond to the same analytical expression, we introduce the procedure of inversion in phonon component, and identify symmetric as well as a pair of asymmetric phonon components. For every type of DP (denoted by its digital encoding, taking into account its symmetry, we perform a set of transformations on this DP, list all DPs of the type and all the corresponding Feynman diagrams of mass operator automatically. It is clear that no more expressions (diagrams for the relevant order of perturbation theory for mass operator can be designed.
Light-enhanced electron-phonon coupling from nonlinear electron-phonon coupling
Sentef, M. A.
2017-05-01
We investigate an exact nonequilibrium solution of a two-site electron-phonon model, where an infrared-active phonon that is nonlinearly coupled to the electrons is driven by a laser field. The time-resolved electronic spectrum shows coherence-incoherence spectral weight transfer, a clear signature of light-enhanced electron-phonon coupling. The present study is motivated by recent evidence for enhanced electron-phonon coupling in pump-probe terahertz and angle-resolved photoemission spectroscopy in bilayer graphene when driven near resonance with an infrared-active phonon mode [E. Pomarico et al., Phys. Rev. B 95, 024304 (2017), 10.1103/PhysRevB.95.024304], and by a theoretical study suggesting that transient electronic attraction arises from nonlinear electron-phonon coupling [D. M. Kennes et al., Nat. Phys. 13, 479 (2017), 10.1038/nphys4024]. We show that a linear scaling of light-enhanced electron-phonon coupling with the pump field intensity emerges, in accordance with a time-nonlocal self-energy based on a mean-field decoupling using quasiclassical phonon coherent states. Finally, we demonstrate that this leads to enhanced double occupancies in accordance with an effective electron-electron attraction. Our results suggest that materials with strong phonon nonlinearities provide an ideal playground to achieve light-enhanced electron-phonon coupling and possibly light-induced superconductivity.
Phonon induced optical gain in a current carrying two-level quantum dot
Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)
2017-05-15
In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa
2014-05-21
We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices.
Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core
Mukherjee, Sushovan; Scarpa, Fabrizio; Gopalakrishnan, S.
2016-05-01
We present a novel design of a honeycomb lattice geometry that uses a seamless combination of conventional and auxetic cores, i.e. elements showing positive and negative Poisson’s ratio. The design is aimed at tuning and improving the band structure of periodic cellular structures. The proposed cellular configurations show a significantly wide band gap at much lower frequencies compared to their pure counterparts, while still retaining their major dynamic features. Different topologies involving both auxetic inclusions in a conventional lattice and conversely hexagonal cellular inclusions in auxetic butterfly lattices are presented. For all these cases the impact of the varying degree of auxeticity on the band structure is evaluated. The proposed cellular designs may offer significant advantages in tuning high-frequency bandgap behaviour, which is relevant to phononics applications. The configurations shown in this paper may be made iso-volumetric and iso-weight to a given regular hexagonal topology, making possible to adapt the hybrid lattices to existing sandwich structures with fixed dimensions and weights. This work also features a comparative study of the wave speeds corresponding to different configurations vis-a vis those of a regular honeycomb to highlight the superior behaviour of the combined hybrid lattice.
Phonon transport in silicon nanowires: The reduced group velocity and surface-roughness scattering
Zhu, Liyan; Li, Baowen; Li, Wu
2016-09-01
Using a linear-scaling Kubo simulation approach, we have quantitatively investigated the effects of confinement and surface roughness on phonon transport in silicon nanowires (SiNWs) as thick as 55 nm in diameter R . The confinement effect leads to significant reduction of phonon group velocity v in SiNWs compared to bulk silicon except at extremely low phonon frequencies f , which very likely persists in SiNWs several hundreds of nanometers thick, suggesting the inapplicability of bulk properties, including anharmonic phonon scattering, to SiNWs. For instance, the velocity can be reduced by more than 30% for phonons with f >4.5 THz in 55-nm-thick nanowires. In rough SiNWs Casimir's limit, which is valid in confined macroscopic systems, can underestimate the surface scattering by more than one order of magnitude. For a roughness profile with Lorentzian correlation characterized by root-mean-square roughness σ and correlation length Lr, the frequency-dependent phonon diffusivity D follows power-law dependences D ∝Rασ-βLrγ , where α ˜2 and β ˜1 . On average, γ increases from 0 to 0.5 as R /σ increases. The mean free path and the phonon lifetime essentially follow the same power-law dependences. These dependences are in striking contrast to Casimir's limit, i.e., D ˜v R /3 , and manifest the dominant role of the change in the number of atoms due to roughness. The thermal conductivity κ can vary by one order of magnitude with varying σ and Lr in SiNWs, and increasing σ and shortening Lr can efficiently lower κ below Casimir's limit by one order of magnitude. Our work provides different insights to understand the ultralow thermal conductivity of SiNWs reported experimentally and guidance to manipulate κ via surface roughness engineering.
Self-consistent phonons in MgSiO3 perovskite
Zhang, D.; Sun, T.; Wentzcovitch, R. M.
2012-12-01
There are numerous materials under conditions of interest for which MD is required but still too demanding for first principles. In these cases 1) phonon-phonon interactions are non-negligible, 2) the material is on the verge of mechanical and/or vibrational instabilities, 3) or the material is stabilized by anharmonic fluctuations at high temperatures. MD is suitable for investigating these states as intrinsic anharmonic effects caused by phonon-phonon interactions are naturally included, but the requirement on size and length of the simulations call for more efficient and accurate approaches for phase space sampling. Indeed, MD needs thousands of atoms and 10^4 to 10^5 picosenconds of simulations for thorough sampling of phase space and accurate free energy calculations (e.g. in thermodynamical integration method). Nevertheless, we note that none of these states can be physical-properly addressed by quasi-harmonic approximation (QHA) approach. This is because QHA overlooks the intrinsic harmonicity and only suits mechanically and dynamically stable phases with a limited range in temperature (Up to approximately 2/3 of the melting temperature). Recently, a new breed of methods for calculating anharmonic vibrational spectra has been developed. These methods use MD to extract phonon frequencies renormalized by phonon-phonon interactions (self-consistent phonons - SCPh). More than one procedure to extract SCPh frequencies has been introduced and applied to solids with lattice structures relatively simple compared to those of silicate minerals. Here, we developed an efficient approach that can offer SCPh dispersions in materials with complex crystal lattice structures containing tens of atoms per primitive cell. First-principles MD simulations on supercells containing hundreds of atoms permits the extraction of dynamical matrices and force-constant matrices that can be Fourier interpolated to produce SCPh dispersions. Thoroughly sampling of these dispersions
Acoustic superfocusing by solid phononic crystals
Zhou, Xiaoming; Assouar, M. Badreddine; Oudich, Mourad
2014-12-01
We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.
Kuleev, I G
2001-01-01
The effect of normal processes of the phonon-phonon scattering on the thermal conductivity of the germanium crystals with various isotopic disorder degrees is considered. The phonon pulse redistribution in the normal scattering processes both inside each oscillatory branch (the Simons mechanism) and between various phonon oscillatory branches (the Herring mechanism) is accounted for. The contributions of the longitudinal and cross-sectional phonons drift motion into the thermal conductivity are analyzed. It is shown that the pulse redistribution in the Herring relaxation mechanism leads to essential suppression of the longitudinal phonons drift motion in the isotopically pure germanium crystals. The calculations results of thermal conductivity for the Herring relaxation mechanism agree well with experimental data on the germanium crystals with various isotopic disorder degrees
Surface phonons on Al(111) surface covered by alkali metals
Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Sklyadneva, I. Yu.; Chulkov, E. V.
2005-06-01
We investigated the vibrational and structural properties of the Al(111)-(3×3)R30°-AM (AM=Na,K,Li) adsorbed systems using interaction potentials from the embedded-atom method. The surface relaxation, surface phonon dispersion, and polarization of vibrational modes for the alkali adatoms and the substrate atoms as well as the local density of states are discussed. Our calculated structural parameters are in close agreement with experimental and ab initio results. The obtained vibrational frequencies compare fairly well with the available experimental data.
Effects of phonon-phonon coupling on properties of pygmy resonance in 124-132Sn
Voronov V. V.
2012-12-01
Full Text Available Starting from an effective Skyrme interaction we study effects of phonon-phonon coupling on the low-energy electric dipole response in 124-132Sn. The QRPA calculations are performed within a finite rank separable approximation. The inclusion of two-phonon configurations gives a considerable contribution to low-lying strength. Comparison with available experimental data shows a reasonable agreement for the low-energy E1 strength distribution.
Agyare, Benjamin; Riseborough, Peter
2017-01-01
Intrinsically Localized Modes (ILMs) have purportedly been observed in NaI but only for wave-vectors, q at the corner of the 3-D Brillouin Zone. It has been suggested that, for high-symmetry q vectors, several van Hove singularities may converge at one frequency producing a large peak in the two-phonon density of state and giving rise to ILMs with these q values. We fit the experimentally determined acoustic and the optic phonon modes using a nearest neighbor and a next-nearest neighbor force constant. We find that the two-phonon density of states, for fixed q exhibits non-divergent van Hove singularities. The frequencies of these features are found to vary as q is varied. We intend to search for q values at which the two-phonon density of states is enhanced and then examine whether the anharmonic interactions can bind the two-phonon excitations to produce a quantized ILM.
Low-Field Mobility and Galvanomagnetic Properties of Holes in Germanium with Phonon Scattering
Lawætz, Peter
1968-01-01
A theoretical calculation of the low-field galvanomagnetic properties of holes in Ge has been carried out incorporating all relevant details of the band structure. The scattering is limited to acoustic and optical phonons and is described by the deformation potentials a, b, d, and d0. For pure...... acoustic scattering, no overall consistency is found between available galvanomagnetic data and deformation potentials derived directly from experiments on strained Ge. The discrepancies may be ascribed to ionized-impurity scattering, but at higher temperatures where optical phonon scattering is operative...
Theory of temperature dependent phonon-renormalized properties
Monserrat, Bartomeu; Conduit, G. J.; Needs, R. J.
2013-01-01
We present a general harmonic theory for the temperature dependence of phonon-renormalized properties of solids. Firstly, we formulate a perturbation theory in phonon-phonon interactions to calculate the phonon renormalization of physical quantities. Secondly, we propose two new schemes for extrapolating phonon zero-point corrections from temperature dependent data that improve the accuracy by an order of magnitude compared to previous approaches. Finally, we consider the low-temperature limi...
Lokteva Irina
2011-01-01
Full Text Available Abstract Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf
Influence of phonons on semiconductor quantum emission
Feldtmann, Thomas
2009-07-06
A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)
Length-scale dependent phonon interactions
Srivastava, Gyaneshwar
2014-01-01
This book presents a comprehensive description of phonons and their interactions in systems with different dimensions and length scales. Internationally-recognized leaders describe theories and measurements of phonon interactions in relation to the design of materials with exotic properties such as metamaterials, nano-mechanical systems, next-generation electronic, photonic, and acoustic devices, energy harvesting, optical information storage, and applications of phonon lasers in a variety of fields. The emergence of techniques for control of semiconductor properties and geometry has enabled engineers to design structures in which functionality is derived from controlling electron behavior. As manufacturing techniques have greatly expanded the list of available materials and the range of attainable length scales, similar opportunities now exist for designing devices whose functionality is derived from controlling phonon behavior. However, progress in this area is hampered by gaps in our knowledge of phono...
Watching surface waves in phononic crystals.
Wright, Oliver B; Matsuda, Osamu
2015-08-28
In this paper, we review results obtained by ultrafast imaging of gigahertz surface acoustic waves in surface phononic crystals with one- and two-dimensional periodicities. By use of quasi-point-source optical excitation, we show how, from a series of images that form a movie of the travelling waves, the dispersion relation of the acoustic modes, their corresponding mode patterns and the position and widths of phonon stop bands can be obtained by temporal and spatio-temporal Fourier analysis. We further demonstrate how one can follow the temporal evolution of phononic eigenstates in k-space using data from phononic-crystal waveguides as an example. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Acoustic and optical phonons in metallic diamond
M. Hoesch, T. Fukuda, T. Takenouchi, J.P. Sutter, S. Tsutsui, A.Q.R. Baron, M. Nagao, Y. Takano, H. Kawarada and J. Mizuki
2006-01-01
Full Text Available The dispersion of acoustic and optical phonons in highly boron-doped diamond has been measured by inelastic X-ray scattering at an energy resolution of 6.4 meV. The sample is doped in the metallic regime and shows superconductivity below 4.2 K (midpoint. The data are compared to pure and nitrogen-doped diamond that represent the non-metallic state. No difference is found for the acoustic phonons in the three samples, while the optical phonons show a shift of the dispersion (softening in qualitative agreement with earlier results from Raman spectroscopy. The presence of boron and nitrogen incorporated into the diamond lattice leads to structural disorder. Evidence for this is found both in the observation of otherwise symmetry-forbidded Bragg intensity at (0 0 2 and intensity from acoustic phonon modes in the vicinity of (0 0 2.
Acoustic Phonon Thermal Transport through a Nanostructure
LI Wen-Xia; LIU Tian-Yu; LIU Chang-Long
2006-01-01
@@ Using the scattering matrix method, we investigate the thermal transport in a nanostructure at low temperatures.It is found that phonon transport exhibits some novel and interesting features: resonant transmission, resonant reflection, and small thermal conductance.
Single-photon indistinguishability: influence of phonons
Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka
2012-01-01
effects is important in linear optical quantum computing [1], where a device emitting fully coherent indistinguishable single photons on demand, is the essential ingredient. In this contribution we present a numerically exact simulation of the effect of phonons on the degree of indistinguishability......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... of photons emitted from a solid-state cavity QED system. Our model rigorously describes non-Markovian effects to all orders in the phonon coupling constant, being based on an exact diagonalization procedure accounting for the time evoluiton of one-time and two-time photon correlation funcitons. We compare...
Intrinsic Plasmon-Phonon Interactions in Highly Doped Graphene: A Near-Field Imaging Study.
Bezares, Francisco J; Sanctis, Adolfo De; Saavedra, J R M; Woessner, Achim; Alonso-González, Pablo; Amenabar, Iban; Chen, Jianing; Bointon, Thomas H; Dai, Siyuan; Fogler, Michael M; Basov, D N; Hillenbrand, Rainer; Craciun, Monica F; García de Abajo, F Javier; Russo, Saverio; Koppens, Frank H L
2017-09-05
As a two-dimensional semimetal, graphene offers clear advantages for plasmonic applications over conventional metals, such as stronger optical field confinement, in situ tunability, and relatively low intrinsic losses. However, the operational frequencies at which plasmons can be excited in graphene are limited by the Fermi energy EF, which in practice can be controlled electrostatically only up to a few tenths of an electronvolt. Higher Fermi energies open the door to novel plasmonic devices with unprecedented capabilities, particularly at mid-infrared and shorter-wave infrared frequencies. In addition, this grants us a better understanding of the interaction physics of intrinsic graphene phonons with graphene plasmons. Here, we present FeCl3-intercalated graphene as a new plasmonic material with high stability under environmental conditions and carrier concentrations corresponding to EF > 1 eV. Near-field imaging of this highly doped form of graphene allows us to characterize plasmons, including their corresponding lifetimes, over a broad frequency range. For bilayer graphene, in contrast to the monolayer system, a phonon-induced dipole moment results in increased plasmon damping around the intrinsic phonon frequency. Strong coupling between intrinsic graphene phonons and plasmons is found, supported by ab initio calculations of the coupling strength, which are in good agreement with the experimental data.
Infrared spectroscopic study of phonons coupled to charge excitations in FeSi
Damascelli, A.; Schulte, K. Van der; Marel, D. van der; Menovsky, A. A.
1997-01-01
From an investigation of the optical conductivity of FeSi single crystals using Fourier-transform infrared spectroscopy in the frequency range from 30 to 20 000 cm-l we conclude that the transverse effective charge of the Fe and Si ions is approximately 4e. Of the five optical phonons that are allow
Pillai, Sharad Babu; Narayan, Som; Jha, Prafulla K.
2017-05-01
The present paper reports the study of phonon properties of a two dimensional antimony nanosheet under the biaxial strain using first principles calculation based on density functional theory. Our calculations shows that the strain turns the quadratic dependence of wave vector on frequency to the linear dependency which can be linked with the removal of rippling in nanosheets.
Strongly Nonlinear Transverse Perturbations in Phononic Crystals
S. Nikitenkova
2014-01-01
Full Text Available The dynamics of the surface heterogeneities formation in low-dimensional phononic crystals is studied. It is shown that phononic transverse perturbations in this medium are highly nonlinear. They can be described with the help of the Riemann wave and may form stable wave structures of the finite amplitude. The Riemann wave deformation is described analytically. The Riemann wave time existence up to the beginning of the gradient catastrophe is calculated.
Phonon broadening in high entropy alloys
Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.
2017-09-01
Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.
Correct Evaluation of the Effect of Transverse Effective Charges on Phonons in AlAs Quantum Dots
QIN Guo-Yi
2003-01-01
An improved valence force field model (VFFM) is suggested to calculate the phonon modes in both bulk specimens and quantum dots (QDs) of AlAs taking account of the effect of transverse effective charges (TCs) correctly.The resultant dispersions of AlAs bulk phonons are in accord better with the results carefully fitted to the experimental data by using 11-parameters rigid-ion model, than those got by ordinary VFFM, especially in the region of near F point. For AlAs QDs, TCs are evaluated bond by bond for each phonon mode of QD and its effect on the change of the force on atoms is taken into account to modify further the phonon spectrum. The frequency spectra and densities of phonon states of different irreducible representations calculated by using improved VFFM are compared with the results of ordinary VFFM. The correct evaluation of the TCs is not only important in calculating the phonon spectrum of both bulk and QD specimens accurately, but is also in the further discussion of the electron-phonon (e-ph) interaction, which can be directly related to TCs of ions in QD.
Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming
2017-02-08
By carefully and systematically performing Green-Kubo equilibrium molecular dynamics simulations, we report that the thermal conductivity (κ) of Si nanowires (NWs) does not diverge but converges and increases steeply when NW diameter (D) becomes extremely small (dκ/dD < 0), a long debate of one-dimensional heat conduction in history. The κ of the thinnest possible Si NWs reaches a superhigh level that is as large as more than 1 order of magnitude higher than its bulk counterpart. The abnormality is explained in terms of the dominant normal (N) process (energy and momentum conservation) of low frequency acoustic phonons that induces hydrodynamic phonon flow in the Si NWs without being scattered. With D increasing, the downward shift of optical phonons triggers strong Umklapp (U) scattering with acoustic phonons and attenuates the N process, leading to the regime of phonon boundary scattering (dκ/dD < 0). The two competing mechanisms result in nonmonotonic diameter dependence of κ with minima at critical diameter of 2-3 nm. Our results unambiguously demonstrate the converged κ and the clear trend of κ ∼ D for extremely thin Si NWs by fully elucidating the competition between the hydrodynamic phonon flow and phonon boundary scattering.
Spectroscopy of infrared-active phonons in high-temperature superconductors
Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.
1995-01-01
For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.
Phonon Transmission and Thermal Conductance in Fibonacci Wire at Low Temperature
ZHANG Yong-Mei; XU Chen-Hua; XIONG Shi-Jie
2007-01-01
We investigate the phonon transmission and thermal conductance in a general Fibonacci quasicrystal by the model of lattice dynamics and the technique of transfer matrix.It is found that quasiperiodic distribution of masses may greatly destroy the phonon transport at both low and high frequencies and thus may affect the thermal conductance.The thermal conductance increases with temperature at low temperatures and displays saturation with further increase of the temperature.Such saturation behaviour is preserved even when the mass ratio of atoms in the Fibonacci chain is changed.
Interface nano-confined acoustic waves in polymeric surface phononic crystals
Travagliati, Marco, E-mail: marco.travagliati@iit.it [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Nardi, Damiano [JILA and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States); Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco, E-mail: francesco.banfi@unicatt.it [i-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia (Italy); Gusev, Vitalyi [LAUM, UMR-CNRS 6613, Université du Maine, av. O. Messiaen, 72085 Le Mans (France); Pingue, Pasqualantonio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Piazza, Vincenzo [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy)
2015-01-12
The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.
Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-09-02
A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.
Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides.
Wang, Zhao; Yang, Xiaolong; Feng, Dan; Wu, Haijun; Carrete, Jesus; Zhao, Li-Dong; Li, Chao; Cheng, Shaodong; Peng, Biaolin; Yang, Guang; He, Jiaqing
2017-02-01
We present a comprehensive experimental and theoretical study of phonon scattering by nanoprecipitates in potassium-doped PbTe, PbSe, and PbS. We highlight the role of the precipitate size distribution measured by microscopy, whose tuning allows for thermal conductivities lower than the limit achievable with a single size. The correlation between the size distribution and the contributions to thermal conductivity from phonons in different frequency ranges provides a physical basis to the experimentally measured thermal conductivities, and a criterion to estimate the lowest achievable thermal conductivity. The results have clear implications for efficiency enhancements in nanostructured bulk thermoelectrics.
Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro
2016-08-01
Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.
Phonon-interface scattering in multilayer graphene on an amorphous support
Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li
2013-01-01
The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656
Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment
Yen, Jeffrey [Stanford Univ., CA (United States)
2015-01-01
Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 μm is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physics involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized “overlap” region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The
Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.
Hu, Xuedong; Nori, Franco
1997-03-01
We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.
Lüer, Larry; Gadermaier, Christoph; Crochet, Jared; Hertel, Tobias; Brida, Daniele; Lanzani, Guglielmo
2009-03-27
We excite and detect coherent phonons in semiconducting (6,5) carbon nanotubes via a sub-10-fs pump-probe technique. Simulation of the amplitude and phase profile via time-dependent wave packet theory yields excellent agreement with experimental results under the assumption of molecular excitonic states and allows determining the electron-phonon coupling strength for the two dominant vibrational modes.
Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal
D'Alessandro, L.; Belloni, E.; Ardito, R.; Corigliano, A.; Braghin, F.
2016-11-01
This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal.
A Strategy to Suppress Phonon Transport in Molecular Junctions Using pi-Stacked Systems
Li, Qian; Strange, Mikkel; Duchemin, Ivan
2017-01-01
Molecular junctions are promising candidates for thermoelectric devices due to the potential to tune the electronic and thermal transport properties. However, a high figure of merit is hard to achieve, without reducing the phononic contribution to thermal conductance. Here, we propose a strategy...... to suppress phonon transport in graphene-based molecular junctions preserving high electronic power factor, using nonbonded pi-stackal systems. Using first-principles calculations, we find that the thermal conductance of pi-stacked systems can be reduced by about 95%, compared with that of a covalently bonded...... molecular junction. Phonon transmission of pi-stacked systems is largely attenuated in the whole frequency range, and the remaining transmission occurs mainly below 5 THz, where out-of-plane channels dominate. The figure of merit (ZT) of the pi-stacked molecular junction is dramatically enhanced because...
Srikanthreddy, D.; Glavin, B. A.; Poyser, C. L.; Henini, M.; Lehmann, D.; Jasiukiewicz, Cz.; Akimov, A. V.; Kent, A. J.
2017-02-01
We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by the femtosecond optical excitation of an Al film transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, the amplitude, and the polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This analysis includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 and 70 GHz, respectively.
THz elastic dynamics in finite-size CoFeB-MgO phononic superlattices
Ulrichs, Henning; Meyer, Dennis; Müller, Markus; Wittrock, Steffen; Mansurova, Maria; Walowski, Jakob; Münzenberg, Markus
2016-10-01
In this article, we present the observation of coherent elastic dynamics in a nano-scale phononic superlattice, which consists of only 4 bilayers. We demonstrate how ultra-short light pulses with a length of 40 fs can be utilized to excite a coherent elastic wave at 0.535 THz, which persist over about 20 ps. In later steps of the elastic dynamics, modes with frequency of 1.7 THz and above appear. All these modes are related to acoustic band gaps. Thus, the periodicity strongly manifests in the wave physics, although the system under investigation has only a small number of spatial periods. To further illustrate this, we show how by breaking the translational invariance of the superlattice, these features can be suppressed. Discussed in terms of phonon blocking and radiation, we elucidate in how far our structures can be considered as useful building blocks for phononic devices.
Technology towards a SAW based phononic crystal sensor
Schmidt, Marc-Peter; Oseev, Aleksandr; Lucklum, Ralf; Hirsch, Soeren
2015-05-01
Phononic crystals (PnC) with a specifically designed defect have been recently introduced as novel sensor platform. Those sensors feature a band gap covering the typical input span of the measurand as well as a narrow transmission peak within the band gap where the frequency of maximum transmission is governed by the measurand. This innovative approach has been applied for determination of compounds in liquids [1]. Improvement of sensitivity requires higher probing frequencies around 100 MHz and above. In this range surface acoustic wave devices (SAW) provide a promising basis for PnC based microsensors [2]. The respective feature size of the PnC SAW sensor has dimensions in the range of 100 μm and below. Whereas those dimensions are state of the art for common MEMS materials, etching of holes and cavities in piezoelectric materials having an aspect ratio diameter/depth is challenging. In this contribution we describe an improved technological process to manufacture considerably deep and uniform phononic crystal structures inside of SAW substrates.
Yan, Zhequan; Chen, Liang; Yoon, Mina; Kumar, Satish
2016-12-07
We investigate the role of interfacial electronic properties on the phonon transport in two-dimensional MoS2 adsorbed on metal substrates (Au and Sc) using first-principles density functional theory and the atomistic Green's function method. Our study reveals that the different degree of orbital hybridization and electronic charge distribution between MoS2 and metal substrates play a significant role in determining the overall phonon-phonon coupling and phonon transmission. The charge transfer caused by the adsorption of MoS2 on Sc substrate can significantly weaken the Mo-S bond strength and change the phonon properties of MoS2, which result in a significant change in thermal boundary conductance (TBC) from one lattice-stacking configuration to another for same metallic substrate. In a lattice-stacking configuration of MoS2/Sc, weakening of the Mo-S bond strength due to charge redistribution results in decrease in the force constant between Mo and S atoms and substantial redistribution of phonon density of states to low-frequency region which affects overall phonon transmission leading to 60% decrease in TBC compared to another configuration of MoS2/Sc. Strong chemical coupling between MoS2 and the Sc substrate leads to a significantly (∼19 times) higher TBC than that of the weakly bound MoS2/Au system. Our findings demonstrate the inherent connection among the interfacial electronic structure, the phonon distribution, and TBC, which helps us understand the mechanism of phonon transport at the MoS2/metal interfaces. The results provide insights for the future design of MoS2-based electronics and a way of enhancing heat dissipation at the interfaces of MoS2-based nanoelectronic devices.
Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements
Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)
1994-12-01
Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.
Dual Space Analyzing Based on Symmetry Properties for Phonons of Si Quantum Dot
QIN Guo-Yi; REN Shang-Fen; ZHANG Zhi-Yong
2002-01-01
Phonon modes in spherical Si quantum dots (QDs) with up to 7.9 nm in diameter are calculated by using the projection operators of the group theory into valence force field model. The phonons of dot modes in each of five irreducible representations (symmetries) are classified by using a dual space analysis method. It is found that the bulk-like modes with localization radius much smaller than the dot's radius have clearly pronounced bulk specific-κdefinite bulk band (one in six modes). In Si dots of all sizes, each specific bulk-like dot mode has specific symmetry.TO dot modes and bulk-like X-derived TA and LA dot modes red-shift in frequency with decreasing dot size. There is almost not LO/TO mixing for bulk-like modes. As for the surface-like modes localized at the periphery of the dot,their eigenmodes have not a dominant bulk specific-κ point parentage or a dominant BZ parentage around some special point. They are a superposition of many bulk bands with κ from all over the bulk BZ. They have much significant mode mixing than the bulk-like phonons. The classification of dot modes based on the symmetry of group theory will bring advantageous to the discussion of Ramam spectrum, electron-phonon interaction and other phonon-assisted effects in QDs.
Formation of Bragg Band Gaps in Anisotropic Phononic Crystals Analyzed With the Empty Lattice Model
Yan-Feng Wang
2016-05-01
Full Text Available Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic and anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg “planes” which give rise to phononic band gaps, are generally not flat planes but curved surfaces. The same is found to be the case for avoided crossings between shear (transverse and longitudinal bands in the isotropic case.
Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions
Grüneis, A.; Serrano, J.; Bosak, A.; Lazzeri, M.; Molodtsov, S. L.; Wirtz, L.; Attaccalite, C.; Krisch, M.; Rubio, A.; Mauri, F.; Pichler, T.
2009-08-01
The two-dimensional mapping of the phonon dispersions around the K point of graphite by inelastic x-ray scattering is provided. The present work resolves the longstanding issue related to the correct assignment of transverse and longitudinal phonon branches at K . We observe an almost degeneracy of the three TO-, LA-, and LO-derived phonon branches and a strong phonon trigonal warping. Correlation effects renormalize the Kohn anomaly of the TO mode, which exhibits a trigonal warping effect opposite to that of the electronic band structure. We determined the electron-phonon coupling constant to be 166(eV/Å)2 in excellent agreement to GW calculations. These results are fundamental for understanding angle-resolved photoemission, double-resonance Raman and transport measurements of graphene-based systems.
Zhang, Qicheng; Lan, Yu; Lu, Wei; Wang, Shuai
2017-05-01
Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz) are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz) are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.
Qicheng Zhang
2017-05-01
Full Text Available Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.
Phonon Recycling for Ultrasensitive Kinetic Inductance Detectors
Zmuidzinas, Jonas
Initially proposed (Day et al. 2003; Zmuidzinas 2012) in 1999 by our Caltech/JPL group, and thanks to strong support from NASA, the superconducting (microwave) kinetic inductance detector (MKID or KID) technology continues to develop rapidly as it transitions into applications. The development effort worldwide is intensifying and NASA's continued support of KID development is essential in order to keep pace. Here we propose to investigate and demonstrate a new, low-TRL concept, which we call phonon recycling, that promises to open broad new avenues in KID design and performance. Briefly, phonon recycling allows the detector designer to tailor the responsivity and sensitivity of a KID to match the needs of the application by using geometry to restrict the rate at which recombination phonons are allowed to escape from the detector. In particular, phonon recycling should allow very low noise-equivalent power (NEP) to be achieved without requiring very low operating tem- peratures. Phonon recycling is analogous to the use of micromachined suspension legs to control the flow of heat in a bolometer, as measured by the thermal conductivity G. However, phonon recycling exploits the non-thermal distribution of recombination phonons as well as their very slow decay in crystals at low temperatures. These properties translate to geometrical and mechanical requirements for a phonon-recycled KID that are considerably more relaxed than for a bolometer operating at the same temperature and NEP. Our ultimate goal is to develop detector arrays suitable for a far-infrared (FIR) space mission, which will impose strict requirements on the array sensitivity, yield, uniformity, multiplexing density, etc. Through previous NASA support under the Strategic Astrophysics Technology (SAT) program, we have successfully demonstrated the MAKO submillimeter camera at the Caltech Submillimeter Observatory and have become familiar with these practical issues. If our demonstration of phonon recycling
Phonon spectrum and correlations in a transonic flow of an atomic Bose gas
Michel, Florent; Coupechoux, Jean-François; Parentani, Renaud
2016-10-01
Motivated by a recent experiment of J. Steinhauer, we reconsider the spectrum and the correlations of the phonons spontaneously emitted in stationary transonic flows. The latter are described by "waterfall" configurations which form a one-parameter family of stable flows. For parameters close to their experimental values, in spite of high gradients near the sonic horizon, the spectrum is accurately Planckian in the relevant frequency domain, where the temperature differs from the relativistic prediction by less than 10%. We then study the density correlations across the horizon and the nonseparable character of the final state. We show that the relativistic expressions provide accurate approximations when the initial temperature is not too high. We also show that the phases of the scattering coefficients introduce a finite shift of the location of the correlations which has so far been overlooked. This shift is due to the asymmetry of the flow across the horizon, and persists in the dispersionless regime. Finally we show how the formation of the sonic horizon modifies both local and nonlocal density correlations.
Experimental study on the sound absorption characteristics of continuously graded phononic crystals
X. H. Zhang
2016-10-01
Full Text Available Novel three-dimensional (3D continuously graded phononic crystals (CGPCs have been designed, and fabricated by 3D printing. Each of the CGPCs is an entity instead of a combination of several other samples, and the porosity distribution of the CGPC along the incident direction is nearly linear. The sound absorption characteristics of CGPCs were experimentally investigated and compared with those of uniform phononic crystals (UPCs and discretely stepped phononic crystals (DSPCs. Experimental results show that CGPCs demonstrate excellent sound absorption performance because of their continuously graded structures. CGPCs have higher sound absorption coefficients in the large frequency range and more sound absorption coefficient peaks in a specific frequency range than UPCs and DSPCs. In particular, the sound absorption coefficients of the CGPC with a porosity of 0.6 and thickness of 30 mm are higher than 0.56 when the frequency is 1350–6300 Hz and are all higher than 0.2 in the studied frequency range (1000–6300 Hz. CGPCs are expected to have potential application in noise control, especially in the broad frequency and low-frequency ranges.
Ionizing particle detection based on phononic crystals
Aly, Arafa H.; Mehaney, Ahmed; Eissa, Mostafa F.
2015-08-01
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Ionizing particle detection based on phononic crystals
Aly, Arafa H., E-mail: arafa16@yahoo.com, E-mail: arafa.hussien@science.bsu.edu.eg; Mehaney, Ahmed; Eissa, Mostafa F. [Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef (Egypt)
2015-08-14
Most conventional radiation detectors are based on electronic or photon collections. In this work, we introduce a new and novel type of ionizing particle detector based on phonon collection. Helium ion radiation treats tumors with better precision. There are nine known isotopes of helium, but only helium-3 and helium-4 are stable. Helium-4 is formed in fusion reactor technology and in enormous quantities during Big Bang nucleo-synthesis. In this study, we introduce a technique for helium-4 ion detection (sensing) based on the innovative properties of the new composite materials known as phononic crystals (PnCs). PnCs can provide an easy and cheap technique for ion detection compared with conventional methods. PnC structures commonly consist of a periodic array of two or more materials with different elastic properties. The two materials are polymethyl-methacrylate and polyethylene polymers. The calculations showed that the energies lost to target phonons are maximized at 1 keV helium-4 ion energy. There is a correlation between the total phonon energies and the transmittance of PnC structures. The maximum transmission for phonons due to the passage of helium-4 ions was found in the case of making polyethylene as a first layer in the PnC structure. Therefore, the concept of ion detection based on PnC structure is achievable.
Acoustic cloaking by a near-zero-index phononic crystal
Zheng, Li-Yang
2014-04-21
Zero-refractive-index materials may lead to promising applications in various fields. Here, we design and fabricate a near Zero-Refractive-Index (ZRI) material using a phononic crystal (PC) composed of a square array of densely packed square iron rods in air. The dispersion relation exhibits a nearly flat band across the Brillouin zone at the reduced frequency f = 0.5443c/a, which is due to Fabry-Perot (FP) resonance. By using a retrieval method, we find that both the effective mass density and the reciprocal of the effective bulk modulus are close to zero at frequencies near the flat band. We also propose an equivalent tube network model to explain the mechanisms of the near ZRI effect. This FP-resonance-induced near ZRI material offers intriguing wave manipulation properties. We demonstrate both numerically and experimentally its ability to shield a scattering obstacle and guide acoustic waves through a bent structure.
Kuleyev, I. G., E-mail: kuleev@imp.uran.ru; Kuleyev, I. I.; Bakharev, S. M.; Ustinov, V. V. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)
2016-09-15
We study the effect of anisotropy in elastic properties on the electron–phonon drag and thermoelectric phenomena in gapless semiconductors with degenerate charge-carrier statistics. It is shown that phonon focusing leads to a number of new effects in the drag thermopower at low temperatures, when diffusive phonon scattering from the boundaries is the predominant relaxation mechanism. We analyze the effect of phonon focusing on the dependences of the thermoelectromotive force (thermopower) in HgSe:Fe crystals on geometric parameters and the heat-flow directions relative to the crystal axes in the Knudsen regime of the phonon gas flow. The crystallographic directions that ensure the maximum and minimum values of the thermopower are determined and the role of quasi-longitudinal and quasi-transverse phonons in the drag thermopower in HgSe:Fe crystals at low temperatures is analyzed. It is shown that the main contribution to the drag thermopower comes from slow quasi-transverse phonons in the directions of focusing in long samples.
Phonon heat transport in gallium arsenide
Richa Saini; Vinod Ashokan; B D Indu; R Kumar
2012-03-01
The lifetimes of quantum excitations are directly related to the electron and phonon energy linewidths of a particular scattering event. Using the versatile double time thermodynamic Green’s function approach based on many-body theory, an ab-initio formulation of relaxation times of various contributing processes has been investigated with newer understanding in terms of the linewidths of electrons and phonons. The energy linewidth is found to be an extremely sensitive quantity in the transport phenomena of crystalline solids as a collection of large number of scattering processes, namely, boundary scattering, impurity scattering, multiphonon scattering, interference scattering, electron–phonon processes and resonance scattering. The lattice thermal conductivities of three samples of GaAs have been analysed on the basis of modiﬁed Callaway model and a fairly good agreement between theory and experimental observations has been reported.
Size and dimensionality dependent phonon conductivity in nanocomposites
Al-Otaibi, Jawaher; Srivastava, G. P.
2016-04-01
We have studied size and dimensionality dependent phonon conductivity of PbTe-PbSe nanocomposites by considering three configurations: superlattice, embedded nanowire and embedded nanodot. Calculations have been performed in the framework of an effective medium theory. The required bulk thermal conductivities of PbTe and PbSe are evaluated by using Callaway’s effective relaxation-time theory, and by accounting for relevant scattering mechanism including three-phonon Normal and Umklapp interactions involving acoustic as well as optical branches. The thermal interface resistance is computed using the diffuse mismatch theory. It is found that the size (thickness) and volume fraction of PbSe are the two main factors that control the effective thermal conductivity in these nanocomposites. In particular, for PbSe size d = 10 nm and volume fraction {{V}\\text{f}}=0.1 , our results predict significant reductions over the weighted average of room-temperature bulk results of 9%, 17% and 15% in the conductivity across the interfaces for the superlattice, embedded nanowire, and nanosphere structures, respectively. For a given {{V}\\text{f}} , an increase in d reduces the interface density Φ and the effective conductivity varies approximately as 1/\\sqrtΦ . It is shown that nanocompositing in any of the three configurations can beat the alloy limit for lattice thermal conductivity.
Toward quantitative modeling of silicon phononic thermocrystals
Lacatena, V. [STMicroelectronics, 850, rue Jean Monnet, F-38926 Crolles (France); IEMN UMR CNRS 8520, Institut d' Electronique, de Microélectronique et de Nanotechnologie, Avenue Poincaré, F-59652 Villeneuve d' Ascq (France); Haras, M.; Robillard, J.-F., E-mail: jean-francois.robillard@isen.iemn.univ-lille1.fr; Dubois, E. [IEMN UMR CNRS 8520, Institut d' Electronique, de Microélectronique et de Nanotechnologie, Avenue Poincaré, F-59652 Villeneuve d' Ascq (France); Monfray, S.; Skotnicki, T. [STMicroelectronics, 850, rue Jean Monnet, F-38926 Crolles (France)
2015-03-16
The wealth of technological patterning technologies of deca-nanometer resolution brings opportunities to artificially modulate thermal transport properties. A promising example is given by the recent concepts of 'thermocrystals' or 'nanophononic crystals' that introduce regular nano-scale inclusions using a pitch scale in between the thermal phonons mean free path and the electron mean free path. In such structures, the lattice thermal conductivity is reduced down to two orders of magnitude with respect to its bulk value. Beyond the promise held by these materials to overcome the well-known “electron crystal-phonon glass” dilemma faced in thermoelectrics, the quantitative prediction of their thermal conductivity poses a challenge. This work paves the way toward understanding and designing silicon nanophononic membranes by means of molecular dynamics simulation. Several systems are studied in order to distinguish the shape contribution from bulk, ultra-thin membranes (8 to 15 nm), 2D phononic crystals, and finally 2D phononic membranes. After having discussed the equilibrium properties of these structures from 300 K to 400 K, the Green-Kubo methodology is used to quantify the thermal conductivity. The results account for several experimental trends and models. It is confirmed that the thin-film geometry as well as the phononic structure act towards a reduction of the thermal conductivity. The further decrease in the phononic engineered membrane clearly demonstrates that both phenomena are cumulative. Finally, limitations of the model and further perspectives are discussed.
A chip-integrated coherent photonic-phononic memory
Merklein, Moritz; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J
2016-01-01
Controlling and manipulating quanta of coherent acoustic vibrations - phonons - in integrated circuits has recently drawn a lot of attention, as phonons can function as unique links between radiofrequency and optical signals and access quantum regimes. It has been shown that radiofrequency signals can be controlled and stored via piezo-electrically actuated coherent phonons. Coherent phonons, however, can also be directly excited by optical photons through strong acousto-optic coupling in integrated circuits that guide photons as well as phonons. These hypersound phonons have similar wavelength as the exciting optical field but travel at a 5-orders of magnitude lower velocity. This allows the realization of a coherent optical buffer, a long time desired yet elusive device for on-chip optical signal processing. In this letter we demonstrate a coherent on-chip memory storing the entire coherent information carried by light, phase and amplitude, as acoustic phonons. The photonic-phononic memory provides GHz-band...
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons
Sanders, G. D.; Stanton, C. J.; Nugraha, A. R. T.; Saito, R.
2013-03-01
We have performed theoretical studies on generating and detecting coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. A microscopic theory incorporating electronic states, phonon modes, optical matrix elements, and electron-phonon interaction matrix elements allows us to calculate the coherent phonon spectrum. The coherent phonon amplitudes satisfy a driven oscillator equation with a driving term that depends on photoexcited carrier density. We study the coherent phonon spectrum for nanotubes of different chirality and for armchair and zigzag graphene nanoribbons. We compare our results with a simpler, effective mass theory where we find reasonable agreement with the main features of our computed coherent phonon spectrum. Supported by NSF through grants OISE-0968405 and DMR-1105437 and MEXT through grant No. 20241023
Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals
Wang Gang; Shao Li-Hui; Liu Yao-Zong; Wen Ji-Hong
2006-01-01
Based on a better understanding of the lattice vibration modes, two simple spring-mass models are constructed in order to evaluate the frequencies on both the lower and upper edges of the lowest locally resonant band gaps of the ternary locally resonant phononic crystals. The parameters of the models are given in a reasonable way based on the physical insight into the band gap mechanism. Both the lumped-mass methods and our models are used in the study of the influences of structural and the material parameters on frequencies on both edges of the lowest gaps in the ternary locally resonant phononic crystals. The analytical evaluations with our models and the theoretical predictions with the lumped-mass method are in good agreement with each other. The newly proposed heuristic models are helpful for a better understanding of the locally resonant band gap mechanism, as well as more accurate evaluation of the band edge frequencies.
Phonon dispersion curves of CsCN
N K Gaur; Preeti Singh; E G Rini; Jyotsna Galgale; R K Singh
2004-08-01
The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique.
Phonon-Josephson resonances in atomtronic circuits
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
Phonon dispersions in graphene sheet and single-walled carbon nanotubes
Dinesh Kumar; Veena Verma; H S Bhatti; Keya Dharamvir
2013-12-01
In the present research paper, phonons in graphene sheet have been calculated by constructing a dynamical matrix using the force constants derived from the second-generation reactive empirical bond order potential by Brenner and co-workers. Our results are comparable to inelastic X-ray scattering as well as first principle calculations. At point, for graphene, the optical modes (degenerate) lie near 1685 cm−1. The frequency regimes are easily distinguishable. The lowfrequency ($ → 0$) modes are derived from acoustic branches of the sheet. The radial modes can be identified with → 584 cm−1. High-frequency regime is above 1200 cm−1 (i.e. ZO mode) and consists of TO and LO modes. The phonons in a nanotube can be derived from zone folding method using phonons of a single layer of the hexagonal sheet. The present work aims to explore the agreement between theory and experiment. A better knowledge of the phonon dispersion of graphene is highly desirable to model and understand the properties of carbon nanotubes. The development and production of carbon nanotubes (CNTs) for possible applications need reliable and quick analytical characterization. Our results may serve as an accurate tool for the spectroscopic determination of the tube radii and chiralities.
G, Santhosh; Kumar, Deepak
2010-07-01
We study thermal transport in a chain of coupled atoms, which can vibrate in longitudinal as well as transverse directions. The particles interact through anharmonic potentials upto cubic order. The problem is treated quantum mechanically. We first calculate the phonon frequencies self-consistently taking into account the anharmonic interactions. We show that for all the modes, frequencies must have linear dispersion with wave vector q for small q irrespective of their bare dispersions. We then calculate the phonon relaxation rates Γi(q), where i is the polarization index of the mode, in a self-consistent approximation based on second-order perturbation diagrams. We find that the relaxation rate for the longitudinal phonon, Γx(q)∝q(3/2), while that for the transverse phonon Γy(q)∝q2. The consequence of these results on the thermal conductivity κ(N) of a chain of N particles is that κ(N)∝N(1/2).
Band structure characteristics of T-square fractal phononic crystals
Liu Xiao-Jian; Fan You-Hua
2013-01-01
The T-square fractal two-dimensional phononic crystal model is presented in this article.A comprehensive study is performed for the Bragg scattering and locally resonant fractal phononic crystal.We find that the band structures of the fractal and non-fractal phononic crystals at the same filling ratio are quite different through using the finite element method.The fractal design has an important impact on the band structures of the two-dimensional phononic crystals.
Analysis of Longitudinal Waves in Rod-Type Piezoelectric Phononic Crystals
Longfei Li
2016-04-01
Full Text Available Phononic crystals can be used to control elastic waves due to their frequency bands. This paper analyzes the passive and active control as well as the dispersion properties of longitudinal waves in rod-type piezoelectric phononic crystals over large frequency ranges. Based on the Love rod theory for modeling the longitudinal wave motions in the constituent rods and the method of reverberation-ray matrix (MRRM for deriving the member transfer matrices of the constituent rods, a modified transfer matrix method (MTMM is proposed for the analysis of dispersion curves by combining with the Floquet–Bloch principle and for the calculation of transmission spectra. Numerical examples are provided to validate the proposed MTMM for analyzing the band structures in both low and high frequency ranges. The passive control of longitudinal-wave band structures is studied by discussing the influences of the electrode’s thickness, the Poisson’s effect and the elastic rod inserts in the unit cell. The influences of electrical boundaries (including electric-open, applied electric capacity, electric-short and applied feedback control conditions on the band structures are investigated to illustrate the active control scheme. From the calculated comprehensive frequency spectra over a large frequency range, the dispersion properties of the characteristic longitudinal waves in rod-type piezoelectric phononic crystals are summarized.
Chabungbam, Satyananda; Sahariah, Munima B., E-mail: munima@iasst.gov.in
2015-10-25
First principles calculation reaffirms the presence of phonon anomaly along [211] direction in Ni{sub 2}FeGa shape memory alloy supporting the experimental findings of J. Q. Li et al. Fermi surface scans have been performed in both austenite and martensite phase to see the possible Fermi nesting features in this alloy. The magnitude of observed Fermi surface nesting vectors in (211) plane exactly match the phonon anomaly wavevectors along [211] direction. Electron-phonon calculation in the austenite phase shows that there is significant electron-phonon coupling in this alloy which might arise out of the lattice coupling between lower acoustic modes and higher optical modes combined with the observed strong Fermi nesting features in the system. - Highlights: • Transverse acoustic (TA{sub 2}) modes show anomaly along [211] direction in Ni{sub 2}FeGa. • The phonon anomaly wavevector has been correlated with the Fermi nesting vectors. • Electron-phonon coupling calculation shows significant coupling in this system. • Max. el-ph coupling occurs in transition frequencies from acoustic to optical modes.
Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A.; Han, Haoxue; Donadio, Davide; Volz, Sebastian
2016-07-01
Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.
Xiong, Shiyun; Sääskilahti, Kimmo; Kosevich, Yuriy A; Han, Haoxue; Donadio, Davide; Volz, Sebastian
2016-07-01
Understanding the design rules to obtain materials that enable a tight control of phonon transport over a broad range of frequencies would aid major developments in thermoelectric energy harvesting, heat management in microelectronics, and information and communication technology. Using atomistic simulations we show that the metamaterials approach relying on localized resonances is very promising to engineer heat transport at the nanoscale. Combining designed resonant structures to alloying can lead to extremely low thermal conductivity in silicon nanowires. The hybridization between resonant phonons and propagating modes greatly reduces the group velocities and the phonon mean free paths in the low frequency acoustic range below 4 THz. Concurrently, alloy scattering hinders the propagation of high frequency thermal phonons. Our calculations establish a rationale between the size, shape, and period of the resonant structures, and the thermal conductivity of the nanowire, and demonstrate that this approach is even effective to block phonon transport in wavelengths much longer than the size and period of the surface resonant structures. A further consequence of using resonant structures is that they are not expected to scatter electrons, which is beneficial for thermoelectric applications.
Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor
Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje
2015-11-01
The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.
Structural engineering of three-dimensional phononic crystals
Delpero, Tommaso; Schoenwald, Stefan; Zemp, Armin; Bergamini, Andrea
2016-02-01
Artificially-structured materials are attracting the research interest of a growing community of scientists for the possibility to develop novel materials with advantageous properties that arise from the ability to tailor the propagation of elastic waves, and thus energy, through them. In this work, we propose a three-dimensional phononic crystal whose unit cell has been engineered to obtain a strong wave-attenuation band in the middle of the acoustic frequency range. The combination of its acoustic properties with the dimensions of the unit cell and its static mechanical properties makes it an interesting material for possibly several applications in civil and mechanical engineering, for instance as the core of an acoustically insulating sandwich panel. A sample of this crystal has been manufactured and experimentally tested with respect to its acoustic transmissibility. The performance of the phononic crystal core is remarkable both in terms of amplitude reduction in the transmissibility and width of the attenuation band. A parametric study has been finally conducted on selected geometrical parameters of the unit cell and on their effect on the macroscopic properties of the crystal. This work represents an application-oriented example of how the macroscopic properties of an artificially-structured material can be designed, according to specific needs, by a conventional engineering of its unit cell.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-01
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Phonons in a one-dimensional microfluidic crystal
Beatus, Tsevi; Bar-Ziv, Roy; 10.1038/nphys432
2010-01-01
The development of a general theoretical framework for describing the behaviour of a crystal driven far from equilibrium has proved difficult1. Microfluidic crystals, formed by the introduction of droplets of immiscible fluid into a liquid-filled channel, provide a convenient means to explore and develop models to describe non-equilibrium dynamics2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Owing to the fact that these systems operate at low Reynolds number (Re), in which viscous dissipation of energy dominates inertial effects, vibrations are expected to be over-damped and contribute little to their dynamics12, 13, 14. Against such expectations, we report the emergence of collective normal vibrational modes (equivalent to acoustic 'phonons') in a one-dimensional microfluidic crystal of water-in-oil droplets at Reapprox10-4. These phonons propagate at an ultra-low sound velocity of approx100 mum s-1 and frequencies of a few hertz, exhibit unusual dispersion relations markedly different to those of harmonic crystals, and g...
Phonon dispersions of Ni-Mn-Al shape memory alloy
Mehaddene, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)/Physik-Department E13, Technische Universitaet Muenchen, D-85747 Garching (Germany)], E-mail: mtarik@ph.tum.de; Neuhaus, J.; Petry, W.; Hradil, K. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)/Physik-Department E13, Technische Universitaet Muenchen, D-85747 Garching (Germany); Bourges, P. [Laboratoire Leon Brillouin (LLB), CEA Saclay, F-91191 Gif sur Yvette Cedex (France); Hiess, A. [Insitut Laue Langevin (ILL), F-38042 Grenoble Cedex 9 (France)
2008-05-25
Normal modes of vibration of a Ni-Mn-Al single crystal have been measured by inelastic neutron scattering. The force constants have been fitted to the Born-von Karman model using axially symmetric forces. Dispersion curves of both acoustical and optical phonons have been determined along the high symmetry [1 0 0], [1 1 0] and [1 1 1] directions. The temperature dependence of the normal modes revealed an anomalous softening of the TA{sub 2}[1 1 0] phonons observed in the range of 0.1-0.25 reciprocal lattice units in good agreement with recent ab initio calculations. Contrary to the acoustical TA{sub 2}[1 1 0] modes. The optical TO{sub 2}[1 1 0] modes with the same polarisation showed a normal behaviour with temperature, namely a decrease in frequency upon heating due to increasing anharmonicity. Elastic scattering performed along the [1 1-bar0] direction did not reveal any significant elastic or diffuse scattering.
Yi, Kyung-Soo; Kim, Hye-Jung
2017-02-01
We investigate spectral behavior of phonon spectral functions in an interacting multi-component hot carrier plasma. Spectral analysis of various phonon spectral functions is performed considering carrier-phonon channels of polar and nonpolar optical phonons, acoustic deformation-potential, and piezoelectric Coulomb couplings. Effects of phonon self-energy corrections are examined at finite temperature within a random phase approximation extended to include the effects of dynamic screening, plasmon-phonon coupling, and local-field corrections of the plasma species. We provide numerical data for the case of a photo-generated electron-hole plasma formed in a wurtzite GaN. Our result shows the clear significance of the multiplicity of the plasma species in the phonon spectral functions of a multi-component plasma giving rise to a variety of spectral behaviors of carrier-phonon coupled collective modes. A useful sum rule on the plasma-species-resolved dielectric functions is also found.
Manipulating Heat Flow through 3 Dimensional Nanoscale Phononic Crystal Structure
2014-06-02
SUBJECT TERMS phonon transport , Thermoelectric, nano structures, nano photonics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as...conductivity is also studied. 15. SUBJECT TERMS phonon transport , Thermoelectric, nano structures, nano photonics 16. SECURITY CLASSIFICATION OF: 17...but not yet published L-N Yang, J Chen, N Yang, and B Li, Manipulating Graphene Thermal Conductivity by Phononic
Phonon mechanism in the most dilute superconductor n-type SrTiO3.
Gor'kov, Lev P
2016-04-26
Superconductivity of n-doped SrTiO3, which remained enigmatic for half a century, is treated as a particular case of nonadiabatic phonon pairing. Motivated by experiment, we suggest the existence of the mobility edge at some dopant concentration. The itinerant part of the spectrum consists of three conduction bands filling by electrons successively. Each subband contributes to the superconducting instability and exhibits a gap in its energy spectrum at low temperatures. We argue that superconductivity of n-doped SrTiO3 results from the interaction of electrons with several longitudinal (LO) optical phonons with frequencies much larger than the Fermi energy. Immobile charges under the mobility edge threshold increase the "optical" dielectric constant far above that in clean SrTiO3 placing control on the electron-LO phonon interaction. TC initially grows as density of states at the Fermi surface increases with doping, but the accumulating charges reduce the electrons-polar-phonon interaction by screening the longitudinal electric fields. The theory predicts maxima in the TC-concentration dependence indeed observed experimentally. Having reached a maximum in the third band, the transition temperature finally decreases, rounding out the TC (n) dome, the three maxima with accompanying superconducting gaps emerging consecutively as electrons fill successive bands. This arises from attributes of the LO optical phonon pairing of electrons. The mechanism of LO phonons opens the path to increasing superconducting transition temperature in bulk transition-metal oxides and other polar crystals, and in charged 2D layers at the LaAaO3/SrTiO3 interfaces and on the SrTiO3 substrates.
Optical phonons and their role in high-T[sub c] superconductivity mechanism
Evarestov, R.A. (St. Petersburg State Univ. (Russian Federation)); Kitaev, Yu.E. (A.F. Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation)); Limonov, M.F. (A.F. Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation)); Panfilov, A.G. (A.F. Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation))
1993-10-01
This review article is organized in the following way. In Section 2, the crystal structure and phonon symmetry of high-T[sub c] superconductors are described. The full group theoretical analysis of phonon symmetry in these complex systems with a large number of atoms per primitive unit cell may be made most efficiently on the basis of the induced band representations of space groups (Section 2.2). Induced band representations are used for phonon symmetry analysis of isolated layers (Section 2.3) and Y-, Bi-, and Tl-based superconductors (Sections 2.4 to 2.6). In Section 3, the interpretation of Raman spectra of Y-, Bi-, and Tl-based superconductors is given, paying special attention to the general features of these spectra and to trends of their transformations while varying the composition of compounds. For Bi- and Tl-based superconductors the Raman spectrum interpretation is given, using the layer-by-layer approach (Section 3.2 and 3.3). The latter takes into account that the Bi/Tl-based superconductors constitute families of compounds with different numbers of copper-oxygen layers per unit cell. In Section 4 those phonon spectrum peculiarities are scrutinized which may throw light on the role of phonons in the superconductivity phenomenon. In particular, the correlation between T[sub c] and Raman spectra and the importance of phonons with frequency near v[sub c] = 2[pi](k[sub B]/hc) T[sub c] (in cm[sup -1]) are discussed. (orig.)
Correct Evaluation of the Effect of Transverse Effective Charges on Phonons in AlAs Quantum Dots
QINGuo-Yi
2003-01-01
An improved valence force field model (VFFM) is suggested to calculate the phonon modes in both bulk specimens and quantum dots (QDs) of AlAs taking account of the effect of transverse effective charges (TOs) correctly.The resultant dispersions of AlAs bulk phonons are in accord better with the results carefully fitted to the experimental data by using 11-parameters rigid-ion model, than those got by ordinary VFFM, especially in the region of near Г point. For AlAs QDs, TCs are evaluated bond by bond for each phonon mode of QD and its effect on the change of the force on atoms is taken into account to modify further the phonon spectrum. The frequency spectra and densities ofphonon states of d/fferent irreducible representations calculated by using improved VFFM are compared with the results of ordinary VFFM. The correct evaluation of the TOs is not only important in calculating the phonon spectrum of both bulk and QD specimens accurately, but is also in the further discussion of the electron-phonon (e-ph) interaction, which can be directly related to TCs of ions in QD.
Infrared study of the phonon modes in PrMnO{sub 3} and CaMnO{sub 3}
Sopracase, Rodolphe; Gruener, Gisele; Olive, Enrick [Universite Francois Rabelais, Laboratoire d' Electrodynamyque des Materiaux Avances, UMR CNRS - CEA 6157, Parc de Grandmont, 37200 Tours (France); Soret, Jean-Claude, E-mail: soret@phys.univ-tours.f [Universite Francois Rabelais, Laboratoire d' Electrodynamyque des Materiaux Avances, UMR CNRS - CEA 6157, Parc de Grandmont, 37200 Tours (France)
2010-01-01
The infrared (IR) reflectivity spectra of orthorhombic manganese perovskites PrMnO{sub 3} and CaMnO{sub 3} are studied in the frequency range of optical phonon modes at temperatures varying from 300 to 4 K. The IR phonon spectra of these two materials are analyzed by a fitting procedure based on a Lorentz model, and assigned to definite vibrational modes of Pnma structures by comparison with the results of lattice dynamical calculations. The calculations have been performed in the framework of a shell model using short range Born-Mayer-Buckingham and long range Coulomb potentials, whose parameters have been optimized in order that the calculated Raman and IR active phonon frequencies, and lattice parameters match with their experimental values. We find a close correspondence between the values of the IR phonon frequencies of PrMnO{sub 3} and CaMnO{sub 3}, which shows that the substitution of the Pr{sup 3+} ions with Ca{sup 2+} results in a reduction of the frequency of medium- and high-energy IR phonons, and an increase of the frequency of those of low-energy. Nevertheless, the experimentally obtained IR phonon amplitudes of the two materials appear to be unrelated. A comparative study of the vibrational patterns of these modes reveals that most of them correspond to complex atomic vibrations significantly different from PrMnO{sub 3} to CaMnO{sub 3} which cannot be assigned only to a given type of vibration (external, bending, or stretching modes). In particular, these results confirm that the structure of CaMnO{sub 3} is quite far from the ideal (cubic) perovskite structure.
Wang, Yan; Lu, Zexi; Ruan, Xiulin
2016-06-01
The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.
Monahan, Daniele M. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Guo, Liang [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Lin, Jia [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Dou, Letian [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Yang, Peidong [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States); Fleming, Graham R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoSciences Inst. at Berkeley, Berkeley, CA (United States)
2017-06-29
A hot phonon bottleneck may be responsible for slow hot carrier cooling in methylammonium lead iodide hybrid perovskite, creating the potential for more efficient hot carrier photovoltaics. In room-temperature 2D electronic spectra near the band edge, we observe in this paper amplitude oscillations due to a remarkably long lived 0.9 THz coherent phonon population at room temperature. This phonon (or set of phonons) is assigned to angular distortions of the Pb–I lattice, not coupled to cation rotations. The strong coupling between the electronic transition and the 0.9 THz mode(s), together with relative isolation from other phonon modes, makes it likely to cause a phonon bottleneck. Finally, the pump frequency resolution of the 2D spectra also enables independent observation of photoinduced absorptions and bleaches independently and confirms that features due to band gap renormalization are longer-lived than in transient absorption spectra.
Brockmann, Meike; Drinnan, Michael J; Storck, Claudio; Carding, Paul N
2011-01-01
The aims of this study were to examine vowel and gender effects on jitter and shimmer in a typical clinical voice task while correcting for the confounding effects of voice sound pressure level (SPL) and fundamental frequency (F(0)). Furthermore the relative effect sizes of vowel, gender, voice SPL, and F(0) were assessed, and recommendations for clinical measurements were derived. With this cross-sectional single cohort study, 57 healthy adults (28 women, 29 men) aged 20-40 years were investigated. Three phonations of /a/, /o/, and /i/ at "normal" voice loudness were analyzed using Praat (software). The effects of vowel, gender, voice SPL, and F(0) on jitter and shimmer were assessed using descriptive and inferential (analysis of covariance) statistics. The effect sizes were determined with the eta-squared statistic. Vowels, gender, voice SPL, and F(0), each had significant effects either on jitter or on shimmer, or both. Voice SPL was the most important factor, whereas vowel, gender, and F(0) effects were comparatively small. Because men had systematically higher voice SPL, the gender effects on jitter and shimmer were smaller when correcting for SPL and F(0). Surprisingly, in clinical assessments, voice SPL has the single biggest impact on jitter and shimmer. Vowel and gender effects were clinically important, whereas fundamental frequency had a relatively small influence. Phonations at a predefined voice SPL (80 dB minimum) and vowel (/a/) would enhance measurement reliability. Furthermore, gender-specific thresholds applying these guidelines should be established. However, the efficiency of these measures should be verified and tested with patients. Copyright Â© 2011 The Voice Foundation. All rights reserved.
Phonon forces and cold denaturatio
Bohr, Jakob
2003-01-01
the molecule Is a continuum. The frequencies of the vibrational modes depend on the molecular dimensionality; hence, the zero-point energies for the folded and the denatured protein are estimated to differ by several electron volts. For a biomolecule such an energy is significant and may contribute to cold...
Watanabe, Yohei; Hino, Ken-ichi; Hase, Muneaki; Maeshima, Nobuya
2017-01-01
We examine generation dynamics of coherent phonons in both polar and nonpolar semiconductors, such as GaAs and Si, based on a polaronic-quasiparticle (PQ) model. In this model, the PQ operator is composed of two kinds of operators: one is a quasiboson operator, defined as a linear combination of a set of pairs of electron operators, and the other is a longitudinal optical (LO) phonon operator. In particular, the problem of transient and nonlinear Fano resonance (FR) is tackled, where the vestige of this quantum interference effect was observed exclusively in lightly n -doped Si immediately after carriers were excited by an ultrashort pulse laser [M. Hase et al., Nature (London) 426, 51 (2003), 10.1038/nature02044], although not observed yet in GaAs. The PQ model enables us to show straightforwardly that the phonon energy state is embedded in continuum states formed by a set of adiabatic eigenstates of the quasiboson; this energy configuration is a necessary condition of the manifestation of the transient FR in the present optically nonlinear system. Numerical calculations are done for photoemission spectra relevant to the retarded longitudinal dielectric function of transient photoexcited states and for power spectra relevant to the LO-phonon displacement function of time. The photoemission spectra show that in undoped Si, an asymmetric spectral profile characteristic of FR comes into existence immediately after the instantaneous carrier excitation to fade out gradually, whereas in undoped GaAs, no asymmetry in spectra appears in the whole temporal region. The similar results are also obtained in the power spectra. These results are in harmony with the reported experimental results. It is found that the obtained difference in spectral profile between undoped Si and GaAs is attributed to a phase factor of an effective interaction between the LO phonon and the quasiboson. More detailed discussion of the FR dynamics is made in the text.
Acoustic phonon modes in asymmetric AlxGa1-xN/GaN/AlyGa1-yN quantum wells
Zan, Y. H.; Ban, S. L.; Chai, Y. J.; Qu, Y.
2017-02-01
Using an elastic continuum model, the dispersion relations and phonon modes of propagating, confined, half space and interface acoustic phonons in asymmetric AlxGa1-xN/GaN/Al1-yGayN quantum wells (QWs) have been solved theoretically with the varieties of Al components x and y. Contrary to the previous conclusions, some regulations for the existence of the above different acoustic phonons are revealed as well as the transition conditions among these modes are also discussed. With increase of wave vectors, the dispersion relations split into several groups. Because the classification of these groups is related to the eigen frequencies of bulk materials forming QWs, phonon modes in these groups will be confined or propagating in different layers of QWs. Furthermore, the gradients of the dispersion relations' asymptotes are the velocities of longitudinal and the transverse acoustic phonons propagating in bulk materials in turns. The properties of the dispersion relations and their phonon modes are also analyzed in depth based on the cut-off conditions. By the changing of Al components x and y, the bottom of these groups will be modified to adjust eigen frequencies of AlxGa1-xN or Al1-yGayN layers. But the propagation properties of acoustic phonon modes will remain unchanged in each section.
Parity-Time Synthetic Phononic Media
Christensen, Johan; Willatzen, Morten; Velasco, V. R.
2016-01-01
, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....
Phonon scattering in graphene over substrate steps
Sevincli, Haldun; Brandbyge, Mads
2014-01-01
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance...
``Forbidden'' phonon in the iron chalcogenide series
Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.
2015-03-01
Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.
Hyperbolic phonon polaritons in hexagonal boron nitride
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Synthetic thermoelectric materials comprising phononic crystals
El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang
2013-08-13
Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.
Mattei, J.-L., E-mail: mattei@univ-brest.fr; Chevalier, A. [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); Le Guen, E. [Lab-STICC, Université de Bretagne Occidentale, CS 93837, 6 Avenue Le Gorgeu, 29238 Brest Cedex 3 (France); IETR, Université de Rennes 1, 263 Avenue General Leclerc, 35042 Rennes Cedex (France)
2015-02-28
Spinel ferrite Ni{sub 0.5}Zn{sub 0.3}Co{sub 0.2}Fe{sub 1.98}O{sub 4−x} nanoparticles were synthesized by co-precipitation method, and samples were realized by moulding and annealing at key temperatures (T{sub M} = 800 °C, 900 °C, 1050 °C, determined beforehand through shrinkage measurements) going with calcining and sintering processes. Annealing at 800 °C and 900 °C led to half-dense ceramics (porosity ∼50 vol. %), whereas bulky ferrite was obtained after annealing at 1050 °C. Elemental analysis, X-ray diffraction and ion chromatography analysis were performed. Complex dielectric permittivity (ε*) and magnetic permeability (μ*) were investigated up to 6 GHz. With increasing T{sub M}, a decreasing amount of Fe{sup 2+} was observed, going with increasing sample density. Coupled effects of the Fe{sup 2+} concentration and of the porosity, both on dielectric and magnetic properties, were chiefly investigated and discussed. The materials show almost constant permittivities (ε′ = 5.0, 6.0, and 14.8 for T{sub M} = 800 °C, 900 °C and 1050 °C, respectively). The bulk value at f = 1 GHz (ε′ = 14.8) can be interpreted well according to Shannon's theory. The permittivities of the half-dense ceramics are discussed on the basis of Bruggeman's Effective Medium Theory. The materials annealed at 800 °C and 900 °C show almost constant magnetic permeabilities in the frequency range from 0.2 to 1 GHz (μ′ = 3.4 and 6.0 for T{sub M} = 800 °C and 900 °C). The observed permeability behavior is typical of monodomain particles, except for the sample annealed at 1050 °C, for which domain wall contribution to μ* is suspected because of non-negligible losses at low frequency (μ″ = 1.3–1.8 at f < 0.3 GHz). This finding is supported by estimations of the upper and lower values for the critical grain size, on the basis of Brown–Van der Zaag's theory. Facing bulk ceramics
Unified theory of electron-phonon renormalization and phonon-assisted optical absorption.
Patrick, Christopher E; Giustino, Feliciano
2014-09-10
We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.
Molding Phonon Flow with Symmetry: Rational Design of Hypersonic Phononic Crystals
Koh, Cheong Yang; Thomas, Edwin L.
2009-03-01
Phononic crystals structured at appropriate length scales allow control over the flow of phonons, leading to new possibilities in applications such as heat-management, sound isolation and even energy transfer and conversion. Symmetry provides a unified framework for the interpretation 1D to 3D phononic band structures, allowing utilization of a common set of principles for designing band structures of phononic crystals as well as actual purposeful defects such as waveguide location and boundary termination in finite devices. In this work, we explore the band structure properties of phononic crystals with non-symmorphic space groups, as well as those having quasi-crystalline approximants. We demonstrate gap opening abilities from both anti-crossing and Bragg scattering, as well as unique features like ``sticking'' bands. Symmetry concepts are also powerful means to tune the density of states of the structures. Importantly, we fabricate various theoretical designs and measure their experimental dispersion diagrams for comparison with theoretical calculation. This affords an elegant approach toward a design blueprint for fabricating phononic structures for applications such as opto-acoustic coupling.
A step closer to visualizing the electron___phonon interplay
Chen, Y.L.; Lee, W.S.; Shen, Z.X.; /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept. /SLAC, PULSE
2011-01-04
dynamic information. This pump-probe experiment is reminiscent of the standard method used by bell makers for hundreds of years to judge the quality of their products (hitting a bell then listening to how the sound would fade away), albeit the relevant time scale here is way beyond tens of femtoseconds. Traditionally, ultrafast spectroscopy was carried out to study gas-phase reactions, but it has also been applied to study condensed phase systems since the development of reliable solid-state ultrafast lasers approximately a decade ago. In addition, the ability to control pulse width, wavelength, and amplification of the output of Ti:Sapphire lasers has further increased the capability of this experimental method. During the past decade, many ultrafast pump-probe experiments have been carried out in various fields by using different probing methods, such as photo-resistivity, fluorescence yield, and photoemission, and they have revealed much new information complementary to the equilibrium spectroscopy methods used before. Carbone et al. used the photon-pump, electron (diffraction)-probe method. The pumping photon pulse first drives the electrons in the sample into an oscillating mode along its polarization direction. Then during the delay time, these excited electrons can transfer excess energy to the adjacent nuclei and cause crystal lattice vibration on their way back to the equilibrium state. An ultrashort electron pulse is shot at the sample at various time delays {Delta}t and the diffraction pattern is collected. Because the electron diffraction pattern is directly related to the crystal lattice structure and its motion, this technique provides a natural way to study the electron-phonon coupling problem. Furthermore, by adjusting the pump pulse's relative polarization with respect to the Cu-O bond direction, Carbone et al. were able to acquire the electron-phonon coupling strength along different directions. Focusing on the lattice dynamic along the c axis
Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.
2016-02-01
This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly
Bochdansky, Alexander B.; Clouse, Melissa A.; Hansell, Dennis A.
2017-02-01
The Ross Sea plays a major role in the transfer of organic carbon from the surface into the deep sea due to the combination of high seasonal productivity and Antarctic bottom water formation. Here we present a particle inventory of the Ross Sea based on a combined deployment of a video particle profiler (VPP) and a high-resolution digital holographic microscope (DIHM). Long-distance (100 s of kilometers) and short-distance (10 s of kilometers) sections showed high variability of particle distributions that co-varied with the density structure of the water column. Particle export was apparent at sites of locally weakened pycnoclines, likely an indirect effect of nutrient mixing into the surface layer and local blooms that lead to export. Particle volume abundances at 200-300 m depth were highly correlated with particle volume abundances in the upper mixed layer (export rather than lateral advection. Phaeocystis antarctica (Haptophyta) colonies that were initially retained in the mixed layer sank below the euphotic zone within a period of two weeks. Fine-scale analysis at a resolution < 1 m revealed a significantly overdispersed (i.e., highly patchy) environment in all casts. Patchiness, as determined by the Lloyd index of patchiness and the Index of Aggregation, increased in and below the pycnocline presumably due to aggregation of particles while accumulating on density gradients. In contrast, particles in the upper mixed layer and in the nepheloid layers were more randomly distributed. In 40 of the 84 VPP depth profiles, a periodicity of particle peaks ranged from 10 to 90 m with a mode of 30 m, which can be regarded as the "relevant scale" or "characteristic patch size" of the vertical distribution of particles. While chlorophyll fluorescence and particle mass determined by VPP were significantly correlated at higher particle abundances, the relationship changed from cast to cast, reflecting changes in the relative contribution of fresh phytoplankton to total
Phonon density of states in nanocrystalline 57Fe
Ranber Singh; S Prakash; R Meyer; P Entel
2003-03-01
The Born–von Karman model is used to calculate phonon density of states (DOS) of nanocrystalline bcc Fe. It is found that there is an anisotropic stiffening in the interatomic force constants and hence there is shrinking in the nearest-neighbour distances in the nanophase. This leads to additional vibrational modes above the bulk phonons near the bottom of the phonon band. It is found that the high energy phonon modes of nanophase Fe are the surface modes. The calculated phonon DOS closely agree with the experimental data except a peak at 37 meV. The calculated phonon dispersion relations are also compared with those of the bulk phonons and anomalous behaviour is discussed in detail. The speciﬁc heat in nanophase enhances as compared to bulk phase at low temperatures and the calculated Debye temperature agrees with the experimental results. It is predicted that the nanocrystalline Fe may consist of about 14 GPa pressure.
Phonon-plasmon interactions in piezoelectric semiconductor quantum plasmas
Ghosh, S.; Muley, Apurva
2016-12-01
The phonon-plasmon interactions and resulted acoustic wave amplification in a piezoelectric semiconductor quantum plasma has been studied in the quantum hydrodynamic regime. The important ingredients of this study are the inclusion of particle degeneracy pressure and Bohm potential (quantum diffraction) through a non-dimensional quantum parameter-H in the momentum transfer equation. Typical values of n-InSb are used to estimate the acoustic gain using the analytical expressions obtained. The study reveals that the quantum parameter-H reduces the gain coefficient in moderately doped semiconductor plasma. It is also found that quantum parameter-H has profound effects on the frequency at which maximum gain occurs. The attenuation to amplification crossover point (V0 /Vs = 1) is found to be same in both classical as well as quantum regime.
Dynamics of a vertical cavity quantum cascade phonon laser structure
Maryam, W.; Akimov, A. V.; Campion, R. P.; Kent, A. J.
2013-07-01
Driven primarily by scientific curiosity, but also by the potential applications of intense sources of coherent sound, researchers have targeted the phonon laser (saser) since the invention of the optical laser over 50 years ago. Here we fabricate a vertical cavity structure designed to operate as a saser oscillator device at a frequency of 325 GHz. It is based on a semiconductor superlattice gain medium, inside a multimode cavity between two acoustic Bragg reflectors. We measure the acoustic output of the device as a function of time after applying electrical pumping. The emission builds in intensity reaching a steady state on a timescale of order 0.1 μs. We show that the results are consistent with a model of the dynamics of a saser cavity exactly analogous to the models used for describing laser dynamics. We also obtain estimates for the gain coefficient, steady-state acoustic power output and efficiency of the device.
Phonon-plasmon interaction in magnetized inhomogeneous semiconductor quantum plasmas
Ghosh, S.; Muley, Apurva
2016-12-01
The phonon-plasmon interaction in a magnetized inhomogeneous semiconductor quantum plasma is reported using a quantum hydrodynamic model. A quantum modified dispersion relation is employed, which leads to an evolution expression for the gain coefficient of the acoustic wave. In the present study, quantum effects and inhomogeneity are taken into account through non-dimensional quantum parameter-H and scale length of density variation parameter-L, respectively. The effects of these parameters, as well as propagation distance z, angular frequency ω, and orientation of magnetic field θ, on gain characteristics of the acoustic wave are investigated. These investigations are made for linearly and quadratically varying density structures in the presence and the absence of the magnetic field. The results infer that the magnetic field and linearly or quadratically varying density structures would play a decisive role in deciding the gain characteristics of the acoustic wave in the inhomogeneous semiconductor quantum plasma.
Intrinsic phonon properties of double-walled carbon nanotubes
Tran, H. N.; Levshov, D. I.; Nguyen, V. C.; Paillet, M.; Arenal, R.; Than, X. T.; Zahab, A. A.; Yuzyuk, Y. I.; Phan, N. M.; Sauvajol, J.-L.; Michel, T.
2017-03-01
Double-walled carbon nanotubes (DWNT) are made of two concentric and weakly van der Waals coupled single-walled carbon nanotubes (SWNT). DWNTs are the simplest systems for studying the mechanical and electronic interactions between concentric carbon layers. In this paper we review recent results concerning the intrinsic features of phonons of DWNTs obtained from Raman experiments performed on index-identified DWNTs. The effect of the interlayer distance on the strength of the mechanical and electronic coupling between the layers, and thus on the frequencies of the Raman-active modes, namely the radial breathing-like modes (RBLMs) and G-modes, are evidenced and discussed. Invited talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.
Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.
Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M
2014-11-14
A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.
Confocal Raman depth-scanning spectroscopic study of phonon-plasmon modes in GaN epilayers
Strelchuk, V. V.; Bryksa, V. P.; Avramenko, K. A.; Valakh, M. Ya.; Belyaev, A. E.; Mazur, Yu. I.; Ware, M. E.; DeCuir, E. A.; Salamo, G. J.
2011-06-01
Coupled longitudinal-optical (LO)-phonon-plasmon excitations were studied using confocal micro-Raman spectroscopy. The high-quality Si-doped GaN epilayers were grown in a Gunn diode structure on (0001) sapphire substrates by plasma assisted molecular beam epitaxy. Depth-profiled Raman spectra exhibit a spatial variation of both low, ω-, and high, ω+, frequency coupled phonon-plasmon modes (CPPMs) in the n-GaN layers. To describe the features of the CPPMs in the Raman spectra a self-consistent model that includes both the electro-optic and deformation-potential as well as charge-density fluctuation mechanisms as important processes for light scattering in n-GaN has been proposed. An agreement between the theoretical and experimental line shapes of the Raman spectra is obtained. From the best line-shape fitting of the CPPMs the depth profiles of the plasmon and phonon damping, plasmon frequency, free carrier concentrations, and electron mobility as well as the contributions of the electron-phonon interaction and charge density fluctuations to the Raman cross section in the GaN layers are determined. It is found that these depth profiles exhibit considerable nonuniformity and change at different laser pump-power excitations. Despite the high electron concentration in the n+-GaN layers, a strong peak of the unscreened A1(LO) phonon is also observed. A possible origin for the appearance of this mode is discussed.
Ultrafast Optical Excitation of Coherent and Squeezed Phonons in SrTiO_3
Garrett, G. A.; Whitaker, J. F.; Merlin, R.
1998-03-01
We report on the impulsive excitation of coherent and squeezed phonon fields in SrTiO3 using, respectively, first-order and second-order stimulated Raman scattering.(osa.org/oearchive/source/2733.htm>Garrett et al)., Optics Express, to be published. Strontium titanate undergoes an antiferro-distortive phase transition at T_c≈ 110 K to a low temperature tetragonal structure. First-order Raman scattering is allowed only below T_c. Pump-probe spectra were obtained as a function of temperature and pump intensity. The frequency of the coherent (first-order) state is that of the A_1g-component of the soft mode associated with the phase transition. As in KTaO_3,(Garrett et al)., Science 275, 1638 (1997). the squeezed (second-order) field oscillates at a frequency corresponding to a strong, narrow peak in the density of states of the acoustic phonons.
Structure and phonon spectrum of a submonolayer Ni film on the surface of Cu(100)
Rusina, G. G.; Borisova, S. D.; Chulkov, E. V.
2016-02-01
The equilibrium atomic structure and the phonon spectra of a submonolayer (θ = 0.5 monolayer) Ni film deposited on the surface of Cu(100) are calculated using the potentials obtained by the embedded atom method. We consider atomic relaxation, the vibrational state density distribution on Ni and substrate atoms, and polarization of vibrational modes. Variation of the phonon spectrum upon segregation of Cu atoms on the film surface is considered. It is shown that mixing of vibrations of Ni adatoms with vibrations of substrate atoms occurs in the entire frequency range, leading to a frequency shift of the vibrational modes of the substrate and to the occurrence of new vibrational states atypical of a clean surface. The Cu(100)- c(2 × 2)-Ni structure is dynamically stabler when placed in the subsurface layer of the substrate.
Maximilian Wormser
2017-09-01
Full Text Available We present a novel approach for gradient based maximization of phononic band gaps. The approach is a geometry projection method combining parametric shape optimization with density based topology optimization. By this approach, we obtain, in a two dimension setting, cellular structures exhibiting relative and normalized band gaps of more than 8 and 1.6, respectively. The controlling parameter is the minimal strut size, which also corresponds with the obtained stiffness of the structure. The resulting design principle is manually interpreted into a three dimensional structure from which cellular metal samples are fabricated by selective electron beam melting. Frequency response diagrams experimentally verify the numerically determined phononic band gaps of the structures. The resulting structures have band gaps down to the audible frequency range, qualifying the structures for an application in noise isolation.
Phononic thermal resistance due to a finite periodic array of nano-scatterers
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier
2016-07-01
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5-100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Strong magnetoelectric and spin phonon coupling in SmFeO3/PMN-PT composite
Ahlawat, Anju; Satapathy, S.; Sathe, V. G.; Choudhary, R. J.; Gupta, P. K.
2016-08-01
We have investigated spin phonon coupling in the strain coupled magnetoelectric SmFeO3/0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) composite in the temperature range of 300-650 K by Raman spectroscopy and magnetic measurements. The SmFeO3/PMN-PT composite shows sharp rise in magnetic moment across ferroelectric transition temperature (Tc) of PMN-PT. Around this transition temperature (Tc of PMN-PT), the temperature evolution of Raman spectra of the composite also shows anomalies in the phonon frequencies and line width corresponding to the SmFeO3 phase which indicate structural modifications in the SmFeO3 phase around Tc of PMN-PT. The observed structural, magnetic, and phonon anomalies of SmFeO3 around Tc of PMN-PT in SmFeO3/PMN-PT are attributed to spin-phonon coupling providing evidence of strong strain mediated magnetoelectric effects.
Phononic thermal resistance due to a finite periodic array of nano-scatterers
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier [Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, F-69621 Villeurbanne (France)
2016-07-28
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Effect of magnetized phonons on electrical and thermal conductivity of neutron star crust
Baiko, D. A.
2016-05-01
We study electrical and thermal conductivities of degenerate electrons emitting and absorbing phonons in a strongly magnetized crystalline neutron star crust. We take into account modification of the phonon spectrum of a Coulomb solid of ions caused by a strong magnetic field. Boltzmann transport equation is solved using a generalized variational method. The ensuing 3D integrals over the transferred momenta are evaluated by two different numerical techniques, the Monte Carlo method and a regular integration over the first Brillouin zone. The results of the two numerical approaches are shown to be in a good agreement. An appreciable growth of electrical and thermal resistivities is reported at quantum and intermediate temperatures T ≲ 0.1Tp (Tp is the ion plasma temperature) in a wide range of chemical compositions and mass densities of matter even for moderately magnetized crystals ωB ˜ ωp (ωB and ωp are the ion cyclotron and plasma frequencies). This effect is due to an appearance of a soft (ω ∝ k2) phonon mode in the magnetized ion Coulomb crystal, which turns out to be easier to excite than acoustic phonons characteristic of the field-free case. These results are important for modelling magneto-thermal evolution of neutron stars.
Thermal design studies in superconducting rf cavities: Phonon peak and Kapitza conductance
A. Aizaz
2010-09-01
Full Text Available Thermal design studies of superconducting radio frequency (SRF cavities involve two thermal parameters, namely the temperature dependent thermal conductivity of Nb at low temperatures and the heat transfer coefficient at the Nb-He II interface, commonly known as the Kapitza conductance. During the fabrication process of the SRF cavities, Nb sheet is plastically deformed through a deep drawing process to obtain the desired shape. The effect of plastic deformation on low temperature thermal conductivity as well as Kapitza conductance has been studied experimentally. Strain induced during the plastic deformation process reduces the thermal conductivity in its phonon transmission regime (disappearance of phonon peak by 80%, which may explain the performance limitations of the defect-free SRF cavities during their high field operations. Low temperature annealing of the deformed Nb sample could not recover the phonon peak. However, moderate temperature annealing during the titanification process recovered the phonon peak in the thermal conductivity curve. Kapitza conductance measurements for the Nb-He II interface for various surface topologies have also been carried out before and after the annealing. These measurements reveal consistently increased Kapitza conductance after the annealing process was carried out in the two temperature regimes.
Conductivity of strongly pumped superconductors. An electron-phonon system far from equilibrium
Krull, Holger
2015-01-29
The study of nonequilibrium physics is of great interest, because one can capture novel phenomena and properties which are hidden at equilibrium, e.g., one can study relaxation processes. A common way to study the nonequilibrium dynamics of a sample is a pump-probe experiment. In a pump probe experiment an intense laser pulse, the so called pump pulse, excites the sample and takes it out of equilibrium. After a certain delay time a second pulse, the probe pulse, measures the actual state of the sample. In this thesis, we theoretically study the pump-probe response of superconductors. On the one hand we are interest in the effect of a pump pulse and on the other hand we want to provide the pump-probe response, such that experimental measurement can be easily interpreted. In order to do this, we use the density matrix formalism to compute the pump-probe response of the system. In the density matrix formalism equations of motion are set up for expectation values of interest. In order to study the dynamics induced by a pump pulse, we compute the temporal evolution of the quasiparticle densities and the mean phonon amplitude. We find that the induced dynamics of the system depends on characteristics of the pump pulse. For short pulses, the system is pushed into the nonadiabatic regime. In this regime, the order parameter is lowered during the pump pulse and shows a 1/(√(t))-decaying oscillation afterwards. In addition, coherent phonons are generated, which is resonantly enhanced if the frequency of the order parameter oscillation is equal to the phonon frequency. For long pulses, the system is pushed into the adiabatic regime. In this regime, the order parameter is lowered during the pulse and remains almost constant afterwards. Further, there is almost no generation of coherent phonons. For the pump-probe response we compute the conductivity induced by the probe pulse. The conductivity is a typical observable in real pump-probe experiments. Hence, it is possible to
Yu, Jen-Kan; Mitrovic, Slobodan; Heath, James R.
2016-08-16
A nanomesh phononic structure includes: a sheet including a first material, the sheet having a plurality of phononic-sized features spaced apart at a phononic pitch, the phononic pitch being smaller than or equal to twice a maximum phonon mean free path of the first material and the phononic size being smaller than or equal to the maximum phonon mean free path of the first material.
Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials
J. O. Vasseur
2011-12-01
Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.
Enhanced spin-phonon-electronic coupling in a 5d oxide
Calder, S.; Lee, J.H.; Stone, M. B.; Lumsden, M. D.; Lang, J. C.; Feygenson, M.; Zhao, Z.; Yan, J. -Q.; Shi, Y G; Sun, Y. S.; Tsujimoto, Y.; Yamaura, K.; Christianson, A. D.
2015-01-01
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal–insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm−1, th...
Riehle, Fritz
2006-01-01
Of all measurement units, frequency is the one that may be determined with the highest degree of accuracy. It equally allows precise measurements of other physical and technical quantities, whenever they can be measured in terms of frequency.This volume covers the central methods and techniques relevant for frequency standards developed in physics, electronics, quantum electronics, and statistics. After a review of the basic principles, the book looks at the realisation of commonly used components. It then continues with the description and characterisation of important frequency standards
Infrared phonons as a probe of spin-liquid states in herbertsmithite ZnCu3(OH)6Cl2
Sushkov, A. B.; Jenkins, G. S.; Han, Tian-Heng; Lee, Young S.; Drew, H. D.
2017-03-01
We report on temperature dependence of the infrared reflectivity spectra of a single crystalline herbertsmithite in two polarizations—parallel and perpendicular to the kagome plane of Cu atoms. We observe anomalous broadening of the low frequency phonons possibly caused by fluctuations in the exotic dynamical magnetic order of the spin liquid.
Makovetskii, D N
2011-01-01
This is a part of an overview of my early studies on nonlinear spin-phonon dynamics in solid state optical-wavelength phonon lasers (phasers) started in 1984. The main goal of this work is a short description and a qualitative analysis of experimental data on low-frequency nonlinear resonances revealed in a nonautonomous ruby phaser. Under phaser pumping modulation near these resonances, an unusual kind of self-organized motions in the ruby spin-phonon system was observed by me in 1984 for the first time. The original technique of optical-wavelength microwave-frequency acoustic stimulated emission (SE) detection and microwave-frequency power spectra (MFPS) analysis was used in these experiments (description of the technique see: D.N.Makovetskii, Cand. Sci. Diss., Kharkov, 1983). The real time evolution of MFPS was studied using this technique at scales up to several hours. The phenomenon of the self-organized periodic alternation of SE phonon modes was experimentally revealed at hyperlow frequencies from abou...
Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot
Li, Yinggang; Chen, Tianning; Wang, Xiaopeng; Yu, Kunpeng; Song, Ruifang
2015-01-01
In this paper, a novel two-dimensional phononic crystal composed of periodic Jerusalem cross slot in air matrix with a square lattice is presented. The dispersion relations and the transmission coefficient spectra are calculated by using the finite element method based on the Bloch theorem. The formation mechanisms of the band gaps are analyzed based on the acoustic mode analysis. Numerical results show that the proposed phononic crystal structure can yield large band gaps in the low-frequency range. The formation mechanism of opening the acoustic band gaps is mainly attributed to the resonance modes of the cavities inside the Jerusalem cross slot structure. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically. Results show that the band gaps can be modulated in an extremely large frequency range by the geometry parameters such as the slot length and width. These properties of acoustic waves in the proposed phononic crystals can potentially be applied to optimize band gaps and generate low-frequency filters and waveguides.
Enhancing phonon flow through one-dimensional interfaces by impedance matching
Polanco, Carlos A., E-mail: cap3fe@virginia.edu; Ghosh, Avik W., E-mail: ag7rq@virginia.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)
2014-08-28
We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.
Scattering of thermal phonons by extended defects in dielectric crystals
Roth, E. P.
1975-01-01
The scattering of thermal phonons by extended defects in dielectric crystals has been observed through measurements of thermal conductivity and ballistic heat pulse propagation. The thermal conductivities of LiF and NaCl conatining 500 low-angle grain boundaries per cm were measured in the range 0.08-5 K. The measurements gave little or no evidence for phonon scattering from the grain boundaries. Measurements of phonon scattering at a 10 deg. grain boundary in silicon using direct generation and detection of ballistically propagating heat pulses were made over an effective phonon temperature range of 2 to 20 K. The grain boundary reflection coefficient was determined to be < 2%. The thermal conductivities of LiF crystals containing 5 x 10/sup 6/ - 3 x 10/sup 7/ dislocations per square cm were measured over the temperature range 0.1 to 10 K. The measurements of the sheared crystal indicated that the slow transverse phonon mode was strongly scattered by a dynamic phonon-dislocation interaction at T approximately < 2 K, while the remaining modes were scattered primarily by the boundaries. The measurements of the bent crystals indicated that, for T approximately < 2 K, the slow transverse and possibly the longitudinal phonons were strongly scattered by a dynamic phonon-dislocation interaction. For T approximately > 2 k, some fraction of the phonons (at least the slow transverse mode) were still strongly scattered, even after long exposure to ..gamma.. irradiation, while the remaining phonons were scattered primarily by the boundaries.
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons
Sanders, G. D.; Nugraha, A. R. T.; Sato, K.; Kim, J.-H.; Kono, J.; Saito, R.; Stanton, C. J.
2013-04-01
We survey our recent theoretical studies on the generation and detection of coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. We present a microscopic theory for the electronic states, phonon modes, optical matrix elements and electron-phonon interaction matrix elements that allows us to calculate the coherent phonon spectrum. An extended tight-binding (ETB) model has been used for the electronic structure and a valence force field (VFF) model has been used for the phonon modes. The coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on the photoexcited carrier density. We discuss the dependence of the coherent phonon spectrum on the nanotube chirality and type, and also on the graphene nanoribbon mod number and class (armchair versus zigzag). We compare these results with a simpler effective mass theory where reasonable agreement with the main features of the coherent phonon spectrum is found. In particular, the effective mass theory helps us to understand the initial phase of the coherent phonon oscillations for a given nanotube chirality and type. We compare these results to two different experiments for nanotubes: (i) micelle suspended tubes and (ii) aligned nanotube films. In the case of graphene nanoribbons, there are no experimental observations to date. We also discuss, based on the evaluation of the electron-phonon interaction matrix elements, the initial phase of the coherent phonon amplitude and its dependence on the chirality and type. Finally, we discuss previously unpublished results for coherent phonon amplitudes in zigzag nanoribbons obtained using an effective mass theory.
Quantum mode phonon forces between chainmolecules
Bohr, Jakob
2001-01-01
A phenomenological description of the contributions of phonons to molecular force is developed. It uses an approximation to consider macromolecules as solid continua. The molecular modes of a molecule can then be characterized by a Debye-like description of the partition function. The resulting b....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....
Quantum Coherent Electron-Phonon Nanolaboratories
2006-05-31
published as “Single-crystal aluminum nitride nanomechanical resonators”, A.N. Cleland, M. Pophristic and I. Ferguson , Appl. Phys. Lett. 79, 2070 (2001...nanostructured phononic crystals”, Phys. Rev. B 64, 172301 (2001) A.N. Cleland, M. Pophristic and I. Ferguson , “Single-crystal aluminum nitride...Phys. Lett. 79, 1202 ~2001!. 6 M. J. Kelly, R. J. Brown, C. G. Smith, D. A. Wharam, M. Pepper , H. Ahmed, D. G. Hasko, D. C. Peacock, J. E. F. Frost, and
Quantum mode phonon forces between chainmolecules
Bohr, Jakob
2001-01-01
bimolecular interaction is a truly many-body force that is temperature dependent and can be of the order of 1 eV. These phonon forces depend on molecular shape, composition, and density. They may therefore also be important for large molecular conformational changes, including the unfolding of chain molecules....... For the later case, a significant change in zero-point energy is found. This may be the underlying cause for cold denaturation of proteins. (C) 2001 John Wiley & Sons, Inc....
Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa; Ali, H.
2016-08-15
Short-pulse laser heating of aluminum and silicon thin films pair with presence of a minute vacuum gap in between them is considered and energy transfer across the thin films pair is predicted. The frequency dependent Boltzmann equation is used to predict the phonon intensity distribution along the films pair for three cycles of the repetitive short-pulse laser irradiation on the aluminum film surface. Since the gap size considered is within the Casimir limit, thermal radiation and ballistic phonon contributions to energy transfer across the vacuum gap is incorporated. The laser irradiated field is formulated in line with the Lambert's Beer law and it is considered as the volumetric source in the governing equations of energy transport. In order to assess the phonon intensity distribution in the films pair, equivalent equilibrium temperature is introduced. It is demonstrated that thermal separation of electron and lattice sub-systems in the aluminum film, due to the short-pulse laser irradiation, takes place and electron temperature remains high in the aluminum film while equivalent equilibrium temperature for phonons decays sharply in the close region of the aluminum film interface. This behavior is attributed to the phonon boundary scattering at the interface and the ballistic phonon transfer to the silicon film across the vacuum gap. Energy transfer due to the ballistic phonon contribution is significantly higher than that of the thermal radiation across the vacuum gap.
Novel information theory techniques for phonon spectroscopy
Hague, J P [Department of Physics, Loughborough University, Loughborough, LE11 3TU (United Kingdom)
2007-12-15
The maximum entropy method (MEM) and spectral reverse Monte Carlo (SRMC) techniques are applied to the determination of the phonon density of states (PDOS) from heat-capacity data. The approach presented here takes advantage of the standard integral transform relating the PDOS with the specific heat at constant volume. MEM and SRMC are highly successful numerical approaches for inverting integral transforms. The formalism and algorithms necessary to carry out the inversion of specific heat curves are introduced, and where possible, I have concentrated on algorithms and experimental details for practical usage. Simulated data are used to demonstrate the accuracy of the approach. The main strength of the techniques presented here is that the resulting spectra are always physical: Computed PDOS is always positive and properly applied information theory techniques only show statistically significant detail. The treatment set out here provides a simple, cost-effective and reliable method to determine phonon properties of new materials. In particular, the new technique is expected to be very useful for establishing where interesting phonon modes and properties can be found, before spending time at large scale facilities.
Electron-phonon nonequilibrium during ultrashort pulsed laser heating of metals
Smith, Andrew Neil
2001-10-01
the first interband transition energy in Au of 2.45 eV. Therefore, absorption occurs due to intraband transitions. The Drude model for a nearly free electron gas was used to model the dielectric constant as a function of temperature. The temperature dependence of intraband transitions comes from the electron collision frequency. The electron-electron collisional frequency is proportional to the square of the electron temperature, while the electron-phonon collisional frequency is linearly related to the lattice temperature. It is shown that the observed nonlinear relationship between changes in electron temperature and reflectance is the result of electron-electron collisions.
Morvan, B.; Tinel, A.; Sainidou, R.; Rembert, P. [Laboratoire Ondes et Milieux Complexes, UMR CNRS 6294, Université du Havre, 75 rue Bellot, 76058 Le Havre (France); Vasseur, J. O.; Hladky-Hennion, A.-C. [Institut d' Electronique, de Micro-électronique et de Nanotechnologie, UMR CNRS 8520, Cité Scientifique, 59652 Villeneuve d' Ascq Cedex (France); Swinteck, N.; Deymier, P. A. [Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721 (United States)
2014-12-07
Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.
Prospective Solid-state Photonic Cryocooler Based on the "Phonon-deficit Effect"
Melkonyan, Gurgen; Gulian, Armen
In this design microwave photons are propagating in a sapphire rod, and are being absorbed by a superconductor deposited on the surface of the rod. The frequency of the radiation is tuned to be less than the energy gap in the superconductor, so that the pair breaking is not taking place. This photon pumping redistributes the electron-hole quasiparticles: their distribution function is non-equilibrium, and the "phonon-deficit effect" takes place. There is a dielectric material deposited on top of superconductor, which serves asthe "cold finger" of the cooler. Its "acoustical density" is supposed to be smaller than that of the superconducting material, so phonons are being "rectified" and propagate from, but not to it: the energy flows from the "cold finger" into the superconductor. The best reported rectification achieved as of today is about factor of five, which is marginal for our design. To further enhance the rectification, one can use the acoustical filtering. It can be arranged between the superconductor and the "cold finger". Having a remarkably high heat conductivity and high acoustic density, the sapphire rod serves not only as a photonic wave-guide, but also as a thermal heat sink. It is thermally anchored to the bigger external heat-bath. Spectral phonon filters are arranged between sapphire and superconducting film, so that sapphire would only receive and absorb excess phonons without supplying deficient phonons to the superconductor. We performed calculations using parameters of existing materials;majordetails characterizing the designhave been taken into account. Opportunities are "cool" enough to be pursued experimentally.
Raman spectra of semiconductor nanoparticles: Disorder-activated phonons
Ingale, Alka; Rustagi, K. C.
1998-09-01
We present Raman spectra of four semiconductor doped glasses and a single crystal of CdS0.55Se0.45 in the range 30-800 cm-1 in the backscattering geometry. This includes the first-order Raman scattering from the disorder-activated zone-edge phonons and the LO phonons. TO phonon modes are not observed, as in bulk CdS, for the excitation well above the lowest gap. We show that the asymmetric line profile of the LO phonon structure can be understood as a composite of two phonon modes: the zone center and the zone edge phonons. Disorder-activated modes in the (30-130)-cm-1 range and the higher-order Raman spectra are also observed and found to be consistent with this assignment.
Coherent radial-breathing-like phonons in graphene nanoribbons
Sanders, G. D.; Nugraha, A. R. T.; Saito, R.; Stanton, C. J.
2012-05-01
We have developed a microscopic theory for the generation and detection of coherent phonons in armchair and zigzag graphene nanoribbons using an extended tight-binding model for the electronic states and a valence force field model for the phonons. The coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We examine the coherent phonon radial-breathing-like mode amplitudes as a function of excitation energies and nanoribbon types. For photoexcitation near the optical absorption edge the coherent phonon driving term for the radial-breathing-like mode is much larger for zigzag nanoribbons where transitions between localized edge states provide the dominant contribution to the coherent phonon driving term. Using an effective mass theory, we explain how the armchair nanoribbon width changes in response to laser excitation.
NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics
1985-01-01
Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...
Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2016-04-13
Using phonon wave packet molecular dynamics simulations, we find that anomalous longitudinal acoustic (LA) mode phonon scattering in low to moderate energy ranges is responsible for initiating thermophoretic motion in carbon nanotube oscillators. The repeated scattering of a single mode LA phonon wave packet near the ends of the inner nanotube provides a net unbalanced force that, if large enough, initiates thermophoresis. By applying a coherent phonon pulse on the outer tube, which generalizes the single mode phonon wave packet, we are able to achieve thermophoresis in a carbon nanotube oscillator. We also find the nature of the unbalanced force on end-atoms to be qualitatively similar to that under an imposed thermal gradient. The thermodiffusion coefficient obtained for a range of thermal gradients and core lengths suggest that LA phonon scattering is the dominant mechanism for thermophoresis in longer cores, whereas for shorter cores, it is the highly diffusive mechanism that provides the effective force.
Electron-phonon coupling in anthracene-pyromellitic dianhydride
Vermeulen, Derek; Corbin, Nathan; Goetz, Katelyn P.; Jurchescu, Oana D.; Coropceanu, Veaceslav; McNeil, L. E.
2017-06-01
In this study, the electron-phonon coupling constants of the mixed-stack organic semiconductor anthracene-pyromellitic dianhydride (A-PMDA) are determined from experimental resonant Raman and absorption spectra of the charge transfer (CT) exciton using a time-dependent resonant Raman model. The reorganization energies of both intermolecular and intramolecular phonons are determined and compared with theoretical estimates derived from density functional theory calculations; they are found to agree well. We found that the dominant contribution to the total reorganization energy is due to intramolecular phonons, with intermolecular phonons only contributing a small percentage. This work goes beyond prior studies of the electron-phonon coupling in A-PMDA by including the coupling of all Raman-active phonons to the charge transfer exciton. The possibility of orientational disorder in A-PMDA at 80 K is inferred from the inhomogeneous broadening of the absorption line shape.
Reduction of thermal conductivity by nanoscale 3D phononic crystal.
Yang, Lina; Yang, Nuo; Li, Baowen
2013-01-01
We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.
Interaction of excitons with optical phonons in layer crystals
Nitsovich, Bohdan M.; Zenkova, C. Y.; Kramar, N. K.
2002-02-01
The investigation is concerned with layer crystals of the GaSe, InSe, GaTe, MoS2-type and other inorganic semiconductors, whose phonon spectrum has a great number of peculiarities, among them the availability of low-energy optical phonons. In this case the dispersion of these phonons can be essential and vary in character. The mass operator of the exciton-phonon system and the light absorption coefficient for different dispersion laws of optical phonons have been calculated. The influence of the sign of the phonon 'effective mass' on the exciton absorption band of layer crystals, which causes the opposite in sign dynamics of the absorption maximum shift, and the change of the absorption curve asymmetry have been determined.
Prezhdo, Oleg V.
2008-07-01
The article presents the current perspective on the nature of photoexcited states in semiconductor quantum dots (QDs). The focus is on multiple excitons and photo-induced electron-phonon dynamics in PbSe and CdSe QDs, and the advocated view is rooted in the results of ab initio studies in both energy and time domains. As a new type of material, semiconductor QDs represent the borderline between chemistry and physics, exhibiting both molecular and bulk-like properties. Similar to atoms and molecules, the electronic spectra of QD show discrete bands. Just as bulk semiconductors, QDs comprise multiple copies of the elementary unit cell, and are characterized by valence and conduction bands. The electron-phonon coupling in QDs is weaker than in molecules, but stronger than in bulk semiconductors. Unlike either material, the QD properties can be tuned continuously by changing QD size and shape. The molecular and bulk points of view often lead to contradicting conclusions. For example, the molecular view suggests that the excitations in QDs should exhibit strong electron-correlation (excitonic) effects, and that the electron-phonon relaxation should be slow due to the discrete nature of the optical bands and the mismatch of the electronic energy gaps with vibrational frequencies. In contrast, a finite-size limit of bulk properties indicates that the kinetic energy of quantum confinement should be significantly greater than excitonic effects and that the electron-phonon relaxation inside the quasi-continuous bands should be efficient. Such qualitative differences have generated heated discussions in the literature. The great potential of QDs for a variety of applications, including photovoltaics, spintronics, lasers, light-emitting diodes, and field-effect transistors makes it crutual to settle the debates. By synthesizing different viewpoints and presenting a unified atomistic picture of the excited state processes, our ab initio analysis clarifies the controversies
Mode coupling of phonons in a dense one-dimensional microfluidic crystal
Fleury, Jean-Baptiste; Schiller, Ulf D.; Thutupalli, Shashi; Gompper, Gerhard; Seemann, Ralf
2014-06-01
Long-living coupled transverse and longitudinal phonon modes are explored in dense, regular arrangements of flattened microfluidic droplets. The collective oscillations are driven by hydrodynamic interactions between the confined droplets and can be excited in a controlled way. Experimental results are quantitatively compared to simulation results obtained by multi-particle collision dynamics. The observed transverse modes are acoustic phonons and obey the predictions of a linearized far-field theory. The longitudinal modes arise from a nonlinear mode coupling due to the lateral variation of the confined flow field. The proposed mechanism for the nonlinear excitation is expected to be relevant for hydrodynamic motion in other crowded non-equilibrium systems under confinement.
Íñiguez-de-la-Torre, A.; Mateos, J.; González, T.
2010-03-01
Under certain conditions, plasma instabilities associated with streaming motion of carriers taking place in n+nn+ diodes can lead to current oscillations. The origin of the phenomenon, known as optical phonon transit time resonance, is characterized by a frequency related to the transit time between consecutive optical phonon emissions by electrons along the active region of the diode. By means of Monte Carlo simulations, the possibility to obtaining current oscillations in GaN n+nn+ diodes is analyzed. The optimum conditions for the onset of such mechanism are investigated: applied bias, temperature, doping, and length of the active n region. Simulations show that current oscillations at frequencies in the terahertz range can be obtained at very low temperatures. Moreover, by choosing the appropriate applied voltage and length of the n region, some degree of tunability can be achieved for frequencies close to the plasma frequency of the n region of the n+nn+ diode.
Phonons and electron-phonon coupling in graphene-h-BN heterostructures
Slotman, Guus J.; Wijs, Gilles A. de; Fasolino, Annalisa; Katsnelson, Mikhail I. [Institute for Molecules and Materials, Radboud University Nijmegen (Netherlands)
2014-10-15
First principle calculations of the phonons of graphene-h-BN heterostructures are presented and compared to those of the constituents. It is shown that AA and AB' stacking are not only energetically less favoured than AB but also dynamically unstable. Low energy flat phonon branches of h-BN character with out of plane displacement have been identified and their coupling to electrons in graphene has been evaluated. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Sun, Fei; Wu, Q.; Wu, Y. L.; Zhao, H.; Yi, C. J.; Tian, Y. C.; Liu, H. W.; Shi, Y. G.; Ding, H.; Dai, X.; Richard, P.; Zhao, Jimin
2017-06-01
We report an ultrafast lattice dynamics investigation of the topological Dirac semimetal C d3A s2 . A coherent phonon beating among three evenly spaced A1 g optical phonon modes (of frequencies 1.80, 1.96, and 2.11 THz, respectively) is unambiguously observed. The two side modes originate from the counter helixes composing Cd vacancies. Significantly, such helix vacancy-induced phonon (HVP) modes experience prominent extra waning in their ultrafast dynamics as temperature increases, which is immune to the central mode. Above 200 K, the HVP becomes inactive, which may potentially affect the topological properties. Our results in the lattice degree of freedom suggest the indispensable role of temperature in considering topological properties of such quantum materials.
Parsons, L. C., E-mail: lcparsons@mun.ca; Andrews, G. T., E-mail: tandrews@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada)
2014-07-21
Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.
ZHANGLi; SHIJun-Jie
2005-01-01
By using the transfer matrix method, within the framework of the dielectric continuum approximation,uniform forms for the interface optical (I0) phonon modes as well as the corresponding electron-IO phonon interaction Hamiltonians in n-layer coupling low-dimensional systems (including the coupling quantum well (CQW), coupling quantum-well wire (CQWW), and coupling quantum dot (CQD)) have been presented. Numerical calculations on the three-layer asymmetrical AIGaAs/GaAs systems are performed, and the analogous characteristics for limited frequencies of 10 phonon in the three types of systems (CQW, CQWW, and CQD) when the wave-vector and the quantum number approach zero or infinity are analyzed and specified.
ZHANG Li; SHI Jun-Jie
2005-01-01
By using the transfer matrix method, within the framework of the dielectric continuum approximation,uniform forms for the interface optical (IO) phonon modes as well as the corresponding electron-IO phonon interaction Hamiltonians in n-layer coupling low-dimensional systems (including the coupling quantum well (CQ W), coupling quantum-well wire (CQWW), and coupling quantum dot (CQD)) have been presented. Numerical calculations on the three-layer asymmetrical AIGaAs/GaAs systems are performed, and the analogous characteristics for limited frequencies of IO phonon in the three types of systems (CQW, CQWW, and CQD) when the wave-vector and the quantum number approach zero or infinity are analyzed and specified.
Carrier-phonon interaction in semiconductor quantum dots
Seebeck, Jan
2009-03-10
In recent years semiconductor quantum dots have been studied extensively due to their wide range of possible applications, predominantly for light sources. For successful applications, efficient carrier scattering processes as well as a detailed understanding of the optical properties are of central importance. The aims of this thesis are theoretical investigations of carrier scattering processes in InGaAs/GaAs quantum dots on a quantum-kinetic basis. A consistent treatment of quasi-particle renormalizations and carrier kinetics for non-equilibrium conditions is presented, using the framework of non-equilibrium Green's functions. The focus of our investigations is the interaction of carriers with LO phonons. Important for the understanding of the scattering mechanism are the corresponding quasi-particle properties. Starting from a detailed study of quantum-dot polarons, scattering and dephasing processes are discussed for different temperature regimes. The inclusion of polaron and memory effects turns out to be essential for the description of the carrier kinetics in quantum-dot systems. They give rise to efficient scattering channels and the obtained results are in agreement with recent experiments. Furthermore, a consistent treatment of the carrier-LO-phonon and the carrier-carrier interaction is presented for the optical response of semiconductor quantum dots, both giving rise to equally important contributions to the dephasing. Beside the conventional GaAs material system, currently GaN based light sources are of high topical interest due to their wide range of possible emission frequencies. In this material additionally intrinsic properties like piezoelectric fields and strong band-mixing effects have to be considered. For the description of the optical properties of InN/GaN quantum dots a procedure is presented, where the material properties obtained from an atomistic tight-binding approach are combined with a many-body theory for non
Observation of anomalous phonons in orthorhombic rare-earth manganites
Gao, P.; Chen, H. Y.; Tyson, T. A.; Liu, Z. X.; Bai, J. M.; Wang, L. P.; Choi, Y. J.; Cheong, S.-W.
2010-12-01
We observe the appearance of a phonon near the lock-in temperature in orthorhombic REMnO3 (RE denotes rare earth) (RE: Lu and Ho) and anomalous phonon hardening in orthorhombic LuMnO3. The anomalous phonon occurs at the onset of spontaneous polarization. No such changes were found in incommensurate orthorhombic DyMnO3. These observations directly reveal different electric polarization mechanisms in the E-type and incommensurate-type orthorhombic REMnO3.
Weak phonon scattering effect of twin boundaries on thermal transmission.
Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin
2016-01-29
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries' thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity.
Weak phonon scattering effect of twin boundaries on thermal transmission
Huicong Dong; Jianwei Xiao; Roderick Melnik; Bin Wen
2016-01-01
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries’ thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced averag...
Isotopic effects on the phonon modes in boron carbide.
Werheit, H; Kuhlmann, U; Rotter, H W; Shalamberidze, S O
2010-10-01
The effect of isotopes ((10)B-(11)B; (12)C-(13)C) on the infrared- and Raman-active phonons of boron carbide has been investigated. For B isotopes, the contributions of the virtual crystal approximation, polarization vector and isotopical disorder are separated. Boron and carbon isotope effects are largely opposite to one another and indicate the share of the particular atoms in the atomic assemblies vibrating in specific phonon modes. Some infrared-active phonons behave as expected for monatomic boron crystals.
Interface phonon effect on optical spectra of quantum nanostructures
Maslov, Alexander Yu., E-mail: maslov.ton@mail.ioffe.r [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation); Proshina, Olga V.; Rusina, Anastasia N. [Ioffe Physical Technical Institute, Polytechnicheskaya st., 26, 194021 Saint Petersburg (Russian Federation)
2009-12-15
This paper deals with theory of large radius polaron effect in quantum wells, wires and dots. The interaction of charge particles and excitons with both bulk and interface optical phonons is taken into consideration. The analytical expression for polaron binding energy is obtained for different types of nanostructures. It is shown that the contribution of interface phonons to the polaron binding energy may exceed the bulk phonon part. The manifestation of polaron effects in optical spectra of quantum nanostructures is discussed.
Lattice dynamics of xenotime: The phonon dispersion relations and density of states of LuPO{sub 4}
Nipko, J.C.; Loong, C. [Argonne National Laboratory, Argonne, Illinois 60439-4814 (United States); Loewenhaupt, M. [Technische Universitaet Dresden, Dresden (Germany); Braden, M.; Reichardt, W. [Forschungszentrum Karlsruhe, INFP, D-76021, Karlsruhe (Germany); Boatner, L.A. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056 (United States)
1997-11-01
LuPO{sub 4} is the nonmagnetic end member of a series of rare-earth phosphates with a common zircon-type crystal structure. The phonon-dispersion curves of LuPO{sub 4} along the [x,0,0], [x,x,0], and [0,0,x] symmetry directions were measured by neutron triple-axis spectroscopy using single-crystal samples. The phonon density of states was determined by time-of-flight neutron scattering using polycrystalline samples. Phonons involving mainly motions of rare-earth ions were found to be well separated in energy from those of the P and O vibrations. A large gap in the phonon-frequency-distribution function, which divides the O-P-O bending-type motions from the P-O stretches, was observed. All of the experimental results were satisfactorily accounted for by lattice-dynamic shell-model calculations. LuPO{sub 4} is a host material for the incorporation of rare-earth ions to produce activated luminescence. Information regarding the phonon and thermodynamic properties of LuPO{sub 4} is pertinent to extended investigations of additional rare-earth spin-lattice interactions in other zircon-structure rare-earth orthophosphates. {copyright} {ital 1997} {ital The American Physical Society}
Rosenstein, Baruch; Shapiro, B. Ya.; Shapiro, I.; Li, Dingping
2016-07-01
Pairing in one-atomic-layer-thick two-dimensional electron gas (2DEG) by a single flat band of high-energy longitudinal optical phonons is considered. The polar dielectric SrTiO3 (STO) exhibits such an energetic phonon mode and the 2DEG is created both when one unit cell FeSe layer is grown on its (100 ) surface and on the interface with another dielectric like LaAlO3 (LAO). We obtain a quantitative description of both systems solving the gap equation for Tc for arbitrary Fermi energy ɛF, electron-phonon coupling λ , and the phonon frequency Ω , and direct (random-phase approximation) electron-electron repulsion strength α . The focus is on the intermediate region between the adiabatic, ɛF>>Ω , and the nonadiabatic, ɛF<<Ω , regimes. The high-temperature superconductivity in single-unit-cell FeSe/STO is possible due to a combination of three factors: high-longitudinal-optical phonon frequency, large electron-phonon coupling λ ˜0.5 , and huge dielectric constant of the substrate suppression the Coulomb repulsion. It is shown that very low density electron gas in the interfaces is still capable of generating superconductivity of the order of 0.1 K in LAO/STO.
Phonon dispersion and lifetimes in MgB2.
Shukla, Abhay; Calandra, Matteo; D'Astuto, Matteo; Lazzeri, Michele; Mauri, Francesco; Bellin, Christophe; Krisch, Michael; Karpinski, J; Kazakov, S M; Jun, J; Daghero, D; Parlinski, K
2003-03-01
We measure phonon dispersion and linewidth in a single crystal of MgB2 along the Gamma-A, Gamma-M, and A-L directions using inelastic x-ray scattering. We use density functional theory to compute the effect of both electron-phonon coupling and anharmonicity on the linewidth, obtaining excellent agreement with experiment. Anomalous broadening of the E(2g) phonon mode is found all along Gamma-A. The dominant contribution to the linewidth is always the electron-phonon coupling.
Bloch oscillations in the presence of plasmons and phonons
Ghosh; Jonsson; Wilkins
2000-07-31
The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].
Phononic glass: a robust acoustic-absorption material.
Jiang, Heng; Wang, Yuren
2012-08-01
In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.
Phonon counting and intensity interferometry of a nanomechanical resonator
Cohen, Justin D; MacCabe, Gregory S; Groblacher, Simon; Safavi-Naeini, Amir H; Marsili, Francesco; Shaw, Matthew D; Painter, Oskar
2014-01-01
Using an optical probe along with single photon detection we have performed effective phonon counting measurements of the acoustic emission and absorption processes in a nanomechanical resonator. Applying these measurements in a Hanbury Brown and Twiss set-up, phonon correlations of the nanomechanical resonator are explored from below to above threshold of a parametric instability leading to self-oscillation of the resonator. Discussion of the results in terms of a "phonon laser", and analysis of the sensitivity of the phonon counting technique are presented.
Nonperturbative theory of exciton-phonon resonances in semiconductor absorption
Hannewald, K.; Bobbert, P. A.
2005-09-01
We develop a theory of exciton-phonon sidebands in the absorption spectra of semiconductors. The theory does not rely on an ad hoc exciton-phonon picture, but is based on a more fundamental electron-phonon Hamiltonian, thus avoiding a priori assumptions about excited-state properties. We derive a nonperturbative compact solution that can be looked upon as the semiconductor version of the textbook absorption formula for a two-level system coupled to phonons. Accompanied by an illustrative numerical example, the importance and usefulness of our approach with respect to practical applications for semiconductors is demonstrated.
Weber, F.
2007-11-02
The present thesis concentrates on the signatures of strong electron-phonon coupling in phonon properties measured by inelastic neutron scattering. The inelastic neutron scattering experiments were performed on the triple-axis spectrometers 1T and DAS PUMA at the research reactors in Saclay (France) and Munich (Germany), respectively. The work is subdivided into two separate chapters: In the first part, we report measurements of the lattice dynamical properties, i.e. phonon frequency, linewidth and intensity, of the conventional, i.e. phonon-mediated, superconductor YNi{sub 2}B{sub 2}C of the rare-earth-borocarbide family. The detailed check of theoretical predictions for these properties, which were calculated in the theory group of our institute, was one major goal of this work. We measured phonons in the normal state, i.e. T>T{sub c}, for several high symmetry directions up to 70 meV. We were able to extract the full temperature dependence of the superconducting energy gap 2{delta}(T) from our phonon scans with such accuracy that even deviations from the weak coupling BCS behaviour could be clearly observed. By measuring phonons at different wave vectors we demonstrated that phonons are sensitive to the gap anisotropy under the precondition, that different phonons get their coupling strength from different parts of the Fermi surface. In the second part, we investigated the properties of Mn-O bond-stretching phonons in the bilayer manganite La{sub 2-2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7}. At the doping level x=0.38 this compound has an ferromagnetic groundstate and exhibits the so-called colossal magnetoresistance effect in the vicinity of the Curie temperature T{sub C}. The atomic displacement patterns of the investigated phonons closely resemble possible Jahn-Teller distortions of the MnO{sub 6} octahedra, which are introduced in this compound by the Jahn-Teller active Mn{sup 3+} ions. We observed strong renormalizations of the phonon frequencies and clear peaks of
Effects of electron-phonon coupling on Landau levels in graphene
Pound, Adam; Carbotte, J. P.; Nicol, E. J.
2011-08-01
We calculate the density of states (DOS) in graphene for electrons coupled to a phonon in an external magnetic field. We find that coupling to an Einstein mode of frequency ωE not only shifts and broadens the Landau levels (LLs), but radically alters the DOS by introducing a new set of peaks at energies En±ωE, where En is the energy of the nth LL. If one of these new peaks lies sufficiently close to an LL, it causes the LL to split in two; if the system contains an energy gap, an LL may be split in three. The new peaks occur outside the interval (-ωE,ωE), leaving the LLs in that interval largely unaffected. If the chemical potential is greater than the phonon frequency, the zeroth LL lies outside the interval and can be split, eliminating its association with a single Dirac point. We find that coupling to an extended phonon distribution such as a Lorentzian or Debye spectrum does not qualitatively alter these results.
Axial interface optical phonon modes in a double-nanoshell system
Kanyinda-Malu, C; Clares, F J; Cruz, R M de la [Departamento de Fisica, Universidad Carlos III de Madrid, EPS Avenida de la Universidad 30, 28911 Leganes (Madrid) (Spain)], E-mail: clement.kanyindamalu@urjc.es, E-mail: rmc@fis.uc3m.es
2008-07-16
Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.
Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.
Tian, Zhenhua; Yu, Lingyu
2017-01-05
The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.
Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.
Vatanabe, Sandro L; Paulino, Glaucio H; Silva, Emílio C N
2014-08-01
Phononic crystals (PCs) can exhibit phononic band gaps within which sound and vibrations at certain frequencies do not propagate. In fact, PCs with large band gaps are of great interest for many applications, such as transducers, elastic/acoustic filters, noise control, and vibration shields. Previous work in the field concentrated on PCs made of elastic isotropic materials; however, band gaps can be enlarged by using non-isotropic materials, such as piezoelectric materials. Because the main property of PCs is the presence of band gaps, one possible way to design microstructures that have a desired band gap is through topology optimization. Thus in this work, the main objective is to maximize the width of absolute elastic wave band gaps in piezocomposite materials designed by means of topology optimization. For band gap calculation, the finite element analysis is implemented with Bloch-Floquet theory to solve the dynamic behavior of two-dimensional piezocomposite unit cells. Higher order frequency branches are investigated. The results demonstrate that tunable phononic band gaps in piezocomposite materials can be designed by means of the present methodology.
翟志华; 王留奎; 王端
2009-01-01
In order to accurately extract image features of user interested and improve the performance of image retrieval, a relevance feedback image retrieval algorithm based on visual perception is proposed. The proposed algorithm considers the fact that users may have different interests and importance about different frequency layers perception image according to visual pereeption theory, and adopts frequency layer as image feature. Frequency layer feature reveal both color and shape of image content. The proposed algorithm adaptively adjusts the weight of color and shape features. Simulation results prove that, compared with the algorithm based on support vector machine (SVM), the proposed algorithm outperforms in term of accurate ratio.%为了准确地提取用户感兴趣的图像特征以及提高图像检索的性能,提出了一种基于视觉感知的相关反馈图像检索算法.该算法根据视觉感知原理,考虑到人眼对各个频率层的图像感知具有不同的兴趣与敏感度,以频率层特征为图像特征.该特征不仅考虑了频率层色彩的特征,而且考虑了图像形状的视觉因素.提出的算法基于最大似然估计,自适应地调整频率层色彩特征与形状特征之间的权值.结果表明,与基于支持向量机的相关反馈算法SVM相比,提出的算法具有更高的查准率.
Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation
Huber, T., E-mail: tihuber@phys.ethz.ch; Huber, L.; Johnson, S. L. [Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich (Switzerland); Ranke, M. [The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg (Germany); Ferrer, A. [Institute for Quantum Electronics, Physics Department, ETH Zurich, CH-8093 Zurich (Switzerland); Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)
2015-08-31
We use intense terahertz (THz) frequency electromagnetic pulses generated via optical rectification in an organic crystal to drive vibrational lattice modes in single crystal Tellurium. The coherent modes are detected by measuring the polarization changes of femtosecond laser pulses reflecting from the sample surface, resulting in a phase-resolved detection of the coherent lattice motion. We compare the data to a model of Lorentz oscillators driven by the near-single-cycle broadband THz pulse. The demonstrated technique of optically probed coherent phonon spectroscopy with THz frequency excitation could prove to be a viable alternative to other time-resolved spectroscopic methods like standard THz time domain spectroscopy.
Temperature dependent phonon modes and ionicity of LiGaO2 single crystal
Ma Ji-Yun; Fang Xu; M.Kamran; Zhao Hua-Ying; Bi Cong-Zhi; Zhao Bai-Ru; Qiu Xiang-Gang
2008-01-01
This paper reports that polarized far-infrared reflectivity measurements have been done on LiGaO2 single crystal along two crystalline axes at different temperatures.The temperature dependent frequencies of the longitudinal and transverse optical phonon have been obtained from the real part of optical conductivity and the loss function respectively.A small Drude component is observed at frequency below 300 cm-1 which could arise from Li ions or oxygen deficiencies.The ionicity of LiGaO2 has been studied from the analysis of the Born effective charge of different ions.
Coupling of phonon-polariton modes at dielectric-dielectric interfaces by the ATR technique
Cocoletzi, G. H.; Olvera Hernández, J.; Martínez Montes, G.
1989-08-01
We report the calculated ATR dispersion relation of the interface phonon-polariton modes in the prism-dielectric-dielectric configuration. Comparison of electromagnetic dispersion relations (EMDR) with the ATR dispersion relations are presented for three different interfaces: I) GaAs/GaP, II) CdF2/CaF2 and III) CaF2/GaP in two propagation windows, using the Otto and Kretschmann geometries for p-polarized light. We have studied the three cases using angle and frequency scans for each window and geometry. The results indicate that it is possible to excite and detect phonon-polariton modes at the dielectric-dielectric interface.
Mode-selective phonon excitation in gallium nitride using mid-infrared free-electron laser
Kagaya, Muneyuki; Yoshida, Kyohei; Zen, Heishun; Hachiya, Kan; Sagawa, Takashi; Ohgaki, Hideaki
2017-02-01
The single-phonon mode was selectively excited in a solid-state sample. A mid-infrared free-electron laser, which was tuned to the target phonon mode, was irradiated onto a crystal cooled to a cryogenic temperature, where modes other than the intended excitation were suppressed. An A 1(LO) vibrational mode excitation on GaN(0001) face was demonstrated. Anti-Stokes Raman scattering was used to observe the excited vibrational mode, and the appearance and disappearance of the scattering band at the target wavenumber were confirmed to correspond to on and off switching of the pump free-electron laser and were fixed to the sample vibrational mode. The sum-frequency generation signals of the pump and probe lasers overlapped the Raman signals and followed the wavenumber shift of the pump laser.
Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity
Safavi-Naeini, Amir H.; Hill, Jeff T.; Meenehan, Seán; Chan, Jasper; Gröblacher, Simon; Painter, Oskar
2014-04-01
We present the fabrication and characterization of an artificial crystal structure formed from a thin film of silicon that has a full phononic band gap for microwave X-band phonons and a two-dimensional pseudo-band gap for near-infrared photons. An engineered defect in the crystal structure is used to localize optical and mechanical resonances in the band gap of the planar crystal. Two-tone optical spectroscopy is used to characterize the cavity system, showing a large coupling (g0/2π≈220 kHz) between the fundamental optical cavity resonance at ωo/2π =195 THz and colocalized mechanical resonances at frequency ωm/2π ≈9.3 GHz.
Aspects of frozen-phonon calculations theory and application to high temperature superconductors
Kouba, R
1999-01-01
kept but the structural parameters (lattice constants, internal coordinates) are optimized prior to the frozen phonon calculation. This yields a theoretical framework in which an overall excellent agreement between theoretically and experimentally determined frequency values is obtainable. This thesis is concerned with two aspects of the frozen phonon technique - an ab-initio method to study the lattice dynamics of a crystal. In the first part of the work a complete formulation of the iterative linear-response (ILR) scheme for crystalline solids within the framework of the linearized augmented plane-wave (LAPW) method is presented. Analytical expressions are provided which are well suited for a direct implementation into existing all-electron LAPW band structure programs. The charge response of valence as well as core electrons is fully taken into account. Of particular importance is the development of efficient algorithms which reduce the complexity of specific aspects related to the calculation of the first...
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)
2011-09-21
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Reducing support loss in micromechanical ring resonators using phononic band-gap structures
Hsu, Feng-Chia; Hsu, Jin-Chen; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin
2011-09-01
In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.
Second Harmonic Generation and Confined Acoustic Phonons in HighlyExcited Semiconductor Nanocrystals
Son, Dong Hee; Wittenberg, Joshua S.; Banin, Uri; Alivisatos, A.Paul
2006-03-30
The photo-induced enhancement of second harmonic generation, and the effect of nanocrystal shape and pump intensity on confined acoustic phonons in semiconductor nanocrystals, has been investigated with time-resolved scattering and absorption measurements. The second harmonic signal showed a sublinear increase of the second order susceptibility with respect to the pump pulse energy, indicating a reduction of the effective one-electron second-order nonlinearity with increasing electron-hole density in the nanocrystals. The coherent acoustic phonons in spherical and rod-shaped semiconductor nanocrystals were detected in a time-resolved absorption measurement. Both nanocrystal morphologies exhibited oscillatory modulation of the absorption cross section, the frequency of which corresponded to their coherent radial breathing modes. The amplitude of the oscillation also increased with the level of photoexcitation, suggesting an increase in the amplitude of the lattice displacement as well.
Twisting phonons in complex crystals with quasi-one-dimensional substructures.
Chen, Xi; Weathers, Annie; Carrete, Jesús; Mukhopadhyay, Saikat; Delaire, Olivier; Stewart, Derek A; Mingo, Natalio; Girard, Steven N; Ma, Jie; Abernathy, Douglas L; Yan, Jiaqiang; Sheshka, Raman; Sellan, Daniel P; Meng, Fei; Jin, Song; Zhou, Jianshi; Shi, Li
2015-04-15
A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.
Suzuki, N
2002-01-01
First-principles calculations are performed for the lattice dynamics and electron-phonon interaction of the body-centred-cubic (bcc) phase of solid vanadium. A remarkable phonon anomaly is found, i.e. frequencies of the transverse mode around a quarter of the GAMMA-H line show softening with increasing pressure and become imaginary at pressures higher than approx 130 GPa. The superconducting transition temperatures T sub c of bcc vanadium estimated as a function of pressure increases at first linearly with pressure, and then the rate of increase of T sub c is abated around 80 GPa. This calculated pressure dependence of T sub c shows qualitatively the same behaviour as the experimental result.
Robertson, Scott; Parentani, Renaud
2016-01-01
We study the spectrum and entanglement of phonons produced by temporal changes in homogeneous one-dimensional atomic condensates. To characterize the experimentally accessible changes, we first consider the dynamics of the condensate when varying the radial trapping frequency, separately studying two regimes: an adiabatic one and an oscillatory one. Working in momentum space, we then show that in situ measurements of the density-density correlation function can be used to assess the nonseparability of the phonon state after such changes. We also study time-of-flight (TOF) measurements, paying particular attention to the role played by the adiabaticity of opening the trap on the nonseparability of the final state of atoms. In both cases, we emphasize that commuting measurements can suffice to assess nonseparability. Some recent observations are analyzed, and we make proposals for future experiments.
Phonon excitations and magnetoelectric coupling in multiferroic RMn2O5
Golrokh Bahoosh, Safa; Wesselinowa, Julia M.; Trimper, Steffen
2013-05-01
Multiferroic rare-earth manganites are theoretically studied by focusing on the coupling to the lattice degrees of freedom. We demonstrate analytically that the phonon excitations in the multiferroic phase are strongly affected by the magnetoelectric coupling, the spin-phonon interaction and the anharmonic phonon-phonon interaction. Based on a microscopic model, the temperature dependence of the phonon dispersion relation is analyzed. It offers an anomaly at both the ferroelectric and the magnetic transition indicating the mutual coupling between multiferroic orders and lattice distortions. Depending on the sign of the spin-phonon coupling the phonon modes become softer or harder in accordance with experimental observations. We show that the phonon spectrum can be also controlled by an external magnetic field. The phonon energy is enhanced by increasing that field. The applied Green's function technique allows the calculation of the macroscopic magnetization depending on both the phonon-phonon and the spin-phonon couplings.
Spectroscopy of nonequilibrium electrons and phonons
Shank, CV
1992-01-01
The physics of nonequilibrium electrons and phonons in semiconductors is an important branch of fundamental physics that has many practical applications, especially in the development of ultrafast and ultrasmall semiconductor devices. This volume is devoted to different trends in the field which are presently at the forefront of research. Special attention is paid to the ultrafast relaxation processes in bulk semiconductors and two-dimensional semiconductor structures, and to their study by different spectroscopic methods, both pulsed and steady-state. The evolution of energy and space distrib
Phonon scattering in graphene over substrate steps
Sevinçli, H., E-mail: haldunsevincli@iyte.edu.tr [Department of Materials Science and Engineering, Izmir Institute of Technology, Gülbahçe Kampüsü, 35430 Urla, Izmir (Turkey); Department of Micro- and Nano-technology (DTU Nanotech), Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Brandbyge, M., E-mail: mads.brandbyge@nanotech.dtu.dk [Department of Micro- and Nano-technology (DTU Nanotech), Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Center for Nanostructured Graphene(CNG), Department of Micro- and Nano-technology, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)
2014-10-13
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.
Band gaps in bubble phononic crystals
V. Leroy
2016-12-01
Full Text Available We investigate the interaction between Bragg and hybridization effects on the band gap properties of bubble phononic crystals. These latter consist of air cavities periodically arranged in an elastomer matrix and are fabricated using soft-lithography techniques. Their transmission properties are affected by Bragg effects due to the periodicity of the structure as well as hybridization between the propagating mode of the embedding medium and bubble resonance. The hybridization gap survives disorder while the Bragg gap requires a periodic distribution of bubbles. The distance between two bubble layers can be tuned to make the two gaps overlap or to create a transmission peak in the hybridization gap.
Savostianova, N A
2016-01-01
Graphene is a nonlinear material which can be used as a saturable absorber, frequency mixer and frequency multiplier. We investigate the third harmonic generation from graphene lying on different substrates, consisting of a dielectric (dispersionless or polar), metalized or non-metalized on the back side. We show that the third harmonic intensity emitted from graphene lying on a substrate, can be increased by orders of magnitude as compared to the isolated graphene, due the LO-phonon resonances in a polar dielectric or due to the interference effects in the substrates metalized on the back side. In some frequency intervals, the presence of the polar dielectric substrate compensates the strongly decreasing with $\\omega$ frequency dependence of the third-order conductivity of graphene making the response almost frequency independent.
冀文慧; 杨洪涛; 胡文弢; 呼和满都拉
2014-01-01
The influence of phonon dispersion on the average phonon number of weak-coupling magnetopolaron in a parabolic quantum dot is studied by using the linear-combination operator and unitary transformation meth-od.Taking account of the longitudinal optical ( LO) phonons dispersion in a parabolic approximation, the ground state energy as a function of the effective confinement length, the coefficient of the phonon dispersion, the cyclo-tron-resonance frequency and the electron-phonon coupling constant and the average number of virtual pho-nons around the electron as a function of the coefficient of the phonon dispersion and the electron-phonon cou-pling constant are obtained.Numerical calculations results show that the ground state energy decreases with in-creasing the coefficient of the phonon dispersion;the average number of virtual phonons around the electron in-creases with increasing the electron-phonon coupling constant and the coefficient of the phonon dispersion in the electron-LO-phonon weak-coupling case.%利用线性组合算符和幺正变换相结合的方法，研究了声子色散对抛物量子点中弱耦合磁极化子电子周围光学声子平均数的影响。计及纵光学（ LO）声子色散，在抛物近似下导出了基态能量与量子点有效受限长度、声子色散系数、回旋共振频率以及电子－声子耦合常数之间的关系，电子周围光学声子平均数与声子色散系数以及电子－声子耦合常数的关系。数值计算结果表明在弱耦合情况下抛物量子点中磁极化子的基态能量随声子色散系数的增大而减小；电子周围光学声子平均数随声子色散系数增大而增大，随电子－声子耦合常数的增大而增大。
Phonon excitation and instabilities in biased graphene nanoconstrictions
Gunst, Tue; Lu, Jing Tao; Hedegård, Per;
2013-01-01
We investigate how a high current density perturbs the phonons in a biased graphene nanoconstriction coupled to semi-infinite electrodes. The coupling to electrode phonons, electrode electrons under bias, Joule heating, and current-induced forces is evaluated using first principles density...
First-principles dynamics of electrons and phonons
Bernardi, Marco
2016-01-01
First-principles calculations combining density functional theory and many-body perturbation theory can provide microscopic insight into the dynamics of electrons and phonons in materials. We review this theoretical and computational framework, focusing on perturbative treatments of scattering, dynamics and transport of coupled electrons and phonons. We discuss application of these first-principles calculations to electronics, lighting, spectroscopy and renewable energy.
Low Temperature Phonon Properties of Orthorhombic REMnO3
Liu, Zhenxian; Gao, Peng; Chen, Haiyan; Tyson, Trevor A.
2010-03-01
We present the temperature dependent phonon spectra of orthorhombic-LuMnO3 and DyMnO3. The temperature dependent phonon spectra results are compared with the XAFS measurement results to probe for structural changes in the low temperature region which may coincide with ferroelectric behavior.
Remarkable reduction of thermal conductivity in phosphorene phononic crystal.
Xu, Wen; Zhang, Gang
2016-05-05
Phosphorene has received much attention due to its interesting physical and chemical properties, and its potential applications such as thermoelectricity. In thermoelectric applications, low thermal conductivity is essential for achieving a high figure of merit. In this work, we propose to reduce the thermal conductivity of phosphorene by adopting the phononic crystal structure, phosphorene nanomesh. With equilibrium molecular dynamics simulations, we find that the thermal conductivity is remarkably reduced in the phononic crystal. Our analysis shows that the reduction is due to the depressed phonon group velocities induced by Brillouin zone folding, and the reduced phonon lifetimes in the phononic crystal. Interestingly, it is found that the anisotropy ratio of thermal conductivity could be tuned by the 'non-square' pores in the phononic crystal, as the phonon group velocities in the direction with larger projection of pores is more severely suppressed, leading to greater reduction of thermal conductivity in this direction. Our work provides deep insight into thermal transport in phononic crystals and proposes a new strategy to reduce the thermal conductivity of monolayer phosphorene.
Modelling exciton–phonon interactions in optically driven quantum dots
Nazir, Ahsan; McCutcheon, Dara
2016-01-01
We provide a self-contained review of master equation approaches to modelling phonon effects in optically driven self-assembled quantum dots. Coupling of the (quasi) two-level excitonic system to phonons leads to dissipation and dephasing, the rates of which depend on the excitation conditions...
Multiple Quantum Wells for P T -Symmetric Phononic Crystals
Poshakinskiy, A. V.; Poddubny, A. N.; Fainstein, A.
2016-11-01
We demonstrate that the parity-time symmetry for sound is realized in laser-pumped multiple-quantum-well structures. Breaking of the parity-time symmetry for the phonons with wave vectors corresponding to the Bragg condition makes the structure a highly selective acoustic wave amplifier. Single-mode distributed feedback phonon lasing is predicted for structures with realistic parameters.
Strong electron-phonon coupling in Be{1-x}B{2}C{2}: ab initio studies
Moudden, A. H.
2008-07-01
Several structures for off-stoichiometric beryllium diboride dicarbide Be{1-x}B2C2 have been designed, and their properties studied from first-principles density functional methods. Among the most stable phases examined, the layered hexagonal structures are shown to exhibit various features in the electronic properties and in the lattice dynamics reminiscent of the superconducting magnesium diboride and alkaline earth-intercalated graphites. For substoichiometric composition x˜ 1/3, the system is found metallic with a moderately strong electron-phonon coupling through a predominant contribution arising from high frequency streching modes modulating the σ-bonding of the B C network, and a weaker contribution at medium frequency range of the phonon spectra, arising from the intercalent motion coupled to the π-bonding states. Further, anharmonicities emerging from the proximity of the Fermi level to the σ-band edge, contributes to reduce the phonon softening hence stabilizing the structure. All these effects appear to combine favourably to produce a high temperature phonon-superconductivity.
One-phonon excitations in hot nuclei
Vdovin, A.I.; Kosov, D.S. [Joint Institute for Nuclear Research, Moscow (Russian Federation)
1995-05-01
Equations of the random-phase approximation for hot nuclei are derived in the formalism of thermo-field dynamics. The model Hamiltonian used in the derivation involves separable effective interactions in the particle-particle and particl-hole channels. This initial Hamiltonian that forms the basis of the quasiparticle-phonon model at T = O is expressed in terms of thermal quasiparticles by means of two successive canonical transformations, i.e., by the conventional and thermal Bogolyubov transformations. The coefficients in the transformations are determined by minimizing the free-energy potential of a hot nucleus in the thermal vacuum state. The part that describes excitations of the hot nucleus in the random-phase approximation is then singled out in the resulting Hamiltonian at T {ne} O. The variational principle is used to derive equations for one-phonon excitations. If the Hamiltonian involves only residual particle-hole interaction, these equations coincide with those obtained earlier by means of Green`s functions and linearization of the equations of motion. The approach developed here can be used to extend the treatment beyond the random-phase approximation. 15 refs.
Phonon bottleneck identification in disordered nanoporous materials
Romano, Giuseppe; Grossman, Jeffrey C.
2017-09-01
Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.
Thermal rectification based on phonon hydrodynamics and thermomass theory
Dong Yuan
2016-06-01
Full Text Available The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection term and the viscous (Laplacian term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.
Heterobarrier for converting hot-phonon energy to electric potential
Shin, Seungha; Melnick, Corey; Kaviany, Massoud
2013-02-01
We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.
Suppression of phonon transport in molecular Christmas trees.
Lambert, Colin John; Famili, Marjan; Grace, Iain; Sadeghi, Hatef
2017-02-27
Minimising the phonon thermal conductance of self-assembled molecular films, whilst preserving their electrical properties, is highly desirable, both for thermal management at the nanoscale and for the design of high-efficiency thermoelectric materials. Here we highlight a new strategy for minimising the phonon thermal conductance of Christmas-tree-like molecules composed of a long trunk, along which phonons can propagate, attached to pendant molecular branches. We demonstrate that phonon transport along the trunk is suppressed by Fano resonances associated with internal vibrational modes of the branches and that thermal conductance is suppressed most-effectively in molecules with pendant branches of different lengths. As examples, we use density functional theory to demonstrate the reduction in phonon transport in tree-like molecules formed from alkane or acene trunks with various pendant branches.
Mean free path dependent phonon contributions to interfacial thermal conductance
Tao, Yi; Liu, Chenhan; Chen, Weiyu; Cai, Shuang; Chen, Chen; Wei, Zhiyong; Bi, Kedong; Yang, Juekuan; Chen, Yunfei
2017-06-01
Interfacial thermal conductance as an accumulation function of the phonon mean free path is rigorously derived from the thermal conductivity accumulation function. Based on our theoretical model, the interfacial thermal conductance accumulation function between Si/Ge is calculated. The results show that the range of mean free paths (MFPs) for phonons contributing to the interfacial thermal conductance is far narrower than that for phonons contributing to the thermal conductivity. The interfacial thermal conductance is mainly contributed by phonons with shorter MFPs, and the size effects can be observed only for an interface constructed by nanostructures with film thicknesses smaller than the MFPs of those phonons mainly contributing to the interfacial thermal conductance. This is why most experimental measurements cannot detect size effects on interfacial thermal conductance. A molecular dynamics simulation is employed to verify our proposed model.
Quantum noise theory for phonon transport through nanostructures
Wan, Li; Huang, Yunmi; Huang, Changcheng
2017-04-01
We have developed a quantum noise approach to study the phonon transport through nanostructures. The nanostructures acting as phonon channels are attached to two phonon reservoirs. And the temperature drop between the two reservoirs drives the phonon transport through the channels. We have derived a quantum Langevin equation(QLE) to describe the phonon transport with the quantum noise originated from the thermal fluctuation of the reservoirs. Within the Markov approximation, the QLE is used to get the thermal conductivity κ of the nanostructures and the finite size effect of the κ then is studied. In this study, the advantage of the quantum noise approach lays on the fact that no any local temperature needs to be defined for the nanostructures in its non-equilibrium state.
The role of anharmonic phonons in under-barrier spin relaxation of single molecule magnets
Lunghi, Alessandro; Totti, Federico; Sessoli, Roberta; Sanvito, Stefano
2017-01-01
The use of single molecule magnets in mainstream electronics requires their magnetic moment to be stable over long times. One can achieve such a goal by designing compounds with spin-reversal barriers exceeding room temperature, namely with large uniaxial anisotropies. Such strategy, however, has been defeated by several recent experiments demonstrating under-barrier relaxation at high temperature, a behaviour today unexplained. Here we propose spin–phonon coupling to be responsible for such anomaly. With a combination of electronic structure theory and master equations we show that, in the presence of phonon dissipation, the relevant energy scale for the spin relaxation is given by the lower-lying phonon modes interacting with the local spins. These open a channel for spin reversal at energies lower than that set by the magnetic anisotropy, producing fast under-barrier spin relaxation. Our findings rationalize a significant body of experimental work and suggest a possible strategy for engineering room temperature single molecule magnets. PMID:28262663
Dynamic homogenization of viscoelastic phononic metasolids
Pichard, Hélène; Torrent, Daniel
2016-12-01
The effects of dissipation in metamaterials is a sensitive issue and, although experiments show that they are more than relevant, their theoretical study and modeling has received less attention. In this work, we study the effects of viscosity on the dissipation of elastic metamaterials. It is found that these metasolids present effective constitutive parameters that are in general complex, in contrast with common elastic materials where the mass density is a real valued scalar quantity and dissipation enters only through the stiffness tensor. It is also found that, while in the low frequency limit the dissipation is higher as the viscoelastic coefficient is also higher, near a resonance of the metamaterial this condition does not hold, since the imaginary part of the constitutive parameters is higher as the viscosity is smaller. Finally, the effects of viscosity are studied on the non-local properties of the effective parameters, and it is found that this property is attenuated with dissipation although still has to be considered.
B K SAHOO; A PANSARI
2016-12-01
In this article we have investigated theoretically the effect of built-in-polarization field on various phonon scattering mechanisms in AlxGa1−xN alloy. The built-in-polarization field of AlxGa1−xN modifies the elastic constant,group velocity of phonons and Debye temperature. As a result, various phonon scattering mechanisms are changed. Important phonon scattering mechanisms such as normal scattering, Umklapp scattering, point defect scattering, dislocation scattering and phonon–electron scattering processes have been considered in the computation. The combined relaxation time due to above-mentioned scattering mechanisms has also been computed as afunction of phonon frequency for various Al compositions at room temperature. It is found that combined relaxation time is enhanced due to built-in-polarization effect and makes phonon mean free path longer, which is required forhigher optical, electrical and thermal transport processes. The result can be used to determine the effect of built-inpolarization field on optical and thermal properties of Al$_x$Ga$_{1−x}$N and will be useful, particularly, for improvementof thermoelectric performance of Al$_x$Ga$_{1−x}$N alloy through polarization engineering.
Cherevkov, S. A.; Fedorov, A. V.; Artemyev, M. V.; Prudnikau, A. V.; Baranov, A. V.
2013-07-01
The off-resonant and resonant Raman spectra of optical phonons in colloidal CdSe nanoplatelets (NPLs) with the thickness of 4, 5, and 6 CdSe monolayers are analyzed. These spectra are dominated by SO and LO phonon bands of CdSe whose frequencies are thickness independent in the off-resonant Raman but demonstrate evident thickness dependence similar to that observed for confined optical phonons in CdSe quantum dots in the resonant Raman. The results show that conventional optical phonons propagating along the NPL lateral planes contribute mainly to the off-resonant Raman while confined optical phonons propagating in the perpendicular direction dominate the Raman spectra excited in the resonance with confined exciton transitions of CdSe NPLs. An anisotropic electron-phonon interaction is proposed to be responsible for this effect in the CdSe NPLs. A formation of Cd-S monolayer on the surface of CdSe NPLs treated by thiol-containing ligands is also detected in Raman spectra.
Phonons and related spectra in V2O5 bulk and monolayer(001)
Bhandari, Churna; Lambrecht, Walter R. L.
2014-03-01
We study the phonons at the zone center for the layered material V2O5 using density functional perturbation theory. The mode frequencies and their calculated infra-red and Raman spectra are shown to be in good agreement with results from literature. We find better agreement with the experiment, using a pseudopotential that treats vanadium semicore states 3s and 3p as bands. We also study the changes between bulk and monolayer using the same method. We find significant changes in some phonon frequencies. In particular, we see the high frequency modes related to bond-stretching between vanadium and vanadyl-oxygen exhibit a blue shift while a few low-frequency modes show a red-shift. The interatomic force constants, separated in their long-range and short range components are used to analyze the origin of these shifts. We find that the blue shifts arise predominantly from a change in the long-range force constants which is due both to the change in dielectric screening and the change in the Born effective charges. This work was supported by the Air Force Office of Scientific Research under grant no. FA9550-12-1-0441.
Phonon modes of MgB2: super-lattice structures and spectral response.
Alarco, Jose A; Chou, Alison; Talbot, Peter C; Mackinnon, Ian D R
2014-11-28
Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogenous pressure, are compared using a combination of Raman and infra-red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2× super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.
Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene
Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting
2015-06-01
We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.
Surface optical phonons in GaAs nanowires grown by Ga-assisted chemical beam epitaxy
García Núñez, C., E-mail: carlos.garcia@uam.es; Braña, A. F.; Pau, J. L.; Ghita, D.; García, B. J. [Grupo de Electrónica y Semiconductores, Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Shen, G.; Wilbert, D. S.; Kim, S. M.; Kung, P. [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487 (United States)
2014-01-21
Surface optical (SO) phonons were studied by Raman spectroscopy in GaAs nanowires (NWs) grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates. NW diameters and lengths ranging between 40 and 65 nm and between 0.3 and 1.3 μm, respectively, were observed under different growth conditions. The analysis of the Raman peak shape associated to either longitudinal or surface optical modes gave important information about the crystal quality of grown NWs. Phonon confinement model was used to calculate the density of defects as a function of the NW diameter resulting in values between 0.02 and 0.03 defects/nm, indicating the high uniformity obtained on NWs cross section size during growth. SO mode shows frequency downshifting as NW diameter decreases, this shift being sensitive to NW sidewall oxidation. The wavevector necessary to activate SO phonon was used to estimate the NW facet roughness responsible for SO shift.
Ballistic phonon thermal transport across topologically structured nanojunctions on Gold wires
Belhadi, M.; Khater, A.
2017-04-01
We investigate the coherent phonon thermal transport at low temperatures in Gold nanowires, in order to study the effects of scattering on the lattice thermal conductivity. Three types of shaped joint nanostructures are employed in our calculation. We present a detailed study of the thermal conductance as a function of the temperature for different shaped joint. This is done by solving the phonon Boltzmann transport equation in the ballistic regime and calculating the transmission rates of the vibration modes through the consideration of the phonon group velocity modification in the system. The transmission properties are calculated by use of the matching method in the harmonic approximation with nearest and next nearest neighbor force constants. The results show that the transmission probabilities depend on the type of joint nanostructure. The pronounced fluctuations of the transmission spectra as a function of the frequency can be understood as Fano resonances. It is also found that the behavior of the thermal conductance versus temperature is qualitatively different for different nanostructures and depends sensitively on the width of the shaped joint.
Time-Resolved Phonons as a Microscopic Probe for Solid State Processes
Eckold, Götz
Phonons reflect most directly the chemical interactions in solids. Hence, time-resolved, lattice-dynamical experiments yield detailed information about the trajectories and mechanisms of solid state reactions on a microscopic scale. The experimental determination of phonons in a wide range of wave vectors and frequencies is a domain of inelastic neutron scattering and requires usually rather long counting times. Real-time investigations therefore need sophisticated techniques in order to access the time regime down to microseconds. In the present contribution, the state of the art of time-resolved inelastic neutrons scattering (TRINS) is reviewed and its capability for the exploration of microscopic mechanisms of chemical processes and phase transitions in solids is demonstrated using two different examples. Demixing processes in model systems are used to show that the evolution of lattice dynamics allows one to distinguish clearly between the mechanisms of nucleation and growth on the one hand, and spinodal decomposition, on the other hand. In the latter case, the interatomic interactions and, hence, the phonon spectra, vary on a time scale of seconds while the average structure of the product phases as reflected by Bragg diffraction needs much longer times to evolve.
A multi-phonon light-scattering and resolution of acousto-optic devices
Shcherbakov, Alexandre S.; Hanessian de la Garza, Ana V.; Chavushyan, Vahram; Nemov, Sergey A.
2012-02-01
Rather specific types of light diffraction in the condensed matters are analyzed theoretically, so that in fact a set of processes conditioned by a multi-phonon light scattering in the Bragg regime is under investigation. Besides of their scientific novelty, studying these phenomena promises real progress in applications, because practical exploiting of the m - phonon processes in frontier schemes for the acousto-optical spectrum analysis of both optical and radio-signals leads potentially to improving the frequency and/or spectral resolution of the corresponding analyzers by almost m - times. With this in mind, the wave-based description, the corpuscular approach as well as the quantum interpretation of acousto-optical interaction are used here to characterize various aspects related to improving the expected resolution of acousto-optical devices exploiting a multi-phonon light scattering. In so doing, the quantity of orders under consideration is limited by number N <= 4 , which is still hopefully possible to be achieved experimentally in Bragg regime. Additionally, a brief description of a multi-order light scattering by usual thin diffraction grating is presented in the appendix for the convenience of its physical comparison with the results obtained for acousto-optics.
Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators.
Gokhale, Vikrant J; Rais-Zadeh, Mina
2014-07-08
This work presents the first comprehensive investigation of phonon-electron interactions in bulk acoustic standing wave (BAW) resonators made from piezoelectric semiconductor (PS) materials. We show that these interactions constitute a significant energy loss mechanism and can set practical loss limits lower than anharmonic phonon scattering limits or thermoelastic damping limits. Secondly, we theoretically and experimentally demonstrate that phonon-electron interactions, under appropriate conditions, can result in a significant acoustic gain manifested as an improved quality factor (Q). Measurements on GaN resonators are consistent with the presented interaction model and demonstrate up to 35% dynamic improvement in Q. The strong dependencies of electron-mediated acoustic loss/gain on resonance frequency and material properties are investigated. Piezoelectric semiconductors are an extremely important class of electromechanical materials, and this work provides crucial insights for material choice, material properties, and device design to achieve low-loss PS-BAW resonators along with the unprecedented ability to dynamically tune resonator Q.
Dupont, S.; Gazalet, J.; Kastelik, J. C.
2014-03-01
Phononic crystal is a structured media with periodic modulation of its physical properties that influences the propagation of elastic waves and leads to a peculiar behaviour, for instance the phononic band gap effect by which elastic waves cannot propagate in certain frequency ranges. The formulation of the problem leads to a second order partial differential equation with periodic coefficients; different methods exist to determine the structure of the eigenmodes propagating in the material, both in the real or Fourier domain. Brillouin explains the periodicity of the band structure as a direct result of the discretization of the crystal in the real domain. Extending the Brillouin vision, we introduce digital signal processing tools developed in the frame of distribution functions theory. These tools associate physical meaning to mathematical expressions and reveal the correspondence between real and Fourier domains whatever is the physical domain under consideration. We present an illustrative practical example concerning two dimensions phononic crystals and highlight the appreciable shortcuts brought by the method and the benefits for physical interpretation.
Magnetic Oscillation of Optical Phonon in ABA- and ABC-Stacked Trilayer Graphene
Cong, Chunxiao; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting
2015-01-01
We present a comparative measurement of the G-peak oscillations of phonon frequency, Raman intensity and linewidth in the Magneto-Raman scattering of optical E2g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behaviour between the electronic excitations and the E2g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the...
Watanabe, Yohei; Hino, Ken-Ichi; Hase, Muneaki; Maeshima, Nobuya
The coherent phonon (CP) generation is one of the representative phenomena induced by ultrashort pulsed laser. In particular, in the initial stage of the CP generation in lightly n-doped Si, the vestige of Fano resonance (FR) manifested in a flash was observed in time-resolved spectroscopy experiments, in which it was speculated that this phenomenon results from the birth of transient polaronic quasiparticles composed of electrons and phonons strongly interacting each other. This study is aimed at constructing a fully-quantum-mechanical model for the CP generation and tracking the origin of the transient FR. We calculate two physical quantities in both of polar and non-polar semiconductors such as GaAs and undoped Si. One is a retarded longitudinal susceptibility which allows one to calculate a transient induced photoemission spectrum. The other is the Fourier-transform of LO-phonon displacement into frequency domain. We have succeeded in showing that the transient FR is exclusively caused in Si in harmony with the experiments, though, not observed in GaAs.
Enhanced spin-phonon-electronic coupling in a 5d oxide
Calder, S.; Lee, J. H.; Stone, M. B.; Lumsden, M. D.; Lang, J. C.; Feygenson, M.; Zhao, Z.; Yan, J.-Q.; Shi, Y. G.; Sun, Y. S.; Tsujimoto, Y.; Yamaura, K.; Christianson, A. D.
2015-11-01
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm-1, the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.
Enhanced spin-phonon-electronic coupling in a 5d oxide.
Calder, S; Lee, J H; Stone, M B; Lumsden, M D; Lang, J C; Feygenson, M; Zhao, Z; Yan, J-Q; Shi, Y G; Sun, Y S; Tsujimoto, Y; Yamaura, K; Christianson, A D
2015-11-26
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal-insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm(-1), the largest measured in any material. The anomalous modes are shown to involve solely Os-O interactions and magnetism is revealed as the driving microscopic mechanism for the phonon renormalization. The magnitude of the coupling in NaOsO3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.
Nardi, Damiano; Travagliati, Marco; Siemens, Mark E; Li, Qing; Murnane, Margaret M; Kapteyn, Henry C; Ferrini, Gabriele; Parmigiani, Fulvio; Banfi, Francesco
2011-10-12
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system's initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system's excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths.
Suppression of nonlinear phonon relaxation in Yb:YAG thin disk via zero phonon line pumping.
Smrž, Martin; Miura, Taisuke; Chyla, Michal; Nagisetty, Siva; Novák, Ondřej; Endo, Akira; Mocek, Tomáš
2014-08-15
A quantitative comparison of conventional absorption line (940 nm) pumping and zero phonon line (ZPL) (969 nm) pumping of a Yb:YAG thin disk laser is reported. Characteristics of an output beam profile, surface temperature, and deformation of a thin disk under the different pump wavelengths are evaluated. We found that a nonlinear phonon relaxation (NPR) of the excited state in Yb:YAG, which induces nonlinear temperature rise and large aspheric deformation, did not appear in the case of a ZPL pumped Yb:YAG thin disk. This means that the advantage of ZPL pumping is not only the reduction of quantum defect but also the suppression of NPR. The latter effect is more important for high power lasers.
Szczesniak, R. [Institute of Physics, Czestochowa University of Technology (Poland); Institute of Physics, Jan Dlugosz University in Czestochowa (Poland); Durajski, A.P.; Duda, A.M. [Institute of Physics, Czestochowa University of Technology (Poland)
2017-04-15
The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron-phonon and the electron-electron-phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter (φ/Z) has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ - the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Phonons of graphene on metallic and semiconductor surfaces, an ab-inito approach
Molina-Sanchez, Alejandro; Wirtz, Ludger
2014-01-01
The interaction of graphene with substrates can alter its electronic and vibrational properties and is relevant for the practical use of graphene. In this work, we describe the graphene-substrate interaction through the theoretical study of the vibrational properties. We focus on three paradigmatic cases where the interaction strength changes gradually: graphene@BN, graphene@Ir(111), and graphene@SiC (i.e., the buffer layer). We use ab-initio methods to obtain the phonon modes, the density of...