WorldWideScience

Sample records for relevant molecular targets

  1. Sphingosine kinase 1 is a relevant molecular target in gastric cancer

    DEFF Research Database (Denmark)

    Fuereder, Thorsten; Hoeflmayer, Doris; Jaeger-Lansky, Agnes

    2011-01-01

    Sphingosine kinase 1 (Sphk1), a lipid kinase implicated in cell transformation and tumor growth, is overexpressed in gastric cancer and is linked with a poor prognosis. The biological relevance of Sphk1 expression in gastric cancer is unclear. Here, we studied the functional significance of Sphk1...... as a novel molecular target for gastric cancer by using an antisense oligonucleotide approach in vitro and in vivo. Gastric cancer cell lines (MKN28 and N87) were treated with Sphk1 with locked nucleic acid-antisense oligonucleotides (LNA-ASO). Sphk1 target regulation, cell growth, and apoptosis were...... assessed for single-agent Sphk1 LNA-ASO and for combinations with doxorubicin. Athymic nude mice xenografted with gastric cancer cells were treated with Sphk1 LNA and assessed for tumor growth and Sphk1 target regulation, in vivo. In vitro, nanomolar concentrations of Sphk1 LNA-ASO induced an approximately...

  2. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Saw, M.M.

    2007-01-01

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  3. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  4. Targeted molecular imaging

    International Nuclear Information System (INIS)

    Kim, E. Edmund

    2003-01-01

    Molecular imaging aims to visualize the cellular and molecular processes occurring in living tissues, and for the imaging of specific molecules in vivo, the development of reporter probes and dedicated imaging equipment is most important. Reporter genes can be used to monitor the delivery and magnitude of therapeutic gene transfer, and the time variation involved. Imaging technologies such as micro-PET, SPECT, MRI and CT, as well as optical imaging systems, are able to non-invasively detect, measure, and report the simultaneous expression of multiple meaningful genes. It is believed that recent advances in reporter probes, imaging technologies and gene transfer strategies will enhance the effectiveness of gene therapy trials

  5. Targeting molecular networks for drug research

    Directory of Open Access Journals (Sweden)

    José Pedro Pinto

    2014-06-01

    Full Text Available The study of molecular networks has recently moved into the limelight of biomedical research. While it has certainly provided us with plenty of new insights into cellular mechanisms, the challenge now is how to modify or even restructure these networks. This is especially true for human diseases, which can be regarded as manifestations of distorted states of molecular networks. Of the possible interventions for altering networks, the use of drugs is presently the most feasible. In this mini-review, we present and discuss some exemplary approaches of how analysis of molecular interaction networks can contribute to pharmacology (e.g., by identifying new drug targets or prediction of drug side effects, as well as listing pointers to relevant resources and software to guide future research. We also outline recent progress in the use of drugs for in vitro reprogramming of cells, which constitutes an example par excellence for altering molecular interaction networks with drugs.

  6. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role...

  7. HPV: Molecular pathways and targets.

    Science.gov (United States)

    Gupta, Shilpi; Kumar, Prabhat; Das, Bhudev C

    2018-04-05

    and maintenance of the malignant phenotype. Other efforts have been focused on antitumor immunotherapy strategies. It is known that during the development of cervical cancer, a cascade of abnormal events is induced, including disruption of cell cycle control, perturbation of antitumor immune response, alteration of gene expression, deregulation of microRNA and cancer stem cell and stemness related markers expression could serve as novel molecular targets for reliable diagnosis and treatment of HPV-positive cancers. However, the search for new proposals for disease control and prevention has brought new findings and approaches in the context of molecular biology indicating innovations and perspectives in the early detection and prevention of the disease. Thus, in this article, we discuss molecular signaling pathways activated by HPV and potential targets or biomarkers for early detection or prevention and the treatment of HPV-associated cancers. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. [Relevance of big data for molecular diagnostics].

    Science.gov (United States)

    Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T

    2018-04-01

    Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.

  9. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    in a developmental pathway. Being a central figure in the development of cybernetic theory he collaborated with a range of researchers from the life sciences who were innovating their own disciplines by introducing cybernetic concepts in their particular fields and disciplines. In the light of this, it should...... not come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due...

  10. Electron and molecular ion collisions relevant to divertor plasma

    International Nuclear Information System (INIS)

    Takagi, H.

    2005-01-01

    We introduce the concept of the multi-channel quantum defect theory (MQDT) and show the outline of the MQDT newly extended to include the dissociative states. We investigate some molecular processes relevant to the divertor plasma by using the MQDT: the dissociative recombination, dissociative excitation, and rotation-vibrational transition in the hydrogen molecular ion and electron collisions. (author)

  11. Visualizing Energy on Target: Molecular Dynamics Simulations

    Science.gov (United States)

    2017-12-01

    ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target

  12. Molecular Composition Analysis of Distant Targets

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a system capable of probing the molecular composition of cold solar system targets such as asteroids, comets, planets and moons from a distant vantage....

  13. Ion channels: molecular targets of neuroactive insecticides.

    Science.gov (United States)

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B

    2005-11-01

    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  14. Shock-ignition relevant experiments with planar targets on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M.; Hu, S. X.; Anderson, K. S.; Boehly, T. R.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Yaakobi, B. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Betti, R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Casner, A. [CEA, DAM, DIF, Arpajon (France); Fratanduono, D. E. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Ribeyre, X.; Schurtz, G. [Centre Lasers Intenses et Applications, CELIA, Université Bordeaux 1-CEA-CNRS, Talence (France)

    2014-02-15

    We report on laser-driven, strong-shock generation and hot-electron production in planar targets in the presence of a pre-plasma at shock-ignition (SI) relevant laser and pre-plasma conditions. 2-D simulations reproduce the shock dynamics well, indicating ablator shocks of up to 75 Mbar have been generated. We observe hot-electron temperatures of ∼70 keV at intensities of 1.4 × 10{sup 15} W/cm{sup 2} with multiple overlapping beams driving the two-plasmon decay instability. When extrapolated to SI-relevant intensities of ∼10{sup 16} W/cm{sup 2}, the hot electron temperature will likely exceed 100 keV, suggesting that tightly focused beams without overlap are better suited for launching the ignitor shock.

  15. Molecular nuclear imaging for targeting and trafficking

    International Nuclear Information System (INIS)

    Bom, Hee Seung; Min, Jung Jun; Jeong, Hwan-Jeong

    2006-01-01

    Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and 99m Tc as a radionuclide. We developed 99m Tc-galactosylated chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed 99m Tc-HYNIC-chitosan-transferrin to target inflammatory cells, which was more effective than 67 Ga-citrate for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of 99m Tc-HMPAO-labeled liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that 99m Tc-labeled biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques

  16. Molecular Therapeutic Targets for Glioma Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shingo Takano

    2010-01-01

    Full Text Available Due to the prominent angiogenesis that occurs in malignant glioma, antiangiogenic therapy has been attempted. There have been several molecular targets that are specific to malignant gliomas, as well as more broadly in systemic cancers. In this review, I will focus on some topics related to molecular therapeutic targets for glioma angiogenesis. First, important angiogenic factors that could be considered molecular targets are VEGF, VEGF-induced proteins on endothelial cells, tissue factor, osteopontin, v3 integrin, and thymidine phosphorylase as well as endogenous inhibitors, soluble Flt1, and thrombospondin 1. Second, hypoxic areas are also decreased by metronomic CPT11 treatment as well as temozolomide. Third, glioma-derived endothelial cells that are genetically and functionally distinct from normal endothelial cells should be targeted, for example, with SDF-1 and CXCR7 chemokine. Fourth, endothelial progenitor cells (EPCs likely contribute towards glioma angiogenesis in the brain and could be useful as a drug delivery tool. Finally, blockade of delta-like 4 (Dll4 results in a nonfunctioning vasculature and could be another important target distinct from VEGF.

  17. Molecularly targeted drugs for metastatic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Cheng YD

    2013-11-01

    Full Text Available Ying-dong Cheng, Hua Yang, Guo-qing Chen, Zhi-cao Zhang Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China Abstract: The survival rate of patients with metastatic colorectal cancer (mCRC has significantly improved with applications of molecularly targeted drugs, such as bevacizumab, and led to a substantial improvement in the overall survival rate. These drugs are capable of specifically targeting the inherent abnormal pathways in cancer cells, which are potentially less toxic than traditional nonselective chemotherapeutics. In this review, the recent clinical information about molecularly targeted therapy for mCRC is summarized, with specific focus on several of the US Food and Drug Administration-approved molecularly targeted drugs for the treatment of mCRC in the clinic. Progression-free and overall survival in patients with mCRC was improved greatly by the addition of bevacizumab and/or cetuximab to standard chemotherapy, in either first- or second-line treatment. Aflibercept has been used in combination with folinic acid (leucovorin–fluorouracil–irinotecan (FOLFIRI chemotherapy in mCRC patients and among patients with mCRC with wild-type KRAS, the outcomes were significantly improved by panitumumab in combination with folinic acid (leucovorin–fluorouracil–oxaliplatin (FOLFOX or FOLFIRI. Because of the new preliminary studies, it has been recommended that regorafenib be used with FOLFOX or FOLFIRI as first- or second-line treatment of mCRC chemotherapy. In summary, an era of new opportunities has been opened for treatment of mCRC and/or other malignancies, resulting from the discovery of new selective targeting drugs. Keywords: metastatic colorectal cancer (mCRC, antiangiogenic drug, bevacizumab, aflibercept, regorafenib, cetuximab, panitumumab, clinical trial, molecularly targeted therapy

  18. Molecular imaging with targeted contrast ultrasound.

    Science.gov (United States)

    Piedra, Mark; Allroggen, Achim; Lindner, Jonathan R

    2009-01-01

    Molecular imaging with contrast-enhanced ultrasound uses targeted microbubbles that are retained in diseased tissue. The resonant properties of these microbubbles produce acoustic signals in an ultrasound field. The microbubbles are targeted to diseased tissue by using certain chemical constituents in the microbubble shell or by attaching disease-specific ligands such as antibodies to the microbubble. In this review, we discuss the applications of this technique to pathological states in the cerebrovascular system including atherosclerosis, tumor angiogenesis, ischemia, intravascular thrombus, and inflammation. Copyright 2009 S. Karger AG, Basel.

  19. High efficiency diffusion molecular retention tumor targeting.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Here we introduce diffusion molecular retention (DMR tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding and RAD (control probes were synthesized bearing DOTA (for (111 In(3+, a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or i.v. methods was assessed by surface fluorescence, biodistribution of [(111In] RGD and [(111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [(111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by i.v.. The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide, which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters for radiotherapy, or the delivery of photosensitizers to tumors accessible to light.

  20. Molecular Composition Analysis of Distant Targets

    Science.gov (United States)

    Hughes, Gary B.; Lubin, Philip

    2017-01-01

    This document is the Final Report for NASA Innovative Advanced Concepts (NIAC) Phase I Grant 15-NIAC16A-0145, titled Molecular Composition Analysis of Distant Targets. The research was focused on developing a system concept for probing the molecular composition of cold solar system targets, such as Asteroids, Comets, Planets and Moons from a distant vantage, for example from a spacecraft that is orbiting the target (Hughes et al., 2015). The orbiting spacecraft is equipped with a high-power laser, which is run by electricity from photovoltaic panels. The laser is directed at a spot on the target. Materials on the surface of the target are heated by the laser beam, and begin to melt and then evaporate, forming a plume of asteroid molecules in front of the heated spot. The heated spot glows, producing blackbody illumination that is visible from the spacecraft, via a path through the evaporated plume. As the blackbody radiation from the heated spot passes through the plume of evaporated material, molecules in the plume absorb radiation in a manner that is specific to the rotational and vibrational characteristics of the specific molecules. A spectrometer aboard the spacecraft is used to observe absorption lines in the blackbody signal. The pattern of absorption can be used to estimate the molecular composition of materials in the plume, which originated on the target. Focusing on a single spot produces a borehole, and shallow subsurface profiling of the targets bulk composition is possible. At the beginning of the Phase I research, the estimated Technology Readiness Level (TRL) of the system was TRL-1. During the Phase I research, an end-to-end theoretical model of the sensor system was developed from first principles. The model includes laser energy and optical propagation, target heating, melting and evaporation of target material, plume density, thermal radiation from the heated spot, molecular cross section of likely asteroid materials, and estimation of the

  1. In Vivo Imaging of Molecularly Targeted Phage

    Directory of Open Access Journals (Sweden)

    Kimberly A. Kelly

    2006-12-01

    Full Text Available Rapid identification of in vivo affinity ligands would have far-reaching applications for imaging specific molecular targets, in vivo systems imaging, and medical use. We have developed a high-throughput method for identifying and optimizing ligands to map and image biologic targets of interest in vivo. We directly labeled viable phage clones with far-red fluorochromes and comparatively imaged them in vivo by multichannel fluorescence ratio imaging. Using Secreted Protein Acidic and Rich in Cysteine (osteonectin and vascular cell adhesion molecule-1 as model targets, we show that: 1 fluorescently labeled phage retains target specificity on labeling; 2 in vivo distribution can be quantitated (detection thresholds of ~ 300 phage/mm3 tissue throughout the entire depth of the tumor using fluorescent tomographic imaging; and 3 fluorescently labeled phage itself can serve as a replenishable molecular imaging agent. The described method should find widespread application in the rapid in vivo discovery and validation of affinity ligands and, importantly, in the use of fluorochrome-labeled phage clones as in vivo imaging agents.

  2. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  3. Molecular targeted therapy for advanced gastric cancer.

    Science.gov (United States)

    Kim, Jong Gwang

    2013-03-01

    Although medical treatment has been shown to improve quality of life and prolong survival, no significant progress has been made in the treatment of advanced gastric cancer (AGC) within the last two decades. Thus, the optimum standard first-line chemotherapy regimen for AGC remains debatable, and most responses to chemotherapy are partial and of short duration; the median survival is approximately 7 to 11 months, and survival at 2 years is exceptionally > 10%. Recently, remarkable progress in tumor biology has led to the development of new agents that target critical aspects of oncogenic pathways. For AGC, many molecular targeting agents have been evaluated in international randomized studies, and trastuzumab, an anti-HER-2 monoclonal antibody, has shown antitumor activity against HER-2-positive AGC. However, this benefit is limited to only ~20% of patients with AGC (patients with HER-2-positive AGC). Therefore, there remains a critical need for both the development of more effective agents and the identification of molecular predictive and prognostic markers to select those patients who will benefit most from specific chemotherapeutic regimens and targeted therapies.

  4. Radionuclide molecular target therapy for lung cancer

    International Nuclear Information System (INIS)

    Zhang Fuhai; Meng Zhaowei; Tan Jian

    2012-01-01

    Lung cancer harms people's health or even lives severely. Currently, the morbidity and mortality of lung cancer are ascending all over the world. Accounting for 38.08% of malignant tumor caused death in male and 16% in female in cities,ranking top in both sex. Especially, the therapy of non-small cell lung cancer has not been obviously improved for many years. Recently, sodium/iodide transporter gene transfection and the therapy of molecular target drugs mediated radionuclide are being taken into account and become the new research directions in treatment of advanced lung cancer patients with the development of technology and theory for medical molecular biology and the new knowledge of lung cancer's pathogenesis. (authors)

  5. Targeted gene insertion for molecular medicine.

    Science.gov (United States)

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  6. Molecular subtypes of glioblastoma are relevant to lower grade glioma.

    Directory of Open Access Journals (Sweden)

    Xiaowei Guan

    Full Text Available Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas.Gene expression array, single nucleotide polymorphism (SNP array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson. Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP was assigned using prediction models by Fine et al.Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs.GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression.

  7. Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Shukui Zhao

    2004-07-01

    Full Text Available Ultrasonic molecular imaging employs contrast agents, such as microbubbles, nanoparticles, or liposomes, coated with ligands specific for receptors expressed on cells at sites of angiogenesis, inflammation, or thrombus. Concentration of these highly echogenic contrast agents at a target site enhances the ultrasound signal received from that site, promoting ultrasonic detection and analysis of disease states. In this article, we show that acoustic radiation force can be used to displace targeted contrast agents to a vessel wall, greatly increasing the number of agents binding to available surface receptors. We provide a theoretical evaluation of the magnitude of acoustic radiation force and show that it is possible to displace micron-sized agents physiologically relevant distances. Following this, we show in a series of experiments that acoustic radiation force can enhance the binding of targeted agents: The number of biotinylated microbubbles adherent to a synthetic vessel coated with avidin increases as much as 20-fold when acoustic radiation force is applied; the adhesion of contrast agents targeted to αvβ3 expressed on human umbilical vein endothelial cells increases 27-fold within a mimetic vessel when radiation force is applied; and finally, the image signal-to-noise ratio in a phantom vessel increases up to 25 dB using a combination of radiation force and a targeted contrast agent, over use of a targeted contrast agent alone.

  8. Leishmania infections: Molecular targets and diagnosis.

    Science.gov (United States)

    Akhoundi, Mohammad; Downing, Tim; Votýpka, Jan; Kuhls, Katrin; Lukeš, Julius; Cannet, Arnaud; Ravel, Christophe; Marty, Pierre; Delaunay, Pascal; Kasbari, Mohamed; Granouillac, Bruno; Gradoni, Luigi; Sereno, Denis

    2017-10-01

    Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Molecular targeting of angiogenesis for imaging and therapy

    International Nuclear Information System (INIS)

    Brack, Simon S.; Neri, Dario; Dinkelborg, Ludger M.

    2004-01-01

    Angiogenesis, i.e. the proliferation of new blood vessels from pre-existing ones, is an underlying process in many human diseases, including cancer, blinding ocular disorders and rheumatoid arthritis. The ability to selectively target and interfere with neovascularisation would potentially be useful in the diagnosis and treatment of angiogenesis-related diseases. This review presents the authors' views on some of the most relevant markers of angiogenesis described to date, as well as on specific ligands which have been characterised in pre-clinical animal models and/or clinical studies. Furthermore, we present an overview on technologies which are likely to have an impact on the way molecular targeting of angiogenesis is performed in the future. (orig.)

  10. Apoptosis and Molecular Targeting Therapy in Cancer

    Science.gov (United States)

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  11. STAT3 Target Genes Relevant to Human Cancers

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers

  12. Leishmania infections: Molecular targets and diagnosis

    Czech Academy of Sciences Publication Activity Database

    Akhoundi, M.; Downing, T.; Votýpka, Jan; Kuhls, K.; Lukeš, Julius; Cannet, A.; Ravel, C.; Marty, P.; Delaunay, P.; Kasbari, M.; Granouillac, B.; Gradoni, L.; Sereno, D.

    2017-01-01

    Roč. 57, OCT (2017), s. 1-29 ISSN 0098-2997 Institutional support: RVO:60077344 Keywords : molecular markers * diagnostic methods * hybrid strains * sympatric species * genome-wide map Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.686, year: 2016

  13. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    Full Text Available Abstract Background Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. Results In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking

  14. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations. In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding

  15. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    Directory of Open Access Journals (Sweden)

    Oxana Dobrovinskaya

    2016-08-01

    Full Text Available Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh, which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL were found to produce a considerably higher amount of ACh than healthy T lumphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  16. Clinical Relevance of Prognostic and Predictive Molecular Markers in Gliomas.

    Science.gov (United States)

    Siegal, Tali

    2016-01-01

    Sorting and grading of glial tumors by the WHO classification provide clinicians with guidance as to the predicted course of the disease and choice of treatment. Nonetheless, histologically identical tumors may have very different outcome and response to treatment. Molecular markers that carry both diagnostic and prognostic information add useful tools to traditional classification by redefining tumor subtypes within each WHO category. Therefore, molecular markers have become an integral part of tumor assessment in modern neuro-oncology and biomarker status now guides clinical decisions in some subtypes of gliomas. The routine assessment of IDH status improves histological diagnostic accuracy by differentiating diffuse glioma from reactive gliosis. It carries a favorable prognostic implication for all glial tumors and it is predictive for chemotherapeutic response in anaplastic oligodendrogliomas with codeletion of 1p/19q chromosomes. Glial tumors that contain chromosomal codeletion of 1p/19q are defined as tumors of oligodendroglial lineage and have favorable prognosis. MGMT promoter methylation is a favorable prognostic marker in astrocytic high-grade gliomas and it is predictive for chemotherapeutic response in anaplastic gliomas with wild-type IDH1/2 and in glioblastoma of the elderly. The clinical implication of other molecular markers of gliomas like mutations of EGFR and ATRX genes and BRAF fusion or point mutation is highlighted. The potential of molecular biomarker-based classification to guide future therapeutic approach is discussed and accentuated.

  17. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    Science.gov (United States)

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  18. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Science.gov (United States)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  19. Molecular targets in serous gynecologic cancers

    NARCIS (Netherlands)

    Groeneweg, J.W.

    2015-01-01

    In this thesis we describe a series of studies assessing the effectiveness of targeted therapeutics that inhibit Notch signaling or the HER2 receptor in serous gynecologic cancers. In the first part of the thesis, we have confirmed previous data by showing expression of Notch1 and Notch3 in ovarian

  20. Visualizing Energy on Target: Molecular Dynamics Simulations

    Science.gov (United States)

    2017-12-01

    to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or...all atoms to the interior of the cell. After equilibration, N2 was driven into the target at multiple impact velocities, vimp. Momentum of N2 toward

  1. Vitamin E-drug interactions: molecular basis and clinical relevance.

    Science.gov (United States)

    Podszun, Maren; Frank, Jan

    2014-12-01

    Vitamin E (α-, β-, γ- and δ-tocopherol and -tocotrienol) is an essential factor in the human diet and regularly taken as a dietary supplement by many people, who act under the assumption that it may be good for their health and can do no harm. With the publication of meta-analyses reporting increased mortality in persons taking vitamin E supplements, the safety of the micronutrient was questioned and interactions with prescription drugs were suggested as one potentially underlying mechanism. Here, we review the evidence in the scientific literature for adverse vitamin E-drug interactions and discuss the potential of each of the eight vitamin E congeners to alter the activity of drugs. In summary, there is no evidence from animal models or randomised controlled human trials to suggest that the intake of tocopherols and tocotrienols at nutritionally relevant doses may cause adverse nutrient-drug interactions. Consumption of high-dose vitamin E supplements ( ≥  300 mg/d), however, may lead to interactions with the drugs aspirin, warfarin, tamoxifen and cyclosporine A that may alter their activities. For the majority of drugs, however, interactions with vitamin E, even at high doses, have not been observed and are thus unlikely.

  2. Present status on atomic and molecular data relevant to fusion plasma diagnostics and modeling

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-01-01

    This issue is the collection of the paper presented status on atomic and molecular data relevant to fusion plasma diagnostics and modeling. The 10 of the presented papers are indexed individually. (J.P.N.)

  3. Relevance of a molecular tumour board (MTB) for patients' enrolment in clinical trials: experience of the Institut Curie.

    Science.gov (United States)

    Basse, Clémence; Morel, Claire; Alt, Marie; Sablin, Marie Paule; Franck, Coralie; Pierron, Gaëlle; Callens, Céline; Melaabi, Samia; Masliah-Planchon, Julien; Bataillon, Guillaume; Gardrat, Sophie; Lavigne, Marion; Bonsang, Benjamin; Vaflard, Pauline; Pons Tostivint, Elvire; Dubot, Coraline; Loirat, Delphine; Marous, Miguelle; Geiss, Romain; Clément, Nathalie; Schleiermacher, Gudrun; Kamoun, Choumouss; Girard, Elodie; Ardin, Maude; Benoist, Camille; Bernard, Virginie; Mariani, Odette; Rouzier, Roman; Tresca, Patricia; Servois, Vincent; Vincent-Salomon, Anne; Bieche, Ivan; Le Tourneau, Christophe; Kamal, Maud

    2018-01-01

    High throughput molecular screening techniques allow the identification of multiple molecular alterations, some of which are actionable and can be targeted by molecularly targeted agents (MTA). We aimed at evaluating the relevance of using this approach in the frame of Institut Curie Molecular Tumor Board (MTB) to guide patients with cancer to clinical trials with MTAs. We included all patients presented at Institut Curie MTB from 4 October 2014 to 31 October 2017. The following information was extracted from the chart: decision to perform tumour profiling, types of molecular analyses, samples used, molecular alterations identified and those which are actionable, and inclusion in a clinical trial with matched MTA. 736 patients were presented at the MTB. Molecular analyses were performed in 442 patients (60%). Techniques used included next-generation sequencing, comparative genomic hybridisation array and/or other techniques including immunohistochemistry in 78%, 51% and 58% of patients, respectively. Analyses were performed on a fresh frozen biopsy in 91 patients (21%), on archival tissue (fixed or frozen) in 326 patients (74%) and on both archival and fresh frozen biopsy in 25 patients (6%). At least one molecular alteration was identified in 280 analysed patients (63%). An actionable molecular alteration was identified in 207 analysed patients (47%). Forty-five analysed patients (10%) were enrolled in a clinical trial with matched MTA and 29 additional patients were oriented and included in a clinical trial based on a molecular alteration identified prior to the MTB analysis. Median time between date of specimen reception and molecular results was 28 days (range: 5-168). The implementation of an MTB at Institut Curie enabled the inclusion of 10% of patients into a clinical trial with matched therapy.

  4. Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers

    Directory of Open Access Journals (Sweden)

    Xinxin Peng

    2018-04-01

    Full Text Available Summary: Metabolic reprogramming provides critical information for clinical oncology. Using molecular data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 cancer types based on mRNA expression patterns of seven major metabolic processes and assessed their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent master regulators across cancer types. As a proof-of-concept example, we demonstrated that knockdown of SNAI1 or RUNX1—master regulators of carbohydrate metabolic subtypes—modulates metabolic activity and drug sensitivity. Our study provides a system-level view of metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, suggesting related prognostic, therapeutic, and predictive utility. : Peng et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to characterize tumor subtypes based on the expression of seven metabolic pathways. They find metabolic expression subtypes are associated with patient survivals and suggest the therapeutic and predictive relevance of subtype-related master regulators. Keywords: The Cancer Genome Atlas, tumor subtypes, prognostic markers, somatic drivers, master regulator, therapeutic targets, drug sensitivity, carbohydrate metabolism

  5. Molecular targeted therapies of aggressive thyroid cancer

    Directory of Open Access Journals (Sweden)

    Silvia Martina eFerrari

    2015-11-01

    Full Text Available Differentiated thyroid carcinomas (DTC that arise from follicular cells account > 90% of thyroid cancer (TC [papillary thyroid cancer (PTC 90%, follicular thyroid cancer (FTC 10%], while medullary thyroid cancer (MTC accounts < 5%. Complete total thyroidectomy is the treatment of choice for PTC, FTC and MTC. Radioiodine is routinely recommended in high-risk patients and considered in intermediate risk DTC patients. DTC cancer cells, during tumor progression, may lose the iodide uptake ability, becoming resistant to radioiodine, with a significant worsening of the prognosis. The lack of specific and effective drugs for aggressive and metastatic DTC and MTC leads to additional efforts towards the development of new drugs.Several genetic alterations in different molecular pathways in TC have been shown in the last decades, associated with TC development and progression. Rearranged during transfection (RET/PTC gene rearrangements, RET mutations, BRAF mutations, RAS mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways determinant in the development of TC. Tyrosine kinase inhibitors (TKIs are small organic compounds inhibiting tyrosine kinases auto-phosphorylation and activation, most of them are multikinase inhibitors. TKIs act on the above-mentioned molecular pathways involved in growth, angiogenesis, local and distant spread of TC. TKIs are emerging as new therapies of aggressive TC, including DTC, MTC and anaplastic thyroid cancer (ATC, being capable of inducing clinical responses and stabilization of disease. Vandetanib and cabozantinib have been approved for the treatment of MTC, while sorafenib and lenvatinib for DTC refractory to radioiodine. These drugs prolong median progression-free survival, but until now no significant increase has been observed on overall survival; side effects are common. New efforts are made to find new more effective and safe compounds, and to personalize

  6. Molecular pathways and therapeutic targets in lung cancer

    Science.gov (United States)

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  7. MAIN MOLECULAR TARGETS FOR PROSTATE CANCER THERAPY

    Directory of Open Access Journals (Sweden)

    G. S. Krasnov

    2014-01-01

    Full Text Available Androgenic pathway plays a pivotal role in the development of benign and malignant prostate tumors. Most of the prostate neoplasms are hormone-dependent at the time of diagnosis. Therapeutic interventions aimed at reducing the level of testosterone in the blood allow to stop progression of the disease. But over time, the tumor almost inevitably starts to progress, moving in the castration-resistant state (CRPC, representing a serious problem of oncourology. In recent years, the possibility of CRRPC therapy increased significantly – there was developed a number of new drugs that effectively inhibit the development of castration-resistant tumors and significantly push back the start of chemotherapy. This review describes the major drug targets and mechanisms of action of abiraterone, enzalutamide, galeterone, VT-464 and other approved and promising CRPC therapies.

  8. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  9. Should Low Molecular Weight PSMA Targeted Ligands Get Bigger and Use Albumin Ligands for PSMA Targeting?

    OpenAIRE

    Huang, Steve S.; Heston, Warren D.W.

    2017-01-01

    Prostate Specific Membrane Antigen (PSMA) is strongly expressed in prostate cancer. Recently a number of low-molecular-weight inhibitors have demonstrated excellent PSMA targeting activity for both imaging as well as Lutecium-177 radiotherapy in human trials. The paper by Choy et al raises the question of whether we can further increase the effectiveness of PSMA targeted therapy by adding an albumin-binding entity to low-molecular-weight agents

  10. The preparation of Th-232 target by molecular plating method

    International Nuclear Information System (INIS)

    Yang Chunli; Wu Junde; Su Shuxin; Yang Jingling

    2010-01-01

    In order to measure the reaction cross-section of 232 Th(α,2n) 234 U, the preparation of uniform and adherent Th-232 targets on Al foils of thickness 2-8 μm fixed on target frame by molecular plating technique from isopropanol was described. The substrate of electrolytic cell was reconstructed and the optimum acidity for the deposition of thorium were investigated. Through deposition yield analysis, the target thickness of 100- 200μg/cm 2 was determined. The α-spectrometry for the Th-232 targets shows a good energy resolution. (authors)

  11. Chemotherapy and molecular target therapy combined with radiation therapy

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo

    2012-01-01

    Combined chemotherapy and radiation therapy has been established as standard treatment approach for locally advanced head and neck cancer, esophageal cancer and so on through randomized clinical trials. However, radiation-related morbidity such as acute toxicity also increased as treatment intensity has increased. In underlining mechanism for enhancement of normal tissue reaction in chemo-radiation therapy, chemotherapy enhanced radiosensitivity of normal tissues in addition to cancer cells. Molecular target-based drugs combined with radiation therapy have been expected as promising approach that makes it possible to achieve cancer-specific enhancement of radiosensitivity, and clinical trials using combined modalities have been performed to evaluate the feasibility and efficacy of this approach. In order to obtain maximum radiotherapeutic gain, a detailed understanding of the mechanism underlying the interaction between radiation and Molecular target-based drugs is indispensable. Among molecular target-based drugs, inhibitors targeting epidermal growth factor receptor (EGFR) and its signal transduction pathways have been vigorously investigated, and mechanisms regarding the radiosensitizing effect have been getting clear. In addition, the results of randomized clinical trials demonstrated that radiation therapy combined with cetuximab resulted in improvement of overall and disease-specific survival rate compared with radiation therapy in locally advanced head and neck cancer. In this review, clinical usefulness of chemo-radiation therapy and potential molecular targets for potentiation of radiation-induced cell killing are summarized. (author)

  12. Earlier saccades to task-relevant targets irrespective of relative gain between peripheral and foveal information.

    Science.gov (United States)

    Wolf, Christian; Schütz, Alexander C

    2017-06-01

    Saccades bring objects of interest onto the fovea for high-acuity processing. Saccades to rewarded targets show shorter latencies that correlate negatively with expected motivational value. Shorter latencies are also observed when the saccade target is relevant for a perceptual discrimination task. Here we tested whether saccade preparation is equally influenced by informational value as it is by motivational value. We defined informational value as the probability that information is task-relevant times the ratio between postsaccadic foveal and presaccadic peripheral discriminability. Using a gaze-contingent display, we independently manipulated peripheral and foveal discriminability of the saccade target. Latencies of saccades with perceptual task were reduced by 36 ms in general, but they were not modulated by the information saccades provide (Experiments 1 and 2). However, latencies showed a clear negative linear correlation with the probability that the target is task-relevant (Experiment 3). We replicated that the facilitation by a perceptual task is spatially specific and not due to generally heightened arousal (Experiment 4). Finally, the facilitation only emerged when the perceptual task is in the visual but not in the auditory modality (Experiment 5). Taken together, these results suggest that saccade latencies are not equally modulated by informational value as by motivational value. The facilitation by a perceptual task only arises when task-relevant visual information is foveated, irrespective of whether the foveation is useful or not.

  13. Stratification and prognostic relevance of Jass’s molecular classification of colorectal cancer

    OpenAIRE

    Inti eZlobec; Inti eZlobec; Michel P Bihl; Anja eFoerster; Alex eRufle; Luigi eTerracciano; Alessandro eLugli; Alessandro eLugli

    2012-01-01

    Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into 5 subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: 302 patients were included in this study. Molecular analysis was performed for 5 CIMP-related pro...

  14. [Molecular-Genetic Diagnosis and Molecular-Targeted Therapy in Cancer: Challenges in the Era of Precision Medicine].

    Science.gov (United States)

    Miyachi, Hayato

    2015-10-01

    Elucidation of the molecular pathogenesis of neoplasms and application of emerging technologies for testing and therapy have resulted in a series of paradigm shifts in patient care, from conventional to personalized medicine. This has been promoted by companion diagnostics and molecular targeted therapy, tailoring the treatment to the individual characteristics of each patient. Precision oncology has been accelerated by integrating the enhanced resolution of molecular analysis, mechanism clarity, and therapeutic relevance through genomic knowledge. In its clinical implementation, there are laboratory challenges concerning accurate measurement using stored samples, differentiation between driver and passenger mutations as well as between germline and somatic mutations, bioinformatics availability, practical decision-making algorithms, and ethical issues regarding incidental findings. The medical laboratory has a new role in providing not only testing services but also an instructive approach to users to ensure the sample quality and privacy protection of personal genome information, supporting the quality of patient practice based on laboratory diagnosis.

  15. Physics at the biomolecular interface fundamentals for molecular targeted therapy

    CERN Document Server

    Fernández, Ariel

    2016-01-01

    This book focuses primarily on the role of interfacial forces in understanding biological phenomena at the molecular scale. By providing a suitable statistical mechanical apparatus to handle the biomolecular interface, the book becomes uniquely positioned to address core problems in molecular biophysics. It highlights the importance of interfacial tension in delineating a solution to the protein folding problem, in unravelling the physico-chemical basis of enzyme catalysis and protein associations, and in rationally designing molecular targeted therapies. Thus grounded in fundamental science, the book develops a powerful technological platform for drug discovery, while it is set to inspire scientists at any level in their careers determined to address the major challenges in molecular biophysics. The acknowledgment of how exquisitely the structure and dynamics of proteins and their aqueous environment are related attests to the overdue recognition that biomolecular phenomena cannot be effectively understood w...

  16. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun Ki; Herbst, Roy

    2006-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  17. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun K; Herbst, Roy

    2008-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  18. IMPACT (Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets and Complementary, Innovative and Therapeutic Modalities)

    National Research Council Canada - National Science Library

    Hong, Waun K; Herbst, Roy

    2007-01-01

    .... These projects combine targeted approaches using molecular and imaging techniques to validate activity against a target and monitor response using imaging modalities specific to the receptor using...

  19. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gains, Jennifer E.; Gaze, Mark N. [University College London Hospitals NHS Foundation Trust, Department of Oncology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Pathology, London (United Kingdom); Moroz, Veronica; Wheatley, Keith [University of Birmingham, Cancer Research UK Clinical Trials Unit, Birmingham (United Kingdom)

    2018-03-15

    Neuroblastoma may be treated with molecular radiotherapy, {sup 131}I meta-Iodobenzylguanidine and {sup 177}Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% - 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure. (orig.)

  20. Current Molecular Targeted Therapies for Bone and Soft Tissue Sarcomas

    Directory of Open Access Journals (Sweden)

    Kenji Nakano

    2018-03-01

    Full Text Available Systemic treatment options for bone and soft tissue sarcomas remained unchanged until the 2000s. These cancers presented challenges in new drug development partly because of their rarity and heterogeneity. Many new molecular targeting drugs have been tried in the 2010s, and some were approved for bone and soft tissue sarcoma. As one of the first molecular targeted drugs approved for solid malignant tumors, imatinib’s approval as a treatment for gastrointestinal stromal tumors (GISTs has been a great achievement. Following imatinib, other tyrosine kinase inhibitors (TKIs have been approved for GISTs such as sunitinib and regorafenib, and pazopanib was approved for non-GIST soft tissue sarcomas. Olaratumab, the monoclonal antibody that targets platelet-derived growth factor receptor (PDGFR-α, was shown to extend the overall survival of soft tissue sarcoma patients and was approved in 2016 in the U.S. as a breakthrough therapy. For bone tumors, new drugs are limited to denosumab, a receptor activator of nuclear factor κB ligand (RANKL inhibitor, for treating giant cell tumors of bone. In this review, we explain and summarize the current molecular targeting therapies approved and in development for bone and soft tissue sarcomas.

  1. Biomedical nanotechnology for molecular imaging, diagnostics, and targeted therapy.

    Science.gov (United States)

    Nie, Shuming

    2009-01-01

    Biomedical nanotechnology is a cross-disciplinary area of research in science, engineering and medicine with broad applications for molecular imaging, molecular diagnosis, and targeted therapy. The basic rationale is that nanometer-sized particles such as semiconductor quantum dots and iron oxide nanocrystals have optical, magnetic or structural properties that are not available from either molecules or bulk solids. When linked with biotargeting ligands such as monoclonal antibodies, peptides or small molecules, these nanoparticles can be used to target diseased cells and organs (such as malignant tumors and cardiovascular plaques) with high affinity and specificity. In the "mesoscopic" size range of 5-100 nm diameter, nanoparticles also have large surface areas and functional groups for conjugating to multiple diagnostic (e.g., optical, radioisotopic, or magnetic) and therapeutic (e.g., anticancer) agents.

  2. Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches.

    Science.gov (United States)

    Mocellin, Simone; Rossi, Carlo R; Brandes, Alba; Nitti, Donato

    2006-02-01

    The therapeutic approach to soft tissue sarcomas (STS) has evolved over the past two decades based on the results from randomized controlled trials, which are guiding physicians in the treatment decision-making process. Despite significant improvements in the control of local disease, a significant number of patients ultimately die of recurrent/metastatic disease following radical surgery due to a lack of effective adjuvant treatments. In addition, the characteristic chemoresistance of STS has compromised the therapeutic value of conventional antineoplastic agents in cases of unresectable advanced/metastatic disease. Therefore, novel therapeutic strategies are urgently needed to improve the prognosis of patients with STS. Recent advances in STS biology are paving the way to the development of molecularly targeted therapeutic strategies, the efficacy of which relies not only on the knowledge of the molecular mechanisms underlying cancer development/progression but also on the personalization of the therapeutic regimen according to the molecular features of individual tumours. In this work, we review the state-of-the-art of conventional treatments for STS and summarize the most promising findings in the development of molecularly targeted therapeutic approaches.

  3. Multimodality molecular imaging - from target description to clinical studies

    International Nuclear Information System (INIS)

    Schober, O.; Rahbar, K.; Riemann, B.

    2009-01-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. (orig.)

  4. Targeted Molecular Dynamics to determine Focal Adhesion Targeting Domain Folding Intermediates

    Directory of Open Access Journals (Sweden)

    Pallavi Mohanty

    2017-10-01

    Full Text Available The Focal adhesion kinase (FAT domain of Focal Adhesion Kinase is a four helical bundle known for conformational plasticity. FAT adopts two distinctly different conformations i.e., close (cFAT and arm-exchanged (aeFAT states under native conditions [1]. The slow transition from cFAT to aeFAT is likely to proceed through an open intermediate state that allows YENV motif to attain β-turn conformation and phosphorylation of Y925 by Src kinases [2]. The two end states of FAT are known to interact with Paxillin and are responsible for maintaining steady state in Heart while intermediate conformation interacts with Grb2-SH2 leading to Pathological Cardiac Hypertrophy (PAH [2]. 10ns Targeted Molecular Dynamics (TMD was done between c- and aeFAT in order to explore the conformational transition and to capture pathologically relevant oFAT. Cluster and dynamic cross correlation analysis (DCCA of TMD generated trajectory was done and the selected FAT intermediate was docked with Grb2-SH2 using HADDOCK v2.2 docking followed by molecular dynamics. Conservation analysis of FAT-Grb2 binding site was done using CONSURF [3]. A Pharmacophore FAT-Grb2 complex was generated using SPARKv1.2 and submitted for Virtual screening using BLAZE v4. Drug likeliness and ADMET properties were calculated using MOLINSPIRATION tool. TMD reveals six clusters and DCCA showed positively and negatively correlated region along the transition pathway. Intermediates with competence for Grb2 interaction were docked with Grb2 and best binding complex was further refined. MMPBSA binding energy calculations revealed the best binding pose where the phosphorylated YENV motif of Human FAT interacted with a charged and hydrophobic pocket of Grb2. The conservation analysis showed that the charged pocket was more conserved in comparison with the hydrophobic pocket, hence providing useful insights on binding and specificity determining residues in Grb2. Virtual screening using the pharmacophore

  5. Task relevance modulates the cortical representation of feature conjunctions in the target template.

    Science.gov (United States)

    Reeder, Reshanne R; Hanke, Michael; Pollmann, Stefan

    2017-07-03

    Little is known about the cortical regions involved in representing task-related content in preparation for visual task performance. Here we used representational similarity analysis (RSA) to investigate the BOLD response pattern similarity between task relevant and task irrelevant feature dimensions during conjunction viewing and target template maintenance prior to visual search. Subjects were cued to search for a spatial frequency (SF) or orientation of a Gabor grating and we measured BOLD signal during cue and delay periods before the onset of a search display. RSA of delay period activity revealed that widespread regions in frontal, posterior parietal, and occipitotemporal cortices showed general representational differences between task relevant and task irrelevant dimensions (e.g., orientation vs. SF). In contrast, RSA of cue period activity revealed sensory-related representational differences between cue images (regardless of task) at the occipital pole and additionally in the frontal pole. Our data show that task and sensory information are represented differently during viewing and during target template maintenance, and that task relevance modulates the representation of visual information across the cortex.

  6. Molecular Targets for Radiation Oncology in Prostate Cancer

    International Nuclear Information System (INIS)

    Wang, Tao; Languino, Lucia R.; Lian, Jane; Stein, Gary; Blute, Michael; FitzGerald, Thomas J.

    2011-01-01

    Recent selected developments of the molecular science of prostate cancer (PrCa) biology and radiation oncology are reviewed. We present potential targets for molecular integration treatment strategies with radiation therapy (RT), and highlight potential strategies for molecular treatment in combination with RT for patient care. We provide a synopsis of the information to date regarding molecular biology of PrCa, and potential integrated research strategy for improved treatment of PrCa. Many patients with early-stage disease at presentation can be treated effectively with androgen ablation treatment, surgery, or RT. However, a significant portion of men are diagnosed with advanced stage/high-risk disease and these patients progress despite curative therapeutic intervention. Unfortunately, management options for these patients are limited and are not always successful including treatment for hormone refractory disease. In this review, we focus on molecules of extracellular matrix component, apoptosis, androgen receptor, RUNX, and DNA methylation. Expanding our knowledge of the molecular biology of PrCa will permit the development of novel treatment strategies integrated with RT to improve patient outcome

  7. Multi-target molecular imaging and its progress in research and application

    International Nuclear Information System (INIS)

    Tang Ganghua

    2011-01-01

    Multi-target molecular imaging (MMI) is an important field of research in molecular imaging. It includes multi-tracer multi-target molecular imaging(MTMI), fusion-molecule multi-target imaging (FMMI), coupling-molecule multi-target imaging (CMMI), and multi-target multifunctional molecular imaging(MMMI). In this paper,imaging modes of MMI are reviewed, and potential applications of positron emission tomography MMI in near future are discussed. (author)

  8. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  9. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.

    2007-01-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m 2 on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m 2 . Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  10. Energy loss of charged particles to molecular gas targets

    International Nuclear Information System (INIS)

    Sigmund, P.

    1976-01-01

    The energy loss spectrum of fast charged particles penetrating a dilute molecular gas target has been analysed theoretically, with a homogeneous gas mixture in the state of complete dissociation as a reference standard. It is shown that the geometrical structure of molecules causes the energy-loss straggling and higher moments over the energy-loss spectrum to be greater than the corresponding quantities for a completely dissociated gas of equal composition. Such deviations from additivity are shown to be most pronounced at energies around the stopping-power maximum. There is found supporting evidence in the experimental literature. (Auth.)

  11. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  12. Molecular targets in cancer therapy: the Ron approach

    Directory of Open Access Journals (Sweden)

    Serena Germano

    2011-12-01

    Full Text Available The receptor tyrosine kinase Ron and its ligand, Macrophage Stimulating Protein (MSP, mediate multiple processes involved in the control of cell proliferation, migration and protection from apoptosis. Dysregulated signaling of Ron, due to hyperactivation or loss of negative regulation, is involved in tumor progression and metastasis. Growing evidence indicates that Ron is abnormally expressed and activated in certain types of primary epithelial cancers (i.e. breast, colon, lung, pancreas, bladder and thyroid, where it critically contributes to the maintenance of tumorigenic and invasive phenotype. Furthermore, a positive association between aberrant Ron expression and aggressive biological indicators as well as a worse clinical outcome have been reported in breast, bladder and thyroid carcinomas. Different approaches have proved effective in targeting receptor activation/expression both in vitro and in animal models, leading to reversion of the tumorigenic phenotype. Altogether these results show that Ron is an attractive molecular target for clinical intervention.

  13. Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma

    International Nuclear Information System (INIS)

    Janky, Rekin’s; Binda, Maria Mercedes; Allemeersch, Joke; Van den broeck, Anke; Govaere, Olivier; Swinnen, Johannes V.; Roskams, Tania; Aerts, Stein; Topal, Baki

    2016-01-01

    Pancreatic cancer is poorly characterized at genetic and non-genetic levels. The current study evaluates in a large cohort of patients the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC). We performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 histologically normal pancreatic tissue samples. Cox regression models were used to study the effect on survival of molecular subtypes and 16 clinicopathological prognostic factors. In order to better understand the biology of PDAC we used iRegulon to identify transcription factors (TFs) as master regulators of PDAC and its subtypes. We confirmed the PDAssign gene signature as classifier of PDAC in molecular subtypes with prognostic relevance. We found molecular subtypes, but not clinicopathological factors, as independent predictors of survival. Regulatory network analysis predicted that HNF1A/B are among thousand TFs the top enriched master regulators of the genes expressed in the normal pancreatic tissue compared to the PDAC regulatory network. On immunohistochemistry staining of PDAC samples, we observed low expression of HNF1B in well differentiated towards no expression in poorly differentiated PDAC samples. We predicted IRF/STAT, AP-1, and ETS-family members as key transcription factors in gene signatures downstream of mutated KRAS. PDAC can be classified in molecular subtypes that independently predict survival. HNF1A/B seem to be good candidates as master regulators of pancreatic differentiation, which at the protein level loses its expression in malignant ductal cells of the pancreas, suggesting its putative role as tumor suppressor in pancreatic cancer. The study was registered at ClinicalTrials.gov under the number NCT01116791 (May 3, 2010). The online version of this article (doi:10.1186/s12885-016-2540-6) contains supplementary material, which is available to authorized users

  14. Molecular mechanism and potential targets for bone metastasis

    International Nuclear Information System (INIS)

    Iguchi, Haruo

    2007-01-01

    The incidence of bone metastasis has been increasing in all cancers in recent years. Bone metastasis is associated with substantial morbidity, including bone pain, pathological fracture, neurological deficit and/or hypercalcemia. Thus, the management of bone metastasis in patients is a clinically significant issue. In the process of bone metastasis, the primary mechanism responsible for bone destruction is cancer cell-mediated stimulation of osteoclastic bone resorption, which results in osteolysis and release of various growth factors from the bone matrix. These growth factors are prerequisites for successful colonization and subsequent invasive growth of cancer cells in bone, which is called a 'vicious cycle.' Thus, it is important to elucidate what molecules are involved in this step of bone destruction, and the understanding of these molecular mechanisms could lead to develop molecular-target therapies for bone metastasis. Bisphosphonates introduced in the treatment for bone metastasis have been shown to reduce skeletal morbidity. In Japan, the most potent bisphosphonate, zoledronate (ZOMETA), was introduced in this past April, and a phase III clinical trial of humanized anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Denosumab) against bone metastasis is under way as a global study. These new agents, which are targeted to osteoclasts, are considered to be standard management in the care of bone metastasis patients in combination with chemotherapy and/or hormone therapy. (author)

  15. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy

    International Nuclear Information System (INIS)

    Krause, Mechthild; Zips, Daniel; Thames, Howard D.; Kummermehr, Johann; Baumann, Michael

    2006-01-01

    The combination of molecular-targeted agents with irradiation is a highly promising avenue for cancer research and patient care. Molecular-targeted agents are in themselves not curative in solid tumours, whereas radiotherapy is highly efficient in eradicating tumour stem cells. Recurrences after high-dose radiotherapy are caused by only one or few surviving tumour stem cells. Thus, even if a novel agent has the potential to kill only few tumour stem cells, or if it interferes in mechanisms of radioresistance of tumours, combination with radiotherapy may lead to an important improvement in local tumour control and survival. To evaluate the effects of novel agents combined with radiotherapy, it is therefore necessary to use experimental endpoints which reflect the killing of tumour stem cells, in particular tumour control assays. Such endpoints often do not correlate with volume-based parameters of tumour response such as tumour regression and growth delay. This calls for radiotherapy specific research strategies in the preclinical testing of novel anti-cancer drugs, which in many aspects are different from research approaches for medical oncology

  16. Podoplanin emerges as a functionally relevant oral cancer biomarker and therapeutic target.

    Science.gov (United States)

    Retzbach, Edward P; Sheehan, Stephanie A; Nevel, Evan M; Batra, Amber; Phi, Tran; Nguyen, Angels T P; Kato, Yukinari; Baredes, Soly; Fatahzadeh, Mahnaz; Shienbaum, Alan J; Goldberg, Gary S

    2018-03-01

    Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Molecular oncogenesis of chondrosarcoma: impact for targeted treatment.

    Science.gov (United States)

    Speetjens, Frank M; de Jong, Yvonne; Gelderblom, Hans; Bovée, Judith V M G

    2016-07-01

    The prognosis of patients with unresectable or metastatic chondrosarcoma of the bone is poor. Chondrosarcomas are in general resistant to chemotherapy and radiotherapy. This review discusses recent developments in the characterization of molecular pathways involved in the oncogenesis of chondrosarcoma that should be explored to improve prognosis of patients with advanced chondrosarcoma. The different oncogenic pathways for chondrosarcoma have become better defined. These include alterations in pathways such as isocitrate dehydrogenase mutation, hedgehog signalling, the retinoblastoma protein and p53 pathways, apoptosis and survival mechanisms, and several tyrosine kinases. These specific alterations can be employed for use in clinical interventions in advanced chondrosarcoma. As many different genetic alterations in chondrosarcoma have been identified, it is of the utmost importance to classify druggable targets that may improve the prognosis of chondrosarcoma patients. In recent years an increased number of trials evaluating targeted therapies are being conducted. As chondrosarcoma is an orphan disease consequently all studies are performed with small numbers of patients. The results of clinical studies so far have been largely disappointing. Therapeutic intervention studies of these new targets emerging from preclinical studies are of highest importance to improve prognosis of chondrosarcoma patients with advanced disease.

  18. Low cycle fatigue behavior of ITER-like divertor target under DEMO-relevant operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Muyuan; Werner, Ewald [Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, Technische Universität München, Boltzmannstr. 15, 85748 Garching (Germany); You, Jeong-Ha, E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-01-15

    Highlights: • LCF behavior of the cooling tube and the interlayer of an ITER-like divertor target is studied. • For the cooling tube, LCF failure will not be an issue under an HHF load of up to 18 MW/m{sup 2}. • Plastic strain in the interlayer is concentrated at the free surface edge of the bond interface. • The predicted LCF lifetime of the interlayer may not meet the design requirement. - Abstract: In this work the low cycle fatigue (LCF) behavior of the copper alloy cooling tube and the copper interlayer of an ITER-like divertor target is reported for nine different combinations of loading and cooling conditions relevant to DEMO divertor operation. The LCF lifetime is presented as a function of loading and cooling conditions considered here by means of cyclic plasticity simulation and using LCF data of materials relevant for ITER. The numerical predictions indicate, that fatigue failure will not be an issue for the copper alloy tube under a high heat flux (HHF) load of up to 18 MW/m{sup 2} as long as it preserves its initial strength. In contrast, the copper interlayer exhibits significant plastic dissipation at the free surface edge of the bond interface adjacent to the cooling tube, where the LCF lifetime is predicted to be below 3000 load cycles for HHF loads higher than 15 MW/m{sup 2}. Most of the bulk region of the copper interlayer away from the free surface edge does not experience severe plastic fatigue and hence does not pose any critical concern as the LCF lifetime is predicted to be at least 7000 load cycles. LCF lifetime decreases as HHF load is increased or coolant temperature is decreased.

  19. Radiolabelled peptides and nanoparticles for specific molecular targeting in oncology

    International Nuclear Information System (INIS)

    Helbok, A.

    2011-01-01

    The aim of this thesis is the development of radiolabelled peptides and nanoparticles (NP) for specific molecular targeting in oncology. Three different types of NP were investigated in this study: lipid - based NP (liposomes and micelles), human serum albumin - based NP (albumin NP) and protamine - oligonucleotide - based NP (proticles). In a first step, radiolabelling protocols were set up for the different NP - formulations. The variety of radioisotopes used, covers the whole spectrum of applications in nuclear medicine: SPECT (111In, 99mTc), (2) PET (68Ga) and therapeutic applications (177Lu, 90Y) opening a manifold administration potential for these NP aiming towards multiple targeting and hybrid imaging strategies (combined SPECT / PET and MRI). Radiolabelling quality was analyzed by instant thin layer chromatography (ITLC). High radiochemical yields (RCY >90 %) and high specific activity (SA) were achieved. NP - formulations were derivatized with the chelating agent Diethylenetriaminepentaacetic acid (DTPA) allowing complexation of trivalent radiometals, and potentially nonradioactive metals, such as Gd3+, for MRI imaging leading to the development of multifunctionalized NP for a unified labelling approach. Furthermore, NP were derivatized with the pharmacokinetic modifier polyethylene glycol (PEG) to maintain NP with long circulating ability. Stability assessments included incubation in different media (serum, 4 mM DTPA - solution and PBS pH 7.4, at 37 o C for a period of 24 h). For the in vivo biodistribution of the NP, static and / or dynamic SPECT / PET imaging studies were performed at different time points with Lewis rats and correlated to results from quantification of tissue - uptake. Results indicate differences in stability and general pharmacokinetic behaviour depended on the NP - formulation. However, a positive influence expressed in a prolonged retention time in circulation was investigated for all different NP - formulations due to PEG

  20. Identifying molecular targets of lifestyle modifications in colon cancer prevention

    Directory of Open Access Journals (Sweden)

    Molly Marie Derry

    2013-05-01

    Full Text Available One in four deaths in the United States is cancer-related, and colorectal cancer (CRC is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; ~20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological and behavioral processes that could positively influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.

  1. Molecular determinants of magnolol targeting both RXRα and PPARγ.

    Directory of Open Access Journals (Sweden)

    Haitao Zhang

    Full Text Available Nuclear receptors retinoic X receptor α (RXRα and peroxisome proliferator activated receptor γ (PPARγ function potently in metabolic diseases, and are both important targets for anti-diabetic drugs. Coactivation of RXRα and PPARγ is believed to synergize their effects on glucose and lipid metabolism. Here we identify the natural product magnolol as a dual agonist targeting both RXRα and PPARγ. Magnolol was previously reported to enhance adipocyte differentiation and glucose uptake, ameliorate blood glucose level and prevent development of diabetic nephropathy. Although magnolol can bind and activate both of these two nuclear receptors, the transactivation assays indicate that magnolol exhibits biased agonism on the transcription of PPAR-response element (PPRE mediated by RXRα:PPARγ heterodimer, instead of RXR-response element (RXRE mediated by RXRα:RXRα homodimer. To further elucidate the molecular basis for magnolol agonism, we determine both the co-crystal structures of RXRα and PPARγ ligand-binding domains (LBDs with magnolol. Structural analyses reveal that magnolol adopts its two 5-allyl-2-hydroxyphenyl moieties occupying the acidic and hydrophobic cavities of RXRα L-shaped ligand-binding pocket, respectively. While, two magnolol molecules cooperatively accommodate into PPARγ Y-shaped ligand-binding pocket. Based on these two complex structures, the key interactions for magnolol activating RXRα and PPARγ are determined. As the first report on the dual agonist targeting RXRα and PPARγ with receptor-ligand complex structures, our results are thus expected to help inspect the potential pharmacological mechanism for magnolol functions, and supply useful hits for nuclear receptor multi-target ligand design.

  2. MAGERI: Computational pipeline for molecular-barcoded targeted resequencing.

    Directory of Open Access Journals (Sweden)

    Mikhail Shugay

    2017-05-01

    Full Text Available Unique molecular identifiers (UMIs show outstanding performance in targeted high-throughput resequencing, being the most promising approach for the accurate identification of rare variants in complex DNA samples. This approach has application in multiple areas, including cancer diagnostics, thus demanding dedicated software and algorithms. Here we introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an extensive set of benchmark datasets including gold-standard biological samples with known variant frequencies, cell-free DNA from tumor patient blood samples and publicly available UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling rare variants. The versatility of our software is supported by accurate results obtained for both tumor DNA and viral RNA samples in datasets prepared using three different UMI-based protocols.

  3. Targeted next generation sequencing for molecular diagnosis of Usher syndrome.

    Science.gov (United States)

    Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M

    2014-11-18

    Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.

  4. Molecular simulation of the thermophysical properties and phase behaviour of impure CO2 relevant to CCS.

    Science.gov (United States)

    Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S

    2016-10-20

    Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately

  5. Nutraceuticals: potential for chondroprotection and molecular targeting of osteoarthritis.

    Science.gov (United States)

    Leong, Daniel J; Choudhury, Marwa; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Sun, Hui B

    2013-11-21

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals-food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease-offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  6. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Daniel J. Leong

    2013-11-01

    Full Text Available Osteoarthritis (OA is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment.

  7. Molecular mechanisms underlying radio-induced fibro-genic differentiation and fibrosis targeted therapies

    International Nuclear Information System (INIS)

    Bourgier, C.

    2008-01-01

    Intestinal complications after radiotherapy are caused by transmural fibrosis (RIF) that impaired the quality of life of cancer patient survivors and considered permanent and irreversible until recently but recent molecular characterization of RIF offered new targeted opportunities for the development of anti-fibrotic therapies. In this thesis work, we identified activation of the Rho/ROCK pathway which is involved in the persistence of fibro-genic signals. In addition, among the new anti-fibrotic targeted therapies, we asked whether specific inhibition of Rho pathway, by Pravastatin could elicit anti-fibrotic action. Therefore, the therapeutic relevance of pravastatin as anti-fibrotic strategy was validated using two different models of intestinal and lung fibrosis. As statins are safe and well tolerated compounds, phase II clinical trial is envisioned within the next months to reverse established fibrosis after radiotherapy. (author)

  8. Inflammatory therapeutic targets in coronary atherosclerosis – from molecular biology to clinical application

    Directory of Open Access Journals (Sweden)

    Fabian eLinden

    2014-11-01

    Full Text Available Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over three years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecu-lar inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis.

  9. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    Science.gov (United States)

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.

  10. Leptin signaling molecular actions and drug target in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jiang N

    2014-11-01

    Full Text Available Nan Jiang,1,* Rongtong Sun,2,* Qing Sun3 1Shandong University School of Medicine, Jinan, Shandong Province, People’s Republic of China; 2Weihai Municipal Hospital, Weihai, Shandong Province, People’s Republic of China; 3Department of Pathology, QianFoShan Hospital Affiliated to Shandong University, Jinan, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Previous reports indicate that over 13 different tumors, including hepatocellular carcinoma (HCC, are related to obesity. Obesity-associated inflammatory, metabolic, and endocrine mediators, as well as the functioning of the gut microbiota, are suspected to contribute to tumorigenesis. In obese people, proinflammatory cytokines/chemokines including tumor necrosis factor-alpha, interleukin (IL-1 and IL-6, insulin and insulin-like growth factors, adipokines, plasminogen activator inhibitor-1, adiponectin, and leptin are found to play crucial roles in the initiation and development of cancer. The cytokines induced by leptin in adipose tissue or tumor cells have been intensely studied. Leptin-induced signaling pathways are critical for biological functions such as adiposity, energy balance, endocrine function, immune reaction, and angiogenesis as well as oncogenesis. Leptin is an activator of cell proliferation and anti-apoptosis in several cell types, and an inducer of cancer stem cells; its critical roles in tumorigenesis are based on its oncogenic, mitogenic, proinflammatory, and pro-angiogenic actions. This review provides an update of the pathological effects of leptin signaling with special emphasis on potential molecular mechanisms and therapeutic targeting, which could potentially be used in future clinical settings. In addition, leptin-induced angiogenic ability and molecular mechanisms in HCC are discussed. The stringent binding affinity of leptin and its receptor Ob-R, as well as the highly upregulated expression of both

  11. Stratification and Prognostic Relevance of Jass’s Molecular Classification of Colorectal Cancer

    International Nuclear Information System (INIS)

    Zlobec, Inti; Bihl, Michel P.; Foerster, Anja; Rufle, Alex; Terracciano, Luigi; Lugli, Alessandro

    2012-01-01

    Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7–43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

  12. Stratification and Prognostic Relevance of Jass’s Molecular Classification of Colorectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zlobec, Inti [Institute of Pathology, University of Bern, Bern (Switzerland); Institute for Pathology, University Hospital Basel, Basel (Switzerland); Bihl, Michel P.; Foerster, Anja; Rufle, Alex; Terracciano, Luigi [Institute for Pathology, University Hospital Basel, Basel (Switzerland); Lugli, Alessandro, E-mail: inti.zlobec@pathology.unibe.ch [Institute of Pathology, University of Bern, Bern (Switzerland); Institute for Pathology, University Hospital Basel, Basel (Switzerland)

    2012-02-27

    Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7–43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

  13. Stratification and prognostic relevance of Jass’s molecular classification of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Inti eZlobec

    2012-02-01

    Full Text Available Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP, microsatellite instability (MSI, KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT and classifies tumors into 5 subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: 302 patients were included in this study. Molecular analysis was performed for 5 CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1, MGMT, MSI, KRAS and BRAF. Tumors were CIMP-high or CIMP-low if ≥4 and 1-3 promoters were methylated, respectively. Results: CIMP-high, CIMP-low and CIMP–negative were found in 7.1%, 43% and 49.9% cases, respectively. 123 tumors (41% could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-low, 14 CIMP-high and 2 CIMP-negative cases. The 10-year survival rate for CIMP-high patients (22.6% (95%CI: 7-43 was significantly lower than for CIMP-low or CIMP-negative (p=0.0295. Only the combined analysis of BRAF and CIMP (negative versus low/high led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.

  14. An emerging role for the mammalian Target of Rapamycin (mTOR in 'pathological' protein translation: relevance to cocaine addiction

    Directory of Open Access Journals (Sweden)

    Christopher V Dayas

    2012-02-01

    Full Text Available Complex neuroadaptations within key nodes of the brain’s ‘reward circuitry’ are thought to underpin long-term vulnerability to relapse. A more comprehensive understanding of the molecular and cellular signalling events that subserve relapse vulnerability may lead to pharmacological treatments that could improve treatment outcomes for psychostimulant-addicted individuals. Recent advances in this regard include findings that drug-induced perturbations to neurotrophin, metabotropic glutamate receptor and dopamine receptor signalling pathways perpetuate plasticity impairments at excitatory glutamatergic synapses on ventral tegmental area (VTA and nucleus accumbens (NAC neurons. In the context of addiction, much previous work, in terms of downstream effectors to these receptor systems, has centered on the extracellular-regulated MAP kinase (ERK signalling pathway. The purpose of the present review is to highlight the evidence of an emerging role for another downstream effector of these addiction-relevant receptor systems - the mammalian target of rapamycin complex 1 (mTORC1. mTORC1 functions to regulate synaptic protein translation and is a potential critical link in our understanding of the neurobiological processes that drive addiction and relapse behavior. The precise cellular and molecular changes that are regulated by mTORC1 and contribute to relapse vulnerability are only just coming to light. Therefore, we aim to highlight evidence that mTORC1 signalling may be dysregulated by drug-exposure and that these changes may contribute to aberrant translation of synaptic proteins that appear critical to increased relapse vulnerability, including AMPARs. The importance of understanding the role of this signalling pathway in the development of addiction vulnerability is underscored by the fact that the mTORC1 inhibitor rapamycin reduces drug-seeking in preclinical models and preliminary evidence indicating that rapamycin suppresses drug craving in

  15. Advances on the molecular characterization, clinical relevance, and detection methods of Gadiform parvalbumin allergens.

    Science.gov (United States)

    Fernandes, Telmo J R; Costa, Joana; Carrapatoso, Isabel; Oliveira, Maria Beatriz P P; Mafra, Isabel

    2017-10-13

    Gadiform order includes several fish families, from which Gadidae and Merlucciidae are part of, comprising the most commercially important and highly appreciated fish species, such as cod, pollock, haddock, and hake. Parvalbumins, classified as calcium-binding proteins, are considered the main components involved in the majority of fish allergies. Nine and thirteen parvalbumins were identified in different fish species from Gadidae and Merlucciidae families, respectively. This review intends to describe their molecular characterization and the clinical relevance, as well as the prevalence of fish allergy. In addition, the main protein- and DNA-based methods to detect fish allergens are fully reviewed owing to their importance in the safeguard of sensitized/allergic individuals.

  16. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  17. Scientometrics of drug discovery efforts: pain-related molecular targets

    Directory of Open Access Journals (Sweden)

    Kissin I

    2015-07-01

    Full Text Available Igor KissinDepartment of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USAAbstract: The aim of this study was to make a scientometric assessment of drug discovery efforts centered on pain-related molecular targets. The following scientometric indices were used: the popularity index, representing the share of articles (or patents on a specific topic among all articles (or patents on pain over the same 5-year period; the index of change, representing the change in the number of articles (or patents on a topic from one 5-year period to the next; the index of expectations, representing the ratio of the number of all types of articles on a topic in the top 20 journals relative to the number of articles in all (>5,000 biomedical journals covered by PubMed over a 5-year period; the total number of articles representing Phase I–III trials of investigational drugs over a 5-year period; and the trial balance index, a ratio of Phase I–II publications to Phase III publications. Articles (PubMed database and patents (US Patent and Trademark Office database on 17 topics related to pain mechanisms were assessed during six 5-year periods from 1984 to 2013. During the most recent 5-year period (2009–2013, seven of 17 topics have demonstrated high research activity (purinergic receptors, serotonin, transient receptor potential channels, cytokines, gamma aminobutyric acid, glutamate, and protein kinases. However, even with these seven topics, the index of expectations decreased or did not change compared with the 2004–2008 period. In addition, publications representing Phase I–III trials of investigational drugs (2009–2013 did not indicate great enthusiasm on the part of the pharmaceutical industry regarding drugs specifically designed for treatment of pain. A promising development related to the new tool of molecular targeting, ie, monoclonal antibodies, for pain treatment has not

  18. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Science.gov (United States)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  19. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Directory of Open Access Journals (Sweden)

    Yu Dexin

    2009-01-01

    Full Text Available Abstract Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid–polyethylene glycol/gadolinium–diethylenetriamine-pentaacetic acid (PLA–PEG/Gd–DTPA nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI contrast agent. The PLA–PEG/Gd–DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA–PEG nanoparticles and the commercial contrast agent, Gd–DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA–PEG/Gd–DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was −12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA–PEG/Gd–DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed (r = 0.987. The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd–DTPA. PLA–PEG/Gd–DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA–PEG/Gd–DTPA nanocomplexes might be potential as molecular

  20. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    Science.gov (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  1. Synthesis and Surface-Specific Analysis of Molecular Constituents Relevant to Biogenic Secondary Organic Aerosol Material

    Science.gov (United States)

    Be, A. G.; Upshur, M. A.; Chase, H. M.; Geiger, F.; Thomson, R. J.

    2017-12-01

    Secondary organic aerosol (SOA) particles formed from the oxidation of biogenic volatile organic compounds (BVOCs) remain a principal, yet elusive, class of airborne particulate matter that impacts the Earth's radiation budget. Given the characteristic molecular complexity comprising biogenic SOA particles, chemical information selective to the gas-aerosol interface may be valuable in the investigation of such systems, as surface considerations likely dictate the phenomena driving particle evolution mechanisms and climate effects. In particular, cloud activation processes may be parameterized using the surface tension depression that coincides with partitioning of surface-active organic species to the gas-droplet interface. However, the extent to which surface chemical processes, such as cloud droplet condensation, are influenced by the chemical structure and reactivity of individual surface-active molecules in SOA particles is largely unknown. We seek to study terpene-derived organic species relevant to the surfaces of biogenic SOA particles via synthesis of putative oxidation products followed by analysis using surface-selective physicochemical measurements. Using dynamic surface tension measurements, considerable differences are observed in the surface tension depression of aqueous pendant droplets that contain synthetically prepared ozonolysis products derived from abundant terpene precursors. Furthermore, sum frequency generation spectroscopy is utilized for comparison of the surface vibrational spectral responses of synthesized reference compounds with those observed for laboratory aerosol toward probing the surface composition of SOA material. Such ongoing findings highlight the underlying importance of molecular structure and reactivity when considering the surface chemistry of biogenic terpene-derived atmospheric aerosols.

  2. Prospective molecular profiling of canine cancers provides a clinically relevant comparative model for evaluating personalized medicine (PMed) trials.

    Science.gov (United States)

    Paoloni, Melissa; Webb, Craig; Mazcko, Christina; Cherba, David; Hendricks, William; Lana, Susan; Ehrhart, E J; Charles, Brad; Fehling, Heather; Kumar, Leena; Vail, David; Henson, Michael; Childress, Michael; Kitchell, Barbara; Kingsley, Christopher; Kim, Seungchan; Neff, Mark; Davis, Barbara; Khanna, Chand; Trent, Jeffrey

    2014-01-01

    Molecularly-guided trials (i.e. PMed) now seek to aid clinical decision-making by matching cancer targets with therapeutic options. Progress has been hampered by the lack of cancer models that account for individual-to-individual heterogeneity within and across cancer types. Naturally occurring cancers in pet animals are heterogeneous and thus provide an opportunity to answer questions about these PMed strategies and optimize translation to human patients. In order to realize this opportunity, it is now necessary to demonstrate the feasibility of conducting molecularly-guided analysis of tumors from dogs with naturally occurring cancer in a clinically relevant setting. A proof-of-concept study was conducted by the Comparative Oncology Trials Consortium (COTC) to determine if tumor collection, prospective molecular profiling, and PMed report generation within 1 week was feasible in dogs. Thirty-one dogs with cancers of varying histologies were enrolled. Twenty-four of 31 samples (77%) successfully met all predefined QA/QC criteria and were analyzed via Affymetrix gene expression profiling. A subsequent bioinformatics workflow transformed genomic data into a personalized drug report. Average turnaround from biopsy to report generation was 116 hours (4.8 days). Unsupervised clustering of canine tumor expression data clustered by cancer type, but supervised clustering of tumors based on the personalized drug report clustered by drug class rather than cancer type. Collection and turnaround of high quality canine tumor samples, centralized pathology, analyte generation, array hybridization, and bioinformatic analyses matching gene expression to therapeutic options is achievable in a practical clinical window (strategies may aid cancer drug development.

  3. Prospective molecular profiling of canine cancers provides a clinically relevant comparative model for evaluating personalized medicine (PMed trials.

    Directory of Open Access Journals (Sweden)

    Melissa Paoloni

    Full Text Available Molecularly-guided trials (i.e. PMed now seek to aid clinical decision-making by matching cancer targets with therapeutic options. Progress has been hampered by the lack of cancer models that account for individual-to-individual heterogeneity within and across cancer types. Naturally occurring cancers in pet animals are heterogeneous and thus provide an opportunity to answer questions about these PMed strategies and optimize translation to human patients. In order to realize this opportunity, it is now necessary to demonstrate the feasibility of conducting molecularly-guided analysis of tumors from dogs with naturally occurring cancer in a clinically relevant setting.A proof-of-concept study was conducted by the Comparative Oncology Trials Consortium (COTC to determine if tumor collection, prospective molecular profiling, and PMed report generation within 1 week was feasible in dogs. Thirty-one dogs with cancers of varying histologies were enrolled. Twenty-four of 31 samples (77% successfully met all predefined QA/QC criteria and were analyzed via Affymetrix gene expression profiling. A subsequent bioinformatics workflow transformed genomic data into a personalized drug report. Average turnaround from biopsy to report generation was 116 hours (4.8 days. Unsupervised clustering of canine tumor expression data clustered by cancer type, but supervised clustering of tumors based on the personalized drug report clustered by drug class rather than cancer type.Collection and turnaround of high quality canine tumor samples, centralized pathology, analyte generation, array hybridization, and bioinformatic analyses matching gene expression to therapeutic options is achievable in a practical clinical window (<1 week. Clustering data show robust signatures by cancer type but also showed patient-to-patient heterogeneity in drug predictions. This lends further support to the inclusion of a heterogeneous population of dogs with cancer into the preclinical

  4. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies.

    Directory of Open Access Journals (Sweden)

    Benedikt Frieg

    2016-02-01

    Full Text Available Glutamine synthetase (GS catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically.

  5. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    International Nuclear Information System (INIS)

    Jhanwar-Uniyal, Meena; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj

    2015-01-01

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM

  6. Glioblastoma: Molecular Pathways, Stem Cells and Therapeutic Targets

    Energy Technology Data Exchange (ETDEWEB)

    Jhanwar-Uniyal, Meena, E-mail: meena_jhanwar@nymc.edu; Labagnara, Michael; Friedman, Marissa; Kwasnicki, Amanda; Murali, Raj [Department of Neurosurgery, New York Medical College, Valhalla, NY 10595 (United States)

    2015-03-25

    Glioblastoma (GBM), a WHO-defined Grade IV astrocytoma, is the most common and aggressive CNS malignancy. Despite current treatment modalities, the survival time remains dismal. The main cause of mortality in patients with this disease is reoccurrence of the malignancy, which is attributed to treatment-resistant cancer stem cells within and surrounding the primary tumor. Inclusion of novel therapies, such as immuno- and DNA-based therapy, may provide better means of treating GBM. Furthermore, manipulation of recently discovered non-coding microRNAs, some of which regulate tumor growth through the development and maintenance of GBM stem cells, could provide new prospective therapies. Studies conducted by The Cancer Genome Atlas (TCGA) also demonstrate the role of molecular pathways, specifically the activated PI3K/AKT/mTOR pathway, in GBM tumorigenesis. Inhibition of the aforementioned pathway may provide a more direct and targeted method to GBM treatment. The combination of these treatment modalities may provide an innovative therapeutic approach for the management of GBM.

  7. Successful application of virtual screening and molecular dynamics simulations against antimalarial molecular targets

    Directory of Open Access Journals (Sweden)

    Renata Rachide Nunes

    Full Text Available The main challenge in the control of malaria has been the emergence of drug-resistant parasites. The presence of drug-resistant Plasmodium sp. has raised the need for new antimalarial drugs. Molecular modelling techniques have been used as tools to develop new drugs. In this study, we employed virtual screening of a pyrazol derivative (Tx001 against four malaria targets: plasmepsin-IV, plasmepsin-II, falcipain-II, and PfATP6. The receiver operating characteristic curves and area under the curve (AUC were established for each molecular target. The AUC values obtained for plasmepsin-IV, plasmepsin-II, and falcipain-II were 0.64, 0.92, and 0.94, respectively. All docking simulations were carried out using AutoDock Vina software. The ligand Tx001 exhibited a better interaction with PfATP6 than with the reference compound (-12.2 versus -6.8 Kcal/mol. The Tx001-PfATP6 complex was submitted to molecular dynamics simulations in vacuum implemented on an NAMD program. The ligand Tx001 docked at the same binding site as thapsigargin, which is a natural inhibitor of PfATP6. Compound TX001 was evaluated in vitro with a P. falciparum strain (W2 and a human cell line (WI-26VA4. Tx001 was discovered to be active against P. falciparum (IC50 = 8.2 µM and inactive against WI-26VA4 (IC50 > 200 µM. Further ligand optimisation cycles generated new prospects for docking and biological assays.

  8. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes

    Science.gov (United States)

    Andreoli, Federico; Del Rio, Alberto

    2015-01-01

    Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds. PMID:26082827

  9. Targeted Therapy Database (TTD): a model to match patient's molecular profile with current knowledge on cancer biology.

    Science.gov (United States)

    Mocellin, Simone; Shrager, Jeff; Scolyer, Richard; Pasquali, Sandro; Verdi, Daunia; Marincola, Francesco M; Briarava, Marta; Gobbel, Randy; Rossi, Carlo; Nitti, Donato

    2010-08-10

    The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit the available knowledge on cancer biology with the

  10. Change detection in urban and rural driving scenes: Effects of target type and safety relevance on change blindness.

    Science.gov (United States)

    Beanland, Vanessa; Filtness, Ashleigh J; Jeans, Rhiannon

    2017-03-01

    The ability to detect changes is crucial for safe driving. Previous research has demonstrated that drivers often experience change blindness, which refers to failed or delayed change detection. The current study explored how susceptibility to change blindness varies as a function of the driving environment, type of object changed, and safety relevance of the change. Twenty-six fully-licenced drivers completed a driving-related change detection task. Changes occurred to seven target objects (road signs, cars, motorcycles, traffic lights, pedestrians, animals, or roadside trees) across two environments (urban or rural). The contextual safety relevance of the change was systematically manipulated within each object category, ranging from high safety relevance (i.e., requiring a response by the driver) to low safety relevance (i.e., requiring no response). When viewing rural scenes, compared with urban scenes, participants were significantly faster and more accurate at detecting changes, and were less susceptible to "looked-but-failed-to-see" errors. Interestingly, safety relevance of the change differentially affected performance in urban and rural environments. In urban scenes, participants were more efficient at detecting changes with higher safety relevance, whereas in rural scenes the effect of safety relevance has marginal to no effect on change detection. Finally, even after accounting for safety relevance, change blindness varied significantly between target types. Overall the results suggest that drivers are less susceptible to change blindness for objects that are likely to change or move (e.g., traffic lights vs. road signs), and for moving objects that pose greater danger (e.g., wild animals vs. pedestrians). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Atomic and molecular data for H2O, CO and CO2 relevant to edge plasma impurities

    International Nuclear Information System (INIS)

    Tawara, Hiro.

    1992-10-01

    The present status of atomic and molecular data under electron impact involving the most relevant plasma impurity species (H 2 O, CO and CO 2 ) has been surveyed and some data have been compiled and evaluated. The emphasis is the cross sections for ionization, dissociation, excitation, photon emission and recombination processes. (author)

  12. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    Science.gov (United States)

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  13. Capture reactions at astrophysically relevant energies: extended gas target experiments and GEANT simulations

    CERN Document Server

    Kölle, V; Braitmayer, S E; Mohr, P J; Wilmes, S; Staudt, G; Hammer, J W; Jäger, M; Knee, H; Kunz, R; Mayer, A

    1999-01-01

    Several resonances of the capture reaction sup 2 sup 0 Ne(alpha, gamma) sup 2 sup 4 Mg were measured using an extended windowless gas target system. Detailed GEANT simulations were performed to derive the strength and the total width of the resonances from the measured yield curve. The crucial experimental parameters, which are mainly the density profile in the gas target and the efficiency of the gamma-ray detector, were analyzed by a comparison between the measured data and the corresponding simulation calculations. The excellent agreement between the experimental data and the simulations gives detailed insight into these parameters. (author)

  14. Hot electron transport modelling in fast ignition relevant targets with non-Spitzer resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D A; Hoarty, D J; Swatton, D J R [Plasma Physics Department, AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom); Hughes, S J, E-mail: david.chapman@awe.co.u [Computational Physics Group, AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

    2010-08-01

    The simple Lee-More model for electrical resistivity is implemented in the hybrid fast electron transport code THOR. The model is shown to reproduce experimental data across a wide range of temperatures using a small number of parameters. The effect of this model on the heating of simple Al targets by a short-pulse laser is studied and compared to the predictions of the classical Spitzer-Haerm resistivity. The model is then used in simulations of hot electron transport experiments using buried layer targets.

  15. Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets.

    Science.gov (United States)

    Trofimov, Valentin; Kicka, Sébastien; Mucaria, Sabrina; Hanna, Nabil; Ramon-Olayo, Fernando; Del Peral, Laura Vela-Gonzalez; Lelièvre, Joël; Ballell, Lluís; Scapozza, Leonardo; Besra, Gurdyal S; Cox, Jonathan A G; Soldati, Thierry

    2018-03-02

    Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13-14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential "universal" targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK.

  16. The atypical subthalamic nucleus--an anatomical variant relevant for stereotactic targeting.

    Science.gov (United States)

    Reese, René; Pinsker, Markus O; Herzog, Jan; Wodarg, Fritz; Steigerwald, Frank; Pötter-Nerger, Monika; Falk, Daniela; Deuschl, Günther; Mehdorn, H Maximilian; Volkmann, Jens

    2012-04-01

    The improvement of PD motor symptoms by DBS of the STN depends on exact targeting. A combination of MRI and multitrajectory microrecordings was used for localization of the STN in a group of 228 consecutive PD patients. In 1% of our cases, the STN was consistently shifted in the anterior (3.3 ± 0.8mm) and medial (3.0 ± 0.9 mm) direction within the target plane, compared to controls. Adjustment of the original target coordinates after intraoperative reevaluation of the MRI and confirmation by typical subthalamic neuronal recordings along the deviant trajectory allowed the implantation of clinically effective electrodes in all cases. The relative improvement of the motor UPDRS at 6-months follow-up in patients with an atypical and typical STN was comparable. An atypical position of the STN does not need to complicate DBS surgery, if detected by a combination of MRI-based targeting and electrophysiological guidance. Copyright © 2012 Movement Disorder Society.

  17. Current perspectives in the use of molecular imaging to target surgical treatments for genitourinary cancers.

    Science.gov (United States)

    Greco, Francesco; Cadeddu, Jeffrey A; Gill, Inderbir S; Kaouk, Jihad H; Remzi, Mesut; Thompson, R Houston; van Leeuwen, Fijs W B; van der Poel, Henk G; Fornara, Paolo; Rassweiler, Jens

    2014-05-01

    Molecular imaging (MI) entails the visualisation, characterisation, and measurement of biologic processes at the molecular and cellular levels in humans and other living systems. Translating this technology to interventions in real-time enables interventional MI/image-guided surgery, for example, by providing better detection of tumours and their dimensions. To summarise and critically analyse the available evidence on image-guided surgery for genitourinary (GU) oncologic diseases. A comprehensive literature review was performed using PubMed and the Thomson Reuters Web of Science. In the free-text protocol, the following terms were applied: molecular imaging, genitourinary oncologic surgery, surgical navigation, image-guided surgery, and augmented reality. Review articles, editorials, commentaries, and letters to the editor were included if deemed to contain relevant information. We selected 79 articles according to the search strategy based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis criteria and the IDEAL method. MI techniques included optical imaging and fluorescent techniques, the augmented reality (AR) navigation system, magnetic resonance imaging spectroscopy, positron emission tomography, and single-photon emission computed tomography. Experimental studies on the AR navigation system were restricted to the detection and therapy of adrenal and renal malignancies and in the relatively infrequent cases of prostate cancer, whereas fluorescence techniques and optical imaging presented a wide application of intraoperative GU oncologic surgery. In most cases, image-guided surgery was shown to improve the surgical resectability of tumours. Based on the evidence to date, image-guided surgery has promise in the near future for multiple GU malignancies. Further optimisation of targeted imaging agents, along with the integration of imaging modalities, is necessary to further enhance intraoperative GU oncologic surgery. Copyright © 2013

  18. Evaporation and vapor shielding of CFC targets exposed to plasma heat fluxes relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Landman, I.S.; Pestchanyi, S.E.; Toporkov, D.A.; Zhitlukhin, A.M.

    2009-01-01

    Carbon fibre composite NB31 was tested at plasma gun facility MK-200UG by plasma heat fluxes relevant to Edge Localised Modes in ITER. The paper reports the results obtained on the evaporation threshold of carbon fibre composite, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state. First experimental results on investigation of the vapor shield onset conditions are presented also. The obtained experimental data are compared with the results of numerical modeling.

  19. High heat flux tests at divertor relevant conditions on water-cooled swirl tube targets

    International Nuclear Information System (INIS)

    Schlosser, J.; Boscary, J.

    1994-01-01

    High heat flux experiments were performed to provide a technology for heat flux removal under NET/ITER relevant conditions. The water-cooled rectangular test sections were made of hardened copper with a stainless steel twisted tape installed inside a circular channel and one-side heated. The tests aimed to investigate the heat transfer and the critical heat flux in the subcooled boiling regime. A CHF data base of 63 values was established. Test results have shown the thermalhydraulic ability of swirl tubes to sustain an incident heat flux up to a 30 MW.m -2 range. (author) 10 refs.; 7 figs

  20. Cellular and molecular mechanisms of HIV-1 integration targeting.

    Science.gov (United States)

    Engelman, Alan N; Singh, Parmit K

    2018-07-01

    Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.

  1. Liver fat: a relevant target for dietary intervention? Summary of a Unilever workshop.

    Science.gov (United States)

    Peters, Harry P F; Schrauwen, Patrick; Verhoef, Petra; Byrne, Christopher D; Mela, David J; Pfeiffer, Andreas F H; Risérus, Ulf; Rosendaal, Frits R; Schrauwen-Hinderling, Vera

    2017-01-01

    Currently it is estimated that about 1 billion people globally have non-alcoholic fatty liver disease (NAFLD), a condition in which liver fat exceeds 5 % of liver weight in the absence of significant alcohol intake. Due to the central role of the liver in metabolism, the prevalence of NAFLD is increasing in parallel with the prevalence of obesity, insulin resistance and other risk factors of metabolic diseases. However, the contribution of liver fat to the risk of type 2 diabetes mellitus and CVD, relative to other ectopic fat depots and to other risk markers, is unclear. Various studies have suggested that the accumulation of liver fat can be reduced or prevented via dietary changes. However, the amount of liver fat reduction that would be physiologically relevant, and the timeframes and dose-effect relationships for achieving this through different diet-based approaches, are unclear. Also, it is still uncertain whether the changes in liver fat per se or the associated metabolic changes are relevant. Furthermore, the methods available to measure liver fat, or even individual fatty acids, differ in sensitivity and reliability. The present report summarises key messages of presentations from different experts and related discussions from a workshop intended to capture current views and research gaps relating to the points above.

  2. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome

    OpenAIRE

    Burkhart, Keith K.; Abernethy, Darrell; Jackson, David

    2015-01-01

    Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was al...

  4. Preparation of actinide targets by molecular plating for Coulomb excitation studies at ATLAS

    International Nuclear Information System (INIS)

    Greene, J. P.

    1998-01-01

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the target it is very useful to record various parameters in the preparation of such targets. At Argonne, ∼200 microg/cm 2 thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) Studies with the Argonne-Notre Dame BGO gamma ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm 2 Au backing and were covered with 150 microg/cm 2 Au foil. Targets of 239 Pu, 240 Pu, 242 Pu, 244 Pu and 248 Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 volts. The amount of these materials on the target was determined by alpha particle counting and gamma ray counting. Details of the molecular plating and counting will be discussed

  5. The GEKKO XII-HIPER (High Intensity Plasma Experimental Research) system relevant to ignition targets

    International Nuclear Information System (INIS)

    Miyanaga, N.; Nakatsuka, M.; Azechi, H.

    2001-01-01

    To test high gain targets surrogated in the planar geometry, we have constructed a new experimental system (HIPER) which provides the high ablation pressure with a uniform irradiance profile. These performances were achieved by bundling twelve beams of the existing GEKKO XII into a F/3 focus cone. The partially coherent light is introduced for the beam smoothing of a green foot pulse consisting of three beams, and the three-directional smoothing by spectral dispersion is utilized for residual nine beams delivering a blue main drive pulse. The detail of design concept and results of initial activation of this system are reported. (author)

  6. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly & Cushing Disease Paradigms

    Directory of Open Access Journals (Sweden)

    Michael Anthony Mooney

    2016-07-01

    Full Text Available The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  7. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms.

    Science.gov (United States)

    Mooney, Michael A; Simon, Elias D; Little, Andrew S

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment.

  8. Target Molecular Simulations of RecA Family Protein Filaments

    Directory of Open Access Journals (Sweden)

    Yeng-Tseng Wang

    2012-06-01

    Full Text Available Modeling of the RadA family mechanism is crucial to understanding the DNA SOS repair process. In a 2007 report, the archaeal RadA proteins function as rotary motors (linker region: I71-K88 such as shown in Figure 1. Molecular simulations approaches help to shed further light onto this phenomenon. We find 11 rotary residues (R72, T75-K81, M84, V86 and K87 and five zero rotary residues (I71, K74, E82, R83 and K88 in the simulations. Inclusion of our simulations may help to understand the RadA family mechanism.

  9. Molecular targets on mast cells and basophils for novel therapies

    Czech Academy of Sciences Publication Activity Database

    Harvima, I.T.; Levi-Schaffer, F.; Dráber, Petr; Friedman, S.; Polakovičová, Iva; Gibbs, B.F.; Blank, U.; Nilsson, G.; Maurer, M.

    2014-01-01

    Roč. 134, č. 3 (2014), s. 530-544 ISSN 0091-6749 R&D Projects: GA MŠk LD12073; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-09807S; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : cell activation * mast cells and basophils * treatment of allergic diseases Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.476, year: 2014

  10. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    Energy Technology Data Exchange (ETDEWEB)

    Bowman-James, Kristin [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemistry

    2017-04-13

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hosts joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO42- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through

  11. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    International Nuclear Information System (INIS)

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M; Singh, P; Manohar, N; Tailor, R; Cho, S; Goodrich, G; Krishnan, S

    2015-01-01

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  12. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Diagaradjane, P [M.D. Anderson Cancer Center, Houston, TX (United States); Deorukhkar, A; Sankaranarayanapillai, M; Singh, P [The UT MD Anderson Cancer Center, Houston, TX (United States); Manohar, N; Tailor, R; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Goodrich, G [Nanospectra Biosciences Inc, Houston, TX (United States); Krishnan, S [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and in vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and megavoltage x

  13. Molecular targets of epigenetic regulation and effectors of environmental influences

    International Nuclear Information System (INIS)

    Choudhuri, Supratim; Cui Yue; Klaassen, Curtis D.

    2010-01-01

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  14. Nuclear EGFR as a molecular target in cancer

    International Nuclear Information System (INIS)

    Brand, Toni M.; Iida, Mari; Luthar, Neha; Starr, Megan M.; Huppert, Evan J.; Wheeler, Deric L.

    2013-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell’s nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future

  15. Molecular-targeted nanotherapies in cancer: enabling treatment specificity.

    Science.gov (United States)

    Blanco, Elvin; Hsiao, Angela; Ruiz-Esparza, Guillermo U; Landry, Matthew G; Meric-Bernstam, Funda; Ferrari, Mauro

    2011-12-01

    Chemotherapy represents a mainstay and powerful adjuvant therapy in the treatment of cancer. The field has evolved from drugs possessing all-encompassing cell-killing effects to those with highly targeted, specific mechanisms of action; a direct byproduct of enhanced understanding of tumorigenic processes. However, advances regarding development of agents that target key molecules and dysregulated pathways have had only modest impacts on patient survival. Several biological barriers preclude adequate delivery of drugs to tumors, and remain a formidable challenge to overcome in chemotherapy. Currently, the field of nanomedicine is enabling the delivery of chemotherapeutics, including repositioned drugs and siRNAs, by giving rise to carriers that provide for protection from degradation, prolonged circulation times, and increased tumor accumulation, all the while resulting in reduced patient morbidity. This review aims to highlight several innovative, nanoparticle-based platforms with the potential of providing clinical translation of several novel chemotherapeutic agents. We will also summarize work regarding the development of a multistage drug delivery strategy, a robust carrier platform designed to overcome several biological barriers while en route to tumors. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development.

    Science.gov (United States)

    Liu, Mu-Tai; Chen, Mu-Kuan; Huang, Chia-Chun; Huang, Chao-Yuan

    2015-02-01

    The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.

  17. Targeted Therapy Database (TTD: a model to match patient's molecular profile with current knowledge on cancer biology.

    Directory of Open Access Journals (Sweden)

    Simone Mocellin

    Full Text Available BACKGROUND: The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. OBJECTIVE: To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. METHODS: To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. RESULTS AND CONCLUSIONS: We created a manually annotated database (Targeted Therapy Database, TTD where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method

  18. Separation of no-carrier-added 107,109Cd from proton induced silver target. Classical chemistry still relevant

    International Nuclear Information System (INIS)

    Moumita Maiti; Susanta Lahiri; Tomar, B.S.

    2011-01-01

    The classical chemistry like precipitation technique is relevant even in modern days trans-disciplinary research from the view point of green chemistry. A definite demand of no-carrier-added (nca) cadmium tracers, namely, 107,109 Cd, has been realized for diverse applications. Development of efficient separation technique is therefore important to address the purity of the tracers for various applications. No-carrier-added 107,109 Cd radionuclides were produced by bombarding natural silver target matrix with 13 MeV protons, which gave ∼15 MBq/μA h yield for nca 107 Cd. The nca cadmium radionuclides were separated from the natural silver target matrix by precipitating Ag as AgCl. The developed method is an example wherein green chemistry is used in trans-disciplinary research. The method is also simple, fast, cost effective and environmentally benign. (author)

  19. Relevance of Target-Organ Lesions as Predictors of Mortality in Patients with Diabetes Mellitus

    International Nuclear Information System (INIS)

    Bianco, Henrique Tria; Izar, Maria Cristina; Fonseca, Henrique Andrade; Póvoa, Rui Manuel; Saraiva, José Francisco; Forti, Adriana; Jardim, Paulo Cesar B. V.; Introcaso, Luis; Yugar-Toledo, Juan; Xavier, Hermes Tóros; Faludi, André Arpad; Fonseca, Francisco A. H.

    2014-01-01

    Patients with diabetes are in extract higher risk for fatal cardiovascular events. To evaluate major predictors of mortality in subjects with type 2 diabetes. A cohort of 323 individuals with type 2 diabetes from several regions of Brazil was followed for a long period. Baseline electrocardiograms, clinical and laboratory data obtained were used to determine hazard ratios (HR) and confidence interval (CI) related to cardiovascular and total mortality. After 9.2 years of follow-up (median), 33 subjects died (17 from cardiovascular causes). Cardiovascular mortality was associated with male gender; smoking; prior myocardial infarction; long QTc interval; left ventricular hypertrophy; and eGFR <60 mL/min. These factors, in addition to obesity, were predictors of total mortality. Cardiovascular mortality was adjusted for age and gender, but remained associated with: smoking (HR = 3.8; 95% CI 1.3-11.8; p = 0.019); prior myocardial infarction (HR = 8.5; 95% CI 1.8-39.9; p = 0.007); eGFR < 60 mL/min (HR = 9.5; 95% CI 2.7-33.7; p = 0.001); long QTc interval (HR = 5.1; 95% CI 1.7-15.2; p = 0.004); and left ventricular hypertrophy (HR = 3.5; 95% CI 1.3-9.7; p = 0.002). Total mortality was associated with obesity (HR = 2.3; 95% CI 1.1-5.1; p = 0.030); smoking (HR = 2.5; 95% CI 1.0-6.1; p = 0.046); prior myocardial infarction (HR = 3.1; 95% CI 1.4-6.1; p = 0.005), and long QTc interval (HR = 3.1; 95% CI 1.4-6.1; p = 0.017). Biomarkers of simple measurement, particularly those related to target-organ lesions, were predictors of mortality in subjects with type 2 diabetes

  20. Relevance of Target-Organ Lesions as Predictors of Mortality in Patients with Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Henrique Tria Bianco

    2014-10-01

    Full Text Available Background: Patients with diabetes are in extract higher risk for fatal cardiovascular events. Objective: To evaluate major predictors of mortality in subjects with type 2 diabetes. Methods: A cohort of 323 individuals with type 2 diabetes from several regions of Brazil was followed for a long period. Baseline electrocardiograms, clinical and laboratory data obtained were used to determine hazard ratios (HR and confidence interval (CI related to cardiovascular and total mortality. Results: After 9.2 years of follow-up (median, 33 subjects died (17 from cardiovascular causes. Cardiovascular mortality was associated with male gender; smoking; prior myocardial infarction; long QTc interval; left ventricular hypertrophy; and eGFR <60 mL/min. These factors, in addition to obesity, were predictors of total mortality. Cardiovascular mortality was adjusted for age and gender, but remained associated with: smoking (HR = 3.8; 95% CI 1.3-11.8; p = 0.019; prior myocardial infarction (HR = 8.5; 95% CI 1.8-39.9; p = 0.007; eGFR < 60 mL/min (HR = 9.5; 95% CI 2.7-33.7; p = 0.001; long QTc interval (HR = 5.1; 95% CI 1.7-15.2; p = 0.004; and left ventricular hypertrophy (HR = 3.5; 95% CI 1.3-9.7; p = 0.002. Total mortality was associated with obesity (HR = 2.3; 95% CI 1.1-5.1; p = 0.030; smoking (HR = 2.5; 95% CI 1.0-6.1; p = 0.046; prior myocardial infarction (HR = 3.1; 95% CI 1.4-6.1; p = 0.005, and long QTc interval (HR = 3.1; 95% CI 1.4-6.1; p = 0.017. Conclusions: Biomarkers of simple measurement, particularly those related to target-organ lesions, were predictors of mortality in subjects with type 2 diabetes.

  1. Relevance of Target-Organ Lesions as Predictors of Mortality in Patients with Diabetes Mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Henrique Tria, E-mail: henriquetria@uol.com.br; Izar, Maria Cristina; Fonseca, Henrique Andrade; Póvoa, Rui Manuel [Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil); Saraiva, José Francisco [Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP (Brazil); Forti, Adriana [Centro de Diabetes e Hipertensão de Fortaleza, Fortaleza, CE (Brazil); Jardim, Paulo Cesar B. V. [Universidade Federal de Goiânia, Goiânia, GO (Brazil); Introcaso, Luis [Centro de Investigação Clínica de Brasília, Brasília, DF (Brazil); Yugar-Toledo, Juan [Escola de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Xavier, Hermes Tóros [Centro de Investigação Clínica de Santos, Santos, SP (Brazil); Universidade de São Paulo (USP), São Paulo, SP (Brazil); Faludi, André Arpad [Instituto Dante Pazzanese de Cardiologia, São Paulo, SP (Brazil); Fonseca, Francisco A. H. [Universidade Federal de São Paulo (Unifesp), São Paulo, SP (Brazil)

    2014-10-15

    Patients with diabetes are in extract higher risk for fatal cardiovascular events. To evaluate major predictors of mortality in subjects with type 2 diabetes. A cohort of 323 individuals with type 2 diabetes from several regions of Brazil was followed for a long period. Baseline electrocardiograms, clinical and laboratory data obtained were used to determine hazard ratios (HR) and confidence interval (CI) related to cardiovascular and total mortality. After 9.2 years of follow-up (median), 33 subjects died (17 from cardiovascular causes). Cardiovascular mortality was associated with male gender; smoking; prior myocardial infarction; long QTc interval; left ventricular hypertrophy; and eGFR <60 mL/min. These factors, in addition to obesity, were predictors of total mortality. Cardiovascular mortality was adjusted for age and gender, but remained associated with: smoking (HR = 3.8; 95% CI 1.3-11.8; p = 0.019); prior myocardial infarction (HR = 8.5; 95% CI 1.8-39.9; p = 0.007); eGFR < 60 mL/min (HR = 9.5; 95% CI 2.7-33.7; p = 0.001); long QTc interval (HR = 5.1; 95% CI 1.7-15.2; p = 0.004); and left ventricular hypertrophy (HR = 3.5; 95% CI 1.3-9.7; p = 0.002). Total mortality was associated with obesity (HR = 2.3; 95% CI 1.1-5.1; p = 0.030); smoking (HR = 2.5; 95% CI 1.0-6.1; p = 0.046); prior myocardial infarction (HR = 3.1; 95% CI 1.4-6.1; p = 0.005), and long QTc interval (HR = 3.1; 95% CI 1.4-6.1; p = 0.017). Biomarkers of simple measurement, particularly those related to target-organ lesions, were predictors of mortality in subjects with type 2 diabetes.

  2. Promising molecular targets and biomarkers for male BPH and LUTS.

    Science.gov (United States)

    Gharaee-Kermani, Mehrnaz; Macoska, Jill A

    2013-12-01

    Benign prostatic hyperplasia (BPH) is a major health concern for aging men. BPH is associated with urinary voiding dysfunction and lower urinary tract symptoms (LUTS), which negatively affects quality of life. Surgical resection and medical approaches have proven effective for improving urinary flow and relieving LUTS but are not effective for all men and can produce adverse effects that require termination of the therapeutic regimen. Thus, there is a need to explore other therapeutic targets to treat BPH/LUTS. Complicating the treatment of BPH/LUTS is the lack of biomarkers to effectively identify pathobiologies contributing to BPH/LUTS or to gauge successful response to therapy. This review will briefly discuss current knowledge and will highlight new studies that illuminate the pathobiologies contributing to BPH/LUTS, potential new therapeutic strategies for successfully treating BPH/LUTS, and new approaches for better defining these pathobiologies and response to therapeutics through the development of biomarkers and phenotyping strategies.

  3. Molecular emissions from laser--solid-target interactions

    International Nuclear Information System (INIS)

    Greig, J.R.

    1977-01-01

    When a high-power Nd/glass laser pulse is incident on a polyethylene target, a bright plasma plume is created. Subsequently, a cloud of un-ionized gas is formed which contains 10--100 times the amount of material in the plasma plume. This gas cloud is cold (expansion velocity approx.10 5 cm/sec) and dense (n> or approx. =10 19 ). It is shown to contain diatomic molecules of carbon C 2 by heating the core of the cloud with the pulse from a 1-kJ TEA CO 2 laser. Then, the C 2 molecules in the cold outer regions of the cloud are seen in absorption on the light emitted by the hot core

  4. Brain indices of nicotine's effects on attentional bias to smoking and emotional pictures and to task-relevant targets.

    Science.gov (United States)

    Gilbert, David G; Sugai, Chihiro; Zuo, Yantao; Rabinovich, Norka E; McClernon, F Joseph; Froeliger, Brett

    2007-03-01

    Aversive and smoking-related stimuli are related to smoking urges and relapse and can be potent distractors of selective attention. It has been suggested that the beneficial effect of nicotine replacement therapy may be mediated partly by the ability of nicotine to reduce distraction by such stimuli and thereby to facilitate attention to task-relevant stimuli. The present study tested the hypothesis that nicotine reduces distraction by aversive and smoking-related stimuli as indexed by the parietal P3b brain response to a task-relevant target digit. We assessed the effect of nicotine on distraction by emotionally negative, positive, neutral, and smoking-related pictures immediately preceding target digits during a rapid visual information processing task in 16 smokers in a double-blind, counterbalanced, within-subjects design. The study included two experimental sessions. After overnight smoking deprivation (12+ hr), active nicotine patches were applied to participants during one of the sessions and placebo patches were applied during the other session. Nicotine enhanced P3b responses associated with target digits immediately subsequent to negative emotional pictures bilaterally and subsequent to smoking-related pictures only in the right hemisphere. No effects of nicotine were observed for P3bs subsequent to positive and neutral distractor pictures. Another measure of attention, contingent negative variation amplitude in anticipation of the target digits also was increased by nicotine, especially in the left hemisphere and at posterior sites. Together, these findings suggest that nicotine reduces the distraction by emotionally negative and smoking-related stimuli and promotes attention to task-related stimuli by modulating somewhat lateralized and task-specific neural networks.

  5. A Molecularly Targeted Theranostic Probe for Ovarian Cancer

    Science.gov (United States)

    Chen, Wenxue; Bardhan, Rizia; Bartels, Marc; Perez-Torres, Carlos; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer and consequently ovarian cancer has a high mortality rate. While HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be employed as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2 overexpressing and drug resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging (MRI) agent. Both immunofluorescence staining and MRI successfully demonstrate that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near infrared (NIR) laser result in selective destruction of cancer cells through photothermal ablation. We also demonstrate that NIR light therapy and the nanocomplexes by themselves are non-cytotoxic in vitro. To the best of our knowledge, this is the first demonstration of a successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image guided photo-thermal therapy of ovarian cancer as well as other HER2 overexpressing cancers. PMID:20371708

  6. Molecular Dynamics Insights into Water-Parylene C Interface: Relevance of Oxygen Plasma Treatment for Biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Golda-Cepa, M.; Kulig, W.; Cwiklik, Lukasz; Kotarba, A.

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16685-16693 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GA17-06792S Institutional support: RVO:61388955 Keywords : molecular dynamics * contact angle * surface free energy * parylene C * biomaterials oxygen plasma Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 7.504, year: 2016

  7. Molecular Dynamics Insights into Water-Parylene C Interface: Relevance of Oxygen Plasma Treatment for Biocompatibility

    Czech Academy of Sciences Publication Activity Database

    Golda-Cepa, M.; Kulig, W.; Cwiklik, Lukasz; Kotarba, A.

    2017-01-01

    Roč. 9, č. 19 (2017), s. 16685-16693 ISSN 1944-8244 Institutional support: RVO:61388963 Keywords : molecular dynamics * contact angle * surface free energy * parylene C * biomaterials oxygen plasma Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 7.504, year: 2016

  8. Molecular techniques for the identification and detection of microorganisms relevant for the food industry

    NARCIS (Netherlands)

    Klijn, N.

    1996-01-01

    The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely

  9. Exploring the molecular targets of dietary flavonoid fisetin in cancer.

    Science.gov (United States)

    Syed, Deeba N; Adhami, Vaqar Mustafa; Khan, Naghma; Khan, Mohammad Imran; Mukhtar, Hasan

    2016-10-01

    The last few decades have seen a resurgence of interest among the scientific community in exploring the efficacy of natural compounds against various human cancers. Compounds of plant origin belonging to different groups such as alkaloids, flavonoids and polyphenols evaluated for their cancer preventive effects have yielded promising data, thereby offering a potential therapeutic alternative against this deadly disease. The flavonol fisetin (3,3',4',7-tetrahydroxyflavone), present in fruits and vegetables such as strawberries, apple, cucumber, persimmon, grape and onion, was shown to possess anti-microbial, anti-inflammatory, anti-oxidant and more significantly anti-carcinogenic activity when assessed in diverse cell culture and animal model systems. The purpose of this review is to update and discuss key findings obtained till date from in vitro and in vivo studies on fisetin, with special focus on its anti-cancer role. The molecular mechanism(s) described in the observed growth inhibitory effects of fisetin in different cancer cell types is also summarized. Moreover, an attempt is made to delineate the direction of future studies that could lead to the development of fisetin as a potent chemopreventive/chemotherapeutic agent against cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets.

    Science.gov (United States)

    Krishnan, Anand; Duraikannu, Arul; Zochodne, Douglas W

    2016-02-01

    Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Le Li

    2016-01-01

    Full Text Available Astrocytes and microglia play crucial roles in the response to cerebral ischemia and are effective targets for stroke therapy in animal models. MicroRNAs (miRs are important posttranscriptional regulators of gene expression that function by inhibiting the translation of select target genes. In astrocytes, miR expression patterns regulate mitochondrial function in response to oxidative stress via targeting of Bcl2 and heat shock protein 70 family members. Mitochondria play an active role in microglial activation, and miRs regulate the microglial neuroinflammatory response. As endogenous miR expression patterns can be altered with exogenous mimics and inhibitors, miR-targeted therapies represent a viable intervention to optimize glial mitochondrial function and improve clinical outcome following cerebral ischemia. In the present article, we review the role that astrocytes and microglia play in neuronal function and fate following ischemic stress, discuss the relevance of mitochondria in the glial response to injury, and present current evidence implicating miRs as critical regulators in the glial mitochondrial response to cerebral ischemia.

  12. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  13. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  14. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  15. Curcumin and insulin resistance-Molecular targets and clinical evidences.

    Science.gov (United States)

    Jiménez-Osorio, Angélica Saraí; Monroy, Adriana; Alavez, Silvestre

    2016-11-12

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), the main component of the Indian spice turmeric, has been used in traditional medicine to improve diabetes and its comorbidities. Since the last two decades, scientific research has shown that in addition to its antioxidant properties, curcumin could also work as protein homeostasis regulator and it is able to modulate other intracellular pathways. Curcumin supplementation has been proposed to improve insulin resistance (IR) through the activation of the insulin receptor and its downstream pathways in several experimental models, pointing out that its clinical use may be a good and innocuous strategy to improve IR-related diseases. IR is associated with many diseases and syndromes like carbohydrate intolerance, diabetes, metabolic syndrome, and cardiovascular disease. Therefore, it is imperative to identify safe therapeutic interventions aimed to reduce side effects that could lead the patient to leave the treatment. To date, many clinical trials have been carried out using turmeric and curcumin to improve metabolic syndrome, carbohydrate intolerance, diabetes, and obesity in individuals with IR. Results so far are inconclusive because dose, time of treatment, and type of curcumin can change the study outcome significantly. However, there is some clinical evidence suggesting a beneficial effect of curcumin on IR. In this review, we discuss the factors that could influence curcumin effects in clinical trials aimed to improve IR and related diseases, and the conclusions that can be drawn from results obtained so far. © 2016 BioFactors, 42(6):561-580, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Molecular interpretation of ACTH-β-endorphin coaggregation: relevance to secretory granule biogenesis.

    Directory of Open Access Journals (Sweden)

    Srivastav Ranganathan

    Full Text Available Peptide/protein hormones could be stored as non-toxic amyloid-like structures in pituitary secretory granules. ACTH and β-endorphin are two of the important peptide hormones that get co-stored in the pituitary secretory granules. Here, we study molecular interactions between ACTH and β-endorphin and their colocalization in the form of amyloid aggregates. Although ACTH is known to be a part of ACTH-β-endorphin aggregate, ACTH alone cannot aggregate into amyloid under various plausible conditions. Using all atom molecular dynamics simulation we investigate the early molecular interaction events in the ACTH-β-endorphin system, β-endorphin-only system and ACTH-only system. We find that β-endorphin and ACTH formed an interacting unit, whereas negligible interactions were observed between ACTH molecules in ACTH-only system. Our data suggest that ACTH is not only involved in interaction with β-endorphin but also enhances the stability of mixed oligomers of the entire system.

  17. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  18. Targeting the treatment of drug abuse with molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Wynne K. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: wynne@bnl.gov; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2007-10-15

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences.

  19. Targeting the treatment of drug abuse with molecular imaging

    International Nuclear Information System (INIS)

    Schiffer, Wynne K.; Liebling, Courtney N.B.; Patel, Vinal; Dewey, Stephen L.

    2007-01-01

    Although imaging studies in and of themselves have significant contributions to the study of human behavior, imaging in drug abuse has a much broader agenda. Drugs of abuse bind to molecules in specific parts of the brain in order to produce their effects. Positron emission tomography (PET) provides a unique opportunity to track this process, capturing the kinetics with which an abused compound is transported to its site of action. The specific examples discussed here were chosen to illustrate how PET can be used to map the regional distribution and kinetics of compounds that may or may not have abuse liability. We also discussed some morphological and functional changes associated with drug abuse and different stages of recovery following abstinence. PET measurements of functional changes in the brain have also led to the development of several treatment strategies, one of which is discussed in detail here. Information such as this becomes more than a matter of academic interest. Such knowledge can provide the bases for anticipating which compounds may be abused and which may not. It can also be used to identify biological markers or changes in brain function that are associated with progression from drug use to drug abuse and also to stage the recovery process. This new knowledge can guide legislative initiatives on the optimal duration of mandatory treatment stays, promoting long-lasting abstinence and greatly reducing the societal burden of drug abuse. Imaging can also give some insights into potential pharmacotherapeutic targets to manage the reinforcing effects of addictive compounds, as well as into protective strategies to minimize their toxic consequences

  20. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    Science.gov (United States)

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  1. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses.

    Directory of Open Access Journals (Sweden)

    Rafael Sanjuán

    Full Text Available Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies.

  2. Properties of aqueous systems relevant to the SCWR via molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kallikragas, D. [Trent Univ., Dept. of Chemistry, Peterborough, Ontario (Canada); Guzonas, D. [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Svishchev, I., E-mail: isvishchev@trentu.ca [Trent Univ., Dept. of Chemistry, Peterborough, Ontario (Canada)

    2015-06-15

    Supercritical water (SCW) is the intended heat transfer fluid in the proposed GEN-IV supercritical water cooled reactor (SCWR). The oxidative environment poses challenges in choosing appropriate design materials and understanding the behaviour of SCW at the nanoscale within crevices of the passivation layer is needed for developing a control strategy to minimize corrosion. Molecular dynamics simulations have been employed to investigate molecular structure and diffusion of water and chloride in nanometer-spaced iron hydroxide surfaces. Results demonstrate that water is more likely to accumulate on the surface at low-density conditions. The effect of confinement on the water structure diminishes with as little as 20 Å of surface separation. Clustering and the accumulation of water at the surface imply that the SCWR will be most susceptible to pitting corrosion and stress corrosion cracking. A parameterized equation is provided that gives the diffusion coefficients of {sub O2}, H{sub 2}, and OH radical in high temperature and SCW. (author)

  3. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Science.gov (United States)

    Peng, Ruoqi; Sridhar, Sriram; Tyagi, Gaurav; Phillips, Jonathan E; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M; Kitson, Chris; Budd, David C; Fine, Jay S; Bauer, Carla M T; Stevenson, Christopher S

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  4. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for "active" disease.

    Directory of Open Access Journals (Sweden)

    Ruoqi Peng

    Full Text Available The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF, has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.

  5. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    Science.gov (United States)

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation.

    Science.gov (United States)

    Kashida, Hiromu; Yamaguchi, Kyohei; Hara, Yuichi; Asanuma, Hiroyuki

    2012-07-15

    In this study, we synthesized a simple but efficient quencher-free molecular beacon tethering 7-hydroxycoumarin on D-threoninol based on its pK(a) change. The pK(a) of 7-hydroxycoumarin in a single strand was determined as 8.8, whereas that intercalated in the duplex was over 10. This large pK(a) shift (more than 1.2) upon hybridization could be attributed to the anionic and hydrophobic microenvironment inside the DNA duplex. Because 7-hydroxycoumarin quenches its fluorescence upon protonation, the emission intensity of the duplex at pH 8.5 was 1/15 that of the single strand. We applied this quenching mechanism to the preparation of a quencher-free molecular beacon by introducing the dye into the middle of the stem part. In the absence of the target, the stem region formed a duplex and fluorescence was quenched. However, when the target was added, the molecular beacon opened and the dye was deprotonated. As a result, the emission intensity of the molecular beacon with the target was 10 times higher than that without the target. Accordingly, a quencher-free molecular beacon utilizing the pK(a) change was successfully developed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  8. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.

    Science.gov (United States)

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecular imaging has generated several candidate contrast agents. One multimodality platform, targeted perfluorocarbon (PFC) nanoparticles, is useful for noninvasive detection with US and MR, targeted drug delivery, and quantification.

  9. Molecular targets of omega 3 and conjugated linoleic fatty acids – micromanaging cellular response

    Directory of Open Access Journals (Sweden)

    Francesco eVisioli

    2012-02-01

    Full Text Available Essential fatty acids cannot be synthesized de novo by mammals and need to be ingested either with the diet or through the use of supplements/functional foods to ameliorate cardiovascular prognosis. This review focus on the molecular targets of omega 3 fatty acids and CLA, as paradigmatic molecules that can be explored both as nutrients and as pharmacological agents, especially as related to cardioprotection. In addition, we indicate novel molecular targets, namely microRNAs that might contribute to the observed biological activities of such essential fatty acids.

  10. Molecular Imaging to Predict Response to Targeted Therapies in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ingrid Leguerney

    2017-01-01

    Full Text Available Molecular magnetic resonance imaging targeted to an endothelial integrin involved in neoangiogenesis was compared to DCE-US and immunochemistry to assess the early response of three different therapeutic agents in renal cell carcinoma. Human A498 renal cells carcinoma was subcutaneously inoculated into 24 nude mice. Mice received either phosphate-buffered saline solution, sunitinib, everolimus, or bevacizumab during 4 days. DCE-US and molecular MRI targeting αvβ3 were performed at baseline and 4 days after treatment initiation. PI, AUC, relaxation rate variations ΔR2⁎, and percentage of vessels area quantified on CD31-stained microvessels were compared. Significant decreases were observed for PI and AUC parameters measured by DCE-US for bevacizumab group as early as 4 days, whereas molecular αvβ3-targeted MRI was able to detect significant changes in both bevacizumab and everolimus groups. Percentage of CD31-stained microvessels was significantly correlated with DCE-US parameters, PI (R=0.87, p=0.0003 and AUC (R=0.81, p=0.0013. The percentage of vessel tissue area was significantly reduced (p<0.01 in both sunitinib and bevacizumab groups. We report an early detection of neoangiogenesis modification after induction of targeted therapies, using DCE-US or αvβ3-targeted MRI. We consider these outcomes should encourage clinical trial developments to further evaluate the potential of this molecular MRI technique.

  11. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome.

    Science.gov (United States)

    Burkhart, Keith K; Abernethy, Darrell; Jackson, David

    2015-06-01

    Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was also analyzed for an internal comparison of the drugs most highly associated with SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and sodium channel 2 alpha were identified as disproportionately associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9 are disproportionately represented as metabolizing enzymes of the drugs associated with SJS adverse event reports. Multidrug resistance protein 1 (MRP-1), organic anion transporter 1 (OAT1), and PEPT2 were also identified and are highly associated with the transport of these drugs. A detailed review of the molecular targets identifies important roles for these targets in immune response. The association with CYP metabolizing enzymes suggests that reactive metabolites and oxidative stress may have a contributory role. Drug transporters may enhance intracellular tissue concentrations and also have vital physiologic roles that impact keratinocyte proliferation and survival. Data mining FAERS may be used to hypothesize mechanisms for adverse drug events by identifying molecular targets that are highly associated with drug-induced adverse events. The information gained may contribute to systems biology disease models.

  12. Diagnostic yield of molecular autopsy in patients with sudden arrhythmic death syndrome using targeted exome sequencing

    DEFF Research Database (Denmark)

    Nunn, Laurence M; Lopes, Luis R; Syrris, Petros

    2016-01-01

    AIMS: The targeted genetic screening of Sudden Arrhythmic Death Syndrome (SADS) probands in a molecular autopsy has a diagnostic yield of up to 35%. Exome sequencing has the potential to improve this yield. The primary aim of this study is to examine the feasibility and diagnostic utility...... of targeted exome screening in SADS victims, utilizing familial clinical screening whenever possible. METHODS AND RESULTS: To determine the feasibility and diagnostic yield of targeted exome sequencing deoxyribonucleic acid (DNA) was isolated from 59 SADS victims (mean age 25 years, range 1-51 years...... previously published rare (0.02-0.5%) candidate mutations-a total yield of 29%. Co-segregation fully confirmed two private SCN5A Na channel mutations. Variants of unknown significance were detected in a further 34% of probands. CONCLUSION: Molecular autopsy using targeted exome sequencing has a relatively...

  13. Reversible Masking Using Low-Molecular-Weight Neutral Lipids to Achieve Optimal-Targeted Delivery

    Directory of Open Access Journals (Sweden)

    Nancy Smyth Templeton

    2012-01-01

    Full Text Available Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic.

  14. A molecular hybrid polyoxometalate-organometallic moieties and its relevance to supercapacitors in physiological electrolytes

    Science.gov (United States)

    Chinnathambi, Selvaraj; Ammam, Malika

    2015-06-01

    Supercapacitors operating in physiological electrolytes are of great relevance for both their environmentally friendly aspect as well as the possibility to be employed for powering implantable microelectronic devices using directly biological fluids as electrolytes. Polyoxometalate (POMs) have been proven to be useful for supercapacitors in acidic media. However, in neutral pH, POMs are usually not stable. One relevant alternative is to stabilize POMs by pairing them with organic moieties to form hybrids. In this study, we combined K6P2Mo18O62·12H2O (P2Mo18) with Ru(bpy)3Cl2.6H2O (Ru(bpy)). The synthesis was carried out with and without the mild reducing agent KI. The hybrids were characterized by CHN analysis, TEM, FT-IR, XRD, TGA and cyclic voltammetry. CHN elemental analysis revealed that one mole [P2Mo18O62]6- is paired with 3 mol [Ru(bpy)3]2+ to form [Ru(bpy)3]3PMo18O62·nH2O. With KI present, [P2Mo18O62]6- is linked to 3.33 mol to yield [Ru(bpy)3]3.33PMo18O62·mH2O. Excess of Ru(bpy) in [Ru(bpy)3]3.33PMo18O62·mH2O was further confirmed by TEM, FT-IR, XRD, TGA and cyclic voltammetry. In turn, hybrid composition is found to strongly influence the supercapacitor behavior. The hybrid rich in Ru(bpy) is found to perform better for supercapacitors in physiological electrolytes. 125 F g-1 and 68 F g-1 are the capacitance values obtained with [Ru(bpy)3]3.33PMo18O62·mH2O and [Ru(bpy)3]3PMo18O62·nH2O, respectively. In terms of specific energy densities, 3.5 Wh kg-1 and 2 Wh kg-1 were obtained for both hybrid simultaneously. The difference in supercapacitor performance between both hybrids is also noticed in impedance spectroscopy which showed that [Ru(bpy)3]3.33PMo18O62·mH2O has lower electron transfer resistance if compared to [Ru(bpy)3]3PMo18O62·nH2O. Finally, if compared of parent K6P2Mo18O62·12H2O, the stability of both hybrids is found to be highly improved.

  15. Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study

    Directory of Open Access Journals (Sweden)

    Reuveni T

    2011-11-01

    Full Text Available Tobi Reuveni1, Menachem Motiei1, Zimam Romman2, Aron Popovtzer3, Rachela Popovtzer11Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-ilan University, Ramat Gan, 2GE HealthCare, Tirat Hacarmel, 3Department of Otorhinolaryngology, Head and Neck Surgery and Onology, Davidoff Center, Rabin Medical Center, Beilinson Campus, Petah Tiqwa, IsraelAbstract: In recent years, advances in molecular biology and cancer research have led to the identification of sensitive and specific biomarkers that associate with various types of cancer. However, in vivo cancer detection methods with computed tomography, based on tracing and detection of these molecular cancer markers, are unavailable today. This paper demonstrates in vivo the feasibility of cancer diagnosis based on molecular markers rather than on anatomical structures, using clinical computed tomography. Anti-epidermal growth factor receptor conjugated gold nanoparticles (30 nm were intravenously injected into nude mice implanted with human squamous cell carcinoma head and neck cancer. The results clearly demonstrate that a small tumor, which is currently undetectable through anatomical computed tomography, is enhanced and becomes clearly visible by the molecularly-targeted gold nanoparticles. It is further shown that active tumor targeting is more efficient and specific than passive targeting. This noninvasive and nonionizing molecular cancer imaging tool can facilitate early cancer detection and can provide researchers with a new technique to investigate in vivo the expression and activity of cancer-related biomarkers and molecular processes.Keywords: functional computed tomography, molecular imaging, gold nanoparticles, biologically targeted in vivo imaging, contrast agents

  16. Ethnic food perspective of North Dakota Common Emmer Wheat and relevance for health benefits targeting type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ashish Christopher

    2018-03-01

    Full Text Available Background: Ancient grains with ethnic food origins are gaining renewed interest in contemporary food design due to its balanced nutritional profiles and health benefits. The “North Dakota Common Emmer Wheat” (Triticum dicoccum, a tetraploid species, had ethnic origins with German immigrants from Russia migrating to North Dakota in late 19th century. Targeting such grains with ethnic origins that are rich in fibers, amino acids, minerals, and other bioactive compounds has significant merit for advancing health benefits against emerging diet-linked chronic diseases. Based on this rationale, phenolic-linked antioxidant and antihyperglycemic properties of North Dakota Common Emmer Wheat was compared with those of other commercial wheat cultivars in order to integrate it into a health-targeted food design based on past ethnic food insights. Methods: Aqueous extracts of the North Dakota Common Emmer Wheat (with and without hull and two other commercial wheat varieties, Barlow and Coteau, were analyzed before and after milling. The total soluble phenolic content, phenolic acid profile, protein content, antioxidant activity, type 2 diabetes relevant α-amylase, and α-glucosidase enzyme inhibitory activities were determined using in vitro assay models. Results: North Dakota Common Emmer Wheat with hull had highest total soluble phenolic content and associated antioxidant and antihyperglycemic properties (before and after milling when compared to the other commercial wheat cultivars. Conclusion: Results indicated that North Dakota Common Emmer Wheat with hull can be integrated into a health-targeted contemporary food design as a part of dietary support against chronic hyperglycemia and oxidative stress associated with early stages type 2 diabetes. Keywords: Antioxidant, Enzyme inhibitors, Ethnic wheat, North Dakota Common Emmer, Phenolics, Type 2 diabetes

  17. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health

    International Nuclear Information System (INIS)

    Hernández, Antonio F.; Parrón, Tesifón; Tsatsakis, Aristidis M.; Requena, Mar; Alarcón, Raquel; López-Guarnido, Olga

    2013-01-01

    Highlights: ► Toxic effects of pesticide mixtures can be independent, dose addition or interaction. ► Metabolic interactions involve inhibition or induction of detoxifying enzymes. ► Organophosphates can potentiate pyrethroid, carbaryl and triazine toxicity. ► Synergism occurs when two active pesticides elicit greater than additive toxicity. ► Endocrine disruptors have the potential for additivity rather than synergism. - Abstract: Pesticides almost always occur in mixtures with other ones. The toxicological effects of low-dose pesticide mixtures on the human health are largely unknown, although there are growing concerns about their safety. The combined toxicological effects of two or more components of a pesticide mixture can take one of three forms: independent, dose addition or interaction. Not all mixtures of pesticides with similar chemical structures produce additive effects; thus, if they act on multiple sites their mixtures may produce different toxic effects. The additive approach also fails when evaluating mixtures that involve a secondary chemical that changes the toxicokinetics of the pesticide as a result of its increased activation or decreased detoxification, which is followed by an enhanced or reduced toxicity, respectively. This review addresses a number of toxicological interactions of pesticide mixtures at a molecular level. Examples of such interactions include the postulated mechanisms for the potentiation of pyrethroid, carbaryl and triazine herbicides toxicity by organophosphates; how the toxicity of some organophosphates can be potentiated by other organophosphates or by previous exposure to organochlorines; the synergism between pyrethroid and carbamate compounds and the antagonism between triazine herbicides and prochloraz. Particular interactions are also addressed, such as those of pesticides acting as endocrine disruptors, the cumulative toxicity of organophosphates and organochlorines resulting in estrogenic effects and the

  18. An Exploration of Molecular Correlates Relevant to Radiation Combined Skin-Burn Trauma.

    Directory of Open Access Journals (Sweden)

    Aminul Islam

    Full Text Available Exposure to high dose radiation in combination with physical injuries such as burn or wound trauma can produce a more harmful set of medical complications requiring specialist interventions. Currently these interventions are unavailable as are the precise biomarkers needed to help both accurately assess and treat such conditions. In the present study, we tried to identify and explore the possible role of serum exosome microRNA (miRNA signatures as potential biomarkers for radiation combined burn injury (RCBI.Female B6D2F1/J mice were assigned to four experimental groups (n = 6: sham control (SHAM, burn injury (BURN, radiation injury (RI and combined radiation skin burn injury (CI. We performed serum multiplex cytokine analysis and serum exosome miRNA expression profiling to determine novel miRNA signatures and important biological pathways associated with radiation combined skin-burn trauma.Serum cytokines, IL-5 and MCP-1, were significantly induced only in CI mice (p<0.05. From 890 differentially expressed miRNAs identified, microarray analysis showed 47 distinct miRNA seed sequences significantly associated with CI mice compared to SHAM control mice (fold change ≥ 1.2, p<0.05. Furthermore, only two major miRNA seed sequences (miR-690 and miR-223 were validated to be differentially expressed for CI mice specifically (fold change ≥ 1.5, p<0.05.Serum exosome miRNA signature data of adult mice, following RCBI, provides new insights into the molecular and biochemical pathways associated with radiation combined skin-burn trauma in vivo.

  19. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design.

    Science.gov (United States)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M

    2016-05-05

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared - non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  20. Individualization of anticancer therapy; molecular targets of novel drugs in oncology

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2012-11-01

    Full Text Available Deregulation of cellular signal transduction, caused by gene mutations, has been recognized as a basic factor of cancer initiation, promotion and progression. Thus, the ability to control the activity of overstimulated signal molecules by the use of appropriate inhibitors became the idea of targeted cancer therapy, which has provided an effective tool to normalize the molecular disorders in malignant cells and to treat certain types of cancer. The molecularly targeted drugs are divided into two major pharmaceutical classes: monoclonal antibodies and small-molecule kinase inhibitors. This review presents a summary of their characteristics, analyzing their chemical structures, specified molecular targets, mechanisms of action and indications for use. Also the molecules subjected to preclinical trials or phase I, II and III clinical trials evaluating their efficiency and safety are presented. Moreover, the article discusses further perspectives for development of targeted therapies focusing on three major directions: systematic searching and discovery of new targets that are oncogenic drivers, improving the pharmacological properties of currently known drugs, and developing strategies to overcome drug resistance. Finally, the role of proper pharmacodiagnostics as a key to rational anticancer therapy has been emphasized since the verification of reliable predictive biomarkers is a basis of individualized medicine in oncology. 

  1. Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials

    International Nuclear Information System (INIS)

    Rooij, Dagmar de

    2010-01-01

    In a thermonuclear reactor fusion between hydrogen isotopes takes place, producing helium and energy. The so-called divertor is the part of the fusion reactor vessel where the plasma is neutralized in order to exhaust the helium. The surface plates of the divertor are subjected to high heat loads and high fluxes of energetic hydrogen and helium. In the next generation fusion device - the tokamak ITER - the expected conditions at the plates are particle fluxes exceeding 10 24 per second and square metre, particle energies ranging from 1 to 100 eV and an average heat load of 10 MW per square metre. Two materials have been identified as candidates for the ITER divertor plates: carbon and tungsten. Since there are currently no fusion devices that can create these harsh conditions, it is unknown how the materials will behave in terms of erosion and hydrogen retention. To gain more insight in the physical processes under these conditions molecular dynamics simulations have been conducted. Since diamond has been proposed as possible plasma facing material, we have studied erosion and hydrogen retention in diamond and amorphous hydrogenated carbon (a-C:H). As in experiments, diamond shows a lower erosion yield than a-C:H, however the hydrogen retention in diamond is much larger than in a-C:H and also hardly depending on the substrate temperature. This implies that simple heating of the surface is not sufficient to retrieve the hydrogen from diamond material, whereas a-C:H readily releases the retained hydrogen. So, in spite of the higher erosion yield carbon material other than diamond seems more suitable. Experiments suggest that the erosion yield of carbon material decreases with increasing flux. This was studied in our simulations. The results show no flux dependency, suggesting that the observed reduction is not a material property but is caused by external factors as, for example, redeposition of the erosion products. Our study of the redeposition showed that the

  2. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Lionel Kankeu Fonkoua

    2018-03-01

    Full Text Available Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC. Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2 amplification and programmed death-ligand 1 (PD-L1 expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS on molecular profile (MP-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.

  3. Molecular Characterization of Gastric Carcinoma: Therapeutic Implications for Biomarkers and Targets.

    Science.gov (United States)

    Kankeu Fonkoua, Lionel; Yee, Nelson S

    2018-03-09

    Palliative chemotherapy is the mainstay of treatment of advanced gastric carcinoma (GC). Monoclonal antibodies including trastuzumab, ramucirumab, and pembrolizumab have been shown to provide additional benefits. However, the clinical outcomes are often unpredictable and they can vary widely among patients. Currently, no biomarker is available for predicting treatment response in the individual patient except human epidermal growth factor receptor 2 (HER2) amplification and programmed death-ligand 1 (PD-L1) expression for effectiveness of trastuzumab and pembrolizumab, respectively. Multi-platform molecular analysis of cancer, including GC, may help identify predictive biomarkers to guide selection of therapeutic agents. Molecular classification of GC by The Cancer Genome Atlas Research Network and the Asian Cancer Research Group is expected to identify therapeutic targets and predictive biomarkers. Complementary to molecular characterization of GC is molecular profiling by expression analysis and genomic sequencing of tumor DNA. Initial analysis of patients with gastroesophageal carcinoma demonstrates that the ratio of progression-free survival (PFS) on molecular profile (MP)-based treatment to PFS on treatment prior to molecular profiling exceeds 1.3, suggesting the potential value of MP in guiding selection of individualized therapy. Future strategies aiming to integrate molecular classification and profiling of tumors with therapeutic agents for achieving the goal of personalized treatment of GC are indicated.

  4. Phosphoproteomic analysis for the identification of predictive molecular factors and new molecular targets in breast, colorectal, ovary, and lung cancer

    International Nuclear Information System (INIS)

    Belluco, C.; De Paoli, P.

    2009-01-01

    Neoadjuvant chemotherapy is a standard therapeutic approach for several types of locally advanced and metastatic tumors. Molecular factors predictive of response to therapy are highly needed for exploiting the potential benefit of properative chemotherapy. Moreover, neoadjuvant chemotherapy represents an ideal clinical model for studying predictive factors since it allows to obtain pre-treatment tissue biopsies which can be analyzed and the results compared to clinical and pathological response. Protein kinases represent some of the most important drug targets in medicine today and their aberrant activation are involved in many disease processes including cancer development and progression

  5. Preparation of actinide targets by molecular plating for coulomb excitation studies at ATLAS

    CERN Document Server

    Greene, J P; Ahmad, I

    1999-01-01

    Molecular plating is now routinely used to prepare sources and targets of actinide elements. Although the technique is simple and fairly reproducible, because of the radioactive nature of the targets, it is very useful to record various parameters in the preparation process. At Argonne, approx 200 mu g/cm sup 2 thick targets of Pu and Cm were required for Coulomb Excitation (COULEX) studies with the Argonne-Notre Dame boron germanate (BGO) gamma-ray facility and later with the GAMMASPHERE. These targets were plated on 50 mg/cm sup 2 Au backings and were covered with 150 mu g/cm sup 2 Au foil. Targets of sup 2 sup 3 sup 9 Pu, sup 2 sup 4 sup 0 Pu, sup 2 sup 4 sup 2 Pu, sup 2 sup 4 sup 4 Pu and sup 2 sup 4 sup 8 Cm were prepared by dissolving the material in isopropyl alcohol and electroplating the actinide ions by applying 600 V. The amount of these materials on the target was determined by alpha particle counting and gamma-ray counting. Details of the molecular plating and counting will be discussed.

  6. Molecular Diagnostics, Targeted Therapy, and the Indication for Allogeneic Stem Cell Transplantation in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Anthony Oyekunle

    2011-01-01

    Full Text Available In recent years, the panel of known molecular mutations in acute lymphoblastic leukemia (ALL has been continuously increased. In Philadelphia-positive ALL, deletions of the IKZF1 gene were identified as prognostically adverse factors. These improved insights in the molecular background and the clinical heterogeneity of distinct cytogenetic subgroups may allow most differentiated therapeutic decisions, for example, with respect to the indication to allogeneic HSCT within genetically defined ALL subtypes. Quantitative real-time PCR allows highly sensitive monitoring of the minimal residual disease (MRD load, either based on reciprocal gene fusions or immune gene rearrangements. Molecular diagnostics provided the basis for targeted therapy concepts, for example, combining the tyrosine kinase inhibitor imatinib with chemotherapy in patients with Philadelphia-positive ALL. Screening for BCR-ABL1 mutations in Philadelphia-positive ALL allows to identify patients who may benefit from second-generation tyrosine kinase inhibitors or from novel compounds targeting the T315I mutation. Considering the central role of the molecular techniques for the management of patients with ALL, efforts should be made to facilitate and harmonize immunophenotyping, cytogenetics, and molecular mutation screening. Furthermore, the potential of high-throughput sequencing should be evaluated for diagnosis and follow-up of patients with B-lineage ALL.

  7. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    International Nuclear Information System (INIS)

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research

  8. Pharmacophore Modeling and Molecular Docking Studies on Pinus roxburghii as a Target for Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Pawan Kaushik

    2014-01-01

    Full Text Available The present study attempts to establish a relationship between ethnopharmacological claims and bioactive constituents present in Pinus roxburghii against all possible targets for diabetes through molecular docking and to develop a pharmacophore model for the active target. The process of molecular docking involves study of different bonding modes of one ligand with active cavities of target receptors protein tyrosine phosphatase 1-beta (PTP-1β, dipeptidyl peptidase-IV (DPP-IV, aldose reductase (AR, and insulin receptor (IR with help of docking software Molegro virtual docker (MVD. From the results of docking score values on different receptors for antidiabetic activity, it is observed that constituents, namely, secoisoresinol, pinoresinol, and cedeodarin, showed the best docking results on almost all the receptors, while the most significant results were observed on AR. Then, LigandScout was applied to develop a pharmacophore model for active target. LigandScout revealed that 2 hydrogen bond donors pointing towards Tyr 48 and His 110 are a major requirement of the pharmacophore generated. In our molecular docking studies, the active constituent, secoisoresinol, has also shown hydrogen bonding with His 110 residue which is a part of the pharmacophore. The docking results have given better insights into the development of better aldose reductase inhibitor so as to treat diabetes related secondary complications.

  9. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Sneha B Bansode

    Full Text Available Alzheimer's disease (AD is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE, β-secretase (BACE-1, and amyloid β (Aβ aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment.

  10. Polymerase chain reaction with two molecular targets in mucosal leishmaniasis' diagnosis: a validation study

    Directory of Open Access Journals (Sweden)

    Clemencia Ovalle Bracho

    2007-08-01

    Full Text Available We validated the polymerase chain reaction (PCR with a composite reference standard in 61 patients clinically suspected of having mucosal leishmaniasis, 36 of which were cases and 25 were non-cases according to this reference standard. Patient classification and test application were carried out independently by two blind observers. One pair of primers was used to amplify a fragment of 120 bp in the conserved region of kDNA and another pair was used to amplify the internal transcript spacers (ITS rDNA. PCR showed 68.6% (95% CI 59.2-72.6 sensitivity and 92% (95% CI 78.9-97.7 specificity; positive likelihood ratio: 8.6 (95% CI 2.8-31.3 and negative likelihood ratio: 0.3 (95% CI 0.3-0.5, when kDNA molecular target was amplified. The test performed better on sensitivity using this target compared to the ITS rDNA molecular target which showed 40% (95% CI 31.5-42.3 sensitivity and 96% (95% CI 84.1-99.3 specificity; positive likelihood ratio: 10 (95% CI 2.0-58.8 and negative likelihood ratio: 0.6 (95% CI 0.6-0.8. The inter-observer agreement was excellent for both tests. Based upon results obtained and due to low performance of conventional methods for diagnosing mucosal leishmaniasis, we consider PCR with kDNA as molecular target is a useful diagnostic test and the ITS rDNA molecular target is useful when the aim is to identify species.

  11. Direct molecular mimicry enables off-target cardiovascular toxicity by an enhanced affinity TCR designed for cancer immunotherapy.

    Science.gov (United States)

    Raman, Marine C C; Rizkallah, Pierre J; Simmons, Ruth; Donnellan, Zoe; Dukes, Joseph; Bossi, Giovanna; Le Provost, Gabrielle S; Todorov, Penio; Baston, Emma; Hickman, Emma; Mahon, Tara; Hassan, Namir; Vuidepot, Annelise; Sami, Malkit; Cole, David K; Jakobsen, Bent K

    2016-01-13

    Natural T-cell responses generally lack the potency to eradicate cancer. Enhanced affinity T-cell receptors (TCRs) provide an ideal approach to target cancer cells, with emerging clinical data showing significant promise. Nevertheless, the risk of off target reactivity remains a key concern, as exemplified in a recent clinical report describing fatal cardiac toxicity, following administration of MAGE-A3 specific TCR-engineered T-cells, mediated through cross-reactivity with an unrelated epitope from the Titin protein presented on cardiac tissue. Here, we investigated the structural mechanism enabling TCR cross-recognition of MAGE-A3 and Titin, and applied the resulting data to rationally design mutants with improved antigen discrimination, providing a proof-of-concept strategy for altering the fine specificity of a TCR towards an intended target antigen. This study represents the first example of direct molecular mimicry leading to clinically relevant fatal toxicity, mediated by a modified enhanced affinity TCR designed for cancer immunotherapy. Furthermore, these data demonstrate that self-antigens that are expressed at high levels on healthy tissue should be treated with extreme caution when designing immuno-therapeutics.

  12. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  13. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    Science.gov (United States)

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  14. Utilizing Endoscopic Ultrasound-Guided Fine Needle Aspiration in Identifying Molecular Targets for Pancreatic Cancer

    OpenAIRE

    Onyekachi Henry Ogbonna; Muhammad Wasif Saif

    2013-01-01

    Pancreatic cancer remains a devastating disease, with poor survival rates and high recurrence rates with current treatmentregimens. Over the years we have come to understand the complex biology of this cancer, involving cross-talking signalingpathways that proffers resistance to current therapy. Several molecularly targeted agents remain in development. At the2013 American Society of Clinical Oncology (ASCO) Annual Meeting, an abstract (#4051) was presented which exploredusing endoscopic ultr...

  15. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation.

    Science.gov (United States)

    Zsuga, Judit; Tajti, Gabor; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf

    2016-05-01

    Interventions focusing on the prevention and treatment of chronic non-communicable diseases are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic system are tightly associated with reward-related processes and motivation, their dysfunction may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron function by influencing some receptors, mesocortico-limbic system dysfunction was associated with elevation of metabolic set-point leading to hedonic over-eating. Although there is some empirical evidence, precise molecular mechanism for linking physical inactivity and mesocortico-limbic dysfunction per se seems to be missing; identification of which may contribute to higher success rates for interventions targeting lifestyle changes pertaining to physical activity. In the current article, we compile evidence in support of a link between exercise and the mesocortico-limbic system by elucidating interactions on the axis of muscle - irisin - brain derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin stirred considerable interest, when its ability to induce browning of white adipose tissue parallel to increasing thermogenesis was discovered. Furthermore, it may also play a role in the regulation of behavior given it readily enters the central nervous system, where it induces BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental area and the hippocampus. BDNF is a

  16. Molecular Connectivity Predefines Polypharmacology: Aliphatic Rings, Chirality, and sp3 Centers Enhance Target Selectivity

    Directory of Open Access Journals (Sweden)

    Stefania Monteleone

    2017-08-01

    Full Text Available Dark chemical matter compounds are small molecules that have been recently identified as highly potent and selective hits. For this reason, they constitute a promising class of possible candidates in the process of drug discovery and raise the interest of the scientific community. To this purpose, Wassermann et al. (2015 have described the application of 2D descriptors to characterize dark chemical matter. However, their definition was based on the number of reported positive assays rather than the number of known targets. As there might be multiple assays for one single target, the number of assays does not fully describe target selectivity. Here, we propose an alternative classification of active molecules that is based on the number of known targets. We cluster molecules in four classes: black, gray, and white compounds are active on one, two to four, and more than four targets respectively, whilst inactive compounds are found to be inactive in the considered assays. In this study, black and inactive compounds are found to have not only higher solubility, but also a higher number of chiral centers, sp3 carbon atoms and aliphatic rings. On the contrary, white compounds contain a higher number of double bonds and fused aromatic rings. Therefore, the design of a screening compound library should consider these molecular properties in order to achieve target selectivity or polypharmacology. Furthermore, analysis of four main target classes (GPCRs, kinases, proteases, and ion channels shows that GPCR ligands are more selective than the other classes, as the number of black compounds is higher in this target superfamily. On the other side, ligands that hit kinases, proteases, and ion channels bind to GPCRs more likely than to other target classes. Consequently, depending on the target protein family, appropriate screening libraries can be designed in order to minimize the likelihood of unwanted side effects early in the drug discovery process

  17. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data

    Directory of Open Access Journals (Sweden)

    Renata Bujak

    2016-07-01

    Full Text Available Non-targeted metabolomics constitutes a part of systems biology and aims to determine many metabolites in complex biological samples. Datasets obtained in non-targeted metabolomics studies are multivariate and high-dimensional due to the sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA without and with multiple testing correction as well as least absolute shrinkage and selection operator (LASSO were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction, selected 46 and 218 variables based on VIP criteria using Pareto and UV scaling, respectively. In the case of the PH study, 217 and 320 variables were selected based on VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built with multiple testing correction, selected 4 and 19 variables as statistically significant in terms of Pareto and UV scaling, respectively. For PH study, 14 and 18 variables were selected based on VIP criteria in terms of Pareto and UV scaling, respectively. Additionally, the concept and fundaments of the least absolute shrinkage and selection operator (LASSO with bootstrap procedure evaluating reproducibility of results, was demonstrated. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3% and 100%. However, apart from the popularity of PLS-DA and OPLS-DA methods in metabolomics, it should be highlighted that they do not control type I or type II error, but only arbitrarily establish a cut-off value for PLS-DA loadings

  18. From Molecular Classification to Targeted Therapeutics: The Changing Face of Systemic Therapy in Metastatic Gastroesophageal Cancer

    Directory of Open Access Journals (Sweden)

    Adrian Murphy

    2015-01-01

    Full Text Available Histological classification of adenocarcinoma or squamous cell carcinoma for esophageal cancer or using the Lauren classification for intestinal and diffuse type gastric cancer has limited clinical utility in the management of advanced disease. Germline mutations in E-cadherin (CDH1 or mismatch repair genes (Lynch syndrome were identified many years ago but given their rarity, the identification of these molecular alterations does not substantially impact treatment in the advanced setting. Recent molecular profiling studies of upper GI tumors have added to our knowledge of the underlying biology but have not led to an alternative classification system which can guide clinician’s therapeutic decisions. Recently the Cancer Genome Atlas Research Network has proposed four subtypes of gastric cancer dividing tumors into those positive for Epstein-Barr virus, microsatellite unstable tumors, genomically stable tumors, and tumors with chromosomal instability. Unfortunately to date, many phase III clinical trials involving molecularly targeted agents have failed to meet their survival endpoints due to their use in unselected populations. Future clinical trials should utilize molecular profiling of individual tumors in order to determine the optimal use of targeted therapies in preselected patients.

  19. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations.

    Science.gov (United States)

    Tronel, Claire; Largeau, Bérenger; Santiago Ribeiro, Maria Joao; Guilloteau, Denis; Dupont, Anne-Claire; Arlicot, Nicolas

    2017-04-11

    Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals' binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians' expectations.

  20. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis.

    Science.gov (United States)

    Fakhar, Zeynab; Naiker, Suhashni; Alves, Claudio N; Govender, Thavendran; Maguire, Glenn E M; Lameira, Jeronimo; Lamichhane, Gyanu; Kruger, Hendrik G; Honarparvar, Bahareh

    2016-11-01

    An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.

  1. The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas

    Directory of Open Access Journals (Sweden)

    Tina eDasgupta

    2013-05-01

    Full Text Available Brain tumors are the most common solid pediatric malignancy. For high-grade, recurrent or refractory pediatric brain tumors, radiation therapy (XRT is an integral treatment modality. In the era of personalized cancer therapy, molecularly targeted agents have been designed to inhibit pathways critical to tumorigenesis. Our evolving knowledge of genetic aberrations in low-grade gliomas is being exploited with targeted inhibitors. These agents are also being combined with XRT to increase their efficacy. In this review, we discuss novel agents targeting three different pathways in low-grade gliomas, and their potential combination with XRT. B-Raf is a kinase in the Ras/Raf/MAPK kinase pathway, which is integral to cellular division, survival and metabolism. In low-grade pediatric gliomas, point mutations in BRAF (BRAF V600E or a BRAF fusion mutation (KIAA1549:BRAF causes overactivation of the MEK/MAPK pathway. Pre-clinical data shows cooperation between XRT and tagrgeted inhibitors of BRAF V600E, and MEK and mTOR inhibitors in the gliomas with the BRAF fusion. A second important signaling cascade in pediatric glioma pathogenesis is the PI3 kinase (PI3K/mTOR pathway. Dual PI3K/mTOR inhibitors are poised to enter studies of pediatric tumors. Finally, many brain tumors express potent stimulators of angiogenesis. Several inhibitors of immunomodulators are currently being evaluated in in clinical trials for the treatment of recurrent or refractory pediatric central nervous system (CNS tumors. In summary, combinations of these targeted inhibitors with radiation are currently under investigation in both translational bench research and early clinical trials. We summarize the molecular rationale for, and the pre-clinical data supporting the combinations of these targeted agents with other anti-cancer agents and XRT in pediatric gliomas. Parallels are drawn to adult gliomas, and the molecular mechanisms underlying the efficacy of these agents is discussed

  2. Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy

    International Nuclear Information System (INIS)

    Kim, Dong Wook; Huamani, Jessica; Fu, Allie; Hallahan, Dennis E.

    2006-01-01

    The tumor microenvironment, in particular, the tumor vasculature, as an important target for the cytotoxic effects of radiation therapy is an established paradigm for cancer therapy. We review the evidence that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated in endothelial cells exposed to ionizing radiation (IR) and is a molecular target for the development of novel radiation sensitizing agents. On the basis of this premise, several promising preclinical studies that targeted the inhibition of the PI3K/Akt activation as a potential method of sensitizing the tumor vasculature to the cytotoxic effects of IR have been conducted. An innovative strategy to guide cytotoxic therapy in tumors treated with radiation and PI3K/Akt inhibitors is presented. The evidence supports a need for further investigation of combined-modality therapy that involves radiation therapy and inhibitors of PI3K/Akt pathway as a promising strategy for improving the treatment of patients with cancer

  3. Control of Target Molecular Recognition in a Small Pore Space with Biomolecule-Recognition Gating Membrane.

    Science.gov (United States)

    Okuyama, Hiroto; Oshiba, Yuhei; Ohashi, Hidenori; Yamaguchi, Takeo

    2018-05-01

    A biomolecule-recognition gating membrane, which introduces thermosensitive graft polymer including molecular recognition receptor into porous membrane substrate, can close its pores by recognizing target biomolecule. The present study reports strategies for improving both versatility and sensitivity of the gating membrane. First, the membrane is fabricated by introducing the receptor via a selectively reactive click reaction improving the versatility. Second, the sensitivity of the membrane is enhanced via an active delivering method of the target molecules into the pores. In the method, the tiny signal of the target biomolecule is amplified as obvious pressure change. Furthermore, this offers 15 times higher sensitivity compared to the previously reported passive delivering method (membrane immersion to sample solution) with significantly shorter recognition time. The improvement will aid in applying the gating membrane to membrane sensors in medical fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.

    Science.gov (United States)

    Perry, William L; Weitzman, Aaron

    2005-03-01

    The ability to identify activated pathways that drive the growth and progression of cancer and to develop specific and potent inhibitors of key proteins in these pathways promises to dramatically change the treatment of cancer: A patient's cancer could be characterized at the molecular level and the information used to select the best treatment options. The development of successful therapies not only requires extensive target validation, but also new approaches to evaluating drug efficacy in animal models and in the clinic compared to the development of traditional cytotoxic agents. This article highlights Eli Lilly and Company's approach to developing targeted therapies, from target identification and validation through evaluation in the clinic. A selection of drugs in the Lilly Oncology pipeline is also discussed.

  5. Identification of the Schistosoma mansoni Molecular Target for the Antimalarial Drug Artemether

    KAUST Repository

    Lepore, Rosalba

    2011-11-28

    Plasmodium falciparum and Schistosoma mansonii are the parasites responsible for most of the malaria and schistosomiasis cases in the world. Notwithstanding their many differences, the two agents have striking similarities in that they both are blood feeders and are targets of an overlapping set of drugs, including the well-known artemether molecule. Here we explore the possibility of using the known information about the mode of action of artemether in Plasmodium to identify the molecular target of the drug in Schistosoma and provide evidence that artemether binds to SmSERCA, a putative Ca2+-ATPase of Schistosoma. We also predict the putative binding mode of the molecule for both its Plasmodium and Schistosoma targets. Our analysis of the mode of binding of artemether to Ca2+-ATPases also provides an explanation for the apparent paradox that, although the molecule has no side effect in humans, it has been shown to possess antitumoral activity. © 2011 American Chemical Society.

  6. Clinical aspects and relevance of molecular diagnosis in late mucocutaneous leishmaniasis patients in Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Andréa Thomaz-Soccol

    2011-06-01

    Full Text Available The aim of the present work was to study the clinical aspects and relevance of molecular diagnosis in late mucocutaneous leishmaniasis patients in Parana, Brazil. Twenty one suspected cases of mucocutaneous leishmaniasis (MCL in patients from the endemic areas of leishmaniasis were assessed. Different methods used in diagnosing the disease and the polymerase chain reaction (PCR technique were compared in order to establish the sensitivity of each method. Out of the 21 patients analyzed, 14.3% presented other etiologies such as vasculitis, syphilis, and paracoccidioidomycosis, with all tests negative for leishmaniasis. Out of the remaining 15 patients, 6.7% cases were confirmed for leishmaniasis by direct examination; 46.67% were positive for culture, which allowed isolating and identifying the parasite and - with the PCR technique - it was possible to diagnose 100% MCL patients for all the three repetitions of exams. The PCR optimized for the present work proved to be an auxiliary method for diagnosing leishmaniasis applicable in the patients carrying MCL due to Leishmania (Viannia braziliensis and did not need culture to be performed, resulting in a faster diagnosis.

  7. Yeast screens identify the RNA polymerase II CTD and SPT5 as relevant targets of BRCA1 interaction.

    Directory of Open Access Journals (Sweden)

    Craig B Bennett

    2008-01-01

    Full Text Available BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1 to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34 and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1. Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII carboxy terminal domain (P-CTD, phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1

  8. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity

    Science.gov (United States)

    Huang, Bing; von Lilienfeld, O. Anatole

    2016-10-01

    The predictive accuracy of Machine Learning (ML) models of molecular properties depends on the choice of the molecular representation. Inspired by the postulates of quantum mechanics, we introduce a hierarchy of representations which meet uniqueness and target similarity criteria. To systematically control target similarity, we simply rely on interatomic many body expansions, as implemented in universal force-fields, including Bonding, Angular (BA), and higher order terms. Addition of higher order contributions systematically increases similarity to the true potential energy and predictive accuracy of the resulting ML models. We report numerical evidence for the performance of BAML models trained on molecular properties pre-calculated at electron-correlated and density functional theory level of theory for thousands of small organic molecules. Properties studied include enthalpies and free energies of atomization, heat capacity, zero-point vibrational energies, dipole-moment, polarizability, HOMO/LUMO energies and gap, ionization potential, electron affinity, and electronic excitations. After training, BAML predicts energies or electronic properties of out-of-sample molecules with unprecedented accuracy and speed.

  9. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    Science.gov (United States)

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  10. Profiling and functional data on the developing olfactory/GnRH system reveal cellular and molecular pathways essential for this process and potentially relevant for the Kallmann syndrome

    Directory of Open Access Journals (Sweden)

    Giulia eGaraffo

    2013-12-01

    Full Text Available During embryonic development, immature neurons in the olfactory epithelium (OE extend axons through the nasal mesenchyme, to contact projection neurons in the olfactory bulb. Axon navigation is accompanied by migration of the GnRH+ neurons, which enter the anterior forebrain and home in the septo-hypothalamic area. This process can be interrupted at various points and lead to the onset of the Kallmann syndrome (KS, a disorder characterized by anosmia and central hypogonadotropic hypogonadism. Several genes has been identified in human and mice that cause KS or a KS-like phenotype. In mice a set of transcription factors appears to be required for olfactory connectivity and GnRH neuron migration; thus we explored the transcriptional network underlying this developmental process by profiling the OE and the adjacent mesenchyme at three embryonic ages. We also profiled the OE from embryos null for Dlx5, a homeogene that causes a KS-like phenotype when deleted. We identified 20 interesting genes belonging to the following categories: 1 transmembrane adhesion/receptor, 2 axon-glia interaction, 3 scaffold/adapter for signalling, 4 synaptic proteins. We tested some of them in zebrafish embryos: the depletion of five (of six Dlx5 targets affected axonal extension and targeting, while three (of three affected GnRH neuron position and neurite organization. Thus, we confirmed the importance of cell-cell and cell-matrix interactions and identified new molecules needed for olfactory connection and GnRH neuron migration. Using available and newly generated data, we predicted/prioritized putative KS-disease genes, by building conserved co-expression networks with all known disease genes in human and mouse. The results show the overall validity of approaches based on high-throughput data and predictive bioinformatics to identify genes potentially relevant for the molecular pathogenesis of KS. A number of candidate will be discussed, that should be tested in

  11. Identification of control targets in Boolean molecular network models via computational algebra.

    Science.gov (United States)

    Murrugarra, David; Veliz-Cuba, Alan; Aguilar, Boris; Laubenbacher, Reinhard

    2016-09-23

    Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network. Supplementary data is available online and our code in Macaulay2 and Matlab are available via http://www.ms.uky.edu/~dmu228/ControlAlg . This paper presents a novel method for the identification of intervention targets in Boolean network models. The results in this paper show that the proposed methods are useful and efficient for moderately large networks.

  12. Antibody or Antibody Fragments: Implications for Molecular Imaging and Targeted Therapy of Solid Tumors

    Directory of Open Access Journals (Sweden)

    Katerina T. Xenaki

    2017-10-01

    Full Text Available The use of antibody-based therapeutics has proven very promising for clinical applications in cancer patients, with multiple examples of antibodies and antibody–drug conjugates successfully applied for the treatment of solid tumors and lymphomas. Given reported recurrence rates, improvements are clearly still necessary. A major factor limiting the efficacy of antibody-targeted cancer therapies may be the incomplete penetration of the antibody or antibody–drug conjugate into the tumor. Incomplete tumor penetration also affects the outcome of molecular imaging, when using such targeting agents. From the injection site until they arrive inside the tumor, targeting molecules are faced with several barriers that impact intratumoral distribution. The primary means of antibody transport inside tumors is based on diffusion. The diffusive penetration inside the tumor is influenced by both antibody properties, such as size and binding affinity, as well as tumor properties, such as microenvironment, vascularization, and targeted antigen availability. Engineering smaller antibody fragments has shown to improve the rate of tumor uptake and intratumoral distribution. However, it is often accompanied by more rapid clearance from the body and in several cases also by inherent destabilization and reduction of the binding affinity of the antibody. In this perspective, we discuss different cancer targeting approaches based on antibodies or their fragments. We carefully consider how their size and binding properties influence their intratumoral uptake and distribution, and how this may affect cancer imaging and therapy of solid tumors.

  13. A human scFv antibody that targets and neutralizes high molecular weight pathogenic amyloid-β oligomers.

    Science.gov (United States)

    Sebollela, Adriano; Cline, Erika N; Popova, Izolda; Luo, Kevin; Sun, Xiaoxia; Ahn, Jay; Barcelos, Milena A; Bezerra, Vanessa N; Lyra E Silva, Natalia M; Patel, Jason; Pinheiro, Nathalia R; Qin, Lei A; Kamel, Josette M; Weng, Anthea; DiNunno, Nadia; Bebenek, Adrian M; Velasco, Pauline T; Viola, Kirsten L; Lacor, Pascale N; Ferreira, Sergio T; Klein, William L

    2017-07-03

    Brain accumulation of soluble oligomers of the amyloid-β peptide (AβOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AβO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AβO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AβOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AβO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AβOs from both monomeric and fibrillar Aβ. NUsc1 readily detected AβOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AβO binding and reduced AβO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AβOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AβOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AβO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics. © 2017 International Society for Neurochemistry.

  14. Molecular targeted therapy in ovarian cancer: what is on the horizon?

    LENUS (Irish Health Repository)

    Kalachand, Roshni

    2012-02-01

    Over the past two decades, empirical optimization of cytotoxic chemotherapy combinations and surgical debulking procedures have improved outcomes and survival in epithelial ovarian cancer. Yet, this disease remains the fifth leading cause of cancer-related deaths in the US, as cure rates seem to have reached a plateau at approximately 20% with conventional chemotherapy. Novel high-throughput genomic and proteomic analyses have improved the molecular understanding of ovarian carcinogenesis, thereby providing a vast array of new potential drug targets with complex signalling interactions. In order to yield the most significant impact on disease outcome, it is necessary to carefully select, and subsequently target, the driving molecular pathway(s) within a tumour or tumour subtype, which are most likely to correspond to high-frequency mutations and genomic aberrations. The identification of biomarkers predictive of response to targeted therapy is essential to avoid poor responses to potentially useful drugs in unselected trial populations. With some promising, albeit early, phase III data on the angiogenesis inhibitor bevacizumab, exciting new opportunities lie ahead with the ultimate goal of personalizing therapies to individual tumour profiles.

  15. Molecular Targeted Therapy in Ovarian Cancer: What is on the Horizon?

    LENUS (Irish Health Repository)

    Kalachand, Roshni

    2011-05-28

    Over the past two decades, empirical optimization of cytotoxic chemotherapy combinations and surgical debulking procedures have improved outcomes and survival in epithelial ovarian cancer. Yet, this disease remains the fifth leading cause of cancer-related deaths in the US, as cure rates seem to have reached a plateau at approximately 20% with conventional chemotherapy. Novel high-throughput genomic and proteomic analyses have improved the molecular understanding of ovarian carcinogenesis, thereby providing a vast array of new potential drug targets with complex signalling interactions. In order to yield the most significant impact on disease outcome, it is necessary to carefully select, and subsequently target, the driving molecular pathway(s) within a tumour or tumour subtype, which are most likely to correspond to high-frequency mutations and genomic aberrations. The identification of biomarkers predictive of response to targeted therapy is essential to avoid poor responses to potentially useful drugs in unselected trial populations. With some promising, albeit early, phase III data on the angiogenesis inhibitor bevacizumab, exciting new opportunities lie ahead with the ultimate goal of personalizing therapies to individual tumour profiles.

  16. Presenilin is the molecular target of acidic γ-secretase modulators in living cells.

    Directory of Open Access Journals (Sweden)

    Thorsten Jumpertz

    Full Text Available The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs, which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC(50 of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN, the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex.

  17. Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets.

    Directory of Open Access Journals (Sweden)

    David Britton

    Full Text Available LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling pathways and drug targets in pancreatic cancer tissue for clinical application.Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal adenocarcinoma and background pancreas (n = 12, were labelled with tandem mass tags (TMT 8-plex, separated by strong cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant biological events from the complex dataset.Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1, but the majority were new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique phosphorylation sites, 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho guanine nucleotide exchange factors & MRCKα and formation of focal adhesions. Activator phosphorylation sites on FYN, AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated (≥2 fold in different cases highlighting their predictive power.Here we provided critical information enabling us to identify the common and unique molecular events likely contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an individual case.

  18. Structural Insights into the Quadruplex-Duplex 3' Interface Formed from a Telomeric Repeat: A Potential Molecular Target.

    Science.gov (United States)

    Russo Krauss, Irene; Ramaswamy, Sneha; Neidle, Stephen; Haider, Shozeb; Parkinson, Gary N

    2016-02-03

    We report here on an X-ray crystallographic and molecular modeling investigation into the complex 3' interface formed between putative parallel stranded G-quadruplexes and a duplex DNA sequence constructed from the human telomeric repeat sequence TTAGGG. Our crystallographic approach provides a detailed snapshot of a telomeric 3' quadruplex-duplex junction: a junction that appears to have the potential to form a unique molecular target for small molecule binding and interference with telomere-related functions. This unique target is particularly relevant as current high-affinity compounds that bind putative G-quadruplex forming sequences only rarely have a high degree of selectivity for a particular quadruplex. Here DNA junctions were assembled using different putative quadruplex-forming scaffolds linked at the 3' end to a telomeric duplex sequence and annealed to a complementary strand. We successfully generated a series of G-quadruplex-duplex containing crystals, both alone and in the presence of ligands. The structures demonstrate the formation of a parallel folded G-quadruplex and a B-form duplex DNA stacked coaxially. Most strikingly, structural data reveals the consistent formation of a TAT triad platform between the two motifs. This triad allows for a continuous stack of bases to link the quadruplex motif with the duplex region. For these crystal structures formed in the absence of ligands, the TAT triad interface occludes ligand binding at the 3' quadruplex-duplex interface, in agreement with in silico docking predictions. However, with the rearrangement of a single nucleotide, a stable pocket can be produced, thus providing an opportunity for the binding of selective molecules at the interface.

  19. Quantification of pancreatic cancer proteome and phosphorylome: indicates molecular events likely contributing to cancer and activity of drug targets.

    Science.gov (United States)

    Britton, David; Zen, Yoh; Quaglia, Alberto; Selzer, Stefan; Mitra, Vikram; Löβner, Christopher; Jung, Stephan; Böhm, Gitte; Schmid, Peter; Prefot, Petra; Hoehle, Claudia; Koncarevic, Sasa; Gee, Julia; Nicholson, Robert; Ward, Malcolm; Castellano, Leandro; Stebbing, Justin; Zucht, Hans Dieter; Sarker, Debashis; Heaton, Nigel; Pike, Ian

    2014-01-01

    LC-MS/MS phospho-proteomics is an essential technology to help unravel the complex molecular events that lead to and propagate cancer. We have developed a global phospho-proteomic workflow to determine activity of signaling pathways and drug targets in pancreatic cancer tissue for clinical application. Peptides resulting from tryptic digestion of proteins extracted from frozen tissue of pancreatic ductal adenocarcinoma and background pancreas (n = 12), were labelled with tandem mass tags (TMT 8-plex), separated by strong cation exchange chromatography, then were analysed by LC-MS/MS directly or first enriched for phosphopeptides using IMAC and TiO2, prior to analysis. In-house, commercial and freeware bioinformatic platforms were used to identify relevant biological events from the complex dataset. Of 2,101 proteins identified, 152 demonstrated significant difference in abundance between tumor and non-tumor tissue. They included proteins that are known to be up-regulated in pancreatic cancer (e.g. Mucin-1), but the majority were new candidate markers such as HIPK1 & MLCK. Of the 6,543 unique phosphopeptides identified (6,284 unique phosphorylation sites), 635 showed significant regulation, particularly those from proteins involved in cell migration (Rho guanine nucleotide exchange factors & MRCKα) and formation of focal adhesions. Activator phosphorylation sites on FYN, AKT1, ERK2, HDAC1 and other drug targets were found to be highly modulated (≥2 fold) in different cases highlighting their predictive power. Here we provided critical information enabling us to identify the common and unique molecular events likely contributing to cancer in each case. Such information may be used to help predict more bespoke therapy suitable for an individual case.

  20. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations.

    Directory of Open Access Journals (Sweden)

    Kecheng Yang

    Full Text Available Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE, is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD-Monte Carlo (MC approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation.

  1. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  2. Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation

    DEFF Research Database (Denmark)

    Kriegenburg, Franziska; Ellgaard, Lars; Hartmann-Petersen, Rasmus

    2012-01-01

    The accumulation of misfolded proteins presents a considerable threat to the health of individual cells and has been linked to severe diseases, including neurodegenerative disorders. Considering that, in nature, cells often are exposed to stress conditions that may lead to aberrant protein...... conformational changes, it becomes clear that they must have an efficient quality control apparatus to refold or destroy misfolded proteins. In general, cells rely on molecular chaperones to seize and refold misfolded proteins. If the native state is unattainable, misfolded proteins are targeted for degradation...... via the ubiquitin-proteasome system. The specificity of this proteolysis is generally provided by E3 ubiquitin-protein ligases, hundreds of which are encoded in the human genome. However, rather than binding the misfolded proteins directly, most E3s depend on molecular chaperones to recognize...

  3. Mechanism of Action of Prostate Stem Cell Antigen Targeted Antibody Therapy and its Relevance to Clinical Application in Prostate Cancer

    National Research Council Canada - National Science Library

    Reiter, Robert; Tran, Chau

    2008-01-01

    .... A better understanding of PSCA function and its antibody activity will enable rational patient selection and trial design all of which are particularly relevant to subsequent clinical trials of PSCA antibody...

  4. Mechanism of Action of Prostate Stem Cell Antigen Targeted Antibody Therapy and Its Relevance to Clinical Application in Prostate Cancer

    National Research Council Canada - National Science Library

    Reiter, Robert; Tran, Chau

    2007-01-01

    .... A better understanding of PSCA function and its antibody activity will enable rational patient selection and trial design, all of which are particularly relevant to subsequent clinical trials of PSCA antibody...

  5. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses.

    Science.gov (United States)

    Ramkumar, Hema L; Gudiseva, Harini V; Kishaba, Kameron T; Suk, John J; Verma, Rohan; Tadimeti, Keerti; Thorson, John A; Ayyagari, Radha

    2017-02-01

    To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.

  6. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.

  7. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    Science.gov (United States)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  8. FXR is a molecular target for the effects of vertical sleeve gastrectomy

    DEFF Research Database (Denmark)

    Ryan, Karen K; Tremaroli, Valentina; Clemmensen, Christoffer

    2014-01-01

    Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are at present the most effective therapy for the treatment of obesity, and are associated with considerable improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing......-X receptor, also known as NR1H4). We therefore examined the results of VSG surgery applied to mice with diet-induced obesity and targeted genetic disruption of FXR. Here we demonstrate that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, VSG...

  9. Progresses in optimization strategy for radiolabeled molecular probes targeting integrin αvβ3

    International Nuclear Information System (INIS)

    Chen Haojun; Wu Hua

    2012-01-01

    Tumor angiogenesis is critical in the growth, invasion and metastasis of malignant tumors. The integrins, which express on many types of tumor cells and activated vascular endothelial cells, play an important role in regulation of the tumor angiogenesis. RGD peptide, which contains Arg-Gly-Asp sequence, binds specifically to integrin α v β 3 . Therefore, the radiolabeled RGD peptides may have broad application prospects in radionuclide imaging and therapy. Major research interests include the selection of radionuclides, modification and improvement of RGD structures. In this article, we give a review on research progresses in optimization strategy for radiolabeled molecular probes targeting integrin α v β 3 . (authors)

  10. Molecular Targets in Alzheimer’s Disease: From Pathogenesis to Therapeutics

    Directory of Open Access Journals (Sweden)

    Xuan Cheng

    2015-01-01

    Full Text Available Alzheimer’s disease (AD is characterized by progressive cognitive decline usually beginning with impairment in the ability to form recent memories. Nonavailability of definitive therapeutic strategy urges developing pharmacological targets based on cell signaling pathways. A great revival of interest in nutraceuticals and adjuvant therapy has been put forward. Tea polyphenols for their multiple health benefits have also attracted the attention of researchers. Tea catechins showed enough potentiality to be used in future as therapeutic targets to provide neuroprotection against AD. This review attempts to present a concise map of different receptor signaling pathways associated with AD with an insight into drug designing based on the proposed signaling pathways, molecular mechanistic details of AD pathogenesis, and a scientific rationale for using tea polyphenols as proposed therapeutic agents in AD.

  11. Copper-coated laser-fusion targets using molecular-beam levitation

    International Nuclear Information System (INIS)

    Rocke, M.J.

    1981-01-01

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 μm of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 μm thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications

  12. In Vitro Evaluation of Molecular Tumor Targets in Nuclear Medicine: Immunohistochemistry Is One Option, but Under Which Conditions?

    Science.gov (United States)

    Reubi, Jean Claude

    2017-12-01

    The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Plant-Derived Polyphenols in Human Health: Biological Activity, Metabolites and Putative Molecular Targets.

    Science.gov (United States)

    Olivares-Vicente, Marilo; Barrajon-Catalan, Enrique; Herranz-Lopez, Maria; Segura-Carretero, Antonio; Joven, Jorge; Encinar, Jose Antonio; Micol, Vicente

    2018-01-01

    Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.

    Science.gov (United States)

    Vora, Jaykant; Patel, Shivani; Sinha, Sonam; Sharma, Sonal; Srivastava, Anshu; Chhabria, Mahesh; Shrivastava, Neeta

    2018-01-07

    AIDS is one of the multifaceted diseases and this underlying complexity hampers its complete cure. The toxicity of existing drugs and emergence of multidrug-resistant virus makes the treatment worse. Development of effective, safe and low-cost anti-HIV drugs is among the top global priority. Exploration of natural resources may give ray of hope to develop new anti-HIV leads. Among the various therapeutic targets for HIV treatment, reverse transcriptase, protease, integrase, GP120, and ribonuclease are the prime focus. In the present study, we predicted potential plant-derived natural molecules for HIV treatment using computational approach, i.e. molecular docking, quantitative structure activity relationship (QSAR), and ADMET studies. Receptor-ligand binding studies were performed using three different software for precise prediction - Discovery studio 4.0, Schrodinger and Molegrow virtual docker. Docking scores revealed that Mulberrosides, Anolignans, Curcumin and Chebulic acid are promising candidates that bind with multi targets of HIV, while Neo-andrographolide, Nimbolide and Punigluconin were target-specific candidates. Subsequently, QSAR was performed using biologically proved compounds which predicted the biological activity of compounds. We identified Anolignans, Curcumin, Mulberrosides, Chebulic acid and Neo-andrographolide as potential natural molecules for HIV treatment from results of molecular docking and 3D-QSAR. In silico ADMET studies showed drug-likeness of these lead molecules. Structure similarities of identified lead molecules were compared with identified marketed drugs by superimposing both the molecules. Using in silico studies, we have identified few best fit molecules of natural origin against identified targets which may give new drugs to combat HIV infection after wet lab validation.

  15. Receptor-Mediated Melanoma Targeting with Radiolabeled α-Melanocyte-Stimulating Hormone: Relevance of the Net Charge of the Ligand

    Directory of Open Access Journals (Sweden)

    Alex N. Eberle

    2017-04-01

    of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.

  16. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy.

    Science.gov (United States)

    Zhan, Changyou; Li, Chong; Wei, Xiaoli; Lu, Wuyuan; Lu, Weiyue

    2015-08-01

    Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  18. Age-Dependent Cellular and Behavioral Deficits Induced by Molecularly Targeted Drugs Are Reversible.

    Science.gov (United States)

    Scafidi, Joseph; Ritter, Jonathan; Talbot, Brooke M; Edwards, Jorge; Chew, Li-Jin; Gallo, Vittorio

    2018-04-15

    Newly developed targeted anticancer drugs inhibit signaling pathways commonly altered in adult and pediatric cancers. However, as these pathways are also essential for normal brain development, concerns have emerged of neurologic sequelae resulting specifically from their application in pediatric cancers. The neural substrates and age dependency of these drug-induced effects in vivo are unknown, and their long-term behavioral consequences have not been characterized. This study defines the age-dependent cellular and behavioral effects of these drugs on normally developing brains and determines their reversibility with post-drug intervention. Mice at different postnatal ages received short courses of molecularly targeted drugs in regimens analagous to clinical treatment. Analysis of rapidly developing brain structures important for sensorimotor and cognitive function showed that, while adult administration was without effect, earlier neonatal administration of targeted therapies attenuated white matter oligodendroglia and hippocampal neuronal development more profoundly than later administration, leading to long-lasting behavioral deficits. This functional impairment was reversed by rehabilitation with physical and cognitive enrichment. Our findings demonstrate age-dependent, reversible effects of these drugs on brain development, which are important considerations as treatment options expand for pediatric cancers. Significance: Targeted therapeutics elicit age-dependent long-term consequences on the developing brain that can be ameliorated with environmental enrichment. Cancer Res; 78(8); 2081-95. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus.

    Science.gov (United States)

    Lee, Chun-Ching; Liao, Yu-Chieh; Lai, Yu-Hsuan; Lee, Chang-Chun David; Chuang, Min-Chieh

    2015-01-01

    A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.

  20. Identification of Disease Relevant Post Translational Modifications of Proteins in Pulmonary Fibrosis as Novel Biochemical Marker Targets

    DEFF Research Database (Denmark)

    Kristensen, Jacob Hull

    elastin and the ELM7 neo-epitope with limited reactivity towards intact elastin. Finally, we tested the assays for clinical relevance in serum from patients diagnosed with IPF or lung cancer and healthy matched controls. Serum EL-NE- and ELM7 fragment levels were significantly elevated in IPF- and lung...... cancer patients compared to matched controls. In conclusion, we have developed two technically stable assays, EL-NE and ELM7, for the quantification of elastin degraded by NE and MMP-7 respectively. Both assays were protease specific. Initial clinical testing suggested clinical relevance of the assays...

  1. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies.

    Directory of Open Access Journals (Sweden)

    Hongwei Chu

    Full Text Available Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE. Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., "presynaptic nicotinic acetylcholine receptors", "signaling by insulin receptor". Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1 located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy.

  2. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review.

    Science.gov (United States)

    Gan, Ren-You; Li, Hua-Bin; Sui, Zhong-Quan; Corke, Harold

    2018-04-13

    Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.

  3. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tetsuo; Ishikawa, Hitoshi [Gunma Univ., Maebashi (Japan). School of Medicine; Mitsuhashi, Norio [Tokyo Women' s Medical Coll. (Japan)

    2001-12-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  4. Microenvironment around tumors and their radiation sensitivity. The possibility of molecular target for radiation sensitization

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ishikawa, Hitoshi

    2001-01-01

    There have been scarce studies concerning the effect of microenvironment around tumors on their radiation sensitivity and this review describes the influence of environmental factors of cell adhesion, growth factors, cytokines, hypoxia and angiogenesis on the sensitivity and response to radiation and on the signal transduction to consider the possibility of molecular target for radiation sensitization. Cell-cell adhesion and cell-matrix interaction in response to radiation may have a role in inducing apoptotic process like anti-apoptotic or pro-apoptotic one. Growth factors and cytokines can affect the tumor response to radiation in more extent than p53 gene status since apoptosis induction is not always an indication of radiation sensitivity in many tumors clinically encountered. Radiation sensitivity is low in tumor cells under hypoxic conditions and it is important to know the relationship between those hypoxic cell response and angiogenesis by factors like HIF (hypoxia-inducible factor)-1. Molecular targets for radiation sensitization are now under development and both basic and clinical studies are important for future application of those sensitizing agents for the radiotherapy of tumors. (K.H.)

  5. Animal models and therapeutic molecular targets of cancer: utility and limitations

    Directory of Open Access Journals (Sweden)

    Cekanova M

    2014-10-01

    Full Text Available Maria Cekanova, Kusum Rathore Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA Abstract: Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. Keywords: mouse cancer model, companion animal cancer model, dogs, cats, molecular targets

  6. Molecular characterization of monoclonal antibodies that inhibit acetylcholinesterase by targeting the peripheral site and backdoor region.

    Directory of Open Access Journals (Sweden)

    Yves Bourne

    Full Text Available The inhibition properties and target sites of monoclonal antibodies (mAbs Elec403, Elec408 and Elec410, generated against Electrophorus electricus acetylcholinesterase (AChE, have been defined previously using biochemical and mutagenesis approaches. Elec403 and Elec410, which bind competitively with each other and with the peptidic toxin inhibitor fasciculin, are directed toward distinctive albeit overlapping epitopes located at the AChE peripheral anionic site, which surrounds the entrance of the active site gorge. Elec408, which is not competitive with the other two mAbs nor fasciculin, targets a second epitope located in the backdoor region, distant from the gorge entrance. To characterize the molecular determinants dictating their binding site specificity, we cloned and sequenced the mAbs; generated antigen-binding fragments (Fab retaining the parental inhibition properties; and explored their structure-function relationships using complementary x-ray crystallography, homology modeling and flexible docking approaches. Hypermutation of one Elec403 complementarity-determining region suggests occurrence of antigen-driven selection towards recognition of the AChE peripheral site. Comparative analysis of the 1.9Å-resolution structure of Fab408 and of theoretical models of its Fab403 and Fab410 congeners evidences distinctive surface topographies and anisotropic repartitions of charges, consistent with their respective target sites and inhibition properties. Finally, a validated, data-driven docking model of the Fab403-AChE complex suggests a mode of binding at the PAS that fully correlates with the functional data. This comprehensive study documents the molecular peculiarities of Fab403 and Fab410, as the largest peptidic inhibitors directed towards the peripheral site, and those of Fab408, as the first inhibitor directed toward the backdoor region of an AChE and a unique template for the design of new, specific modulators of AChE catalysis.

  7. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    Full Text Available MicroRNAs (miRNAs are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1 three important (PAZ, Mid and PIWI domains exist in Argonaute which define the global dynamics of the protein; 2 the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3 it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+ plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA. Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  8. Growth factor receptors as molecular targets for cancer diagnosis and therapy

    International Nuclear Information System (INIS)

    Zalutsky, M. R.

    1997-01-01

    Growth factor receptors are of great interest as molecular targets for the diagnosis and treatment of cancer. Growth factor receptors are frequently over expressed on malignant cell populations since many cellular oncogenes encode either growth factors of their receptors. The wild-type epidermal growth factor receptor has a molecular weight of 170 kD and is over expressed on gliomas, bladder tumors, squamous cells carcinomas and breast carcinomas. Another growth factor oncogene, c-erb B-2, encodes a 185-kD glycoprotein found on the surface of gliomas, breast and ovarian cancers as well as other carcinomas of epithelial origin. In addition to causing over expression, oncogenic transformation also can result in genomic re-arrangements. An important example from the perspective of targeting is EGFRvIII, a deletion mutant which lacks amino acids 6-273 in the extracellular domain of the epiderma growth factor receptor. The EGFRvIII molecule (145 kD) may be of great value for targeting because it appears to be tumor-specific. Antibodies have been developed with specific reactivity with these growth factor receptors. Since these antibodies are internalized into the cell after receptor binding, it is necessary to use radiolabeling methods which residualize the radioactivity in the tumor cell after intracellular catabolism. To investigate this problem they have evaluated the effect of radioiodination method on the in vitro an in vivo properties of an anti-EGFRvIII antibody. Methods studied were Iodogen, tyramine-cellobiose, and N-succinimidyl 5-iodo-3-pyridine-carboxylate with the last offering optimal localization in a human xenograft model

  9. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Science.gov (United States)

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-07-29

    MicroRNAs (miRNAs) are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+)) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  10. A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations.

    Science.gov (United States)

    Tang, Wei; Hu, Shichao; Wang, Huaming; Zhao, Yan; Li, Na; Liu, Feng

    2014-11-28

    A universal molecular translator based on the target-triggered DNA strand displacement was developed, which was able to convert various kinds of non-nucleic acid targets into a unique output DNA. This translation strategy was successfully applied in directing dynamic DNA assemblies and in realizing three-input logic gate operations.

  11. On the study of proton-irradiated Tellurium targets relevant for production of medical radioisotopes 123I and 124I

    International Nuclear Information System (INIS)

    Imam Kambali; Hari Suryanto; Daya Agung Sarwono; Cahyana Amiruddin

    2014-01-01

    The energy loss distribution and range of energetic proton beams in tellurium (Te) target have been simulated using the Stopping and Range of Ion in Matter (SRIM 2013) codes. The calculated data of the proton's range were then used to determine the optimum thickness of Te targets for future production of 123 I and 124 I from 123 Te(p,n) 123 I, 124 Te(p,n) 124 I and 124 Te(p,2n) 123 I nuclear reactions using the BATAN's Cs-30 cyclotron. It was found that for an incidence angle of 0° with respect to the target normal, the optimum thickness of 123 Te and 124 Te targets for 123 I production should be 644 µm and 1.8 mm respectively, whereas a 649 µm thick 124 Te target would be Required for 124 I production. In addition, the thickness should be decreased with increasing incidence angle. The EOB yield could theoretically reach up to 13.62 Ci of 123 I at proton energy of 22 Me V and beam current of 30 µA if the 124 Te is irradiated over a period of 3 hours. The theoretical EOB yield is comparable to the experimental data with accuracy within 10%. (author)

  12. Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

    Directory of Open Access Journals (Sweden)

    Wu Bailin

    2008-11-01

    Full Text Available Abstract Background The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results Twenty-six patients (19.26%, 26/135 were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43 of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135 of the patients with hearing loss. Together with GJB2 (23/135, SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the

  13. Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

    Science.gov (United States)

    Dai, Pu; Yuan, Yongyi; Huang, Deliang; Zhu, Xiuhui; Yu, Fei; Kang, Dongyang; Yuan, Huijun; Wu, Bailin; Han, Dongyi; Wong, Lee-Jun C

    2008-01-01

    Background The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results Twenty-six patients (19.26%, 26/135) were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43) of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135) of the patients with hearing loss. Together with GJB2 (23/135), SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the temporal bone CT scan to

  14. Peptide and low molecular weight proteins based kidney targeted drug delivery systems.

    Science.gov (United States)

    Xu, Pengfei; Zhang, Hailiang; Dang, Ruili; Jiang, Pei

    2018-05-30

    Renal disease is a worldwide public health problem, and unfortunately, the therapeutic index of regular drugs is limited. Thus, it is a great need to develop effective treatment strategies. Among the reported strategies, kidney-targeted drug delivery system is a promising method to increase renal efficacy and reduce extra-renal toxicity. In recent years, working as vehicles for targeted drug delivery, low molecular weight proteins (LMWP) and peptide have received immense attention due to their many advantages, such as selective accumulation in kidney, high drug loading capability, control over routes of biodegradation, convenience in modification at the amino terminus, and good biocompatibility. In this review, we describe the current LMWP and peptide carriers for kidney targeted drug delivery systems. In addition, we discuss different linking strategies between carriers and drugs. Furthermore, we briefly outline the current status and attempt to give an outlook on the further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Anticipated classes of new medications and molecular targets for pulmonary arterial hypertension

    Science.gov (United States)

    Morrell, Nicholas W.; Archer, Stephen L.; DeFelice, Albert; Evans, Steven; Fiszman, Monica; Martin, Thomas; Saulnier, Muriel; Rabinovitch, Marlene; Schermuly, Ralph; Stewart, Duncan; Truebel, Hubert; Walker, Gennyne; Stenmark, Kurt R.

    2013-01-01

    Pulmonary arterial hypertension (PAH) remains a life-limiting condition with a major impact on the ability to lead a normal life. Although existing therapies may improve the outlook in some patients there remains a major unmet need to develop more effective therapies in this condition. There have been significant advances in our understanding of the genetic, cell and molecular basis of PAH over the last few years. This research has identified important new targets that could be explored as potential therapies for PAH. In this review we discuss whether further exploitation of vasoactive agents could bring additional benefits over existing approaches. Approaches to enhance smooth muscle cell apotosis and the potential of receptor tyrosine kinase inhibition are summarised. We evaluate the role of inflammation, epigenetic changes and altered glycolytic metabolism as potential targets for therapy, and whether inherited genetic mutations in PAH have revealed druggable targets. The potential of cell based therapies and gene therapy are also discussed. Potential candidate pathways that could be explored in the context of experimental medicine are identified. PMID:23662201

  16. Molecular Targeted Agents for Gastric Cancer: A Step Forward Towards Personalized Therapy

    Directory of Open Access Journals (Sweden)

    Tom Geldart

    2013-01-01

    Full Text Available Gastric cancer (GC represents a major cancer burden worldwide, and remains the second leading cause of cancer-related death. Due to its insidious nature, presentation is usually late and often carries a poor prognosis. Despite having improved treatment modalities over the last decade, for most patients only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and its signaling pathways, offers the hope of clinically significant promising advances for selected groups of patients. Patients with Her-2 overexpression or amplification have experienced benefit from the integration of monoclonal antibodies such as trastuzumab to the standard chemotherapy. Additionally, drugs targeting angiogenesis (bevacizumab, sorafenib, sunitinib are under investigation and other targeted agents such as mTOR inhibitors, anti c-MET, polo-like kinase 1 inhibitors are in preclinical or early clinical development. Patient selection and the development of reliable biomarkers to accurately select patients most likely to benefit from these tailored therapies is now key. Future trials should focus on these advances to optimize the treatment for GC patients. This article will review recent progress and current status of targeted agents in GC.

  17. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  18. Molecular-targeted therapy for chemotherapy-refractory gastric cancer: a case report and literature review.

    Science.gov (United States)

    Kuo, Hung-Yang; Yeh, Kun-Huei

    2014-07-01

    The prognosis of advanced gastric cancer (AGC) remains poor despite therapeutic advances in recent decades. Several recent positive phase III trials established the efficacy of second-line chemotherapy for metastatic gastric cancer in prolonging overall survival. However, malnutrition and poor performance of AGC in late stages usually preclude such patients from intensive treatment. Many targeted-therapies failed to show a significant survival benefit in AGC, but have regained attention after the positive result of ramucirumab was announced last year. Among all targeted agents, only trastuzumab, a monoclonal antibody against Human epidermal growth factor receptor-2 (HER2) protein, has been proven as having survival benefit by addition to first-line chemotherapy. Herein we reported a patient who benefited from adding trastuzumab to the same second-line combination chemotherapy (paclitaxel, 5-fluorouracil, and leucovorin) upon progression of bulky liver metastases. At least five months of progression-free survival were achieved without any additional toxicity. We also reviewed literature of molecularly-targeted therapy for chemotherapy-refractory gastric cancer, including several large phase III trials (REGARD, GRANITE-1, EXPAND, and REAL-3) published in 2013-2014. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  20. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  1. Exploration of target molecules for molecular imaging of inflammatory bowel disease

    Energy Technology Data Exchange (ETDEWEB)

    Higashikawa, Kei; Akada, Naoki; Yagi, Katsuharu [Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530 (Japan); Watanabe, Keiko; Kamino, Shinichiro; Kanayama, Yousuke; Hiromura, Makoto [Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047 (Japan); Enomoto, Shuichi, E-mail: senomoto@pharm.okayama-u.ac.jp [Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530 (Japan); Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science, Kobe 650-0047 (Japan)

    2011-07-08

    Highlights: {sup {yields}18}F-FDG PET could discriminate each inflamed area of IBD model mice clearly. {sup {yields}18}F-FDG PET could not discriminate the difference of pathogenic mechanism. {yields} Cytokines and cytokine receptors expression was different by pathogenic mechanism. {yields} Cytokines and cytokine receptors would be new target molecules for IBD imaging. -- Abstract: Molecular imaging technology is a powerful tool for the diagnosis of inflammatory bowel disease (IBD) and the efficacy evaluation of various drug therapies for it. However, it is difficult to elucidate directly the relationships between the responsible molecules and IBD using existing probes. Therefore, the development of an alternative probe that is able to elucidate the pathogenic mechanism and provide information on the appropriate guidelines for treatment is earnestly awaited. In this study, we investigated pathognomonic molecules in the intestines of model mice. The accumulation of fluorine-18 fluorodeoxyglucose ({sup 18}F-FDG) in the inflamed area of the intestines of dextran sulfate sodium (DSS)- or indomethacin (IND)-induced IBD model mice was measured by positron emission tomography (PET) and autoradiography to confirm the inflamed area. The results suggested that the inflammation was selectively induced in the colons of mice by the administration of DSS, whereas it was induced mainly in the ilea and the proximal colons of mice by the administration of IND. To explore attractive target molecules for the molecular imaging of IBD, we evaluated the gene expression levels of cytokines and cytokine receptors in the inflamed area of the intestines of both model mice. We found that the expression levels of cytokines and cytokine receptors were significantly increased during the progression of IBD, whereas the expression levels were decreased as the mucosa began to heal. In particular, the expression levels of these molecules had already changed before the symptoms of IBD appeared. In

  2. Radioimmunodetection of membrane type-1 matrix metalloproteinase relevant to tumor malignancy with a pre-targeting method

    International Nuclear Information System (INIS)

    Sano, Kohei; Temma, Takashi; Kuge, Yuji; Kudo, Takashi; Kamihashi, Junko; Saji, Hideo; Zhao, Songji

    2010-01-01

    Since membrane type-1 matrix metalloproteinase (MT1-MMP) is exclusively expressed in tumors and is closely associated with metastasis and invasion, MT1-MMP is a potential target of radiotracers for the evaluation of tumor malignancy. In this study, we planned to visualize MT1-MMP in vivo by a two-step pre-targeting strategy using a streptavidin (SAv)-biotin system combined with anti-MT1-MMP monoclonal immunoglobulin (IgG) (anti-MT1-MMP monoclonal antibody (mAb)). Streptavidinylated anti-MT1-MMP mAb was synthesized by reacting biotinylated anti-MT1-MMP mAb with SAv. In the pre-targeting study, FM3A mouse breast carcinoma-implanted mice were injected with anti-MT1-MMP mAb-SAv, followed 72 h later with radioiodinated biotin, (3-[ 123/125 I]iodobenzoyl)norbiotinamide( 123/125 I-IBB). Biodistribution and imaging (single photon emission computed tomography (SPECT)/CT) data were collected at several time points in the 24 h period following introduction of the tracer. The comparison groups were injected with 125 I-IBB alone or with 125 I-IBB pre-targeted with negative control IgG-SAv. In the pre-targeting study for MT1-MMP, within 1 h of tracer injection, rapid tumor uptake and abrupt clearance from the blood of radioactivity (2.22, 0.87% injected dose/g at 1 h) were observed. The tumor to blood (T/B) radioactivity ratios were significantly higher than those from mice dosed with the pre-targeting negative control (p 125 I-IBB alone did not accumulate in tumors. SPECT/CT image analysis of FM3A bearing mice showed high-contrast tumor images after 3 h with minimal blood-pool activity. The present study that uses a pre-targeting method showed high T/B radioactivity ratios and clear tumor images of MT1-MMP. This imaging method may be useful for the clinical diagnosis of malignant tumors. (author)

  3. The Relevance of External Quality Assessment for Molecular Testing for ALK Positive Non-Small Cell Lung Cancer : Results from Two Pilot Rounds Show Room for Optimization

    NARCIS (Netherlands)

    Tembuyser, Lien; Tack, Veronique; Zwaenepoel, Karen; Pauwels, Patrick; Miller, Keith; Bubendorf, Lukas; Kerr, Keith; Schuuring, Ed; Thunnissen, Erik; Dequeker, Elisabeth M. C.

    2014-01-01

    Background and Purpose: Molecular profiling should be performed on all advanced non-small cell lung cancer with non-squamous histology to allow treatment selection. Currently, this should include EGFR mutation testing and testing for ALK rearrangements. ROS1 is another emerging target. ALK

  4. Gadolinium-conjugated PLA-PEG nanoparticles as liver targeted molecular MRI contrast agent.

    Science.gov (United States)

    Chen, Zhijin; Yu, Dexin; Liu, Chunxi; Yang, Xiaoyan; Zhang, Na; Ma, Chunhong; Song, Jibin; Lu, Zaijun

    2011-09-01

    A nanoparticle magnetic resonance imaging (MRI) contrast agent targeted to liver was developed by conjugation of gadolinium (Gd) chelate groups onto the biocompatible poly(l-lactide)-block-poly (ethylene glycol) (PLA-PEG) nanoparticles. PLA-PEG conjugated with diethylenetriaminopentaacetic acid (DTPA) was used to formulate PLA-PEG-DTPA nanoparticles by solvent diffusion method, and then Gd was loaded onto the nanoparticles by chelated with the unfolding DTPA on the surface of the PLA-PEG-DTPA nanoparticles. The mean size of the nanoparticles was 265.9 ± 6.7 nm. The relaxivity of the Gd-labeled nanoparticles was measured, and the distribution in vivo was evaluated in rats. Compared with conventional contrast agent (Magnevist), the Gd-labeled PLA-PEG nanoparticles showed significant enhancement both on liver targeting ability and imaging signal intensity. The T(1) and T(2) relaxivities per [Gd] of the Gd-labeled nanoparticles was 18.865 mM(-1) s(-1) and 24.863 mM(-1) s(-1) at 3 T, respectively. In addition, the signal intensity in vivo was stronger comparing with the Gd-DTPA and the T(1) weight time was lasting for 4.5 h. The liver targeting efficiency of the Gd-labeled PLA-PEG nanoparticles in rats was 14.57 comparing with Magnevist injection. Therefore, the Gd-labeled nanoparticles showed the potential as targeting molecular MRI contrast agent for further clinical utilization.

  5. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    International Nuclear Information System (INIS)

    Esfandyari-Manesh, Mehdi; Darvishi, Behrad; Ishkuh, Fatemeh Azizi; Shahmoradi, Elnaz; Mohammadi, Ali; Javanbakht, Mehran; Dinarvand, Rassoul; Atyabi, Fatemeh

    2016-01-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC_5_0) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  6. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Esfandyari-Manesh, Mehdi [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Darvishi, Behrad [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ishkuh, Fatemeh Azizi [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shahmoradi, Elnaz [Department of Chemical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mohammadi, Ali [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Dinarvand, Rassoul [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Atyabi, Fatemeh, E-mail: atyabifa@tums.ac.ir [Nanotechnology Research Center,Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-05-01

    The aim of this work was to synthesize molecularly imprinted polymer-poly ethylene glycol-folic acid (MIP-PEG-FA) nanoparticles for use as a controlled release carrier for targeting delivery of paclitaxel (PTX) to cancer cells. MIP nanoparticles were synthesized by a mini-emulsion polymerization technique and then PEG-FA was conjugated to the surface of nanoparticles. Nanoparticles showed high drug loading and encapsulation efficiency, 15.6 ± 0.8 and 100%, respectively. The imprinting efficiency of MIPs was evaluated by binding experiments in human serum. Good selective binding and recognition were found in MIP nanoparticles. In vitro drug release studies showed that MIP-PEG-FA have a controlled release of PTX, because of the presence of imprinted sites in the polymeric structure, which makes it is suitable for sustained drug delivery. The drug release from polymeric nanoparticles was indeed higher at acidic pH. The molecular structure of MIP-PEG-FA was confirmed by Hydrogen-Nuclear Magnetic Resonance (H NMR), Fourier Transform InfraRed (FT-IR), and Attenuated Total Reflection (ATR) spectroscopy, and their thermal behaviors by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Scanning Electron Microscopy (SEM) and Photon Correlation Spectroscopy (PCS) results showed that nanoparticles have a smooth surface and spherical shape with an average size of 181 nm. MIP-PEG-FA nanoparticles showed a greater amount of intracellular uptake in folate receptor-positive cancer cells (MDA-MB-231 cells) in comparison with the non-folate nanoparticles and free PTX, with half maximal inhibitory concentrations (IC{sub 50}) of 4.9 ± 0.9, 7.4 ± 0.5 and 32.8 ± 3.8 nM, respectively. These results suggest that MIP-PEG-FA nanoparticles could be a potentially useful drug carrier for targeting drug delivery to cancer cells. - Highlights: • MIP-PEG-FA was synthesized as a controlled release carrier for targeting delivery to cancerous cells. • Nanoparticles

  7. Modern dose-finding designs for cancer phase I trials drug combinations and molecularly targeted agents

    CERN Document Server

    Hirakawa, Akihiro; Daimon, Takashi; Matsui, Shigeyuki

    2018-01-01

    This book deals with advanced methods for adaptive phase I dose-finding clinical trials for combination of two agents and molecularly targeted agents (MTAs) in oncology. It provides not only methodological aspects of the dose-finding methods, but also software implementations and practical considerations in applying these complex methods to real cancer clinical trials. Thus, the book aims to furnish researchers in biostatistics and statistical science with a good summary of recent developments of adaptive dose-finding methods as well as providing practitioners in biostatistics and clinical investigators with advanced materials for designing, conducting, monitoring, and analyzing adaptive dose-finding trials. The topics in the book are mainly related to cancer clinical trials, but many of those topics are potentially applicable or can be extended to trials for other diseases. The focus is mainly on model-based dose-finding methods for two kinds of phase I trials. One is clinical trials with combinations of tw...

  8. Locally advanced and metastatic basal cell carcinoma: molecular pathways, treatment options and new targeted therapies.

    Science.gov (United States)

    Ruiz Salas, Veronica; Alegre, Marta; Garcés, Joan Ramón; Puig, Lluis

    2014-06-01

    The hedgehog (Hh) signaling pathway has been identified as important to normal embryonic development in living organisms and it is implicated in processes including cell proliferation, differentiation and tissue patterning. Aberrant Hh pathway has been involved in the pathogenesis and chemotherapy resistance of different solid and hematologic malignancies. Basal cell carcinoma (BCC) and medulloblastoma are two well-recognized cancers with mutations in components of the Hh pathway. Vismodegib has recently approved as the first inhibitor of one of the components of the Hh pathway (smoothened). This review attempts to provide current data on the molecular pathways involved in the development of BCC and the therapeutic options available for the treatment of locally advanced and metastatic BCC, and the new targeted therapies in development.

  9. Model-specific selection of molecular targets for heart failure gene therapy

    Science.gov (United States)

    Katz, Michael G.; Fargnoli, Anthony S.; Tomasulo, Catherine E.; Pritchette, Louella A.; Bridges, Charles R.

    2013-01-01

    Heart failure (HF) is a complex multifaceted problem of abnormal ventricular function and structure. In recent years, new information has been accumulated allowing for a more detailed understanding of the cellular and molecular alterations that are the underpinnings of diverse causes of HF, including myocardial ischemia, pressure-overload, volume-overload or intrinsic cardiomyopathy. Modern pharmacological approaches to treat HF have had a significant impact on the course of the disease, although they do not reverse the underlying pathological state of the heart. Therefore gene-based therapy holds a great potential as a targeted treatment for cardiovascular diseases. Here, we survey the relative therapeutic efficacy of genetic modulation of β-adrenergic receptor signaling, Ca2+ handling proteins and angiogenesis in the most common extrinsic models of HF. PMID:21954055

  10. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment.

    Science.gov (United States)

    Miyamoto, Yuji; Hanna, Diana L; Zhang, Wu; Baba, Hideo; Lenz, Heinz-Josef

    2016-08-15

    Cancer cachexia is a multifactorial syndrome characterized by an ongoing loss of skeletal muscle mass, which negatively affects quality of life and portends a poor prognosis. Numerous molecular substrates and mechanisms underlie the dysregulation of skeletal muscle synthesis and degradation observed in cancer cachexia, including proinflammatory cytokines (TNFα, IL1, and IL6), and the NF-κB, IGF1/AKT/mTOR, and myostatin/activin-SMAD pathways. Recent preclinical and clinical studies have demonstrated that anti-cachexia drugs (such as MABp1 and soluble receptor antagonist of myostatin/activin) not only prevent muscle wasting but also may prolong overall survival. In this review, we focus on the significance of cachexia signaling in patients with cancer and highlight promising drugs targeting tumor cachexia in clinical development. Clin Cancer Res; 22(16); 3999-4004. ©2016 AACR. ©2016 American Association for Cancer Research.

  11. Molecular targets, DNA breakage, DNA repair: Their roles in mutation induction in mammalian germ cells

    International Nuclear Information System (INIS)

    Sega, G.A.

    1989-01-01

    Variability in genetic sensitivity among different germ-cell stages in the mammal to various mutagens could be the result of how much chemical reaches the different stages, what molecular targets may be affected in the different stages and whether or not repair of lesions occurs. Several chemicals have been found to bind very strongly to protamine in late-spermatid and early-spermatozoa stages in the mouse. The chemicals also produce their greatest genetic damage in these same germ-cell stages. While chemical binding to DNA has not been correlated with the level of induced genetic damage, DNA breakage in the sensitive stages has been shown to increase. This DNA breakage is believed to indirectly result from chemical binding to sulfhydryl groups in protamine which prevents normal chromatin condensation within the sperm nucleus. 22 refs., 5 figs

  12. Skin: Major target organ of allergic reactions to small molecular weight compounds

    International Nuclear Information System (INIS)

    Merk, Hans F.; Baron, Jens M.; Neis, Mark M.; Obrigkeit, Daniela Hoeller; Karlberg, Ann-Therese

    2007-01-01

    Skin is a major target organ for allergic reactions to small molecular weight compounds. Drug allergic reactions may be life-threatening such as in the case of anaphylactic reactions or bullous drug reactions and occur in about 5% of all hospitalized patients. Allergic contact dermatitis has an enormous influence on the social life of the patient because it is the most frequent reason for occupational skin diseases and the treatment and prevention of this disease cost approximately Euro 3 billion per year in Germany. The different proposed pathophysiological pathways leading to a drug eruption are discussed in this paper. All major enzymes which are involved in the metabolism of xenobiotica were shown to be present in skin. Evidence supporting the role of metabolism in the development of drug allergy and allergic contact dermatitis is demonstrated in the example of sulphonamides and fragrances

  13. Precision Medicine for Hypertension Management in Chronic Kidney Disease: Relevance of SPRINT for Therapeutic Targets in Nondiabetic Renal Disease.

    Science.gov (United States)

    Ruzicka, Marcel; Burns, Kevin D; Hiremath, Swapnil

    2017-05-01

    In this review we evaluate the literature to determine if lower blood pressure (BP) targets are beneficial for patients with nondiabetic chronic kidney disease (CKD). Modification of Diet in Renal Disease (MDRD), African American Study of Kidney Disease and Hypertension (AASK), and Ramipril Efficacy in Nephropathy-2 (REIN-2), designed to assess the benefit of lower BP on progression of nondiabetic CKD, generally came to the same negative conclusion. They were not designed and powered to assess an effect of lower BP on cardiovascular outcomes. The Systolic Blood Pressure Intervention Trial (SPRINT) was the first trial designed and powered to address this issue, and showed a clear benefit of a lower targeted and achieved BP. SPRINT did not show any renal benefits from lower BP, and it was not designed to assess this outcome, and it enrolled patients with less "renal risk" per se. A distinguishing feature of SPRINT compared with other large trials is that it highlighted the importance of precise BP measurement methods in defining targets in hypertension treatment. Accordingly, we propose that SPRINT is truly a "game-changing" clinical trial that sets the bar for management of hypertension in select patients with nondiabetic CKD. In these patients, systolic BP target depends critically on the BP measurement method: < 140 mm Hg when derived from 3 readings using a mercury sphygmomanometer after 5 minutes of rest, < 130 mm Hg when calculated from at a minimum of 3 readings using an automated oscillometric device, and < 120 mm Hg when taken using an automated oscillometric device after 5 minutes of unattended rest. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    International Nuclear Information System (INIS)

    Chantarawong, Wipa; Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki; Pradermwong, Kantimanee; Shibahara, Shigeki

    2014-01-01

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure

  15. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chantarawong, Wipa [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan); Inter Departmental Multidisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok (Thailand); Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan); Pradermwong, Kantimanee [Department of Zoology, Faculty of Science, Kasetsart University, Bangkok (Thailand); Shibahara, Shigeki, E-mail: shibahar@med.tohoku.ac.jp [Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai (Japan)

    2014-11-28

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure.

  16. Accurate molecular diagnosis of phenylketonuria and tetrahydrobiopterin-deficient hyperphenylalaninemias using high-throughput targeted sequencing

    Science.gov (United States)

    Trujillano, Daniel; Perez, Belén; González, Justo; Tornador, Cristian; Navarrete, Rosa; Escaramis, Georgia; Ossowski, Stephan; Armengol, Lluís; Cornejo, Verónica; Desviat, Lourdes R; Ugarte, Magdalena; Estivill, Xavier

    2014-01-01

    Genetic diagnostics of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficient hyperphenylalaninemia (BH4DH) rely on methods that scan for known mutations or on laborious molecular tools that use Sanger sequencing. We have implemented a novel and much more efficient strategy based on high-throughput multiplex-targeted resequencing of four genes (PAH, GCH1, PTS, and QDPR) that, when affected by loss-of-function mutations, cause PKU and BH4DH. We have validated this approach in a cohort of 95 samples with the previously known PAH, GCH1, PTS, and QDPR mutations and one control sample. Pooled barcoded DNA libraries were enriched using a custom NimbleGen SeqCap EZ Choice array and sequenced using a HiSeq2000 sequencer. The combination of several robust bioinformatics tools allowed us to detect all known pathogenic mutations (point mutations, short insertions/deletions, and large genomic rearrangements) in the 95 samples, without detecting spurious calls in these genes in the control sample. We then used the same capture assay in a discovery cohort of 11 uncharacterized HPA patients using a MiSeq sequencer. In addition, we report the precise characterization of the breakpoints of four genomic rearrangements in PAH, including a novel deletion of 899 bp in intron 3. Our study is a proof-of-principle that high-throughput-targeted resequencing is ready to substitute classical molecular methods to perform differential genetic diagnosis of hyperphenylalaninemias, allowing the establishment of specifically tailored treatments a few days after birth. PMID:23942198

  17. Emergency surgery due to complications during molecular targeted therapy in advanced gastrointestinal stromal tumors (GIST)

    International Nuclear Information System (INIS)

    Rutkowski, P.; Nowecki, Z. I.; Dziewirski, W.; Ruka, W.; Siedlecki, J. A.; Grzesiakowska, U.

    2010-01-01

    Aim. The aim of the study was to assess the frequency and results of disease/treatment-related emergency operations during molecular targeted therapy of advanced gastrointestinal stromal tumors (GISTs). Methods. We analyzed emergency operations in patients with metastatic/inoperable GISTs treated with 1 st -line imatinib - IM (group I: 232 patients; median follow-up time 31 months) and 2 nd -line sunitinib - SU (group II: 43 patients; median follow-up 13 months; 35 patients in trial A6181036) enrolled into the Polish Clinical GIST Registry. Results. In group I 3 patients (1.3%) underwent emergency surgery due to disease/treatment related complications: one due to bleeding from a ruptured liver tumor (1 month after IM onset) and two due to bowel perforation on the tumor with subsequent intraperitoneal abscess (both 2 months after IM onset). IM was restarted 5-8 days after surgery and no complications in wound healing were observed. In group II 4 patients (9.5%) underwent emergency operations due to disease/treatment related complications: three due to bowel perforations on the tumor (2 days, 20 days and 10 months after SU onset; 1 subsequent death) and one due to intraperitoneal bleeding from ruptured, necrotic tumor (3.5 months after SU start). SU was restarted 12-18 days after surgery and no complications in wound healing were observed. Conclusions. Emergency operations associated with disease or therapy during imatinib treatment of advanced GISTs are rare. The frequency of emergency operations during sunitinib therapy is considered to be higher than during first line therapy with imatinib which may be associated with more advanced and more resistant disease or to the direct mechanism of sunitinib action, i.e. combining cytotoxic and antiangiogenic activity and thus leading to dramatic tumor response. Molecular targeted therapy in GISTs should always be conducted in cooperation with an experienced surgeon. (authors)

  18. Targeted exome sequencing and chromosomal microarray for the molecular diagnosis of nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Matsudate, Yoshihiro; Naruto, Takuya; Hayashi, Yumiko; Minami, Mitsuyoshi; Tohyama, Mikiko; Yokota, Kenji; Yamada, Daisuke; Imoto, Issei; Kubo, Yoshiaki

    2017-06-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder mainly caused by heterozygous mutations of PTCH1. In addition to characteristic clinical features, detection of a mutation in causative genes is reliable for the diagnosis of NBCCS; however, no mutations have been identified in some patients using conventional methods. To improve the method for the molecular diagnosis of NBCCS. We performed targeted exome sequencing (TES) analysis using a multi-gene panel, including PTCH1, PTCH2, SUFU, and other sonic hedgehog signaling pathway-related genes, based on next-generation sequencing (NGS) technology in 8 cases in whom possible causative mutations were not detected by previously performed conventional analysis and 2 recent cases of NBCCS. Subsequent analysis of gross deletion within or around PTCH1 detected by TES was performed using chromosomal microarray (CMA). Through TES analysis, specific single nucleotide variants or small indels of PTCH1 causing inferred amino acid changes were identified in 2 novel cases and 2 undiagnosed cases, whereas gross deletions within or around PTCH1, which are validated by CMA, were found in 3 undiagnosed cases. However, no mutations were detected even by TES in 3 cases. Among 3 cases with gross deletions of PTCH1, deletions containing the entire PTCH1 and additional neighboring genes were detected in 2 cases, one of which exhibited atypical clinical features, such as severe mental retardation, likely associated with genes located within the 4.3Mb deleted region, especially. TES-based simultaneous evaluation of sequences and copy number status in all targeted coding exons by NGS is likely to be more useful for the molecular diagnosis of NBCCS than conventional methods. CMA is recommended as a subsequent analysis for validation and detailed mapping of deleted regions, which may explain the atypical clinical features of NBCCS cases. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by

  19. CFTR chloride channel as a molecular target of anthraquinone compounds in herbal laxatives

    Science.gov (United States)

    Yang, Hong; Xu, Li-na; He, Cheng-yan; Liu, Xin; Fang, Rou-yu; Ma, Tong-hui

    2011-01-01

    Aim: To clarify whether CFTR is a molecular target of intestinal fluid secretion caused by the anthraquinone compounds from laxative herbal plants. Methods: A cell-based fluorescent assay to measure I− influx through CFTR chloride channel. A short-circuit current assay to measure transcellular Cl− current across single layer FRT cells and freshly isolated colon mucosa. A closed loop experiment to measure colon fluid secretion in vivo. Results: Anthraquinone compounds rhein, aloe-emodin and 1,8-dihydroxyanthraquinone (DHAN) stimulated I− influx through CFTR chloride channel in a dose-dependent manner in the presence of physiological concentration of cAMP. In the short-circuit current assay, the three compound enhanced Cl− currents in epithelia formed by CFTR-expressing FRT cells with EC50 values of 73±1.4, 56±1.7, and 50±0.5μmol/L, respectively, and Rhein also enhanced Cl− current in freshly isolated rat colonic mucosa with a similar potency. These effects were completely reversed by the CFTR selective blocker CFTRinh-172. In in vivo closed loop experiments, rhein 2 mmol/L stimulated colonic fluid accumulation that was largely blocked by CFTRinh-172. The anthraquinone compounds did not elevate cAMP level in cultured FRT cells and rat colonic mucosa, suggesting a direct effect on CFTR activity. Conclusion: Natural anthraquinone compounds in vegetable laxative drugs are CFTR potentiators that stimulated colonic chloride and fluid secretion. Thus CFTR chloride channel is a molecular target of vegetable laxative drugs. PMID:21602836

  20. Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of bugula neritina

    KAUST Repository

    Zhang, Huoming

    2011-01-07

    The marine invertebrate Bugula neritina has a biphasic life cycle that consists of a swimming larval stage and a sessile juvenile and adult stage. The attachment of larvae to the substratum and their subsequent metamorphosis have crucial ecological consequences. Despite many studies on this species, little is known about the molecular mechanism of these processes. Here, we report a comparative study of swimming larvae and metamorphosing individuals at 4 and 24 h postattachment using label-free quantitative proteomics. We identified more than 1100 proteins at each stage, 61 of which were differentially expressed. Specifically, proteins involved in energy metabolism and structural molecules were generally down-regulated, whereas proteins involved in transcription and translation, the extracellular matrix, and calcification were strongly up-regulated during metamorphosis. Many tightly regulated novel proteins were also identified. Subsequent analysis of the temporal and spatial expressions of some of the proteins and an assay of their functions indicated that they may have key roles in metamorphosis of B. neritina. These findings not only provide molecular evidence with which to elucidate the substantial changes in morphology and physiology that occur during larval attachment and metamorphosis but also identify potential targets for antifouling treatment. © 2011 American Chemical Society.

  1. Rosé Wine Fining Using Polyvinylpolypyrrolidone: Colorimetry, Targeted Polyphenomics, and Molecular Dynamics Simulations.

    Science.gov (United States)

    Gil, Mélodie; Avila-Salas, Fabian; Santos, Leonardo S; Iturmendi, Nerea; Moine, Virginie; Cheynier, Véronique; Saucier, Cédric

    2017-12-06

    Polyvinylpolypyrrolidone (PVPP) is a fining agent polymer used in winemaking to adjust rosé wine color and to prevent organoleptic degradations by reducing polyphenol content. The impact of this polymer on color parameters and polyphenols of rosé wines was investigated, and the binding specificity of polyphenols toward PVPP was determined. Color measured by colorimetry decreased after treatment, thus confirming the adsorption of anthocyanins and other pigments. Phenolic composition was determined before and after fining by targeted polyphenomics (Ultra Performance Liquid Chromatography (UPLC)-Electrospray Ionization(ESI)-Mass Spectrometry (MS/MS)). MS analysis showed adsorption differences among polyphenol families. Flavonols (42%) and flavanols (64%) were the most affected. Anthocyanins were not strongly adsorbed on average (12%), but a specific adsorption of coumaroylated anthocyanins was observed (37%). Intermolecular interactions were also studied using molecular dynamics simulations. Relative adsorptions of flavanols were correlated with the calculated interaction energies. The specific affinity of coumaroylated anthocyanins toward PVPP was also well explained by the molecular modeling.

  2. Development of Molecularly Imprinted Polymers to Target Polyphenols Present in Plant Extracts

    Directory of Open Access Journals (Sweden)

    Catarina Gomes

    2017-11-01

    Full Text Available The development of molecularly imprinted polymers (MIPs to target polyphenols present in vegetable extracts was here addressed. Polydatin was selected as a template polyphenol due to its relatively high size and amphiphilic character. Different MIPs were synthesized to explore preferential interactions between the functional monomers and the template molecule. The effect of solvent polarity on the molecular imprinting efficiency, namely owing to hydrophobic interactions, was also assessed. Precipitation and suspension polymerization were examined as a possible way to change MIPs morphology and performance. Solid phase extraction and batch/continuous sorption processes were used to evaluate the polyphenols uptake/release in individual/competitive assays. Among the prepared MIPs, a suspension polymerization synthesized material, with 4-vinylpyridine as the functional monomer and water/methanol as solvent, showed a superior performance. The underlying cause of such a significant outcome is the likely surface imprinting process caused by the amphiphilic properties of polydatin. The uptake and subsequent selective release of polyphenols present in natural extracts was successfully demonstrated, considering a red wine solution as a case study. However, hydrophilic/hydrophobic interactions are inevitable (especially with complex natural extracts and the tuning of the polarity of the solvents is an important issue for the isolation of the different polyphenols.

  3. Cytotoxic of Ganoderma lucidum in Colon Cancer through Cyclooxygenase 2 (COX-2 as Its Molecular Target

    Directory of Open Access Journals (Sweden)

    Agustina Setiawati

    2017-05-01

    Full Text Available Many studies were designed explore chemopreventive activity of natural products on colon cancer especially addressing COX-2 as molecular target. Another promising source of natural product that potentially exhibit anticancer activity on colon cancer is Ganoderma lucidum. This study assessed selectivity of cytotoxic effect of G. lucidum extract on WiDr to Vero cells and investigated molecular mechanism on COX-2. G. lucidum ex-tract was prepared by reflux extraction method; in vitro anticancer was assayed by MTT method on WiDr and Vero cell line. This study applied apoptosis induction assay to observe cell death mechanism using double staining method; further COX-2 expression was stained by immunocytochemistry method. G. lucidum extract has cytotoxic effect on WiDr cells with IC50 135 µg/mL. However, the cytotoxic effect had low selectivity to-wards Vero cells with Selectivity Index (SI 3.66. The extract induced apoptosis and suppressed COX-2 ex-pression in WiDr cells. G. lucidum extract was potential to be developed as anticancer agent towards colon cancer.

  4. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Joon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeong Shin; Cho, Yeo Na; Koom, Woong Sub [Dept. of Radiation Oncology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results.

  5. Treatment outcome of radiation therapy and concurrent targeted molecular therapy in spinal metastasis from renal cell carcinoma

    International Nuclear Information System (INIS)

    Park, Sang Joon; Kim, Kyung Hwan; Rhee, Woo Joong; Lee, Jeong Shin; Cho, Yeo Na; Koom, Woong Sub

    2016-01-01

    To evaluate the clinical outcomes of patients who underwent radiation therapy with or without targeted molecular therapy for the treatment of spinal metastasis from renal cell carcinoma (RCC). A total of 28 spinal metastatic lesions from RCC patients treated with radiotherapy between June 2009 and June 2015 were retrospectively reviewed. Thirteen lesions were treated concurrently with targeted molecular therapy (concurrent group) and 15 lesions were not (nonconcurrent group). Local control was defined as lack of radiographically evident local progression and neurological deterioration. At a median follow-up of 11 months (range, 2 to 58 months), the 1-year local progression-free rate (LPFR) was 67.0%. The patients with concurrent targeted molecular therapy showed significantly higher LPFR than those without (p = 0.019). After multivariate analysis, use of concurrent targeted molecular therapy showed a tendency towards improved LPFR (hazard ratio, 0.13; 95% confidence interval, 0.01 to 1.16). There was no difference in the incidence of systemic progression between concurrent and nonconcurrent groups. No grade ≥2 toxicities were observed during or after radiotherapy. Our study suggests the possibility that concurrent use of targeted molecular therapy during radiotherapy may improve LPFR. Further study with a large population is required to confirm these results

  6. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma.

    Science.gov (United States)

    Granito, Alessandro; Guidetti, Elena; Gramantieri, Laura

    2015-01-01

    c-MET is the membrane receptor for hepatocyte growth factor (HGF), also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC). In particular, c-MET amplification is a rare event, accounting for 4%-5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC.

  7. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Nazanin Hakimzadeh

    Full Text Available Molecular imaging of matrix metalloproteinases (MMPs may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9 with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT imaging that effectively targets atherosclerotic lesions in mice.

  8. Novel molecular imaging ligands targeting matrix metalloproteinases 2 and 9 for imaging of unstable atherosclerotic plaques

    Science.gov (United States)

    Molenaar, Ger; de Waard, Vivian; Lutgens, Esther; van Eck-Smit, Berthe L. F.; de Bruin, Kora; Piek, Jan J.; Eersels, Jos L. H.; Booij, Jan; Verberne, Hein J.; Windhorst, Albert D.

    2017-01-01

    Molecular imaging of matrix metalloproteinases (MMPs) may allow detection of atherosclerotic lesions vulnerable to rupture. In this study, we develop a novel radiolabelled compound that can target gelatinase MMP subtypes (MMP2/9) with high selectivity and inhibitory potency. Inhibitory potencies of several halogenated analogues of MMP subtype-selective inhibitors (N-benzenesulfonyliminodiacetyl monohydroxamates and N-halophenoxy-benzenesulfonyl iminodiacetyl monohydroxamates) were in the nanomolar range for MMP2/9. The analogue with highest inhibitory potency and selectivity was radiolabelled with [123I], resulting in moderate radiochemical yield, and high radiochemical purity. Biodistribution studies in mice, revealed stabilization in blood 1 hour after intravenous bolus injection. Intravenous infusion of the radioligand and subsequent autoradiography of excised aortas showed tracer uptake in atheroprone mice. Distribution of the radioligand showed co-localization with MMP2/9 immunohistochemical staining. In conclusion, we have developed a novel selective radiolabeled MMP2/9 inhibitor, suitable for single photon emission computed tomography (SPECT) imaging that effectively targets atherosclerotic lesions in mice. PMID:29190653

  9. Molecular Imaging on the Cerebral Pathological Damage Target of Ketamine Dependence

    Directory of Open Access Journals (Sweden)

    YANG Hong-jie1,2;HU Shu1;JIA Shao-wei1;GAO Zhou1;WANG Tong3;ZHAO Zheng-qin1

    2014-02-01

    Full Text Available To study the cerebral pathological damage target which result from abusing ketamine through molecular imaging techniques, 20 cases of ketamine dependent patients looking for treatment at the Peking University Shenzhen Hospital and 31 healthy volunteers were included in this study, all of them got brain SPECT DAT imaging. The results were analyzed by SPSS 16.0. The bilateral caudate nucleus and putamen of healthy volunteers were roughly equally large, and the radioactive distribution of DAT in healthy volunteers were uniform and symmetrical. The bilateral corpora striatum showed typical “panda eyes” pattern. But the bilateral corpora striatum of ketamine dependent patients got smaller in shape, got disorders in pattern, and the radioactive distribution of DAT reduced or defected or even got disturbance and with much more non-specific radioactive. The V, m and Ra of bilateral corpora striatum in ketamine dependent patients were (21.03±3.15) cm3, (22.08±3.31) g and (5.37±1.08) %, respectively, which were significantly lower than the healthy volunteers (p<0.01. The cerebral pathological damage target which resulted from abusing ketamine was similar to those of compound codeine phosphate antitussive solution dependence, heroin dependence and MDMA dependence, all of these psychoactive substances damaged the function of DAT.

  10. Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing.

    Science.gov (United States)

    Yu, Hui; Zhang, Victor Wei; Stray-Pedersen, Asbjørg; Hanson, Imelda Celine; Forbes, Lisa R; de la Morena, M Teresa; Chinn, Ivan K; Gorman, Elizabeth; Mendelsohn, Nancy J; Pozos, Tamara; Wiszniewski, Wojciech; Nicholas, Sarah K; Yates, Anne B; Moore, Lindsey E; Berge, Knut Erik; Sorte, Hanne; Bayer, Diana K; ALZahrani, Daifulah; Geha, Raif S; Feng, Yanming; Wang, Guoli; Orange, Jordan S; Lupski, James R; Wang, Jing; Wong, Lee-Jun

    2016-10-01

    Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?

    Science.gov (United States)

    Minucci, S; Nervi, C; Lo Coco, F; Pelicci, P G

    2001-05-28

    Recent discoveries have identified key molecular events in the pathogenesis of acute promyelocytic leukemia (APL), caused by chromosomal rearrangements of the transcription factor RAR (resulting in a fusion protein with the product of other cellular genes, such as PML). Oligomerization of RAR, through a self-association domain present in PML, imposes an altered interaction with transcriptional co-regulators (NCoR/SMRT). NCoR/SMRT are responsible for recruitment of histone deacetylases (HDACs), which is required for transcriptional repression of PML-RAR target genes, and for the transforming potential of the fusion protein. Oligomerization and altered recruitment of HDACs are also responsible for transformation by the fusion protein AML1-ETO, extending these mechanisms to other forms of acute myeloid leukemias (AMLs) and suggesting that HDAC is a common target for myeloid leukemias. Strikingly, AML1-ETO expression blocks retinoic acid (RA) signaling in hematopoietic cells, suggesting that interference with the RA pathway (genetically altered in APL) by HDAC recruitment may be a common theme in AMLs. Treatment of APLs with RA, and of other AMLs with RA plus HDAC inhibitors (HDACi), results in myeloid differentiation. Thus, activation of the RA signaling pathway and inhibition of HDAC activity might represent a general strategy for the differentiation treatment of myeloid leukemias.

  12. A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects.

    Science.gov (United States)

    Gao, Jinhao; Chen, Kai; Luong, Richard; Bouley, Donna M; Mao, Hua; Qiao, Tiecheng; Gambhir, Sanjiv S; Cheng, Zhen

    2012-01-11

    The use of quantum dots (QDs) in biomedical research has grown tremendously, yet successful examples of clinical applications are absent due to many clinical concerns. Here, we report on a new type of stable and biocompatible dendron-coated InP/ZnS core/shell QD as a clinically translatable nanoprobe for molecular imaging applications. The QDs (QD710-Dendron) were demonstrated to hold several significant features: near-infrared (NIR) emission, high stability in biological media, suitable size with possible renal clearance, and ability of extravasation. More importantly, a pilot mouse toxicity study confirmed that QD710-Dendron lacks significant toxicity at the doses tested. The acute tumor uptake of QD710-Dendron resulted in good contrast from the surrounding nontumorous tissues, indicating the possibility of passive targeting of the QDs. The highly specific targeting of QD710-Dendron-RGD(2) to integrin α(v)β(3)-positive tumor cells resulted in high tumor uptake and long retention of the nanoprobe at tumor sites. In summary, QD710-Dendron and RGD-modified nanoparticles demonstrate small size, high stability, biocompatibility, favorable in vivo pharmacokinetics, and successful tumor imaging properties. These features satisfy the requirements for clinical translation and should promote efforts to further investigate the possibility of using QD710-Dendron-based nanoprobes in the clinical setting in the near future. © 2011 American Chemical Society

  13. Fundamental aspects of molecular plating and production of smooth crack-free Nd targets

    International Nuclear Information System (INIS)

    Vascon, A.; Reich, T.; Drebert, J.; Eberhardt, K.; Helmholtz Institute Mainz, Mainz; Duellmann, Ch.E.; GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt; Helmholtz Institute Mainz, Mainz

    2014-01-01

    A general understanding of the molecular plating process was obtained recently, which serves as a first step towards further improvements of the method aiming, for example, at the production of smooth, crack-free targets for nuclear physics applications. Constant current density electrolysis experiments were performed in organic media containing the model electrolyte Nd(NO 3 ) 3 ·6H 2 O. The process was investigated by considering influences of the electrolyte concentration (0.11, 0.22, 0.44 mM), the surface roughness of the deposition substrates (a few tens of nm), and the plating solvent (an isopropanol/isobutanol mixture, and N,N-dimethylformamide). The response of the process to changes of these parameters was monitored by recording cell potential curves and by characterizing the obtained deposits with γ-ray spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. By changing the solvent from isopropanol/isobutanol mixtures to N,N-dimethylformamide, we have succeeded in producing smooth, crack-free Nd targets. (author)

  14. Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks

    International Nuclear Information System (INIS)

    Willekens, Stefanie M.A.; Weehaeghe, Donatienne van; Damme, Philip van; Laere, Koen van

    2017-01-01

    During the past decades, extensive efforts have been made to expand the knowledge of amyotrophic lateral sclerosis (ALS). However, clinical translation of this research, in terms of earlier diagnosis and improved therapy, remains challenging. Since more than 30% of motor neurons are lost when symptoms become clinically apparent, techniques allowing non-invasive, in vivo detection of motor neuron degeneration are needed in the early, pre-symptomatic disease stage. Furthermore, it has become apparent that non-motor signs play an important role in the disease and there is an overlap with cognitive disorders, such as frontotemporal dementia (FTD). Radionuclide imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), form an attractive approach to quantitatively monitor the ongoing neurodegenerative processes. Although ["1"8F]-FDG has been recently proposed as a potential biomarker for ALS, active targeting of the underlying pathologic molecular processes is likely to unravel further valuable disease information and may help to decipher the pathogenesis of ALS. In this review, we provide an overview of radiotracers that have already been applied in ALS and discuss possible novel targets for in vivo imaging of various pathogenic processes underlying ALS onset and progression. (orig.)

  15. Positron emission tomography in amyotrophic lateral sclerosis: Towards targeting of molecular pathological hallmarks

    Energy Technology Data Exchange (ETDEWEB)

    Willekens, Stefanie M.A.; Weehaeghe, Donatienne van [University Hospitals Leuven and KU Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven (Belgium); Damme, Philip van [University Hospitals Leuven, Department of Neurology, Leuven (Belgium); KU Leuven, Department of Neurosciences, Experimental Neurology, Leuven (Belgium); Leuven Research Institute for Neuroscience and Disease (LIND), Leuven (Belgium); VIB, Vesalius Research Center, Laboratory of Neurobiology, Leuven (Belgium); Laere, Koen van [University Hospitals Leuven and KU Leuven, Division of Nuclear Medicine, Department of Imaging and Pathology, Leuven (Belgium); Leuven Research Institute for Neuroscience and Disease (LIND), Leuven (Belgium)

    2017-03-15

    During the past decades, extensive efforts have been made to expand the knowledge of amyotrophic lateral sclerosis (ALS). However, clinical translation of this research, in terms of earlier diagnosis and improved therapy, remains challenging. Since more than 30% of motor neurons are lost when symptoms become clinically apparent, techniques allowing non-invasive, in vivo detection of motor neuron degeneration are needed in the early, pre-symptomatic disease stage. Furthermore, it has become apparent that non-motor signs play an important role in the disease and there is an overlap with cognitive disorders, such as frontotemporal dementia (FTD). Radionuclide imaging, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), form an attractive approach to quantitatively monitor the ongoing neurodegenerative processes. Although [{sup 18}F]-FDG has been recently proposed as a potential biomarker for ALS, active targeting of the underlying pathologic molecular processes is likely to unravel further valuable disease information and may help to decipher the pathogenesis of ALS. In this review, we provide an overview of radiotracers that have already been applied in ALS and discuss possible novel targets for in vivo imaging of various pathogenic processes underlying ALS onset and progression. (orig.)

  16. Topology of classical molecular optimal control landscapes for multi-target objectives

    Energy Technology Data Exchange (ETDEWEB)

    Joe-Wong, Carlee [Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544-1000 (United States); Ho, Tak-San; Rabitz, Herschel, E-mail: hrabitz@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009 (United States); Wu, Rebing [Department of Automation, Tsinghua University, Beijing (China)

    2015-04-21

    This paper considers laser-driven optimal control of an ensemble of non-interacting molecules whose dynamics lie in classical phase space. The molecules evolve independently under control to distinct final states. We consider a control landscape defined in terms of multi-target (MT) molecular states and analyze the landscape as a functional of the control field. The topology of the MT control landscape is assessed through its gradient and Hessian with respect to the control. Under particular assumptions, the MT control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating an inherent degree of robustness to control noise. Both the absence of traps and rank of the Hessian are shown to be analogous to the situation of specifying multiple targets for an ensemble of quantum states. Numerical simulations are presented to illustrate the classical landscape principles and further characterize the system behavior as the control field is optimized.

  17. Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy?

    Science.gov (United States)

    de Castro, Sonia; Camarasa, María-José

    2018-04-25

    HIV infection still has a serious health and socio-economical impact and is one of the primary causes of morbidity and mortality all over the world. HIV infection and the AIDS pandemic are still matters of great concern, especially in less developed countries where the access to highly active antiretroviral therapy (HAART) is limited. Patient compliance is another serious drawback. Nowadays, HAART is the treatment of choice although it is not the panacea. Despite the fact that it suppresses viral replication at undetectable viral loads and prevents progression of HIV infection into AIDS HAART has several pitfalls, namely, long-term side-effects, drug resistance development, emergence of drug-resistant viruses, low compliance and the intolerance of some patients to these drugs. Moreover, another serious health concern is the event of co-infection with more than one pathogen at the same time (e.g. HIV and HCV, HBV, herpes viruses, etc). Currently, the multi-target drug approach has become an exciting strategy to address complex diseases and overcome drug resistance development. Such multifunctional molecules combine in their structure pharmacophores that may simultaneously interfere with multiple targets and their use may eventually be more safe and efficacious than that involving a mixture of separate molecules because of avoidance or delay of drug resistance, lower incidence of unwanted drug-drug interactions and improved compliance. In this review we focus on multifunctional molecules with dual activity against different targets of the HIV life cycle or able to block replication, not only of HIV but also of other viruses that are often co-pathogens of HIV. The different approaches are documented by selected examples. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  18. SU-F-T-666: Molecular-Targeted Gold Nanorods Enhances the RBE of Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, A; Sahoo, N; Krishnan, S; Diagaradjane, P [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: In recent years, proton beam radiation therapy (PBRT) has gained significant attention in the treatment of tumors in anatomically complex locations. However, the therapeutic benefit of PBRT is limited by a relative biological effectiveness (RBE) of just 1.1. The purpose of this study is to evaluate whether this limitation can be overcome by artificially enhancing the RBE using molecular-targeted gold nanorods (GNRs). Methods: Molecular-targeting of GNRs was accomplished using Cetuximab (antibody specific to epidermal growth factor receptor that is over-expressed in tumors) conjugated GNRs (cGNRs) and their binding affinity to Head and Neck cancer cells was confirmed using dark field microscopy and Transmission Electron Microscopy (TEM). The radiosensitization potential of cGNRs when irradiated with photon (6MV) and proton (100 and 160 MeV) beams was determined using clonogenic assays. The RBE at 10% surviving fraction (RBE{sub 10}) for proton therapies at central and distal locations of SOBP was calculated with respect to 6 MV photons. IgGconjugated GNRs (iGNRs) were used as controls in all experiments. Results: cGNRs demonstrated significant radiosensitization when compared to iGNRs for 6MV photons (1.14 vs 1.04), 100 MeV protons (1.19 vs 1.04), and 160 MeV protons (1.17 vs 1.04). While RBE10 for proton beams at the center of SOBP revealed similar effects for both 100 and 160 MeV (RBE{sup 10}=1.39 vs 1.38; p>0.05), enhanced radiosensitization was observed at the distal SOBP with 100 MeV beams demonstrating greater effect than 160 MeV beams (RBE{sup 10}=1.79 vs 1.6; p<0.05). Conclusion: EGFR-targeting GNRs significantly enhance the RBE of protons well above the accepted 1.1 value. The enhanced RBE observed for lower energy protons (100 MeV) and at the distal SOBP suggests that low energy components may play a role in the observed radiosensitization effect. This strategy holds promise for clinical translation and could evolve as a paradigm-changing approach

  19. MOLECULAR MODELING INDICATES THAT HOMOCYSTEINE INDUCES CONFORMATIONAL CHANGES IN THE STRUCTURE OF PUTATIVE TARGET PROTEINS

    Directory of Open Access Journals (Sweden)

    Yumnam Silla

    2015-09-01

    Full Text Available An elevated level of homocysteine, a reactive thiol containing amino acid is associated with a multitude of complex diseases. A majority (>80% of homocysteine in circulation is bound to protein cysteine residues. Although, till date only 21 proteins have been experimentally shown to bind with homocysteine, using an insilico approach we had earlier identified several potential target proteins that could bind with homocysteine. Shomocysteinylation of proteins could potentially alter the structure and/or function of the protein. Earlier studies have shown that binding of homocysteine to protein alters its function. However, the effect of homocysteine on the target protein structure has not yet been documented. In the present work, we assess conformational or structural changes if any due to protein homocysteinylation using two proteins, granzyme B (GRAB and junctional adhesion molecule 1 (JAM1, which could potentially bind to homocysteine. We, for the first time, constructed computational models of homocysteine bound to target proteins and monitored their structural changes using explicit solvent molecular dynamic (MD simulation. Analysis of homocysteine bound trajectories revealed higher flexibility of the active site residues and local structural perturbations compared to the unbound native structure’s simulation, which could affect the stability of the protein. In addition, secondary structure analysis of homocysteine bound trajectories also revealed disappearance of â-helix within the G-helix and linker region that connects between the domain regions (as defined in the crystal structure. Our study thus captures the conformational transitions induced by homocysteine and we suggest these structural alterations might have implications for hyperhomocysteinemia induced pathologies.

  20. Immunotherapy targeting α-synuclein, with relevance for future treatment of Parkinson's disease and other Lewy body disorders.

    Science.gov (United States)

    Lindström, Veronica; Ihse, Elisabet; Fagerqvist, Therese; Bergström, Joakim; Nordström, Eva; Möller, Christer; Lannfelt, Lars; Ingelsson, Martin

    2014-01-01

    Immunotherapy targeting α-synuclein has evolved as a potential therapeutic strategy for neurodegenerative diseases, such as Parkinson's disease, and initial studies on cellular and animal models have shown promising results. α-synuclein vaccination of transgenic mice reduced the number of brain inclusions, whereas passive immunization studies demonstrated that antibodies against the C-terminus of α-synuclein can pass the blood-brain barrier and affect the pathology. In addition, preliminary evidence suggests that transgenic mice treated with an antibody directed against α-synuclein oligomers/protofibrils resulted in reduced levels of such species in the CNS. The underlying mechanisms of immunotherapy are not yet fully understood, but may include antibody-mediated clearance of pre-existing aggregates, prevention of protein propagation between cells and microglia-dependent protein clearance. Thus, immunotherapy targeting α-synuclein holds promise, but needs to be further developed as a future disease-modifying treatment in Parkinson's disease and other α-synucleinopathies.

  1. Lck is a relevant target in chronic lymphocytic leukaemia cells whose expression variance is unrelated to disease outcome.

    Science.gov (United States)

    Till, Kathleen J; Allen, John C; Talab, Fatima; Lin, Ke; Allsup, David; Cawkwell, Lynn; Bentley, Alison; Ringshausen, Ingo; Duckworth, Andrew D; Pettitt, Andrew R; Kalakonda, Nagesh; Slupsky, Joseph R

    2017-12-01

    Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome.

  2. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application

    Directory of Open Access Journals (Sweden)

    Kaichun Li

    2016-01-01

    Full Text Available Despite the great progress in the treatment of gastric cancer, it is still the third leading cause of cancer death worldwide. Patients often miss the opportunity for a surgical cure, because the cancer has already developed into advanced cancer when identified. Compared to best supportive care, chemotherapy can improve quality of life and prolong survival time, but the overall survival is often short. Due to the molecular study of gastric cancer, new molecular targeted drugs have entered the clinical use. Trastuzumab, an antibody targeting human epidermal growth factor receptor 2 (HER2, can significantly improve survival in advanced gastric cancer patients with HER2 overexpression. Second-line treatment of advanced gastric cancer with ramucirumab, an antibody targeting VEGFR-2, alone or in combination with paclitaxel, has been proved to provide a beneficial effect. The VEGFR-2 tyrosine kinase inhibitor, apatinib, can improve the survival of advanced gastric cancer patients after second-line chemotherapy failure. Unfortunately, none of the EGFR targeting antibodies (cetuximab or panitumumab, VEGF targeting monoclonal antibodies (bevacizumab, mTOR inhibitor (everolimus, or HGF/MET pathway targeting drugs has a significant survival benefit. Many other clinical trials based on molecular markers are underway. This review will summarize targeted therapies for advanced gastric cancer.

  3. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

    International Nuclear Information System (INIS)

    Mehlhorn, T A; Bailey, J E; Bennett, G; Chandler, G A; Cooper, G; Cuneo, M E; Golovkin, I; Hanson, D L; Leeper, R J; MacFarlane, J J; Mancini, R C; Matzen, M K; Nash, T J; Olson, C L; Porter, J L; Ruiz, C L; Schroen, D G; Slutz, S A; Varnum, W; Vesey, R A

    2003-01-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a ∼220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6±1.3) x 10 10 . Argon spectra confirm a hot fuel with T e ∼ 1 keV and n e ∼ (1-2) x 10 23 cm -3 . Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a ∼70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P 2 radiation asymmetries to ±2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL

  4. Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies

    International Nuclear Information System (INIS)

    Bailey, James E.; Chandler, Gordon Andrew; Vesey, Roger Alan; Hanson, David Lester; Olson, Craig Lee; Nash, Thomas J.; Matzen, Maurice Keith; Ruiz, Carlos L.; Porter, John Larry Jr.; Cuneo, Michael Edward; Varnum, William S.; Bennett, Guy R.; Cooper, Gary Wayne; Schroen, Diana Grace; Slutz, Stephen A.; MacFarlane, Joseph John; Leeper, Ramon Joe; Golovkin, I.E.; Mehlhorn, Thomas Alan; Mancini, Roberto Claudio

    2003-01-01

    Inertial confinement fusion capsule implosions absorbing up to 35 kJ of x-rays from a ∼220 eV dynamic hohlraum on the Z accelerator at Sandia National Laboratories have produced thermonuclear D-D neutron yields of (2.6 ± 1.3) x 10 10 . Argon spectra confirm a hot fuel with Te ∼ 1 keV and n e ∼ (1-2) x 10 23 cm -3 . Higher performance implosions will require radiation symmetry control improvements. Capsule implosions in a ∼70 eV double-Z-pinch-driven secondary hohlraum have been radiographed by 6.7 keV x-rays produced by the Z-beamlet laser (ZBL), demonstrating a drive symmetry of about 3% and control of P 2 radiation asymmetries to ±2%. Hemispherical capsule implosions have also been radiographed in Z in preparation for future experiments in fast ignition physics. Z-pinch-driven inertial fusion energy concepts are being developed. The refurbished Z machine (ZR) will begin providing scaling information on capsule and Z-pinch in 2006. The addition of a short pulse capability to ZBL will enable research into fast ignition physics in the combination of ZR and ZBL-petawatt. ZR could provide a test bed to study NIF-relevant double-shell ignition concepts using dynamic hohlraums and advanced symmetry control techniques in the double-pinch hohlraum backlit by ZBL.

  5. Molecular-Targeted Immunotherapeutic Strategy for Melanoma via Dual-Targeting Nanoparticles Delivering Small Interfering RNA to Tumor-Associated Macrophages.

    Science.gov (United States)

    Qian, Yuan; Qiao, Sha; Dai, Yanfeng; Xu, Guoqiang; Dai, Bolei; Lu, Lisen; Yu, Xiang; Luo, Qingming; Zhang, Zhihong

    2017-09-26

    Tumor-associated macrophages (TAMs) are a promising therapeutic target for cancer immunotherapy. Targeted delivery of therapeutic drugs to the tumor-promoting M2-like TAMs is challenging. Here, we developed M2-like TAM dual-targeting nanoparticles (M2NPs), whose structure and function were controlled by α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2pep (an M2 macrophage binding peptide). By loading anti-colony stimulating factor-1 receptor (anti-CSF-1R) small interfering RNA (siRNA) on the M2NPs, we developed a molecular-targeted immunotherapeutic approach to specifically block the survival signal of M2-like TAMs and deplete them from melanoma tumors. We confirmed the validity of SR-B1 for M2-like TAM targeting and demonstrated the synergistic effect of the two targeting units (α-peptide and M2pep) in the fusion peptide (α-M2pep). After being administered to tumor-bearing mice, M2NPs had higher affinity to M2-like TAMs than to tissue-resident macrophages in liver, spleen, and lung. Compared with control treatment groups, M2NP-based siRNA delivery resulted in a dramatic elimination of M2-like TAMs (52%), decreased tumor size (87%), and prolonged survival. Additionally, this molecular-targeted strategy inhibited immunosuppressive IL-10 and TGF-β production and increased immunostimulatory cytokines (IL-12 and IFN-γ) expression and CD8 + T cell infiltration (2.9-fold) in the tumor microenvironment. Moreover, the siRNA-carrying M2NPs down-regulated expression of the exhaustion markers (PD-1 and Tim-3) on the infiltrating CD8 + T cells and stimulated their IFN-γ secretion (6.2-fold), indicating the restoration of T cell immune function. Thus, the dual-targeting property of M2NPs combined with RNA interference provides a potential strategy of molecular-targeted cancer immunotherapy for clinical application.

  6. Aqueous Guanidinium-Carbonate Interactions by Molecular Dynamics and Neutron Scattering: Relevance to Ion-Protein Interactions

    Czech Academy of Sciences Publication Activity Database

    Vazdar, Mario; Jungwirth, Pavel; Mason, Philip E.

    2013-01-01

    Roč. 117, č. 6 (2013), s. 1844-1848 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : guanidinium * neutron scattering * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  7. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  8. Autotaxin-lysophosphatidic acid axis is a novel molecular target for lowering intraocular pressure.

    Directory of Open Access Journals (Sweden)

    Padma Iyer

    Full Text Available Primary open-angle glaucoma is the second leading cause of blindness in the United States and is commonly associated with elevated intraocular pressure (IOP resulting from diminished aqueous humor (AH drainage through the trabecular pathway. Developing effective therapies for increased IOP in glaucoma patients requires identification and characterization of molecular mechanisms that regulate IOP and AH outflow. This study describes the identification and role of autotaxin (ATX, a secretory protein and a major source for extracellular lysophosphatidic acid (LPA, in regulation of IOP in a rabbit model. Quantitative proteomics analysis identified ATX as an abundant protein in both human AH derived from non-glaucoma subjects and in AH from different animal species. The lysophospholipase D (LysoPLD activity of ATX was found to be significantly elevated (by ∼1.8 fold; n=20 in AH derived from human primary open angle glaucoma patients as compared to AH derived from age-matched cataract control patients. Immunoblotting analysis of conditioned media derived from primary cultures of human trabecular meshwork (HTM cells has confirmed secretion of ATX and the ability of cyclic mechanical stretch of TM cells to increase the levels of secreted ATX. Topical application of a small molecular chemical inhibitor of ATX (S32826, which inhibited AH LysoPLD activity in vitro (by >90%, led to a dose-dependent and significant decrease of IOP in Dutch-Belted rabbits. Single intracameral injection of S32826 (∼2 µM led to significant reduction of IOP in rabbits, with the ocular hypotensive response lasting for more than 48 hrs. Suppression of ATX expression in HTM cells using small-interfering RNA (siRNA caused a decrease in actin stress fibers and myosin light chain phosphorylation. Collectively, these observations indicate that the ATX-LPA axis represents a potential therapeutic target for lowering IOP in glaucoma patients.

  9. In Vitro Drug Sensitivity Tests to Predict Molecular Target Drug Responses in Surgically Resected Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Ryohei Miyazaki

    Full Text Available Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs and anaplastic lymphoma kinase (ALK inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI test and collagen gel droplet embedded culture drug sensitivity test (CD-DST are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs.The growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status.HCC827 (Exon19: E746-A750 del and H3122 (EML4-ALK cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003. The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026 in CD-DST.In vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically.

  10. Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders

    Science.gov (United States)

    Polla, Daniel L.; Cardoso, Maria T. O.; Silva, Mayara C. B.; Cardoso, Isabela C. C.; Medina, Cristina T. N.; Araujo, Rosenelle; Fernandes, Camila C.; Reis, Alessandra M. M.; de Andrade, Rosangela V.; Pereira, Rinaldo W.; Pogue, Robert

    2015-01-01

    Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known. PMID:26380986

  11. Assessing environmental impacts of genetically modified plants on non-target organisms: The relevance of in planta studies.

    Science.gov (United States)

    Arpaia, Salvatore; Birch, A Nicholas E; Kiss, Jozsef; van Loon, Joop J A; Messéan, Antoine; Nuti, Marco; Perry, Joe N; Sweet, Jeremy B; Tebbe, Christoph C

    2017-04-01

    In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their newly produced metabolites, represent the potential stressor to be evaluated during ERA. As a consequence, during several phases of ERA for cultivation purposes, it is considered necessary to use whole plants or plant parts in experimental protocols. The importance of in planta studies as a strategy to address impacts of GMPs on non-target organisms is demonstrated, to evaluate both effects due to the intended modification in plant phenotype (e.g. expression of Cry proteins) and effects due to unintended modifications in plant phenotype resulting from the transformation process (e.g. due to somaclonal variations or pleiotropic effects). In planta tests are also necessary for GMPs in which newly expressed metabolites cannot easily be studied in vitro. This paper reviews the scientific literature supporting the choice of in planta studies as a fundamental tool in ERA of GMPs in cultivation dossiers; the evidence indicates they can realistically mimic the ecological relationships occurring in their receiving environments and provide important insights into the biology and sustainable management of GMPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Targeting Phosphatidylserine with a 64Cu-Labeled Peptide for Molecular Imaging of Apoptosis.

    Science.gov (United States)

    Perreault, Amanda; Richter, Susan; Bergman, Cody; Wuest, Melinda; Wuest, Frank

    2016-10-03

    Molecular imaging of programmed cell death (apoptosis) in vivo is an innovative strategy for early assessment of treatment response and treatment efficacy in cancer patients. Externalization of phosphatidylserine (PS) to the cell membrane surface of dying cells makes this phospholipid an attractive molecular target for the development of apoptosis imaging probes. In this study, we have radiolabeled PS-binding 14-mer peptide FNFRLKAGAKIRFG (PSBP-6) with positron-emitter copper-64 ( 64 Cu) for PET imaging of apoptosis. Peptide PSBP-6 was conjugated with radiometal chelator 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) through an aminovaleric acid (Ava) linker for subsequent radiolabeling with 64 Cu to prepare radiotracer 64 Cu-NOTA-Ava-PSBP-6. PS-binding potencies of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-Ava-PSBP-6 were determined in a competitive radiometric PS-binding assay. Radiotracer 64 Cu-NOTA-Ava-PSBP-6 was studied in camptothecin-induced apoptotic EL4 mouse lymphoma cells and in a murine EL4 tumor model of apoptosis using dynamic PET imaging. Peptide PSBP-6 was also conjugated via an Ava linker with fluorescein isothiocyanate (FITC). FITC-Ava-PSBP-6 was evaluated in flow cytometry and fluorescence confocal microscopy experiments. Radiopeptide 64 Cu-NOTA-Ava-PSBP-6 was synthesized in high radiochemical yields of >95%. The IC 50 values for PS-binding potency of PSBP-6, NOTA-Ava-PSBP-6, and nat Cu-NOTA-PSBP-6 were 600 μM, 30 μM, and 23 μM, respectively. A competitive radiometric cell binding assay confirmed binding of 64 Cu-NOTA-Ava-PSBP-6 to camptothecin-induced apoptotic EL4 cells in a Ca 2+ -independent manner. PET imaging studies demonstrated significantly higher uptake of 64 Cu-NOTA-Ava-PSBP-6 in apoptotic EL4 tumors (SUV 5min 0.95 ± 0.04) compared to control tumors (SUV 5min 0.74 ± 0.03). Flow cytometry studies showed significantly higher binding of FITC-Ava-PSBP-6 to EL4 cells treated with camptothecin compared to untreated cells

  13. c-MET receptor tyrosine kinase as a molecular target in advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Granito A

    2015-04-01

    Full Text Available Alessandro Granito,1 Elena Guidetti,1 Laura Gramantieri2,3 1Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna, Bologna, Italy; 2Dipartimento dell'Apparato Digerente, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; 3Centro di Ricerca Biomedica Applicata (CRBA, Azienda Ospedaliero-Universitaria Policlinico S Orsola-Malpighi e Università di Bologna, Bologna, Italy Abstract: c-MET is the membrane receptor for hepatocyte growth factor (HGF, also known as scatter factor or tumor cytotoxic factor, a mitogenic growth factor for hepatocytes. HGF is mainly produced by cells of mesenchymal origin and it mainly acts on neighboring epidermal and endothelial cells, regulating epithelial growth and morphogenesis. HGF/MET signaling has been identified among the drivers of tumorigenesis in human cancers. As such, c-MET is a recognized druggable target, and against it, targeted agents are currently under clinical investigation. c-MET overexpression is a common event in a wide range of human malignancies, including gastric, lung, breast, ovary, colon, kidney, thyroid, and liver carcinomas. Despite c-MET overexpression being reported by a large majority of studies, no evidence for a c-MET oncogenic addiction exists in hepatocellular carcinoma (HCC. In particular, c-MET amplification is a rare event, accounting for 4%–5% of cases while no mutation has been identified in c-MET oncogene in HCC. Thus, the selection of patient subgroups more likely to benefit from c-MET inhibition is challenging. Notwithstanding, c-MET overexpression was reported to be associated with increased metastatic potential and poor prognosis in patients with HCC, providing a rationale for its therapeutic inhibition. Here we summarize the role of activated HGF/MET signaling in HCC, its prognostic relevance, and the implications for therapeutic approaches in HCC. Keywords: hepatocellular carcinoma, c-MET, clinical trials

  14. Targeted Sequencing of Venom Genes from Cone Snail Genomes Improves Understanding of Conotoxin Molecular Evolution.

    Science.gov (United States)

    Phuong, Mark A; Mahardika, Gusti N

    2018-05-01

    To expand our capacity to discover venom sequences from the genomes of venomous organisms, we applied targeted sequencing techniques to selectively recover venom gene superfamilies and nontoxin loci from the genomes of 32 cone snail species (family, Conidae), a diverse group of marine gastropods that capture their prey using a cocktail of neurotoxic peptides (conotoxins). We were able to successfully recover conotoxin gene superfamilies across all species with high confidence (> 100× coverage) and used these data to provide new insights into conotoxin evolution. First, we found that conotoxin gene superfamilies are composed of one to six exons and are typically short in length (mean = ∼85 bp). Second, we expanded our understanding of the following genetic features of conotoxin evolution: 1) positive selection, where exons coding the mature toxin region were often three times more divergent than their adjacent noncoding regions, 2) expression regulation, with comparisons to transcriptome data showing that cone snails only express a fraction of the genes available in their genome (24-63%), and 3) extensive gene turnover, where Conidae species varied from 120 to 859 conotoxin gene copies. Finally, using comparative phylogenetic methods, we found that while diet specificity did not predict patterns of conotoxin evolution, dietary breadth was positively correlated with total conotoxin gene diversity. Overall, the targeted sequencing technique demonstrated here has the potential to radically increase the pace at which venom gene families are sequenced and studied, reshaping our ability to understand the impact of genetic changes on ecologically relevant phenotypes and subsequent diversification.

  15. Sleep-time blood pressure: prognostic value and relevance as a therapeutic target for cardiovascular risk reduction.

    Science.gov (United States)

    Hermida, Ramón C; Ayala, Diana E; Fernández, José R; Mojón, Artemio

    2013-03-01

    Correlation between blood pressure (BP) level and target organ damage, cardiovascular disease (CVD) risk, and long-term prognosis is greater for ambulatory BP monitoring (ABPM) than clinical BP measurements. Nevertheless, the latter continue to be the "gold standard" to diagnose hypertension, assess CVD risk, and evaluate hypertension treatment. Independent ABPM studies have found that elevated sleep-time BP is a better predictor of CVD risk than either the awake or 24-h BP mean. A major limitation of all previous ABPM-based prognostic studies is the reliance only upon a single baseline profile from each participant at the time of inclusion, without accounting for potential changes in the level and pattern of ambulatory BP thereafter during follow-up. Accordingly, impact of the alteration over time, i.e., during long-term follow-up, of specific features of the 24-h BP variation on CVD risk has never been properly investigated. We evaluated the comparative prognostic value of (i) clinic and ambulatory BP; (ii) different ABPM-derived characteristics, e.g., asleep or awake BP mean; and (iii) specific changes in ABPM characteristic during follow-up, mainly whether reduced CVD risk is more related to the progressive decrease of asleep or awake BP. We prospectively studied 3344 subjects (1718 men/1626 women), 52.6 ± 14.5 (mean ± SD) yrs of age, during a median follow-up of 5.6 yrs. Those with hypertension at baseline were randomized to ingest all their prescribed hypertension medications upon awakening or ≥1 of them at bedtime. At baseline, BP was measured at 20-min intervals from 07:00 to 23:00 h and at 30-min intervals at night for 48-h, and physical activity was simultaneously monitored every min by wrist actigraphy to accurately derive awake and asleep BP means. Identical assessment was scheduled annually and more frequently (quarterly) if treatment adjustment was required. Data collected either at baseline or the last ABPM evaluation per participant

  16. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging.

    Science.gov (United States)

    Zhou, Zhuxian; Han, Zhen; Lu, Zheng-Rong

    2016-04-01

    The clinical application of nanoparticular Gd(III) based contrast agents for tumor molecular MRI has been hindered by safety concerns associated with prolonged tissue retention, although they can produce strong tumor enhancement. In this study, a targeted well-defined cyclodextrin-based nanoglobular contrast agent was developed through self-assembly driven by host-guest interactions for safe and effective cancer molecular MRI. Multiple β-cyclodextrins attached POSS (polyhedral oligomeric silsesquioxane) nanoglobule was used as host molecule. Adamantane-modified macrocyclic Gd(III) contrast agent, cRGD (cyclic RGDfK peptide) targeting ligand and fluorescent probe was used as guest molecules. The targeted host-guest nanoglobular contrast agent cRGD-POSS-βCD-(DOTA-Gd) specifically bond to αvβ3 integrin in malignant 4T1 breast tumor and provided greater contrast enhancement than the corresponding non-targeted agent. The agent also provided significant fluorescence signal in tumor tissue. The histological analysis of the tumor tissue confirmed its specific and effective targeting to αvβ3 integrin. The targeted imaging agent has a potential for specific cancer molecular MR and fluorescent imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    International Nuclear Information System (INIS)

    Contardo-Jara, Valeska; Lorenz, Claudia; Pflugmacher, Stephan; Nuetzmann, Gunnar; Kloas, Werner; Wiegand, Claudia

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 μg L -1 ) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 μg L -1 ) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: → Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. → Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. → Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. → mRNA induction of heat shock protein 70 after one week prove protein damage.

  18. Fragile X and autism: Intertwined at the molecular level leading to targeted treatments

    Directory of Open Access Journals (Sweden)

    Hagerman Randi

    2010-09-01

    Full Text Available Abstract Fragile X syndrome (FXS is caused by an expanded CGG repeat (> 200 repeats in the 5' untranslated portion of the fragile mental retardation 1 gene (FMR1, leading to deficiency or absence of the FMR1 protein (FMRP. FMRP is an RNA carrier protein that controls the translation of several other genes that regulate synaptic development and plasticity. Autism occurs in approximately 30% of FXS cases, and pervasive developmental disorder, not otherwise specified (PDD-NOS occurs in an additional 30% of cases. Premutation repeat expansions (55 to 200 CGG repeats may also give rise to autism spectrum disorders (ASD, including both autism and PDD-NOS, through a different molecular mechanism that involves a direct toxic effect of the expanded CGG repeat FMR1 mRNA. RNA toxicity can also lead to aging effects including tremor, ataxia and cognitive decline, termed fragile X-associated tremor ataxia syndrome (FXTAS, in premutation carriers in late life. In studies of mice bearing premutation expansions, there is evidence of early postnatal neuronal cell toxicity, presenting as reduced cell longevity, decreased dendritic arborization and altered synaptic morphology. There is also evidence of mitochondrial dysfunction in premutation carriers. Many of the problems with cellular dysregulation in both premutation and full mutation neurons also parallel the cellular abnormalities that have been documented in autism without fragile X mutations. Research regarding dysregulation of neurotransmitter systems in FXS, including the metabotropic glutamate receptor (mGluR1/5 pathway and γ aminobutyric acid (GABAA pathways, have led to new targeted treatments for FXS. Preliminary evidence suggests that these new targeted treatments will also be beneficial in non-fragile X forms of autism.

  19. Use of Neoadjuvant Chemotherapy Plus Molecular Targeted Therapy in Colorectal Liver Metastases: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Sabanathan, Dhanusha; Eslick, Guy D; Shannon, Jenny

    2016-12-01

    Surgery remains the standard of care for patients with colorectal liver metastases (CLMs), with a 5-year survival rate approaching 35%. Perioperative chemotherapy confers a survival benefit in selected patients with CLMs. The use of molecular targeted therapy combined with neoadjuvant chemotherapy for CLMs, however, remains controversial. We reviewed the published data on combination neoadjuvant chemotherapy and molecular targeted therapy for resectable and initially unresectable CLMs. A literature search of the Medline and PubMed databases was conducted to identify studies of neoadjuvant chemotherapy plus molecular targeted therapy in the management of resectable or initially unresectable CLMs. We calculated the pooled proportion and 95% confidence intervals using a random effects model for the relationship of the combination neoadjuvant treatment on the overall response rate and performed a systematic review of all identified studies. The analysis was stratified according to the study design. The data from 11 studies of 908 patients who had undergone systemic chemotherapy plus targeted therapy for CLM were analyzed. The use of combination neoadjuvant therapy was associated with an overall response rate of 68% (95% confidence interval, 63%-73%), with significant heterogeneity observed in the studies (I 2  = 89.35; P chemotherapy plus molecular targeted agents for CLM confers high overall response rates. Combination treatment might also increase the resectability rates in initially unresectable CLM. Further studies are needed to examine the survival outcomes, with a focus on the differential role of molecular targeted therapy in the neoadjuvant versus adjuvant setting. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. Basic pathologies of neurodegenerative dementias and their relevance for state-of-the-art molecular imaging studies

    International Nuclear Information System (INIS)

    Drzezga, Alexander

    2008-01-01

    Rising life-expectancy in the modern society has resulted in a rapidly growing prevalence of dementia, particularly of Alzheimer's disease (AD). Dementia turns into one of the most common age-related disorders with deleterious consequences for the concerned patients and their relatives, as well as worrying effects on the socio-economic systems. These facts justify strengthened scientific efforts to identify the pathologic origin of dementing disorders, to improve diagnosis, and to interfere therapeutically with the disease progression. In the recent years, remarkable progress has been made concerning the identification of molecular mechanisms underlying the pathology of neurodegenerative disorders. Growing evidence indicates that a common basis of many neurodegenerative dementias can be found in increased production, misfolding and pathological aggregation of proteins, such as ss-amyloid, tau protein, a-synuclein, or the recently described ubiquitinated TDP-43. This progressive insight in pathological processes is paralleled by the development of new therapeutic approaches. However, the exact contribution or mechanism of different pathologies with regard to the development of disease is not yet sufficiently clear. Considerable overlap of pathologies has been documented in different types of clinically defined dementias post mortem, and it has been difficult to correlate post mortem histopathology data with disease-expression during life. Molecular imaging procedures may play a valuable role to circumvent this limitation. In general, methods of molecular imaging have recently experienced an impressive advance, with numerous new and improved technologies emerging. These exciting tools may play a key role in the future regarding the evaluation of pathomechanisms, preclinical evaluation of new diagnostic procedures in animal models, selection of patients for clinical trials, and therapy monitoring. In this overview, molecular key pathologies, which are currently

  1. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    Directory of Open Access Journals (Sweden)

    Kaustav Majumder

    2014-12-01

    Full Text Available There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE, are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.

  2. A Targeted "Capture" and "Removal" Scavenger toward Multiple Pollutants for Water Remediation based on Molecular Recognition.

    Science.gov (United States)

    Wang, Jie; Shen, Haijing; Hu, Xiaoxia; Li, Yan; Li, Zhihao; Xu, Jinfan; Song, Xiufeng; Zeng, Haibo; Yuan, Quan

    2016-03-01

    For the water remediation techniques based on adsorption, the long-standing contradictories between selectivity and multiple adsorbability, as well as between affinity and recyclability, have put it on weak defense amid more and more severe environment crisis. Here, a pollutant-targeting hydrogel scavenger is reported for water remediation with both high selectivity and multiple adsorbability for several pollutants, and with strong affinity and good recyclability through rationally integrating the advantages of multiple functional materials. In the scavenger, aptamers fold into binding pockets to accommodate the molecular structure of pollutants to afford perfect selectivity, and Janus nanoparticles with antibacterial function as well as anisotropic surfaces to immobilize multiple aptamers allow for simultaneously handling different kinds of pollutants. The scavenger exhibits high efficiencies in removing pollutants from water and it can be easily recycled for many times without significant loss of loading capacities. Moreover, the residual concentrations of each contaminant are well below the drinking water standards. Thermodynamic behavior of the adsorption process is investigated and the rate-controlling process is determined. Furthermore, a point of use device is constructed and it displays high efficiency in removing pollutants from environmental water. The scavenger exhibits great promise to be applied in the next generation of water purification systems.

  3. Molecular Targets of Nutraceuticals Derived from Dietary Spices: Potential Role in Suppression of Inflammation and Tumorigenesis

    Science.gov (United States)

    Aggarwal, Bharat B.; Van Kuiken, Michelle E.; Iyer, Laxmi H.; Harikumar, Kuzhuvelil B.; Sung, Bokyung

    2011-01-01

    Despite the fact cancer is primarily a preventable disease, recent statistics indicate cancer will become the number one killer worldwide in 2010. Since certain cancers are more prevalent in the people of some countries than others, suggests the role of lifestyle. For instance cancer incidence among people from the Indian subcontinent, where most spices are consumed, is much lower than that in the Western World. Spices have been consumed for centuries for a variety of purposes—as flavoring agents, colorants, and preservatives. However, there is increasing evidence for the importance of plant-based foods in regular diet to lowering the risk of most chronic diseases, so spices are now emerging as more than just flavor aids, but as agents that can not only prevent but may even treat disease. In this article, we discuss the role of 41 common dietary spices with over 182 spice-derived nutraceuticals for their effects against different stages of tumorigenesis. Besides suppressing inflammatory pathways, spice-derived nutraceuticals can suppress survival, proliferation, invasion, and angiogenesis of tumor cells. We discuss how spice-derived nutraceuticals mediate such diverse effects and what their molecular targets are. Overall our review suggests “adding spice to your life” may serve as a healthy and delicious way to ward off cancer and other chronic diseases. PMID:19491364

  4. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Directory of Open Access Journals (Sweden)

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  5. Targeted Molecular Imaging in Adrenal Disease—An Emerging Role for Metomidate PET-CT

    Directory of Open Access Journals (Sweden)

    Iosif A. Mendichovszky

    2016-11-01

    Full Text Available Adrenal lesions present a significant diagnostic burden for both radiologists and endocrinologists, especially with the increasing number of adrenal ‘incidentalomas’ detected on modern computed tomography (CT or magnetic resonance imaging (MRI. A key objective is the reliable distinction of benign disease from either primary adrenal malignancy (e.g., adrenocortical carcinoma or malignant forms of pheochromocytoma/paraganglioma (PPGL or metastases (e.g., bronchial, renal. Benign lesions may still be associated with adverse sequelae through autonomous hormone hypersecretion (e.g., primary aldosteronism, Cushing’s syndrome, phaeochromocytoma. Here, identifying a causative lesion, or lateralising the disease to a single adrenal gland, is key to effective management, as unilateral adrenalectomy may offer the potential for curing conditions that are typically associated with significant excess morbidity and mortality. This review considers the evolving role of positron emission tomography (PET imaging in addressing the limitations of traditional cross-sectional imaging and adjunctive techniques, such as venous sampling, in the management of adrenal disorders. We review the development of targeted molecular imaging to the adrenocortical enzymes CYP11B1 and CYP11B2 with different radiolabeled metomidate compounds. Particular consideration is given to iodo-metomidate PET tracers for the diagnosis and management of adrenocortical carcinoma, and the increasingly recognized utility of 11C-metomidate PET-CT in primary aldosteronism.

  6. Delayed brain radiation necrosis: pathological review and new molecular targets for treatment.

    Science.gov (United States)

    Furuse, Motomasa; Nonoguchi, Naosuke; Kawabata, Shinji; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko

    2015-12-01

    Delayed radiation necrosis is a well-known adverse event following radiotherapy for brain diseases and has been studied since the 1930s. The primary pathogenesis is thought to be the direct damage to endothelial and glial cells, particularly oligodendrocytes, which causes vascular hyalinization and demyelination. This primary pathology leads to tissue inflammation and ischemia, inducing various tissue protective responses including angiogenesis. Macrophages and lymphocytes then infiltrate the surrounding areas of necrosis, releasing inflammatory cytokines such as interleukin (IL)-1α, IL-6, and tumor necrosis factor (TNF)-α. Microglia also express these inflammatory cytokines. Reactive astrocytes play an important role in angiogenesis, expressing vascular endothelial growth factor (VEGF). Some chemokine networks, like the CXCL12/CXCR4 axis, are upregulated by tissue inflammation. Hypoxia may mediate the cell-cell interactions among reactive astrocytes, macrophages, and microglial cells around the necrotic core. Recently, bevacizumab, an anti-VEGF antibody, has demonstrated promising results as an alternative treatment for radiation necrosis. The importance of VEGF in the pathophysiology of brain radiation necrosis is being recognized. The discovery of new molecular targets could facilitate novel treatments for radiation necrosis. This literature review will focus on recent work characterizing delayed radiation necrosis in the brain.

  7. Exponential growth for self-reproduction in a catalytic reaction network: relevance of a minority molecular species and crowdedness

    Science.gov (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2018-03-01

    Explanation of exponential growth in self-reproduction is an important step toward elucidation of the origins of life because optimization of the growth potential across rounds of selection is necessary for Darwinian evolution. To produce another copy with approximately the same composition, the exponential growth rates for all components have to be equal. How such balanced growth is achieved, however, is not a trivial question, because this kind of growth requires orchestrated replication of the components in stochastic and nonlinear catalytic reactions. By considering a mutually catalyzing reaction in two- and three-dimensional lattices, as represented by a cellular automaton model, we show that self-reproduction with exponential growth is possible only when the replication and degradation of one molecular species is much slower than those of the others, i.e., when there is a minority molecule. Here, the synergetic effect of molecular discreteness and crowding is necessary to produce the exponential growth. Otherwise, the growth curves show superexponential growth because of nonlinearity of the catalytic reactions or subexponential growth due to replication inhibition by overcrowding of molecules. Our study emphasizes that the minority molecular species in a catalytic reaction network is necessary for exponential growth at the primitive stage of life.

  8. Understanding the molecular target therapy and it's approved synchronous use with radiation therapy in current Indian oncology practice

    International Nuclear Information System (INIS)

    Gupta, Puneet; Dohhen, Umesh Kumar; Romana; Srivastava, Priyanka

    2012-01-01

    The molecular targeted drugs (MTD) are of two types; large and small. The large molecular targeted drugs (LMTD) cannot cross the cancer cell membrane whereas those that cross the cancer cell membrane are nicknamed small molecular target drugs (SMTD). India has availability of almost all MTD originals approved by USA Food and Drug administration. However a few LMTD like inj vectibix, inj Zevalin, Inj Bexar etc.; and SMTD like cap Tipifarnib approved for AML, are not available in India currently although approved and available in USA. The MTD may he used alone as singlet; along with chemotherapy as doublet or triplet; or along with radiation and chemotherapy combo (nicknamed chemo-radiation-bio therapy). The molecular target therapy approved by USA and/or European FDA and currently available in India and used along with radiation therapy with or without chemotherapy, indication wise are; Brain Tumor Inj Nimotuzumab (LMTD) and Inj bevacizumab (LMTD) in Glioblasoma Multiforme; for Carcinoma Head and neck Inj Cetuximab and Inj Nimotuzumab (LMTT), Tab Geftinib (SMTD). (author)

  9. Screening of broad spectrum natural pesticides against conserved target arginine kinase in cotton pests by molecular modeling.

    Science.gov (United States)

    Sakthivel, Seethalakshmi; Habeeb, S K M; Raman, Chandrasekar

    2018-03-12

    Cotton is an economically important crop and its production is challenged by the diversity of pests and related insecticide resistance. Identification of the conserved target across the cotton pest will help to design broad spectrum insecticide. In this study, we have identified conserved sequences by Expressed Sequence Tag profiling from three cotton pests namely Aphis gossypii, Helicoverpa armigera, and Spodoptera exigua. One target protein arginine kinase having a key role in insect physiology and energy metabolism was studied further using homology modeling, virtual screening, molecular docking, and molecular dynamics simulation to identify potential biopesticide compounds from the Zinc natural database. We have identified four compounds having excellent inhibitor potential against the identified broad spectrum target which are highly specific to invertebrates.

  10. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    International Nuclear Information System (INIS)

    Ferro F, G.; Torres G, E.; Gonzalez V, A.; Murphy, C.A. de

    2006-01-01

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99m Tc-HYNlC-TOC has shown high in vitro and in vivo stability, rapid background clearance and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non Hodgkin's Iymphoma (NHL). The aim of this study was to establish biokinetic models for 99m Tc-HYNlC-TOC and 188 Re-anti-CD20 prepared from Iyophilized kits, and to evaluate their dosimetry as target-specific radiopharmaceuticals. Whole-body images were acquired at different times after 99m Tc-HYNlC-TOC or 188 Re-anti-CD20 administration obtained from instant freeze-dried kit formulations with radiochemical purities > 95 %. Regions of interest (ROls) were drawn around source organs on each time frame. The cpm of each ROI was converted to activity using the conjugate view counting method. The image sequence was used to extrapolate time-activity curves in each organ, to adjust the biokinetic model using the SAAM software, and to calculate the total number of disintegrations (N) that occurred in the source regions. N data were the input for the OLINDA/EXM code to calculate internal radiation dose estimates. 99m Tc-HYNlC-TOC images showed an average tumor/blood (heart) ratio of 4.3 ± 0.7 in receptor-positive tumors at 1 h and the mean radiation absorbed dose calculated for a study using 740 MBq was 24, 21.5, 5.5 and 1.0 mSv for spleen, kidneys, liver and bone marrow respectively and the effective dose was 4.4 mSv. Results showed that after administration of 7 GBq of 188 Re-anti-CD20 the absorbed dose to whole body would be 0.7 Gy (0.1 mGy/MBq) which is the indicated dose for non Hodgkin's Iymphome therapies. (Author)

  11. Bleomycin Induces Molecular Changes Directly Relevant to Idiopathic Pulmonary Fibrosis: A Model for “Active” Disease

    Science.gov (United States)

    Tyagi, Gaurav; Phillips, Jonathan E.; Garrido, Rosario; Harris, Paul; Burns, Lisa; Renteria, Lorena; Woods, John; Chen, Leena; Allard, John; Ravindran, Palanikumar; Bitter, Hans; Liang, Zhenmin; Hogaboam, Cory M.; Kitson, Chris; Budd, David C.; Fine, Jay S.; Bauer, Carla MT.; Stevenson, Christopher S.

    2013-01-01

    The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease. PMID:23565148

  12. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    Science.gov (United States)

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  13. Molecular and biopharmaceutical investigation of alginate-inulin synbiotic coencapsulation of probiotic to target the colon.

    Science.gov (United States)

    Atia, Abdelbasset; Gomma, Ahmed I; Fliss, Ismail; Beyssac, Eric; Garrait, Ghislain; Subirade, Muriel

    2017-03-01

    Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and inulin-alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.

  14. CAM and Cell Fate Targeting: Molecular and Energetic Insights into Cell Growth and Differentiation

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2005-01-01

    Full Text Available Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence–based CAM.

  15. (Pro)renin receptor: Involvement in diabetic retinopathy and development of molecular targeted therapy.

    Science.gov (United States)

    Kanda, Atsuhiro; Ishida, Susumu

    2018-03-25

    The renin-angiotensin system (RAS), a crucial regulator of systemic blood pressure (circulatory RAS), plays distinct roles in pathological angiogenesis and inflammation in various organs (tissue RAS), such as diabetic microvascular complications. Using ocular clinical samples and animal disease models, we elucidated molecular mechanisms in which tissue RAS excites the expression of vascular endothelial growth factor (VEGF)-A responsible for retinal inflammation and angiogenesis, the two major pathological events in diabetic retinopathy (DR). Furthermore, we showed the involvement of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction (e.g., extracellular signal-regulated kinase); namely, the (P)RR-induced dual pathogenic bioactivity referred to as the receptor-associated prorenin system. Indeed, neovascular endothelial cells in the fibrovascular tissue collected from eyes with proliferative DR were immunoreactive for the receptor-associated prorenin system components including prorenin, (P)RR, phosphorylated extracellular signal-regulated kinase and VEGF-A. Protein levels of soluble (P)RR increased with its positive correlations with prorenin, renin enzymatic activity and VEGF in the vitreous of proliferative DR eyes, suggesting a close link between (P)RR and VEGF-A-driven angiogenic activity. Furthermore, we revealed an unsuspected, PAPS-independent role of (P)RR in glucose-induced oxidative stress. Recently, we developed an innovative single-strand ribonucleic acid interference molecule selectively targeting human and mouse (P)RR, and confirmed its efficacy in suppressing diabetes-induced retinal inflammation in mice. Our data using clinical samples and animal models suggested the significant implication of (P)RR in the pathogenesis of DR, and the potential usefulness of the ribonucleic acid interference molecule as a therapeutic agent to attenuate ocular inflammation and angiogenesis. © 2018 The Authors

  16. Imaging and Molecular Markers for Patients with Lung Cancer: Approaches with Molecular Targets, Complementary/Innovative Treatment, and Therapeutic Modalities

    Science.gov (United States)

    2011-02-01

    Therapeutic and Imaging Agents to Lung Cancer (PI and co-PI: Renata Pasqualini , Ph.D., Wadih Arap, M.D., Ph.D.) The studies outlined in this proposal...with Drs. Pasqualini , Arap, and Wistuba. The IHC staining of lung cancer TMAs (390 cases) has been completed. We are working with investigators to...Project 3, R. Pasqualini ). This project was completed and a manuscript is in preparation by Dr. Pasqualini’s lab. b) Molecular abnormalities

  17. Competitive Reporter Monitored Amplification (CMA) - Quantification of Molecular Targets by Real Time Monitoring of Competitive Reporter Hybridization

    Science.gov (United States)

    Ullrich, Thomas; Ermantraut, Eugen; Schulz, Torsten; Steinmetzer, Katrin

    2012-01-01

    Background State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. Methodology and Principal Findings The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. Conclusions and Significance The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2), we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls and targets into a

  18. Competitive reporter monitored amplification (CMA--quantification of molecular targets by real time monitoring of competitive reporter hybridization.

    Directory of Open Access Journals (Sweden)

    Thomas Ullrich

    Full Text Available BACKGROUND: State of the art molecular diagnostic tests are based on the sensitive detection and quantification of nucleic acids. However, currently established diagnostic tests are characterized by elaborate and expensive technical solutions hindering the development of simple, affordable and compact point-of-care molecular tests. METHODOLOGY AND PRINCIPAL FINDINGS: The described competitive reporter monitored amplification allows the simultaneous amplification and quantification of multiple nucleic acid targets by polymerase chain reaction. Target quantification is accomplished by real-time detection of amplified nucleic acids utilizing a capture probe array and specific reporter probes. The reporter probes are fluorescently labeled oligonucleotides that are complementary to the respective capture probes on the array and to the respective sites of the target nucleic acids in solution. Capture probes and amplified target compete for reporter probes. Increasing amplicon concentration leads to decreased fluorescence signal at the respective capture probe position on the array which is measured after each cycle of amplification. In order to observe reporter probe hybridization in real-time without any additional washing steps, we have developed a mechanical fluorescence background displacement technique. CONCLUSIONS AND SIGNIFICANCE: The system presented in this paper enables simultaneous detection and quantification of multiple targets. Moreover, the presented fluorescence background displacement technique provides a generic solution for real time monitoring of binding events of fluorescently labelled ligands to surface immobilized probes. With the model assay for the detection of human immunodeficiency virus type 1 and 2 (HIV 1/2, we have been able to observe the amplification kinetics of five targets simultaneously and accommodate two additional hybridization controls with a simple instrument set-up. The ability to accommodate multiple controls

  19. Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms.

    Science.gov (United States)

    Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl

    2018-02-01

    The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.

  20. Emerging treatments in lung cancer – targeting the RLIP76 molecular transporter

    Directory of Open Access Journals (Sweden)

    Goldfinger LE

    2013-11-01

    Full Text Available Lawrence E Goldfinger,1,2 Seunghyung Lee1 1Department of Anatomy and Cell Biology, The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, PA, USA; 2Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA Abstract: Multidrug resistance in lung cancer cells is a significant obstacle in the treatment of lung cancer. Resistance to chemotherapeutic agents is often the result of efflux of the drugs from cancer cells, mediated by adenosine triphosphate (ATP-dependent drug transport across the plasma membrane. Thus, identifying molecular targets in the cancer cell transport machinery could be a key factor in successful combinatorial therapy, along with chemotherapeutic drugs. The transport protein Ral-interacting protein of 76 kDa (RLIP76, also known as Ral-binding protein 1 (RalBP1, is a highly promising target for lung cancer treatment. RLIP76 is an ATP-dependent non-ATP-binding cassette (ABC transporter, responsible for the major transport function in many cells, including many cancer cell lines, causing efflux of glutathione-electrophile conjugates of both endogenous metabolites and environmental toxins. RLIP76 is expressed in most human tissues, and is overexpressed in non-small-cell lung cancer cell lines and in many tumor types. The blockade of RLIP76 by various approaches has been shown to increase the sensitivity to radiation and chemotherapeutic drugs, and leads to apoptosis in cells. In xenograft tumor models in mice, RLIP76 blockade or depletion results in complete and sustained regression across many cancer cell types, including lung cancer cells. In addition to its transport function, RLIP76 has many other cellular and physiological functions based on its domain structure, which includes a unique Ral-binding domain and a Rho GTPase activating protein (RhoGAP-catalytic domain as well as docking sites for multiple signaling proteins. As a Ral effector, RhoGAP, and adapter protein, RLIP76

  1. High pressure inactivation of relevant target microorganisms in poultry meat products and the evaluation of pressure-induced protein denaturation of marinated poultry under different high pressure treatments

    Science.gov (United States)

    Schmidgall, Johanna; Hertel, Christian; Bindrich, Ute; Heinz, Volker; Toepfl, Stefan

    2011-03-01

    In this study, the possibility of extending shelf life of marinated poultry meat products by high pressure processing was evaluated. Relevant spoilage and pathogenic strains were selected and used as target microorganisms (MOs) for challenge experiments. Meat and brine were inoculated with MOs and treated at 450 MPa, 4 °C for 3 min. The results of inactivation show a decreasing pressure tolerance in the series Lactobacillus > Arcobacter > Carnobacterium > Bacillus cereus > Brochothrix thermosphacta > Listeria monocytogenes. Leuconostoc gelidum exhibited the highest pressure tolerance in meat. A protective effect of poultry meat was found for L. sakei and L. gelidum. In parallel, the influence of different marinade formulations (pH, carbonates, citrates) on protein structure changes during a pressure treatment was investigated. Addition of sodium carbonate shows a protection against denaturation of myofibrillar proteins and provides a maximum water-holding capacity. Caustic marinades allowed a higher retention of product characteristics than low-pH marinades.

  2. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application

    Directory of Open Access Journals (Sweden)

    Lauren Boldon

    2015-02-01

    Full Text Available In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS experiments, molecular dynamics (MD simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics’ equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  3. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research

    Directory of Open Access Journals (Sweden)

    Maria Akhmanova

    2015-01-01

    Full Text Available Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity, viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement, and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.

  4. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application.

    Science.gov (United States)

    Boldon, Lauren; Laliberte, Fallon; Liu, Li

    2015-01-01

    In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.

  5. Studying the molecular mechanisms of radiation damage : low-energy electron interactions with biomolecules and medically relevant molecules

    International Nuclear Information System (INIS)

    Tanzer, K.

    2015-01-01

    were developed to enhance the radiation damage in these tumor sites, however, the molecular mechanism at which radiosensitizers operate is still unknown to this date. Investigating radiosensitizers with low-energy electrons might enlighten the mystery of their working mechanism. We performed an extensive DEA study to the proposed radiosensitizer 4-nitroimidazole (4NI) and two methylated nitroimidazoles, and found quite unexpected results. While 4NI is very sensitive towards electrons, which trigger a rich chemistry in the molecule, leading to the formation of a variety of reactive radical species at very low energies below 2 eV, these reactions are completely blocked in the methylated compounds. This means, that only small changes in the structure of this molecule can have immense effects on its radiosensitizing properties, which is an important aspect to take into consideration when searching for new radiosensitizers. Chemotherapy is also among the most efficient treatment methods for cancer and it has been shown, that the concomitant administration of chemo- and radiotherapy can have a superadditive benefit. However, also in this case the exact molecular processes responsible for this effect are not known, making further investigations necessary. In this thesis I present the study of platinum(II) bromide as a model molecule for platinum-based chemotherapeutic drugs and metal halides, that have shown good radiosensitizing abilities. It was found that the most effective reaction upon low-electron interaction is the formation of the fragment anion Br– , that is most probably coupled with ion pair formation. (author) [de

  6. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Balduino, Alex, E-mail: balduino@uva.edu.br [School of Dentistry, Veiga de Almeida University, Rio de Janeiro, RJ (Brazil); Mello-Coelho, Valeria [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil); National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H. [Department of Periodontics, Prevention and Geriatrics, University of Michigan School of Dentistry, Ann Arbor, MI (United States); Weeraratna, Ashani T.; Becker, Kevin G. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Mello, Wallace de [Instituto Oswaldo Cruz, Rio de Janeiro, RJ (Brazil); Taub, Dennis D. [National Institute on Aging, National Institute of Health, Baltimore, MD (United States); Borojevic, Radovan [Biomedical Science Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2012-11-15

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.

  7. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis

    International Nuclear Information System (INIS)

    Balduino, Alex; Mello-Coelho, Valeria; Wang, Zhou; Taichman, Russell S.; Krebsbach, Paul H.; Weeraratna, Ashani T.; Becker, Kevin G.; Mello, Wallace de; Taub, Dennis D.; Borojevic, Radovan

    2012-01-01

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromal populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the “quiescent” and “proliferative” niches in which hematopoietic stem cells and progenitors reside.

  8. Targeting N-Glycan Cryptic Sugar Moieties for Broad-Spectrum Virus Neutralization: Progress in Identifying Conserved Molecular Targets in Viruses of Distinct Phylogenetic Origins

    Directory of Open Access Journals (Sweden)

    Denong Wang

    2015-03-01

    Full Text Available Identifying molecular targets for eliciting broadly virus-neutralizing antibodies is one of the key steps toward development of vaccines against emerging viral pathogens. Owing to genomic and somatic diversities among viral species, identifying protein targets for broad-spectrum virus neutralization is highly challenging even for the same virus, such as HIV-1. However, viruses rely on host glycosylation machineries to synthesize and express glycans and, thereby, may display common carbohydrate moieties. Thus, exploring glycan-binding profiles of broad-spectrum virus-neutralizing agents may provide key information to uncover the carbohydrate-based virus-neutralizing epitopes. In this study, we characterized two broadly HIV-neutralizing agents, human monoclonal antibody 2G12 and Galanthus nivalis lectin (GNA, for their viral targeting activities. Although these agents were known to be specific for oligomannosyl antigens, they differ strikingly in virus-binding activities. The former is HIV-1 specific; the latter is broadly reactive and is able to neutralize viruses of distinct phylogenetic origins, such as HIV-1, severe acute respiratory syndrome coronavirus (SARS-CoV, and human cytomegalovirus (HCMV. In carbohydrate microarray analyses, we explored the molecular basis underlying the striking differences in the spectrum of anti-virus activities of the two probes. Unlike 2G12, which is strictly specific for the high-density Man9GlcNAc2Asn (Man9-clusters, GNA recognizes a number of N-glycan cryptic sugar moieties. These include not only the known oligomannosyl antigens but also previously unrecognized tri-antennary or multi-valent GlcNAc-terminating N-glycan epitopes (Tri/m-Gn. These findings highlight the potential of N-glycan cryptic sugar moieties as conserved targets for broad-spectrum virus neutralization and suggest the GNA-model of glycan-binding warrants focused investigation.

  9. Treatment of Renal Cell Carcinoma with 2-Stage Total en bloc Spondylectomy after Marked Response to Molecular Target Drugs

    Directory of Open Access Journals (Sweden)

    Yasuhiro Inoue

    2013-01-01

    Full Text Available Metastatic renal cell carcinoma of the bone occurs at a high rate, and the prognosis is poor. In general, total en bloc spondylectomy is considered when there is only one vertebral metastasis and the primary disease is treated. However, palliative surgery is selected when the primary disease is not being treated or metastasis occurs to an important organ. We encountered a patient in whom lung and vertebra metastases were already present at the time of the first examination at our department and the prognosis was considered poor. However, molecular targeted therapy was markedly effective and enabled 2-stage total en bloc spondylectomy. As of one year after total en bloc spondylectomy, the condition has improved to cane gait, and surgery for lung metastasis is planned. Molecular target drugs might markedly change the current therapeutic strategy for renal cell carcinoma.

  10. Screening of molecular cell targets for carcinogenic heterocyclic aromatic amines by using CALUX® reporter gene assays.

    Science.gov (United States)

    Steinberg, Pablo; Behnisch, Peter A; Besselink, Harrie; Brouwer, Abraham A

    2017-06-01

    Heterocyclic aromatic amines (HCAs) are compounds formed when meat or fish are cooked at high temperatures for a long time or over an open fire. To determine which pathways of toxicity are activated by HCAs, nine out of the ten HCAs known to be carcinogenic in rodents (2-amino-9H-pyrido[2,3-b]indole (AαC), 2-aminodipyrido[1,2-a:3',2-d]imidazole (Glu-P-2), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)) were tested in the estrogen receptor α (ERα), androgen receptor (AR), glucocorticoid receptor (GR), peroxisome proliferator-activated receptor γ2 (PPARγ2), polycyclic aromatic hydrocarbons (PAH), Nrf2, and p53 CALUX® reporter gene assays. Trp-P-1 was the only HCA that led to a positive response in the ERα, PPARγ2, and Nrf2 CALUX® assays. In the PAH CALUX® assay, Trp-P-2, MeAαC, and AαC induced luciferase activity to a greater extent than MeIQ and PhIP. In the p53 CALUX® assay without a coupled metabolic activation, only Trp-P-1 and Trp-P-2 enhanced luciferase expression; when a metabolic activation step was coupled to the p53 CALUX® assay, Trp-P-1, Glu-P-2, MeIQ, MeIQx, and PhIP induced a positive response. No HCA was positive in the AR and GR CALUX® assays. Taken together, the results obtained show that the battery of CALUX® assays performed in the present study can successfully be used to screen for molecular cell targets of carcinogenic compounds such as HCAs.

  11. CPTAC Collaborates with Molecular & Cellular Proteomics to Address Reproducibility in Targeted Assay Development | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The journal Molecular & Cellular Proteomics (MCP), in collaboration with the Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute (NCI), part of the National Institutes of Health, announce new guidelines and requirements for papers describing the development and application of targeted mass spectrometry measurements of peptides, modified peptides and proteins (Mol Cell Proteomics 2017; PMID: 28183812).  NCI’s participation is part of NIH’s overall effort to address the r

  12. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level.

    Science.gov (United States)

    Castañeda-Arriaga, Romina; Galano, Annia

    2017-06-19

    Several chemical routes related to the toxicity of paracetamol (APAP, also known as acetaminophen), its analogue N-acetyl-m-aminophenol (AMAP), and their deacetylated derivatives, were investigated using the density functional theory. It was found that AMAP is more resilient to chemical oxidation than APAP. The chemical degradation of AMAP into radical intermediates is predicted to be significant only when it is induced by strong oxidants. This might explain the apparent contradictions among experimental evidence regarding AMAP toxicity. All of the investigated species are incapable of oxidizing DNA, but they can damage lipids by H atom transfer (HAT) from the bis-allylic site, with the phenoxyl radical of AMAP being the most threatening to the lipids' chemical integrity. Regarding protein damage, Cys residues were identified as the most likely targets. The damage in this case may involve two different routes: (i) HAT from the thiol site by phenoxyl radicals and (ii) protein arylation by the quinone imine (QI) derivatives. Both are not only thermochemically viable, but also are very fast reactions. According to the mechanism identified here as the most likely one for protein arylation, a rather large concentration of QI would be necessary for this damage to be significant. This might explain why APAP is nontoxic in therapeutic doses, while overdoses can result in hepatic toxicity. In addition, the QI derived from both APAP and AMAP were found to be capable of inflicting this kind of damage. In addition, it is proposed that they might increase • OH production via the Fenton reaction, which would contribute to their toxicity.

  13. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity.

    Science.gov (United States)

    Herranz-López, María; Olivares-Vicente, Mariló; Encinar, José Antonio; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Joven, Jorge; Micol, Vicente

    2017-08-20

    Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity.

  14. Multi-Targeted Molecular Effects of Hibiscus sabdariffa Polyphenols: An Opportunity for a Global Approach to Obesity

    Science.gov (United States)

    Herranz-López, María; Olivares-Vicente, Mariló; Barrajón-Catalán, Enrique; Segura-Carretero, Antonio; Joven, Jorge; Micol, Vicente

    2017-01-01

    Improper diet can alter gene expression by breaking the energy balance equation and changing metabolic and oxidative stress biomarkers, which can result in the development of obesity-related metabolic disorders. The pleiotropic effects of dietary plant polyphenols are capable of counteracting by modulating different key molecular targets at the cell, as well as through epigenetic modifications. Hibiscus sabdariffa (HS)-derived polyphenols are known to ameliorate various obesity-related conditions. Recent evidence leads to propose the complex nature of the underlying mechanism of action. This multi-targeted mechanism includes the regulation of energy metabolism, oxidative stress and inflammatory pathways, transcription factors, hormones and peptides, digestive enzymes, as well as epigenetic modifications. This article reviews the accumulated evidence on the multiple anti-obesity effects of HS polyphenols in cell and animal models, as well as in humans, and its putative molecular targets. In silico studies reveal the capacity of several HS polyphenols to act as putative ligands for different digestive and metabolic enzymes, which may also deserve further attention. Therefore, a global approach including integrated and networked omics techniques, virtual screening and epigenetic analysis is necessary to fully understand the molecular mechanisms of HS polyphenols and metabolites involved, as well as their possible implications in the design of safe and effective polyphenolic formulations for obesity. PMID:28825642

  15. atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples

    Science.gov (United States)

    2013-01-01

    Background The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. Results Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. Conclusions The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples. PMID:24299240

  16. Adverse Renal Effects of Novel Molecular Oncologic Targeted Therapies: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Kenar D. Jhaveri

    2017-01-01

    Full Text Available Novel targeted anti-cancer therapies have resulted in improvement in patient survival compared to standard chemotherapy. Renal toxicities of targeted agents are increasingly being recognized. The incidence, severity, and pattern of renal toxicities may vary according to the respective target of the drug. Here we review the adverse renal effects associated with a selection of currently approved targeted cancer therapies, directed to EGFR, HER2, BRAF, MEK, ALK, PD1/PDL1, CTLA-4, and novel agents targeted to VEGF/R and TKIs. In summary, electrolyte disorders, renal impairment and hypertension are the most commonly reported events. Of the novel targeted agents, ipilumumab and cetuximab have the most nephrotoxic events reported. The early diagnosis and prompt recognition of these renal adverse events are essential for the general nephrologist taking care of these patients.

  17. New target prediction and visualization tools incorporating open source molecular fingerprints for TB Mobile 2.0.

    Science.gov (United States)

    Clark, Alex M; Sarker, Malabika; Ekins, Sean

    2014-01-01

    We recently developed a freely available mobile app (TB Mobile) for both iOS and Android platforms that displays Mycobacterium tuberculosis (Mtb) active molecule structures and their targets with links to associated data. The app was developed to make target information available to as large an audience as possible. We now report a major update of the iOS version of the app. This includes enhancements that use an implementation of ECFP_6 fingerprints that we have made open source. Using these fingerprints, the user can propose compounds with possible anti-TB activity, and view the compounds within a cluster landscape. Proposed compounds can also be compared to existing target data, using a näive Bayesian scoring system to rank probable targets. We have curated an additional 60 new compounds and their targets for Mtb and added these to the original set of 745 compounds. We have also curated 20 further compounds (many without targets in TB Mobile) to evaluate this version of the app with 805 compounds and associated targets. TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on molecular similarity. TB Mobile represents a valuable dataset, data-visualization aid and target prediction tool.

  18. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression and Treatment

    Science.gov (United States)

    Willis, Rudolph E.

    2016-01-01

    It has been declared repeatedly that cancer is a result of molecular genetic abnormalities. However, there has been no working model describing the specific functional consequences of the deranged genomic processes that result in the initiation and propagation of the cancer process during carcinogenesis. We no longer need to question whether or not cancer arises as a result of a molecular genetic defect within the cancer cell. The legitimate questions are: how and why? This article reviews the preeminent data on cancer molecular genetics and subsequently proposes that the sentinel event in cancer initiation is the aberrant production of fused transcription activators with new molecular properties within normal tissue stem cells. This results in the production of vital oncogenes with dysfunctional gene activation transcription properties, which leads to dysfunctional gene regulation, the aberrant activation of transduction pathways, chromosomal breakage, activation of driver oncogenes, reactivation of stem cell transduction pathways and the activation of genes that result in the hallmarks of cancer. Furthermore, a novel holistic molecular genetic model of cancer initiation and progression is presented along with a new paradigm for the approach to personalized targeted cancer therapy, clinical monitoring and cancer diagnosis. PMID:27649156

  19. mTOR in squamous cell carcinoma of the oesophagus: a potential target for molecular therapy?

    NARCIS (Netherlands)

    Boone, J.; ten Kate, F. J. W.; Offerhaus, G. J. A.; van Diest, P. J.; Borel Rinkes, I. H. M.; van Hillegersberg, R.

    2008-01-01

    AIMS: The mammalian target of rapamycin (mTOR), an important regulator of protein translation and cell proliferation, is activated in various malignancies. In a randomised controlled trial of advanced renal cell carcinoma patients, targeted therapy to mTOR by means of rapamycin analogues has been

  20. Enzymatic single-chain antibody tagging: a universal approach to targeted molecular imaging and cell homing in cardiovascular disease.

    Science.gov (United States)

    Ta, H T; Prabhu, S; Leitner, E; Jia, F; von Elverfeldt, D; Jackson, Katherine E; Heidt, T; Nair, A K N; Pearce, H; von Zur Muhlen, C; Wang, X; Peter, K; Hagemeyer, C E

    2011-08-05

    Antibody-targeted delivery of imaging agents can enhance the sensitivity and accuracy of current imaging techniques. Similarly, homing of effector cells to disease sites increases the efficacy of regenerative cell therapy while reducing the number of cells required. Currently, targeting can be achieved via chemical conjugation to specific antibodies, which typically results in the loss of antibody functionality and in severe cell damage. An ideal conjugation technique should ensure retention of antigen-binding activity and functionality of the targeted biological component. To develop a biochemically robust, highly reproducible, and site-specific coupling method using the Staphylococcus aureus sortase A enzyme for the conjugation of a single-chain antibody (scFv) to nanoparticles and cells for molecular imaging and cell homing in cardiovascular diseases. This scFv specifically binds to activated platelets, which play a pivotal role in thrombosis, atherosclerosis, and inflammation. The conjugation procedure involves chemical and enzyme-mediated coupling steps. The scFv was successfully conjugated to iron oxide particles (contrast agents for magnetic resonance imaging) and to model cells. Conjugation efficiency ranged between 50% and 70%, and bioactivity of the scFv after coupling was preserved. The targeting of scFv-coupled cells and nanoparticles to activated platelets was strong and specific as demonstrated in in vitro static adhesion assays, in a flow chamber system, in mouse intravital microscopy, and in in vivo magnetic resonance imaging of mouse carotid arteries. This unique biotechnological approach provides a versatile and broadly applicable tool for procuring targeted regenerative cell therapy and targeted molecular imaging in cardiovascular and inflammatory diseases and beyond.

  1. FGFR a promising druggable target in cancer: Molecular biology and new drugs.

    Science.gov (United States)

    Porta, Rut; Borea, Roberto; Coelho, Andreia; Khan, Shahanavaj; Araújo, António; Reclusa, Pablo; Franchina, Tindara; Van Der Steen, Nele; Van Dam, Peter; Ferri, Jose; Sirera, Rafael; Naing, Aung; Hong, David; Rolfo, Christian

    2017-05-01

    The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Emerging molecular-targeted therapies—the challenging case of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Ines Vasconcelos

    2015-10-01

    Full Text Available Endometrial cancer newly affects an estimated 54,870 women in the United States, being responsible for an estimated 10,170 deaths in 2015. It has demonstrated to harbor a complex carcinogenesis process, with limited treatment options for advanced or persistent disease. Identification and targeting of genetic alterations that lead to progressive disease and therapy resistance is not only challenging, but also often does not correlate with a clinical benefit. Targeted maintenance therapies in endometrial cancer have been largely disappointing. Nonetheless, targeted personalized treatment should be the main goal of treatment of advanced disease in the future. Due to the high variety of drugs being tested in early clinical trials, it is hard to keep pace with the latest developments and ongoing trials. This review aims to summarize the latest published and ongoing trials on targeted therapies in endometrial cancer.

  3. Absence of molecular deuterium dissociation during room-temperature permeation into polystyrene ICF target shells

    International Nuclear Information System (INIS)

    Honig, A.; Alexander, N.; Fan, Q.; Gram, R.; Kim, H.

    1991-01-01

    Polystyrene microshells filled with deuterium and tritium gas are important target shells for inertially confined fusion (ICF) and are particularly promising for target containing spin-polarized hydrogens fuels. A currently active approach to the latter uses polarized D in HD, in a method which requires preservation of the high purity of the initially prepared HD (very low specified H 2 and D 2 concentrations). This would not be possible if dissociation should occur during permeation into the target shells. We have thus tested polystyrene shells using a novel method which employs very pure polystyrene shells using a novel method which employs very pure ortho-D 2 as the test gas. An upper limit of 6 x 10 -4 was deduced for the dissociation of D 2 upon room temperature permeation through an approximately 8 um wall of polystyrene, clearing the way for use of polystyrene target shells for ICF fusion experiments with spin-polarized hydrogens fuels. 19 refs., 1 fig

  4. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes

    NARCIS (Netherlands)

    Linnekamp, Janneke F.; Wang, Xin; Medema, Jan Paul; Vermeulen, Louis

    2015-01-01

    Personalized cancer medicine is becoming increasingly important in colorectal cancer treatment. Especially for targeted therapies, large variations between individual treatment responses exist. Predicting therapy response is of utmost significance, as it prevents overtreatment and adverse effects in

  5. Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice

    Science.gov (United States)

    Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne

    2015-01-01

    An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857

  6. Targeting glia with N-Acetylcysteine modulates brain glutamate and behaviours relevant to neurodevelopmental disorders in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Alice Marie Sybille Durieux

    2015-12-01

    Full Text Available An imbalance between excitatory (E glutamate and inhibitory (I GABA transmission may underlie neurodevelopmental conditions such as Autism Spectrum Disorder (ASD and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC, which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in-vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviours relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span.

  7. Identifying Patient-Specific Epstein-Barr Nuclear Antigen-1 Genetic Variation and Potential Autoreactive Targets Relevant to Multiple Sclerosis Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Monika Tschochner

    Full Text Available Epstein-Barr virus (EBV infection represents a major environmental risk factor for multiple sclerosis (MS, with evidence of selective expansion of Epstein-Barr Nuclear Antigen-1 (EBNA1-specific CD4+ T cells that cross-recognize MS-associated myelin antigens in MS patients. HLA-DRB1*15-restricted antigen presentation also appears to determine susceptibility given its role as a dominant risk allele. In this study, we have utilised standard and next-generation sequencing techniques to investigate EBNA-1 sequence variation and its relationship to HLA-DR15 binding affinity, as well as examining potential cross-reactive immune targets within the central nervous system proteome.Sanger sequencing was performed on DNA isolated from peripheral blood samples from 73 Western Australian MS cases, without requirement for primary culture, with additional FLX 454 Roche sequencing in 23 samples to identify low-frequency variants. Patient-derived viral sequences were used to predict HLA-DRB1*1501 epitopes (NetMHCII, NetMHCIIpan and candidates were evaluated for cross recognition with human brain proteins.EBNA-1 sequence variation was limited, with no evidence of multiple viral strains and only low levels of variation identified by FLX technology (8.3% nucleotide positions at a 1% cut-off. In silico epitope mapping revealed two known HLA-DRB1*1501-restricted epitopes ('AEG': aa 481-496 and 'MVF': aa 562-577, and two putative epitopes between positions 502-543. We identified potential cross-reactive targets involving a number of major myelin antigens including experimentally confirmed HLA-DRB1*15-restricted epitopes as well as novel candidate antigens within myelin and paranodal assembly proteins that may be relevant to MS pathogenesis.This study demonstrates the feasibility of obtaining autologous EBNA-1 sequences directly from buffy coat samples, and confirms divergence of these sequences from standard laboratory strains. This approach has identified a number of

  8. [Molecular imaging of thrombus with microbubbles targeted to alphavbeta3-integrin using an agarose flow chamber model].

    Science.gov (United States)

    Hu, Guang-quan; Liu, Jian; Yang, Li; Yan, Yi; Wu, Jue-fei; Xie, Jia-jia; Cai, Jing-jing; Ji, Li-jing; Bin, Jian-ping

    2010-03-01

    To assess the binding ability of microbubbles targeted to alphavbeta3-integrin (MBp) for thrombus-targeted contrast-enhanced ultrasound. Targeted microbubbles were prepared by conjugating the monoclonal antibody against alphavbeta3-integrin to lipid shell of the microbubble via the avidin-biotin bridges. Equivalent isotype control microbubbles (MB) or targeted ultrasound microbubbles (MBp) were randomly added into the flow chamber. After a 30-min incubation with the thrombus fixed in an agarose flow chamber model, the thrombus was washed with a continuous flow of PBS solution (15 cm/s) for 2, 4, 6, 8 and 10 min, followed by thrombus imaging using contrast-enhanced ultrasound and measurement of the video intensity (VI) values of the images. The VI of the thrombus in MBp group was reduced by 28%-66%, while that in control MB group was decreased by 87%-94%, and the VI values of the thrombus group were significantly greater in former group at each of the time points (Pevaluation of the thrombus-binding capability of the targeted microbubble (MBp) by simulating the shear stress in vivo can be helpful for predicting the in vivo effects of ultrasonic molecular imaging using MBp.

  9. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, J. F.; van der Wall, Elsken; Mali, Willem P Th M; Derksen, Patrick W B; van Diest, Paul J; van Bergen En Henegouwen, Paul M P

    PURPOSE: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. PROCEDURES: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  10. Hypoxia-Targeting Fluorescent Nanobodies for Optical Molecular Imaging of Pre-Invasive Breast Cancer

    NARCIS (Netherlands)

    van Brussel, Aram S A; Adams, Arthur; Oliveira, Sabrina; Dorresteijn, Bram; El Khattabi, Mohamed; Vermeulen, Jeroen F.; van der Wall, Elsken; Mali, W.P.T.M.; Derksen, Patrick W B; van Diest, Paul J.; van Bergen En Henegouwen, Paul M P

    Purpose: The aim of this work was to develop a CAIX-specific nanobody conjugated to IRDye800CW for molecular imaging of pre-invasive breast cancer. Procedures: CAIX-specific nanobodies were selected using a modified phage display technology, conjugated site-specifically to IRDye800CW and evaluated

  11. Molecular target discovery for neural repair in the functional genomics era

    NARCIS (Netherlands)

    Verhaagen, J.; van Kesteren, R.E.; Bossers, K.A.; Mac Gillavry, H.D.; Mason, M.R.; Smit, A.B.

    2012-01-01

    A comprehensive understanding of the molecular pathways activated by traumatic neural injury is of major importance for the development of treatments for spinal cord injury (SCI). High-throughput gene expression profiling is a powerful approach to reveal genome-wide changes in gene expression during

  12. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  13. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  14. Targeting cytokine/chemokine receptors: a challenge for molecular nuclear medicine.

    NARCIS (Netherlands)

    Signore, A.; Chianelli, M.; Bei, R.; Oyen, W.J.G.; Modesti, A.

    2003-01-01

    Radiolabelled cytokines and chemokines are a group of radiopharmaceuticals that, by highlighting in vivo the binding to specific high-affinity receptors expressed on selected cell populations, allow the molecular and functional characterisation of immune-mediated processes Recently, several authors

  15. Oligomerization of Paramagnetic Substrates Result in Signal Amplification and Can be Used for MR Imaging of Molecular Targets

    Directory of Open Access Journals (Sweden)

    Alexei Bogdanov

    2002-01-01

    Full Text Available Magnetic resonance imaging (MRI has evolved into a sophisticated, noninvasive imaging modality capable of high-resolution anatomical and functional characterization of transgenic animals. To expand the capabilities MRI, we have developed a novel MR signal amplification (MRamp strategy based on enzyme-mediated polymerization of paramagnetic substrates into oligomers of higher magnetic relaxivity. The substrates consist of chelated gadolinium covalently bound to phenols, which then serve as electron donors during enzymatic hydrogen peroxide reduction by peroxidase. The converted monomers undergo rapid condensation into paramagnetic oligomers leading to a threefold increase in atomic relaxivity (R1/Gd. The observed relaxivity changes are largely due to an increase in the rotational correlation time τr of the lanthanide. Three applications of the developed system are demonstrated: (1 imaging of nanomolar amounts of an oxidoreductase (peroxidase; (2 detection of a model ligand using an enzyme-linked immunoadsorbent assay format; and (3 imaging of E-selectin on the surface of endothelial cells probed for with an anti-E-selectin – peroxidase conjugate. The development of “enzyme sensing” probes is expected to have utility for a number of applications including in vivo detection of specific molecular targets. One particular advantage of the MRamp technique is that the same paramagnetic substrate can be potentially used to identify different molecular targets by attaching enzymes to various antibodies or other target-seeking molecules.

  16. Molecular Imaging of Cancer Using X-ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes.

    Science.gov (United States)

    Gaikwad, Hanmant K; Tsvirkun, Darya; Ben-Nun, Yael; Merquiol, Emmanuelle; Popovtzer, Rachela; Blum, Galia

    2018-03-14

    X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT.

  17. In vivo detection of c-MET expression in a rat hepatocarcinogenesis model using molecularly targeted magnetic resonance imaging.

    Science.gov (United States)

    Towner, Rheal A; Smith, Nataliya; Tesiram, Yasvir A; Abbott, Andrew; Saunders, Debbie; Blindauer, Rebecca; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2007-01-01

    The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA)-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO)-anti-c-MET molecularly targeted magnetic resonance imaging (MRI) contrast agent. SPIO-anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T(2) values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3) cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO-anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  18. In Vivo Detection of c-MET Expression in a Rat Hepatocarcinogenesis Model Using Molecularly Targeted Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Rheal A. Towner

    2007-01-01

    Full Text Available The multifunctional growth factor scatter factor/hepatocyte growth factor and its tyrosine kinase receptor, c-MET, have been implicated in the genesis and malignant progression of numerous human malignancies, including hepatocellular carcinomas. The incidence of hepatocellular carcinomas in the United States has increased noticeably over the past two decades and is listed as the fifth major cancer in men worldwide. In this study, we used a choline-deficient l-amino acid (CDAA-defined rat hepatocarcinogenesis model to visualize increased in vivo expression of the c-MET antigen in neoplastic lesion formation with the use of a super paramagnetic iron oxide (SPIO–anti-c-MET molecularly targeted magnetic resonance imaging (MRI contrast agent. SPIO–anti-c-MET was used for the first time to detect overexpression of c-MET in neoplastic nodules and tumors within the livers of CDAA-treated rats, as determined by a decrease in MRI signal intensity and a decrease in regional T2 values. Specificity for the binding of the molecularly targeted anti-c-MET contrast agent was determined using rat hepatoma (H4-II-E-C3 cell cultures and immunofluorescence microscopic imaging of the targeting agents within neoplastic liver tissue 1 to 2 hours following intravenous administration of SPIO–anti-c-MET and MRI investigation. This method has the ability to visualize in vivo the overexpression of c-MET at early developmental stages of tumor formation.

  19. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhaoqiang [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Annie Bligh, S.W. [Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW (United Kingdom); Tao, Lei; Quan, Jing [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Nie, Huali, E-mail: niehuali@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Limin, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Gong, Xiao [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-03-01

    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stern–Volmer equation. The K{sub SV} for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 × 10{sup −7}–35.0 × 10{sup −7} M with a detection limit of 80 nM. - Highlights: • A novel fluorescent biomimetic sensor based on MWCNT-QDs was designed. • The sensor exhibited a fast mass-transfer speed with a response time of 25 min. • The sensor possessed a highly selective recognition to BSA.

  20. Real-time molecular imaging throughout the entire cell cycle by targeted plasmonic-enhanced Rayleigh/Raman spectroscopy.

    Science.gov (United States)

    Kang, Bin; Austin, Lauren A; El-Sayed, Mostafa A

    2012-10-10

    Due to their strong enhancement of scattered light, plasmonic nanoparticles have been utilized for various biological and medical applications. Here, we describe a new technique, Targeted Plasmonic-Enhanced Single-Cell Rayleigh/Raman Spectroscopy, to monitor the molecular changes of any cell-component, such as the nucleus, during the different phases of its full cell cycle by simultaneously recording its Rayleigh images and Raman vibration spectra in real-time. The analysis of the observed Raman DNA and protein peaks allowed the different phases of the cell cycle to be identified. This technique could be used for disease diagnostics and potentially improve our understanding of the molecular mechanisms of cellular functions such as division, death, signaling, and drug action.

  1. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    Science.gov (United States)

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  2. Target molecular weights for red cell band 3 stilbene and mercurial binding sites

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Jung, C.Y.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation was used to measure the target sizes for binding of disulfonic stilbene anion transport inhibitor 4,4'-dibenzamido-2,2'-disulfonic stilbene (DBDS) and mercurial water transport inhibitor p-chloromercuribenzene sulfonate (pCMBS) to human erythrocytes. The measured target size for erythrocyte ghost acetylcholinesterase was 78 +/- 3 kDa. DBDS binding to ghost membranes was measured by a fluorescence enhancement technique. Radiation (0-26 Mrad) had no effect on total membrane protein and DBDS binding affinity, whereas DBDS binding stoichiometry decreased exponentially with radiation dose, giving a target size of 59 +/- 4 kDa. H2-4,4'-diisothiocyano-2,2'-disulfonic stilbene (H2-DIDS, 5 microM) blocked greater than 95% of DBDS binding at all radiation doses. pCMBS binding was measured from the time course of tryptophan fluorescence quenching in ghosts treated with the sulfhydryl reagent N-ethylmaleimide (NEM). Radiation did not affect the kinetics of tryptophan quenching, whereas the total amplitude of the fluorescence signal inactivated with radiation with a target size of 31 +/- 6 kDa. These results support the notion that DBDS and pCMBS bind to the transmembrane domain of erythrocyte band 3 in NEM-treated ghosts and demonstrate that radiation inactivation may probe a target significantly smaller than a covalently linked protein subunit. The small target size for the band 3 stilbene binding site may correspond to the intramembrane domain of the band 3 monomer (52 kDa), which is physically distinct from the cytoplasmic domain (42 kDa)

  3. Targeted Molecular Imaging of Cancer Cells Using MS2-Based 129 Xe NMR

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Keunhong [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Netirojjanakul, Chawita [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Munch, Henrik K. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Sun, Jinny [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Finbloom, Joel A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Wemmer, David E. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Pines, Alexander [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Francis, Matthew B. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    2016-07-25

    Targeted, selective, and highly sensitive 129Xe NMR nanoscale biosensors have been synthesized using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized 129Xe NMR signal contrast and hyper-CEST 129Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized 129Xe NMR nanoscale biosensor for future applications in cancer detection in vivo.

  4. Intensity modulated radiation therapy (IMRT: differences in target volumes and improvement in clinically relevant doses to small bowel in rectal carcinoma

    Directory of Open Access Journals (Sweden)

    Delclos Marc E

    2011-06-01

    covered by classic bony landmark-derived fields, without incurring penalty with respect to adjacent organs-at-risk. Conclusions For rectal carcinoma, IMRT, compared to 3DCRT, yielded plans superior with respect to target coverage, homogeneity, and conformality, while lowering dose to adjacent organs-at-risk. This is achieved despite treating larger volumes, raising the possibility of a clinically-relevant improvement in the therapeutic ratio through the use of IMRT with a belly-board apparatus.

  5. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Paul L. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M. [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Ford, Benjamin M.; Franks, Lirit N. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States); Radominska-Pandya, Anna, E-mail: RadominskaAnna@uams.edu [Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205 (United States)

    2013-11-15

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  6. CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen

    International Nuclear Information System (INIS)

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-01-01

    Highlights: •Tamoxifen produces cytotoxicity via estrogen-receptor (ER) independent mechanisms. •Tamoxifen binds to CB1 and CB2 cannabinoid receptors and acts as an inverse agonist. •CB1 and CB2 receptors are novel molecular targets for Tamoxifen. •ER-independent effects for Tamoxifen may be mediated via CB1 and/or CB2 receptors. -- Abstract: Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9–3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel

  7. CB1 and CB2 Receptors are Novel Molecular Targets for Tamoxifen and 4OH-Tamoxifen

    OpenAIRE

    Prather, Paul L.; FrancisDevaraj, FeAna; Dates, Centdrika R.; Greer, Aleksandra K.; Bratton, Stacie M.; Ford, Benjamin M.; Franks, Lirit N.; Radominska-Pandya, Anna

    2013-01-01

    Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for t...

  8. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.

    Science.gov (United States)

    Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells

    OpenAIRE

    SOMASAGARA, RANGANATHA R.; DEEP, GAGAN; SHROTRIYA, SANGEETA; PATEL, MANISHA; AGARWAL, CHAPLA; AGARWAL, RAJESH

    2015-01-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcita...

  10. Targeted next generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    Science.gov (United States)

    2016-07-06

    ecological studies have shown development of antibiotic resistance in bacterial pathogens caused by increased antibiotic usage in animals , food, and...et al. Danish Integrated Antimicrobial Resistance Monitoring and Research Program. Emerging Infectious Diseases 13, 1633-1639, doi:10.3201...F. J. Molecular detection of antimicrobial resistance . Clin. Microbiol. Rev. 14, 836-871, table of contents, doi:10.1128/CMR.14.4.836-871.2001

  11. Clinical applications of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics

    OpenAIRE

    Tran, Trung D; Caruthers, Shelton D; Hughes, Michael; Marsh, John N; Cyrus, Tillmann; Winter, Patrick M; Neubauer, Anne M; Wickline, Samuel A; Lanza, Gregory M

    2007-01-01

    Molecular imaging is a novel tool that has allowed non-invasive diagnostic imaging to transition from gross anatomical description to identification of specific tissue epitopes and observation of biological processes at the cellular level. This technique has been confined to the field of nuclear imaging; however, recent advances in nanotechnology have extended this research to include ultrasound (US) and magnetic resonance (MR) imaging. The exploitation of nanotechnology for MR and US molecul...

  12. Lessons learned with molecular methods targeting the BCSP-31 membrane protein for diagnosis of human brucellosis.

    Science.gov (United States)

    Sanjuan-Jimenez, Rocio; Colmenero, Juan D; Morata, Pilar

    2017-06-01

    Brucellosis remains an emerging and re-emerging zoonosis worldwide causing high human morbidity. It usually affects persons who are permanently exposed to fastidious microorganisms of the Brucella genus and has a nonspecific clinical picture. Thus, diagnosis of brucellosis can sometimes be difficult. Molecular techniques have recently been found very useful in the diagnosis of brucellosis together with its common and very diverse focal complications. We herein review all the lessons learned by our group concerning the molecular diagnosis of human brucellosis over the last twenty years. The results, initially using one-step conventional PCR, later PCR-ELISA and more recently real-time PCR, using both fluorescent intercalating reagents (SYBR-Green I) and specific probes (Taqman), have shown that these techniques are all much more sensitive than bacteriological methods and more specific than the usual serological techniques for the diagnosis of primary infection, the post-treatment control of the disease, early detection of relapse and the diagnosis of focal complications. Optimization of the technique and improvements introduced over the years show that molecular methods, currently accessible for most clinical laboratories, enable easy rapid diagnosis of brucellosis at the same time as they avoid any risk to laboratory personnel while handling live Brucella spp. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nano-fabrication of molecular electronic junctions by targeted modification of metal-molecule bonds

    Science.gov (United States)

    Jafri, S. Hassan M.; Löfås, Henrik; Blom, Tobias; Wallner, Andreas; Grigoriev, Anton; Ahuja, Rajeev; Ottosson, Henrik; Leifer, Klaus

    2015-09-01

    Reproducibility, stability and the coupling between electrical and molecular properties are central challenges in the field of molecular electronics. The field not only needs devices that fulfill these criteria but they also need to be up-scalable to application size. In this work, few-molecule based electronics devices with reproducible electrical characteristics are demonstrated. Our previously reported 5 nm gold nanoparticles (AuNP) coated with ω-triphenylmethyl (trityl) protected 1,8-octanedithiol molecules are trapped in between sub-20 nm gap spacing gold nanoelectrodes forming AuNP-molecule network. When the trityl groups are removed, reproducible devices and stable Au-thiol junctions are established on both ends of the alkane segment. The resistance of more than 50 devices is reduced by orders of magnitude as well as a reduction of the spread in the resistance histogram is observed. By density functional theory calculations the orders of magnitude decrease in resistance can be explained and supported by TEM observations thus indicating that the resistance changes and strongly improved resistance spread are related to the establishment of reproducible and stable metal-molecule bonds. The same experimental sequence is carried out using 1,6-hexanedithiol functionalized AuNPs. The average resistances as a function of molecular length, demonstrated herein, are comparable to the one found in single molecule devices.

  14. Targeted siRNA Delivery to Diseased Microvascular Endothelial Cells-Cellular and Molecular Concepts

    NARCIS (Netherlands)

    Kowalski, Piotr S.; Leus, Niek G. J.; Scherphof, Gerrit L.; Ruiters, Marcel H. J.; Kamps, Jan A. A. M.; Molema, Grietje

    Increased insight in the role of endothelial cells in the pathophysiology of cancer, inflammatory and cardiovascular diseases, has drawn great interest in pharmacological interventions aiming at the endothelium in diseased sites. Their location in the body makes them suitable targets for therapeutic

  15. Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature

    NARCIS (Netherlands)

    Posthuma de Boer, J.; Witlox, M.A.; Kaspers, G.J.L.; van Royen, B.J.

    2011-01-01

    Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy

  16. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    Science.gov (United States)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  17. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes.

    Science.gov (United States)

    San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul

    2014-12-01

    Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.

  18. SULT1A3-Mediated Regiospecific 7-O-Sulfation of Flavonoids in Caco-2 Cells Can Be Explained by the Relevant Molecular Docking Studies

    Science.gov (United States)

    Meng, Shengnan; Wu, Baojian; Singh, Rashim; Yin, Taijun; Morrow, John Kenneth; Zhang, Shuxing; Hu, Ming

    2012-01-01

    Flavonoids are the polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 mono-hydroxyl flavonoids with –OH group at 3, 4’, 5 or 7 position, followed by 5 di-hydroxyl-flavonoids, and 2 tri-hydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at 7-OH position in Caco-2 cell lysates with minor amounts of 4’-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 µM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells. PMID:22352375

  19. Biological evaluation and molecular docking of Rhein as a multi-targeted radiotherapy sensitization agent of nasopharyngeal carcinoma

    Science.gov (United States)

    Su, Zhengying; Tian, Wei; Li, Jing; Wang, Chunmiao; Pan, Zhiyu; Li, Danrong; Hou, Huaxin

    2017-11-01

    Radiation resistance of nasopharyngeal carcinoma (NPC) is a joint effect caused by complex molecular mechanisms. The development of multi-target radiotherapy sensitization agents offered a promising method for the treatment of NPC. In this work, the probability of Rhein to be a multi-target radiotherapy sensitization agent was explored through computer aid virtual screening by inverse docking study. In order to validate the accuracy of the computational results, radiotherapy sensitization of Rhein to NPC cells and its effects on the expression of target proteins were evaluated separately by CCK8 assay and Western blotting analysis. Our result demonstrated that Rhein possessed strong binding affinity with RAC1 and HSP90. No cytotoxic concentration of Rhein had radiosensitization effect on nasopharyngeal carcinoma CNE1 cells. After treatment with Rhein and 2Gy radiation, the expression of RAC1 upregulated and the expression of HSP90 down-regulated in cells. Based on the above data, Rhein is likely to become an attractive lead compound for the future design of multi-target radiotherapy sensitization agents.

  20. Colocalization coefficients evaluating the distribution of molecular targets in microscopy methods based on pointed patterns

    Czech Academy of Sciences Publication Activity Database

    Pastorek, Lukáš; Sobol, Margaryta; Hozák, Pavel

    2016-01-01

    Roč. 146, č. 4 (2016), s. 391-406 ISSN 0948-6143 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LM2015062 Grant - others:Human Frontier Science Program(FR) RGP0017/2013 Institutional support: RVO:68378050 Keywords : Colocalization * Quantitative analysis * Pointed patterns * Transmission electron microscopy * Manders' coefficients * Immunohistochemistry Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.553, year: 2016

  1. Cancer Chemoprevention by Resveratrol: The p53 Tumor Suppressor Protein as a Promising Molecular Target

    Directory of Open Access Journals (Sweden)

    Danielly C. Ferraz da Costa

    2017-06-01

    Full Text Available Increasing epidemiological and experimental evidence has demonstrated an inverse relationship between the consumption of plant foods and the incidence of chronic diseases, including cancer. Microcomponents that are naturally present in such foods, especially polyphenols, are responsible for the benefits to human health. Resveratrol is a diet-derived cancer chemopreventive agent with high therapeutic potential, as demonstrated by different authors. The aim of this review is to collect and present recent evidence from the literature regarding resveratrol and its effects on cancer prevention, molecular signaling (especially regarding the involvement of p53 protein, and therapeutic perspectives with an emphasis on clinical trial results to date.

  2. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention

    International Nuclear Information System (INIS)

    Xiong, Ailian; Yang, Zhengduo; Shen, Yicheng; Zhou, Jia; Shen, Qiang

    2014-01-01

    Signal Transducers and Activators of Transcription (STATs) are a family of transcription factors that regulate cell proliferation, differentiation, apoptosis, immune and inflammatory responses, and angiogenesis. Cumulative evidence has established that STAT3 has a critical role in the development of multiple cancer types. Because it is constitutively activated during disease progression and metastasis in a variety of cancers, STAT3 has promise as a drug target for cancer therapeutics. Recently, STAT3 was found to have an important role in maintaining cancer stem cells in vitro and in mouse tumor models, suggesting STAT3 is integrally involved in tumor initiation, progression and maintenance. STAT3 has been traditionally considered as nontargetable or undruggable, and the lag in developing effective STAT3 inhibitors contributes to the current lack of FDA-approved STAT3 inhibitors. Recent advances in cancer biology and drug discovery efforts have shed light on targeting STAT3 globally and/or specifically for cancer therapy. In this review, we summarize current literature and discuss the potential importance of STAT3 as a novel target for cancer prevention and of STAT3 inhibitors as effective chemopreventive agents

  3. Drug Elucidation: Invertebrate Genetics Sheds New Light on the Molecular Targets of CNS Drugs

    Directory of Open Access Journals (Sweden)

    Donard S. Dwyer

    2014-07-01

    Full Text Available Many important drugs approved to treat common human diseases were discovered by serendipity, without a firm understanding of their modes of action. As a result, the side effects and interactions of these medications are often unpredictable, and there is limited guidance for improving the design of next-generation drugs. Here, we review the innovative use of simple model organisms, especially Caenorhabditis elegans, to gain fresh insights into the complex biological effects of approved CNS medications. Whereas drug discovery involves the identification of new drug targets and lead compounds/biologics, and drug development spans preclinical testing to FDA approval, drug elucidation refers to the process of understanding the mechanisms of action of marketed drugs by studying their novel effects in model organisms. Drug elucidation studies have revealed new pathways affected by antipsychotic drugs, e.g., the insulin signaling pathway, a trace amine receptor and a nicotinic acetylcholine receptor. Similarly, novel targets of antidepressant drugs and lithium have been identified in C. elegans, including lipid-binding/transport proteins and the SGK-1 signaling pathway, respectively. Elucidation of the mode of action of anesthetic agents has shown that anesthesia can involve mitochondrial targets, leak currents and gap junctions. The general approach reviewed in this article has advanced our knowledge about important drugs for CNS disorders and can guide future drug discovery efforts.

  4. Specific role of targeted molecular therapy in treatment of oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Pankaj Gupta

    2017-12-01

    Full Text Available Oral cancer is a potentially fatal disease that constitutes an important portion of tumors that occur in the head and neck region. Oral cancer can affect overall and mental health, appearance, employment, social life, and family living. The disease can cause serious changes in the functioning of the upper aero digestive tract that affects the quality of life in patients. The use of conventional treatment modalities (surgery, radiation, and/or chemotherapy depends on tumor respectability and location as well as whether an organ preservation approach is feasible. However, their role in oral cancer treatment is nonselective and can cause damage to normal tissue. In particular, chemo radiotherapy is associated with systemic toxicities that often reduce patient compliance and prevent timely completion of therapy. The development of targeted therapies to target select pathways involved in carcinogenesis, potentially decrease systemic toxicities and morbidities associated with cancer burden and hence improve the prognosis in cancer patients. In the present article, the role of various targeted molecules in the treatment of oral cancer is discussed.

  5. Dissecting molecular interactions involved in recognition of target disulfides by the barley thioredoxin system

    DEFF Research Database (Denmark)

    Björnberg, Olof; Maeda, Kenji; Svensson, Birte

    2012-01-01

    Thioredoxin reduces disulfide bonds, thus regulating activities of target proteins in various biological systems, e.g., inactivation of inhibitors of starch hydrolases and proteases in germinating plant seeds. In the three-dimensional structure of a complex with barley α-amylase/subtilisin inhibi......Thioredoxin reduces disulfide bonds, thus regulating activities of target proteins in various biological systems, e.g., inactivation of inhibitors of starch hydrolases and proteases in germinating plant seeds. In the three-dimensional structure of a complex with barley α...... thioredoxin reductase. HvTrxh2 M88G and M88A adjacent to the invariant cis-proline lost efficiency in both BASI disulfide reduction and recycling by thioredoxin reductase. These effects were further pronounced in M88P lacking a backbone NH group. Remarkably, HvTrxh2 E86R in the same loop displayed overall...... retained catalytic properties, with the exception of a 3-fold increased activity toward BASI. From the 104VGA106 loop, a backbone hydrogen bond donated by A106 appears to be important for target disulfide recognition as A106P lost 90% activity toward BASI but was efficiently recycled by thioredoxin...

  6. Tumor Specific Detection of an Optically Targeted Antibody Combined with a Quencher-conjugated Neutravidin “Quencher-Chaser”: A Dual “Quench and Chase” Strategy to Improve Target to Non-target Ratios for Molecular Imaging of Cancer

    Science.gov (United States)

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    In vivo molecular cancer imaging with monoclonal antibodies has great potential not only for cancer detection but also for cancer characterization. However, the prolonged retention of intravenously injected antibody in the blood causes low target tumor-to-background ratio (TBR). Avidin has been used as a “chase” to clear the unbound, circulating biotinylated antibody and decrease the background signal. Here, we utilize a combined approach of a Fluorescence Resonance Energy Transfer (FRET) quenched antibody with an “avidin chase” to increase TBR. Trastuzumab, a humanized monoclonal antibody against human epidermal growth factor receptor type 2 (HER2), was biotinylated and conjugated with the near-infrared (NIR) fluorophore Alexa680 to synthesize Tra-Alexa680-biotin. Next, the FRET quencher, QSY-21, was conjugated to avidin, neutravidin (nAv) or streptavidin (sAv), thus creating Av-QSY21, nAv-QSY21 or sAv-QSY21 as “chasers”. The fluorescence was quenched in vitro by binding Tra-Alexa680-biotin to Av-QSY21, nAv-QSY21 or sAv-QSY21. To evaluate if the injection of quencher-conjugated avidin-derivatives can improve target TBR by using a dual “quench and chase” strategy, both target (3T3/HER2+) and non-target (Balb3T3/ZsGreen) tumor bearing mice were employed. The “FRET quench” effect induced by all the QSY21 avidin-based conjugates reduced but did not totally eliminate background signal from the blood pool. The addition of nAv-QSY21 administration increased target TBR mainly due to the “chase” effect where unbound conjugated antibody was preferentially cleared to the liver. The relatively slow clearance of unbound nAv-QSY21 leads to further reductions in background signal by leaking out of the vascular space and binding to unbound antibodies in the extravascular space of tumors resulting in decreased non-target tumor-to-background ratios but increased target TBR due to the “FRET quench” effect because target-bound antibodies were internalized

  7. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    Science.gov (United States)

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    Science.gov (United States)

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI

    Science.gov (United States)

    Pu, Fan; Salarian, Mani; Xue, Shenghui; Qiao, Jingjuan; Feng, Jie; Tan, Shanshan; Patel, Anvi; Li, Xin; Mamouni, Kenza; Hekmatyar, Khan; Zou, Juan; Wu, Daqing; Yang, Jenny J.

    2016-06-01

    Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd3+ contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd3+ binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 +/- 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 +/- 0.1 × 10-22 M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM-1 s-1 and r2 of 37.9 mM-1 s-1 per Gd (55.2 and 75.8 mM-1 s-1 per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM-1 s-1 per Gd (188.0 mM-1 s-1 per molecule) and r1 of 18.6 mM-1 s-1 per Gd (37.2 mM-1 s-1 per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high

  10. Molecular evaluation of thrombosis using X-ray phase contrast imaging with microbubbles targeted to P-selectin in mice

    International Nuclear Information System (INIS)

    Tang, Rongbiao; Chai, Wei-Min; Yan, Fuhua; Chen, Ke-Min; Yang, Guo-Yuan

    2016-01-01

    X-ray phase contrast imaging (PCI) provides excellent image contrast by utilizing the phase shift. The introduction of microbubbles into tissues can cause a phase shift to make microbubbles visibly identified on PCI. In this study, we assessed the feasibility of targeted microbubble-based PCI for the detection of thrombosis. The absorption and phase contrast images of P-selectin-targeted microbubbles (MB P ) were obtained and compared in vitro. MB P , control IgG-targeted microbubbles (MB C ), and unbound microbubbles (MB U ) were tested for binding specificity on thrombi expressing P-selectin. MB P were used as molecular PCI probes to evaluate P-selectin expression in a mouse model of arteriovenous shunt thrombosis that was created using PE tubes in the bypass outside of the mouse body. PCI clearly showed the microbubbles not viewable via absorption contrast imaging (ACI). In vitro attachment of MB P (91.60 ± 11.63) to thrombi was significantly higher than attachment of MB C (17.80 ± 4.02, P < 0.001) or MB U (9.80 ± 2.59, P < 0.001). In the mouse model of arteriovenous shunt thrombosis, the binding affinity of MB P (15.50 ± 6.25) was significantly greater than that of MB C (0.50 ± 0.84, P < 0.001) or MB U (0.33 ± 0.52, P < 0.001). Our results indicate that molecular PCI may be considered as a novel and promising imaging modality for the investigation of thrombosis. (orig.)

  11. Molecular Pathways: Fumarate Hydratase-Deficient Kidney Cancer: Targeting the Warburg Effect in Cancer

    Science.gov (United States)

    Linehan, W. Marston; Rouault, Tracey A.

    2015-01-01

    Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a hereditary cancer syndrome in which affected individuals are at risk for development of cutaneous and uterine leiomyomas and an aggressive form of type II papillary kidney cancer. HLRCC is characterized by germline mutation of the tricarboxylic acid cycle (TCA) enzyme, fumarate hydratase (FH). FH-deficient kidney cancer is characterized by impaired oxidative phosphorylation and a metabolic shift to aerobic glycolysis, a form of metabolic reprogramming referred to as the Warburg effect. Increased glycolysis generates ATP needed for increased cell proliferation. In FH-deficient kidney cancer levels of AMPK, a cellular energy sensor, are decreased; resulting in diminished p53 levels, decreased expression of the iron importer, DMT1, leading to low cellular iron levels, and to enhanced fatty acid synthesis by diminishing phosphorylation of acetyl CoA carboxylase, a rate limiting step for fatty acid synthesis. Increased fumarate and decreased iron levels in FH-deficient kidney cancer cells inactivate prolyl hydroxylases, leading to stabilization of HIF1α, and increased expression of genes such as vascular endothelial growth factor (VEGF) and GLUT1 to provide fuel needed for rapid growth demands. Several therapeutic approaches for targeting the metabolic basis of FH-deficient kidney cancer are under development or are being evaluated in clinical trials, including the use of agents such as metformin, which would reverse the inactivation of AMPK, approaches to inhibit glucose transport, LDH-A, the anti-oxidant response pathway, the heme oxygenase pathway and approaches to target the tumor vasculature and glucose transport with agents such as bevacizumab and erlotinib. These same types of metabolic shifts, to aerobic glycolysis with decreased oxidative phosphorylation, have been found in a wide variety of other cancer types. Targeting the metabolic basis of a rare cancer such as fumarate hydratase

  12. Thioredoxin and Thioredoxin Target Proteins: From Molecular Mechanisms to Functional Significance

    Science.gov (United States)

    Lee, Samuel; Kim, Soo Min

    2013-01-01

    Abstract The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes. Antioxid. Redox Signal. 18, 1165–1207. PMID:22607099

  13. Toxicity assessment of molecularly targeted drugs incorporated into multiagent chemotherapy regimens for pediatric Acute Lymphocytic Leukemia (ALL): Review from an International Consensus Conference

    NARCIS (Netherlands)

    T.M. Horton (Terzah); R. Sposto (Richard); P. Brown (Patrick); C.P. Reynolds (Patrick); S.P. Hunger (Stephen); N.J. Winick (Naomi); E.A. Raetz (Elizabeth); W.L. Carroll (William); R.J. Arceci (Robert); M.J. Borowitz (Michael); P.S. Gaynon (Paul); L. Gore (Lia); S. Jeha (Sima); B.J. Maurer (Barry); S.E. Siegel (Stuart); A. Biondi (Andrea); P. Kearns (Pamela); A. Narendran (Aru); L.B. Silverman (Lewis); M.A. Smith (Malcolm); C.M. Zwaan (Christian Michel); J.A. Whitlock (James)

    2010-01-01

    textabstractOne of the challenges of incorporating molecularly targeted drugs into multi-agent chemotherapy (backbone) regimens is defining dose-limiting toxicities (DLTs) of the targeted agent against the background of toxicities of the backbone regimen. An international panel of 22 pediatric acute

  14. Identification of novel targets for HIV-1: Molecular dynamics simulation and binding energy calculations

    Science.gov (United States)

    Pandey, Vishnudatt; Tiwari, Gargi; Mall, Vijaya Shri; Tiwari, Rakesh Kumar; Ojha, R. P.

    2018-05-01

    HIV-1 envelope glycoprotein-mediated fusion is managed by the concerted coalescence of the HIV-1 gp41 N- and C- helical regions, which is a product in the formation of 6-helix bundles. These two regions are considered prime targets for peptides and antibodies that inhibit HIV-1 entry. There are so many rational method aimed to attach a rationally designed artificial tail to the C-terminus of HIV-1 fusion inhibitors to increase their antiviral potency. Here M. D. simulation was performed to go insight for study of C-terminal tail of Ile-Asp-Leu (IDL).

  15. Identification of treatment response predictors and potential molecular targets for chemo preventive and antiangiogenic therapies

    International Nuclear Information System (INIS)

    Pfeffer, U.; Albini, A.

    2009-01-01

    The aims of the project were: To evaluate the cellular responses to anti-inflammatory and anti-angiogenic natural or synthetic compounds (chemo preventives, inhibitors of cell survival and inflammation related signal transduction). To identify bio markers for treatment response through the selection of targets that are common to or specific for anti-inflammatory and anti-angiogenic activities. To analyze the regulation of the key tumor-promotion pathways Akt, HIF1α, NFκB. We focused our studies on the antiapoptotic role of the AKT survival pathway, which is involved in prostate tumor progression to an androgen-independent phenotype

  16. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.

    Science.gov (United States)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V

    2010-08-24

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).

  17. In vivo molecular photoacoustic tomography of melanomas targeted by bio-conjugated gold nanocages

    Science.gov (United States)

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M.; Gao, Feng; Xia, Younan; Wang, Lihong V.

    2010-01-01

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bio-conjugated with [Nle4,D-Phe7]-α-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bio-conjugated AuNCs enhanced contrast ~300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS). PMID:20731439

  18. PET molecular imaging of peripheral and central inflammatory processes targeting the TSPO 18 kDa

    International Nuclear Information System (INIS)

    Bernards, Nicholas

    2014-01-01

    The purpose of this study was to determine the in vivo potential of the TSPO 18 kDa as a bio-marker of inflammation, with the use of its radioligand [ 18 F]DPA-714, to non-invasively quantify the inflammatory state within the scope of various pathologies. Multiple animal models of various inflammatory diseases, to include: inflammatory bowel disease, neuro-inflammation, and septic shock, were developed and put in place by adapted measures. The animals well-being and the subsequent inflammation was evaluated. The inflammatory state was measured using quantitative PET imaging with the TSPO radioligand [ 18 F]DPA-714 and correlated to the expression of conventional inflammatory markers using microscopy. Based on the observed data, we were able to distinguish control groups from treated groups when using [ 18 F]DPA-714. This TSPO radioligand permitted us to quantify the inflammatory level and to observe evolutionary changes in the inflammatory state of the disease in multiple models. The PET results, using the [ 18 F]DPA-714 signal was correlated with an increased TSPO expression at cellular level. Results indicate that [ 18 F]DPA-714 is a suitable tracer for studying inflammation of multiple diseases. [ 18 F]DPA-714 could be a good molecular probe to non-invasively evaluate the level and localization of inflammation. Moreover, in vivo imaging using this TSPO ligand is potentially a powerful tool to stage and certainly to follow the evolution and therapeutic efficiency at molecular level in inflammatory diseases. (author) [fr

  19. Ribonucleotide reductase as a drug target against drug resistance Mycobacterium leprae: A molecular docking study.

    Science.gov (United States)

    Mohanty, Partha Sarathi; Bansal, Avi Kumar; Naaz, Farah; Gupta, Umesh Datta; Dwivedi, Vivek Dhar; Yadava, Umesh

    2018-06-01

    Leprosy is a chronic infection of skin and nerve caused by Mycobacterium leprae. The treatment is based on standard multi drug therapy consisting of dapsone, rifampicin and clofazamine. The use of rifampicin alone or with dapsone led to the emergence of rifampicin-resistant Mycobacterium leprae strains. The emergence of drug-resistant leprosy put a hurdle in the leprosy eradication programme. The present study aimed to predict the molecular model of ribonucleotide reductase (RNR), the enzyme responsible for biosynthesis of nucleotides, to screen new drugs for treatment of drug-resistant leprosy. The study was conducted by retrieving RNR of M. leprae from GenBank. A molecular 3D model of M. leprae was predicted using homology modelling and validated. A total of 325 characters were included in the analysis. The predicted 3D model of RNR showed that the ϕ and φ angles of 251 (96.9%) residues were positioned in the most favoured regions. It was also conferred that 18 α-helices, 6 β turns, 2 γ turns and 48 helix-helix interactions contributed to the predicted 3D structure. Virtual screening of Food and Drug Administration approved drug molecules recovered 1829 drugs of which three molecules, viz., lincomycin, novobiocin and telithromycin, were taken for the docking study. It was observed that the selected drug molecules had a strong affinity towards the modelled protein RNR. This was evident from the binding energy of the drug molecules towards the modelled protein RNR (-6.10, -6.25 and -7.10). Three FDA-approved drugs, viz., lincomycin, novobiocin and telithromycin, could be taken for further clinical studies to find their efficacy against drug resistant leprosy. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 14-3-3 zeta is a molecular target in guggulsterone induced apoptosis in Head and Neck cancer cells

    International Nuclear Information System (INIS)

    Macha, Muzafar A; Matta, Ajay; Chauhan, SS; Siu, KW Michael; Ralhan, Ranju

    2010-01-01

    The five-year survival rates for head and neck squamous cell carcinoma (HNSCC) patients are less than 50%, and the prognosis has not improved, despite advancements in standard multi-modality therapies. Hence major emphasis is being laid on identification of novel molecular targets and development of multi-targeted therapies. 14-3-3 zeta, a multifunctional phospho-serine/phospho-threonine binding protein, is emerging as an effector of pro-survival signaling by binding to several proteins involved in apoptosis (Bad, FKHRL1 and ASK1) and may serve as an appropriate target for head and neck cancer therapy. Herein, we determined effect of guggulsterone (GS), a farnesoid X receptor antagonist, on 14-3-3 zeta associated molecular pathways for abrogation of apoptosis in head and neck cancer cells. Head and neck cancer cells were treated with guggulsterone (GS). Effect of GS-treatment was evaluated using cell viability (MTT) assay and apoptosis was verified by annexin V, DNA fragmentation and M30 CytoDeath antibody assay. Mechanism of GS-induced apoptosis was determined by western blotting and co-IP assays using specific antibodies. Using in vitro models of head and neck cancer, we showed 14-3-3 zeta as a key player regulating apoptosis in GS treated SCC4 cells. Treatment with GS releases BAD from the inhibitory action of 14-3-3 zeta in proliferating HNSCC cells by activating protein phosphatase 2A (PP2A). These events initiate the intrinsic mitochondrial pathway of apoptosis, as revealed by increased levels of cytochrome c in cytoplasmic extracts of GS-treated SCC4 cells. In addition, GS treatment significantly reduced the expression of anti-apoptotic proteins, Bcl-2, xIAP, Mcl1, survivin, cyclin D1 and c-myc, thus committing cells to apoptosis. These events were followed by activation of caspase 9, caspase 8 and caspase 3 leading to cleavage of its downstream target, poly-ADP-ribose phosphate (PARP). GS targets 14-3-3 zeta associated cellular pathways for reducing

  1. Molecular evolution of peptide ligands with custom-tailored characteristics for targeting of glycostructures.

    Directory of Open Access Journals (Sweden)

    Niels Röckendorf

    Full Text Available As an advanced approach to identify suitable targeting molecules required for various diagnostic and therapeutic interventions, we developed a procedure to devise peptides with customizable features by an iterative computer-assisted optimization strategy. An evolutionary algorithm was utilized to breed peptides in silico and the "fitness" of peptides was determined in an appropriate laboratory in vitro assay. The influence of different evolutional parameters and mechanisms such as mutation rate, crossover probability, gaussian variation and fitness value scaling on the course of this artificial evolutional process was investigated. As a proof of concept peptidic ligands for a model target molecule, the cell surface glycolipid ganglioside G(M1, were identified. Consensus sequences describing local fitness optima were reached from diverse sets of L- and proteolytically stable D lead peptides. Ten rounds of evolutional optimization encompassing a total of just 4400 peptides lead to an increase in affinity of the peptides towards fluorescently labeled ganglioside G(M1 by a factor of 100 for L- and 400 for D-peptides.

  2. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria

    Directory of Open Access Journals (Sweden)

    Daniel Ken Inaoka

    2015-07-01

    Full Text Available Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM. In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.

  3. Structural Insights into the Molecular Design of Flutolanil Derivatives Targeted for Fumarate Respiration of Parasite Mitochondria.

    Science.gov (United States)

    Inaoka, Daniel Ken; Shiba, Tomoo; Sato, Dan; Balogun, Emmanuel Oluwadare; Sasaki, Tsuyoshi; Nagahama, Madoka; Oda, Masatsugu; Matsuoka, Shigeru; Ohmori, Junko; Honma, Teruki; Inoue, Masayuki; Kita, Kiyoshi; Harada, Shigeharu

    2015-07-07

    Recent studies on the respiratory chain of Ascaris suum showed that the mitochondrial NADH-fumarate reductase system composed of complex I, rhodoquinone and complex II plays an important role in the anaerobic energy metabolism of adult A. suum. The system is the major pathway of energy metabolism for adaptation to a hypoxic environment not only in parasitic organisms, but also in some types of human cancer cells. Thus, enzymes of the pathway are potential targets for chemotherapy. We found that flutolanil is an excellent inhibitor for A. suum complex II (IC50 = 0.058 μM) but less effectively inhibits homologous porcine complex II (IC50 = 45.9 μM). In order to account for the specificity of flutolanil to A. suum complex II from the standpoint of structural biology, we determined the crystal structures of A. suum and porcine complex IIs binding flutolanil and its derivative compounds. The structures clearly demonstrated key interactions responsible for its high specificity to A. suum complex II and enabled us to find analogue compounds, which surpass flutolanil in both potency and specificity to A. suum complex II. Structures of complex IIs binding these compounds will be helpful to accelerate structure-based drug design targeted for complex IIs.

  4. Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%–20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.

  5. Molecular targets in urothelial cancer: detection, treatment, and animal models of bladder cancer

    Science.gov (United States)

    Smolensky, Dmitriy; Rathore, Kusum; Cekanova, Maria

    2016-01-01

    Bladder cancer remains one of the most expensive cancers to treat in the United States due to the length of required treatment and degree of recurrence. In order to treat bladder cancer more effectively, targeted therapies are being investigated. In order to use targeted therapy in a patient, it is important to provide a genetic background of the patient. Recent advances in genome sequencing, as well as transcriptome analysis, have identified major pathway components altered in bladder cancer. The purpose of this review is to provide a broad background on bladder cancer, including its causes, diagnosis, stages, treatments, animal models, as well as signaling pathways in bladder cancer. The major focus is given to the PI3K/AKT pathway, p53/pRb signaling pathways, and the histone modification machinery. Because several promising immunological therapies are also emerging in the treatment of bladder cancer, focus is also given on general activation of the immune system for the treatment of bladder cancer. PMID:27784990

  6. A nanobody targeting carcinoembryonic antigen as a promising molecular probe for non-small cell lung cancer.

    Science.gov (United States)

    Wang, Hao; Meng, Ai-Min; Li, Sheng-Hua; Zhou, Xiao-Liang

    2017-07-01

    Carcinoembryonic antigen (CEA) is a biomarker and therapy target for non‑small cell lung cancer (NSCLC), which is the most common type of lung cancer. Nanobodies with high target specificity are promising candidates to function as anti‑CEA probes. In the present study, the targeting effects of an anti‑CEA nanobody obtained from phage display were investigated using technetium‑99 m (99mTc) and fluorescence labeling. In vitro binding and immunofluorescent staining assays, as well as in vivo blood clearance and biodistribution assays were performed. High specificity and affinity of the nanobody for CEA‑positive H460 cells was observed in vitro. The pharmacokinetics assay of the 99mTc‑nanobody in Wistar rats demonstrated that the nanobody had appropriate T1/2α and T1/2β, which were 20.2 and 143.5 min, respectively. The biodistribution assay using H460 xenograft‑bearing nude mice demonstrated a high ratio of signal in tumor compared with background, which confirmed that the nanobody may be useful as a molecular probe for CEA‑positive cancer, particularly in NSCLC.

  7. Advanced research technology for discovery of new effective compounds from Chinese herbal medicine and their molecular targets.

    Science.gov (United States)

    Wong, Vincent Kam-Wai; Law, Betty Yuen-Kwan; Yao, Xiao-Jun; Chen, Xi; Xu, Su Wei; Liu, Liang; Leung, Elaine Lai-Han

    2016-09-01

    Traditional biotechnology has been utilized by human civilization for long in wide aspects of our daily life, such as wine and vinegar production, which can generate new phytochemicals from natural products using micro-organism. Today, with advanced biotechnology, diverse applications and advantages have been exhibited not only in bringing benefits to increase the diversity and composition of herbal phytochemicals, but also helping to elucidate the treatment mechanism and accelerate new drug discovery from Chinese herbal medicine (CHM). Applications on phytochemical biotechnologies and microbial biotechnologies have been promoted to enhance phytochemical diversity. Cell labeling and imaging technology and -omics technology have been utilized to elucidate CHM treatment mechanism. Application of computational methods, such as chemoinformatics and bioinformatics provide new insights on direct target of CHM. Overall, these technologies provide efficient ways to overcome the bottleneck of CHM, such as helping to increase the phytochemical diversity, match their molecular targets and elucidate the treatment mechanism. Potentially, new oriented herbal phytochemicals and their corresponding drug targets can be identified. In perspective, tighter integration of multi-disciplinary biotechnology and computational technology will be the cornerstone to accelerate new arena formation, advancement and revolution in the fields of CHM and world pharmaceutical industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Targeting IL-17 AND IL-17D receptors of rheumatoid arthritis using phytocompounds: A Molecular Docking study

    Science.gov (United States)

    Thabitha, A.; Thoufic Ali, A. M. Mohamed; Shweta Kumari, Singh; Rakhi; Swami, Varsha; Mohana Priya, A.; Sajitha Lulu, S.

    2017-11-01

    Rheumatoid arthritis (RA) is a chronic autoimmune condition of the connective tissue in synovial joints, characterized by inflammation which can lead to bone and cartilage destruction. IL-17 and IL-17D cytokines produced by a number of cell types, primarily promote pro-inflammatory immune responses and negative regulator in fibroblast growth factor signalling. Thus, the promising therapeutic strategies focus on targeting these cytokines, which has led to the identification of effective inhibitors. However, several studies focused on identifying the anti-arthritic potential of natural compounds. Therefore, in the present study we undertook in silico investigations to decipher the anti-inflammatory prospective of phytocompounds by targeting IL-17 and IL-17D cytokines using Patch Dock algorithm. Additionally, IL-17 and IL-17D proteins structure were modelled and validated for molecular docking study. Further, phytocompounds based on anti-inflammatory property were subjected to Lipinski filter and ADMET properties indicated that all of these compounds showed desirable drug-like criteria. The outcome of this investigation sheds light on the anti-inflammatory mechanism of phytocompounds by targeting IL-17 and IL-D for effective treatment of RA.

  9. New Molecular Targeted Therapy and Redifferentiation Therapy for Radioiodine-Refractory Advanced Papillary Thyroid Carcinoma: Literature Review

    Directory of Open Access Journals (Sweden)

    Kai-Pun Wong

    2012-01-01

    Full Text Available Although the majority of papillary thyroid carcinoma could be successfully managed by complete surgical resection alone or resection followed by radioiodine ablation, a small proportion of patients may develop radioiodine-refractory progressive disease which is not amenable to surgery, local ablative treatment or other treatment modalities. The use of FDG-PET/CT scan for persistent/recurrent disease has improved the accuracy of restaging as well as cancer prognostication. Given that patients with RAI-refractory disease tend to do significantly worse than those with radioiodine-avid or non-progressive disease, an increasing number of phase I and II studies have been conducted to evaluate the efficacy of new molecular targeted drugs such as the tyrosine kinase inhibitors and redifferentiation drugs. The overall response rate of these drugs ranged between 0–53%, depending on whether the patients had been previously treated with these drugs, performance status and extent of disease. However, drug toxicity remains a major concern in administration of target therapies. Nevertheless, there are also ongoing phase III studies evaluating the efficacy of these new drugs. The aim of the review was to summarize and discuss the results of these targeted drugs and redifferentiation agents for patients with progressive, radioiodine-refractory papillary thyroid carcinoma.

  10. Basal Cell Carcinoma: From the Molecular Understanding of the Pathogenesis to Targeted Therapy of Progressive Disease

    Directory of Open Access Journals (Sweden)

    Daniela Göppner

    2011-01-01

    Full Text Available Due to intensified research over the past decade, the Hedgehog (HH pathway has been identified as a pivotal defect implicated in roughly 25% of all cancers. As one of the most frequent cancer worldwide, the development of Basal cell carcinoma (BCC due to activation of the HH pathway has been convincingly demonstrated. Thus the discovery of this central tumor-promoting signalling pathway has not only revolutionized the understanding of BCC carcinogenesis but has also enabled the development of a completely novel therapeutic approach. Targeting just a few of several potential mutations, HH inhibitors such as GDC-0449 achieved already the first promising results in metastatic or locally advanced BCC. This paper summarizes the current understanding of BCC carcinogenesis and describes the current “mechanism-based” therapeutic strategies.

  11. Activation and Molecular Targets of Peroxisome Proliferator-Activated Receptor-γ Ligands in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Raphael A. Nemenoff

    2008-01-01

    Full Text Available Lung cancer is the leading cause of cancer death, and five-year survival remains poor, raising the urgency for new treatment strategies. Activation of PPARγ represents a potential target for both the treatment and prevention of lung cancer. Numerous studies have examined the effect of thiazolidinediones such as rosiglitazone and pioglitazone on lung cancer cells in vitro and in xenograft models. These studies indicate that activation of PPARγ inhibits cancer cell proliferation as well as invasiveness and metastasis. While activation of PPARγ can occur by direct binding of pharmacological ligands to the molecule, emerging data indicate that PPARγ activation can occur through engagement of other signal transduction pathways, including Wnt signaling and prostaglandin production. Data, both from preclinical models and retrospective clinical studies, indicate that activation of PPARγ may represent an attractive chemopreventive strategy. This article reviews the existing biological and mechanistic experiments focusing on the role of PPARγ in lung cancer, focusing specifically on nonsmall cell lung cancer.

  12. Molecular targets in radiation-induced blood-brain barrier disruption

    International Nuclear Information System (INIS)

    Nordal, Robert A.; Wong, C. Shun

    2005-01-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection

  13. Application of HPLC to the isolation of molecular targets in dosimetry studies

    International Nuclear Information System (INIS)

    Balhorn, R.; Mazrimas, J.A.; Corzett, M.

    1985-01-01

    High-performance liquid chromatography (HPLC) methods are described which permit the rapid isolation of multiple target macromolecules from the tissues of animals exposed to chemical mutagens. DNA and selected chromosomal proteins are isolated in a simple two step separation scheme. The DNA peak is retained for analysis and the chromatin proteins are dialyzed, lyophylized, and rechromatographed on a PRP-1 column to separate individual histones. Using this approach the authors have monitored the kinetics and dose response of adduct formation (and repair) to DNA, histone, hemoglobin and albumin in mice exposed to 7-bromomethylbenzanthracene and benzo[a]pyrene. The results of these studies are described and briefly discussed. Experiments with other mutagens demonstrate the limits to which DNA adduct quantification may be pushed using radioisotopes. Exposures to very high specific activity (200 Ci/mmole) benzo(a)pyrene have allowed DNA adduct quantification down to a few adducts per cell

  14. Targeted sulphur and selenium speciation in yeast by parallel elemental and molecular mass spectrometry

    DEFF Research Database (Denmark)

    Hillestrøm, Peter René; Mapelli, Valeria; Olsson, Lisbeth

    Selenium supplement, often selenized yeast, are currently the subject of intense study owing to their potential preventive effects against cancer. However, fundamental knowledge of the yeast’s metabolism is required for metabolic engineering biosynthetic production of potent Se-species. A method ...... determination of metabolites present. Selenium metabolites were detected by simultaneous ICP-MS and ESI-MS/MS while targeted sulphur species were determined by ESI-MS/MS.......Selenium supplement, often selenized yeast, are currently the subject of intense study owing to their potential preventive effects against cancer. However, fundamental knowledge of the yeast’s metabolism is required for metabolic engineering biosynthetic production of potent Se-species. A method...

  15. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    International Nuclear Information System (INIS)

    Rathinaraj, Pierson; Lee, Kyubae; Choi, Yuri; Park, Soo-Young; Kwon, Oh Hyeong; Kang, Inn-Kyu

    2015-01-01

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  16. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rathinaraj, Pierson [Auckland University of Technology, Institute of Biomedical Technologies (New Zealand); Lee, Kyubae; Choi, Yuri; Park, Soo-Young [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of); Kwon, Oh Hyeong [Kumoh National Institute of Technology, Department of Polymer Science and Engineering (Korea, Republic of); Kang, Inn-Kyu, E-mail: ikkang@knu.ac.kr [Kyungpook National University, School of Applied Chemical Engineering, Graduate School (Korea, Republic of)

    2015-07-15

    Mercaptosuccinic acid (M)-conjugated gold nanoparticles (GM) were prepared and characterized by transmission electron microscope and dynamic light scattering. M was used to improve the monodispersity and non-specific intracellular uptake of nanoparticles. Lactobionic acid (L) was subsequently conjugated to the GM to target preferentially HepG2 cells (liver cancer cells) that express asialoglycoprotein receptors (ASGPR) on their membrane surfaces and facilitate the transit of nanoparticles across the cell membrane. The mean size of lactobionic acid-conjugated gold nanoparticle (GL) was approximately 10 ± 0.2 nm. Finally, the Atto 680 dye (A6) was coupled to the nanoparticles to visualize their internalization into HepG2 cells. The interaction of surface-modified gold nanoparticles with HepG2 cells was studied after culturing cells in media containing the GM or L-conjugated GM (GL)

  17. Integrated analysis of the molecular action of Vorinostat identifies epi-sensitised targets for combination therapy.

    Science.gov (United States)

    Hay, Jodie F; Lappin, Katrina; Liberante, Fabio; Kettyle, Laura M; Matchett, Kyle B; Thompson, Alexander; Mills, Ken I

    2017-09-15

    Several histone deacetylase inhibitors including Vorinostat have received FDA approval for the treatment of haematological malignancies. However, data from these trials indicate that Vorinostat has limited efficacy as a monotherapy, prompting the need for rational design of combination therapies. A number of epi-sensitised pathways, including sonic hedgehog (SHH), were identified in AML cells by integration of global patterns of histone H3 lysine 9 (H3K9) acetylation with transcriptomic analysis following Vorinostat-treatment. Direct targeting of the SHH pathway with SANT-1, following Vorinostat induced epi-sensitisation, resulted in synergistic cell death of AML cells. In addition, xenograft studies demonstrated that combination therapy induced a marked reduction in leukemic burden compared to control or single agents. Together, the data supports epi-sensitisation as a potential component of the strategy for the rational development of combination therapies in AML.

  18. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    M Emmy M Dolman

    Full Text Available Tumor cells might resist therapy with ionizing radiation (IR by non-homologous end-joining (NHEJ of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK. The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  19. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    Science.gov (United States)

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  20. Molecular cloning and characterization of taurocyamine kinase from Clonorchis sinensis: a candidate chemotherapeutic target.

    Directory of Open Access Journals (Sweden)

    Jing-Ying Xiao

    2013-11-01

    Full Text Available BACKGROUND: Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. CONCLUSION: CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart

  1. Molecular Cloning and Characterization of Taurocyamine Kinase from Clonorchis sinensis: A Candidate Chemotherapeutic Target

    Science.gov (United States)

    Tokuhiro, Shinji; Nagataki, Mitsuru; Jarilla, Blanca R.; Nomura, Haruka; Kim, Tae Im; Hong, Sung-Jong; Agatsuma, Takeshi

    2013-01-01

    Background Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK) constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. Methology/Principal findings A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK) of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK) gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. Conclusion CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart, creatine. PMID:24278491

  2. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models

    Directory of Open Access Journals (Sweden)

    Tania Jacobo-Estrada

    2017-07-01

    Full Text Available Even decades after the discovery of Cadmium (Cd toxicity, research on this heavy metal is still a hot topic in scientific literature: as we wrote this review, more than 1440 scientific articles had been published and listed by the PubMed.gov website during 2017. Cadmium is one of the most common and harmful heavy metals present in our environment. Since pregnancy is a very particular physiological condition that could impact and modify essential pathways involved in the handling of Cd, the prenatal life is a critical stage for exposure to this non-essential element. To give the reader an overview of the possible mechanisms involved in the multiple organ toxic effects in fetuses after the exposure to Cd during pregnancy, we decided to compile some of the most relevant experimental studies performed in experimental models and to summarize the advances in this field such as the Cd distribution and the factors that could alter it (diet, binding-proteins and membrane transporters, the Cd-induced toxicity in dams (preeclampsia, fertility, kidney injury, alteration in essential element homeostasis and bone mineralization, in placenta and in fetus (teratogenicity, central nervous system, liver and kidney.

  3. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia

    Science.gov (United States)

    Breves, Jason P.; McCormick, Stephen D.; Karlstrom, Rolf O.

    2014-01-01

    The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the “freshwater-adapting hormone”, promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.

  4. Targeted introgression of cotton fibre quality quantitative trait loci using molecular markers

    International Nuclear Information System (INIS)

    Lacape, J.M.; Trung-Bieu Nguyen; Hau, B.; Giband, M.

    2007-01-01

    Within the framework of a cotton breeding programme, molecular markers are used to improve the efficiency of the introgression of fibre quality traits of Gossypium barbadense into G. hirsutum. A saturated genetic map was developed based on genotyping data obtained from the BC 1 (75 plants) and BC 2 (200 plants) generations. Phenotypic measurements conducted over three generations (BC 1 , BC 2 and BC 2 S 1 ) allowed 80 quantitative trait loci (QTL) to be detected for fibre length, uniformity, strength, elongation, fineness and colour. Positive QTL, i.e. those for which favourable alleles came from the G. barbadense parent, were harboured by 19 QTL-rich regions on 15 'carrier' chromosomes. In subsequent generations (BC 3 and BC 4 ), markers framing the QTL-rich regions were used to select about 10 percent of over 400 plants analysed in each generation. Although BC plants selected through the marker-assisted selection (MAS) process show promising fibre quality, only their full field evaluation will allow validation of the procedure. (author)

  5. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences.

    Science.gov (United States)

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K; Maitra, S S

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about "methanogenic archaea composition" and "abundance" in the contrasting ecosystems like "landfill" and "marshland" may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  6. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    Directory of Open Access Journals (Sweden)

    Shailendra Yadav

    2015-01-01

    Full Text Available Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic and Thaumarchaeota (mesophilic, were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process.

  7. Nuclear science fights malaria. Radiation and molecular techniques can play targeted roles

    International Nuclear Information System (INIS)

    Groth, Steffen; Khan, Baldip; Robinson, Alan; Hendrichs, Jorge

    2001-01-01

    Malaria is the most important insect transmitted disease. Globally there are 300 to 500 million clinical cases of malaria a year. They result in two million deaths per year (one every 30 seconds), more than 90% of which occur in sub-Saharan Africa. More than 90% of those affected are children less than five years old. The economic impact of the disease is felt disproportionately by poor families who may spend a fourth of their annual income on prevention and control measures. The causative agents are parasites of the genus Plasmodium and they are transmitted only by female mosquitoes of the genus Anopheles. Among key strategies to control malaria are the surveillance of anti-malarial drug efficacy through monitoring the levels of drug resistance, and the reduction of mosquito populations. Nuclear techniques can play important roles in these efforts to combat malaria. This article reports on IAEA activities associated with drug-resistant malaria and describes how molecular methods making use of radioactive isotopes can provide a great advantage in the diagnosis of resistance. The article further presents the IAEA's plans for initiating a research programme to assess the feasibility of developing the Sterile Insect Technique (SIT) as a complementary method to control the vector of malaria

  8. Synthesis, molecular modeling and biological evaluation of PSB as targeted antibiotics.

    Science.gov (United States)

    Cheng, Kui; Zheng, Qing-Zhong; Hou, Jin; Zhou, Yang; Liu, Chang-Hong; Zhao, Jing; Zhu, Hai-Liang

    2010-04-01

    We described here the design, synthesis, molecular modeling, and biological evaluation of a series of peptide and Schiff bases (PSB) small molecules, inhibitors of Escherichia coli beta-Ketoacyl-acyl carrier protein synthase III (ecKAS III). The initial lead compound was reported by us previously, we continued to carry out structure-activity relationship studies and optimize the lead structure to potent inhibitors in this research. The results demonstrated that both N-(2-(3,5-dichloro-2-hydroxybenzylideneamino)propyl)-2-hydroxybenzamide (1f) and 2-hydroxy-N-(2-(2-hydroxy-5-iodobenzylideneamino)propyl)-4-methylbenzamide (3e) posses good ecKAS III inhibitory activity and well binding affinities by bonding Gly152/Gly209 of ecKAS III and fit into the mouth of the substrate tunnel, and can be as potential antibiotics agent, displaying minimal inhibitory concentration values in the range 0.20-3.13microg/mL and 0.39-3.13microg/mL against various bacteria. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Translational PK-PD modelling of molecular target modulation for the AMPA receptor positive allosteric modulator Org 26576.

    Science.gov (United States)

    Bursi, Roberta; Erdemli, Gul; Campbell, Robert; Hutmacher, Matthew M; Kerbusch, Thomas; Spanswick, David; Jeggo, Ross; Nations, Kari R; Dogterom, Peter; Schipper, Jacques; Shahid, Mohammed

    2011-12-01

    The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor potentiator Org 26576 represents an interesting pharmacological tool to evaluate the utility of glutamatergic enhancement towards the treatment of psychiatric disorders. In this study, a rat-human translational pharmacokinetic-pharmacodynamic (PK-PD) model of AMPA receptor modulation was used to predict human target engagement and inform dose selection in efficacy clinical trials. Modelling and simulation was applied to rat plasma and cerebrospinal fluid (CSF) pharmacokinetic and pharmacodynamic measurements to identify a target concentration (EC(80)) for AMPA receptor modulation. Human plasma pharmacokinetics was determined from 33 healthy volunteers and eight major depressive disorder patients. From four out of these eight patients, CSF PK was also determined. Simulations of human CSF levels were performed for several doses of Org 26576. Org 26576 (0.1-10 mg/kg, i.v.) potentiated rat hippocampal AMPA receptor responses in an exposure-dependant manner. The rat plasma and CSF PK data were fitted by one-compartment model each. The rat CSF PK-PD model yielded an EC(80) value of 593 ng/ml (90% confidence interval 406.8, 1,264.1). The human plasma and CSF PK data were simultaneously well described by a two-compartment model. Simulations showed that in humans at 100 mg QD, CSF levels of Org 26576 would exceed the EC(80) target concentration for about 2 h and that 400 mg BID would engage AMPA receptors for 24 h. The modelling approach provided useful insight on the likely human dose-molecular target engagement relationship for Org 26576. Based on the current analysis, 100 and 400 mg BID would be suitable to provide 'phasic' and 'continuous' AMPA receptor engagement, respectively.

  10. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Xiao Y

    2015-02-01

    Full Text Available Yunbin Xiao,1,* Zuan Tao Lin,2,* Yanmei Chen,1 He Wang,1 Ya Li Deng,2 D Elizabeth Le,3 Jianguo Bin,1 Meiyu Li,1 Yulin Liao,1 Yili Liu,1 Gangbiao Jiang,2 Jianping Bin1 1State Key Laboratory of Organ Failure Research, Division of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2Department of Pharmaceutical Engineering, South China Agricultural University, Guangzhou, People’s Republic of China; 3Cardiovascular Division, Oregon Health and Science University, Portland, OR, USA *These authors contributed equally to this work Abstract: Magnetic resonance imaging (MRI contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. Keywords: superparamagnetic

  11. Therapeutic Approaches to Target Cancer Stem Cells

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Leon, Kalet

    2011-01-01

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC

  12. Rhenium(V) oxo complexes relevant to technetium renal imaging agents derived from mercaptoacetylglycylglycylaminobenzoic acid isomers. Structural and molecular mechanics studies

    International Nuclear Information System (INIS)

    Hansen, L.; Taylor, A. Jr; Marzilli, L.G.; Cini, R.

    1992-01-01

    The synthesis and characterization of three rhenium(V) oxo complexes derived from isomers of mercaptoacetylglycylglycylaminobenzoic acid (MAG 2 -ABAH 5 ) are reported. The isomers were synthesized from o-, m- and p-aminobenzoic acid and differed in the position of the terminal carboxyl group. The anions of 8-10, [ReO(MAG 2 -*ABAH)] - (* = para (8), meta (9), ortho (10)), contained the tetraanionic form of the ligands with the carboxyl group protonated. Compounds 8,9, and 10 were synthesized by exchange reactions of ReOCl 3 (Me 2 SO)(Ph 3 P) under moderate conditions and were isolated as [Ph 4 P] + , [Bu 4 N] + , and [Ph 4 P] + salts, respectively. The structures of 8 and 10 were determined by X-ray diffraction methods; except for the location of the carboxyl group, the structures are similar. The coordination geometry is pseudo square pyramidal, with nitrogen and sulfur donor atoms forming a square base and the oxo ligand at the apex. The orientation of the carboxyl group in 10 is anti to the Re double-bond O group. Since the carboxyl groups are protonated in 8 and 10 and in other relevant structures from this class of radiopharmaceuticals including [Ph 4 As][TcO(MAG 3 H)] (MAG 3 H = tetraanionic form of mercaptoacetyltriglycine), the authors developed molecular mechanics parameters that allowed them to calculate the structures of 8, 10, and [TcO(MAG 3 H)] - . They then extended the calculations to all three isomeric complexes in their deprotonated forms and to [TcO(MAG 3 )] 2- in order to approximate their solution phase structures. They conclude that the [TcO(MAG 3 )] 2- species is conformationally flexible, and they have made an initial assessment of structures vs renal clearance

  13. Transferrin receptor molecular imaging: targeting for diagnosis and monitoring of gene delivery

    International Nuclear Information System (INIS)

    Eun-Mi Kim; Hwan-Jeong Jeong; Jin-Hee Kim; Chang-Guhn Kim

    2004-01-01

    Objective: In this study, we investigated the targetability of Tf conjugated compounds to Tf-R expressed on cancer cells for detection and diagnosis and the usefulness of gamma probe-targeting delivery system on monitoring whether the gene complex bind to the cells specifically. Methods: For the detection and diagnosis of Tf-R positive cancer cells, Tf-chitosan conjugates were synthesized as previously described by Kircheis et al with some modifications. Succinimidyl 6-hydrazino nicotinate hydrochloride (HYNIC) was bound to Tf-chitosan conjugates. HYNIC-Tf-chitosan conjugates were labelled with 99mTc. In the monitoring of Tf-R specific gene delivery system, we used the HYNIC-Tf conjugated dendrimer. For tumor model, 5- to 6-week-old female BALB/c nude mice were injected subcutaneously in the left thigh with Ramos cells (human Burkitt's lymphoma). The gamma imagings were acquired after administration of 99mTc HYNIC-Tf conjugates and 99mTc HYNIC-Tf-DNA polyplexes via the tail vein of tumor bearing nude mice at 10, 30, 60, 90, and 120 min. To compare the image acquired with HYNIC-Tf conjugate, Ga-67 study was performed. To certify the expression of delivered gene via DNA polyplexes, 2 days after gene complex injection we inspected the expression of GFP in dissected tumor tissue. Results: Radiolabeling yields of both HYNIC-Tf conjugate and HYNIC-Tf-dendrimer gene complex were above 90% until 12hr. Uptake in the Ramos model of 99mTc HYNIC-Tf conjugate showed higher than those of Ga-67. A few minutes after injection 99mTc HYNIC-Tf conjugate localized mainly in the circulation (heart), kidneys, and tumor. At later times, radioactivity in tumor increased until 90 min. Pharmacokinetics of Ga-67 were different from those of 99mTc HYNIC-Tf conjugate. Tumor to nontumor ratio of Ga-67 was approximately 2 but in case of 99mTc HYNIC-Tf conjugate showed until 5. In Ramos lymphoma model, 99mTc HYNIC-Tf-DNA polyplexes accumulated the tumor site, and the gene expression of 99m

  14. Mechanistic Target of Rapamycin Is a Novel Molecular Mechanism Linking Folate Availability and Cell Function.

    Science.gov (United States)

    Silva, Elena; Rosario, Fredrick J; Powell, Theresa L; Jansson, Thomas

    2017-07-01

    Folate deficiency has been linked to a wide range of disorders, including cancer, neural tube defects, and fetal growth restriction. Folate regulates cellular function mediated by its involvement in the synthesis of nucleotides, which are needed for DNA synthesis, and its function as a methyl donor, which is critical for DNA methylation. Here we review current data showing that folate sensing by mechanistic target of rapamycin (mTOR) constitutes a novel and distinct pathway by which folate modulates cell functions such as nutrient transport, protein synthesis, and mitochondrial respiration. The mTOR signaling pathway responds to growth factors and changes in nutrient availability to control cell growth, proliferation, and metabolism. mTOR exists in 2 complexes, mTOR complex (mTORC) 1 and mTORC2, which have distinct upstream regulators and downstream targets. Folate deficiency in pregnant mice caused a marked inhibition of mTORC1 and mTORC2 signaling in multiple maternal and fetal tissues, downregulation of placental amino acid transporters, and fetal growth restriction. In addition, folate deficiency in primary human trophoblast (PHT) cells resulted in inhibition of mTORC1 and mTORC2 signaling and decreased the activity of key amino acid transporters. Folate sensing by mTOR in PHT cells is independent of the accumulation of homocysteine and requires the proton-coupled folate transporter (PCFT; solute carrier 46A1). Furthermore, mTORC1 and mTORC2 regulate trophoblast folate uptake by modulating the cell surface expression of folate receptor α and the reduced folate carrier. These findings, which provide a novel link between folate availability and cell function, growth, and proliferation, may have broad biological significance given the critical role of folate in normal cell function and the multiple diseases that have been associated with decreased or excessive folate availability. Low maternal folate concentrations are linked to restricted fetal growth, and we

  15. Evaluation of Three Small Molecular Drugs for Targeted Therapy to Treat Nonsmall Cell Lung Cancer

    Science.gov (United States)

    Ni, Jun; Zhang, Li

    2016-01-01

    Objective: To guide the optimal selection among first-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in clinical practice. This review attempted to provide a thorough comparison among three first-generation EGFR-TKIs, namely icotinib, erlotinib, and gefitinib, with regard to their molecular structure, pharmacokinetic parameters, clinical data, adverse reactions, and contraindications. Data Sources: An electronic literature search of the PubMed database and Google Scholar for all the available articles regarding gefitinib, icotinib, and erlotinib in the English language from January 2005 to December 2014 was used. Study Selection: The search terms or keywords included but not limited to “lung cancer”, “nonsmall cell lung cancer (NSCLC)”, “epidemiology”, “EGFR”, “TKIs”, and “optimal selection”. Results: As suggested by this review, even though the three first-generation EGFR-TKIs share the quinazoline structure, erlotinib had the strongest apoptosis induction activity because of its use of a different side-chain. The pharmacokinetic parameters indicated that both erlotinib and icotinib are affected by food. The therapeutic window of erlotinib is narrow, and the recommended dosage is close to the maximum tolerable dosage. Icotinib enjoys a wider therapeutic window, and its concentration in the blood is within a safe dosage range even if it is administered with food. Based on multiple large-scale clinical trials, erlotinib is universally applied a