WorldWideScience

Sample records for relevant kinetic effects

  1. Cellular recovery kinetic studies relevant to combined-modality research and therapy

    International Nuclear Information System (INIS)

    Dethlefsen, L.A.

    1979-01-01

    The relevance of cellular recovery kinetics to combined-modality therapy is evaluated within the framework of an idealized experimental flow chart and published adriamycin data. Within this context, limitations for both experimental design and data interpretations are discussed. The effects of adriamycin have been documented extensively at the molecular and cellular level and its interactions with x-irradiation have been studied, both in vitro and in vivo. The limited in vivo results suggest that the end results of a given protocol correlate with cellular recovery kinetics; however, definitive experiments simply have not been done. For example, no one has used single-dose drug and irradiation data to predict the outcome and then confirm or refute the prediction even in a relatively simple 2-dose drug + 2-dose drug + 2-dose x-ray protocol. Thus, at this time, the extent of the correlations between cellular recovery kinetics and clinical response for either normal or malignant tissues is not known and the possible relevance of such studies cannot be discounted

  2. Seeking kinetic pathways relevant to the structural evolution of metal nanoparticles

    International Nuclear Information System (INIS)

    Haldar, Paramita; Chatterjee, Abhijit

    2015-01-01

    Understanding the kinetic pathways that cause metal nanoparticles to structurally evolve over time is essential for predicting their shape and size distributions and catalytic properties. Consequently, we need detailed kinetic models that can provide such information. Most kinetic Monte Carlo models used for metal systems contain a fixed catalogue of atomic moves; the catalogue is largely constructed based on our physical understanding of the material. In some situations, it is possible that an incorrect picture of the overall dynamics is obtained when kinetic pathways that are relevant to the dynamics are missing from the catalogue. Hence, a computational framework that can systematically determine the relevant pathways is required. This work intends to fulfil this requirement. Examples involving an Ag nanoparticle are studied to illustrate how molecular dynamics (MD) calculations can be employed to find the relevant pathways in a system. Since pathways that are unlikely to be selected at short timescales can become relevant at longer times, the accuracy of the catalogue is maintained by continually seeking these pathways using MD. We discuss various aspects of our approach, namely, defining the relevance of atomic moves to the dynamics and determining when additional MD is required to ensure the desired accuracy, as well as physical insights into the Ag nanoparticle. (paper)

  3. Heterogeneous reaction mechanisms and kinetics relevant to the CVD of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Creighton, J.R.; Coltrin, M.E.

    1994-03-01

    This report documents the state of the art in experimental and theoretical techniques for determining reaction mechanisms and chemical kinetics of heterogeneous reactions relevant to the chemical vapor deposition of semiconductor materials. It summarizes the most common ultra-high vacuum experimental techniques that are used and the types of rate information available from each. Several case studies of specific chemical systems relevant to the microelectronics industry are described. Theoretical methods for calculating heterogeneous reaction rate constants are also summarized.

  4. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1987-01-01

    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress

  5. Kinetic effects on the propagation of surface waves and their relevance to the heating of the solar corona

    International Nuclear Information System (INIS)

    Kuperus, M.; Heyvaerts, J.

    1980-01-01

    The MHD oscillations of the Alfven type running along surfaces of discontinuity generate motions in the discontinuity region which come rapidly out of phase. It is shown how the mathematical theory of this phase detuning predicts that surface wave should suffer dissipationless damping. Real damping is actually achieved by viscosity or kinetic effects. When detuning has grown to a large enough level, however, oscillations must be described by kinetic theory. Kinetic Alfven waves differ from perfect MHD Alfven waves in that they are able to propagate across the field. A theory of kinetic type oscillations in a finite thickness boundary is described, which predicts that surface waves generate intense kinetic Alfven waves in this boundary. The subsequent dissipation of these waves may be a powerful heating mechanism [fr

  6. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation.

    Science.gov (United States)

    Birch, Heidi; Hammershøj, Rikke; Comber, Mike; Mayer, Philipp

    2017-10-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng-μg/L levels. Automated Headspace Solid Phase Microextraction coupled to GC-MS was applied directly to these test systems to determine substrate depletion relative to abiotic controls. Lag phases were generally less than 8 days. First order rate constants were within one order of magnitude for each hydrocarbon in four of the five waters but lower in water from a rural lake. The sequence of degradation between the 9 hydrocarbons showed similar patterns in the five waters indicating the potential for using selected hydrocarbons for benchmarking between biodegradation tests. Degradation half-times were shorter than or within one order of magnitude of BioHCwin predictions for 8 of 9 hydrocarbons. These results showed that location choice is important for biodegradation kinetics and can provide a relevant input to aquatic exposure and fate models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    Science.gov (United States)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  8. Relevance and bio-catalytic strategies for the kinetic resolution of ketoprofen towards dexketoprofen.

    Science.gov (United States)

    Toledo, María Victoria; Briand, Laura Estefanía

    2017-11-10

    This review presents the most relevant investigations concerning the biocatalytic kinetic resolution of racemic ketoprofen to dexketoprofen for the last 22 years. The advantages related to the administration of the dex-enantiomer in terms of human health, the so called "chiral switch" in the pharmaceutical industry and the sustainability of biotransformations have been the driving forces to develop innovative technology to obtain dexketoprofen. In particular, the kinetic resolution of racemic ketoprofen through enantiomeric esterification and hydrolysis using lipases as biocatalysts are thoroughly revised and commented upon. In this context, the biocatalysts, acyl-acceptors (alcohols), reaction conditions, conversion, enantiomeric excess, and enantiomeric ratio among others are discussed. Moreover, the investigations concerning scaling up processes in order to obtain an optically pure enantiomer of the profen are presented. Finally, some guidelines about perspectives of the technology and research opportunities are given.

  9. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  10. Effect of Humic Acid on As Redox Transformation and Kinetic Adsorption onto Iron Oxide Based Adsorbent (IBA

    Directory of Open Access Journals (Sweden)

    Hoda Fakour

    2014-10-01

    Full Text Available Due to the importance of adsorption kinetics and redox transformation of arsenic (As during the adsorption process, the present study elucidated natural organic matter (NOM effects on As adsorption-desorption kinetics and speciation transformation. The experimental procedures were conducted by examining interactions of arsenate and arsenite with different concentrations of humic acid (HA as a model representative of NOM, in the presence of iron oxide based adsorbent (IBA, as a model solid surface in three environmentally relevant conditions, including the simultaneous adsorption of both As and HA onto IBA, HA adsorption onto As-presorbed IBA, and As adsorption onto HA-presorbed IBA. Experimental adsorption-desorption data were all fitted by original and modified Lagergren pseudo-first and -second order adsorption kinetic models, respectively. Weber’s intraparticle diffusion was also used to gain insight into the mechanisms and rate controlling steps, which the results suggested that intraparticle diffusion of As species onto IBA is the main rate-controlling step. Different concentrations of HA mediated the redox transformation of As species, with a higher oxidation ability than reduction. The overall results indicated the significant effect of organic matter on the adsorption kinetics and redox transformation of As species, and consequently, the fate, transport and mobility of As in different environmentally relevant conditions.

  11. Kinetic effects on magnetohydrodynamic phenomena

    International Nuclear Information System (INIS)

    Naito, Hiroshi; Matsumoto, Taro

    2001-01-01

    Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)

  12. Reverse spin-crossover and high-pressure kinetics of the heme iron center relevant for the operation of heme proteins under deep-sea conditions.

    Science.gov (United States)

    Troeppner, Oliver; Lippert, Rainer; Shubina, Tatyana E; Zahl, Achim; Jux, Norbert; Ivanović-Burmazović, Ivana

    2014-10-20

    By design of a heme model complex with a binding pocket of appropriate size and flexibility, and by elucidating its kinetics and thermodynamics under elevated pressures, some of the pressure effects are demonstrated relevant for operation of heme-proteins under deep-sea conditions. Opposite from classical paradigms of the spin-crossover and reaction kinetics, a pressure increase can cause deceleration of the small-molecule binding to the vacant coordination site of the heme-center in a confined space and stabilize a high-spin state of its Fe center. This reverse high-pressure behavior can be achieved only if the volume changes related to the conformational transformation of the cavity can offset the volume changes caused by the substrate binding. It is speculated that based on these criteria nature could make a selection of structures of heme pockets that assist in reducing metabolic activity and enzymatic side reactions under extreme pressure conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Glutathione reductase: solvent equilibrium and kinetic isotope effects

    International Nuclear Information System (INIS)

    Wong, K.K.; Vanoni, M.A.; Blanchard, J.S.

    1988-01-01

    Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D 2 O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456

  14. Accounting for disagreements on average cone loss rates in retinitis pigmentosa with a new kinetic model: Its relevance for clinical trials.

    Science.gov (United States)

    Baumgartner, W A; Baumgartner, A M

    2016-04-01

    contrast to this, we show that cone loss occurs in patients with increasing -k values during RP progression. And as the Hopkins' protocol selects more advanced RP cases than Harvard's to assure avoidance of ceiling effects (Harvard does this by kinetic monitoring), we show increasing -k kinetics to be the reason Harvard obtains more +k and small -k values. Thus the combined effects of (i) and (ii) produce Harvard's smaller average -k value. The relevance of the increasing biochemical stress model for optimizing clinical trials is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Kinetic isotope effect in the thermolysis of methylenecyclobutane

    International Nuclear Information System (INIS)

    Chickos, J.S.

    1979-01-01

    The intramolecular kinetic isotope effect for the thermolysis of equilibrated methylenecyclobutane-d 2 was investigated at 515 0 C as a function of pressure. A high-pressure value of k/sub H/k/sub D/ (ethylene/ethylene-d 2 ) = 0.9 was obtained at 13 cm of N 2 pressure. This value decreased to 0.86 at 70 μm total pressure. No intermolecular kinetic isotope effect was measured for the formation of ethylene from labeled and unlabeled methylenecyclobutane. The pressure and temperature dependence of the intramolecular kinetic isotope effect was used as evidence in establishing the inverse nature of the effect. The isotope effect observed was explained in terms of competing equilibrium and kinetic isotope effects in which the equilibrium isotope effects dominate. It was concluded on the bases of these results that an acyclic intermediate is involved in the fragmentation of methylenecyclobutane to ethylene and allene. The results also support the notion that deuterium prefers to accumulate at the methylene group with the greatest p character in the carbon--hydrogen bond. 1 figure, 4 tables

  16. Pitfalls and artifacts in measuring absorption spectra and kinetics: the effect of stray light in the UV and red regions

    International Nuclear Information System (INIS)

    Czapski, Gideon; Ozeri, Yair; Goldstein, Sara

    2005-01-01

    Effects of stray light on absorption spectrum and kinetics are discussed. The extent of the stray light depends on the light source, monochromator, wavelength set by the instrument and the absorption of the sample at this wavelength. Effects of the stray light on the shape of the spectrum and the extinction coefficients are shown. Methods for determining the existence and extent of stray light are suggested and are especially relevant for studies using pulse radiolysis, flash photolysis, and stopped-flow techniques. The literature examples for artifacts due to stray light are presented for kinetics and absorption spectra

  17. Biodegradation of hydrocarbon mixtures in surface waters at environmentally relevant levels - Effect of inoculum origin on kinetics and sequence of degradation

    DEFF Research Database (Denmark)

    Birch, Heidi; Hammershøj, Rikke Høst; Comber, Mike

    2017-01-01

    Biodegradation is a dominant removal process for many organic pollutants, and biodegradation tests serve as tools for assessing their environmental fate within regulatory risk assessment. In simulation tests, the inoculum is not standardized, varying in microbial quantity and quality, thereby...... potentially impacting the observed biodegradation kinetics. In this study we investigated the effect of inoculum origin on the biodegradation kinetics of hydrocarbons for five inocula from surface waters varying in urbanization and thus expected pre-exposure to petroleum hydrocarbons. A new biodegradation...... method for testing mixtures of hydrophobic chemicals at trace concentrations was demonstrated: Aqueous solutions containing 9 hydrocarbons were generated by passive dosing and diluted with surface water resulting in test systems containing native microorganisms exposed to test substances at ng...

  18. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  19. Kinetic modeling in pre-clinical positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuntner, Claudia [AIT Austrian Institute of Technology GmbH, Seibersdorf (Austria). Biomedical Systems, Health and Environment Dept.

    2014-07-01

    Pre-clinical positron emission tomography (PET) has evolved in the last few years from pure visualization of radiotracer uptake and distribution towards quantification of the physiological parameters. For reliable and reproducible quantification the kinetic modeling methods used to obtain relevant parameters of radiotracer tissue interaction are important. Here we present different kinetic modeling techniques with a focus on compartmental models including plasma input models and reference tissue input models. The experimental challenges of deriving the plasma input function in rodents and the effect of anesthesia are discussed. Finally, in vivo application of kinetic modeling in various areas of pre-clinical research is presented and compared to human data.

  20. Performance of non-conventional factorization approaches for neutron kinetics

    International Nuclear Information System (INIS)

    Bulla, S.; Nervo, M.

    2013-01-01

    The use of factorization techniques provides a interesting option for the simulation of the time-dependent behavior of nuclear systems with a reduced computational effort. While point kinetics neglects all spatial and spectral effects, quasi-statics and multipoint kinetics allow to produce results with a higher accuracy for transients involving relevant modifications of the neutron distribution. However, in some conditions these methods can not work efficiently. In this paper, we discuss some possible alternative formulations for the factorization process for neutron kinetics, leading to mathematical models of reduced complications that can allow an accurate simulation of transients involving spatial and spectral effects. The performance of these innovative approaches are compared to standard techniques for some test cases, showing the benefits and shortcomings of the method proposed. (authors)

  1. Relaxation and kinetics in scalar field theories

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Lawrie, I.D.; Lee, D.

    1996-01-01

    A new approach to the dynamics of relaxation and kinetics of thermalization in a scalar field theory is presented that incorporates the relevant time scales through the resummation of hard thermal loops. An alternative derivation of the kinetic equations for the open-quote open-quote quasiparticle close-quote close-quote distribution functions is obtained that allows a clear understanding of the different open-quote open-quote coarse-graining close-quote close-quote approximations usually involved in a kinetic description. This method leads to a systematic perturbative expansion to obtain the kinetic equations including hard thermal loop resummation and to an improvement including renormalization, off-shell effects, and contributions that change chemical equilibrium on short time scales. As a by-product of these methods we establish the equivalence between the relaxation time scale in the linearized equation of motion of the quasiparticles and the thermalization time scale of the quasiparticle distribution function in the open-quote open-quote relaxation time approximation close-quote close-quote including hard thermal loop effects. Hard thermal loop resummation dramatically modifies the scattering rate for long wavelength modes as compared to the usual (semi)classical estimate. Relaxation and kinetics are studied both in the unbroken and broken symmetry phases of the theory. The broken symmetry phase also provides the setting to obtain the contribution to the kinetic equations from processes that involve decay of a heavy scalar into light scalar particles in the medium. copyright 1996 The American Physical Society

  2. Monochloramine Cometabolism by Nitrifying Biofilm Relevant ...

    Science.gov (United States)

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kinetic experiments were not representative of drinking water distribution systems where bacteria grow predominantly as biofilm attached to pipe walls or sediments and physiological differences may exist between suspension and biofilm growth. Therefore, the current research was an important next step in extending the previous results to investigate monochloramine cometabolism by biofilm grown in annular reactors under drinking water relevant conditions. Estimated monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (25–40% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in drinking water relevant nitrifying biofilm; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in distribution systems. Investigate whether or not nitrifying biofilm can biologically transform monochloramine under drinking water relevant conditions.

  3. Raindrop Kinetic Energy Piezoelectric Harvesters and Relevant Interface Circuits: Review, Issues and Outlooks

    Directory of Open Access Journals (Sweden)

    Kok Gnee CHUA

    2016-05-01

    Full Text Available As an ecological source of renewable energy, the available kinetic energy of rainfall is not trifling, especially in tropical countries at the equators. The research on the use of piezoelectric transducer to harvest raindrop kinetic energy is gaining more and more attention recently. This article reviews the state-of-the-art energy harvesting technology from the conversion of raindrop kinetic energy using piezoelectric transducers as well as its interface circuits for vibration-based energy harvesters. Performance of different types of piezoelectric harvesters in terms of power output, area power density and energy conversion efficiency are compared. Summaries of key problems and suggestions on the optimization of the performance of the piezoelectric harvesters are also provided for future works.

  4. Gases and carbon in metals - thermodynamics, kinetics, and properties. Pt. 11

    International Nuclear Information System (INIS)

    Jehn, H.; Speck, H.; Fromm, E.; Hoerz, G.

    1980-01-01

    This issue is part of a series of data on Gases and Carbon in Metals which supplements the data compilation in the book Gase and Kohlenstoff in Metallen (Gases and Carbon in Metals), edited by E.Fromm and E.Gebhardt, Springer-Verlag, Berlin 1976. The present survey includes results from papers published after the copy deadline and recommends critically selected data. Furthermore it comprises a bibliography of relevant literature. For each element the information is given in two parts. In a first section data are listed and in a second section the relevant literature is compiled. For each element, firstly data on binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility, solubility limit, dissociation pressure of compounds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas absorption and gas desorption kinetics, compound formation kinetics, precipitation kinetics, and property changes. (orig./GE)

  5. Kinetic description of quasi-stationary axisymmetric collisionless accretion disk plasmas with arbitrary magnetic field configurations

    International Nuclear Information System (INIS)

    Cremaschini, Claudio; Miller, John C.; Tessarotto, Massimo

    2011-01-01

    A kinetic treatment is developed for collisionless magnetized plasmas occurring in high-temperature, low-density astrophysical accretion disks, such as are thought to be present in some radiatively inefficient accretion flows onto black holes. Quasi-stationary configurations are investigated, within the framework of a Vlasov-Maxwell description. The plasma is taken to be axisymmetric and subject to the action of slowly time-varying gravitational and electromagnetic fields. The magnetic field is assumed to be characterized by a family of locally nested but open magnetic surfaces. The slow collisionless dynamics of these plasmas is investigated, yielding a reduced gyrokinetic Vlasov equation for the kinetic distribution function. For doing this, an asymptotic quasi-stationary solution is first determined, represented by a generalized bi-Maxwellian distribution expressed in terms of the relevant adiabatic invariants. The existence of the solution is shown to depend on having suitable kinetic constraints and conditions leading to particle trapping phenomena. With this solution, one can treat temperature anisotropy, toroidal and poloidal flow velocities, and finite Larmor-radius effects. An asymptotic expansion for the distribution function permits analytic evaluation of all the relevant fluid fields. Basic theoretical features of the solution and their astrophysical implications are discussed. As an application, the possibility of describing the dynamics of slowly time-varying accretion flows and the self-generation of magnetic field by means of a ''kinetic dynamo effect'' are discussed. Both effects are shown to be related to intrinsically kinetic physical mechanisms.

  6. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  7. Kinetic physics in ICF: present understanding and future directions

    Science.gov (United States)

    Rinderknecht, Hans G.; Amendt, P. A.; Wilks, S. C.; Collins, G.

    2018-06-01

    Kinetic physics has the potential to impact the performance of indirect-drive inertial confinement fusion (ICF) experiments. Systematic anomalies in the National Ignition Facility implosion dataset have been identified in which kinetic physics may play a role, including inferred missing energy in the hohlraum, drive asymmetry in near-vacuum hohlraums, low areal density and high burn-averaged ion temperatures (〈Ti 〉) compared with mainline simulations, and low ratios of the DD-neutron and DT-neutron yields and inferred 〈Ti 〉. Several components of ICF implosions are likely to be influenced or dominated by kinetic physics: laser-plasma interactions in the LEH and hohlraum interior; the hohlraum wall blowoff, blowoff/gas and blowoff/ablator interfaces; the ablator and ablator/ice interface; and the DT fuel all present conditions in which kinetic physics can significantly affect the dynamics. This review presents the assembled experimental data and simulation results to date, which indicate that the effects of long mean-free-path plasma phenomena and self-generated electromagnetic fields may have a significant impact in ICF targets. Simulation and experimental efforts are proposed to definitively quantify the importance of these effects at ignition-relevant conditions, including priorities for ongoing study.

  8. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  9. Compensation effect in H 2 permeation kinetics of PdAg membranes

    KAUST Repository

    Zeng, Gaofeng

    2012-08-30

    Knowledge about the (inter)dependence of permeation kinetic parameters on the stoichiometry of H 2-selective alloys is still rudimentary, although uncovering the underlying systematic correlations will greatly facilitate current efforts into the design of novel high-performance H 2 separation membranes. Permeation measurements with carefully engineered, 2-7 μm thick supported Pd 100-xAg x membranes reveal that the activation energy and pre-exponential factor of H 2 permeation laws vary systematically with alloy composition, and both kinetic parameters are strongly correlated for x ≤ 50. We show that this permeation kinetic compensation effect corresponds well with similar correlations in the hydrogen solution thermodynamics and diffusion kinetics of PdAg alloys that govern H 2 permeation rates. This effect enables the consistent description of permeation characteristics over wide temperature and alloy stoichiometry ranges, whereas hydrogen solution thermodynamics may play a role, too, as a yet unrecognized source of kinetic compensation in, for example, H 2-involving reactions over metal catalysts or hydrogenation/ dehydrogenation of hydrogen storage materials. © 2012 American Chemical Society.

  10. Warm ion effects on kinetic drift cyclotron loss cone instabilities

    International Nuclear Information System (INIS)

    Guo Shichong; Shen Jiewu; Cai Shidong

    1988-01-01

    The effects of adding warm plasmas on the kinetic DCLC mode in high β loss cone plasmas are investigated in detail. It is found that when the fluid DCLC mode is stabilized by a small amount of warm plasma, the kinetic excitation still remains due to two different mechanisms, namely, (1) magnetic drift resonance dissipation excites the negative energy wave; (2) a new type of positive energy wave can become unstable as the resonance condition is met. Comparing with fluid approximation theory, more warm plasmas are needed to suppress the kinetic DCLC instabilities

  11. Kinetic isotope effects in reaction of ferment oxidation of tritium-labelled D-galactosamine

    International Nuclear Information System (INIS)

    Akulov, G.P.; Korsakova, N.A.

    1992-01-01

    Primary, secondary and intramolecular kinetic isotopic effects in reaction of ferment oxidation of D-galactosamine labelled by tritium in position 6, were measured. When comparing values of the effects with previously obtained results for similar reaction D-[6- 3 H]galactose, it was ascertained that the presence of aminogroup in galactopyranosyl mainly affects kinetics of substrate-ferment complex formation stage. The possibility to use kinetic isotope effects for increase in molar activity of D-galactosamine, labelled by tritium in position 6, is shown

  12. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    Science.gov (United States)

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  13. Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models

    Directory of Open Access Journals (Sweden)

    Joseph A. Wayman

    2015-03-01

    Full Text Available Cell-free systems offer many advantages for the study, manipulation and modeling of metabolism compared to in vivo processes. Many of the challenges confronting genome-scale kinetic modeling can potentially be overcome in a cell-free system. For example, there is no complex transcriptional regulation to consider, transient metabolic measurements are easier to obtain, and we no longer have to consider cell growth. Thus, cell-free operation holds several significant advantages for model development, identification and validation. Theoretically, genome-scale cell-free kinetic models may be possible for industrially important organisms, such as E. coli, if a simple, tractable framework for integrating allosteric regulation with enzyme kinetics can be formulated. Toward this unmet need, we present an effective biochemical network modeling framework for building dynamic cell-free metabolic models. The key innovation of our approach is the integration of simple effective rules encoding complex allosteric regulation with traditional kinetic pathway modeling. We tested our approach by modeling the time evolution of several hypothetical cell-free metabolic networks. We found that simple effective rules, when integrated with traditional enzyme kinetic expressions, captured complex allosteric patterns such as ultrasensitivity or non-competitive inhibition in the absence of mechanistic information. Second, when integrated into network models, these rules captured classic regulatory patterns such as product-induced feedback inhibition. Lastly, we showed, at least for the network architectures considered here, that we could simultaneously estimate kinetic parameters and allosteric connectivity from synthetic data starting from an unbiased collection of possible allosteric structures using particle swarm optimization. However, when starting with an initial population that was heavily enriched with incorrect structures, our particle swarm approach could converge

  14. Physisorption kinetics

    CERN Document Server

    Kreuzer, Hans Jürgen

    1986-01-01

    This monograph deals with the kinetics of adsorption and desorption of molecules physisorbed on solid surfaces. Although frequent and detailed reference is made to experiment, it is mainly concerned with the theory of the subject. In this, we have attempted to present a unified picture based on the master equation approach. Physisorption kinetics is by no means a closed and mature subject; rather, in writing this monograph we intended to survey a field very much in flux, to assess its achievements so far, and to give a reasonable basis from which further developments can take off. For this reason we have included many papers in the bibliography that are not referred to in the text but are of relevance to physisorption. To keep this monograph to a reasonable size, and also to allow for some unity in the presentation of the material, we had to omit a number of topics related to physisorption kinetics. We have not covered to any extent the equilibrium properties of physisorbed layers such as structures, phase tr...

  15. Independent effects of relevance and arousal on deductive reasoning.

    Science.gov (United States)

    Caparos, Serge; Blanchette, Isabelle

    2017-08-01

    Emotional content can have either a deleterious or a beneficial impact on logicality. Using standard deductive-reasoning tasks, we tested the hypothesis that the interplay of two factors - personal relevance and arousal - determines the nature of the effect of emotional content on logicality. Arousal was assessed using measures of skin conductance. Personal relevance was manipulated by asking participants to reason about semantic contents linked to an emotional event that they had experienced or not. Findings showed that (1) personal relevance exerts a positive effect on logicality while arousal exerts a negative effect, and that (2) these effects are independent of each other.

  16. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  17. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  18. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    Science.gov (United States)

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  19. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  20. A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coda Zabetta, Edgardo; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FI-20500 Turku (Finland)

    2008-01-15

    A detailed chemical kinetic mechanism for the simulation of the gas-phase combustion and pyrolysis of biomass-derived fuels was compiled by assembling selected reaction subsets from existing mechanisms (parents). The mechanism, here referred to as ''AaA,'' includes reaction subsets for the oxidation of hydrogen (H{sub 2}), carbon monoxide (CO), light hydrocarbons (C{sub 1} and C{sub 2}), and methanol (CH{sub 3}OH). The mechanism also takes into account reaction subsets of nitrogen pollutants, including the reactions relevant to staged combustion, reburning, and selective noncatalytic reduction (SNCR). The AaA mechanism was validated against suitable experimental data from the literature. Overall, the AaA mechanism gave more accurate predictions than three other mechanisms of reference, although the reference mechanisms performed better occasionally. The predictions from AaA were also found to be consistent with the predictions of its parent mechanisms within most of their range of validity, thus transferring the validity of the parents to the inheriting mechanism (AaA). In parametric studies the AaA mechanism predicted that the effect of methanol on combustion and pollutants is often similar to that of light hydrocarbons, but it also showed that there are important exceptions, thus suggesting that methanol should be taken into account when simulating biomass combustion. To our knowledge, the AaA mechanism is currently the only mechanism that accounts for the chemistry of methanol and nitrogen relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. (author)

  1. Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators

    Science.gov (United States)

    Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.

    2005-09-01

    Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.

  2. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  3. Kinetic approach to the explanation of fatigue effect in ferroelectric materials

    International Nuclear Information System (INIS)

    Shur, V.Ya.; Rumyantsev, E.L.; Nikolaeva, E.V.; Shishkin, E.I.; Baturin, I.S.

    2002-01-01

    The new kinetic approach to explanation of the fatigue effect in the ferroelectrics consistent change in the area and geometry of the switched-over part of the sample by the cyclic switch-over, accompanied by the origination and growth of the kinetic frozen domains, is considered. It is supposed, that the fatigue effect is conditioned by the self-organizing formation of the spatially nonuniform internal shift field due to the delay of the voluminous scanning of the depolarizing field. The changes in the value of the switched charge and the switch-over current amplitude, calculated through the computerized simulation of the domains kinetics by the cyclic switch-over are in good agreement with the experimental data, obtained in thin films of the lead zirconate-titanate [ru

  4. A multi water bag model of drift kinetic electron plasma

    International Nuclear Information System (INIS)

    Morel, P.; Dreydemy Ghiro, F.; Berionni, V.; Gurcan, O.D.; Coulette, D.; Besse, N.

    2014-01-01

    A Multi Water Bag model is proposed for describing drift kinetic plasmas in a magnetized cylindrical geometry, relevant for various experimental devices, solar wind modeling... The Multi Water Bag (MWB) model is adapted to the description of a plasma with kinetic electrons as well as an arbitrary number of kinetic ions. This allows to describe the kinetic dynamics of the electrons, making possible the study of electron temperature gradient (ETG) modes, in addition to the effects of non adiabatic electrons on the ion temperature gradient (ITG) modes, that are of prime importance in the magnetized plasmas micro-turbulence [X. Garbet, Y. Idomura, L. Villard, T.H. Watanabe, Nucl. Fusion 50, 043002 (2010); J.A. Krommes, Ann. Rev. Fluid Mech. 44, 175 (2012)]. The MWB model is shown to link kinetic and fluid descriptions, depending on the number of bags considered. Linear stability of the ETG modes is presented and compared to the existing results regarding cylindrical ITG modes [P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, W. Garbet, Ph. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)]. (authors)

  5. Addition effect of erbium(III) trifluoromethanesulfonate in the homopolymerization kinetics of a DGEBA resin

    International Nuclear Information System (INIS)

    Garcia, S.J.; Ramis, X.; Serra, A.; Suay, J.

    2006-01-01

    Solid bisphenol-A epoxy resin of medium molecular weight was cured using a Lewis acid initiator (erbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the deg.ree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional E value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The 'nucleation and growth' Avrami kinetic model A 3/2 has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction having higher influence when low temperatures were applied

  6. Kinetic isotope effect in dehydration of ionic solids. II. The kinetics of dehydration of calcium oxalate monohydrate

    International Nuclear Information System (INIS)

    Manche, E.P.; Carroll, B.

    1977-01-01

    The kinetics of the isothermal dehydration of the protonated and deuterated monohydrate of calcium oxalate has been investigated at 120, 150, and 170 0 C. The rate of dehydration for these salts was found to be k/sub H//k/sub D/ = 1.025 +- 0.012. This result rules out the enormous kinetic isotope effect as given in the literature. An isotope effect of a few percent is not ruled out; this magnitude is in keeping with that found by Heinzinger in other dehydration processes. An estimated difference of about 150 cal/mol between the heat of desorption for H 2 O and D 2 O should have led to a ratio, k/sub h//k/sub D/ = 1.20. The smaller observed ratio has been explained on the basis of a compensation effect and may be considered an example of the Barclay--Butler correlation

  7. Addition effect of erbium(III) trifluoromethanesulfonate in the homopolymerization kinetics of a DGEBA resin

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.J. [Area de Ciencia de los Materiales, Departament d' Enginyeria de Sistemes Industrials i Disseny, Universitat Jaume I, Avda. Vicent Sos Baynat s/n, 12071 Castellon (Spain)]. E-mail: espallar@sg.uji.es; Ramis, X. [Laboratori de Termodinamica, Escola Tecnica Superior Enginyeria Industrial Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Serra, A. [Departament de Q. Analitica i Q. Organica, Facultat de Quimica, Universitat Rovira i Virgili, C/Marcel.li Domingo s/n, 43007 Tarragona (Spain); Suay, J. [Centro de Biomateriales, Universitat Politecnica de Valencia, Camino de Vera s/n, E-46071 Valencia (Spain)

    2006-02-01

    Solid bisphenol-A epoxy resin of medium molecular weight was cured using a Lewis acid initiator (erbium(III) trifluoromethanesulfonate) in three different proportions (0.5, 1 and 2 phr). A kinetic study was performed in a differential scanning calorimeter. The complete kinetic triplet was determined (activation energy, pre-exponential factor, and integral function of the deg.ree of conversion) for each system. A kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined both with the Coats-Redfern method (the obtained isoconversional E value being accepted as the effective activation energy) and through the compensation effect. All the systems followed the same isothermal curing model simulated from non-isothermal ones. The 'nucleation and growth' Avrami kinetic model A {sub 3/2} has been proposed as the polymerization kinetic model. The addition of initiator accelerated the reaction having higher influence when low temperatures were applied.

  8. The effect of fractionated irradiation on cell kinetics

    International Nuclear Information System (INIS)

    Laasonen, A.; Pyrhoenen, S.; Kouri, M.; Raety, J.; Holsti, L.R.

    1991-01-01

    The effects of single and split-dose irradiation were compared by in vitro experiments on HeLa cells. Changes in rate of cell proliferation were detected by flow cytometry, simultaneously determining the DNA content and the bromodeoxyuridine incorporation of individual cells. Cell cultures were irradiated with either a single dose of 1-6 Gy or with a corresponding dose divided into multiple fractions given at 1-6-h intervals. A dose-dependent accumulation of cells in G2/M phase was observed. The method was sensitive enough for the detection of G2/M block even after 1 Gy. The block disappeared completely within a 24-h follow-up time at dose levels up to 3 Gy. Interestingly, no differences in cell kinetics were observed between the single and split-dose regiments. This approach proves to be valuable in evaluating novel fractionation models and the effects of radiation on the cell kinetics of human tumor cells. (orig.)

  9. The modelling of direct chemical kinetic effects in turbulent flames

    Energy Technology Data Exchange (ETDEWEB)

    Lindstet, R.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering

    2000-06-01

    Combustion chemistry-related effects have traditionally been of secondary importance in the design of gas turbine combustors. However, the need to deal with issues such as flame stability, relight and pollutant emissions has served to bring chemical kinetics and the coupling of finite rate chemistry with turbulent flow fields to the centre of combustor design. Indeed, improved cycle efficiency and more stringent environmental legislation, as defined by the ICAO, are current key motivators in combustor design. Furthermore, lean premixed prevaporized (LPP) combustion systems, increasingly used for power generation, often operate close to the lean blow-off limit and are prone to extinction/reignition type phenomena. Thus, current key design issues require that direct chemical kinetic effects be accounted for accurately in any simulation procedure. The transported probability density function (PDF) approach uniquely offers the potential of facilitating the accurate modelling of such effects. The present paper thus assesses the ability of this technique to model kinetically controlled phenomena, such as carbon monoxide emissions and flame blow-off, through the application of a transported PDF method closed at the joint scalar level. The closure for the velocity field is at the second moment level, and a key feature of the present work is the use of comprehensive chemical kinetic mechanisms. The latter are derived from recent work by Lindstedt and co-workers that has resulted in a compact 141 reactions and 28 species mechanism for LNG combustion. The systematically reduced form used here features 14 independent C/H/O scalars, with the remaining species incorporated via steady state approximations. Computations have been performed for hydrogen/carbon dioxide and methane flames. The former (high Reynolds number) flames permit an assessment of the modelling of flame blow-off, and the methane flame has been selected to obtain an indication of the influence of differential

  10. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    International Nuclear Information System (INIS)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-01-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  11. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti, E-mail: arti@iitm.ac.in [Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2016-08-28

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  12. Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes

    Science.gov (United States)

    Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti

    2016-08-01

    Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.

  13. Cell cycle kinetics and radiation therapy

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1975-01-01

    Radiation therapy as currently practiced involves the subtle largely empirical art of balancing the recurrence of cancer due to undertreatment against severe damage to local tissues due to overtreatment. Therapeutic results too often fall short of desired success rates; yet, the therapist is continually tantalized to the likelihood that a slight shift of therapeutic ratio favoring normal tissue over cancer would have a profoundly beneficial effect. The application of cell cycle kinetics to radiation therapy is one hope for improving the therapeutic ratio; but, as I will try to show, kinetic approaches are complex, poorly understood, and presently too elusive to elicit confidence or to be used clinically. Their promise lies in their diversity and in the magnitude of our ignorance about how they work and how they should be used. Potentially useful kinetic approaches to therapy can be grouped into three classes. The first class takes advantage of intracyclic differential sensitivity, an effect involving the metabolism and biology of the cell cycle; its strategies are based on synchronization of cells over intervals of hours to days. The second class involves the distinction between cycling and noncycling cells; its strategies are based on the resistance of noncycling cells to cycle-linked radiation sensitizers and chemotherapeutic agents. The third class uses cell repopulation between fractions; its strategies are based on the relative growth rates of tumor and relevant normal tissue before and after perturbation

  14. Deuterium secondary isotope kinetic effects in imine formation reactions

    International Nuclear Information System (INIS)

    Amaral, L. do; Rossi, M.H.

    1986-01-01

    The kinetic α-deuterium isotope effects, K D /K H , for reaction mechanisms is studied. The reaction of pH function to m-bromobenzaldehyde, semicarbazide nucleophile, methoxy-amine and hydroxylamine are analysed. (M.J.C.) [pt

  15. Kinetics of Carbaryl Hydrolysis: An Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Hawker, Darryl

    2015-01-01

    Kinetics is an important part of undergraduate environmental chemistry curricula and relevant laboratory exercises are helpful in assisting students to grasp concepts. Such exercises are also useful in general chemistry courses because students can see relevance to real-world issues. The laboratory exercise described here involves determination of…

  16. Kinetic modeling in PET imaging of hypoxia

    Science.gov (United States)

    Li, Fan; Joergensen, Jesper T; Hansen, Anders E; Kjaer, Andreas

    2014-01-01

    Tumor hypoxia is associated with increased therapeutic resistance leading to poor treatment outcome. Therefore the ability to detect and quantify intratumoral oxygenation could play an important role in future individual personalized treatment strategies. Positron Emission Tomography (PET) can be used for non-invasive mapping of tissue oxygenation in vivo and several hypoxia specific PET tracers have been developed. Evaluation of PET data in the clinic is commonly based on visual assessment together with semiquantitative measurements e.g. standard uptake value (SUV). However, dynamic PET contains additional valuable information on the temporal changes in tracer distribution. Kinetic modeling can be used to extract relevant pharmacokinetic parameters of tracer behavior in vivo that reflects relevant physiological processes. In this paper, we review the potential contribution of kinetic analysis for PET imaging of hypoxia. PMID:25250200

  17. Effects of relaxation of gluten network on rehydration kinetics of pasta.

    Science.gov (United States)

    Ogawa, Takenobu; Hasegawa, Ayako; Adachi, Shuji

    2014-01-01

    The aim of this study was to investigate the effects of the relaxation of the gluten network on pasta rehydration kinetics. The moisture content of pasta, under conditions where the effects of the diffusion of water on the moisture content were negligible, was estimated by extrapolating the average moisture content of pasta of various diameters to 0 mm. The moisture content of imaginary, infinitely thin pasta did not reach equilibrium even after 1 h of rehydration. The rehydration of pasta made of only gluten was also measured. The rate constants estimated by the Long and Richman equation for both the pasta indicated that the rehydration kinetics of infinitely thin pasta were similar to those of gluten pasta. These results suggest that the swelling of starch by fast gelatinization was restricted by the honeycomb structural network of gluten and the relaxation of the gluten network controlled pasta rehydration kinetics.

  18. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids

    Science.gov (United States)

    Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.

    2017-10-01

    The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.

  19. Unique effects of microwave heating on polymerization kinetics of poly(methyl methacrylate) composites

    Energy Technology Data Exchange (ETDEWEB)

    Spasojević, Pavle [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Jovanović, Jelena, E-mail: jelenaj@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia); Adnadjevic, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia)

    2013-09-16

    The effects of heating mode (conventional and microwave) on the kinetics of isothermal polymerization of MMA composite materials were investigated. Isothermal kinetics curves at temperature range from 343 K to 363 K for both conventional (CH) and microwave heating (MWH) were determined. It was found that the polymerization of MMA composite materials was kinetically elementary reaction for both CH and MWH. The kinetics of CH polymerization can be described by the model of phase-boundary controlled process (contracting volume), whereas the kinetics of MWH polymerization can be described by the model of first-order chemical reaction. The kinetics parameters (E{sub a} and ln A) of the polymerization under microwave heating are lower than for conventional heating. The established decreases in the activation energy and pre-exponential factor under the MWH compared to the CH is explained with the increase in the energy of ground vibrational level of the C–O valence vibrations (ν = 987 cm{sup −1}) in methyl methacrylate molecule and with the decrease in its anharmonicity factor which is caused with the selective resonant transfer of energy from the energetic reservoir to the oscillators in methyl methacrylate molecules. - Graphical abstract: Display Omitted - Highlights: • The MWH speeds the MMA material polymerization and changes the kinetics model. • A novel concept of MWH action based on activation complexes formation is presented. • The Selective Energy Transfer model is used to explain the effects of MWH. • The kinetics parameters under MWH are lower than for CH. • The activation energy for both MWH and CH polymerization is quantized.

  20. Kinetic theory and transport phenomena

    CERN Document Server

    Soto, Rodrigo

    2016-01-01

    This textbook presents kinetic theory, which is a systematic approach to describing nonequilibrium systems. The text is balanced between the fundamental concepts of kinetic theory (irreversibility, transport processes, separation of time scales, conservations, coarse graining, distribution functions, etc.) and the results and predictions of the theory, where the relevant properties of different systems are computed. The book is organised in thematic chapters where different paradigmatic systems are studied. The specific features of these systems are described, building and analysing the appropriate kinetic equations. Specifically, the book considers the classical transport of charges, the dynamics of classical gases, Brownian motion, plasmas, and self-gravitating systems, quantum gases, the electronic transport in solids and, finally, semiconductors. Besides these systems that are studied in detail, concepts are applied to some modern examples including the quark–gluon plasma, the motion of bacterial suspen...

  1. Effects of Coherence and Relevance on Shallow and Deep Text Processing.

    Science.gov (United States)

    Lehman, Stephen; Schraw, Gregory

    2002-01-01

    Examines the effects of coherence and relevance on shallow and deeper text processing, testing the hypothesis that enhancing the relevance of text segments compensates for breaks in local and global coherence. Results reveal that breaks in local coherence had no effect on any outcome measures, whereas relevance enhanced deeper processing.…

  2. [Synergistic effect of cell kinetics-directed chemo-endocrine therapy on experimental mammary tumors].

    Science.gov (United States)

    Ueki, H

    1987-11-01

    We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.

  3. Kinetics of the deformation induced memory effect in polyamide-6

    NARCIS (Netherlands)

    Drongelen, van M.; Stroeks, A.A.M.; Peters, G.W.M.

    2015-01-01

    Nascent polyamide-6 shows a peculiar and irreversible effect; the quiescent crystallization kinetics on cooling are accelerated upon deformation in the melt, even after full relaxation of the melt. This phenomenon, known as the orientation (or better, deformation) induced memory effect of polyamide

  4. UV-cured methacrylic-silica hybrids: Effect of oxygen inhibition on photo-curing kinetics

    International Nuclear Information System (INIS)

    Corcione, C. Esposito; Striani, R.; Frigione, M.

    2014-01-01

    Highlights: • The kinetic behavior of novel photopolymerizable organic–inorganic hybrid system was studied as a function of the composition and of the atmosphere for reactions. • The UV-curing reaction of the hybrid mixture was found fast and complete. • The combined presence of thiol monomer and nanostructured silica allows to reduce the effect of inhibition of oxygen towards the radical photopolymerization. - Abstract: The kinetic behavior of innovative photopolymerizable UV-cured methacrylic–silica hybrid formulations, previously developed, was studied and compared to that of a reference control system. The organic–inorganic (O–I) hybrids proposed in this study are obtained from organic precursors with a high siloxane content mixed with tetraethoxysilane (TEOS) in such a way to produce co-continuous silica nano-domains dispersed within a cross-linked organic phase, as a result of the hydrolysis and condensation reactions. The kinetics of the radical photopolymerization mechanism induced by UV-radiations, in presence of a suitable photoinitiator, was studied by calorimetric, FTIR and Raman spectroscopic analyses, by varying the composition of the mixtures and the atmosphere for reactions. The well known effect of oxygen on the kinetic mechanism of the free radical photopolymerization of the methacrylic–siloxane based monomers was found to be strongly reduced in the hybrid system, especially when a proper thiol was used. The experimental calorimetric data were fitted using a simple kinetic model for radical photopolymerization reactions, obtaining a good agreement between the experimental data and the theoretical model. From the comparison of the kinetic constants calculated for control and hybrid systems, it was possible to assess the effect of the composition, as well as of the atmosphere used during the photo-polymerization process, on the kinetic of photopolymerization reaction

  5. Kinetic investigation of uranyl-uranophile complexation. 1. Macrocyclic kinetic effect and macrocyclic protection effect

    International Nuclear Information System (INIS)

    Tabushi, I.; Yoshizawa, A.

    1986-01-01

    Equilibria and rates of ligand-exchange reactions between uranyl tricarbonate and dithiocarbamates and between uranyl tris-(dithiocarbamates) and carbonate were studied under a variety of conditions. The dithiocarbamates used were acyclic diethyl-dithiocarbamate and macrocyclic tris(dithiocarbamate). The acyclic ligand showed a triphasic (successive three-step) equilibrium with three different equilibrium constants while the macrocyclic ligand showed a clear monophasic (one-step) equilibrium with a much larger stability constant for the dithiocarbamate-uranyl complex. The macrocyclic ligand showed the S/sub N/2-type ligand-exchange rate in the forward as well as reverse process, while the first step of the acyclic ligand-exchange reaction proceeded via the S/sub N/1-type mechanism. This kinetic macrocyclic effect on molecularity is interpreted as the result of a unique topological requirement of uranyl complexation. The macrocyclic ligand also exhibited a clear protection effect, leading to the large stability constant. 19 references, 10 figures, 2 tables

  6. The effects of kinetic structure and micrograph content on achievement in reading micrographs by college biology students

    Science.gov (United States)

    Johnson, Virginia Abbott; Lockard, J. David

    The effects of kinetic structure and micrograph content on student achievement of reading micrograph skills were examined. The purpose of the study was to determine which form of kinetic structure, high or low, and/or micrograph content, unified or varied, was most effective and if there were any interactive effects. Randomly assigned to four treatment groups, 100 introductory college biology students attended three audiovisual presentations and practice sessions on reading light, transmission electron, and scanning electron micrographs. The micrograph skills test, administered at two points in time, assessed knowledge acquisition and retention. The test measured general concept skills and actual reading micrograph skills separately. All significant tests were considered with an = 0.05. High kinetic structure was found to be more effective than low kinetic structure in developing general concepts about micrographs. This finding supports Anderson's kinetic theory research. High kinetic structure instruction does not affect actual reading micrograph skills, but micrograph content does. Unified micrograph content practice sessions were more effective than varied micrograph content practice sessions. More attention should be given to the visual components of perceptual learning tasks.

  7. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.

    2015-02-23

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  8. Saffman-Taylor fingers with kinetic undercooling

    KAUST Repository

    Gardiner, Bennett P. J.; McCue, Scott W.; Dallaston, Michael C.; Moroney, Timothy J.

    2015-01-01

    © 2015 American Physical Society. The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularization on the interface is not provided by surface tension but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalize high velocities and prevent blow-up of the unregularized solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this "selection" of 1/2 by kinetic undercooling is qualitatively similar to the well-known analog with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analog with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension and numerically taking the limit that the surface tension vanishes.

  9. Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model

    International Nuclear Information System (INIS)

    Tuya, Delgersaikhan; Obara, Toru

    2016-01-01

    Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.

  10. Fisher information, kinetic energy and uncertainty relation inequalities

    International Nuclear Information System (INIS)

    Luo Shunlong

    2002-01-01

    By interpolating between Fisher information and mechanical kinetic energy, we introduce a general notion of kinetic energy with respect to a parameter of Schroedinger wavefunctions from a statistical inference perspective. Kinetic energy is the sum of Fisher information and an integral of a parametrized analogue of quantum mechanical current density related to phase. A family of integral inequalities concerning kinetic energy and moments are established, among which the Cramer-Rao inequality and the Weyl-Heisenberg inequality, are special cases. In particular, the integral inequalities involving the negative order moments are relevant to the study of electron systems. Moreover, by specifying the parameter to a scale, we obtain a family of inequalities of uncertainty relation type which incorporate the position and momentum observables symmetrically in a single quantity. (author)

  11. Determination of equilibration kinetics of oxide electrode materials using a manometric method

    International Nuclear Information System (INIS)

    Badwal, S.P.S.; Jiang, S.P.; Love, J.; Nowotny, J.; Rekas, M.

    1998-01-01

    The gas/solid equilibration kinetics for electrode oxide materials, such as (La 0.8 Sr 0.2 )MnO 3 , using a manometric method, was determined. The reaction kinetics between oxygen and the oxide material was monitored using the measurements of the P(O 2 ) changes during isothermic experiments of oxidation and reduction. The procedure of the determination will be described and relevant kinetic equations was derived. The equilibration kinetic data obtained can be used to determine the chemical diffusion coefficient. Copyright (1998) Australasian Ceramic Society

  12. Species separation and kinetic effects in collisional plasma shocks

    Energy Technology Data Exchange (ETDEWEB)

    Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-05-15

    The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ≲10{sup −4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.

  13. Combustion Kinetic Studies of Gasolines and Surrogates

    KAUST Repository

    Javed, Tamour

    2016-01-01

    . These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate

  14. Shaping the composition profiles in heteroepitaxial quantum dots: Interplay of thermodynamic and kinetic effects

    Directory of Open Access Journals (Sweden)

    C. Georgiou

    2014-07-01

    Full Text Available Atomistic Monte Carlo simulations, coupling thermodynamic and kinetic effects, resolve a longstanding controversy regarding the origin of composition profiles in heteroepitaxial SiGe quantum dots. It is shown that profiles with cores rich in the unstrained (Si component derive from near-equilibrium processes and intraisland diffusion. Profiles with cores rich in the strained (Ge component are of nonequilibrium nature, i.e., they are strain driven but kinetically limited. They are shaped by the distribution of kinetic barriers of atomic diffusion in the islands. The diffusion pathways are clearly revealed for the first time. Geometrical kinetics play a minor role.

  15. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    Science.gov (United States)

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  16. Test particle method for incorporation of the kinetic effects into the envelope simulations of Raman backscattering

    International Nuclear Information System (INIS)

    Hur, Min Sup; Suk, Hyyong

    2007-01-01

    A new test particle method is presented for self-consistent incorporation of the kinetic effects into the fluid three-wave model. One of the most important kinetic effects is the electron trapping and it has been found that the trapping affects significantly the behavior of Raman backscatter and Raman backward laser amplification. The conventional fluid three-wave model cannot reproduce the kinetic simulations in the trapping regime. The test particle scheme utilizes the same equations for the laser evolution as in the three-wave model. However, the plasma wave is treated by the envelope-kinetic equation, which consists of envelope evolution and the kinetic term. The core of the new scheme is employing test particles to compute the kinetic term self-consistently. The benchmarking results against the averaged particle-in-cell (aPIC) code show excellent agreements, and the computation speed gain over the aPIC is from 2 to 20 depending on parameters

  17. Kinetic modeling of Nernst effect in magnetized hohlraums.

    Science.gov (United States)

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  18. Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury

    Science.gov (United States)

    Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.

    2011-01-01

    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.

  19. The effect of electrolytes on the aggregation kinetics of titanium dioxide nanoparticle aggregates

    International Nuclear Information System (INIS)

    Shih Yanghsin; Zhuang Chengming; Tso Chihping; Lin Chenghan

    2012-01-01

    Metal oxide nanoparticles (NPs) are receiving increasing attention due to their increased industrial production and potential hazardous effect. The process of aggregation plays a key role in the fate of NPs in the environment and the resultant health risk. The aggregation of commercial titanium dioxide NP powder (25 nm) was investigated with various environmentally relevant solution chemistries containing different concentrations of monovalent (Na + , K + ) and divalent (Ca 2+ ) electrolytes. Titanium dioxide particle size increased with the increase in ion concentration. The stability of titanium dioxide also depended on the ionic composition. Titanium dioxide aggregated to a higher degree in the presence of divalent cations than monovalent ones. The attachment efficiency of NPs was constructed through aggregation kinetics data, from which the critical coagulation concentrations for the various electrolytes are determined (80, 19, and 1 meq/L for Na + , K + , and Ca 2+ , respectively). Our results suggest that titanium dioxide NP powders are relatively unstable in water and could easily be removed by adding multivalent cations so hazardous potentials decrease in aquatic environment.

  20. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ′ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ′ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ′ phase, whereas the preceding precipitation of the θ′ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  1. Ligand Exchange Kinetics of Environmentally Relevant Metals

    Energy Technology Data Exchange (ETDEWEB)

    Panasci, Adele Frances [Univ. of California, Davis, CA (United States)

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb to mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.

  2. Gyrocenter-gauge kinetic theory

    International Nuclear Information System (INIS)

    Qin, H.; Tang, W.M.; Lee, W.W.

    2000-01-01

    Gyrocenter-gauge kinetic theory is developed as an extension of the existing gyrokinetic theories. In essence, the formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordinates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic field, it can treat high frequency range as well as the usual low frequency range normally associated with gyrokinetic approaches. A significant advantage of this formalism is that it enables the direct particle-in-cell simulations of compressional Alfven waves for MHD applications and of RF waves relevant to plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover exactly the classical result obtained by integrating the Vlasov-Maxwell system in the particle coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. This theoretical approach is so named to distinguish it from the existing gyrokinetic theory, which has been successfully developed and applied to many important low-frequency and long parallel wavelength problems, where the conventional meaning of gyrokinetic has been standardized. Besides the usual gyrokinetic distribution function, the gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge distribution function, which sometimes contains all the physics of the problems being studied, and whose importance has not been realized previously. The gyrocenter-gauge distribution function enters Maxwell's equations through the pull-back transformation of the gyrocenter transformation, which depends on the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is

  3. MASS TRANSFER KINETICS AND EFFECTIVE DIFFUSIVITIES DURING COCOA ROASTING

    Directory of Open Access Journals (Sweden)

    Y. M. BAGHDADI

    2017-01-01

    Full Text Available The current studies investigated the effects of temperature and moisture addition on the mass transfer kinetics of cocoa nibs during roasting. Experiments were carried out by roasting 500 gm of cocoa nibs inside an air ventilated oven at three temperature levels (120°C, 140°C and 160°C under medium air flowrate for one hour. Two types of samples were prepared namely the raw and soaked nib samples. The soaked nib samples were prepared by soaking the raw nibs in 200 ml of water at room temperature for 5 and 10 hours. Mathematical modelling was carried out to model the mass transfer process using semi-empirical models. Modelling showed that both Page and two-term models were able to give close fitting between the experimental and predicted values. Effective diffusivity values were estimated in the order of magnitude of 10-5 m2/s for the mass transfer process. Results obtained from these studies fill the current knowledge gap on the mass transfer kinetics of cocoa roasting.

  4. Kinetic equations for clean superconductors: Application to the flux flow hall effect

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1994-01-01

    The kinetic equations for clean superconductors (l>>ζ) are derived. expanding the equations for the time dependent Green functions in the quasiclassical parameter, the new contributions are found which contain the derivatives of the distribution functions with respect to the quasiparticle momentum. The transition from the ultra-clean case (no relaxation) to a relaxation-dominated behavior, for which the kinetic equations coincide with the usual quasiclassical approximation, occurs for the relaxation time of the order of ℎE F /Δ 2 . The kinetic equations can be used for various dynamic processes in superconductors including the flux-flow Hall effect. The derived equations, after necessary modifications for the p-wave pairing, are especially suitable for nonstationary problems in the theory of superfluidity of 3 He

  5. Kinetic isotope effects and how to describe them

    Directory of Open Access Journals (Sweden)

    Konstantin Karandashev

    2017-11-01

    Full Text Available We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved.

  6. Kinetic modeling of Nernst effect in magnetized hohlraums

    OpenAIRE

    Joglekar, A. S.; Ridgers, Christopher Paul; Kingham, R J; Thomas, A. G. R.

    2016-01-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such...

  7. The effects of one-dimensional glide on the reaction kinetics of interstitial clusters

    DEFF Research Database (Denmark)

    Heinisch, H.L.; Singh, B.N.; Golubov, S.I.

    2000-01-01

    is therefore 'mixed 1D/3D migration' along a 3D path consisting of 1D segments, The defect reaction kinetics under mixed 1D/3D diffusion are different from pure 1D diffusion and pure 3D diffusion, both of which can be formulated within analytical rate theory models of microstructure evolution under irradiation....... Atomic-scale kinetic Monte Carlo (kMC) defect migration simulations are used to investigate the effects of mixed 1D/3D migration on defect reaction kinetics as a guide for implementing mixed 1D/3D migration into the analytical rate theory. The functional dependence of the sink strength on the size...

  8. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    International Nuclear Information System (INIS)

    Rosenberg, R.M.; O'Leary, M.H.

    1985-01-01

    The authors have measured the 13 C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D 2 O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D 2 O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13 C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13 C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier

  9. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  10. Doping kinetics of organic semiconductors investigated by field-effect transistors

    NARCIS (Netherlands)

    Maddalena, F.; Meijer, E.J.; Asadi, K.; Leeuw, D.M. de; Blom, P.W.M.

    2010-01-01

    The kinetics of acid doping of the semiconductor regioregular poly-3-hexylthiophene with vaporized chlorosilane have been investigated using field-effect transistors. The dopant density has been derived as a function of temperature and exposure time from the shift in the pinch-off voltage, being the

  11. Assessment of input function distortions on kinetic model parameters in simulated dynamic 82Rb PET perfusion studies

    International Nuclear Information System (INIS)

    Meyer, Carsten; Peligrad, Dragos-Nicolae; Weibrecht, Martin

    2007-01-01

    Cardiac 82 rubidium dynamic PET studies allow quantifying absolute myocardial perfusion by using tracer kinetic modeling. Here, the accurate measurement of the input function, i.e. the tracer concentration in blood plasma, is a major challenge. This measurement is deteriorated by inappropriate temporal sampling, spillover, etc. Such effects may influence the measured input peak value and the measured blood pool clearance. The aim of our study is to evaluate the effect of input function distortions on the myocardial perfusion as estimated by the model. To this end, we simulate noise-free myocardium time activity curves (TACs) with a two-compartment kinetic model. The input function to the model is a generic analytical function. Distortions of this function have been introduced by varying its parameters. Using the distorted input function, the compartment model has been fitted to the simulated myocardium TAC. This analysis has been performed for various sets of model parameters covering a physiologically relevant range. The evaluation shows that ±10% error in the input peak value can easily lead to ±10-25% error in the model parameter K 1 , which relates to myocardial perfusion. Variations in the input function tail are generally less relevant. We conclude that an accurate estimation especially of the plasma input peak is crucial for a reliable kinetic analysis and blood flow estimation

  12. Deuterium kinetic isotope effects in the 1,4-dimethylenecyclohexane boat cope rearrangement

    International Nuclear Information System (INIS)

    Gajewski, J.J.; Jimenez, J.L.

    1986-01-01

    In order to examine the extent of bond making in the boat-like 3,3-sigmatropic shift transition states, trans-2,3-dimethyl-1,4-dimethylenecyclohexane (T) and its exomethylene tetradeuteria derivative (TXD) were prepared. The 3,3-shift of TXD at 305 0 C results in interconversion of starting material, 5,5,6,6-tetradeuterio-trans-2,3-dimethyl-1,4-dimethylene-cyclohexane (TND), and 2,2,3,3-tetradeuterio-anti-1,4-diethylidenecyclohexane (AD). A kinetic analysis of the first-order rate equations for the three-component system in both protio and deuterio species by numerical integration of the data and simplex minimization of the rate constants with symmetry and the assumption of no equilibrium or kinetic isotope effect on the TND-AD reaction gives a bond making kinetic isotope effect of 1/1.04 (0.04). The equilibrium isotope effects observed are 1/1.16 (0.04) so that the extent of bond formation in this boat-like bicyclo[2.2.2]octyl transition state is roughly 25%, a value to be compared with ca. 67% in chair-like acyclic 3,3-shift transition states. This rules out significant intervention of a bicyclo[2.2.2]octane-1,4-diyl intermediate or transition state. 30 references, 6 figures, 4 tables

  13. Diffusion-kinetic theories for LET effects on the radiolysis of water

    International Nuclear Information System (INIS)

    Pimblott, S.M.; LaVerne, J.A.

    1994-01-01

    Diffusion-kinetic methods are used to investigate the effects of incident particle linear energy transfer (LET) on the radiolysis of water and aqueous solutions. Chemically realistic deterministic diffusion-kinetic calculations examining the scavenging capacity dependences of the scavenged yield of e aq - and of OH demonstrate that the scavenged yields are related to the underlying time-dependent kinetics in the absence of the scavenger by a simple Laplace transform relationship. This relationship is also shown to link the effect of an e eq - scavenger on the formation of H 2 with the time dependence of H 2 production in the absence of the scavenger. The simple Laplace relationship does not work well when applied to H 2 O 2 formation in high-LET particle tracks even though such a relationship is valid with low-LET particles. It is found that while the secondary reaction of H 2 O 2 with e aq - can be neglected in low-LET particle radiolysis, it is of considerable significance in the tracks produced by high-LET particles. The increased importance of this reaction with increasing LET is the major reason for the failure of the Laplace relationship for H 2 O 2 . 55 refs., 9 figs., 2 tabs

  14. Iterative Addition of Kinetic Effects to Cold Plasma RF Wave Solvers

    Science.gov (United States)

    Green, David; Berry, Lee; RF-SciDAC Collaboration

    2017-10-01

    The hot nature of fusion plasmas requires a wave vector dependent conductivity tensor for accurate calculation of wave heating and current drive. Traditional methods for calculating the linear, kinetic full-wave plasma response rely on a spectral method such that the wave vector dependent conductivity fits naturally within the numerical method. These methods have seen much success for application to the well-confined core plasma of tokamaks. However, quantitative prediction of high power RF antenna designs for fusion applications has meant a requirement of resolving the geometric details of the antenna and other plasma facing surfaces for which the Fourier spectral method is ill-suited. An approach to enabling the addition of kinetic effects to the more versatile finite-difference and finite-element cold-plasma full-wave solvers was presented by where an operator-split iterative method was outlined. Here we expand on this approach, examine convergence and present a simplified kinetic current estimator for rapidly updating the right-hand side of the wave equation with kinetic corrections. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  15. A unified treatment of kinetic effects in a tokamak pedestal

    International Nuclear Information System (INIS)

    Catto, Peter J; Landreman, Matt; Kagan, Grigory; Pusztai, Istvan

    2011-01-01

    We consider the effects of a finite pedestal radial electric field on ion orbits using a unified approach. We then employ these modified orbit results to retain finite E x B drift departures from flux surfaces in an improved drift-kinetic equation. The procedure allows us to make a clear distinction between transit averages and flux surface averages when solving this kinetic equation. The technique outlined here is intended to clarify and unify recent evaluations of the banana regime decrease and plateau regime alterations in the ion heat diffusivity; the reduction and possible reversal of the poloidal flow in the banana regime, and its augmentation in the plateau regime; the increase in the bootstrap current; and the enhancement of the residual zonal flow regulation of turbulence.

  16. Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2009-12-01

    The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.

  17. Effect of Sacoglottis gabonensis and Alstonia boonei on the kinetics ...

    African Journals Online (AJOL)

    Sacoglottis gabonensis and Alstonia boonei are botanicals used for the preservation of palm wine in Southern Nigeria. This study investigated the effect of S. gabonensis (0.625%) and A. boonei (0.50%) on the kinetics of Saccharomyces cerevisiae isolated from palm wine (PW). Concentrations of the preservatives used in ...

  18. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth

    Science.gov (United States)

    Zhang, Hong; Zuo, Ran; Zhang, Guoyi

    2017-11-01

    In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.

  19. Kinetics in radiation chemistry

    International Nuclear Information System (INIS)

    Hummel, A.

    1987-01-01

    In this chapter the authors first briefly review the kinetics of first- and second-order processes for continuous and pulsed irradiation, without taking the effects of nonhomogeneous formation of the species into consideration. They also discuss diffusion controlled reactions under conditions where interactions of more than two particles can be neglected, first the kinetics of the diffusion-controlled reaction of randomly generated species (homogeneous reaction) and then that of isolated pairs of reactants. The latter is often called geminate kinetics when dealing with pairs of oppositely charged species; they shall use this term for the kinetics of isolated pairs in general. In the last section they discuss briefly the kinetics of groups of more than two reactants

  20. The coke drum thermal kinetic effects

    Energy Technology Data Exchange (ETDEWEB)

    Aldescu, Maria M.; Romero, Sim; Larson, Mel [KBC Advanced Technologies plc, Surrey (United Kingdom)

    2012-07-01

    The coke drum thermal kinetic dynamics fundamentally affect the coker unit yields as well as the coke product properties and unit reliability. In the drum the thermal cracking and polymerization or condensation reactions take place in a semi-batch environment. Understanding the fundamentals of the foaming kinetics that occur in the coke drums is key to avoiding a foam-over that could result in a unit shutdown for several months. Although the most dynamic changes with time occur during drum filling, other dynamics of the coker process will be discussed as well. KBC has contributed towards uncovering and modelling the complexities of heavy oil thermal dynamics. (author)

  1. Deduction of kinetic mechanism in multisubstrate enzyme reactions from tritium isotope effects. Application to dopamine beta-hydroxylase

    International Nuclear Information System (INIS)

    Klinman, J.P.; Humphries, H.; Voet, J.G.

    1980-01-01

    Primary tritium isotope effects have been measured for the hydroxylation of [2-3H] dopamine catalyzed by dopamine beta-hydroxylase. Experimental values vary from 8.8 +/- 1.4 at 0.02 mM oxygen to 4.1 +/- 0.6 at 1.0 mM oxygen. It is shown that the observed dependence of the isotope effect on oxygen concentration provides unequivocal evidence for a kinetically significant dissociation of both dopamine and oxygen from enzyme, ternary complex. This approach, which is applicable to any multisubstrate enzyme characterized by detectable kinetic isotope effects, provides an alternate to classical methods for the elucidation of kinetic order in enzyme-catalyzed reactions

  2. Kinetic isotope effect studies of the S-adenosylmethionine synthetase reaction

    International Nuclear Information System (INIS)

    Markham, G.D.; Parkin, D.W.; Schramm, V.L.

    1986-01-01

    S-adenosylmethionine (AdoMet) synthetase catalyzes a unique substitution reaction at the 5' carbon of MgATP. Kinetic isotope effect (V/K) measurements have been used to investigate the mechanism of AdoMet synthetase from E. coli. Changes in 3 H/ 14 C ratios when AdoMet is formed from a mixture of either ([5'- 14 C]ATP and [5'- 12 C,1'- 3 H]ATP) or ([5'- 3 H]ATP and [5'- 1 H,1'- 14 C]ATP) were examined. The effects of varying the concentrations of the co-substrate methionine and the monovalent cation activator K + were investigated. Substitution of 14 C for 12 C at the 5' position of ATP yields a primary V/K kinetic isotope effect ( 12 C/ 14 C) of 1.128 +/- 0.004 at low K + and methionine concentrations. The observed isotope effect diminishes slightly to 1.107 +/- 0.003 when both K + and methionine are present at saturating concentrations, suggesting that MgATP has only a low commitment to catalysis from at conditions near Vmax. No secondary V/K 3 H isotope effect from [5'- 3 H]ATP was detected ( 1 H/ 3 H) = 0.997 +/- 0.003. The magnitude of the primary 14 C isotope effect and the small secondary 3 H effect demonstrate that AdoMet synthesis occurs with a S/sub N/ 2 transition state which is symmetric with respect to the sulfur nucleophile and the departing tripolyphosphate group

  3. Effect of pre-heating on the thermal decomposition kinetics of cotton

    Science.gov (United States)

    The effect of pre-heating at low temperatures (160-280°C) on the thermal decomposition kinetics of scoured cotton fabrics was investigated by thermogravimetric analysis under nonisothermal conditions. Isoconversional methods were used to calculate the activation energies for the pyrolysis after one-...

  4. Spectroscopy and kinetics of combustion gases at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  5. Effect of dissolution kinetics on flotation response of calcite with oleate

    Directory of Open Access Journals (Sweden)

    D. G. Horta

    Full Text Available Abstract Phosphate flotation performance can be influenced by the dissolution kinetics of the minerals that compose the ore. The purpose of this work was to investigate the effect of dissolution kinetics on flotation response with oleate (collector of calcites from different origins and genesis. The calcite samples were first purified and characterized by x-ray Fluorescence (XRF and the Rietveld method applied to x-ray Diffractometry data (RXD. Experiments of calcite dissolution and microflotationwere performed at pH 8 and pH 10.The pH effect on the calcite dissolution and flotation indicates the possible influence of the carbonate/bicarbonate ions provided by the CO2 present in the air. In addition, the flotation response is greater as the dissolution increases, making more Ca2+ ions available to interact with collector molecules. This result corroborates the surface precipitation mechanism proposed foroleate adsorption on the calcite surface.

  6. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    International Nuclear Information System (INIS)

    Rosenberg, M. J.; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.

    2015-01-01

    The significance and nature of ion kinetic effects in D 3 He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N K ) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N K  ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects

  7. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Amendt, P. A.; Wilks, S. C.; Pino, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Atzeni, S. [Dipartimento SBAI, Università di Roma “La Sapienza” and CNISM, Via A. Scarpa 14-16, I-00161 Roma (Italy); Hoffman, N. M.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  8. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  9. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method

    International Nuclear Information System (INIS)

    Lucio, Beatriz; Fuente, José Luis de la

    2016-01-01

    Graphical abstract: - Highlights: • Kinetic and thermodynamic analysis for the formation of a functional polyurethane (PU) has been carried out. • Rheological parameters were used to obtain the profile of the resin's curing degree. • Kamal-Sourour autocatalytic kinetic model describes well this polyaddition reaction. • A deeper understanding of the mechanism of PU systems has been achieved. • This metallo-PU finds its application in the chemistry of advanced energetic materials. - Abstract: As part of an investigation into the mechanism and chemorheology of linear segmented polyurethane (PU) systems, this paper presents the kinetic and thermodynamic characterization of the reaction between an advanced functional metallo-polyol derivative of hydroxyl-terminated polybutadiene (HTPB), (ferrocenylbutyl)dimethylsilane grafted HTPB, and isophorone diisocyanate (IPDI). The evolution of viscoelastic properties, such as the storage modulus (G′), was recorded in bulk under isothermal conditions at four different temperatures between 50 and 80 °C, and a resin curing degree profile was obtained for this elastic modulus. The use of the Kamal-Sourour autocatalytic kinetic model was proposed, describing the overall curing process perfectly. All the kinetic and thermodynamic parameters, including reaction orders, kinetic constants and activation energy, were determined for the polyaddition reaction under study. A relevant autocatalysis effect, promoted by the urethane group, has been found. The isoconversion method was also used to analyze the variation of the global activation energy with conversion. The global activation energy increases slightly as the curing reaction proceeds with a maximum value reached at approximately 30% conversion. In addition, the Eyring parameters were calculated from the obtained kinetic data.

  10. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method

    Energy Technology Data Exchange (ETDEWEB)

    Lucio, Beatriz; Fuente, José Luis de la, E-mail: fuentegj@inta.es

    2016-02-10

    Graphical abstract: - Highlights: • Kinetic and thermodynamic analysis for the formation of a functional polyurethane (PU) has been carried out. • Rheological parameters were used to obtain the profile of the resin's curing degree. • Kamal-Sourour autocatalytic kinetic model describes well this polyaddition reaction. • A deeper understanding of the mechanism of PU systems has been achieved. • This metallo-PU finds its application in the chemistry of advanced energetic materials. - Abstract: As part of an investigation into the mechanism and chemorheology of linear segmented polyurethane (PU) systems, this paper presents the kinetic and thermodynamic characterization of the reaction between an advanced functional metallo-polyol derivative of hydroxyl-terminated polybutadiene (HTPB), (ferrocenylbutyl)dimethylsilane grafted HTPB, and isophorone diisocyanate (IPDI). The evolution of viscoelastic properties, such as the storage modulus (G′), was recorded in bulk under isothermal conditions at four different temperatures between 50 and 80 °C, and a resin curing degree profile was obtained for this elastic modulus. The use of the Kamal-Sourour autocatalytic kinetic model was proposed, describing the overall curing process perfectly. All the kinetic and thermodynamic parameters, including reaction orders, kinetic constants and activation energy, were determined for the polyaddition reaction under study. A relevant autocatalysis effect, promoted by the urethane group, has been found. The isoconversion method was also used to analyze the variation of the global activation energy with conversion. The global activation energy increases slightly as the curing reaction proceeds with a maximum value reached at approximately 30% conversion. In addition, the Eyring parameters were calculated from the obtained kinetic data.

  11. The Effect of Ethanol Addition to Gasoline on Low- and Intermediate-Temperature Heat Release under Boosted Conditions in Kinetically Controlled Engines

    Science.gov (United States)

    Vuilleumier, David Malcolm

    The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines

  12. Effects of molecular confinement and crowding on horseradish peroxidase kinetics using a nanofluidic gradient mixer.

    Science.gov (United States)

    Wichert, William R A; Han, Donghoon; Bohn, Paul W

    2016-03-07

    The effects of molecular confinement and crowding on enzyme kinetics were studied at length scales and under conditions similar to those found in biological cells. These experiments were carried out using a nanofluidic network of channels constituting a nanofluidic gradient mixer, providing the basis for measuring multiple experimental conditions simultaneously. The 100 nm × 40 μm nanochannels were wet etched directly into borosilicate glass, then annealed and characterized with fluorescein emission prior to kinetic measurements. The nanofluidic gradient mixer was then used to measure the kinetics of the conversion of the horseradish peroxidase (HRP)-catalyzed conversion of non-fluorescent Amplex Red (AR) to the fluorescent product resorufin in the presence of hydrogen peroxide (H2O2). The design of the gradient mixer allows reaction kinetics to be studied under multiple (five) unique solution compositions in a single experiment. To characterize the efficiency of the device the effects of confinement on HRP-catalyzed AR conversion kinetics were studied by varying the starting ratio of AR : H2O2. Equimolar concentrations of Amplex Red and H2O2 yielded the highest reaction rates followed by 2 : 1, 1 : 2, 5 : 1, and finally 1 : 5 [AR] : [H2O2]. Under all conditions, initial reaction velocities were decreased by excess H2O2. Crowding effects on kinetics were studied by increasing solution viscosity in the nanochannels in the range 1.0-1.6 cP with sucrose. Increasing the solution viscosities in these confined geometries decreases the initial reaction velocity at the highest concentration from 3.79 μM min(-1) at 1.00 cP to 0.192 μM min(-1) at 1.59 cP. Variations in reaction velocity are interpreted in the context of models for HRP catalysis and for molecular crowding.

  13. Effects of deuterium on the kinetics of beef heart mitochondrial ATPase

    International Nuclear Information System (INIS)

    Urbauer, J.L.; Dorgan, L.J.; Schuster, S.M.

    1984-01-01

    A study was done examining the steady-state kinetics of F1-catalyzed ATP and ITP hydrolyses in the presence or absence of D2O as a function of temperature. The steady-state kinetic parameters kcat and kcat/Km were obtained. For ATP hydrolysis, kcat/Km was independent of temperature in the presence or absence of D2O, while kcat/Km for ITP hydrolysis increased in both cases. The relative magnitudes of change of kcat and kcat/Km in the presence and absence of D2O over the temperature range studied were much different for the cases of ATP and ITP hydrolysis. A normal isotope effect was observed in plots of kcat H2O/kcat D2O versus temperature for ATP hydrolysis, which increased then leveled off as temperature increased. An inverse isotope effect at low temperatures changed to a normal isotope effect and increased dramatically as temperature increased during ITP hydrolysis. The results are discussed in terms of the nature and location of the rate-limiting steps in the reaction mechanisms

  14. Modelling the delay between pharmacokinetics and EEG effects of morphine in rats: binding kinetic versus effect compartment models.

    Science.gov (United States)

    de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M

    2018-05-18

    Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often

  15. Effective computation of stochastic protein kinetic equation by reducing stiffness via variable transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin, E-mail: ljwang@ucas.ac.cn [School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-06-08

    The stochastic protein kinetic equations can be stiff for certain parameters, which makes their numerical simulation rely on very small time step sizes, resulting in large computational cost and accumulated round-off errors. For such situation, we provide a method of reducing stiffness of the stochastic protein kinetic equation by means of a kind of variable transformation. Theoretical and numerical analysis show effectiveness of this method. Its generalization to a more general class of stochastic differential equation models is also discussed.

  16. Effect of ketamine, pentobarbital, and morphine on Tc-99m-DISIDA hepatobiliary kinetics

    International Nuclear Information System (INIS)

    Durakovic, A.; Dubois, A.

    1985-01-01

    The purpose of this study was to evaluate hapatobiliary kinetics of Tc-99m-DISIDA in dogs after administration of anesthetic sedative or narcotic agents. Four groups of six male Beagle dogs were studied as a non-treated control group and after parenteral administration of ketamine (30 mg/kg IM), pentobarbital (25 mg/kg IV) or morphine (1 mg/kg IV). Each animal was injected with 4 mCi Tc-99m-DISIDA and hepatobiliary scintigraphic studies were obtained using a gamma camera with parallel hole multipurpose collimator and an A/sup 3/ MDS computer. The authors determined; peak activity of Tc-99m-DISIDA in the liver, visualization and peak activity of gallbladder, and intestinal visualization of Tc-99m-DISIDA. Total bilirubin, LDH, SGOT and SGPT were not modified significantly after any drug compared to control. The results showed that two commonly used anesthetics and sedatives (ketamine and pentobarbital) have dramatic and opposite effects on extrahepatic biliary kinetics. Furthermore, ketamine, but not pentobarbital, significantly accelerates intrahepatic biliary kinetics. Finally, as expected, morphine delayed extrahepatic biliary kinetics. Thus, studies of biliary kinetics should be interpreted with caution when measurements are made after administration of anesthetic, sedative or narcotic agents

  17. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    Science.gov (United States)

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.

  18. Stochastic theory of interfacial enzyme kinetics: A kinetic Monte Carlo study

    International Nuclear Information System (INIS)

    Das, Biswajit; Gangopadhyay, Gautam

    2012-01-01

    Graphical abstract: Stochastic theory of interfacial enzyme kinetics is formulated. Numerical results of macroscopic phenomenon of lag-burst kinetics is obtained by using a kinetic Monte Carlo approach to single enzyme activity. Highlights: ► An enzyme is attached with the fluid state phospholipid molecules on the Langmuir monolayer. ► Through the diffusion, the enzyme molecule reaches the gel–fluid interface. ► After hydrolysing a phospholipid molecule it predominantly leaves the surface in the lag phase. ► The enzyme is strictly attached to the surface with scooting mode of motion and the burst phase appears. - Abstract: In the spirit of Gillespie’s stochastic approach we have formulated a theory to explore the advancement of the interfacial enzyme kinetics at the single enzyme level which is ultimately utilized to obtain the ensemble average macroscopic feature, lag-burst kinetics. We have provided a theory of the transition from the lag phase to the burst phase kinetics by considering the gradual development of electrostatic interaction among the positively charged enzyme and negatively charged product molecules deposited on the phospholipid surface. It is shown that the different diffusion time scales of the enzyme over the fluid and product regions are responsible for the memory effect in the correlation of successive turnover events of the hopping mode in the single trajectory analysis which again is reflected on the non-Gaussian distribution of turnover times on the macroscopic kinetics in the lag phase unlike the burst phase kinetics.

  19. Effects of gas phase impurities on the topochemical-kinetic behaviour of uranium hydride development

    International Nuclear Information System (INIS)

    Bloch, J.; Brami, D.; Kremner, A.; Mintz, M.H.; Ben-Gurion Univ. of the Negev, Beersheba

    1988-01-01

    The hydriding kinetics of bulk uranium and U-0.1 wt.% Cr, in the presence of oxidizing gaseous impurities (oxygen and CO), were studied by combined rate measurements and metallographic examinations of partially reacted samples. The effect of the gaseous impurity (type and concentration) was examined metallographically, and the kinetic data were discussed in relation to these examinations. Below about 100 0 C the reaction of uranium with pure hydrogen consists of the following sequence of steps: (i) Surface nucleation; (ii) homogeneous growth (pitting); (iii) relatively fast lateral growth leading to the formation of a reaction front which penetrates into the sample at a constant rate. The effects of oxygen and CO on the hydriding kinetics were related to their abilities to block hydrogen penetration into the uranium. Thus, it was found that oxygen affects only the penetration through the oxide layer, whereas CO affects the penetration through both the oxide and hydride layers. (orig.)

  20. Kinetic analysis of the effects of target structure on siRNA efficiency

    Science.gov (United States)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  1. Effects of catalysts on combustion characteristics and kinetics of coal-char blends

    Science.gov (United States)

    Hu, Yingjie; Wang, Zhiqiang; Cheng, Xingxing; Liu, Ming; Ma, Chunyuan

    2018-04-01

    The effects of Fe2O3, CaO, and MnO2 on the combustion characteristics and kinetics of coal-char blends were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that catalysts exhibited positive effects on the combustion characteristics of coal-char blends, especially in the initial period of coal-char blends combustion. With catalysts addition (mass 1.5%), it could improves volatile matter release, and reduces ignition point, promotes char to begin burning under lower temperature. The ignition index (C) was increased, respectively, by 27% for Fe2O3, 6% for CaO, 11.3% for MnO2, and the combustion characteristic index ( S ) was increased respectively, by 29% for Fe2O3, 5% for CaO, 8.3% for MnO2. In addition, two kinetic models (R2 and F1) were adopted to calculate the kinetic parameters in different stage of combustion processes. The results showed that with Fe2O3 or CaO addition, the activation energy at second stage decreases from 86.0 KJ/mol to 76.92 KJ/mol and 75.12 KJ/mol, respectively. There are no obvious decreases at the third stage of samples combustion process.

  2. Effects of thigh holster use on kinematics and kinetics of active duty police officers

    OpenAIRE

    Larsen, Louise B.; Tranberg, Roy; Ramstrand, Nerrolyn

    2016-01-01

    Background: Body armour, duty belts and belt mounted holsters are standard equipment used by the Swedish police and have been shown to affect performance of police specific tasks, to decrease mobility and to potentially influence back pain. This study aimed to investigate the effects on gait kinematics and kinetics associated with use of an alternate load carriage system incorporating a thigh holster. Methods: Kinematic, kinetic and temporospatial data were collected using three dimensional g...

  3. Energy partitioning constraints at kinetic scales in low-β turbulence

    Science.gov (United States)

    Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.

    2018-02-01

    Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

  4. Quantifying human vitamin kinetics using AMS

    Energy Technology Data Exchange (ETDEWEB)

    Hillegonds, D; Dueker, S; Ognibene, T; Buchholz, B; Lin, Y; Vogel, J; Clifford, A

    2004-02-19

    Tracing vitamin kinetics at physiologic concentrations has been hampered by a lack of quantitative sensitivity for chemically equivalent tracers that could be used safely in healthy people. Instead, elderly or ill volunteers were sought for studies involving pharmacologic doses with radioisotopic labels. These studies fail to be relevant in two ways: vitamins are inherently micronutrients, whose biochemical paths are saturated and distorted by pharmacological doses; and while vitamins remain important for health in the elderly or ill, their greatest effects may be in preventing slow and cumulative diseases by proper consumption throughout youth and adulthood. Neither the target dose nor the target population are available for nutrient metabolic studies through decay counting of radioisotopes at high levels. Stable isotopic labels are quantified by isotope ratio mass spectrometry at levels that trace physiologic vitamin doses, but the natural background of stable isotopes severely limits the time span over which the tracer is distinguishable. Indeed, study periods seldom ranged over a single biological mean life of the labeled nutrients, failing to provide data on the important final elimination phase of the compound. Kinetic data for the absorption phase is similarly rare in micronutrient research because the phase is rapid, requiring many consecutive plasma samples for accurate representation. However, repeated blood samples of sufficient volume for precise stable or radio-isotope quantitations consume an indefensible amount of the volunteer's blood over a short period. Thus, vitamin pharmacokinetics in humans has often relied on compartmental modeling based upon assumptions and tested only for the short period of maximal blood circulation, a period that poorly reflects absorption or final elimination kinetics except for the most simple models.

  5. Investigation of ammonium nitrate effect on kinetics and mechanism of thermal decomposition of ammonium polyuranates

    International Nuclear Information System (INIS)

    Karelin, A.I.; Lobas, O.P.; Zhiganov, A.N.; Vasil'ev, K.F.; Zhiganova, A.A.

    1987-01-01

    A study was made on ammonium nitrate effect on the mechanism and kinetics of dehydration and thermal decomposition of ammonium polyuranates. Sufficient effect of nitrate ion content in ammonium polyuranate samples on their thermal stability was noted. Kinetic parameters of thermal decomposition of ammonium polyuranates were evaluated. Mechanism of dehydration and thermal decomposition of ammonium polyuranates in the presence of ammonium nitrate was suggested. It was shown that increase of ammonium nitrate content in ammonium polyuranate precipitate resulted to reduction of the specific surface of prepared uranium mixed oxide

  6. Effective-field theory on the kinetic Ising model

    International Nuclear Information System (INIS)

    Shi Xiaoling; Wei Guozhu; Li Lin

    2008-01-01

    As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)

  7. [Effect of IV hydration with sodium bicarbonate on high-dose methotrexate disposition kinetics].

    Science.gov (United States)

    Tsuda, N; Goto, M; Konishi, H; Yamashina, H

    1984-04-01

    Following two-compartment kinetic analysis, the effect of loading of transfusion with sodium bicarbonate on methotrexate disposition was investigated in 13 cases with malignant tumor, being treated with high-dose methotrexate. The mean values of total body clearance, when administered at doses 50 mg and 100 mg per kg body weight, were 0.369 and 0.402 (l/h) per kg, respectively. No significant relationship was observed between alpha value and total amount of transfusion, of urine or dosage of sodium bicarbonate. The other kinetic parameters on elimination, beta value, K10 and total body clearance, did not also correlate with those values described above. These results suggest that the elimination profile of methotrexate show linear kinetics, and that massive administration of transfusion with sodium bicarbonate be not necessary if pH value of urine exceeds 7.0.

  8. Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex

    Science.gov (United States)

    Ibragimova, P. I.; Grebennikov, S. F.; Gur'yanov, V. V.; Fedyukevich, V. A.; Vorob'ev-Desyatovskii, N. V.

    2014-06-01

    The effect the porous structure of activated carbons obtained from furfural and coconut shells has on the kinetics of [Au(CN)2]- ion adsorption is studied. Effective diffusion coefficients for [Au(CN)2]- anions in transport and adsorbing pores and mass transfer coefficients in a transport system of the pores and in microporous zones are calculated using the statistical moments of the kinetic curve.

  9. Precipitation kinetics of radioactive elements and their effect upon redox conditions of the nearfield

    International Nuclear Information System (INIS)

    Takase, Hiroyasu; Grindrod, P.

    1994-01-01

    In considering the release and migration of radioelements from the nearfield a variety of processes operating on different timescales must be incorporated. Source term models often employ standard assumptions such as instantaneous elemental solubility limits, instantaneous linear reversible adsorption, and homogeneous transport processes, etc. These ideas are employed because (1) the resulting mathematical models are simple and therefore conveniently solved; (2) they can be motivated by heuristic arguments concerning the relative timescales associated with chemical and transport processes. Hence these assumptions are imposed a-priori by the models, and subsequent release rates are calculated regardless of the actual leach rates and outflux rates encountered within the performance assessment. In certain circumstances these results may be non-conservative with release rates underestimated by orders of magnitude. Thus there is a need to be precise about when various assumptions are valid, and this necessitates a consideration of the kinetics associated with all open-quotes fastclose quotes processes, normally considered instantaneous. In the absence of complete data for this purpose it is appropriate to make a parametric survey incorporating ranges of possible parameter values. In this paper we present such an analysis for some standard source term situations, focusing primarily upon the process of elemental solubility limitation due to precipitation. This results in quantitative indications as to when the imposition of an instantaneous solubility limit is an acceptable approximation, and when it is non-conservative, and should be avoided. In supporting the imposition of solubility limits by a full analysis of the relevant processes, active on their various timescales, we are reversing the previous logic applied, where kinetic effects are ruled out because they are open-quotes fastclose quotes without any proper consideration of how fast they must be

  10. Kinetics and

    Directory of Open Access Journals (Sweden)

    Mojtaba Ahmadi

    2016-11-01

    Full Text Available The aqueous degradation of Reactive Yellow 84 (RY84 by potassium peroxydisulfate (K2S2O8 has been studied in laboratory scale experiments. The effect of the initial concentrations of potassium peroxydisulfate and RY84, pH and temperature on RY84 degradation were also examined. Experimental data were analyzed using first and second-order kinetics. The degradation kinetics of RY84 of the potassium peroxydisulfate process followed the second-order reaction kinetics. These rate constants have an extreme values similar to of 9.493 mM−1min−1 at a peroxydisulfate dose of 4 mmol/L. Thermodynamic parameters such as activation (Ea and Gibbs free energy (ΔG° were also evaluated. The negative value of ΔGo and Ea shows the spontaneous reaction natural conditions and exothermic nature.

  11. Effect of long-term physical aging on the kinetic parameters in a common pharmaceutical drug: Flutab

    International Nuclear Information System (INIS)

    Abu-Sehly, A.A.; Elabbar, A.A.

    2011-01-01

    Differential scanning calorimetry (DSC) measurements were performed to investigate the effects of long-term physical aging on kinetic parameters of the pharmaceutical drug (Flutab). Kinetics parameters such as activation energy (E) and fragility parameter (m) of the glass transition for aged and rejuvenated glasses were determined using different kinetic models. Evidence of variation of E with temperature is presented. It is shown in this work that natural storage of the drug introduced significant physical aging as indicated by changes in the glass transition temperature, activation energy and fragility parameter.

  12. The Effects of Goal Relevance and Perceptual Features on Emotional Items and Associative Memory.

    Science.gov (United States)

    Mao, Wei B; An, Shu; Yang, Xiao F

    2017-01-01

    Showing an emotional item in a neutral background scene often leads to enhanced memory for the emotional item and impaired associative memory for background details. Meanwhile, both top-down goal relevance and bottom-up perceptual features played important roles in memory binding. We conducted two experiments and aimed to further examine the effects of goal relevance and perceptual features on emotional items and associative memory. By manipulating goal relevance (asking participants to categorize only each item image as living or non-living or to categorize each whole composite picture consisted of item image and background scene as natural scene or manufactured scene) and perceptual features (controlling visual contrast and visual familiarity) in two experiments, we found that both high goal relevance and salient perceptual features (high salience of items vs. high familiarity of items) could promote emotional item memory, but they had different effects on associative memory for emotional items and neutral backgrounds. Specifically, high goal relevance and high perceptual-salience of items could jointly impair the associative memory for emotional items and neutral backgrounds, while the effect of item familiarity on associative memory for emotional items would be modulated by goal relevance. High familiarity of items could increase associative memory for negative items and neutral backgrounds only in the low goal relevance condition. These findings suggest the effect of emotion on associative memory is not only related to attentional capture elicited by emotion, but also can be affected by goal relevance and perceptual features of stimulus.

  13. The Effects of Muscular Fatigue on the Kinetics of Sprint Running.

    Science.gov (United States)

    Sprague, Paul; Mann, Ralph V.

    1983-01-01

    To compare the kinematic and kinetic effects of fatigue on the biomechanics of sprint running, male subjects were filmed performing a short maximal exertion sprint and a long fatiguing sprint. Observable differences in the productive muscular activity of the better and the poorer sprinters occurred during the ground-phase of their strides.…

  14. Kinetic secondary deuterium isotope effect in addition of nucleophile to m-bromobenzaldehyde

    International Nuclear Information System (INIS)

    Amaral, L. do; Rossi, M.H.

    1985-01-01

    The kinetic secondary deuterium isotope effects, KD/KH for hydrated proton catalyzed addition of semicarbazide, methoxyamine and hydroxylamine to m-bromobenzaldehyde is studied. The nature of the nucleophile, addition of the carbonyl group and the chemical reactions are evaluated. (M.J.C.) [pt

  15. Effect of surfactant on kinetics of thinning of capillary bridges

    Science.gov (United States)

    Nowak, Emilia; Kovalchuk, Nina; Simmons, Mark

    2015-11-01

    Kinetics of thinning of capillary bridges is of great scientific and industrial interest being of vital importance for example in various emulsification and microfluidic processes. It is well known that the rate of bridge thinning is proportional to the interfacial tension. Therefore it is expected that the process should slow down by addition of surfactant. The kinetics of capillary bridges in the presence of surfactant was studied by the dripping of liquid from a capillary tip under conditions of nearly zero flow rate (We personal care products. The viscosity, surfactant activity and adsorption kinetics have been controlled by addition of glycerol and sodium chloride. The study has shown that the kinetics of capillary bridges are determined by dynamic surface tension rather than by its equilibrium value. In particular, the kinetics of the bridge thinning for the 0.1 g L-1 aqueous SLES solution is practically the same as that of pure water despite twice lower equilibrium surface tension. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  16. Effect of austenitization conditions on kinetics of isothermal transformation of austenite of structural steels

    International Nuclear Information System (INIS)

    Konopleva, E.V.; Bayazitov, V.M.; Abramov, O.V.; Kozlova, A.G.

    1987-01-01

    Effect of austenization of kinetics of pearlite and bainite transformations for steels with different carbon content differing by alloying character and degree has been investigated. Austenization temperature increase is shown to leads to retardation of ferrite-pearlite transformation in low- and medium-carbon alloyed steels. Step-like holding in the region of austenite stable state (850, 950 deg) after high-temperature heating (1100 deg C) increases the rate of transformation partially recovering its kinetics and decomposition velocity after low-temperature heating in steels alloyed advantageously with carbide-forming elements (08Kh2G2F, 30Kh3) and does not affect kinetics in the 35Kh, 30KhGSN2A, 45N5 steels. Increase of heating temperature and growth of an austenite grain cause considerable acceleration of bainite transformation, increase of the temperaure of bainite transformation beginning and increase of the transformation amplitude in the 08Kh2G2F, 30Kh3 steels and affect weakly kinetics in steels with mixed alloying (30KhGSN2A) or low-alloy one (35Kh). The bainite transformation rate in the 45N5 steelite does not depend on austenization. The effect of additional acceleration of bainite transformation as a result holding after high-temperature heating in those steels, where activation of transformation occurs with increase of heating temperature

  17. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  18. Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy

    Science.gov (United States)

    Pergamenshchik, V. M.; Vozniak, A. B.

    2017-01-01

    Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.

  19. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.; Xie, Jianfei; Shishkova, Irina N.; Elwardani, Ahmed Elsaid; Heikal, Morgan Raymond

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation

  20. Drift-free kinetic equations for turbulent dispersion

    Science.gov (United States)

    Bragg, A.; Swailes, D. C.; Skartlien, R.

    2012-11-01

    The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.

  1. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    Science.gov (United States)

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.

  2. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    International Nuclear Information System (INIS)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R.

    1988-01-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R a was matched by a comparable decrease in glucose utilization (R d ), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R a is counterbalanced by equal inhibition of R d ; (2) basal R a and R d are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance

  3. Cell kinetics and therapeutic efficiency

    International Nuclear Information System (INIS)

    Andreeff, M.; Abenhardt, W.; Gruner, B.; Stoffner, D.; Mainz Univ.

    1976-01-01

    The study shows that cell kinetics effects correlate with the effects of cytostatic drugs in the tumour model investigated here. It should, however, be noted that even genetically related tumour cell types may react differently to the same cytostatic drug, and that the cell kinetics effects, due to the changes in the cell cycle, cannot be predicted but should be followed with a very fast method, e.g. sequential flan fluorescence cytophotometry, for optimal therapeutic results. (orig./GSE) [de

  4. The Effects of Goal Relevance and Perceptual Features on Emotional Items and Associative Memory

    Directory of Open Access Journals (Sweden)

    Wei B. Mao

    2017-07-01

    Full Text Available Showing an emotional item in a neutral background scene often leads to enhanced memory for the emotional item and impaired associative memory for background details. Meanwhile, both top–down goal relevance and bottom–up perceptual features played important roles in memory binding. We conducted two experiments and aimed to further examine the effects of goal relevance and perceptual features on emotional items and associative memory. By manipulating goal relevance (asking participants to categorize only each item image as living or non-living or to categorize each whole composite picture consisted of item image and background scene as natural scene or manufactured scene and perceptual features (controlling visual contrast and visual familiarity in two experiments, we found that both high goal relevance and salient perceptual features (high salience of items vs. high familiarity of items could promote emotional item memory, but they had different effects on associative memory for emotional items and neutral backgrounds. Specifically, high goal relevance and high perceptual-salience of items could jointly impair the associative memory for emotional items and neutral backgrounds, while the effect of item familiarity on associative memory for emotional items would be modulated by goal relevance. High familiarity of items could increase associative memory for negative items and neutral backgrounds only in the low goal relevance condition. These findings suggest the effect of emotion on associative memory is not only related to attentional capture elicited by emotion, but also can be affected by goal relevance and perceptual features of stimulus.

  5. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  6. The task-relevant attribute representation can mediate the Simon effect.

    Directory of Open Access Journals (Sweden)

    Dandan Tang

    Full Text Available Researchers have previously suggested a working memory (WM account of spatial codes, and based on this suggestion, the present study carries out three experiments to investigate how the task-relevant attribute representation (verbal or visual in the typical Simon task affects the Simon effect. Experiment 1 compared the Simon effect between the between- and within-category color conditions, which required subjects to discriminate between red and blue stimuli (presumed to be represented by verbal WM codes because it was easy and fast to name the colors verbally and to discriminate between two similar green stimuli (presumed to be represented by visual WM codes because it was hard and time-consuming to name the colors verbally, respectively. The results revealed a reliable Simon effect that only occurs in the between-category condition. Experiment 2 assessed the Simon effect by requiring subjects to discriminate between two different isosceles trapezoids (within-category shapes and to discriminate isosceles trapezoid from rectangle (between-category shapes, and the results replicated and expanded the findings of Experiment 1. In Experiment 3, subjects were required to perform both tasks from Experiment 1. Wherein, in Experiment 3A, the between-category task preceded the within-category task; in Experiment 3B, the task order was opposite. The results showed the reliable Simon effect when subjects represented the task-relevant stimulus attributes by verbal WM encoding. In addition, the response times (RTs distribution analysis for both the between- and within-category conditions of Experiments 3A and 3B showed decreased Simon effect with the RTs lengthened. Altogether, although the present results are consistent with the temporal coding account, we put forth that the Simon effect also depends on the verbal WM representation of task-relevant stimulus attribute.

  7. Kinetics and compensation effects during steam gasification of Fujian anthracite using viscose liquor as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lin Ju; Zhang Ji-yu; Zhong Xue-qing [Fuzhou University, Fuzhou (China). Institute of Chemical Engineering and Technology

    2009-08-15

    Catalytic steam gasification kinetics of Fujian Youxi anthracite using viscose liquor as catalyst was investigated in an isothermal thermo-gravimetric analyzer under ambient pressure. Coal conversions versus reaction time with different viscose liquor concentrations (0-12% NaOH) were measured at the temperature range from 850 to 950{sup o}C. The research shows that the viscose liquor can greatly improve the gasification rate and carbon conversion. The Loading Saturation Level (LSL) of the viscose liquor within the experimental conditions was also determined. The catalytic steam gasification reaction can be well fitted by a shrinking-core model (SCM) and the reaction rate constants are obtained. The kinetic analysis indicates that the catalytic gasification exhibits a prominent compensation effect between the activation energy and the pre-exponential factor. The kinetic equation including the compensation effects for the catalytic steam gasification of Fujian Youxi anthracite using viscose liquor as catalyst is presented. 23 refs., 7 figs., 3 tabs.

  8. A prominent anchoring effect on the kinetic control of drug release from mesoporous silica nanoparticles (MSNs).

    Science.gov (United States)

    Tran, Vy Anh; Lee, Sang-Wha

    2018-01-15

    This work demonstrated kinetically controlled release of model drugs (ibuprofen, FITC) from well-tailored mesoporous silica nanoparticles (MSNs) depending on the surface charges and molecular sizes of the drugs. The molecular interactions between entrapped drugs and the pore walls of MSNs controlled the release of the drugs through the pore channels of MSNs. Also, polydopamine (PDA) layer-coated MSNs (MSNs@PDA) was quite effective to retard the release of large FITC, in contrast to a slight retardation effect on relatively small Ibuprofen. Of all things, FITC (Fluorescein isothiocyanate)-labeled APTMS (3-aminopropyltrimethoxysilane) (APTMS-FITC conjugates) grafted onto the MSNs generate a pinch-effect on the pore channel (so-called a prominent anchoring effect), which was highly effective in trapping (or blocking) drug molecules at the pore mouth of the MSNs. The anchored APTMS-FITC conjugates provided not only tortuous pathways to the diffusing molecules, but also sustained release of the ibuprofen over a long period of time (∼7days). The fast release kinetics was predicted by an exponential equation based on Fick's law, while the slow release kinetics was predicted by Higuchi model. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Kinetic Monte Carlo simulations of the effect of the exchange control layer thickness in CoPtCrB/CoPtCrSiO granular media

    Science.gov (United States)

    Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.

    2018-05-01

    A hybrid Landau Lifshitz Gilbert/kinetic Monte Carlo algorithm is used to simulate experimental magnetic hysteresis loops for dual layer exchange coupled composite media. The calculation of the rate coefficients and difficulties arising from low energy barriers, a fundamental problem of the kinetic Monte Carlo method, are discussed and the methodology used to treat them in the present work is described. The results from simulations are compared with experimental vibrating sample magnetometer measurements on dual layer CoPtCrB/CoPtCrSiO media and a quantitative relationship between the thickness of the exchange control layer separating the layers and the effective exchange constant between the layers is obtained. Estimates of the energy barriers separating magnetically reversed states of the individual grains in zero applied field as well as the saturation field at sweep rates relevant to the bit write speeds in magnetic recording are also presented. The significance of this comparison between simulations and experiment and the estimates of the material parameters obtained from it are discussed in relation to optimizing the performance of magnetic storage media.

  10. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  11. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  12. Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.

    Science.gov (United States)

    Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František

    2016-03-16

    The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Study of the effect of anions and mixed solvents on the kinetics of reduction of Eu(III)

    International Nuclear Information System (INIS)

    Chandrasekaran, V.R.; Sundaram, A.K.

    1983-01-01

    The kinetics of reduction of Eu(III) to Eu(II) in aqueous solutions of perchlorate, chloride, sulphate, acetate and lactate anions and water-methanol and water-acetone mixtures containing potassium chloride as the inert electrolyte is reported and the effect of anions and solvent on the kinetics is studied. (author)

  14. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  15. Effects of different levels of intraocular stray light on kinetic perimetry findings.

    Directory of Open Access Journals (Sweden)

    Kazunori Hirasawa

    Full Text Available To evaluate the effect of different levels of intraocular stray light on kinetic perimetry findings.Twenty-five eyes of 25 healthy young participants were examined by automated kinetic perimetry (Octopus 900 using Goldmann stimuli III4e, I4e, I3e, I2e, and I1e. Each stimulus was presented with a velocity of 3°/s at 24 meridians with 15° intervals. Four levels of intraocular stray light were induced using non-white opacity filter (WOF filters and WOFs applied to the clear plastic eye covers of the participants. The visual acuity, pupil diameter, isopter area, and kinetic sensitivity of each meridian were analyzed for each WOF density.Visual acuity deteriorated with increasing WOF densities (p < 0.01. With a visual acuity of 0.1 LogMAR units, the isopter areas for III4e, I4e, I3e, I2e, and I1e decreased by -32.7 degree2 (-0.2%, -255.7 degree2 (-2.6%, -381.2 degree2 (-6.2%, -314.8 degree2 (-12.8%, and -59.2 degree2 (-15.2%, respectively; kinetic sensitivity for those stimuli decreased by -0.1 degree (-0.1%, -0.8 degree (-1.4%, -1.6 degree (-3.7%, -2.7 degree (-9.7%, and -1.7 degree (-16.2%, respectively. The pupil diameter with each WOF density was not significantly different.Kinetic perimetry measurements with a high-intensity stimulus (i.e., III4e were unaffected by intraocular stray light. In contrast, measurements with the I4e, I3e, I2e, and I1e stimuli, especially I2e and I1e, were affected. Changes in the shape of the isopter resulting from opacity must be monitored, especially in cases of smaller and lower-intensity stimuli.

  16. Kinetic mixing and the supersymmetric gauge hierarchy

    International Nuclear Information System (INIS)

    Dienes, K.R.; Kolda, C.; March-Russell, J.

    1997-01-01

    The most general Lagrangian for a model with two U(1) gauge symmetries contains a renormalizable operator which mixes their gauge kinetic terms. Such kinetic mixing can be generated at arbitrarily high scales but will not be suppressed by large masses. In models whose supersymmetry (SUSY)-breaking hidden sectors contain U(1) gauge factors, we show that such terms will generically arise and communicate SUSY breaking to the visible sector through mixing with hypercharge. In the context of the usual supergravity- or gauge-mediated communication scenarios with D-terms of order the fundamental scale of SUSY breaking, this effect can destabilize the gauge hierarchy. Even in models for which kinetic mixing is suppressed or the D-terms are arranged to be small, this effect is a potentially large correction to the soft scalar masses and therefore introduces a new measurable low-energy parameter. We calculate the size of kinetic mixing both in field theory and in string theory, and argue that appreciable kinetic mixing is a generic feature of string models. We conclude that the possibility of kinetic mixing effects cannot be ignored in model building and in phenomenological studies of the low-energy SUSY spectra. (orig.)

  17. Effect of an isoenergetic traditional Mediterranean diet on apolipoprotein A-I kinetic in men with metabolic syndrome

    Science.gov (United States)

    The impact of the Mediterranean diet (MedDiet) on high-density lipoprotein (HDL) kinetics has not been studied to date. The objective of this study was therefore to investigate the effect of the MedDiet in the absence of changes in body weight on apolipoprotein (apo) A-I kinetic in men with metaboli...

  18. A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient

    KAUST Repository

    Sazhin, Sergei S.

    2013-01-01

    The previously developed kinetic model for droplet heating and evaporation into a high pressure air is generalised to take into account the combined effects of inelastic collisions between molecules in the kinetic region, a non-unity evaporation coefficient and temperature gradient inside droplets. It is pointed out that for the parameters typical for Diesel engine-like conditions, the heat flux in the kinetic region is a linear function of the vapour temperature at the outer boundary of this region, but practically does not depend on vapour density at this boundary for all models, including and not including the effects of inelastic collisions, and including and not including the effects of a non-unity evaporation coefficient. For any given temperature at the outer boundary of the kinetic region the values of the heat flux are shown to decrease with increasing numbers of internal degrees of freedom of the molecules. The rate of this decrease is strong for small numbers of these degrees of freedom but negligible when the number of these degrees exceeds 20. This allows us to restrict the analysis to the first 20 arbitrarily chosen degrees of freedom of n-dodecane molecules when considering the effects of inelastic collisions. The mass flux at this boundary decreases almost linearly with increasing vapour density at the same location for all above-mentioned models. For any given vapour density at the outer boundary of the kinetic region the values of the mass flux are smaller for the model, taking into account the contribution of internal degrees of freedom, than for the model ignoring these degrees of freedom. It is shown that the effects of inelastic collisions lead to stronger increase in the predicted droplet evaporation time in Diesel engine-like conditions relative to the hydrodynamic model, compared with the similar increase predicted by the kinetic model considering only elastic collisions. The effects of a non-unity evaporation coefficient are shown to be

  19. The relationship between the Wigner-Weyl kinetic formalism and the complex geometrical optics method

    OpenAIRE

    Maj, Omar

    2004-01-01

    The relationship between two different asymptotic techniques developed in order to describe the propagation of waves beyond the standard geometrical optics approximation, namely, the Wigner-Weyl kinetic formalism and the complex geometrical optics method, is addressed. More specifically, a solution of the wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained which yields the same wavefield intensity as the complex geometrical optics method. Such a relationship is also disc...

  20. Hot deformation effect on the kinetics of austenite transformation under continuous cooling conditions

    International Nuclear Information System (INIS)

    Bernshtejn, M.L.; Zajmovskij, V.A.; Kisteh, N.V.; Samedov, O.V.; Faldin, S.A.

    1979-01-01

    The effect of hot deformation on the kinetics of austenite transformations in the commercial 4040Kh 40KhN, and 40KhNMA steels on continuous cooling was studied. The transformations were studied using a dilatometer of a special design which permits a specimen to be fixed quickly in holders after hot deformation. It is stated that in hot-deformed austenite the pearlite transformation proceeds at higher temperatures and in a narrower temperature range. Austenite deformation provides an opportunity to obtain a more fine ferrite-pearlite structure and ensures a uniform distribution of a structurally free ferrite in the steel bulk. The effect of hot deformation on the structure of ferrite decomposition products in the 40KhN and 40KhNMA steels is more complicated, which is connected with a substantial change in the kinetics of pearlite and intermediate transformations

  1. Compressibility effects on ideal and kinetic ballooning modes and elimination of finite Larmor radius stabilization

    International Nuclear Information System (INIS)

    Kotschenreuther, M.

    1985-07-01

    The dynamics of ideal and kinetic ballooning modes are considered analytically including parallel ion dynamics, but without electron dissipation. For ideal modes, parallel dynamics predominantly determine the growth rate when β is within approx.30% of the ideal threshold, resulting in a substantial reduction in growth rate. Compressibility also eliminates the stabilization effects of finite Larmor radius (FLR); FLR effects (when temperature gradients are neglected) can even increase the growth rate above the MHD value. Temperature gradients accentuate this by adding a new source of free energy independent of the MHD drive, in this region of ballooning coordinate corresponding in MHD to the continuum. Analytic dispersion relations are derived demonstrating the effects above; the formalism emphasizes the similarities between the ideal MHD and kinetic cases

  2. Task relevance modulates successful retrieval effects during explicit and implicit memory tests.

    Science.gov (United States)

    Elman, Jeremy A; Shimamura, Arthur P

    2011-05-01

    The successful retrieval effect refers to greater activation for items identified as old compared to those identified as new. This effect is particularly apparent in the ventral posterior parietal cortex (vPPC), though its functional properties remain unclear. In two experiments, we assessed the activation for old and new items during explicit and implicit tests of memory. In Experiment 1, significant effects were observed during explicit recognition performance and during an implicit lexical decision task. In both tasks, determining mnemonic status provides relevant information to task goals. Experiment 2 included a second implicit task in which determining mnemonic status was not relevant (color discrimination task). In this case, vPPC activation did not distinguish between old and new items. These findings suggest that automatic or implicit processes can drive retrieval-related activation in the vPPC, though such processes are gated by stimulus relevancy and task goals. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. New Methods for Processing and Quantifying VO2 Kinetics to Steady State: VO2 Onset Kinetics

    Directory of Open Access Journals (Sweden)

    Craig R. McNulty

    2017-09-01

    Full Text Available Current methods of oxygen uptake (VO2 kinetics data handling may be too simplistic for the complex physiology involved in the underlying physiological processes. Therefore, the aim of this study was to quantify the VO2 kinetics to steady state across the full range of sub-ventilatory threshold work rates, with a particular focus on the VO2 onset kinetics. Ten healthy, moderately trained males participated in five bouts of cycling. Each bout involved 10 min at a percentage of the subject's ventilation threshold (30, 45, 60, 75, 90% from unloaded cycling. The VO2 kinetics was quantified using the conventional mono-exponential time constant (tau, τ, as well as the new methods for VO2 onset kinetics. Compared to linear modeling, non-linear modeling caused a deterioration of goodness of fit (main effect, p < 0.001 across all exercise intensities. Remainder kinetics were also improved using a modified application of the mono-exponential model (main effect, p < 0.001. Interestingly, the slope from the linear regression of the onset kinetics data is similar across all subjects and absolute exercise intensities, and thereby independent of subject fitness and τ. This could indicate that there are no functional limitations between subjects during this onset phase, with limitations occurring for the latter transition to steady state. Finally, the continuing use of mono-exponential modeling could mask important underlying physiology of more instantaneous VO2 responses to steady state. Consequently, further research should be conducted on this new approach to VO2 onset kinetics.

  4. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  5. Investigation of effect of air flow rate on Zircaloy-4 oxidation kinetics and breakaway phenomenon in air at 850 .deg. C

    International Nuclear Information System (INIS)

    Maeng, Yunhwan; Lee, Jaeyoung; Park, Sanggil

    2016-01-01

    This paper analyzed an effect of flow rate on oxidation kinetics of Zircaloy-4 in air at 850 .deg. C. In case of the oxidation of Zircaloy-4 in air at 850 .deg. C, acceleration of oxidation kinetics from parabolic to linear (breakaway phenomenon) occurs. Oxidation and breakaway kinetics of the Zircaloy-4 in air was experimentally studied by changing a flow rate of argon/air mixture. Tests were conducted at 850 .deg. C under constant ratio of argon and air. The effects of flow rate on the oxidation and breakaway kinetics was observed. This paper is based on a revised and considerably extended presentation given at the 21 st International Quench Workshop. The effects of flow conditions on the oxidation kinetics of Zircaloy-4 samples were explained with residence time and percent flow efficiency. In addition, several issues were observed from this study, interdiffusion at breakaway and deformation of oxide structure by breakaway phenomenon

  6. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  7. Kinetic studies following state-selective laser excitation

    International Nuclear Information System (INIS)

    Keto, J.W.

    1991-01-01

    During the past year, we have made measurements of state-to-state energy transfer cross sections and radiative lifetimes for Xe*(6p,6p',7p) and Kr*(5p) states in xenon and krypton buffer gases. These results are relevant to kinetic models of both excimer lasers and the infrared xenon laser; and they are a significant improvement in the precision of the known radiative lifetimes. 3 refs., 2 figs., 2 tabs

  8. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  9. Stimulus-response correspondence effect as a function of temporal overlap between relevant and irrelevant information processing.

    Science.gov (United States)

    Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany

    2016-01-01

    The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.

  10. Effects of self-relevant cues and cue valence on autobiographical memory specificity in dysphoria.

    Science.gov (United States)

    Matsumoto, Noboru; Mochizuki, Satoshi

    2017-04-01

    Reduced autobiographical memory specificity (rAMS) is a characteristic memory bias observed in depression. To corroborate the capture hypothesis in the CaRFAX (capture and rumination, functional avoidance, executive capacity and control) model, we investigated the effects of self-relevant cues and cue valence on rAMS using an adapted Autobiographical Memory Test conducted with a nonclinical population. Hierarchical linear modelling indicated that the main effects of depression and self-relevant cues elicited rAMS. Moreover, the three-way interaction among valence, self-relevance, and depression scores was significant. A simple slope test revealed that dysphoric participants experienced rAMS in response to highly self-relevant positive cues and low self-relevant negative cues. These results partially supported the capture hypothesis in nonclinical dysphoria. It is important to consider cue valence in future studies examining the capture hypothesis.

  11. Effects on topic familiarity on online search behaviour and use of relevance criteria

    DEFF Research Database (Denmark)

    Wen, Lei; Ruthven, Ian; Borlund, Pia

    2006-01-01

    This paper presents an experimental study on the effect of topic familiarity on the assessment behaviour of online searchers. In particular we investigate the effect of topic familiarity on the resources and relevance criteria used by searchers. Our results indicate that searching on an unfamiliar...... topic leads to use of more generic and fewer specialised resources and that searchers employ different relevance criteria when searching on less familiar topics....

  12. A calorimetric study of solute effects on the kinetic stability of a-amylase

    DEFF Research Database (Denmark)

    Olsen, Søren Nymand; Andersen, Kim Bruno; Øgendal, Lars Holm

    2009-01-01

    In this study we evaluated the applications of isothermal titration calorimetry (ITC) to Study solute effects on the kinetics of irreversible protein denaturation. More specifically, denaturation of Bacillus Halmapalus alpha-amylase (BHA) was initiated by addition of EDTA to the calorimetric cell...

  13. Crystallization kinetics of a-Se, part 4: thin films

    Science.gov (United States)

    Svoboda, Roman; Gutwirth, Jan; Málek, Jiří

    2014-09-01

    Differential scanning calorimetry was used to study the crystallization behaviour of selenium thin films in dependence on film thickness and deposition rate. In the current work, which is the fourth in a sequence of articles dealing with crystallization kinetics of a-Se, the non-isothermal crystallization kinetics was described in terms of the Johnson-Mehl-Avrami nucleation-growth model. Two-dimensional crystallite growth, consistent with the idea of sterically restricted crystallization in a thin layer, was confirmed for all data. It was found that neither the film thickness (tested within the 100-2350 nm range) nor the deposition rate appears to have any significant influence on the crystallization kinetics. However, the higher amount of intrinsic defects possibly produced by a higher deposition rate seems to accelerate the crystallization, shifting it towards lower temperatures. Very good correlation between the results obtained for thin films and those for fine powders was found. Based on the obtained results, interpretations of relevant literature data were made.

  14. alfa-Deuterium kinetic isotope effects in reactions of methyllithium. Is better aggregation the cause of lower reactivity?

    DEFF Research Database (Denmark)

    Holm, Torkil

    1996-01-01

    The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium......The value of kH/kD for alfa deuterium kinetic isotope effects for the reaction of methyllithium and methylmagnesium iodid with a series of substrates are consistently ca. 10-15 % higher for the lithium reagent. This may indicate a pre-equilibrium...

  15. Effect of lattice-level adjoint-weighting on the kinetics parameters of CANDU reactors

    International Nuclear Information System (INIS)

    Nichita, Eleodor

    2009-01-01

    Space-time kinetics calculations for CANDU reactors are routinely performed using the Improved Quasistatic (IQS) method. The IQS method calculates kinetics parameters such as the effective delayed-neutron fraction and generation time using adjoint weighting. In the current implementation of IQS, the direct flux, as well as the adjoint, is calculated using a two-group cell-homogenized reactor model which is inadequate for capturing the effect of the softer energy spectrum of the delayed neutrons. Additionally, there may also be fine spatial effects that are lost because the intra-cell adjoint shape is ignored. The purpose of this work is to compare the kinetics parameters calculated using the two-group cell-homogenized model with those calculated using lattice-level fine-group heterogeneous adjoint weighting and to assess whether the differences are large enough to justify further work on incorporating lattice-level adjoint weighting into the IQS method. A second goal is to evaluate whether the use of a fine-group cell-homogenized lattice-level adjoint, such as is the current practice for Light Water Reactors (LWRs), is sufficient to capture the lattice effects in question. It is found that, for CANDU lattices, the generation time is almost unaffected by the type of adjoint used to calculate it, but that the effective delayed-neutron fraction is affected by the type of adjoint used. The effective delayed-neutron fraction calculated using the two-group cell-homogenized adjoint is 5.2% higher than the 'best' effective delayed-neutron fraction value obtained using the detailed lattice-level fine-group heterogeneous adjoint. The effective delayed-neutron fraction calculated using the fine-group cell-homogenized adjoint is only 1.7% higher than the 'best' effective delayed-neutron fraction value but is still not equal to it. This situation is different from that encountered in LWRs where weighting by a fine-group cell-homogenized adjoint is sufficient to calculate the

  16. Kinetic, volumetric and structural effects induced by liquid Ga penetration into ultrafine grained Al

    International Nuclear Information System (INIS)

    Naderi, Mehrnoosh; Peterlechner, Martin; Schafler, Erhard; Divinski, Sergiy V.; Wilde, Gerhard

    2015-01-01

    Kinetic, volumetric and structural effects induced by penetration of liquid Ga in ultrafine grained (UFG) Al produced by severe plastic deformation using high-pressure torsion were studied by isothermal dilatometric measurements, electron microscopy, atomic force microscopy and X-ray diffraction. Severe plastic deformation changed the distribution of impurities and their segregation was revealed by transmission electron microscopy. Two-stage length changes of UFG Al were observed which are explained by counteracting effects of expansion due to grain boundary segregation of Ga and contraction due to precipitation and recrystallization. After applying Ga, the kinetics of the liquid Ga penetration in UFG Al is studied in-situ in the electron microscope by the “first appearance” method and the time scales are in agreement with those inducing the volumetric changes

  17. Effects of prophylactic knee bracing on knee joint kinetics and kinematics during netball specific movements.

    Science.gov (United States)

    Sinclair, Jonathan K; Vincent, Hayley; Richards, Jim D

    2017-01-01

    To investigate the effects of a prophylactic knee brace on knee joint kinetics and kinematics during netball specific movements. Repeated measures. Laboratory. Twenty university first team level female netball players. Participants performed three movements, run, cut and vertical jump under two conditions (brace and no-brace). 3-D knee joint kinetics and kinematics were measured using an eight-camera motion analysis system. Knee joint kinetics and kinematics were examined using 2 × 3 repeated measures ANOVA whilst the subjective ratings of comfort and stability were investigated using chi-squared tests. The results showed no differences (p > 0.05) in knee joint kinetics. However the internal/external rotation range of motion was significantly (p < 0.05) reduced when wearing the brace in all movements. The subjective ratings of stability revealed that netballers felt that the knee brace improved knee stability in all movements. Further study is required to determine whether reductions in transverse plane knee range of motion serve to attenuate the risk from injury in netballers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  19. Kinetic isotope effect in the reaction of dehydration of fructose into 5-hydroxymethylfurfural

    International Nuclear Information System (INIS)

    Grin', S.A.; Tsimbaliev, S.R.; Gel'fand, S.Yu.

    1993-01-01

    Kinetic isotopic effect in the reaction of fructose dehydration into 5- hydroxymethylfurfural was determined. The results suggest hydrogen participation in the limiting stage of the process. The assumption that proton addition to 4, 5, 6 -trihydroxy - 2- on - hexal is the limiting stage is made

  20. A STUDY TO COMPARE THE EFFECT OF CLOSED AND OPEN KINETIC CHAIN EXERCISE WITH KINESIO TAPING FOR PATELLO FEMORAL PAIN SYNDROME

    Directory of Open Access Journals (Sweden)

    Gitanjali Nandkumar Rangole

    2015-12-01

    Full Text Available Background: Patello femoral pain syndrome is dull, aching pain anterior to knee which frequently activity related may be present in one or both knees with difficulty in walking, running. The purpose of the study is to evaluate the effect of open kinetic chain exercise with Kinesio taping versus close kinetic chain exercise with kinesio taping for improving pain and functional mobility in subjects with unilateral patellofemoral pain syndrome. Methods: An Experimental study design, 30 subjects with unilateral patellofemoral pain were selected and randomized 15 subjects into each two groups. Group-A received Open Kinetic chain exercise with Kinesio taping while Group-B received Close kinetic chain exercises with kinesio taping. The duration of intervention was 2 weeks. Outcome measure such as Functional mobility was measured using a Kujala questionnaire and pain was measured using a VAS scale before and after two weeks of intervention. Results: Analysis using Independent ‘t’ test and Mann Whitney U test found that there is statistically significant difference with p<0.000 when pre to post interventions means were compared within the groups. When post intervention means between the Group-A and Group-B were compared there is a significant statistical difference in VAS and functional mobility. Conclusion: The present study concluded that both Open kinetic chain exercise with kinesio taping and close kinetic chain exercise with kinesio taping are effective in improving functional mobility and Pain. However close kinetic chain exercises with Kinesio taping shown greater percentage of effect in improving pain and functional mobility than open kinetic chain exercise.

  1. Domain-growth kinetics and aspects of pinning: A Monte Carlo simulation study

    DEFF Research Database (Denmark)

    Castán, T.; Lindgård, Per-Anker

    1991-01-01

    By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic transformati......By means of Monte Carlo computer simulations we study the domain-growth kinetics after a quench across a first-order line to very low and moderate temperatures in a multidegenerate system with nonconserved order parameter. The model is a continuous spin model relevant for martensitic...... to cross over from n = 1/4 at T approximately 0 to n = 1/2 with temperature for models with pinnings of types (a) and (b). For topological pinnings at T approximately 0, n is consistent with n = 1/8, a value conceivable for several levels of hierarchically interrelated domain-wall movement. When...

  2. Fusion-relevant basic radiation effects: theory and experiment

    International Nuclear Information System (INIS)

    Mansur, L.K.; Coghlan, W.A.; Farrell, K.; Horton, L.L.; Lee, E.H.; Lewis, M.B.; Packan, N.H.

    1983-01-01

    A summary is given of results of the basic radiation effects program at Oak Ridge National Laboratory, which are relevant to fusion reactor materials applications. The basic radiation effects program at ORNL is a large effort with the dual objectives of understanding the atomic and microstructural defect mechanisms underlying radiation effects and of determining principles for the design of radiation resistant materials. A strength of this effort is the parallel and integrated experimental and theoretical approaches in each major research area. The experimental effort is active in electron microscopy, ion irradiations and ion-beam techniques, neutron irradiations, surface analysis and in other areas. The theoretical effort is active in developing the theory of radiation effects for a broad range of phenomena and in applying it to the design and interpretation of experiments and to alloy design

  3. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  4. Exploring the interaction of silver nanoparticles with pepsin and its adsorption isotherms and kinetics.

    Science.gov (United States)

    Li, Xiangrong; Wang, Kaiwei; Peng, Yanru

    2018-04-25

    The interaction of nanoparticles (NPs) with proteins is a topic of high relevance for the medical application of nanomaterials. In the study, a comprehensive investigation was performed for the binding properties of silver nanoparticles (AgNPs) to pepsin. The results indicate that the binding of AgNPs to pepsin may be a static quenching mechanism. Thermodynamic analysis reveals that AgNPs binds to pepsin is synergistically driven by enthalpy and entropy, and the major driving forces are hydrophobic and electrostatic interactions. Synchronous fluorescence spectroscopy shows that AgNPs may induce microenvironmental changes of pepsin. The hydrophobicity of Trp is increased while the hydrophility of Tyr is increased. The adsorption of pepsin on AgNPs was analyzed by Langmuir and Freundlich models, suggesting that the equilibrium adsorption data fit well with Freundlich model. The equilibrium adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equations. The results indicate that pseudo-second-order kinetic equation better describes the adsorption kinetics. The study provides an accurate and full basic data for clarifying the binding mechanism, adsorption isotherms and kinetic behaviors of AgNPs with pepsin. These fundamental works will provide some new insights into the safe and effective application of AgNPs in biological and medical areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  6. Effect of electromagnetic radiation on the kinetics of grinding a mineral

    International Nuclear Information System (INIS)

    Lopez M, A.; Delgadillo G, J. A.; Vega C, H. R.

    2015-10-01

    In this study the effect of kinetic grinding of a mineral was investigated when is pre treated with ionizing electromagnetic radiation. This radiation is with 15 MeV photons produced by a Linac for Radiotherapy. The results for the irradiated sample with respect to the non-irradiated indicate that there were changes in the structure of the minerals in the sample under study. Changes were observed through scanning electron microscopy and X-ray diffraction, combined with the refinement of the diffraction profiles by the Rietveld method using the software Maud Program. The grinding kinetics shows a constant distribution of slightly greater size through time used for the irradiated sample. A reduction of 11.2% of the Bond (Wi) work index was reached, going from 10.91 to 9.69 kw h/t for the irradiated sample. This parameter represents the fracture toughness of a mineral. The results indicate greater efficiency of energy applied to the grinding of the irradiated sample with respect to the non-irradiated. (Author)

  7. An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → An efficient technique for the nonlinear reactor kinetics equations is presented. → This method is based on Backward Euler or Crank Nicholson and fundamental matrix. → Stability of efficient technique is defined and discussed. → This method is applied to point kinetics equations of six-groups of delayed neutrons. → Step, ramp, sinusoidal and temperature feedback reactivities are discussed. - Abstract: The point reactor kinetics equations of multi-group of delayed neutrons in the presence Newtonian temperature feedback effects are a system of stiff nonlinear ordinary differential equations which have not any exact analytical solution. The efficient technique for this nonlinear system is based on changing this nonlinear system to a linear system by the predicted value of reactivity and solving this linear system using the fundamental matrix of the homogenous linear differential equations. The nonlinear point reactor kinetics equations are rewritten in the matrix form. The solution of this matrix form is introduced. This solution contains the exponential function of a variable coefficient matrix. This coefficient matrix contains the unknown variable, reactivity. The predicted values of reactivity in the explicit form are determined replacing the exponential function of the coefficient matrix by two kinds, Backward Euler and Crank Nicholson, of the rational approximations. The nonlinear point kinetics equations changed to a linear system of the homogenous differential equations. The fundamental matrix of this linear system is calculated using the eigenvalues and the corresponding eigenvectors of the coefficient matrix. Stability of the efficient technique is defined and discussed. The efficient technique is applied to the point kinetics equations of six-groups of delayed neutrons with step, ramp, sinusoidal and the temperature feedback reactivities. The results of these efficient techniques are compared with the traditional methods.

  8. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .2. KINETIC MEDIUM EFFECTS

    NARCIS (Netherlands)

    GALEMA, SA; BLANDAMER, MJ; ENGBERTS, JBFN

    1992-01-01

    Rate constants for the hydrolysis of 1-benzoyl-3-phenyl-1,2,4-triazole in aqueous solutions of carbohydrates have been measured as a function of molality and nature of added mono- and disaccharides. The kinetic medium effects induced by the carbohydrates originate from hydration sphere overlap

  9. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  10. Kinetic Effects on the Stability Properties of Field-reversed Configurations: I. Linear Stability

    Energy Technology Data Exchange (ETDEWEB)

    Elena V. Belova; Ronald C. Davidson; Hantao Ji; Masaaki Yamada

    2003-01-28

    New computational results are presented which advance the understanding of the stability properties of the Field-Reversed Configuration (FRC). We present results of hybrid and two-fluid (Hall-MHD) simulations of prolate FRCs. The n = 1 tilt instability mechanism and growth rate reduction mechanisms are investigated in detail including resonant particle effects, finite Larmor radius and Hall stabilization, and profile effects. It is shown that the Hall effect determines the mode rotation and the change in the linear mode structure in the kinetic regime; however, the reduction in the growth rate is mostly due to finite Larmor radius effects. Resonant wave-particle interactions are studied as a function of (a) elongation, (b) the kinetic parameter S*, which is proportional to the ratio of the separatrix radius to the thermal ion Larmor radius, and (c) the separatrix shape. It is demonstrated that, contrary to the usually assumed stochasticity of the ion orbits in the FRC, a large fraction of the orbits are regular in long configurations when S* is small. A stochasticity condition is found, and a scaling with the S* parameter is presented. Resonant particle effects are shown to maintain the instability in the large gyroradius regime regardless of the separatrix shape.

  11. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  12. Kinetic theory of tearing instabilities

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1977-01-01

    The transition of the tearing instability from the collisional to the collisionless regime is investigated kinetically using a Fokker--Planck collision operator to represent electron-ion collisions. As a function of the collisionality of the plasma, the tearing instability falls into three regions, which are referred to as collisionless, semi-collisional, and collisional. The width Δ of the singular layer around kxB 0 =0 is limited by electron thermal motion along B 0 in the collisional and semi-collisional regimes and is typically smaller than rho/sub i/, the ion Larmor radius. Previously accepted theories, which are based on the assumption Δvery-much-greater-thanrho/sub i/, are found to be valid only in the collisional regime. The effects of density and temperature gradients on the instabilities are also studied. The tearing instability is only driven by the temperature gradient in the collisional and semi-collisional regimes. Numerical calculations indicate that the semi-collisional tearing instability is particularly relevant to present day high temperature tokamak discharges

  13. Kinetics of BaSO4 crystal growth and effect in formation damage

    International Nuclear Information System (INIS)

    Wat, R.M.S.; Sorbie, K.S.; Todd, A.C.; Chen, P.; Jiang, P.

    1992-01-01

    In the North Sea, due to the extensive use of water injection for oil displacement and pressure maintenance, many reservoirs experience the problem of scale deposition when injection water starts to breakthrough. In most cases the scaled-up wells are caused by the formation of sulphate scales of Barium and Strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and the preventative measure such as the squeeze inhibitor treatment has to be taken. It is therefore important to have a proper understanding of the kinetics of scale formation and its detrimental effect on formation damage under both inhibited and uninhibited environment. In this paper, the authors present results of BaSO 4 formation kinetics in both beaker tests and in highly reproducible sandpacks which simulates the flow in porous medium

  14. Kinetic Monte Carlo model of defect transport and irradiation effects in La-doped CeO2

    International Nuclear Information System (INIS)

    Oaks, Aaron; Yun Di; Ye Bei; Chen Weiying; Stubbins, James F.

    2011-01-01

    A generalized Kinetic Monte Carlo code was developed to study oxygen mobility in UO 2 type nuclear fuels, using lanthanum doped CeO 2 as a surrogate material. Molecular Statics simulations were performed using interatomic potentials for CeO 2 developed by Gotte, Minervini, and Sayle to calculate local configuration-dependent oxygen vacancy migration energies. Kinetic Monte Carlo simulations of oxygen vacancy diffusion were performed at varying lanthanum dopant concentrations using the developed generalized Kinetic Monte Carlo code and the calculated configuration-dependent migration energies. All three interatomic potentials were found to confirm the lanthanum trapping effect. The results of these simulations were compared with experimental data and the Gotte potential was concluded to yield the most realistic diffusivity curve.

  15. Micellar effect on the kinetics of oxidation of methyl blue by Ce(IV in sulfuric acid medium

    Directory of Open Access Journals (Sweden)

    Mohammed Hassan

    2015-01-01

    Full Text Available The kinetics of oxidation of methyl blue (MB by Ce(IV in aqueous and surfactant media has been carried out to explore the micellar effect on the rate and kinetic parameters of the reaction. The reaction was found to be first order with respect to both oxidant and substrate and fractional order with respect to H+. The active kinetic species of the oxidant was found to be Ce(SO4+2 based on the effect of ionic strength and sulfate ion on the rate of the reaction. The presence of micelles was found to inhibit the reaction and this effect has been explained by the association of one of the reactants with the micelles leaving the other reactant in the bulk solution. The binding constant and first order rate constant in micellar medium has been obtained by the application of pseudo-phase model to the experimental data. Interestingly, the temperature dependence of the reaction reveals that the reaction has negative activation energy in the absence of micelles, which turns to a positive value in the presence of micelles.

  16. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  17. A new formulation for the importance function in the kinetics of subcritical reactors

    International Nuclear Information System (INIS)

    Silva, Cristiano da; Senra Martinez, Aquilino; Carvalho da Silva, Fernando

    2012-01-01

    Highlights: ► In this paper we propose a new formulation for the importance function in the kinetics of subcritical systems. ► We analyze the relevance of an external neutron source for the subcritical interval 0.95 eff eff is the multiplication factor according to the physical properties of the nuclear reactor. For the purposes of validation of the proposed method we will use, as a reference method, the expansion in modes of the time-dependent neutron flux for the solution of the onedimensional diffusion equation. It will be presented results that demonstrate the precision of the proposed method when compared to the conventional point kinetic equations. The results show that the new point kinetic equations are rather precise in the subcriticality range considered.

  18. Transition-state analysis of a Vmax mutant of AMP nucleosidase by the application of heavy-atom kinetic isotope effects

    International Nuclear Information System (INIS)

    Parkin, D.W.; Mentch, F.; Banks, G.A.; Horenstein, B.A.; Schramm, V.L.

    1991-01-01

    The transition state of the V max mutant of AMP nucleosidase from Azotobacter vinelandii has been characterized by heavy-atom kinetic isotope effects in the presence and absence of MgATP, the allosteric activator. The enzyme catalyzes hydrolysis of the N-glycosidic bond of AMP at approximately 2% of the rate of the normal enzyme with only minor changes in the K m for substrate, the activation constant for MgATP, and the K i for formycin 5'-phosphate, a tight-binding competitive inhibitor. Isotope effects were measured as a function of the allosteric activator concentration that increases the turnover number of the enzyme from 0.006 s -1 . The kinetic isotope effects were measured with the substrates [1'- 3 H]AMP, [2'- 2 H]AMP, [9- 15 N]AMP, and [1',9- 14 C, 15 N]AMP. All substrates gave significant kinetic isotope effects in a pattern that establishes that the reaction expresses intrinsic kinetic isotope effects in the presence or absence of MgATP. Transition-state analysis using bond-energy and bond-order vibrational analysis indicated that the transition state for the mutant enzyme has a similar position in the reaction coordinate compared to that for the normal enzyme. The mutant enzyme is less effective in stabilizing the carbocation-like intermediate and in the ability to protonate N7 of adenine to create a better leaving group. This altered transition-state structure was confirmed by an altered substrate specificity for the mutant protein

  19. An Integrated Modeling Suite for Simulating the Core Induction and Kinetic Effects in Mercury's Magnetosphere

    Science.gov (United States)

    Jia, X.; Slavin, J.; Chen, Y.; Poh, G.; Toth, G.; Gombosi, T.

    2018-05-01

    We present results from state-of-the-art global models of Mercury's space environment capable of self-consistently simulating the induction effect at the core and resolving kinetic physics important for magnetic reconnection.

  20. Is case-based learning an effective teaching strategy to challenge students' alternative conceptions regarding chemical kinetics?

    Science.gov (United States)

    Yalçınkaya, Eylem; Taştan-Kırık, Özgecan; Boz, Yezdan; Yıldıran, Demet

    2012-07-01

    Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students have generally low levels of conceptual understanding and many alternative conceptions regarding it. Purpose: This study aimed to explore the effect of CBL on dealing with students' alternative conceptions about chemical kinetics. Sample: The sample consists of 53 high school students from one public high school in Turkey. Design and methods : Nonequivalent pre-test and post-test control group design was used. Reaction Rate Concept Test and semi-structured interviews were used for data collection. Convenience sampling technique was followed. For data analysis, the independent samples t-test and ANOVA was performed. Results : Both concept test and interview results showed that students instructed with cases had better understanding of core concepts of chemical kinetics and had less alternative conceptions related to the subject matter compared to the control group students, despite the fact that it was impossible to challenge all the alternative conceptions in the experimental group. Conclusions: CBL is an effective teaching method for challenging students' alternative conceptions in the context of chemical kinetics. Since using cases in small groups and whole class discussions has been found to be an effective way to cope with the alternative conceptions, it can be applied to other subjects and grade levels in high schools with a higher sample size. Furthermore, the effect of this method on academic achievement, motivation and critical thinking skills are other variables that can be investigated for future studies in the subject area of chemistry.

  1. Single Molecule Kinetics of ENTH Binding to Lipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rozovsky, Sharon [Univ. of Delaware, Newark, DE (United States); Forstner, Martin B. [Syracuse Univ., NY (United States); Sondermann, Holger [Cornell Univ., Ithaca, NY (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-04-03

    Transient recruitment of proteins to membranes is a fundamental mechanism by which the cell exerts spatial and temporal control over proteins’ localization and interactions. Thus, the specificity and the kinetics of peripheral proteins’ membrane residence are an attribute of their function. In this article, we describe the membrane interactions of the interfacial epsin N-terminal homology (ENTH) domain with its target lipid phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2). The direct visualization and quantification of interactions of single ENTH molecules with supported lipid bilayers is achieved using total internal reflection fluorescence microscopy (TIRFM) with a time resolution of 13 ms. This enables the recording of the kinetic behavior of ENTH interacting with membranes with physiologically relevant concentrations of PtdIns(4,5)P2 despite the low effective binding affinity. Subsequent single fluorophore tracking permits us to build up distributions of residence times and to measure ENTH dissociation rates as a function of membrane composition. In addition, due to the high time resolution, we are able to resolve details of the motion of ENTH associated with a simple, homogeneous membrane. In this case ENTH’s diffusive transport appears to be the result of at least three different diffusion processes.

  2. Using Beads and Divided Containers to Study Kinetic and Equilibrium Isotope Effects in the Laboratory and in the Classroom

    Science.gov (United States)

    Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J.

    2017-01-01

    The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…

  3. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  4. Mineralization of LCFA associated with anaerobic sludge: Kinetics, enhancement of methanogenic activity, and effect of VFA.

    Science.gov (United States)

    Pereira, M A; Sousa, D Z; Mota, M; Alves, M M

    2004-11-20

    Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane's enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA..g VSS(-1) was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2,838 +/- 63 and 4,571 +/- 257 mg COD-LCFA..g VSS(-1), the specific methanogenic activities in the presence of acetate, butyrate, and H(2)/CO(2) were significantly enhanced after the mineralization of the biomass-associated LCFA. For sludge with a specific LCFA content near the optimal value defined by the kinetic model, the effect of adding VFA to the medium was studied during the mineralization of the biomass-associated LCFA. Different patterns were obtained for each individual substrate. Acetate and butyrate were preferentially consumed by the consortium, but in the case of propionate no evidence of a sequential consumption pattern could be withdrawn. It was concluded that LCFA do not exert a bactericidal neither a permanent toxic effect toward the anaerobic consortia. A discussion is addressed to the relative roles of a reversible inhibitory effect and a transport limitation effect imposed by the LCFA surrounding the cells. (c) 2004 Wiley Periodicals, Inc

  5. Dynamic Effects of Self-Relevance and Task on the Neural Processing of Emotional Words in Context.

    Science.gov (United States)

    Fields, Eric C; Kuperberg, Gina R

    2015-01-01

    We used event-related potentials (ERPs) to examine the interactions between task, emotion, and contextual self-relevance on processing words in social vignettes. Participants read scenarios that were in either third person (other-relevant) or second person (self-relevant) and we recorded ERPs to a neutral, pleasant, or unpleasant critical word. In a previously reported study (Fields and Kuperberg, 2012) with these stimuli, participants were tasked with producing a third sentence continuing the scenario. We observed a larger LPC to emotional words than neutral words in both the self-relevant and other-relevant scenarios, but this effect was smaller in the self-relevant scenarios because the LPC was larger on the neutral words (i.e., a larger LPC to self-relevant than other-relevant neutral words). In the present work, participants simply answered comprehension questions that did not refer to the emotional aspects of the scenario. Here we observed quite a different pattern of interaction between self-relevance and emotion: the LPC was larger to emotional vs. neutral words in the self-relevant scenarios only, and there was no effect of self-relevance on neutral words. Taken together, these findings suggest that the LPC reflects a dynamic interaction between specific task demands, the emotional properties of a stimulus, and contextual self-relevance. We conclude by discussing implications and future directions for a functional theory of the emotional LPC.

  6. Dynamic effects of self-relevance and task on the neural processing of emotional words in context

    Directory of Open Access Journals (Sweden)

    Eric C. Fields

    2016-01-01

    Full Text Available We used event-related potentials (ERPs to examine the interactions between task, emotion, and contextual self-relevance on processing words in social vignettes. Participants read scenarios that were in either third person (other-relevant or second person (self-relevant and we recorded ERPs to a neutral, pleasant, or unpleasant critical word. In a previously reported study (Fields & Kuperberg, 2012 with these stimuli, participants were tasked with producing a third sentence continuing the scenario. We observed a larger LPC to emotional words than neutral words in both the self-relevant and other-relevant scenarios, but this effect was smaller in the self-relevant scenarios because the LPC was larger on the neutral words (i.e., a larger LPC to self-relevant than other-relevant neutral words. In the present work, participants simply answered comprehension questions that did not refer to the emotional aspects of the scenario. Here we observed quite a different pattern of interaction between self-relevance and emotion: the LPC was larger to emotional versus neutral words in the self-relevant scenarios only, and there was no effect of self-relevance on neutral words. Taken together, these findings suggest that the LPC reflects a dynamic interaction between specific task demands, the emotional properties of a stimulus, and contextual self-relevance. We conclude by discussing implications and future directions for a functional theory of the emotional LPC.

  7. Parsimonious relevance models

    NARCIS (Netherlands)

    Meij, E.; Weerkamp, W.; Balog, K.; de Rijke, M.; Myang, S.-H.; Oard, D.W.; Sebastiani, F.; Chua, T.-S.; Leong, M.-K.

    2008-01-01

    We describe a method for applying parsimonious language models to re-estimate the term probabilities assigned by relevance models. We apply our method to six topic sets from test collections in five different genres. Our parsimonious relevance models (i) improve retrieval effectiveness in terms of

  8. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.

    Science.gov (United States)

    Casasnovas, Rodrigo; Limongelli, Vittorio; Tiwary, Pratyush; Carloni, Paolo; Parrinello, Michele

    2017-04-05

    Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as k off = 0.020 ± 0.011 s -1 . This is in good agreement with the experimental value (k off = 0.14 s -1 ). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.

  9. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    Science.gov (United States)

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  10. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    Energy Technology Data Exchange (ETDEWEB)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  11. Kinetics of nickel bioaccumulation and its relevance to selected cellular processes in leaves of Elodea canadensis during short-term exposure.

    Science.gov (United States)

    Maleva, Maria G; Malec, Przemysław; Prasad, Majeti Narasimha Vara; Strzałka, Kazimierz

    2016-03-01

    Elodea canadensis is an aquatic macrophyte used widely as a bioindicator for the monitoring of water quality and in the phytoremediation of metal-contaminated waters. This study considers the kinetics of nickel bioaccumulation and changes in accompanying metabolic and stress-related physiological parameters. These include photosynthetic activity, pigment content, the accumulation of thiol-containing compounds, thiobarbituric acid-reactive substance (TBARS) products, and the activity of selected antioxidant enzymes (catalase, glutathione reductase, superoxide dismutase). Elodea leaves accumulated nickel according to pseudo-second-order kinetics, and the protective responses followed a time sequence which was related to the apparent rates of nickel accumulation. The applicability of second-order kinetics to the Ni uptake by Elodea leaves during the first 8 h of exposure to the metal suggested that the passive binding of metal ions (chemisorption) was a rate-limiting step at the initial phase of Ni accumulation. This phase was accompanied by an increase in photosynthetic activity together with elevated photosynthetic pigments and protein synthesis, the enhanced activity of antioxidant enzymes, and increased thiol concentration. In contrast, there was a decrease in metabolic activity upon the accumulation of TBARS, and the decline in enzyme activity was observed in the saturation phase of Ni accumulation (8-24 h). These results show that a correlation exists between the protective response and the apparent kinetic rate of Ni uptake. Thus, the time of exposure to the toxicant is a crucial factor in the activation of specific mechanisms of Ni detoxification and stress alleviation.

  12. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    OpenAIRE

    Rizvi, Masood Ahmad; Teshima, Norio; Maqsood, Syed Raashid; Akhoon, Showket Ahmad; Peerzada, Ghulam Mustafa

    2015-01-01

    Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III) redox reaction using spectrophotometric and potentiometric methods. The results were corroborated...

  13. Variational estimates of point-kinetics parameters

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M. Jr.

    1995-01-01

    Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores

  14. Effects of fatigue on kinematics and kinetics during overground running: a systematic review.

    Science.gov (United States)

    Winter, Sara; Gordon, Susan; Watt, Kerrianne

    2017-06-01

    Understanding kinematic and kinetic changes with fatigue during running is important to assess changes that may influence performance and injury. The aim of this systematic review was to identify, critique and summarize literature about the effects of fatigue on kinematics and kinetics during a fatiguing overground run and present the reported influence on performance and injury. An electronic search was conducted of MEDLINE, SPORTDiscus, CINAHL and PubMed databases. Two reviewers assessed articles for inclusion, and evaluated the quality of articles included using a modified version of the Downs and Black Quality Index. A total of twelve articles were identified for review. The mean quality assessment score was seven out of a possible 12. Kinematic and kinetic changes reported to affect performance included decreased speed, step or stride frequency and length, increased trunk flexion, lower leg position at heel strike, mediolateral acceleration, changes in hip and knee ranges, and decreased stride regularity, heel lift, maximum knee rotation and backward ankle velocity. Alterations reported to increase risk of injury included decreased step frequency, increased upper body rotation and lower leg position at heel strike, and decreased knee flexion during stance. Reduced risk of injury has been linked to decreased step length and hip ranges, and increased trunk flexion. This review found limited evidence regarding changes in kinematic and kinetic during a fatiguing run in relation to performance and injury. Higher quality studies are warranted, with a larger sample of homogenous runners, and type of run carefully selected to provide quality information for runners, coaches and clinicians.

  15. Point kinetics modeling

    International Nuclear Information System (INIS)

    Kimpland, R.H.

    1996-01-01

    A normalized form of the point kinetics equations, a prompt jump approximation, and the Nordheim-Fuchs model are used to model nuclear systems. Reactivity feedback mechanisms considered include volumetric expansion, thermal neutron temperature effect, Doppler effect and void formation. A sample problem of an excursion occurring in a plutonium solution accidentally formed in a glovebox is presented

  16. Kinetics of silver release from microfuel with taking into account the limited-solubility effect

    Science.gov (United States)

    Ivanov, A. S.; Rusinkevich, A. A.

    2014-12-01

    The effect of a limited solubility of silver in silicon carbide on silver release from a microfuel with a TRISO coating is studied. It is shown that a limited solubility affects substantially both concentration profiles and silver release from a microfuel over a broad range of temperatures. A procedure is developed for obtaining fission-product concentration profiles in a microfuel and graphs representing the flow and integrated release of fission products on the basis of data from neutron-physics calculations and results obtained by calculating thermodynamics with the aid of the Ivtanthermo code and kinetics with the aid of the FP-Kinetics code. This procedure takes into account a limited solubility of fission products in protective coatings of microfuel.

  17. Evaluation of energy collapsing effect on reactor kinetics parameters by diffusion theory

    International Nuclear Information System (INIS)

    Unesaki, Hironobu

    1989-01-01

    Reactor kinetics parameters play an important role as scaling factors between observed and calculated reactivities in the analysis of reactor physics experiments. In this report, energy collapsing errors in two kinetic parameters, the effective delayed neutron fraction and the neutron life time, are investigated by means of the diffusion theory. Coarse group calculations are made for various energy group structures. Cores of various moderator-to-fuel volume ratios are selected to investigate the influence of neutron spectrum changes on the energy collapsing error. The energy collapsing errors in the effective delayed neutron fraction and neutron life time are much larger than those in k eff . This might be because the former two parameters are functions of both the foward and adjoint flux, whereas the latter is a function of the forward flux alone. The use of coarse constants will cause errors in both fluxes, and the resulting errors in the former will be much more emphasized. As the effective delayed neutron fraction is sensitive to the treatment of an energy region in the vicinity of the fission spectrum peak, the coarse group error in it might differ between cores with different enrichment and composition. Inaccurate weighting of group constants leads to neutron spectra which do not conserve the fine group spectra, and those errors will be emphasized in calculated integral parameters. (N.K.)

  18. EFFECTS OF SIMPLIFIED CHEMICAL KINETIC MODEL ON THE MICRO-FLAME STRUCTURE AND TEMPERATURE OF THE LEAN PREMIXED METHANE-AIR MIXTURES

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2015-07-01

    Full Text Available The effect of simplified chemical kinetic model on the micro-flame structure, central axis and wall temperatures were investigated with different one-step global chemical kinetic mechanisms following Mantel, Duterque and Fernández-Tarrazo models. Numerical investigations of the premixed methane-air flame in the micro-channel and lean conditions were carried out to compare and analyze the effect of the comprehensive chemical kinetic mechanisms. The results indicate that one-step global chemical kinetic mechanism affects both the micro-flame shape and the combustion temperature. Among three simulation models, Mantel model allows a stable micro-flame with a bamboo shoot form, which anchor at the inlet. Duterque model gives a stable elongated micro-flame with a considerable ignition delay, and a dead zone with fluid accumulation is observed at the entrance, which may explain the very high combustion temperature and the fast reaction rate obtained, despite the micro-flame development presents a very hot spot and causes a broadening of the combustion zone. Fernández-Tarrazo model results in a rapid extinction and doesn't seem to take all the kinetic behavior into account for the appropriate micro-combustion simulations.

  19. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  20. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

    Science.gov (United States)

    Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M

    2016-10-01

    Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. The kinetic stabilizer: Issues and opportunities

    International Nuclear Information System (INIS)

    Post, R.F.

    2002-01-01

    Five decades of fusion research have resulted in a solid base of understanding of the physics of plasma confinement by magnetic fields, including documentation of the role of the topology of the magnetic fields, i.e., 'open' or 'closed' field lines, in determining the confinement. Without known exception, closed systems, such as tokamaks, stellarators, or reversed-field pinches, have confinement times that are dominated by turbulence. As a result, to produce net fusion power, closed systems must be so large in size as to raise questions as to their practicality. By contrast, there are examples of open (mirror-based) systems where turbulence, if present at all, was at such low levels as to have a negligible influence on the confinement. Specifically, members of a subset of open systems, those with axisymmetric fields, have demonstrated cross-field transport rates that agree with classical predictions, opening up the possibility of fusion power systems that would be much smaller than their closed-field counterparts. Standing in the way of implementing axisymmetric mirror-based fusion systems is the MHD-unstable nature of their equilibria. The kinetic stabilizer represents a proposed way to overcome this difficulty, one based on theory that has been confirmed in the gas dynamic trap (GDT) axisymmetric mirror experiment in Novosibirsk, Russia. MHD-stabilization in the GDT arises from the presence of a sufficient density of effluent plasma on the outwardly expanding field lines outside the mirrors. However, in those mirror-based fusion systems, such as tandem-mirrors, that would operate at lower plasma collisionalities than the GDT, the effluent plasma density would be too low for this stabilization method to be effective. The kinetic stabilizer overcomes this difficulty by using ion beams injected from ion sources located far out on the expanding field lines beyond the outer mirror. These ion beams, aimed at small angles to the field lines, are compressed, stagnated

  2. Effect of steam baking on acrylamide formation and browning kinetics of cookies.

    Science.gov (United States)

    Isleroglu, Hilal; Kemerli, Tansel; Sakin-Yilmazer, Melike; Guven, Gonul; Ozdestan, Ozgul; Uren, Ali; Kaymak-Ertekin, Figen

    2012-10-01

    Effects of baking method and temperature on surface browning and acrylamide concentration of cookies were investigated. Cookies were baked in natural and forced convection and steam-assisted hybrid ovens at 165, 180, and 195 °C and at different times. For all oven types, the acrlyamide concentration and surface color of cookies increased with increasing baking temperature. Significant correlation was observed between acrylamide formation and browning index, BI, which was calculated from Hunter L, a, and b color values, and it showed that the BI may be considered as a reliable indicator of acrylamide concentration in cookies. Acrylamide formation and browning index in cookies were considered as the first-order reaction kinetics and the reaction rate constants, k, were in the range of 0.023 to 0.077 (min(-1) ) and 0.019 to 0.063 (min(-1) ), respectively. The effect of baking temperature on surface color and acrylamide concentration followed the Arrhenius type of equation, with activation energies for acrylamide concentration as 6.87 to 27.84 kJ/mol; for BI value as 19.54 to 35.36 kJ/mol, for all oven types. Steam-assisted baking resulted in lower acrylamide concentration at 165 °C baking temperature and lower surface color for all temperatures. Steam-assisted baking is recommended as a healthy way of cooking providing the reduction of harmful compounds such as acrylamide for bakery goods, at a minimal level, while keeping the physical quality. The kinetics of acrylamide formation and browning of cookies will possibly allow definition of optimum baking temperatures and times at convectional and steam-assisted baking ovens. The kinetic model can be used by developing baking programs that can automatically control especially a new home-scale steam-assisted hybrid oven producing healthy products, for the use of domestic consumers. © 2012 Institute of Food Technologists®

  3. Size effect on order-disorder transition kinetics of FePt nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-01

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L1 0 ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results

  4. Kinetic isotope effects in the CH4 + H→CH3 + H2 system. Predictions of the LMR six-body potential-energy reaction hypersurface

    International Nuclear Information System (INIS)

    Marriott, T.D.

    1976-01-01

    Scope of Study: The purpose of this study was two-fold. First, it served to test, in part, the usefulness of the LMR six-body potential-energy surface (LMR-PES) for transition-state theory predictions of the kinetic isotope effects for both the forward and reverse reactions of CH 4 + H reversible CH 3 + H 2 . In this regard the agreement between experimental and theoretical isotope effects, assuming the former to be accurate, provides information about the accuracy of the curvature of the potential energy surface for motion both parallel and perpendicular to the reaction coordinate. Second, these isotope effects were used to assess the validity of a number of qualitative and semi-quantitative interpretations of kinetic isotope effects developed in physical organic chemistry with regard to this reaction system. The force constants and geometries obtained numerically from the LMR-PES were found to produce reasonable harmonic approximations to the reactant normal mode frequencies. Neglecting tunneling, the LMR-PES reasonably reproduces the experimental k/sub H//k/sub D/ values for the reactions CH 4 + H(D), CH 3 + HD(DH) and CD 2 + HD(DH). Since previous theoretical treatments of primary deuterium kinetic isotope effects have neglected the bending normal mode frequencies, a semi-quantitative study of the effect of neglecting bending frequencies on the VP, EXC, and ZPE elements as well as the transition-state theory kinetic isotope effects was performed. The Swain-Schaad relationship between primary deuterium and tritium kinetic isotope effects was shown to hold to a reasonable degree of accuracy for the LMR-PES reaction system. A relationship between 13-carbon and 14-carbon kinetic isotope effects similar to the Swain-Schaad relationship was derived

  5. Self-consistent Kinetic Simulation of RMP-driven Transport: Collisionality and Rotation Effects on RMP Penetration and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Jeon, Y.; Kim, J., E-mail: gypark@nfri.re.kr [NFRI, Daejeon (Korea, Republic of); Chang, C. [Princeton Plasma Physics Laboratory, Princeton (United States)

    2012-09-15

    Full text: Control of the edge localized modes (ELMs) is one of the most critical issues for a more successful operation of ITER and the future tokamak fusion reactors. This paper reports ITER relevant simulation results from the XGC0 drift-kinetic code, with respect to the collisionality, plasma density, and rotation dependence of the RMP penetration and the RMP-driven transport in diverted DIII-D geometry with neutral recycling. The simulation results are consistent with the experimental results, and contribute to the physics understanding needed for more confident extrapolation of the present RMP experiments to ITER. It is found that plasma-responded stochasticity becomes weaker as the collisionality gets higher and RMP-driven transport (i.e., density pump-out) is much weaker in the high collisionality case compared with that in the low collisionality one, which is consistent with the recent experimental results on DIII-D and ASDEX-U tokamaks. As for rotation effect, low rotation is found not to affect the stochasticity much in the edge region, while high rotation significantly suppresses the RMPs in the core. The clear difference in RMP behavior between the low and high collisionality regimes can be understood by examining the perturbed current Fourier amplitude profiles within the range of resonant poloidal mode numbers (m = 8 - 15, n = 3). It can be seen that primary shielding currents are strongly concentrated around the steep pedestal region just inside the separatrix, which naturally produces very strong suppression of RMPs there, in low collisionality case. However, in high collisionality case, primary shielding currents are very weak and accumulating toward inner radii leading to the shielding of RMPs further into the plasma. Our kinetic simulation method is also applied to the modeling of RMP ELM control experiments on KSTAR tokamak and the results will be presented together. (author)

  6. Activation Kinetics and Off-Target Effects of Thymus-Initiated Cre Transgenes

    Science.gov (United States)

    Shi, Jianjun; Petrie, Howard T.

    2012-01-01

    The bacteriophage enzyme Cre is a site-specific recombinase widely used to delete loxP-flanked DNA sequences in lineage-specific fashion. Several mouse lines that direct Cre expression to lymphoid progenitors in the thymus have been established, but a side-by-side comparison of when they first become active, and/or their relative efficiency at various developmental stages, has been lacking. In this study, we evaluated these in four common Cre transgenic strains with thymus-initiated promoters (Lck, Cd2, or Cd4). We found that while all of them eventually labeled nearly all thymocytes, their kinetics were dramatically different, and other than Cd4[Cre], did not faithfully recapitulate the expression pattern of the corresponding endogenous gene. Perhaps even more importantly, while thymuses from some strains compared favorably to thymuses from control (Cre-negative) mice, we found that Cre expression could also result in off-target effects, including moderate to severe decreases in thymic cellularity. These effects occurred in the absence of loxP-flanked DNA target genes, and were dose and copy number dependent. Loss of cellularity was attributable to a specific decrease in CD4+8+ immature cells, and corresponds to an increased rate of programmed cell death. In addition to a comprehensive analysis of activation kinetics in thymus-initiated Cre transgenes, our data show that Cre is toxic to CD4+8+ cells in a dose-dependent fashion, and emphasize that the choice of thymus-initiated Cre strain is critically important for minimizing off-target effects of Cre. PMID:23049709

  7. Resonance transport and kinetic entropy

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Knoll, J.; Voskresensky, D.N.

    2000-01-01

    We continue the description of the dynamics of unstable particles within the real-time formulation of nonequilibrium field theory initiated in a previous paper . There we suggest to use Baym's PHI-functional method in order to achieve approximation schemes with 'built in' consistency with respect to conservation laws and thermodynamics even in the case of particles with finite damping width. Starting from Kadanoff-Baym equations we discuss a consistent first order gradient approach to transport which preserves the PHI-derivable properties. The validity conditions for the resulting quantum four-phase-space kinetic theory are discussed under the perspective to treat particles with broad damping widths. This non-equilibrium dynamics naturally includes all those quantum features already inherent in the corresponding equilibrium limit (e.g. Matsubara formalism) at the same level of PHI-derivable approximation. Various collision-term diagrams are discussed including those of higher order which lead to memory effects. As an important novel part we derive a generalized nonequilibrium expression for the kinetic entropy flow, which includes contributions from fluctuations and mass-width effects. In special cases an H-theorem is derived implying that the entropy can only increase with time. Memory effects in the kinetic terms provide contributions to the kinetic entropy flow that in the equilibrium limit recover the famous bosonic type T 3 lnT correction to the specific heat in the case of Fermi liquids like Helium-3

  8. Effect of Mineral Nutrients on the Kinetics of Methane Utilization by Methanotrophs

    DEFF Research Database (Denmark)

    Boiesen, Anette; Arvin, Erik; Broholm, Kim

    1993-01-01

    The effect of different mineral nutrients on the kinetics of methane biodegradation by a mixed culture of methanotrophic bacteria was studied. The substrate factors examined were ammonia, iron, copper, manganese, phosphate, and sulphide. The presence of iron in the growth medium had a strong effect...... was the only nitrogen source. The observed Monod constant for methane utilization increased with increasing concentration of ammonia. This shows that ammonia is a weak competitive inhibitor as observed by other researchers. Relatively high levels of both ammonia (70 mg/l) and copper (300 mu-g/l) inhibited...... the methane degradation, probably due to the toxic effect of copper-amine complexes....

  9. Continuous xylose fermentation by Clostridium acetobutylicum – Kinetics and energetics issues under acidogenesis conditions

    NARCIS (Netherlands)

    Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; Salatino, P.; Marzocchella, A.

    2014-01-01

    The paper reports the assessment of the growth kinetics of Clostridium acetobutylicum DSM 792 adopting xylose as carbon source. Xylose is the fundamental component of hemicellulose hydrolysis, a relevant fraction of lignocellulosic feedstocks for biofuel production. Tests were carried out in a CSTR

  10. Chemistry and reaction kinetics of biowaste torrefaction

    NARCIS (Netherlands)

    Stelt, van der M.J.C.

    2011-01-01

    This thesis addresses the question of how the chemistry and reaction kinetics of torrefaction are influenced by reaction conditions and the effects occuring during the reaction. This research question can be specified by questions such as, what controls their kinetics during torrefaction and what

  11. Finite size effects in phase transformation kinetics in thin films and surface layers

    International Nuclear Information System (INIS)

    Trofimov, Vladimir I.; Trofimov, Ilya V.; Kim, Jong-Il

    2004-01-01

    In studies of phase transformation kinetics in thin films, e.g. crystallization of amorphous films, until recent time is widely used familiar Kolmogorov-Johnson-Mehl-Avrami (KJMA) statistical model of crystallization despite it is applicable only to an infinite medium. In this paper a model of transformation kinetics in thin films based on a concept of the survival probability for randomly chosen point during transformation process is presented. Two model versions: volume induced transformation (VIT) when the second-phase grains nucleate over a whole film volume and surface induced transformation (SIT) when they form on an interface with two nucleation mode: instantaneous nucleation at transformation onset and continuous one during all the process are studied. At VIT-process due to the finite film thickness effects the transformation profile has a maximum in a film middle, whereas that of the grains population reaches a minimum inhere, the grains density is always higher than in a volume material, and the thinner film the slower it transforms. The transformation kinetics in a thin film obeys a generalized KJMA equation with parameters depending on a film thickness and in limiting cases of extremely thin and thick film it reduces to classical KJMA equation for 2D- and 3D-system, respectively

  12. Kinetic measurements of the hydrolytic degradation of cefixime: effect of Captisol complexation and water-soluble polymers.

    Science.gov (United States)

    Mallick, Subrata; Mondal, Arijit; Sannigrahi, Santanu

    2008-07-01

    We have taken kinetic measurements of the hydrolytic degradation of cefixime, and have studied the effect of Captisol complexation and water-soluble polymers on that degradation. The phase solubility of cefixime in Captisol was determined. Kinetic measurements were carried out as a function of pH and temperature. High-performance liquid chromatography (HPLC) was performed to assay all the samples of phase-solubility analysis and kinetic measurements. Chromatographic separation of the degradation products was also performed by HPLC. FT-IR spectroscopy was used to investigate the presence of any interaction between cefixime and Captisol and soluble polymer. The phase-solubility study showed A(L)-type behaviour. The pH-rate profile of cefixime exhibited a U-shaped profile whilst the degradation of cefixime alone was markedly accelerated with elevated temperature. A strong stabilizing influence of the cefixime-Captisol complexation and hypromellose was observed against aqueous mediated degradation, as compared with povidone and macrogol. The unfavourable effect of povidone and macrogol may have been due to the steric hindrance, which prevented the guest molecule from entering the cyclodextrin cavity, whereas hypromellose did not produce any steric hindrance.

  13. Effects of apolipoproteins on the kinetics of cholesterol exchange

    International Nuclear Information System (INIS)

    Letizia, J.Y.; Phillips, M.C.

    1991-01-01

    The effects of apolipoproteins on the kinetics of cholesterol exchange have been investigated by monitoring the transfer of [ 14 C]cholesterol from donor phospholipid/cholesterol complexes containing human apolipoproteins A, B, or C. Negatively charged discoidal and vesicular particles containing purified apolipoproteins complexed with lipid and a trace of [ 14 C]cholesterol were incubated with a 10-fold excess of neutral, acceptor, small unilamellar vesicles. The donor and acceptor particles were separated by chromatogrphy of DEAE-Sepharose, and the rate of movement of labeled cholesterol was analyzed as a first-order exchange process. The kinetics of exchange of cholesterol from both vesicular and discoidal complexes that contain apoproteins are consistent with an aqueous diffusion mechanism, as has been established previously for PC/cholesterol SUV. Apolipoproteins A-I, A-II, reduced and carboxymethylated A-11, and B-100 present in SUV at the same lipid/protein (w/w) ratio all enhance the rate of cholesterol exchange to about the same degree. Cholesterol molecules exchange more rapidly from discoidal complexes. Generally, as the diameter of apoprotein/phospholipid/cholesterol discs decreases, t 1/2 for cholesterol exchange decreases. Since small bilayer discs have a relatively high ratio of boundary to face surface area, cholesterol molecules desorb more rapidly than from larger discs. The modulation of lipid packing by the apoprotein molecules present at the surface of lipoprotein particles affects the rate of cholesterol exchange from such particles

  14. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    Science.gov (United States)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  15. Effects of thigh holster use on kinematics and kinetics of active duty police officers.

    Science.gov (United States)

    Larsen, Louise Bæk; Tranberg, Roy; Ramstrand, Nerrolyn

    2016-08-01

    Body armour, duty belts and belt mounted holsters are standard equipment used by the Swedish police and have been shown to affect performance of police specific tasks, to decrease mobility and to potentially influence back pain. This study aimed to investigate the effects on gait kinematics and kinetics associated with use of an alternate load carriage system incorporating a thigh holster. Kinematic, kinetic and temporospatial data were collected using three dimensional gait analysis. Walking tests were conducted with nineteen active duty police officers under three different load carriage conditions: a) body armour and duty belt, b) load bearing vest, body armour and thigh holster and c) no equipment (control). No significant differences between testing conditions were found for temporospatial parameters. Range of trunk rotation was reduced for both load carriage conditions compared to the control condition (p<0.017). Range of hip rotation was more similar to the control condition when wearing thigh holster rather than the belt mounted hip holster (p<0.017). Moments and powers for both left and right ankles were significantly greater for both of the load carriage conditions compared to the control condition (p<0.017). This study confirms that occupational loads carried by police have a significant effect on gait kinematics and kinetics. Although small differences were observed between the two load carriage conditions investigated in this study, results do not overwhelmingly support selection of one design over the other. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In vitro studies of ante-mortem proliferation kinetics

    International Nuclear Information System (INIS)

    McBride, W.H.; Withers, H.R.

    1986-01-01

    Using K562 human erythroblastoid cells, it was concluded that dose fractionation has no discrepant effect on the ante-mortem proliferation kinetics of doomed cells as opposed to clonogenic cell survival and that effects on ante-mortem proliferation kinetics cannot be solely responsible for the differences in fractionation response between early and late responding tissues. (UK)

  17. Effect of ionic strength on the kinetics of ionic and micellar reactions in aqueous solution

    International Nuclear Information System (INIS)

    Dung, M.H.; Kozak, J.J.

    1982-01-01

    The effect of electrostatic forces on the rate of reaction between ions in aqueous solutions of intermediate ionic strength is studied in this paper. We consider the kinetics of reactions involving simple ionic species (1--1 and 2--2 electrolyte systems) as well as kinetic processes mediated by the presence of micellar ions (or other charged organizates). In the regime of ionic strength considered, dielectric saturation of the solvent in the vicinity of the reacting ions must be taken into account and this is done by introducing several models to describe the recovery of the solvent from saturation to its continuum dielectric behavior. To explore the effects of ion size, charge number, and ionic strength on the overall rate constant for the process considered, we couple the traditional theory of ionic reactions in aqueous solution with calculations of the electrostatic potential obtained via solution of the nonlinear Poisson--Boltzmann equation. The great flexibility of the nonlinear Poisson--Boltzmann theory allows us to explore quantitatively the influence of each of these effects, and our simulations show that the short-range properties of the electrostatic potential affect primarily kinetically controlled processes (to varying degrees, depending on the ionic system considered) whereas the down-range properties of the potential play a (somewhat) greater role in influencing diffusion-controlled processes. A detailed examination is made of ionic strength effects over a broad range of ionic concentrations. In the regime of low ionic strength, the limiting slope and intercept of the curve describing the dependence of log k/sub D/ on I/sup 1/2//(1+I/sup 1/2/) may differ considerably from the usual Debye--Hueckel limiting relations, depending on the particular model chosen to describe local saturation effects

  18. Vlasov simulations of kinetic Alfvén waves at proton kinetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Observatorio Astronómico de Quito, Escuela Politécnica Nacional, Quito (Ecuador); Valentini, F.; Veltri, P. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Camporeale, E. [Centrum Wiskunde and Informatica, Amsterdam (Netherlands)

    2014-11-15

    Kinetic Alfvén waves represent an important subject in space plasma physics, since they are thought to play a crucial role in the development of the turbulent energy cascade in the solar wind plasma at short wavelengths (of the order of the proton gyro radius ρ{sub p} and/or inertial length d{sub p} and beyond). A full understanding of the physical mechanisms which govern the kinetic plasma dynamics at these scales can provide important clues on the problem of the turbulent dissipation and heating in collisionless systems. In this paper, hybrid Vlasov-Maxwell simulations are employed to analyze in detail the features of the kinetic Alfvén waves at proton kinetic scales, in typical conditions of the solar wind environment (proton plasma beta β{sub p} = 1). In particular, linear and nonlinear regimes of propagation of these fluctuations have been investigated in a single-wave situation, focusing on the physical processes of collisionless Landau damping and wave-particle resonant interaction. Interestingly, since for wavelengths close to d{sub p} and β{sub p} ≃ 1 (for which ρ{sub p} ≃ d{sub p}) the kinetic Alfvén waves have small phase speed compared to the proton thermal velocity, wave-particle interaction processes produce significant deformations in the core of the particle velocity distribution, appearing as phase space vortices and resulting in flat-top velocity profiles. Moreover, as the Eulerian hybrid Vlasov-Maxwell algorithm allows for a clean almost noise-free description of the velocity space, three-dimensional plots of the proton velocity distribution help to emphasize how the plasma departs from the Maxwellian configuration of thermodynamic equilibrium due to nonlinear kinetic effects.

  19. Effect of temperature on kinetics of phosphorus isotope sorption by soils

    International Nuclear Information System (INIS)

    Osztoics, E.; Konya, J.; Nagy, N.; Varallyay, L.

    1994-01-01

    Sorption of water soluble P by soils may be approximated by a rapid plus a slow processes. The rapid process of P sorption was studied on samples of five characteristic Hungarian soil types (meadow soil from Hajduboszormeny, brown forest soil from Keszthely, chernozem soil from Oroshaza and sandy soil from Orbottyan), using 32 P isotope technique. Kinetics of 32 P sorption and the effect of temperature (0, 25, and 40 o C) on the processes were investigated. The kinetic data were evaluated using the Christiansen equation. The activation energy and activation entropy of the processes were calculated from the temperature-dependence of the kinetic constants. The following conclusions were drawn: 1. The amount of sorbed P increases with increasing temperature, the increase is different in different soil types depending on soil characteristics. 2. Two processes of different velocity may be distinguished in the rapid P sorption under our experimental conditions. 3. The activation energy of the faster process is 25-50 kJ/mol. This suggests that film diffusion of phosphorus is the rate-limiting process in the first step of P sorption. 4. The activation energy of the slower process of rapid sorption is less than that of the faster process. 5. In contrast, the activation entropy of the slower process is twice as high (in absolute values) as that of the first, instantaneous process. The slower process is probably connected with a structural rearrangement of the sorption layer, i.e. the phosphorus becomes more firmly held. 6. This rearrangement is supported also by our previous studies on the reversibility of 32 P sorption. (author)

  20. Investigation of the enzymatic mechanism of yeast orotidine-5'-monophosphate decarboxylase using 13C kinetic isotope effects

    International Nuclear Information System (INIS)

    Smiley, J.A.; Bell, J.B.; Jones, M.E.; Paneth, P.; O'Leary, M.H.

    1991-01-01

    Orotidine-5'-monophosphate decarboxylase (ODCase) from Saccharomyces cerevisiae displays an observed 13 C kinetic isotope effect of 1.0247 ± 0.0008 at 25 C, pH 6.8. The observed isotope effect is sensitive to changes in the reaction medium, such as pH, temperature, or glycerol content. The value of 1.0494 ± 0.0006 measured at pH 4.0, 25 C, is not altered significantly by temperature or glycerol, and thus the intrinsic isotope effect for the reaction is apparently being observed under these conditions and decarboxylation is almost entirely rate-determining. These data require a catalytic mechanism with freely reversible binding and one in which a very limited contribution to the overall rate is made by chemical steps preceding decarboxylation; the zwitterion mechanism of Beak and Siegel, which involves only protonation of the pyrimidine ring, is such a mechanism. With use of an intrinsic isotope effect of 1.05, a partitioning factor of less than unity is calculated for ODCase at pH 6.0, 25 C. A quantitative kinetic analysis using this result excludes the possibility of an enzymatic mechanism involving covalent attachment of an enzyme nucleophile to C-5 of the pyrimidine ring. These data fit a kinetic model in which an enzyme proton necessary for catalysis is titrated at high pH, thus providing evidence for the catalytic mechanism of Beak and Siegal

  1. Cell cycle analyses with a pulse cytophotometer: the effect of chemical and physical noxae on the kinetics of the proliferation of tumor cells

    International Nuclear Information System (INIS)

    Goehde, W.

    The following studies were conducted on Ehrlich ascites tumor cells using the pulse cytophotometer: rate of DNA synthesis during the S phase; the effect of cytostatic drugs, endoxan, bleomycin, and other antibiotics on cell kinetics; and effects of x radiation and 1 to 6 MeV neutrons on cell kinetics

  2. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films

    International Nuclear Information System (INIS)

    Haji-Akbari, Amir; Debenedetti, Pablo G.

    2014-01-01

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible

  3. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films.

    Science.gov (United States)

    Haji-Akbari, Amir; Debenedetti, Pablo G

    2014-07-14

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.

  4. The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Akbari, Amir; Debenedetti, Pablo G., E-mail: pdebene@exchange.princeton.edu [Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-07-14

    Glasses have a wide range of technological applications. The recent discovery of ultrastable glasses that are obtained by depositing the vapor of a glass-forming liquid onto the surface of a cold substrate has sparked renewed interest in the effects of confinements on physicochemical properties of liquids and glasses. Here, we use molecular dynamics simulations to study the effect of substrate on thin films of a model glass-forming liquid, the Kob-Andersen binary Lennard-Jones system, and compute profiles of several thermodynamic and kinetic properties across the film. We observe that the substrate can induce large oscillations in profiles of thermodynamic properties such as density, composition, and stress, and we establish a correlation between the oscillations in total density and the oscillations in normal stress. We also demonstrate that the kinetic properties of an atomic film can be readily tuned by changing the strength of interactions between the substrate and the liquid. Most notably, we show that a weakly attractive substrate can induce the emergence of a highly mobile region in its vicinity. In this highly mobile region, structural relaxation is several times faster than in the bulk, and the exploration of the potential energy landscape is also more efficient. In the subsurface region near a strongly attractive substrate, however, the dynamics is decelerated and the sampling of the potential energy landscape becomes less efficient than the bulk. We explain these two distinct behaviors by establishing a correlation between the oscillations in kinetic properties and the oscillations in lateral stress. Our findings offer interesting opportunities for designing better substrates for the vapor deposition process or developing alternative procedures for situations where vapor deposition is not feasible.

  5. HF effect on dissociation kinetics of plutonium and neptunium complexes with 1,2-diaminocyclohexanetetraacetic acid in nitric acid solutions

    International Nuclear Information System (INIS)

    Nikitina, S.A.; Stepanov, A.V.

    1982-01-01

    Dissociation kinetics of Pusup((4)) and Np sup((4)) complexes with DCTA were investigated in HNO 3 solutions in the presence of HF and arsenazo 3. It was found that HF or NaF produced a differentiating effect on the reactivity of the complexes at [HNO 3 ]=1-6 mol/l as well as inhibiting effect at [HNO 3 ]=0.01 mol/l. Conditions of the differential kinetic analysis of plutonium and neptunium in the mixture and differential spectrophotometric analysis of uranium (6) during the camouflage of neptunium (4) and plutonium (4) were determined

  6. Kovacs effect and fluctuation-dissipation relations in 1D kinetically constrained models

    International Nuclear Information System (INIS)

    Buhot, Arnaud

    2003-01-01

    Strong and fragile glass relaxation behaviours are obtained simply changing the constraints of the kinetically constrained Ising chain from symmetric to purely asymmetric. We study the out-of-equilibrium dynamics of these two models focusing on the Kovacs effect and the fluctuation-dissipation (FD) relations. The Kovacs or memory effect, commonly observed in structural glasses, is present for both constraints but enhanced with the asymmetric ones. Most surprisingly, the related FD relations satisfy the FD theorem in both cases. This result strongly differs from the simple quenching procedure where the asymmetric model presents strong deviations from the FD theorem

  7. Predicting in vivo effect levels for repeat-dose systemic toxicity using chemical, biological, kinetic and study covariates.

    Science.gov (United States)

    Truong, Lisa; Ouedraogo, Gladys; Pham, LyLy; Clouzeau, Jacques; Loisel-Joubert, Sophie; Blanchet, Delphine; Noçairi, Hicham; Setzer, Woodrow; Judson, Richard; Grulke, Chris; Mansouri, Kamel; Martin, Matthew

    2018-02-01

    In an effort to address a major challenge in chemical safety assessment, alternative approaches for characterizing systemic effect levels, a predictive model was developed. Systemic effect levels were curated from ToxRefDB, HESS-DB and COSMOS-DB from numerous study types totaling 4379 in vivo studies for 1247 chemicals. Observed systemic effects in mammalian models are a complex function of chemical dynamics, kinetics, and inter- and intra-individual variability. To address this complex problem, systemic effect levels were modeled at the study-level by leveraging study covariates (e.g., study type, strain, administration route) in addition to multiple descriptor sets, including chemical (ToxPrint, PaDEL, and Physchem), biological (ToxCast), and kinetic descriptors. Using random forest modeling with cross-validation and external validation procedures, study-level covariates alone accounted for approximately 15% of the variance reducing the root mean squared error (RMSE) from 0.96 log 10 to 0.85 log 10  mg/kg/day, providing a baseline performance metric (lower expectation of model performance). A consensus model developed using a combination of study-level covariates, chemical, biological, and kinetic descriptors explained a total of 43% of the variance with an RMSE of 0.69 log 10  mg/kg/day. A benchmark model (upper expectation of model performance) was also developed with an RMSE of 0.5 log 10  mg/kg/day by incorporating study-level covariates and the mean effect level per chemical. To achieve a representative chemical-level prediction, the minimum study-level predicted and observed effect level per chemical were compared reducing the RMSE from 1.0 to 0.73 log 10  mg/kg/day, equivalent to 87% of predictions falling within an order-of-magnitude of the observed value. Although biological descriptors did not improve model performance, the final model was enriched for biological descriptors that indicated xenobiotic metabolism gene expression, oxidative stress, and

  8. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    Science.gov (United States)

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .

  9. Effects of feeding on the plasma disposition kinetics of the anthelmintic albendazole in laying hens.

    Science.gov (United States)

    Bistoletti, M; Alvarez, L; Lanusse, C; Moreno, L

    2014-01-01

    1. To optimise the use of albendazole (ABZ) as an anthelmintic in hens, the effects of fasting and type of diet on the plasma kinetics of ABZ and its metabolites were evaluated. 2. Twenty-four hens were distributed into 4 groups: In experiment I the Fed group were fed ad libitum, while the Fasted group was fasted over a 12-h period. In experiment II the Pelleted group was fed with pelleted commercial food, while the Grain group was fed with cereal grains. All the groups were treated with ABZ by oral route. Blood samples were taken and plasma analysed by HPLC. 3. ABZ and its metabolites albendazole-sulphoxide (ABZSO) and albendazole-sulphone (ABZSO2) were recovered in plasma in all the groups. The 12-h fasting period did not modify the disposition kinetics of ABZ in hens. The type of feed affected ABZ kinetics. ABZSO concentration profile was higher and detected for longer in the Grain group compared to the Pelleted group. Statistical differences were not found for AUC0-∞ values, whereas the T1/2for and T1/2el were different between groups. 4. Factors affecting ABZ kinetic behaviour should be taken into account to optimise its use to ensure the sustainability of the limited available anthelmintic therapeutic tools in avian parasite control.

  10. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  11. Mesoscale Modeling of Kinetic Phase Behaviors in Mg-B-H (Subcontract Report)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thornton, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wood, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-13

    Storage of hydrogen on board vehicles is one of the critical enabling technologies for creating hydrogenfueled transportation systems that can reduce oil dependency and mitigate the long-term effects of fossil fuels on climate change. Stakeholders in developing hydrogen infrastructure are currently focused on highpressure storage at 350 bar and 700 bar, in part because no viable solid-phase storage material has emerged. Nevertheless, solid-state materials, including high-density hydrides, remain of interest because of their unique potential to meet all DOE targets and deliver hydrogen at lower pressures and higher on-board densities. A successful solution would significantly reduce costs and ensure the economic viability of a U.S. hydrogen infrastructure. The Mg(BH4)2-MgB2 system represents a highly promising solution because of its reasonable reaction enthalpy, high intrinsic capacity, and demonstrated reversibility, yet suffers from poor reaction kinetics. This subcontract aims to deliver a phase-field model for the kinetics of the evolution of the relevant phases within the Mg-B-H system during hydrogenation and dehydrogenation. This model will be used within a broader theory, synthesis, and characterization framework to study the properties of geometry-selected nanoparticles of pristine and doped MgB2/Mg(BH4)2 with two aims: (1) understand the intrinsic limitations in (de)hydrogenation; (2) devise strategies for improving thermodynamics and kinetics through nanostructuring.

  12. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  13. Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis

    Directory of Open Access Journals (Sweden)

    Przemysław Korohoda

    2013-01-01

    Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.

  14. Kinetic mechanism and nucleotide specificity of NADH peroxidase

    International Nuclear Information System (INIS)

    Stoll, V.S.; Blanchard, J.S.

    1988-01-01

    NADH peroxidase is a flavoprotein isolated from Streptococcus faecalis which catalyzes the pyridine nucleotide-dependent reduction of hydrogen peroxide to water. Initial velocity, product, and dead-end inhibition studies have been performed at pH 7.5 and support a ping-pong kinetic mechanism. In the absence of hydrogen peroxide, both transhydrogenation between NADH and thioNAD, and isotope exchange between [ 14 C]NADH and NAD, have been demonstrated, although in both these experiments, the maximal velocity of nucleotide exchange was less than 1.5% the maximal velocity of the peroxidatic reaction. We propose that NADH binds tightly to both oxidized and two-electron reduced enzyme. NADH oxidation proceeds stereospecifically with the transfer of the 4S hydrogen to enzyme, and then, via exchange, to water. No primary tritium kinetic isotope effect was observed, and no statistically significant primary deuterium kinetic isotope effects on V/K were determined, although primary deuterium kinetic isotope effects on V were observed in the presence and absence of sodium acetate. NADH peroxidase thus shares with other flavoprotein reductases striking kinetic, spectroscopic, and stereochemical similarities. On this basis, we propose a chemical mechanism for the peroxide cleaving reaction catalyzed by NADH peroxidase which involves the obligate formation of a flavinperoxide, and peroxo bond cleavage by nucleophilic attack by enzymatic dithiols

  15. Effect of electrolyte nature on kinetics of remazol yellow G removal by electrocoagulation

    Science.gov (United States)

    Rajabi, M.; Bagheri-Roochi, M.; Asghari, A.

    2011-10-01

    The present study describes an electrocoagulation process for the removal of remazol yellow G from dye solutions using Iron as the anode and Steel as the cathode. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze the kinetic data obtained at different concentrations in different conditions. The adsorption kinetics was well described by the pseudo-second-order kinetic model.

  16. Kinetic parameters for source driven systems

    International Nuclear Information System (INIS)

    Dulla, S.; Ravetto, P.; Carta, M.; D'Angelo, A.

    2006-01-01

    The definition of the characteristic kinetic parameters of a subcritical source-driven system constitutes an interesting problem in reactor physics with important consequences for practical applications. Consistent and physically meaningful values of the parameters allow to obtain accurate results from kinetic simulation tools and to correctly interpret kinetic experiments. For subcritical systems a preliminary problem arises for the adoption of a suitable weighting function to be used in the projection procedure to derive a point model. The present work illustrates a consistent factorization-projection procedure which leads to the definition of the kinetic parameters in a straightforward manner. The reactivity term is introduced coherently with the generalized perturbation theory applied to the source multiplication factor ks, which is thus given a physical role in the kinetic model. The effective prompt lifetime is introduced on the assumption that a neutron generation can be initiated by both the fission process and the source emission. Results are presented for simplified configurations to fully comprehend the physical features and for a more complicated highly decoupled system treated in transport theory. (authors)

  17. Kinetic tritium isotopic effects in the position 2 for 5'-hydroxy-L-tryptophane

    International Nuclear Information System (INIS)

    Boroda, E.; Kanska, M.

    2006-01-01

    Tryptophanase converts 5'-hydroxy-L-tryptophane to pyrogronic acid and ammonia, however there are known conditions for the reversed reaction. Mechanism of the processes are not known till now. Kinetic isotopic effect (KIE) permits finding the rate determining stage in the multistage process. In presented communication, 5'-hydroxy-[2- 3 H]-L-tryptophane was synthesized and the KIE in the room temperature determined for different reaction stages

  18. Effects of two different knee tape procedures on lower-limb kinematics and kinetics in recreational runners.

    Science.gov (United States)

    Howe, A; Campbell, A; Ng, L; Hall, T; Hopper, D

    2015-08-01

    The purpose of this study was to compare the effects of Mulligan's tape (MT) and kinesio tape (KT) with no tape (NT) on hip and knee kinematics and kinetics during running. Twenty-nine female recreational runners performed a series of 'run-throughs' along a 10-m runway under the three taping conditions. Two force plates and a 14-camera Vicon motion analysis system (Oxford Metrics, Inc., Oxford, UK) captured kinematic and kinetic data for each dependent variable from ground contact to toe off. Comparisons of each dependent variable under three taping conditions were assessed through Statistical Package for the Social Sciences (SPSS; SPSS, Inc., Chicago, Illinois, USA; P-value kinetics, between KT and NT (P = 1.000). MT appears to influence hip and knee biomechanics during running in an asymptomatic sample, whereas KT appeared to be biomechanically not different from NT. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Full-dimensional analytical potential energy surface describing the gas-phase Cl + C2H6 reaction and kinetics study of rate constants and kinetic isotope effects.

    Science.gov (United States)

    Rangel, Cipriano; Espinosa-Garcia, Joaquin

    2018-02-07

    Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the

  20. Effect of ultrasound on flotation kinetics in the reactor-separator

    International Nuclear Information System (INIS)

    Filippov, L O; Matinin, A S; Samiguin, V D; Filippova, I V

    2013-01-01

    Effect of the ultrasound on flotation kinetics in reactor-separator has been studied for chalcopyrite/quartz mix mineral system. Under ultrasound treatment, recovery of chalcopyrite into bulk concentrate is higher than that at reagent-only treatment. It can be explained by increased of flotation rate for slow fraction as defined by Kelsall model. The slow fraction flotation rate increase multiplied by 6 vs. ultrasound treatment. Additional effect of the ultrasound treatment has been noticed under conditions when gangue minerals detachment from bubbles can be controlled. Reactor-separator has advantages over other types of flotation cells for this purpose providing a special zone for the ultrasound treatment that can be easily designed in this impeller less machine. The ultrasound influence on particles collision probability is able to explain of chalcopyrite recovery increase in the concentrate and activation chalcopyrite particles flotation.

  1. Effect of ultrasound on flotation kinetics in the reactor-separator

    Science.gov (United States)

    Filippov, L. O.; Matinin, A. S.; Samiguin, V. D.; Filippova, I. V.

    2013-03-01

    Effect of the ultrasound on flotation kinetics in reactor-separator has been studied for chalcopyrite/quartz mix mineral system. Under ultrasound treatment, recovery of chalcopyrite into bulk concentrate is higher than that at reagent-only treatment. It can be explained by increased of flotation rate for slow fraction as defined by Kelsall model. The slow fraction flotation rate increase multiplied by 6 vs. ultrasound treatment. Additional effect of the ultrasound treatment has been noticed under conditions when gangue minerals detachment from bubbles can be controlled. Reactor-separator has advantages over other types of flotation cells for this purpose providing a special zone for the ultrasound treatment that can be easily designed in this impeller less machine. The ultrasound influence on particles collision probability is able to explain of chalcopyrite recovery increase in the concentrate and activation chalcopyrite particles flotation.

  2. Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics.

    Science.gov (United States)

    Masunov, Artëm E; Wait, Elizabeth E; Atlanov, Arseniy A; Vasu, Subith S

    2017-05-18

    In oxy-fuel combustion, the pure oxygen (O 2 ), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2 O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO 2 at supercritical state (sCO 2 ). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H 2 CO + HO 2 → HCO + H 2 O 2 (R1), 2HO 2 → H 2 O 2 + O 2 (R2), and CO + OH → CO 2 + H (R3). In reaction R3, covalent binding of CO 2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO 2 → H 2 O 2 + O 2 the intermediates, containing covalent bonds to CO 2 are found not to be competitive. However, the spectator CO 2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H 2 CO + HO 2 → HCO + H 2 O 2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO 2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2 .

  3. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    Science.gov (United States)

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to

  4. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    Science.gov (United States)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  5. Effect of Landau damping on kinetic Alfven and ion-acoustic solitary waves in a magnetized nonthermal plasma with warm ions

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anup; Das, K.P.

    2002-01-01

    The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time

  6. HF effect on dissociation kinetics of plutonium and neptunium complexes with 1,2-diaminocyclohexanetetraacetic acid in nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nikitina, S.A.; Stepanov, A.V.

    1982-01-01

    Dissociation kinetics of Pusup((4)) and Np sup((4)) complexes with DCTA were investigated in HNO/sub 3/ solutions in the presence of HF and arsenazo 3. It was found that HF or NaF produced a differentiating effect on the reactivity of the complexes at (HNO/sub 3/)=1-6 mol/l as well as inhibiting effect at (HNO/sub 3/)=0.01 mol/l. Conditions of the differential kinetic analysis of plutonium and neptunium in the mixture and differential spectrophotometric analysis of uranium (6) during the camouflage of neptunium (4) and plutonium (4) were determined.

  7. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    Science.gov (United States)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  8. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    Science.gov (United States)

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of resonance decays on extracted kinetic freeze-out parameters in heavy ion collisions at RHIC

    International Nuclear Information System (INIS)

    Molnar, Levente; Barannikova, Olga; Wang, Fuqiang

    2006-01-01

    Statistical model fit to particle ratios in Au+Au collisions at RHIC suggests chemical freeze-out near phase transition boundary. Model interpretations of evolution from chemical to kinetic freeze-out vary. Results of the blast-wave fit to the STAR experimental data, where resonance contributions are not accounted for, suggest significant cooling and expansion between the freezeouts for central Au+Au collisions. Other models including resonances, argue for instant single freezeout with temperature close to the phase transition temperature. By combined thermal and blast-wave model parametrization including resonances, we systematically investigate the effect of resonance decays on the extracted kinetic freeze-out parameters. (authors)

  10. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  11. Quantum kinetic theory of metal clusters in an intense electromagnetic field

    Directory of Open Access Journals (Sweden)

    M.Bonitz

    2004-01-01

    Full Text Available A quantum kinetic theory for weakly inhomogeneous charged particle systems is derived within the framework of nonequilibrium Green's functions. The results are of relevance for valence electrons of metal clusters as well as for confined Coulomb systems, such as electrons in quantum dots or ultracold ions in traps and similar systems. To be specific, here we concentrate on the application to metal clusters, but the results are straightforwardly generalized. Therefore, we first give an introduction to the physics of correlated valence electrons of metal clusters in strong electromagnetic fields. After a brief overview on the jellium model and the standard density functional approach to the ground state properties, we focus on the extension of the theory to nonequilibrium. To this end a general gauge-invariant kinetic theory is developed. The results include the equations of motion of the two-time correlation functions, the equation for the Wigner function and an analysis of the spectral function. Here, the concept of an effective quantum potential is introduced which retains the convenient local form of the propagators. This allows us to derive explicit results for the spectral function of electrons in a combined strong electromagnetic field and a weakly inhomogeneous confinement potential.

  12. Modeling Precipitation Kinetics During Heat Treatment with Calphad-Based Tools

    Science.gov (United States)

    Chen, Qing; Wu, Kaisheng; Sterner, Gustaf; Mason, Paul

    2014-12-01

    Sophisticated precipitation reaction models combined with well-developed CALPHAD databases provide an efficient way to tailor precipitate microstructures that maximize strengthening via the optimization of alloy chemistries and heat treatment schedules. The success of the CALPHAD approach relies on the capability to provide fundamental phase equilibrium and phase transformation information in materials of industrial relevance taking into consideration composition and temperature variation. The newly developed TC-PRISMA program is described. The effect of growth modes, alloy chemistries, and cooling profiles on the formation of multimodal microstructures has been examined in order to understand the underlying thermodynamics and kinetics. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean field approximations, compatibility between CALPHAD databases, and selections of key parameters (particularly interfacial energy and nucleation site densities), are also addressed.

  13. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  14. The Teaching Effectiveness of a Relevant Physics Course

    Science.gov (United States)

    Hobson, Art

    1998-04-01

    If America is to achieve the science literacy that is ssential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, critical thinking, ozone depletion, technological risk, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. Students find these topics relevant and fascinating, leading to strong course evaluations and large enrollments by non-scientists even in courses labeled physics. I will describe this course and present some evidence indicating that the course is effective in communicating physics and its interdisciplinary connections. A textbook, Physics: Concepts and Connections (Prentice Hall, 1995, 2nd edition to appear in June 1998), is available.

  15. Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia.

    Science.gov (United States)

    Basha, Maram T; Rodríguez, Carlos; Richardson, Des R; Martínez, Manuel; Bernhardt, Paul V

    2014-03-01

    The oxidation of oxyhemoglobin to methemoglobin has been found to be facilitated by low molecular weight iron(III) thiosemicarbazone complexes. This deleterious reaction, which produces hemoglobin protein units unable to bind dioxygen and occurs during the administration of iron chelators such as the well-known 3-aminopyridine-2-pyridinecarbaldehyde thiosemicarbazone (3-AP; Triapine), has been observed in the reaction with Fe(III) complexes of some members of the 3-AP structurally-related thiosemicarbazone ligands derived from di-2-pyridyl ketone (HDpxxT series). We have studied the kinetics of this oxidation reaction in vitro using human hemoglobin and found that the reaction proceeds with two distinct time-resolved steps. These have been associated with sequential oxidation of the two different oxyheme cofactors in the α and β protein chains. Unexpected steric and hydrogen-bonding effects on the Fe(III) complexes appear to be the responsible for the observed differences in the reaction rate across the series of HDpxxT ligand complexes used in this study.

  16. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  17. Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots.

    Science.gov (United States)

    Srikantan, Chitra; Suraishkumar, G K; Srivastava, Smita

    2018-06-01

    The study demonstrates for the first time that light influences the adsorption equilibrium and kinetics of a dye by root culture system. The azo dye (Reactive Red 120) adsorption by the hairy roots of H. annuus followed a pseudo first-order kinetic model and the adsorption equilibrium parameters were best estimated using Langmuir isotherm. The maximum dye adsorption capacity of the roots increased 6-fold, from 0.26 mg g -1 under complete dark conditions to 1.51 mg g -1 under 16/8 h light/dark photoperiod. Similarly, adsorption rate of the dye and removal (%) also increased in the presence of light, irrespective of the initial concentration of the dye (20-110 mg L -1 ). The degradation of the azo dye upon adsorption by the hairy roots of H. annuus was also confirmed. In addition, a strategy for simultaneous dye removal and increased alpha-tocopherol (industrially relevant) production by H. annuus hairy root cultures has been proposed and demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Many-body kinetics of dynamic nuclear polarization by the cross effect

    Science.gov (United States)

    Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.

    2018-03-01

    Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.

  19. Solution of the reactor point kinetics equations by MATLAB computing

    Directory of Open Access Journals (Sweden)

    Singh Sudhansu S.

    2015-01-01

    Full Text Available The numerical solution of the point kinetics equations in the presence of Newtonian temperature feedback has been a challenging issue for analyzing the reactor transients. Reactor point kinetics equations are a system of stiff ordinary differential equations which need special numerical treatments. Although a plethora of numerical intricacies have been introduced to solve the point kinetics equations over the years, some of the simple and straightforward methods still work very efficiently with extraordinary accuracy. As an example, it has been shown recently that the fundamental backward Euler finite difference algorithm with its simplicity has proven to be one of the most effective legacy methods. Complementing the back-ward Euler finite difference scheme, the present work demonstrates the application of ordinary differential equation suite available in the MATLAB software package to solve the stiff reactor point kinetics equations with Newtonian temperature feedback effects very effectively by analyzing various classic benchmark cases. Fair accuracy of the results implies the efficient application of MATLAB ordinary differential equation suite for solving the reactor point kinetics equations as an alternate method for future applications.

  20. On the effect of pre-oxidation on the nitriding kinetics

    DEFF Research Database (Denmark)

    Friehling, Peter Bernhard; Somers, Marcel A. J.

    2000-01-01

    The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous...... experimental and theoretical work reported in the literature, puts forward two hypotheses to explain the effects of pre-oxidation on compound layer formation. It is proposed that the nucleation of iron nitrides is enhanced by the presence of an iron-oxide layer and that the growth of an iron-nitride layer...... proceeds faster after pre-oxidation, due to a higher nitrogen content in the part of the compound layer closest to the surface....

  1. Kinetic isotope effects in the OH and Cl reactions of the clumped methane species 13CH3D

    DEFF Research Database (Denmark)

    Joelsson, Magnus

    . As is proven in the current research project, the clumped isotopes are removed by oxidation mechanisms at a slower rate. The residual methane pool is therefore enriched in clumped isotopes compared to the methane from the sources. In order to construct a top-down budget of methane, the clumped kinetic effect...... of the sinkmechanisms must be taken into account. The clumped kinetic effect in atmospheric oxidation of methane has been studied experimentally and theoretically in the three current papers: In Paper I the effect of oxidation by the chlorine radical at roomtemperature (25 ±C) was studied, in Paper II the effect...... of oxidation by the hydroxyl radical over a range of temperatures (5 ±C–40 ±C) was studied, and in Paper III the effect of both the chlorine and the hydroxyl radical at room temperature was studied. All the experiments were conducted in the smog chamber of the Department of Chemistry, University of Copenhagen...

  2. Robin Hood effects on motivation in math: Family interest moderates the effects of relevance interventions.

    Science.gov (United States)

    Häfner, Isabelle; Flunger, Barbara; Dicke, Anna-Lena; Gaspard, Hanna; Brisson, Brigitte M; Nagengast, Benjamin; Trautwein, Ulrich

    2017-08-01

    Using a cluster randomized field trial, the present study tested whether 2 relevance interventions affected students' value beliefs, self-concept, and effort in math differently depending on family background (socioeconomic status, family interest (FI), and parental utility value). Eighty-two classrooms were randomly assigned to either 1 of 2 intervention conditions or a control group. Data from 1,916 students (M age = 14.62, SD age = 0.47) and their predominantly Caucasian middle-class parents were obtained via separate questionnaires. Multilevel regression analyses with cross-level interactions were used to investigate differential intervention effects on students' motivational beliefs 6 weeks and 5 months after the intervention. Socioeconomic status, FI, and parental utility values were investigated as moderators of the intervention effects. The intervention conditions were especially effective in promoting students' utility, attainment, intrinsic value beliefs, and effort 5 months after the intervention for students whose parents reported lower levels of math interest. Furthermore, students whose parents reported low math utility values especially profited in terms of their utility and attainment math values 5 months after the intervention. No systematic differential intervention effects were found for socioeconomic status. These results highlight the effectiveness of relevance interventions in decreasing motivational gaps between students from families with fewer or more motivational resources. Findings point to the substantial importance of motivational family resources, which have been neglected in previous research. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  5. Human kinetics of orally and intravenously administered low-dose 1,2-(13)C-dichloroacetate.

    Science.gov (United States)

    Jia, Minghong; Coats, Bonnie; Chadha, Monisha; Frentzen, Barbara; Perez-Rodriguez, Javier; Chadik, Paul A; Yost, Richard A; Henderson, George N; Stacpoole, Peter W

    2006-12-01

    Dichloroacetate (DCA) is a putative environmental hazard, owing to its ubiquitous presence in the biosphere and its association with animal and human toxicity. We sought to determine the kinetics of environmentally relevant concentrations of 1,2-(13)C-DCA administered to healthy adults. Subjects received an oral or intravenous dose of 2.5 microg/kg of 1,2-(13)C-DCA. Plasma and urine concentrations of 1,2-(13)C-DCA were measured by a modified gas chromatography-tandem mass spectrometry method. 1,2-(13)C-DCA kinetics was determined by modeling using WinNonlin 4.1 software. Plasma concentrations of 1,2-(13)C-DCA peaked 10 minutes and 30 minutes after intravenous or oral administration, respectively. Plasma kinetic parameters varied as a function of dose and duration. Very little unchanged 1,2-(13)C-DCA was excreted in urine. Trace amounts of DCA alter its own kinetics after short-term exposure. These findings have important implications for interpreting the impact of this xenobiotic on human health.

  6. Peculiarities of the effect of high temperature deformation on the kinetics of bainite transformation in steels of various compositions

    International Nuclear Information System (INIS)

    Khlestov, V.M.; Gotsulyak, A.A.; Ehntin, R.I.; Konopleva, E.V.; Kogan, L.I.

    1979-01-01

    By the methods of magnetometry and metallography studied is the effect of 25% deformation by rolling at 800 deg C on kinetics and parameters of bainite transformation in steels with different hydrogen contents and types of alloying. The hot deformation decelerates the bainite transformation at temperatures >=400 deg C; while the isoterm temperature increases the decelerating effect of deformation at first decreases and then changes into the accelerating one. The slowing down of the transformation is determined mainly by the decrease in the rate of the bainite crystal growth, whereas the acceleration - by the activation of grain initiation processes in the hot-deformed austenite. A hydrogen content increase and steel alloying with carbide-forming elements increase the stabilization effect of the deformation on kinetics of bainite transformation

  7. A Novel Selective Inverse Agonist of the CB2 Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies.

    Science.gov (United States)

    Martella, Andrea; Sijben, Huub; Rufer, Arne C; Grether, Uwe; Fingerle, Juergen; Ullmer, Christoph; Hartung, Thomas; IJzerman, Adriaan P; van der Stelt, Mario; Heitman, Laura H

    2017-10-01

    The endocannabinoid system, and in particular the cannabinoid type 2 receptor (CB2R), raised the interest of many medicinal chemistry programs for its therapeutic relevance in several (patho)physiologic processes. However, the physico-chemical properties of tool compounds for CB2R (e.g., the radioligand [ 3 H]CP55,940) are not optimal, despite the research efforts in developing effective drugs to target this system. At the same time, the importance of drug-target binding kinetics is growing since the kinetic binding profile of a ligand may provide important insights for the resulting in vivo efficacy. In this context we synthesized and characterized [ 3 H]RO6957022, a highly selective CB2R inverse agonist, as a radiolabeled tool compound. In equilibrium and kinetic binding experiments [ 3 H]RO6957022 showed high affinity for human CB2R with fast association ( k on ) and moderate dissociation ( k off ) kinetics. To demonstrate the robustness of [ 3 H]RO6957022 binding, affinity studies were carried out for a wide range of CB2R reference ligands, spanning the range of full, partial, and inverse agonists. Finally, we used [ 3 H]RO6957022 to study the kinetic binding profiles (i.e., k on and k off values) of selected synthetic and endogenous (i.e., 2-arachidonoylglycerol, anandamide, and noladin ether) CB2R ligands by competition association experiments. All tested ligands, and in particular the endocannabinoids, displayed distinct kinetic profiles, shedding more light on their mechanism of action and the importance of association rates in the determination of CB2R affinity. Altogether, this study shows that the use of a novel tool compound, i.e., [ 3 H]RO6957022, can support the development of novel ligands with a repertoire of kinetic binding profiles for CB2R. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Effect of reconstitution solvents and containers on kinetics and safety of cephradine neutralised with L-arginine

    International Nuclear Information System (INIS)

    Khan, A.U.; Iqbal, J.

    2015-01-01

    The effect of reconstitution solvents such as water, 0.5% metronidazole solution, 0.9% sodium chloride and 5% dextrose injections, have been investigated on the kinetics of degradation of cephradine neutralised with L-arginine contained in glass, polyvinylchloride (PVC) and polyethylene pthalate (PET) containers at 5, 15 and 30 degree C. The analytical method described in USP-31 for the analysis of cephradine injection was employed in this study and validation in respect of specificity, linearity, accuracy and precision was observed. The degradation of the compound showed first-order kinetics and the degradation rate constants Kobs were found in the range of 1.84-3.07 * 10/sup -3/h (r2= 0.990-0.999) at 5 degree C, 2.3-4.2 * 10/sup -3/h (r2= 0.993-0.999) at 15 degree C and 7.18-9.97 * 10/sup -3/h (r2= 0.998-0.999) at 30 degree C, respectively. Cephradine showed maximum stability in dextrose solution followed by water, sodium chloride and metronidazole injections, however, linear effect of containers on degradation rate could not be established. The extended degradation did not change the kinetics of the reaction. The abnormal toxicity/ safety test on mice for the admixtures in different containers at various temperatures showed no abnormal toxicity. (author)

  9. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism.

    Science.gov (United States)

    Nielsen, L; Khurana, R; Coats, A; Frokjaer, S; Brange, J; Vyas, S; Uversky, V N; Fink, A L

    2001-05-22

    In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed.

  10. Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor.

    Science.gov (United States)

    Deepanraj, B; Sivasubramanian, V; Jayaraj, S

    2015-11-01

    In the present study, biogas production from food waste through anaerobic digestion was carried out in a 2l laboratory-scale batch reactor operating at different temperatures with a hydraulic retention time of 30 days. The reactors were operated with a solid concentration of 7.5% of total solids and pH 7. The food wastes used in this experiment were subjected to characterization studies before and after digestion. Modified Gompertz model and Logistic model were used for kinetic study of biogas production. The kinetic parameters, biogas yield potential of the substrate (B), the maximum biogas production rate (Rb) and the duration of lag phase (λ), coefficient of determination (R(2)) and root mean square error (RMSE) were estimated in each case. The effect of temperature on biogas production was evaluated experimentally and compared with the results of kinetic study. The results demonstrated that the reactor with operating temperature of 50°C achieved maximum cumulative biogas production of 7556ml with better biodegradation efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Production of a sterile species: Quantum kinetics

    Science.gov (United States)

    Boyanovsky, D.; Ho, C. M.

    2007-10-01

    Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is τdec=2/Γaa, but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where Γaa is the interaction rate of the active species in the absence of mixing and θm the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the “polarization vector” and show their equivalence to those obtained from the quantum master equation and effective action.

  12. Fulfillment of the kinetic Bohm criterion in a quasineutral particle-in-cell model

    International Nuclear Information System (INIS)

    Ahedo, Eduardo; Santos, Robert; Parra, Felix I.

    2010-01-01

    Quasineutral particle-in-cell models of ions must fulfill the kinetic Bohm criterion, in its inequality form, at the domain boundary in order to match correctly with solutions of the Debye sheaths tied to the walls. The simple, fluid form of the Bohm criterion is shown to be a bad approximation of the exact, kinetic form when the ion velocity distribution function has a significant dispersion and involves different charge numbers. The fulfillment of the Bohm criterion is measured by a weighting algorithm at the boundary, but linear weighting algorithms have difficulties to reproduce the nonlinear behavior around the sheath edge. A surface weighting algorithm with an extended temporal weighting is proposed and shown to behave better than the standard volumetric weighting. Still, this must be supplemented by a forcing algorithm of the kinetic Bohm criterion. This postulates a small potential fall in a supplementary, thin, transition layer. The electron-wall interaction is shown to be of little relevance in the fulfillment of the Bohm criterion.

  13. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1981-12-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  14. Hamiltonian kinetic theory of plasma ponderomotive processes

    International Nuclear Information System (INIS)

    McDonald, S.W.; Kaufman, A.N.

    1982-01-01

    The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility

  15. Improved point-kinetics model for the BWR control rod drop accident

    International Nuclear Information System (INIS)

    Neogy, P.; Wakabayashi, T.; Carew, J.F.

    1985-01-01

    A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA

  16. Effect of sepsis on VLDL kinetics: responses in basal state and during glucose infusion

    International Nuclear Information System (INIS)

    Wolfe, R.R.; Shaw, J.H.; Durkot, M.J.

    1985-01-01

    The effect of gram-negative sepsis on the kinetics and oxidation of very low-density lipoprotein (VLDL) fatty acids was assessed in conscious dogs in the normal state and 24 h after infusion of live Escherichia coli. VLDL, labeled with [2- 3 H]glycerol and [1- 14 C]palmitic acid, was used to trace VLDL kinetics and oxidation, and [1- 13 C]palmitic acid bound to albumin was infused simultaneously to quantify kinetics and oxidation of free fatty acid (FFA) in plasma. Sepsis caused a fivefold increase in the rate of VLDL production (RaVLDL). In the control dogs, the direct oxidation of VLDL-fatty acids was not an important contributor to their overall energy metabolism, but in dogs with sepsis, 17% of the total rate of CO2 production could be accounted for by VLDL-fatty acid oxidation. When glucose was infused into dogs with insulin and glucagon levels clamped at basal levels (by means of infusion of somatostatin and replacement of the hormones), RaVLDL increased significantly in the control dogs, but it did not increase further in dogs with sepsis. The authors conclude that the increase in triglyceride concentration in fasting dogs with gram-negative sepsis is the result of an increase in VLDL production and that the fatty acids in VLDL can serve as an important source of energy in sepsis

  17. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    Science.gov (United States)

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  18. Effect of burn and first-pass splanchnic leucine extraction on protein kinetics in rats

    International Nuclear Information System (INIS)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.; Blackburn, G.L.; Bistrian, B.R.

    1988-01-01

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O 2 consumption, CO 2 production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-[1- 14 C]leucine was used to assess protein kinetics on day 3. FPE was taken as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma [leucine] (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation

  19. A meta-analysis of the abscopal effect in preclinical models: Is the biologically effective dose a relevant physical trigger?

    Directory of Open Access Journals (Sweden)

    Raffaella Marconi

    Full Text Available Preclinical in vivo studies using small animals are considered crucial in translational cancer research and clinical implementation of novel treatments. This is of paramount relevance in radiobiology, especially for any technological developments permitted to deliver high doses in single or oligo-fractionated regimens, such as stereotactic ablative radiotherapy (SABR. In this context, clinical success in cancer treatment needs to be guaranteed, sparing normal tissue and preventing the potential spread of disease or local recurrence. In this work we introduce a new dose-response relationship based on relevant publications concerning preclinical models with regard to delivered dose, fractionation schedule and occurrence of biological effects on non-irradiated tissue, abscopal effects.We reviewed relevant publications on murine models and the abscopal effect in radiation cancer research following PRISMA methodology. In particular, through a log-likelihood method, we evaluated whether the occurrence of abscopal effects may be related to the biologically effective dose (BED. To this aim, studies accomplished with different tumor histotypes were considered in our analysis including breast, colon, lung, fibrosarcoma, pancreas, melanoma and head and neck cancer. For all the tumors, the α / β ratio was assumed to be 10 Gy, as generally adopted for neoplastic cells.Our results support the hypothesis that the occurrence rate of abscopal effects in preclinical models increases with BED. In particular, the probability of revealing abscopal effects is 50% when a BED of 60 Gy is generated.Our study provides evidence that SABR treatments associated with high BEDs could be considered an effective strategy in triggering the abscopal effect, thus shedding light on the promising outcomes revealed in clinical practice.

  20. KrF laser kinetics studies

    International Nuclear Information System (INIS)

    Mandl, A.; Klimek, D.; Parks, J.H.

    1984-01-01

    A series of measurements characterizing an e beam pumped KrF* laser was carried out using a 200-nsec e-beam pulse having a rise time of 25 nsec at current densities up to 50 A/cm 2 . These pump conditions are relevent for inertial confinement fusion laser drivers. The measurements include fluorescence efficiency, sidelight suppression of the fluorescence during lasing, and laser energy output over a wide range of laser parameters including: total density 0.5--2.0 amagats, temperature 300--400 K, fluorine density 0.15%--0.5%, current density 38--50 A/cm 2 and various mirror transmissions. This data was used to verify and refine a model of KrF* kinetics which was then used to estimate the performance of an angular multiplexed power amplifier suitable for laser fusion applications

  1. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current....... A local negative reference ensured that only the specific binding signal was measured. Analysis of the real-time hybridization using a two-compartment model yielded both the association and dissociation constants kon, and koff. The effect of probe modifications with ortho-Twisted Intercalating Nucleic...

  2. Deuteration kinetics of the graphene

    Energy Technology Data Exchange (ETDEWEB)

    Nefedov, Alexei; Woell, Christof [KIT, Leopoldshafen (Germany); Paris, Alessio; Calliari, Lucia [FBK-CMM, Trento (Italy); Verbitskiy, Nikolay [MSU, Moscow (Russian Federation); University of Vienna, Vienna (Austria); Wang, Ying; Irle, Stephan [Nagoya University, Nagoya (Japan); Fedorov, Alexander [IFW Dresden, Dresden (Germany); St. Petersburg University, St. Petersburg (Russian Federation); Haberer, Danny; Knupfer, Martin; Buechner, Bernd [IFW Dresden, Dresden (Germany); Oetzelt, Martin [BESSY II, Berlin (Germany); Petaccia, Luca [Elettra, Trieste (Italy); Usachov, Dmitry [St. Petersburg University, St. Petersburg (Russian Federation); Vyalikh, Denis [St. Petersburg University, St. Petersburg (Russian Federation); TU Dresden, Dresden (Germany); Sagdev, Hermann [MPI fuer Polymerforschung, Mainz (Germany); Yashina, Lada [MSU, Moscow (Russian Federation); Grueneis, Alexander [IFW Dresden, Dresden (Germany); University of Vienna, Vienna (Austria)

    2013-07-01

    The kinetics of the hydrogenation/deuteration reaction of graphene was studied by time-dependent x-ray photoemission spectroscopy (XPS). The graphene layer was then exposed to hydrogen or deuterium atomic gas beams, obtained by thermal cracking in a tungsten capillary at T=3000 K. After each step XPS of the C1s line was performed in order to measure H/C and D/C ratios. We have observed a strong kinetic isotope effect for the hydrogenation/deuteration reaction leading to substantially faster adsorption and higher maximum D/C ratios as compared to H/C (D/C 35% vs. H/C 25%).

  3. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves.

    Science.gov (United States)

    Rayaguru, Kalpana; Routray, Winny

    2010-12-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.

  4. Diffusion Influenced Adsorption Kinetics.

    Science.gov (United States)

    Miura, Toshiaki; Seki, Kazuhiko

    2015-08-27

    When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.

  5. Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2014-07-01

    Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.

  6. Physical kinetics

    International Nuclear Information System (INIS)

    Lifschitz, E.M.; Pitajewski, L.P.

    1983-01-01

    The textbook covers the subject under the following headings: kinetic gas theory, diffusion approximation, collisionless plasma, collisions within the plasma, plasma in the magnetic field, theory of instabilities, dielectrics, quantum fluids, metals, diagram technique for nonequilibrium systems, superconductors, and kinetics of phase transformations

  7. Effect of surfactant chain length on drug release kinetics from microemulsion-laden contact lenses.

    Science.gov (United States)

    Maulvi, Furqan A; Desai, Ankita R; Choksi, Harsh H; Patil, Rahul J; Ranch, Ketan M; Vyas, Bhavin A; Shah, Dinesh O

    2017-05-30

    The effect of surfactant chain lengths [sodium caprylate (C 8 ), Tween 20 (C 12 ), Tween 80 (C 18 )] and the molecular weight of block copolymers [Pluronic F68 and Pluronic F 127] were studied to determine the stability of the microemulsion and its effect on release kinetics from cyclosporine-loaded microemulsion-laden hydrogel contact lenses in this work. Globule size and dilution tests (transmittance) suggested that the stability of the microemulsion increases with increase in the carbon chain lengths of surfactants and the molecular weight of pluronics. The optical transmittance of direct drug-laden contact lenses [DL-100] was low due to the precipitation of hydrophobic drugs in the lenses, while in microemulsion-laden lenses, the transmittance was improved when stability of the microemulsion was achieved. The results of in vitro release kinetics revealed that drug release was sustained to a greater extent as the stability of microemulsion was improved as well. This was evident in batch PF127-T80, which showed sustained release for 15days in comparison to batch DL-100, which showed release up to 7days. An in vivo drug release study in rabbit tear fluid showed significant increase in mean residence time (MRT) and area under curve (AUC) with PF-127-T80 lenses (stable microemulsion) in comparison to PF-68-SC lenses (unstable microemulsion) and DL-100 lenses. This study revealed the correlation between the stability of microemulsion and the release kinetics of drugs from contact lenses. Thus, it was inferred that the stable microemulsion batches sustained the release of hydrophobic drugs, such as cyclosporine from contact lenses for an extended period of time without altering critical lens properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kommoshvili, K [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Cuperman, S [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Bruma, C [School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel)

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  9. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Kommoshvili, K; Cuperman, S; Bruma, C

    2003-01-01

    Kinetic effects in the conversion of fast waves to Alfven waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvenic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxiliary energy source for the successful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects

  10. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai

    2016-06-28

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high-octane bio-derived components with low octane naphtha streams is attractive. 2-phenyl ethanol (2-PE), is one such potential candidate that can be derived from lignin, a biomass component made of interconnected aromatic groups. We first ascertained the blending anti-knock quality of 2-PE by studying the effect of spark advancement on knock for various blends 2-PE, toluene, and ethanol with naphtha in a cooperative fuels research engine. The blending octane quality of 2-PE indicated an anti-knock behavior similar or slightly greater than that of toluene, and ethylbenzene, which could be attributed to either chemical kinetics or charge cooling effects. To isolate chemical kinetic effects, a model for 2-PE auto-ignition was developed and validated using ignition delay times measured in a high-pressure shock tube. Simulated ignition delay times of 2-PE were also compared to those of traditional high-octane gasoline blending components to show that the gas phase reactivity of 2-PE is lower than ethanol, and comparable to toluene, and ethylbenzene at RON, and MON relevant conditions. The gas-phase reactivity of 2-PE is largely controlled by its aromatic ring, while the effect of the hydroxyl group is minimal. The higher blending octane quality of 2-PE compared to toluene, and ethylbenzene can be attributed primarily to the effect of the hydroxyl group on increasing heat of vaporization. © 2016 The Combustion Institute.

  11. A balance principle approach for modeling phase transformation kinetics

    International Nuclear Information System (INIS)

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  12. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  13. Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvres.

    Science.gov (United States)

    Nin, Darren Z; Lam, Wing K; Kong, Pui W

    2016-01-01

    This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into "heavy" (n = 15, mass 82.7 ± 4.3 kg) or "light" (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the "heavy" than "light" groups (P = .014) and 12.4% higher in hard compared with soft shoes (P = .011). Forefoot peak VGRF in a soft shoe was higher (P = .011) than in a hard shoe during shot-block landing. Both "heavy" and "light" groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables.

  14. MODELLING OF THIN LAYER SOLAR DRYING KINETICS AND EFFECTIVE DIFFUSIVITY OF Urtica dioica LEAVES

    Directory of Open Access Journals (Sweden)

    A. LAMHARRAR

    2017-08-01

    Full Text Available Urtica dioica is an endemic plant of Morocco used for its virtues in traditional medicine. The drying kinetics of Urtica dioica leaves in a convective solar dryer was studied. The kinetics of drying is studied for three temperatures (40, 50 and 60 °C, ambient air temperature ranged from 30 to 35 °C. The experimental results are used to determine the characteristic drying curve. Nine mathematical models have been used for the description of the drying curve. The Midilli-Kuck model was found to be the most suitable for describing the drying curves of Urtica dioica leaves. The drying parameters in this model were quantified as a function of the drying air temperature. Moisture transfer from Urtica dioica leaves was described by applying the Fick’s diffusion model. Effective moisture diffusivity of the product was in the range of 9.38 – 72.92×10-11 m2/s. A value of 88,49 kJ/mol was determined as activation energy.

  15. Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)

    Science.gov (United States)

    Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa

    2017-10-01

    The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.

  16. Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation.

    Science.gov (United States)

    Haqshenas, S R; Ford, I J; Saffari, N

    2018-01-14

    Effects of acoustic waves on a phase transformation in a metastable phase were investigated in our previous work [S. R. Haqshenas, I. J. Ford, and N. Saffari, "Modelling the effect of acoustic waves on nucleation," J. Chem. Phys. 145, 024315 (2016)]. We developed a non-equimolar dividing surface cluster model and employed it to determine the thermodynamics and kinetics of crystallisation induced by an acoustic field in a mass-conserved system. In the present work, we developed a master equation based on a hybrid Szilard-Fokker-Planck model, which accounts for mass transportation due to acoustic waves. This model can determine the kinetics of nucleation and the early stage of growth of clusters including the Ostwald ripening phenomenon. It was solved numerically to calculate the kinetics of an isothermal sonocrystallisation process in a system with mass transportation. The simulation results show that the effect of mass transportation for different excitations depends on the waveform as well as the imposed boundary conditions and tends to be noticeable in the case of shock waves. The derivations are generic and can be used with any acoustic source and waveform.

  17. Calcite growth kinetics: Modeling the effect of solution stoichiometry

    NARCIS (Netherlands)

    Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.

    2012-01-01

    Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth

  18. Biocompatibility and Chemical Reaction Kinetics of Injectable, Settable Polyurethane/Allograft Bone Biocomposites

    Science.gov (United States)

    2012-08-05

    relevant dynamic loads [7,8]. Hydroxyapatite (HA) cements have been combined with hydrogels (e.g. dextran [9] or sodium hyaluronate [10]) to form...2):144–53. [5] Friedman CD et al. BoneSource (TM) hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and...Biomaterials 2004;25(1):85–96. [28] Parnell S, Min K, Cakmak M. Kinetic studies of polyurethane polymerization with Raman spectroscopy. Polymer

  19. Thermodynamics of accuracy in kinetic proofreading: dissipation and efficiency trade-offs

    International Nuclear Information System (INIS)

    Rao, Riccardo; Peliti, Luca

    2015-01-01

    The high accuracy exhibited by biological information transcription processes is due to kinetic proofreading, i.e. by a mechanism which reduces the error rate of the information-handling process by driving it out of equilibrium. We provide a consistent thermodynamic description of enzyme-assisted assembly processes involving competing substrates, in a master equation framework. We introduce and evaluate a measure of the efficiency based on rigorous non-equilibrium inequalities. The performance of several proofreading models are thus analyzed and the related time, dissipation and efficiency versus error trade-offs exhibited for different discrimination regimes. We finally introduce and analyze in the same framework a simple model which takes into account correlations between consecutive enzyme-assisted assembly steps. This work highlights the relevance of the distinction between energetic and kinetic discrimination regimes in enzyme-substrate interactions. (paper)

  20. Unified kinetic theory in toroidal systems

    International Nuclear Information System (INIS)

    Hitchcock, D.A.; Hazeltine, R.D.

    1980-12-01

    The kinetic theory of toroidal systems has been characterized by two approaches: neoclassical theory which ignores instabilities and quasilinear theory which ignores collisions. In this paper we construct a kinetic theory for toroidal systems which includes both effects. This yields a pair of evolution equations; one for the spectrum and one for the distribution function. In addition, this theory yields a toroidal generalization of the usual collision operator which is shown to have many similar properties - conservation laws, H theorem - to the usual collision operator

  1. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis

    International Nuclear Information System (INIS)

    3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil); U.T.P. – Universidad Tecnológica de Pereira, Faculty of Mechanical Engineering, Pereira, Risaralda (Colombia))" >Rios Quiroga, Luis Carlos; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Balestieri, José 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Antonio Perrella; 3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" data-affiliation=" (UNESP – Univ Estadual Paulista, Campus of Guaratinguetá, Department of Energy, Laboratory of Combustion and Carbon Capture LC3, CEP 12.516-410 Guaratinguetá, SP (Brazil))" >Ávila, Ivonete

    2017-01-01

    Highlights: • Kinetic parameters of thermal decomposition events were obtained. • Thermal analysis was used as a tool for understanding combustion processes. • Blends would be classified using thermogravimetric analysis technics. • Synergistic effect of ethanol mixed with gasoline was studied and defined. • Relative error and activation energy values were used to analyze the synergy. - Abstract: The use of ethanol as a fuel or as an additive blended with gasoline is very important for most countries, which aim to reduce the heavy dependence on fossil fuels and mitigate greenhouse gases emission. An increased use of ethanol-gasoline blends has placed great relevance on acquiring knowledge about their physical and chemical properties. Thus, knowledge of such properties favors a better understanding of the effect of the percentage of ethanol/gasoline blends on engine performance. Thence, the present study has established a correlation between activation energy and synergetic effects, obtained by a thermal analysis, and ethanol content in gasoline for different blends in order to use this technique as a tool to classify these blends in the process in order to obtain useful energy in spark ignition engines. For such a purpose, a kinetic study has been conducted through a simultaneous thermal analysis system – TGA (thermogravimetry analysis) and DTA (differential thermal analysis) by following the methodology of non-isothermal tests. Thermogravimetric tests were performed and fuel activation energies for gasoline, ethanol, and percentages of 5, 10, 15, 20, 25, 30, 50, and 75% (%v) ethanol mixed with gasoline, which was achieved by the model free kinetics. The analysis results suggest that the theoretical curves characteristics of the thermal decomposition of ethanol-gasoline blends are rather different due to their ethanol content. Furthermore, it was observed significant interactions and synergistic effects, especially regarding those with low ethanol

  2. Soluble and immobilized catalase. Effect of pressure and inhibition on kinetics and deactivation.

    Science.gov (United States)

    Vasudevan, P T; Thakur, D S

    1994-12-01

    This article examines the effect of pressure on the steady-state kinetics and long-term deactivation of the enzyme catalase supported on porous alumina. The reaction studied is the decomposition of hydrogen peroxide. The results of studies carried out in a continuous stirred-tank reactor under isothermal conditions are presented and compared with results obtained for soluble catalase. For soluble catalase, it is found that in the range of pressures studied, the oxygen flow rate increases with increase in pressure up to a certain value and then decreases. Hydrogen peroxide concentration appears to have a strong influence on pressure effects. With immobilized catalase, the pressure effects are not as prominent. Fluorescent microscopy studies of the immobilized enzyme suggest that this is probably because of pore diffusional limitations.

  3. Effect of urea additive on the thermal decomposition kinetics of flame retardant greige cotton nonwoven fabric

    Science.gov (United States)

    Sunghyun Nam; Brian D. Condon; Robert H. White; Qi Zhao; Fei Yao; Michael Santiago Cintrón

    2012-01-01

    Urea is well known to have a synergistic action with phosphorus-based flame retardants (FRs) in enhancing the FR performance of cellulosic materials, but the effect of urea on the thermal decomposition kinetics has not been thoroughly studied. In this study, the activation energy (Ea) for the thermal decomposition of greige...

  4. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  5. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites.

    Science.gov (United States)

    Ilie, Nicoleta; Keßler, Andreas; Durner, Jürgen

    2013-08-01

    To assess the effect of irradiation time and distance of the light tip on the micro-mechanical properties and polymerisation kinetics of two bulk-fill resin-based composites at simulated clinically relevant filling depth. Micro-mechanical properties (Vickers hardness (HV), depth of cure (DOC) and indentation modulus (E)) and polymerisation kinetics (real-time increase of degree of cure (DC)) of two bulk-fill resin-based composites (Tetric EvoCeram(®) Bulk Fill, Ivoclar Vivadent and x-tra base, Voco) were assessed at varying depth (0.1-6mm in 100μm steps for E and HV and 0.1, 2, 4 and 6mm for DC), irradiation time (10, 20 or 40s, Elipar Freelight2) and distances from the light tip (0 and 7mm). Curing unit's irradiance was monitored in 1mm steps at distances up to 10mm away from the light tip on a laboratory-grade spectrometer. Multivariate analysis (α=0.05), Student's t-test and Pearson correlation analysis were considered. The influence of material on the measured mechanical properties was significant (η(2)=0.080 for E and 0.256 for HV), while the parameters irradiation time, distance from the light tip and depth emphasise a stronger influence on Tetric EvoCeram(®) Bulk Fill. The polymerisation kinetics could be described by an exponential sum function, distinguishing between the gel and the glass phase. The above mentioned parameters strongly influenced the start of polymerisation (gel phase), and were of less importance for the glass phase. Both materials enable at least 4mm thick increments to be cured in one step under clinically relevant curing conditions. The susceptibility to variation in irradiance was material dependent, thus properties measured under clinically simulated curing conditions might vary to a different extent from those measured under ideal curing conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The effects of whole-body irradiation on the serum levels and kinetics of thyroid hormones in rats

    International Nuclear Information System (INIS)

    Gray, W.M.

    1980-01-01

    The effects of a single whole-body dose of X-rays on the serum levels and kinetics of thyroid hormones in rats were studied. The influence of radiation-induced anorexia was monitored by using pair fed control groups. A dose of 800 rad caused a reduction in T 4 levels and 750 rad had a similar effect on T 3 ; in each case the control group showed a smaller reduction. The kinetic results indicated that, in the control groups, the early reduction in hormone concentrations was caused by decreased production, whereas, in the irradiated groups, it was caused by a change in the distribution of the hormone; however the continuing reduction in hormone levels in the irradiated rats appeared to result from decreased production. The results suggest that the thyroid system may play an active part in the early metabolic changes which follow whole-body irradiation. (author)

  7. Effect of kinetic properties of extraction systems on separation of some elements by liquid chromatography method with free fixed phase

    International Nuclear Information System (INIS)

    Fedotov, P.S.; Maryutina, T.A.; Pichugin, A.A.; Spivakov, B.Ya.

    1993-01-01

    Effect of kinetic properties of a series of extraction systems on the separation of certain elements by the method of liquid chromatography with free fixed phase is considered. Chromatographic behaviour of europium 3 and iron 3 ions when using systems based on di-2-ethylhexylphosphovers acid and tetraphenylmethylenediphosphine dioxide is investigated. Kinetic properties of the extraction systems used are studied by diffusion cell method with mixing, europium 3 and iron 3 mass transfer coefficients are determined

  8. Fast kinetics of the oxygen effe4ct for DNA double-strand breakage and cell killing in irradiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Frankenberg, D; Frankenberg-Schwager, M; Harbich, R [Gesellschaft fuer Strahlen- und Umweltforschung mbH, Frankfurt/Main (Germany, F.R.). Inst. fuer Biophysikalische Strahlenforschung; Michael, B D [Mount Vernon Hospital, Northwood (UK). Gray Lab.

    1990-03-01

    The most important result of dsb kinetic data presented here is that lifetimes of the oxygen-dependent precursors are dose-dependent. This seems mainly to be caused by increased depletion of GSH at high doses. Therefore, shorter lifetimes of the oxygen-dependent precursors of dsb as measured by the inactivation of rad54-3 cells at 36{sup 0}C (t{sub 1/2}=0.25ms), or of stationary haploid GSH{sup +} cells (t{sub 1/2}=0.37 ms) are considered to be more relevant values, especially at low doses than those obtained by direct measurements (t{sub 1/2}=2.18 ms). Rejoining of dsb complicates the kinetics of the oxygen effect as measured at the survival level at the permissive temperature for dsb rejoining. When rejoining of dsb is allowed, besides the fast component a slow component becomes detectable. It is speculated that dsb having such long-living precursors are less readily susceptible for enzymatic rejoining, or are even irreparable. (author).

  9. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  10. Kinetic analysis of MHD ballooning modes in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from β = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with β, these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-β-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties

  11. INVESTIGATION ON THE EFFECT OF SHAPES ON THE DRYING KINETICS AND SENSORY EVALUATION STUDY OF DRIED JACKFRUIT

    Directory of Open Access Journals (Sweden)

    Pek Li Gan

    2014-10-01

    Full Text Available Jackfruits are seasonal and highly nutritional fruits indigenous to the Southwestern rainforests of India. However much of the produce are spoilt annually due to poor preservation techniques. Minimal studies have been conducted on the drying kinetics of jackfruit and the effect of shapes on the drying kinetics. In this research, drying curves of three different shaped jackfruit slices were obtained using a convective oven at 40oC, 50oC, 60oC and 70oC. Modified Midilli-Kucuk Model was found to be the best kinetic model for drying of jackfruits. At all temperatures, effective moisture diffusivity values and activation energy varied from 2.66 x 10-10 - 4.85 x 10-10 m2/s and 16.08 - 20.07 kJ/mol respectively. Drying was found to be most efficient at 50oC using the square shaped slices with a R2, RMSE and SSE value of 0.9984, 0.01127 and 0.002668 respectively.  Sensory evaluation of untreated and additive-added dried jackfruit slices was conducted by 40 untrained sensory panelists. Jackfruit with ascorbic acid and sugar coating had highest aesthetics value due to better retention of colour by ascorbic acid. However sugar coated jackfruit had the most favorable taste and smell. Further optimization must be done to satisfy consumers collectively to enable a highly marketable product.

  12. The estimation of effective doses using measurement of several relevant physical parameters from radon exposures

    International Nuclear Information System (INIS)

    Ridzikova, A; Fronka, A.; Maly, B.; Moucka, L.

    2003-01-01

    In the present investigation, we will be study the dose relevant factors from continual monitoring in real homes into account getting more accurate estimation of 222 Rn the effective dose. The dose relevant parameters include the radon concentration, the equilibrium factor (f), the fraction (fp) of unattached radon decay products and real time occupancy people in home. The result of the measurement are the time courses of radon concentration that are based on estimation effective doses together with assessment of the real time occupancy people indoor. We found out by analysis that year effective dose is lower than effective dose estimated by ICRP recommendation from the integral measurement that included only average radon concentration. Our analysis of estimation effective doses using measurement of several physical parameters was made only in one case and for the better specification is important to measure in different real occupancy houses. (authors)

  13. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    International Nuclear Information System (INIS)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F.; Matthaeus, W. H.

    2015-01-01

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d p may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d p and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained

  14. KINETIC ALFVÉN WAVE GENERATION BY LARGE-SCALE PHASE MIXING

    Energy Technology Data Exchange (ETDEWEB)

    Vásconez, C. L.; Pucci, F.; Valentini, F.; Servidio, S.; Malara, F. [Dipartimento di Fisica, Università della Calabria, I-87036, Rende (CS) (Italy); Matthaeus, W. H. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States)

    2015-12-10

    One view of the solar wind turbulence is that the observed highly anisotropic fluctuations at spatial scales near the proton inertial length d{sub p} may be considered as kinetic Alfvén waves (KAWs). In the present paper, we show how phase mixing of large-scale parallel-propagating Alfvén waves is an efficient mechanism for the production of KAWs at wavelengths close to d{sub p} and at a large propagation angle with respect to the magnetic field. Magnetohydrodynamic (MHD), Hall magnetohydrodynamic (HMHD), and hybrid Vlasov–Maxwell (HVM) simulations modeling the propagation of Alfvén waves in inhomogeneous plasmas are performed. In the linear regime, the role of dispersive effects is singled out by comparing MHD and HMHD results. Fluctuations produced by phase mixing are identified as KAWs through a comparison of polarization of magnetic fluctuations and wave-group velocity with analytical linear predictions. In the nonlinear regime, a comparison of HMHD and HVM simulations allows us to point out the role of kinetic effects in shaping the proton-distribution function. We observe the generation of temperature anisotropy with respect to the local magnetic field and the production of field-aligned beams. The regions where the proton-distribution function highly departs from thermal equilibrium are located inside the shear layers, where the KAWs are excited, this suggesting that the distortions of the proton distribution are driven by a resonant interaction of protons with KAW fluctuations. Our results are relevant in configurations where magnetic-field inhomogeneities are present, as, for example, in the solar corona, where the presence of Alfvén waves has been ascertained.

  15. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  16. Study on the effectiveness of the kinetic method in patients with rheumatic diseases and temporomandibular joint dysfunction.

    Science.gov (United States)

    Havriş, Maria Daniela; Ancuţa, Codrina; Iordache, Cristina; Chirieac, Rodica Marieta

    2012-01-01

    Selecting the appropriate treatment decision is essential for achieving optimal results in the management of algo-dysfunctional syndrome of the temporo-mandibular joint (TMJD). The study aims to decide on the most effective (symptomatic control, preserved motility) kinetic program in patients with TMJ involvement. prospective observational study on 83 consecutive patients with rheumatic diseases and TMJ dysfunction. Clinical assessment (pain, noises, muscle spasm, range of motion, ROM) was performed at baseline and after 3 months of specific kinetic rehabilitation program. Change in clinical parameters and TM3 index was reported, pposture (head, neck and trunk), normal mastication, swallowing and respiration, as well as correction of neuromuscular imbalances in patients with TMJD secondary to rheumatic disorders.

  17. Calcite Dissolution Kinetics

    Science.gov (United States)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations 500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral

  18. Kinetics of phase transformations

    International Nuclear Information System (INIS)

    Thompson, M.O.; Aziz, M.J.; Stephenson, G.B.

    1992-01-01

    This volume contains papers presented at the Materials Research Society symposium on Kinetics of Phase Transformations held in Boston, Massachusetts from November 26-29, 1990. The symposium provided a forum for research results in an exceptionally broad and interdisciplinary field. Presentations covered nearly every major class of transformations including solid-solid, liquid-solid, transport phenomena and kinetics modeling. Papers involving amorphous Si, a dominant topic at the symposium, are collected in the first section followed by sections on four major areas of transformation kinetics. The symposium opened with joint sessions on ion and electron beam induced transformations in conjunction with the Surface Chemistry and Beam-Solid Interactions: symposium. Subsequent sessions focused on the areas of ordering and nonlinear diffusion kinetics, solid state reactions and amorphization, kinetics and defects of amorphous silicon, and kinetics of melting and solidification. Seven internationally recognized invited speakers reviewed many of the important problems and recent results in these areas, including defects in amorphous Si, crystal to glass transformations, ordering kinetics, solid-state amorphization, computer modeling, and liquid/solid transformations

  19. Kinetic Isotope Effects (KIE) and Density Functional Theory (DFT): A Match Made in Heaven?

    DEFF Research Database (Denmark)

    Christensen, Niels Johan; Fristrup, Peter

    2015-01-01

    Determination of experimental kinetic isotope effects (KIE) is one of the most useful tools for the exploration of reaction mechanisms in organometallic chemistry. The approach has been further strengthened during the last decade with advances in modern computational chemistry. This allows for th...... reaction). The approach is highlighted by using recent examples from both stoichiometric and catalytic reactions, homogeneous and heterogeneous catalysis, and enzyme catalysis to illustrate the expected accuracy and utility of this approach....

  20. Kinetics analysis of two-stage austenitization in supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Villa, Matteo; Hald, John

    2017-01-01

    The martensite-to-austenite transformation in X4CrNiMo16-5-1 supermartensitic stainless steel was followed in-situ during isochronal heating at 2, 6 and 18 K min−1 applying energy-dispersive synchrotron X-ray diffraction at the BESSY II facility. Austenitization occurred in two stages, separated...... that the austenitization kinetics is governed by Ni-diffusion and that slow transformation kinetics separating the two stages is caused by soft impingement in the martensite phase. Increasing the lath width in the kinetics model had a similar effect on the austenitization kinetics as increasing the heating-rate....

  1. Modelling fungal solid-state fermentation: The role of inactivation kinetics

    NARCIS (Netherlands)

    Smits, J.P.; Sonsbeek, H.M. van; Knol, W.; Tramper, J.; Geelhoed, W.; Peeters, M.; Rinzema, A.

    1999-01-01

    The theoretical mathematical models described in this paper are used to evaluate the effects of fungal biomass inactivation kinetics on a non- isothermal tray solid-state fermentation (SSF). The inactivation kinetics, derived from previously reported experiments done under isothermal conditions and

  2. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  3. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El

    2017-06-23

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  4. Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics

    KAUST Repository

    Rachidi, Mariam El; Mehl, Marco; Pitz, William J.; Mohamed, Samah; Sarathy, Mani

    2017-01-01

    Cycloalkanes are significant constituents of conventional fossil fuels, in which they are one of the main contributors to soot formation, but also significantly influence the ignition characteristics below ∼900K. This paper discusses the development of a detailed high- and low-temperature oxidation mechanism for cyclopentane, which is an important archetypical cycloalkane. The differences between cyclic and non-cyclic alkane chemistry, and thus the inapplicability of acyclic alkane analogies, required the detailed theoretical investigation of the kinetics of important cyclopentane oxidation reactions as part of the mechanism development. The cyclopentyl+O reaction was investigated at the UCCSD(T)-F12a/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory in a time-dependent master equation framework. Comparisons with analogous cyclohexane or non-cyclic alkane reactions are presented. Our study suggests that beyond accurate quantum chemistry the inclusion of pressure dependence and especially that of formally direct kinetics is crucial even at pressures relevant for practical application.

  5. The Effects of One-Dimensional Glide on the Reaction Kinetics of Interstitial Clusters

    International Nuclear Information System (INIS)

    Heinisch, Howard L.; Singh, B N.; Golubov, S I.

    2000-01-01

    Collision cascades in metals produce small interstitial clusters and perfect dislocation loops that glide in thermally activated one-dimensional (1D) random walks. These gliding defects can change their Burgers vectors by thermal activation or by interactions with other defects. Their migration is therefore''mixed 1D/3D migration'' along a 3D path consisting of 1D segments. The defect reaction kinetics under mixed 1D/3D diffusion are different from pure 1D diffusion and pure 3D diffusion, both of which can be formulated within analytical rate theory models of microstructure evolution under irradiation. Atomic-scale kinetic Monte Carlo (kMC) defect migration simulations are used to investigate the effects of mixed 1D/3D migration on defect reaction kinetics as a guide for implementing mixed 1D/3D migration into the analytical rate theory. The functional dependence of the sink strength on the sixe and concentration of sinks under mixed 1D/3D migration is shown to lie between that for pure 1D and pure 3D migration and varies with L, the average distance between direction changes of the gliding defects. It is shown that the sink strength in simulations for spherical sinks of radius R under mixed 1D/3D migration for values of L greater than R can be approximated by an expression that varies directly as R2. For small L, the form of the transition from mixed 1D/3D to pure 3D diffusion as L decreases is demonstrated in the simulations, the results of which can be used in the future development of an analytical expression describing this transition region

  6. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.; Kasprzyk, G.; Gumolka, L.; Staedter, W.

    1993-01-01

    The 13 C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H 3 PO 4 has been studied in the temperature interval of 60-150 deg C. The values of the 13 C (1) isotope effects in the decarbonylation of lactic acid in 100% H 3 PO 4 , in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C (1)- OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13 C fractionation factors determined in concentrated PA approach quite closely the 13 C fractionation corresponding to C (2)- C (1) bond scission. The 13 C (1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13 C isotope effects calculated assuming that the frequency corresponding to the C (1) -OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H 3 PO 4 has been suggested. A possible secondary 18 O and a primary 18 O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  7. Kinetic effects in the conversion of fast waves in pre-heated, low aspect ratio tokamak plasmas

    Science.gov (United States)

    Kommoshvili, K.; Cuperman, S.; Bruma, C.

    2003-03-01

    Kinetic effects in the conversion of fast waves to Alfvèn waves and their subsequent deposition in low aspect ratio (spherical) tokamaks (LARTs) have been investigated theoretically. More specifically, we have considered the consequences of incorporation of kinetic effects in the electron parallel (to the ambient magnetic field) dynamics derived by following the drift-tearing mode analysis of Chen et al (Chen L, Rutherford P H and Tang W M 1977 Phys. Rev. Lett. 39 460), and particle-conserving Krook collision operator for the passing electrons involved (Mett R R and Mahajan S M 1992 Phys. Fluids B 4 2885). The perpendicular plasma dynamics is described by a quite general resistive two-fluid (2F) model based dielectric tensor-operator (Cuperman S, Bruma C and Komoshvili K 2002 Solution of the resistive 2F wave equations for Alfvènic modes in spherical tokamak plasmas J. Plasma Phys. accepted for publication). The full-wave electromagnetic equations, formulated in terms of the vector and scalar potentials, have been solved by the aid of an advanced finite elements numerical code (Sewell G 1993 Adv. Eng. Software 17 105). Detailed solutions of the full-wave equations are obtained and compared with those corresponding to a pure resistive 2F model, this, for the illustrative pre-heated START-type device (Sykes 1994). Our results quantitatively confirm the general theory of the conversion of fast waves with subsequent power dissipation for the conditions of spherical tokamaks thus providing the required auxilliary energy source for the succesful operation of LARTs. Moreover, these results indicate the absolute necessity of using a full model for the parallel electron dynamics, i.e. including both kinetic and collisional effects.

  8. Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy

    Directory of Open Access Journals (Sweden)

    Tong Wen

    Full Text Available The microwave-assisted leaching was a new approach to intensify the copper recovery from chalcopyrite by hydrometallurgy. In this work, the effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interfacial reaction temperature and surface energy were investigated. The activation energy of chalcopyrite leaching was affected indistinctively by the microwave-assisted heating (39.1 kJ/mol compared with the conventional heating (43.9 kJ/mol. However, the boiling point of the leaching system increased through microwave-assisted heating. Because of the improved boiling point and the selective heating of microwave, the interfacial reaction temperature increased significantly, which gave rise to the increase of the leaching recovery of copper. Moreover, the surface energy of the chalcopyrite through microwave-assisted heating was also enhanced, which was beneficial to strengthen the leaching of chalcopyrite. Keywords: Microwave-assisted heating, Chalcopyrite, Leaching kinetics, Interface temperature, Surface energy

  9. Effectiveness and relevant factors of 2% rebamipide ophthalmic suspension treatment in dry eye.

    Science.gov (United States)

    Ueda, Kaori; Matsumiya, Wataru; Otsuka, Keiko; Maeda, Yoshifumi; Nagai, Takayuki; Nakamura, Makoto

    2015-06-06

    Rebamipide with mucin secretagogue activity was recently approved for the treatment of dry eye. The efficacy and safety in the treatment of rebamipide were shown in two pivotal clinical trials. It was the aim of this study to evaluate the effect of 2% rebamipide ophthalmic suspension in patients with dry eye and analyze relevant factors for favorable effects of rebamipide in clinical practice. This was a retrospective cohort study of 48 eyes from 24 patients with dry eye treated with 2% rebamipide ophthalmic suspension. Dry eye-related symptom score, tear film break-up time (TBUT), fluorescein ocular surface staining score (FOS) and the Schirmer test were used to collect the data from patients at baseline, and at 2, 4, 8, and 12 week visits. To determine the relevant factors, multiple regression analyses were then performed. Mean dry eye-related symptom score showed a significant improvement from the baseline (14.5 points) at 2, 4, 8 and 12 weeks (9.80, 7.04, 7.04 and 7.83 points, corrected P value treatment. For ocular symptoms, three parameters (foreign body sensation, dry eye sensation and ocular discomfort) showed significant improvements at all visits. The multiple regression analyses showed that the fluorescein conjunctiva staining score was significantly correlated with the changes of dry eye-related symptom score at 12 weeks (P value = 0.017) and dry eye-related symptom score was significantly correlated with independent variables for the changes of FOS at 12 weeks (P value = 0.0097). Two percent rebamipide ophthalmic suspension was an effective therapy for dry eye patients. Moreover the fluorescein conjunctiva staining score and dry eye-related symptom score might be good relevant factors for favorable effects of rebamipide.

  10. Photocatalytic Oxidation of Azo Dyes and Oxalic Acid in Batch Reactors and CSTR: Introduction of Photon Absorption by Dyes to Kinetic Models

    Directory of Open Access Journals (Sweden)

    I. Grčić

    2018-04-01

    Full Text Available The possibilities of treating industrial effluents and water purification by advanced oxidation processes have been extensively studied; photocatalysis has emerged as a feasible alternative solution. In order to apply the photocatalytic treatment on a larger scale, relevant modeling approaches are necessary. The scope of this work was to investigate the applicability of recently published kinetic models in different reactor systems (batch and CSTR under UVA or UVC irradiation and in combination with two types of TiO2 catalyst, AEROXIDE® P25 and PC-500 for degradation of azo dyes (C.I. Reactive Violet 2, and C.I. Mordant Yellow 10, oxalic acid and their mixtures. The influences of reactor geometry and irradiation intensities on pollutant oxidation efficiency were examined. The effect of photon absorption by dyes in water matrix was thoroughly studied. Relevant kinetic models were introduced to the mass balance for particular reactor system. Resulting models were sufficient for description of pollutant degradation in batch reactors and CSTR. Experimental results showed 1.15 times higher mineralization extents achieved after 7 cycles in CSTR than in batch photoreactor of similar geometry within the equivalent time-span. The application of CSTR in-series could simplify the photocatalytic water treatment on a larger scale.

  11. Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Shilling, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Zelenyuk, Alla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Liu, Jiumeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Bell, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. of Atmospheric Chemistry; D’Ambro, Emma L. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Gaston, Cassandra J. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Univ. of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences and Dept. of Chemistry; Laskin, Alexander [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Lin, Peng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Purdue Univ., West Lafayette, IN (United States). Dept. of Chemistry; Wilson, Jacqueline [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Physical Sciences Div.; Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Science and Global Change Div. (ASGC); Wang, Jian [Brookhaven National Lab. (BNL), Upton, NY (United States). Environmental & Climate Sciences Dept.; Bertram, Allan K. [Univ. of British Columbia, Vancouver, BC (Canada). Dept. of Chemistry; Martin, Scot T. [Harvard Univ., Cambridge, MA (United States). School of Engineering and Applied Sciences (SEAS) and Dept. of Earth and Planetary Sciences; Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Div. of Chemistry and Chemical Engineering and Div. of Engineering and Applied Science; Worsnop, Douglas R. [Aerodyne Research, Billerica, MA (United States). Center for Aerosol and Cloud Chemistry

    2017-12-15

    Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversibly reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.

  12. Kinetic solvent isotope effects in the additions of bromine and 4-chlorobenzenesulfenyl chloride to alkenes and alkynes

    International Nuclear Information System (INIS)

    Modro, A.; Schmid, G.H.; Yates, K.

    1979-01-01

    The rates of bromination of selected alkenes and alkynes in methanol/methanol-d, acetic acid/acetic acid-d, and formic acid/formic acid-d have a nearly constant value of k/sub H//k/sub D/ = 1.23 +- 0.02. This kinetic solvent isotope effect is attributed to specific electrophilic solvation of the incipient bromide anion by hydrogen bonding in the rate-determining transition state. The rates of bromination were measured in two solvents having the same values of the solvent parameter Y but different nucleophilicities in order to assess the importance of nucleophilic solvation. Significant nucleophilic solvent assistance is found for only alkylacetylenes. The kinetic solvent isotope effects of the addition of 4-chlorobenzenesulfenyl chloride to selected alkenes and alkynes in acetic acid/acetic acid-d vary from 1.00 to 1.28. These data are consistent with two mechanisms: one involves a tetravalent sulfur intermediate while the second is the sulfur analogue of the S/sub N/2 mechanism

  13. Effect of a 1-hour single bout of moderate-intensity exercise on fat oxidation kinetics.

    Science.gov (United States)

    Chenevière, Xavier; Borrani, Fabio; Ebenegger, Vincent; Gojanovic, Boris; Malatesta, Davide

    2009-12-01

    The present study aimed to examine the effects of a prior 1-hour continuous exercise bout (CONT) at an intensity (Fat(max)) that elicits the maximal fat oxidation (MFO) on the fat oxidation kinetics during a subsequent submaximal incremental test (IncrC). Twenty moderately trained subjects (9 men and 11 women) performed a graded test on a treadmill (Incr), with 3-minute stages and 1-km.h(-1) increments. Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity. A mathematical model (SIN) including 3 independent variables (dilatation, symmetry, and translation) was used to characterize the shape of fat oxidation kinetics and to determine Fat(max) and MFO. On a second visit, the subjects performed CONT at Fat(max) followed by IncrC. After CONT performed at 57% +/- 3% (means +/- SE) maximal oxygen uptake (Vo(2max)), the respiratory exchange ratio during IncrC was lower at every stage compared with Incr (P rates from 35% to 70% Vo(2max) (P .05), whereas symmetry tended to be greater in IncrC (P = .096). This study showed that the prior 1-hour continuous moderate-intensity exercise bout increased Fat(max), MFO, and fat oxidation rates over a wide range of intensities during the postexercise incremental test. Moreover, the shape of the postexercise fat oxidation kinetics tended to have a rightward asymmetry.

  14. Effect of x-irradiation on cell kinetics of esophageal membrane cells in mice

    International Nuclear Information System (INIS)

    Ando, Koichi; Tsunemoto, Hiroshi; Urano, Muneyasu; Koike, Sachiko

    1977-01-01

    Effect of x-irradiation on the cell kinetics of esophageal membrane cells was studied in C3Hf/He male mice. Experimental methods include; counting the number of basal and superficial cells, and pulse or continuous labelling by tritiated thymidine. Esophageal area was irradiated with 1000 rad of 200 kVp x-rays and cell kinetics were studied on the 5th post-irradiation day. Autoradiography revealed the shortening of the cell cycle time, specifically in G- and G- phases. Numbers of basal cells and of superficial cells were found to increase for 5 days after irradiation. Continuous labelling experiments using infusion technique demonstrated than growth fraction of irradiated basal cells was 1.0 as well as that of non-irradiated cells. It was of interest that the migration time, i.e., the time required for labelled cells to migrate from basal cell layer to superficial cell layer, was shortened approximately 1/3 of that of non-irradiated control after irradiation. Diurnal variation was observed not only in normal basal cells but also in irradiated ones, and the rate of increase of labelling index after continuous labelling was independent of the time when the labelling was started. (auth.)

  15. Effect of x irradiation on cell kinetics of esophageal membrane cells in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ando, K; Tsunemoto, H; Urano, M; Koike, S [National Inst. of Radiological Sciences, Chiba (Japan)

    1977-05-01

    Effect of x irradiation on the cell kinetics of esophageal membrane cells was studied in C3Hf/He male mice. Experimental methods include; counting the number of basal and superficial cells, and pulse or continuous labelling by tritiated thymidine. Esophageal area was irradiated with 1000 rad of 200 kVp x rays and cell kinetics were studied on the 5th post-irradiation day. Autoradiography revealed the shortening of the cell cycle time, specifically in G- and G- phases. Numbers of basal cells and of superficial cells were found to increase for 5 days after irradiation. Continuous labelling experiments using infusion technique demonstrated than growth fraction of irradiated basal cells was 1.0 as well as that of non-irradiated cells. It was of interest that the migration time, i.e., the time required for labelled cells to migrate from basal cell layer to superficial cell layer, was shortened approximately 1/3 of that of non-irradiated control after irradiation. Diurnal variation was observed not only in normal basal cells but also in irradiated ones, and the rate of increase of labelling index after continuous labelling was independent of the time when the labelling was started.

  16. Echographic and Kinetic Changes in the Shoulder Joint after Manual Wheelchair Propulsion Under Two Different Workload Settings

    Science.gov (United States)

    Gil-Agudo, Ángel; Solís-Mozos, Marta; Crespo-Ruiz, Beatriz; del-Ama Eng, Antonio J.; Pérez-Rizo, Enrique; Segura-Fragoso, Antonio; Jiménez-Díaz, Fernando

    2014-01-01

    Manual wheelchair users with spinal cord injury (SCI) have a high prevalence of shoulder pain due to the use of the upper extremity for independent mobility, transfers, and other activities of daily living. Indeed, shoulder pain dramatically affects quality of life of these individuals. There is limited evidence obtained through radiographic techniques of a relationship between the forces acting on the shoulder during different propulsion conditions and shoulder pathologies. Today, ultrasound is widely accepted as a precise tool in diagnosis, displaying particularly effectiveness in screening the shoulder rotator cuff. Thus, we set out to perform an ultrasound-based study of the acute changes to the shoulder soft tissues after propelling a manual wheelchair in two workload settings. Shoulder joint kinetics was recorded from 14 manual wheelchair users with SCI while they performed high- and low-intensity wheelchair propulsion tests (constant and incremental). Shoulder joint forces and moments were obtained from inverse dynamic methods, and ultrasound screening of the shoulder was performed before and immediately after the test. Kinetic changes were more relevant after the most intensive task, showing the significance of high-intensity activity, yet no differences were found in ultrasound-related parameters before and after each propulsion task. It therefore appears that further studies will be needed to collect clinical data and correlate data regarding shoulder pain with both ultrasound images and data from shoulder kinetics. PMID:25566539

  17. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Primary Kinetic Isotope Effect in the Hypochlorite Oxidation of 1-Phenylethanol in the Physical Chemistry Laboratory

    Science.gov (United States)

    Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.

    2017-01-01

    A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…

  18. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics.

    Science.gov (United States)

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; Ivanov, Sergei; Seifert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M

    2017-09-21

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio) 1/3 , despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.

  19. Synergistic effects and kinetics thermal behaviour of petroleum coke/biomass blends during H2O co-gasification

    International Nuclear Information System (INIS)

    Edreis, Elbager M.A.; Luo, Guangqian; Li, Aijun; Xu, Chaofen; Yao, Hong

    2014-01-01

    Highlights: • Sugar cane bagasse and blends gasification presented two stages at all H 2 O values. • Petroleum coke showed only one char gasification stage at (>700 °C) at 75% H 2 O. • Significant interactions are existed in the both reaction stages of samples. • Higher H 2 O concentration and PC content lead to higher kinetic parameter values. • All the models are successfully utilized to predict the experimental data. - Abstract: This study investigates the possible synergistic interactions between the Sudanese lower sulphur petroleum coke (PC) and sugar cane bagasse (SCB) during H 2 O co-gasification with three concentration values (25%, 50% and 75% v/v) using a thermogravimetric analyser (TGA) at 20 °C/min. The kinetic thermal behaviour, and effects of both H 2 O concentration and fuel blending ratio were investigated. The results show that, significant interactions existed in both reaction stages of samples, and become less when PC content and H 2 O concentration are 50%. Petroleum coke showed only one char gasification stage at (>700 °C) at 75% H 2 O. Some kinetics models like homogeneous and shrinking core models were studied by the Coats–Redfern method in order to observe the optimum reaction mechanism for the H 2 O gasification of samples, describe the best reactive behaviour and determine the kinetic parameters. The results showed that, the co-gasification behaviour and kinetic parameters have a significantly influenced by increasing both H 2 O concentration and PC content. The boundary controlled reaction model (R2) shows the lowest values of activation energy (E) for all samples and H 2 O concentrations. Finally, all the models are successfully utilized to predict the experimental data under all H 2 O concentration values

  20. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end-products

    NARCIS (Netherlands)

    Bosch, G.; Wrigglesworth, D.J.; Cone, J.W.; Pellikaan, W.F.; Hendriks, W.H.

    2013-01-01

    This study investigated the effect of chilling and freezing (for 24 h) canine feces on in vitro gas production kinetics and fermentation end-product profiles from carbohydrate-rich (in vitro run 1) and protein-rich substrates (in vitro run 2). Feces were collected from 3 adult Retriever-type dogs

  1. Effect of Polarization on the Mobility of C60: A Kinetic Monte Carlo Study.

    Science.gov (United States)

    Volpi, Riccardo; Kottravel, Sathish; Nørby, Morten Steen; Stafström, Sven; Linares, Mathieu

    2016-02-09

    We present a study of mobility field and temperature dependence for C60 with Kinetic Monte Carlo simulations. We propose a new scheme to take into account polarization effects in organic materials through atomic induced dipoles on nearby molecules. This leads to an energy correction for the single site energies and to an external reorganization happening after each hopping. The inclusion of polarization allows us to obtain a good agreement with experiments for both mobility field and temperature dependence.

  2. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2017-08-10

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.

  3. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  4. Determination of kinetic coefficients for proton-nucleus collisions at high energy

    International Nuclear Information System (INIS)

    Rizzato, C.M.

    1987-01-01

    From the effective proton dynamics, the approximations in the context of high energy collisions which lead to the Boltzmann equation, are established. From this equation, general expressions for the kinetic coefficients are deduced. Using a simple model, analytical expressions for kinetic coefficients are obtained. The importance of the effect of Pauli blocking is also shown. (author) [pt

  5. Kinetic compensation effect in the thermal desorption of a binary gas mixture

    Science.gov (United States)

    Zuniga-Hansen, Nayeli; Silbert, Leonardo E.; Calbi, M. Mercedes

    The kinetic compensation effect, observed in many different areas of science, is the systematic change in the magnitudes of the Arrhenius parameters Ea, the energy of activation and ν, the preexponential factor, as a response to external perturbing parameters. Its existence continues to be debated as it has not been explicitly demonstrated and its physical origins remain poorly understood. As part of a systematic study of different factors that alter the energy of activation during thermal desorption, we have performed numerical studies of the effects of adsorbate-adsorbate interactions on the Arrhenius parameters, as well as the effects of changes in surface morphology. Our results have consistently shown that there is a partial compensation effect between Ea and lnν and a tendency towards isokinetic equilibrium when the system transitions from an interacting to a non-interacting regime. In the present work we study the effects of the presence of two different chemical species. With our systematic study we expect to provide a deeper insight into the microscopic events that originate compensation effects, not only in our system, but also in other fields where these effects have been reported.

  6. Aspect-based Relevance Learning for Image Retrieval

    NARCIS (Netherlands)

    M.J. Huiskes (Mark)

    2005-01-01

    htmlabstractWe analyze the special structure of the relevance feedback learning problem, focusing particularly on the effects of image selection by partial relevance on the clustering behavior of feedback examples. We propose a scheme, aspect-based relevance learning, which guarantees that feedback

  7. β-Secondary and solvent deuterium kinetic isotope effects and the mechanisms of base- and acid-catalyzed hydrolysis of penicillanic acid

    International Nuclear Information System (INIS)

    Deraniyagala, S.A.; Adediran, S.A.; Pratt, R.F.

    1995-01-01

    β-Secondary and solvent deuterium kinetic isotope effects have been determined at 25 degrees C for the alkaline and acid-catalyzed hydrolysis of penicillanic acid. In order to determine the former isotope effect, [6,6- 2 H 2 ]dideuteriopenicillanic acid has been synthesized. In alkaline solution, the former isotope effect was found to be 0.95 ± 0.01. These values support the B AC 2 mechanism of hydrolysis with rate-determining formation of the tetrahedral intermediate that has been proposed for other β-lactams. The measured β-secondary kinetic isotope for the acid-catalyzed reaction was 1.00 ± 0.01. The data indicates that a likely pathway of acid-catalyzed hydrolysis would be that of an A AC 1 mechanism with an intermediate acylium ion. If this were so, the calculated β-secondary isotope effect per hydrogen coplanar with the breaking C-N bond and corrected for the inductive effect of deuterium would be 1.06 ± 0.01. This suggests an early A AC 1 transition state, which would be reasonable in this case because of destabilization of the N-protonated amide with respect to the acylium ion because of ring strain. The absence of specific participation by solvent in the transition state, as would be expected of an A AC 1 but not an associative mechanism, is supported by the strongly inverse solvent deuterium kinetic isotope effect of 0.25 ± 0.00 in 1 M HCl and 0.22 ± 0.01 in 33.3 wt % H 2 SO 4 . 1 fig., 3 tabs

  8. Combined Ideal and Kinetic Effects on Reversed Shear Alfven Eigenmodes

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Kramer, G.J.; Nazikian, R.

    2011-01-01

    A theory of Reversed Shear Alfven Eigenmodes (RSAEs) is developed for reversed magnetic field shear plasmas when the safety factor minimum, qmin, is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with qmin above integer values. Corrected by special analytic FLR condition MHD dispersion of these modes nevertheless can be developed. Large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.

  9. Introduction to chemical kinetics

    CERN Document Server

    Soustelle, Michel

    2013-01-01

    This book is a progressive presentation of kinetics of the chemical reactions. It provides complete coverage of the domain of chemical kinetics, which is necessary for the various future users in the fields of Chemistry, Physical Chemistry, Materials Science, Chemical Engineering, Macromolecular Chemistry and Combustion. It will help them to understand the most sophisticated knowledge of their future job area. Over 15 chapters, this book present the fundamentals of chemical kinetics, its relations with reaction mechanisms and kinetic properties. Two chapters are then devoted to experimental re

  10. Esterification of fatty acids using nylon-immobilized lipase in n-hexane: kinetic parameters and chain-length effects.

    Science.gov (United States)

    Zaidi, A; Gainer, J L; Carta, G; Mrani, A; Kadiri, T; Belarbi, Y; Mir, A

    2002-02-28

    The esterification of long-chain fatty acids in n-hexane catalyzed by nylon-immobilized lipase from Candida rugosa has been investigated. Butyl oleate (22 carbon atoms), oleyl butyrate (22 carbon atoms) and oleyl oleate (36 carbon atoms) were produced at maximum reaction rates of approximately equal to 60 mmol h(-1) g(-1) immobilized enzyme when the substrates were present in equimolar proportions at an initial concentration of 0.6 mol l(-1). The observed kinetic behavior of all the esterification reactions is found to follow a ping-pong bi-bi mechanism with competitive inhibition by both substrates. The effect of the chain-length of the fatty acids and the alcohols could be correlated to some mechanistic models, in accordance with the calculated kinetic parameters.

  11. The Application of Biomimicry in Kinetic Facades

    Directory of Open Access Journals (Sweden)

    Wijdan Deyaa Abdul Jalil

    2016-10-01

    Full Text Available Biomimicry, as a way of thinking to go back to nature for inspiration, has its impact on many contemporary technological achievements. Some of them are used to design and construct kinetic facades in architecture, because of the importance role of facades in reducing sun radiation, that enter the building through using shading systems and components. In light of this, research problem is determined: "Do technologies which are inspired by biomimicry effect shading in kinetic facades through its characteristics in materials and the mechanics. So the research identifies its goal as: "To identify the types of kinetic facades in buildings and their characteristics as materials and shading mechanism associated with the biomimicry. The research explains the basic types of kinetic facades depending on the technology and materials used to provide the possibility of reducing solar radiation that enters the building. It also compares the case studies which have been chosen in their inspiration concept from biological world, which reflect on the system used of protecting against sun and reducing energy consumption as the designer teams suggest. The research concluded that kinetic façade which is depending on smart materials is self-responding and don't need energy to operate, so it is better in reducing consumption of energy.

  12. Effects of drying temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots

    Directory of Open Access Journals (Sweden)

    Hada Masayu, I.,

    2017-08-01

    Full Text Available In this study, the effects of temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots were investigated to determine the optimum temperature for drying of this herb. The roots were subjected to drying temperatures of 40, 50, 60 and 70°C. The drying kinetics data indicated that the drying rate increased with increase in temperature but decreased with time. The drying process took place in the falling rate period. Three established thin layer drying models include Page, Midili and Logarithmic were employed to describe the drying process. The Midili model was found as the best fitting model in representing the process. The quality of the products was evaluated by comparing the content of its active compound, eurycomanone, quantified using an ultra performance liquid chromatography (UPLC. The fastest drying process was achieved at 70°C, but UPLC results showed that the product suffered at 18% reduction in eurycomanone content as compared to the control. Based on the findings of this work, the optimum drying temperature for E. longifolia roots is 60°C.

  13. The effect of ankle bracing on knee kinetics and kinematics during volleyball-specific tasks.

    Science.gov (United States)

    West, T; Ng, L; Campbell, A

    2014-12-01

    The purpose of this study was to examine the effects of ankle bracing on knee kinetics and kinematics during volleyball tasks. Fifteen healthy, elite, female volleyball players performed a series of straight-line and lateral volleyball tasks with no brace and when wearing an ankle brace. A 14-camera Vicon motion analysis system and AMTI force plate were used to capture the kinetic and kinematic data. Knee range of motion, peak knee anterior-posterior and medial-lateral shear forces, and peak ground reaction forces that occurred between initial contact with the force plate and toe off were compared using paired sample t-tests between the braced and non-braced conditions (P volleyball tasks. However, ankle bracing was demonstrated to reduce knee lateral shear forces during all of the lateral movement volleyball tasks. Wearing the Active Ankle T2 brace will not impact knee joint range of motion and may in fact reduce shear loading to the knee joint in volleyball players. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.

    Science.gov (United States)

    Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies

    2016-01-01

    During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.

  15. Explaining citizens’ perceptions of international climate-policy relevance

    International Nuclear Information System (INIS)

    Schleich, Joachim; Faure, Corinne

    2017-01-01

    This paper empirically analyses the antecedents of citizens’ perceptions of the relevance of international climate policy. Its use of representative surveys in the USA, China and Germany controls for different environmental attitudes and socio-economic factors between countries. The findings of the micro-econometric analysis suggest that the perceived relevance of international climate policy is positively affected by its perceived effectiveness, approval of the key topics discussed at international climate conferences, and environmental attitudes, but is not affected by perceived procedural justice. A higher level of perceived trust in international climate policy was positively related to perceived relevance in the USA and in China, but not in Germany. Citizens who felt that they were well informed and that their position was represented at climate summits were more likely to perceive international climate policy as relevant in China in particular. Generally, the results show only weak evidence of socio-demographic effects. - Highlights: • Perceptions of climate-policy relevance increase with perceptions of effectiveness. • In China and the USA, trust increases perceptions of climate-policy relevance. • Environmental attitudes are related to perceptions of climate-policy relevance. • In China, well-informed citizens perceive climate policy as more relevant. • Socio-demographics only weakly affect perceptions of climate-policy relevance.

  16. Probing Reversible Chemistry in Coenzyme B12-Dependent Ethanolamine Ammonia Lyase with Kinetic Isotope Effects

    Science.gov (United States)

    Jones, Alex R; Rentergent, Julius; Scrutton, Nigel S; Hay, Sam

    2015-01-01

    Coenzyme B12-dependent enzymes such as ethanolamine ammonia lyase have remarkable catalytic power and some unique properties that enable detailed analysis of the reaction chemistry and associated dynamics. By selectively deuterating the substrate (ethanolamine) and/or the β-carbon of the 5′-deoxyadenosyl moiety of the intrinsic coenzyme B12, it was possible to experimentally probe both the forward and reverse hydrogen atom transfers between the 5′-deoxyadenosyl radical and substrate during single-turnover stopped-flow measurements. These data are interpreted within the context of a kinetic model where the 5′-deoxyadenosyl radical intermediate may be quasi-stable and rearrangement of the substrate radical is essentially irreversible. Global fitting of these data allows estimation of the intrinsic rate constants associated with CoC homolysis and initial H-abstraction steps. In contrast to previous stopped-flow studies, the apparent kinetic isotope effects are found to be relatively small. PMID:25950663

  17. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  18. Kinetic chain abnormalities in the athletic shoulder.

    Science.gov (United States)

    Sciascia, Aaron; Thigpen, Charles; Namdari, Surena; Baldwin, Keith

    2012-03-01

    Overhead activities require the shoulder to be exposed to and sustain repetitive loads. The segmental activation of the body's links, known as the kinetic chain, allows this to occur effectively. Proper muscle activation is achieved through generation of energy from the central segment or core, which then transfers the energy to the terminal links of the shoulder, elbow, and hand. The kinetic chain is best characterized by 3 components: optimized anatomy, reproducible efficient motor patterns, and the sequential generation of forces. However, tissue injury and anatomic deficits such as weakness and/or tightness in the leg, pelvic core, or scapular musculature can lead to overuse shoulder injuries. These injuries can be prevented and maladaptations can be detected with a thorough understanding of biomechanics of the kinetic chain as it relates to overhead activity.

  19. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    Science.gov (United States)

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pairing-induced kinetic energy lowering in doped antiferromagnets

    International Nuclear Information System (INIS)

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  1. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  2. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  3. Kinetic isotope effect studies on milk xanthine oxidase and on chicken liver xanthine dehydrogenase

    International Nuclear Information System (INIS)

    D'Ardenne, S.C.; Edmondson, D.E.

    1990-01-01

    The effect of isotopic substitution of the 8-H of xanthine (with 2 H and 3 H) on the rate of oxidation by bovine xanthine oxidase and by chicken xanthine dehydrogenase has been measured. V/K isotope effects were determined from competition experiments. No difference in H/T (V/K) values was observed between xanthine oxidase and xanthine dehydrogenase. Xanthine dehydrogenase exhibited a larger T/D (V/K) value than that observed for xanthine oxidase. Observed H/T (V/K) values for either enzyme are less than those H/T (V/K) values calculated with D/T (V/K) data. These discrepancies are suggested to arise from the presence of a rate-limiting step(s) prior to the irreversible C-H bond cleavage step in the mechanistic pathways of both enzymes. These kinetic complexities preclude examination of whether tunneling contributes to the reaction coordinate for the H-transfer step in each enzyme. No observable exchange of tritium with solvent is observed during the anaerobic incubation of [8- 3 H]xanthine with either enzyme, which suggests the reverse commitment to catalysis (C r ) is essentially zero. With the assumption of adherence to reduced mass relationships, the intrinsic deuterium isotope effect ( D k) for xanthine oxidation is calculated. By the use of these values and steady-state kinetic data, the minimal rate for the hydrogen-transfer step is calculated to be ∼75-fold faster than k cat for xanthine oxidase and ∼10-fold faster than k cat for xanthine dehydrogenase. Values calculated for each enzyme were found to be identical within experimental uncertainty

  4. Kinetic transport in a magnetically confined and flux-constrained fusion plasma

    International Nuclear Information System (INIS)

    Darmet, G.

    2007-11-01

    This work deals with the kinetic transport in a fusion plasma magnetically confined and flux-constrained. The author proposes a new interpretation of the dynamics of zonal flows. The model that has been studied is a gyrokinetic model reduced to the transport of trapped ions. The inter-change stability that is generated allows the study of the kinetic transport of trapped ions. This model has a threshold instability and can be simulated over a few tens confining time for either thermal bath constraint or flux constraint. For thermal baths constraint, the simulation shows a metastable state where zonal flows are prevailing while turbulence is non-existent. In the case of a flux-constraint, zonal flows appear and relax by exchanging energy with system's kinetic energy and turbulence energy. The competition between zonal flows and turbulence can be then simulated by a predator-prey model. 2 regimes can be featured out: an improved confining regime where zonal flows dominate transport and a turbulent regime where zonal flows and turbulent transport are of the same magnitude order. We show that flux as well as the Reynolds tensor play an important role in the dynamics of the zonal flows and that the gyrokinetic description is relevant for all plasma regions. (A.C.)

  5. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  6. Relative rate study of the kinetic isotope effect in the 13CH3D + Cl reaction

    DEFF Research Database (Denmark)

    Joelsson, Lars Magnus Torvald; Forecast, Roslyn; Schmidt, Johan Albrecht

    2014-01-01

    The 13CH3D/12CH4kinetic isotope effect, α13CH3D, of CH4 + Cl is determined for the first time, using the relative rate technique and Fourier transform infrared (FTIR) spectroscopy. α13CH3D is found to be 1.60 ± 0.04. In addition, a quantum chemistry/transition state theory model with tunneling...

  7. Energy transfer and kinetics in mechanochemistry.

    Science.gov (United States)

    Chen, Zhiliang; Lu, Shengyong; Mao, Qiongjing; Buekens, Alfons; Wang, Yuting; Yan, Jianhua

    2017-11-01

    Mechanochemistry (MC) exerts extraordinary degradation and decomposition effects on many chlorinated, brominated, and even fluorinated persistent organic pollutants (POPs). However, its application is still limited by inadequate study of its reaction kinetic aspects. In the present work, the ball motion and energy transfer in planetary ball mill are investigated in some detail. Almost all milling parameters are summarised in a single factor-total effective impact energy. Furthermore, the MC kinetic between calcium oxide/Al and hexachlorobenzene is well established and modelled. The results indicate that total effective impact energy and reagent ratio are the two factors sufficient for describing the MC degradation degree of POPs. The reaction rate constant only depends on the chemical properties of reactants, so it could be used as an important index to appraise the quality of MC additives. This model successfully predicts the reaction rate for different operating conditions, indicating that it could be suitably applied for conducting MC reactions in other reactors.

  8. First-principles kinetic Monte Carlo simulations of ammonia oxidation at RuO{sub 2}(110): Selectivity vs. semi-local DFT

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Claudia [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Reuter, Karsten [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Technische Universitaet, Muenchen (Germany)

    2011-07-01

    Reaching a detailed mechanistic understanding of high selectivity in surface catalytic processes is one of the central goals in present-day catalysis research. The Surface Science approach to this problem focuses on the investigation of well-defined model systems that reduce the complexity but still capture the relevant aspects. In this respect, the almost 100% selectivity reported in detailed experiments for the oxidation of NH{sub 3} to NO at RuO{sub 2}(110) presents an ideal benchmark for a quantitative theoretical analysis. To this end we perform detailed kinetic Monte Carlo simulations based on kinetic parameters derived from density-functional theory (DFT). The obtained turnover frequency for molecular nitrogen is in rather good agreement with the experimental data. However, even with an extended set of elementary processes we are not able to reproduce the experimental findings for the production of NO and therewith the selectivity. The central quantities that decisively determine the latter are the binding energy of NO and the N diffusion barrier. Suspecting the approximate energetics obtained with the employed semi-local DFT functional as reason for the discrepancy, we recalculate the kinetic parameters with different functionals and discuss the resulting effects in the kMC simulations.

  9. Theory of semicollisional kinetic Alfven modes in sheared magnetic fields

    International Nuclear Information System (INIS)

    Hahm, T.S.; Chen, L.

    1985-02-01

    The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum

  10. On kinetic description of electromagnetic processes in a quantum plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Vladimirov, S. V.; Kompaneets, R.

    2011-01-01

    A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartree's mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with ''quantum interference integral'', which allows for relatively straightforward modification of existing classical Vlasov codes to incorporate quantum effects (quantum statistics and quantum interference of overlapping particles wave functions), without changing the bulk of the codes. Such modification (upgrade) of existing Vlasov codes may provide a direct and effective path to numerical simulations of nonlinear electrostatic and electromagnetic phenomena in quantum plasmas, especially of processes where kinetic effects are important (e.g., modulational interactions and stimulated scattering phenomena involving plasma modes at short wavelengths or high-order kinetic modes, dynamical screening and interaction of charges in quantum plasma, etc.) Moreover, numerical approaches involving such modified Vlasov codes would provide a useful basis for theoretical analyses of quantum plasmas, as quantum and classical effects can be easily separated there.

  11. Bayesian Calibration of Thermodynamic Databases and the Role of Kinetics

    Science.gov (United States)

    Wolf, A. S.; Ghiorso, M. S.

    2017-12-01

    Self-consistent thermodynamic databases of geologically relevant materials (like Berman, 1988; Holland and Powell, 1998, Stixrude & Lithgow-Bertelloni 2011) are crucial for simulating geological processes as well as interpreting rock samples from the field. These databases form the backbone of our understanding of how fluids and rocks interact at extreme planetary conditions. Considerable work is involved in their construction from experimental phase reaction data, as they must self-consistently describe the free energy surfaces (including relative offsets) of potentially hundreds of interacting phases. Standard database calibration methods typically utilize either linear programming or least squares regression. While both produce a viable model, they suffer from strong limitations on the training data (which must be filtered by hand), along with general ignorance of many of the sources of experimental uncertainty. We develop a new method for calibrating high P-T thermodynamic databases for use in geologic applications. The model is designed to handle pure solid endmember and free fluid phases and can be extended to include mixed solid solutions and melt phases. This new calibration effort utilizes Bayesian techniques to obtain optimal parameter values together with a full family of statistically acceptable models, summarized by the posterior. Unlike previous efforts, the Bayesian Logistic Uncertain Reaction (BLUR) model directly accounts for both measurement uncertainties and disequilibrium effects, by employing a kinetic reaction model whose parameters are empirically determined from the experiments themselves. Thus, along with the equilibrium free energy surfaces, we also provide rough estimates of the activation energies, entropies, and volumes for each reaction. As a first application, we demonstrate this new method on the three-phase aluminosilicate system, illustrating how it can produce superior estimates of the phase boundaries by incorporating constraints

  12. Process Simulation for the Design and Scale Up of Heterogeneous Catalytic Process: Kinetic Modelling Issues

    Directory of Open Access Journals (Sweden)

    Antonio Tripodi

    2017-05-01

    Full Text Available Process simulation represents an important tool for plant design and optimization, either applied to well established or to newly developed processes. Suitable thermodynamic packages should be selected in order to properly describe the behavior of reactors and unit operations and to precisely define phase equilibria. Moreover, a detailed and representative kinetic scheme should be available to predict correctly the dependence of the process on its main variables. This review points out some models and methods for kinetic analysis specifically applied to the simulation of catalytic processes, as a basis for process design and optimization. Attention is paid also to microkinetic modelling and to the methods based on first principles, to elucidate mechanisms and independently calculate thermodynamic and kinetic parameters. Different case studies support the discussion. At first, we have selected two basic examples from the industrial chemistry practice, e.g., ammonia and methanol synthesis, which may be described through a relatively simple reaction pathway and the relative available kinetic scheme. Then, a more complex reaction network is deeply discussed to define the conversion of bioethanol into syngas/hydrogen or into building blocks, such as ethylene. In this case, lumped kinetic schemes completely fail the description of process behavior. Thus, in this case, more detailed—e.g., microkinetic—schemes should be available to implement into the simulator. However, the correct definition of all the kinetic data when complex microkinetic mechanisms are used, often leads to unreliable, highly correlated parameters. In such cases, greater effort to independently estimate some relevant kinetic/thermodynamic data through Density Functional Theory (DFT/ab initio methods may be helpful to improve process description.

  13. Kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments

    International Nuclear Information System (INIS)

    Comans, R.N.J.

    1998-01-01

    The kinetics and reversibility of radiocaesium solid/liquid partitioning in sediments have been reviewed and interpreted in terms of a mechanistic framework. This framework is based on the premise that radiocaesium is almost exclusively and highly-selectively bound to the frayed particle edges of illitic clay minerals in the sediments. Several processes with distinctly different rates can be distinguished in radiocaesium sorption to sediments. 2- and 3-box kinetic models can describe both the overall solid/liquid partitioning in sediments and the reversible (exchangeable) and irreversible (nonexchangeable or 'fixed') fractions of radiocaesium in sediments over time scales relevant for natural aquatic systems. The obtained rate parameters indicate that reversible partitioning of radiocaesium dominates over the first few days following a contamination event, whereas irreversible kinetics becomes important over time scales of weeks to months. The slow process, which reduces the exchangeability of sediment-bound radiocaesium over time, is believed to result from a migration of radiocaesium from exchangeable sites on the frayed edges of illite towards less-exchangeable interlayer sites. Long-term extraction of radiocaesium from historically contaminated sediments has given evidence for a reverse (remobilization) process with a half-life of the order of tens of years. These findings suggest that the long-term exchangeability of radiocaesium in sediments may be higher than the few % which is generally assumed. (orig.)

  14. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Science.gov (United States)

    Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A

    2015-01-01

    Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  15. Carbon-13 kinetic isotope effects in the decarbonylations of lactic acid containing 13C at the natural abundance level

    International Nuclear Information System (INIS)

    Zielinski, M.; Czarnota, G.; Papiernik-Zielinska, H.

    1992-01-01

    The 13 C kinetic isotope fractionation in the decarbonylation of lactic acid of natural isotopic composition by sulfuric acid has been studied in the temperature range of 20-80 deg C. The 13 C (1) isotope separation in the decarbonylation of lactic acid by concentrated sulfuric acid depends strongly on the temperature above 40 deg C. Below this temperature the 13 C isotope effect in the decarbonylation of lactic acid by concentrated sulfuric acid is normal similarly as has been found in the decarbonylation of lactic [1- 14 C] acid. The experimental values of k (12C) /k (13C) ratios of isotopic rate constants for 12 C and 13 C are close to, but slightly higher than theoretical 13 C-kinetic isotope effects calculated (neglecting tunneling) under the asumption that the C (1) -OH bond is broken in the rate-controlling step of the dehydration reaction. Dilution of concentrated sulfuric acid with water up to 1.4 molar (H 2 O)/(H 2 SO 4 ) ratio caused the increase of the 13 C isotope fractionation from 1.0273 found in concentrated sulfuric acid at 80.5 deg C to 1.0536±0.0008 (at 80.6 deg C). A discussion of the abnormally high temperature dependence of 14 C and 13 C isotope fractionation in this reaction and the discussion of the problem of relative 14 C/ 13 C kinetic isotope effects is given. (author) 18 refs.; 2 tabs

  16. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.

    Science.gov (United States)

    Pleiss, Jürgen

    2018-03-01

    Macrokinetic Michaelis-Menten models based on thermodynamic activity provide insights into enzyme kinetics because they separate substrate-enzyme from substrate-solvent interactions. Kinetic parameters are estimated from experimental progress curves of enzyme-catalyzed reactions. Three pitfalls are discussed: deviations between thermodynamic and concentration-based models, product effects on the substrate activity coefficient, and product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The physical kinetics of magnetoplasticity of diamagnetic crystals

    International Nuclear Information System (INIS)

    Buchachenko, A. L.

    2007-01-01

    The kinetic equations describing the rate of magnetically induced release of dislocations entrapped by stoppers were solved. The magnetic field effect on the mobility of dislocations was calculated. Its comparison with experiment gave the ratio between the rate constants for two key processes governing magnetoplasticity, namely, singlet-triplet conversion in a spin nanoreactor and the release of a dislocation from it. The kinetic criterion of the existence of magnetoplasticity as a physical phenomenon was obtained

  18. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  19. Effects of hyperthermia on growth kinetics of Chinese hamster ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Leeper, D.B.; Bobyock, S.B.

    1987-01-01

    The effects of hyperthermia on growth rate, cell volume, and density at plateau phase were studied in OvCa cells in monolayer culture in McCoy's 5a + 10% FCS. At 37 0 C, T/sub G/=9.3 hr, cell density at plateau was 32 x 10/sup 4//cm/sup 2/, and mean cell volume decreased from 1200 μ/sup 3/ at the onset of exponential growth to 850 μ/sup 3/ in plateau phase. Cells were acutely heated for 60' at 43 0 ,30' at 44 0 , or 15' at 45 0 (S.F.=20%) and incubated at 37 0 ; or were chronically heated for up to 80 hr at 39-42 0 . Acute heating at 43-45 0 delayed cell division for appx 13 hr after which growth resumed with a T/sub G/=18 hr. Incubation at 39-40 0 had no effect on T/sub G/, but temperatures of 40.5-42 0 increased T/sub G/ at ΔH=176 kcal/mole. Increasing incubation temperature decreased cell density at plateau phase and altered cell volume kinetics. Cell density in plateau phase was 20 x 10/sup 4//cm/sup 2/ at 39 0 , 13 x 10/sup 4//cm/sup 2/ at 40 0 , 5x10/sup 4//cm/sup 2/ at 41 0 . Growth was greatly reduced at 42 0 (T/sub G/=55 hr) and doubling did not occur before onset of cell lysis. The decrease in cell volume with growth of the culture was unaffected at 39 0 . However, at temperatures ≥40 0 cell volume transiently increase, and the rate of decrease in volume that normally occurred with growth at 37-39 0 was less such that at 41 0 there was no decrease in volume at all before cells entered plateau phase. The authors' hypothesis is that the effects of heat on growth kinetics are related to alterations in rates of protein synthesis. This is currently being tested

  20. Kinetic Interface

    DEFF Research Database (Denmark)

    2009-01-01

    A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises.......A kinetic interface for orientation detection in a video training system is disclosed. The interface includes a balance platform instrumented with inertial motion sensors. The interface engages a participant's sense of balance in training exercises....

  1. The structure of active centers and the kinetic isotopic effect in the ionic polymerization of heterocyclic compounds

    International Nuclear Information System (INIS)

    Ponomarienko, W.A.; Berman, E.L.

    1979-01-01

    The method of kinetic isotopic effect has been applied to the elucidation of the structure of the active growth centres in the polymerization of some selected heterocyclic compounds. The cationic polymerization of ehtylene oxide, tetrahydrofuran and 1.3-dioxolane as well as the anionic and coordination polymerization of ethylene oxide have been discussed. (author)

  2. The oxidation kinetics of zircaloy - 4 under isothermal conditions

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos; Cardoso, P.E.

    1982-01-01

    The oxidation kinetics of zircaloy-4 tubes was studied by means of isothermal tests in the temperature interval 500 0 C to 900 0 C. Dry oxygen and water steam, were used as oxidant agents. The results show that the oxidation kinetics law exhibits a behaviour from cubic to parabolic in the range of the time and temperatures of the experiment. Dry oxygen shows a stronger oxidation effect than water steam. A special mechanical test to study the embrittlement effect in the small samples of zircaloy tubes was used. (Author) [pt

  3. A two-point kinetic model for the PROTEUS reactor

    International Nuclear Information System (INIS)

    Dam, H. van.

    1995-03-01

    A two-point reactor kinetic model for the PROTEUS-reactor is developed and the results are described in terms of frequency dependent reactivity transfer functions for the core and the reflector. It is shown that at higher frequencies space-dependent effects occur which imply failure of the one-point kinetic model. In the modulus of the transfer functions these effects become apparent above a radian frequency of about 100 s -1 , whereas for the phase behaviour the deviation from a point model already starts at a radian frequency of 10 s -1 . (orig.)

  4. Nanoparticle shape, thermodynamics and kinetics

    International Nuclear Information System (INIS)

    Marks, L D; Peng, L

    2016-01-01

    Nanoparticles can be beautiful, as in stained glass windows, or they can be ugly as in wear and corrosion debris from implants. We estimate that there will be about 70 000 papers in 2015 with nanoparticles as a keyword, but only one in thirteen uses the nanoparticle shape as an additional keyword and research focus, and only one in two hundred has thermodynamics. Methods for synthesizing nanoparticles have exploded over the last decade, but our understanding of how and why they take their forms has not progressed as fast. This topical review attempts to take a critical snapshot of the current understanding, focusing more on methods to predict than a purely synthetic or descriptive approach. We look at models and themes which are largely independent of the exact synthetic method whether it is deposition, gas-phase condensation, solution based or hydrothermal synthesis. Elements are old dating back to the beginning of the 20th century—some of the pioneering models developed then are still relevant today. Others are newer, a merging of older concepts such as kinetic-Wulff constructions with methods to understand minimum energy shapes for particles with twins. Overall we find that while there are still many unknowns, the broad framework of understanding and predicting the structure of nanoparticles via diverse Wulff constructions, either thermodynamic, local minima or kinetic has been exceedingly successful. However, the field is still developing and there remain many unknowns and new avenues for research, a few of these being suggested towards the end of the review. (topical review)

  5. Kinetic effects in Alfven wave heating Part 2 propagation and absorption with a single minority species

    International Nuclear Information System (INIS)

    Li, Wann-Quan; Ross, D.W.; Mahajan, Swadesh M.

    1989-06-01

    Kinetic effects of Alfven wave spatial resonances near the plasma edge are investigated numerically and analytically in a cylindrical tokamak model. In Part 1, cold plasma surface Alfven eigenmodes (SAE's) in a pure plasma are examined. Numerical calculations of antenna-driven waves exhibiting absorption resonances at certain discrete frequencies are first reviewed. From a simplified kinetic equation, an analytical dispersion relation is then obtained with the antenna current set equal to zero. The real and imaginary parts of its roots, which are the complex eigenfrequencies, agree with the central frequencies and widths, respectively, of the numerical antenna-driven resonances. These results serve as an introduction to the companion paper, in which it is shown that, in the presence of a minority species, certain SAE's, instead of heating the plasma exterior, can dissipate substantial energy in the two-ion hybrid layer near the plasma center. 11 refs., 8 figs., 1 tab

  6. Kinetics and mechanism of the formation and etching of particle tracks in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Lueck, H.B.

    1982-05-01

    The physical and chemical processes initiated by a particle passing through a polymer are reviewed. Particular attention is devoted to the processes in PETP. The influence of the material parameters and environmental effects on the subsequent reactions in PETP is discussed. Models of the mechanism and kinetics of the alkaline degradation on the surface and in the etch channel are presented. The character and the effect of the relevant species has been taken into consideration. The mechanism of the photo-oxidative sensitivity enhancement is discussed. The models mentioned above are taken as a basis to interpret the empirical response function. It is shown, that the response function can be applied to bulk-irradiated polymers as well. Treeing in electrically stressed particle tracks assisted by an etchant can be attributed to the electrostatic pressure. However, the differences in the behaviour of the structures give evidence, that the formation of craze structures and bubbles in the presence of a nonetching electrolyte is the result of the electroosmotic pressure. (author)

  7. Mg doping and its effect on the semipolar GaN(1122) growth kinetics

    International Nuclear Information System (INIS)

    Lahourcade, L.; Wirthmueller, A.; Monroy, E.; Pernot, J.; Chauvat, M. P.; Ruterana, P.; Laufer, A.; Eickhoff, M.

    2009-01-01

    We report the effect of Mg doping on the growth kinetics of semipolar GaN(1122) synthesized by plasma-assisted molecular-beam epitaxy. Mg tends to segregate on the surface, inhibiting the formation of the self-regulated Ga film which is used as a surfactant for the growth of undoped and Si-doped GaN(1122). We observe an enhancement of Mg incorporation in GaN(1122) compared to GaN(0001). Typical structural defects or polarity inversion domains found in Mg-doped GaN(0001) were not observed for the semipolar films investigated in the present study.

  8. Effect of cisplatin on the clinically relevant radiosensitivity of human cervical carcinoma cell lines

    International Nuclear Information System (INIS)

    Britten, Richard A.; Evans, Andrew J.; Allalunis-Turner, M. Joan; Pearcey, Robert G.

    1996-01-01

    Purpose: To evaluate the effect of clinically relevant levels of cisplatin on the radiosensitivity of human cervical tumor cells, and to estimate what changes in local control rates might be expected to accrue from the concomitant use of cisplatin during fractionated radiotherapy. Methods and Materials: The effects of concomitant cisplatin (1 μg/ml, a typical intratumor concentration) on the clinically relevant radiosensitivity, i.e., surviving fraction after 2 G (SF 2 ) values, was determined in 19 cloned human cervical tumor cell lines. These early passage cell lines had SF 2 values ranging from 0.26 to 0.87. Results: The concomitant administration of cisplatin reduced the clinically relevant radiosensitivity in the majority (11 out of 19) of the human tumor cell lines investigated. In only 4 out of 19 was any radiosensitization observed, and in 4 out of 19 cell lines there was no significant change in radiosensitivity. However, the sum of the independent cell killing by radiation and cisplatin, was approximately twofold higher than after radiation alone. There was no apparent dependence of the cisplatin-induced changes in SF 2 values upon the level of cell killing by cisplatin. However, there is a suggestion that concomitant cisplatin administration may have a differential effect in inherently radiosensitive and resistant human tumor cell lines. Conclusions: Our data suggest that concomitant cisplatin/radiotherapy regimens may result in a higher level of local tumor control, but primarily through additive toxicity and not through radiosensitization. Future improvements in local tumor control may, thus, be derived by increasing the total dose of cisplatin

  9. Drying kinetics of fermented grape pomace: Determination of moisture effective diffusivity

    Directory of Open Access Journals (Sweden)

    Kricelle M. Deamici

    Full Text Available ABSTRACT The aim of this study was to obtain the equilibrium moisture content of grape (variety ‘Tannat’ pomace through desorption isotherms, to evaluate the drying kinetics, determine the coefficient of effective diffusivity and physico-chemically characterize the grape pomace and the product obtained after drying. The desorption isotherms were determined at 50, 60 and 70 ºC and the experimental data were fitted using the GAB model (Gugghenheim, Anderson and de Boer. Drying was evaluated using a 22 factorial experimental design with three center points and effective diffusivity was obtained through the diffusion model of Fick’s second law. The grape pomace was characterized regarding the contents of moisture, protein, carbohydrates, lipids, ash and dietary crude fiber. The obtained isotherms showed sigmoid shape and the experimental data fitted well to the GAB model. The drying curves showed only a decreasing rate period. The effective diffusivity values were within the range for organic materials. Dry grape pomace showed high contents of protein and fiber and can be used in the development of new products, in order to increase the nutritional content and add value to this byproduct.

  10. Kinetic and dynamic Delaunay tetrahedralizations in three dimensions

    Science.gov (United States)

    Schaller, Gernot; Meyer-Hermann, Michael

    2004-09-01

    We describe algorithms to implement fully dynamic and kinetic three-dimensional unconstrained Delaunay triangulations, where the time evolution of the triangulation is not only governed by moving vertices but also by a changing number of vertices. We use three-dimensional simplex flip algorithms, a stochastic visibility walk algorithm for point location and in addition, we propose a new simple method of deleting vertices from an existing three-dimensional Delaunay triangulation while maintaining the Delaunay property. As an example, we analyse the performance in various cases of practical relevance. The dual Dirichlet tessellation can be used to solve differential equations on an irregular grid, to define partitions in cell tissue simulations, for collision detection etc.

  11. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  12. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  13. Change detection in urban and rural driving scenes: Effects of target type and safety relevance on change blindness.

    Science.gov (United States)

    Beanland, Vanessa; Filtness, Ashleigh J; Jeans, Rhiannon

    2017-03-01

    The ability to detect changes is crucial for safe driving. Previous research has demonstrated that drivers often experience change blindness, which refers to failed or delayed change detection. The current study explored how susceptibility to change blindness varies as a function of the driving environment, type of object changed, and safety relevance of the change. Twenty-six fully-licenced drivers completed a driving-related change detection task. Changes occurred to seven target objects (road signs, cars, motorcycles, traffic lights, pedestrians, animals, or roadside trees) across two environments (urban or rural). The contextual safety relevance of the change was systematically manipulated within each object category, ranging from high safety relevance (i.e., requiring a response by the driver) to low safety relevance (i.e., requiring no response). When viewing rural scenes, compared with urban scenes, participants were significantly faster and more accurate at detecting changes, and were less susceptible to "looked-but-failed-to-see" errors. Interestingly, safety relevance of the change differentially affected performance in urban and rural environments. In urban scenes, participants were more efficient at detecting changes with higher safety relevance, whereas in rural scenes the effect of safety relevance has marginal to no effect on change detection. Finally, even after accounting for safety relevance, change blindness varied significantly between target types. Overall the results suggest that drivers are less susceptible to change blindness for objects that are likely to change or move (e.g., traffic lights vs. road signs), and for moving objects that pose greater danger (e.g., wild animals vs. pedestrians). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Applications and interactions of solid impurity pellets with reactor relevant plasma

    International Nuclear Information System (INIS)

    Deng Baiquan; Peng Lilin; Huang Jinhua; Yan Jiancheng

    2003-01-01

    Based on the kinetic two-dimensional lentil-shape ablation theory of hydrogenic pellet developed by Kuteev, the new extended algorithm for erosion speed and ablation rate calculations of the impurity pellets in reactor relevant plasma has been derived. The preliminary exploration for the feasibility of applying impurity pellet injection to the α particle diagnostics in the future ITER device has been performed. The comparisons between the numerical integral calculation results and analysis show that the lithium pellet injection possesses much more compatibilities. It might be feasible to apply this technique to both α particle diagnostics and safety factor q profile measurement in the future ITER device. (authors)

  15. Spectroscopy and Kinetics of Combustion Gases at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Bowman, Craig [Stanford Univ., CA (United States)

    2016-02-01

    This report describes our research program that involves two complementary activities: (1) development and application of cw laser absorption methods for the measurement of concentration time-histories and fundamental spectroscopic parameters for species of interest in combustion; and (2) shock tube studies of reaction kinetics relevant to combustion. This first part of this report covers research during the final three-year support period, i.e. March 2012 – November 2015. The later part of this report summarizes research conducted over multiple-year periods between March 1988 to March 2012. Publications supported by DOE for each period are summarized at the end of that report section.

  16. The effects of audit quality on the value relevance of other comprehensive incomes

    Directory of Open Access Journals (Sweden)

    Levinska Primavera

    2015-06-01

    Full Text Available Stockholders claim deals with handling crucial role to investors while another ac-counting measurement has not yet been paid attention by the investors and analysts. Beside, another comprehensive income despite of its equal role to net income also re-quires a deep concern. This research uses financial industry data in Indonesia Capital Market for 2011-2012 under panel method and also cross-section method as the addi-tional analysis. This research assesses the effect of audit quality on value relevance of other comprehensive income regarding subjectivity embedded in other comprehensive income components. These components are determined through fair value aspects, which eventually lead to management discretion in measuring other comprehensive income components. Subjective components of other comprehensive incomes consist of foreign exchange translation (forex, revaluation in fixed assets (rev, minimum pension liability adjustment (pen, and available-for-sale securities adjustment (sec. The audit quality is believed as a mechanism which can increase the value relevance of subjective of other comprehensive income components. On the other hand, when as-sessing the value relevance of other comprehensive income components both indivi-dually and in aggregate, it is encouraged by inconsistency of previous research results.

  17. Aqueous photochemical degradation of hydroxylated PAHs: Kinetics, pathways, and multivariate effects of main water constituents

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Chen, Chang-Er [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Li, Jun [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); College of Marine Science, Shanghai Ocean University, Shanghai 201306 (China); Ju, Maowei; Wang, Ying; Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2016-03-15

    Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) are contaminants of emerging concern in the aquatic environment, so it is of great significance to understand their environmental transformation and toxicity. This study investigated the aqueous photochemical behavior of four OH-PAHs, 9-Hydroxyfluorene (9-OHFL), 2-Hydroxyfluorene, 9-Hydroxyphenanthrene and 1-Hydroxypyrene, under simulated sunlight irradiation (λ > 290 nm). It was observed that their photodegradation followed the pseudo-first-order kinetics. Based on the determined quantum yields, their calculated solar apparent photodegradation half-lives in surface waters at 45° N latitude ranged from 0.4 min for 9-Hydroxyphenanthrene to 7.5 × 10{sup 3} min for 9-OHFL, indicating that the OH-PAHs would intrinsically photodegrade fast in sunlit surface waters. Furthermore, 9-OHFL as an example was found to undergo direct photolysis, and self-sensitized photooxidation via ·OH rather than {sup 1}O{sub 2} in pure water. The potential photoreactions involved photoinduced hydroxylation, dehydrogenation and isomerization based on product identification by GC–MS/MS. 9-OHFL photodegraded slower in natural waters than in pure water, which was attributed to the integrative effects of the most photoreactive species, such as Fe(III), NO{sub 3}{sup −}, Cl{sup −} and humic acid. The photomodified toxicity was further examined using Vibrio fischeri, and it was found that the toxicity of photolyzed 9-OHFL did not decrease significantly (p > 0.05) either in pure water or in seawater, implying the comparable or higher toxicity of some intermediates. These results are important for assessing the fate and risks of OH-PAHs in surface waters. - Graphical abstract: Aqueous photochemical behavior of 4 hydroxylated PAHs is first reported on revealing the kinetics, mechanisms, toxicity, and multivariate effects of water constituents. - Highlights: • It is first reported on aqueous photochemical behavior of 4 hydroxylated

  18. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Kinetic and Related Determinants of Plasma Triglyceride Concentration in Abdominal Obesity: Multicenter Tracer Kinetic Study.

    Science.gov (United States)

    Borén, Jan; Watts, Gerald F; Adiels, Martin; Söderlund, Sanni; Chan, Dick C; Hakkarainen, Antti; Lundbom, Nina; Matikainen, Niina; Kahri, Juhani; Vergès, Bruno; Barrett, P Hugh R; Taskinen, Marja-Riitta

    2015-10-01

    Patients with obesity and diabetes mellitus have increased risk of cardiovascular disease. A major cause is an atherogenic dyslipidemia related primarily to elevated plasma concentrations of triglyceride-rich lipoproteins. The aim of this study was to clarify determinants of plasma triglyceride concentration. We focused on factors that predict the kinetics of very-low density lipoprotein 1 (VLDL1) triglycerides. A multicenter study using dual stable isotopes (deuterated leucine and glycerol) and multicompartmental modeling was performed to elucidate the kinetics of triglycerides and apoB in VLDL1 in 46 subjects with abdominal obesity and additional cardiometabolic risk factors. Results showed that plasma triglyceride concentrations were dependent on both the secretion rate (r=0.44, Ptriglycerides and VLDL1-apoB. Liver fat mass was independently and directly associated with secretion rates of VLDL1-triglycerides (r=0.56, Ptriglycerides (r=0.48, Ptriglyceride concentrations in abdominal obesity are determined by the kinetics of VLDL1 subspecies, catabolism being mainly dependent on apoC-III concentration and secretion on liver fat content. Reduction in liver fat and targeting apoC-III may be an effective approach for correcting triglyceride metabolism atherogenic dyslipidemia in obesity. © 2015 American Heart Association, Inc.

  20. Analysis of Kinetic Parameter Effect on Reactor Operation Stability of the RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Rokhmadi

    2007-01-01

    Kinetic parameter has influence to behaviour on RSG-GAS reactor operation. In this paper done is the calculation of reactivity curve, period-reactivity relation and low power transfer function in silicide fuel. This parameters is necessary and useful for reactivity characteristic analysis and reactor stability. To know the reactivity response, it was done reactivity insertion at power 1 watt using POKDYN code because at this level of power no feedback reactivity so important for reactor operation safety. The result of calculation showed that there is no change of significant a period-reactivity relation and transfer function at low power for 2.96 gU/cc, 3.55 gU/cc and 4.8 gU/cc density of silicide fuels. The result of the transfer function at low power showed that the reactor is critical stability with no feedback. The result of calculation also showed that reactivity response no change among three kinds of fuel densities. It can be concluded that from kinetic parameter point of view period-reactivity relation, transfer function at low power, and reactivity response are no change reactor operation from reactivity effect when fuel exchanged. (author)

  1. Holographic kinetic k-essence model

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: ncruz@lauca.usach.cl; Gonzalez-Diaz, Pedro F.; Rozas-Fernandez, Alberto [Colina de los Chopos, Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)], E-mail: a.rozas@cfmac.csic.es; Sanchez, Guillermo [Departamento de Matematica y Ciencia de la Computacion, Facultad de Ciencia, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile)], E-mail: gsanchez@usach.cl

    2009-08-31

    We consider a connection between the holographic dark energy density and the kinetic k-essence energy density in a flat FRW universe. With the choice c{>=}1, the holographic dark energy can be described by a kinetic k-essence scalar field in a certain way. In this Letter we show this kinetic k-essential description of the holographic dark energy with c{>=}1 and reconstruct the kinetic k-essence function F(X)

  2. Stabilization of kinetic internal kink mode by ion diamagnetic effects

    International Nuclear Information System (INIS)

    Naitou, H.; Kuramoto, T.; Kobayashi, T.; Yagi, M.; Tokuda, S.; Matsumoto, T.

    2000-04-01

    Ion diamagnetic effects on the m=1 (poloidal mode number) and n=1 (toroidal mode number) kinetic internal kink mode are studied numerically by the three-field gyro-reduced-MHD code in the cylindrical coordinates, GRM3F-CY. In the derivation of the gryo-reduced-MHD model including the ion diamagnetic effects, finite gyroradius effects of ions are added to the gyrokinetic Poisson equation (quasi-neutral condition) and the convection term of the conservation law of the ion density. It is found that the long wavelength approximation, ksub(perpendicular) ρ ti ti is the thermal ion gyroradius, fails to reproduce the correct dispersion relation; the formulation valid even for ksub(perpendicular) ρ ti >> 1 is necessary. The results of numerical calculation coincide with the theory for |ω *e |+|ω *i | 0 , where the growth rate reduces as the density gradient increases. Here ω *e and ω *i are electron and ion diamagnetic angular frequencies estimated at the rational surface of q=1 (q is a safety factor), respectively, and γ 0 is the growth rate for the uniform density. Very weak instability, however, is observed for |ω *e |+|ω *i | 0 , where the theory predicts the complete stabilization. This residual instability appears since the region with the density gradient is limited in the radial direction and the stabilization by the outgoing drift-wave like mode becomes incomplete. (author)

  3. Effects of high pressure homogenization on the activity, stability, kinetics and three-dimensional conformation of a glucose oxidase produced by Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Alline Artigiani Lima Tribst

    Full Text Available High pressure homogenization (HPH is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300% at pH 6.5 in all tested temperatures (15, 50 and 75°C. The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C also caused a reduction of activity. Interestingly, at lower temperatures (15°C the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

  4. ECHOGRAPHIC AND KINETIC CHANGES IN THE SHOULDER JOINT AFTER MANUAL WHEELCHAIR PROPULSION UNDER TWO DIFFERENT WORKLOAD SETTINGS

    Directory of Open Access Journals (Sweden)

    Ángel eGil-Agudo

    2014-12-01

    Full Text Available AbstractManual wheelchair users with spinal cord injury have a high prevalence of shoulder pain, due to the use of the upper extremity for independent mobility, transfers and other activities of daily living. Indeed, shoulder pain dramatically affects quality of life of these individuals. There is limited evidence obtained through radiographic techniques of a relationship between the forces acting on the shoulder during different propulsion conditions and shoulder pathologies. Today, ultrasound is widely accepted as a precise tool in diagnosis, displaying particularly effectiveness in screening the shoulder rotator cuff. Thus, we set out to perform an ultrasound-based study of the acute changes to the shoulder soft tissues after propelling a manual wheelchair in two workload settings. Shoulder joint kinetics was recorded from 14 manual wheelchair users with spinal cord injury while they performed high and low intensity wheelchair propulsion tests (constant and incremental. Shoulder joint forces and moments were obtained from inverse dynamic methods, and ultrasound screening of the shoulder was performed before and immediately after the test. Kinetic changes were more relevant after the most intensive task, showing the significance of high intensity activity, yet no differences were found in ultrasound-related parameters before and after each propulsion task. It therefore appears that further studies will be needed to collect clinical data and correlate data regarding shoulder pain with both ultrasound images and data from shoulder kinetics.

  5. Kinetics and mechanisms of iron redox reactions in silicate melts: The effects of temperature and alkali cations

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V.; Pinet, O. [CEA VALRHO, SCDV/LEBV, F-30207 Bagnols Sur Ceze, (France); Magnien, V.; Neuville, D. R.; Roux, J.; Richet, P. [IPGP, CNRS, Physique des Mineraux et Magmas, F-75252 Paris 05, (France); Cormier, L. [Univ Paris 06, IMPMC, F-75015 Paris, (France); Hazemann, J. L. [CNRS, Inst Neel, F-38043 Grenoble, (France); De Ligny, D. [Univ Lyon 1, LMLC, CNRS, UMR 5620, F-69622 Villeurbanne, (France); Pascarelli, S. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Vickridge, I. [Univ Paris 06, INSP, F-75015 Paris, (France)

    2008-07-01

    The kinetics and the mechanisms of iron redox reactions in molten Fe-bearing pyroxene compositions have been investigated by Raman spectroscopy and X-ray absorption Near Edge Structure (XANES) experiments at the iron K-edge. The former experiments have been made only near the glass transition whereas the latter have also been performed from about 1300 to 2100 K. The same kinetics are observed with both techniques. They are described by characteristic times that depend primarily on temperature and not on the initial redox state. At high temperatures, where both kinds of reactions could be investigated, these times are similar for oxidation and reduction. From these characteristic times we have calculated as a function of temperature and composition a parameter termed effective redox diffusivity. For a given melt, the diffusivities follow two distinct Arrhenius laws, which indicate that the mechanisms of the redox reaction are not the same near the glass transition and at high temperatures. As is now well established, diffusion of divalent cations is the dominant mechanism at low temperatures but the enhanced kinetics observed for alkali-bearing melts indicate that Li{sup +} and Na{sup +} also participate in ionic transport. At super-liquidus temperatures, in contrast, diffusion of oxygen represents the dominant mechanism. (authors)

  6. Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?

    Science.gov (United States)

    González, Maraelys Morales; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Pupo, Ana Elisa Bergues; Schneider, Baruch; Kondakci, Suleyman; Ciria, Héctor Manuel Camué; Reyes, Juan Bory; Jarque, Manuel Verdecia; Mateus, Miguel Angel O'Farril; González, Tamara Rubio; Brooks, Soraida Candida Acosta; Cáceres, José Luis Hernández; González, Gustavo Victoriano Sierra

    2017-03-07

    Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment. The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the Gompertz modified and Logistic models. Viable tumor cells (1×10 5 ) are inoculated to 28 BALB/c male mice. Modified Gompertz, Logistic, Kolmogorov-Johnson-Mehl-Avrami classical and modified Kolmogorov-Johnson-Mehl-Avrami models fit well to the experimental data and agree with one another. A jump in the time behaviors of the instantaneous slopes of classical and modified Kolmogorov-Johnson-Mehl-Avrami models and high values of these instantaneous slopes at very early stages of tumor growth kinetics are observed. The modified Kolmogorov-Johnson-Mehl-Avrami equation can be used to describe unperturbed fibrosarcoma Sa-37 tumor growth. It reveals that diffusion-controlled nucleation/growth and impingement mechanisms are involved in tumor growth kinetics. On the other hand, tumor development kinetics reveals dynamical structural transformations rather than a pure growth curve. Tumor fractal property prevails during entire TGK.

  7. High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

    Directory of Open Access Journals (Sweden)

    Christian Andreas Lenz

    2015-07-01

    Full Text Available Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C. botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores.We investigated the inactivation of C. botulinum type E spores by (near isothermal HPT treatments at 300 – 1200 MPa at 30 – 75 °C for 1 s – 10 min. The occurrence of heat and lysozyme susceptible spore fractions after such treatments was determined. The experimental data were modeled to obtain kinetic parameters and represented graphically by isoeffect lines. In contrast to findings for spores of other species and within the range of treatment parameters applied, zones of spore stabilization (lower inactivation than heat treatments alone, large heat susceptible (HPT-induced germinated or lysozyme-dependently germinable (damaged coat layer spore fractions were not detected. Inactivation followed 1st order kinetics. DPA release kinetics allowed for insights into possible inactivation mechanisms suggesting a (poorly effective physiologic-like (similar to nutrient-induced germination at ≤ 450 MPa/≤ 45 °C and non-physiological germination at >500 MPa/>60 – 70 °C.Results of this study support the existence of some commonalities in the HPT inactivation mechanism of C. botulinum type E spores and Bacillus spores although both organisms have significantly different HPT resistance properties. The information presented here contributes to closing the gap in knowledge regarding the HPT inactivation of spore formers relevant to food safety and may help industrial implementation of HPT processing. The markedly lower HPT resistance of C. botulinum type E spores than spores from other C. botulinum types, could allow for the implementation of milder processes without

  8. The Combined Effects of Financial Derivatives and Discretionary Accruals on the Value Relevance of Earnings and the Book Value of Equity

    Directory of Open Access Journals (Sweden)

    Etty Murwaningsari

    2015-08-01

    Full Text Available This study aimed to understand (1 the association between the use of discretionary accruals and financial derivatives, taking into consideration the implementation of revised PSAK 55 (1999, which was adopted from SFAS 133; (2 the combined effects of derivatives and discretionary accruals on the value relevance of earnings and equity. The analysis used panel data regressions and the Wald test over the period from 2001-2008. The results showed a positive or complementary association between derivatives and discretionary accruals. The positive association implied that managers tended to intensify the use of discretionary accruals to offset a higher use of derivatives. Price and return models demonstrated negative significant effects of derivatives on the value relevance of earnings. The return model showed negative significant effects of discretionary accruals on the value relevance of earnings but negative effects on the value relevance of equity with the price model.

  9. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations.

  10. Reflected kinetics model for nuclear space reactor kinetics and control scoping calculations

    International Nuclear Information System (INIS)

    Washington, K.E.

    1986-05-01

    The objective of this research is to develop a model that offers an alternative to the point kinetics (PK) modelling approach in the analysis of space reactor kinetics and control studies. Modelling effort will focus on the explicit treatment of control drums as reactivity input devices so that the transition to automatic control can be smoothly done. The proposed model is developed for the specific integration of automatic control and the solution of the servo mechanism problem. The integration of the kinetics model with an automatic controller will provide a useful tool for performing space reactor scoping studies for different designs and configurations. Such a tool should prove to be invaluable in the design phase of a space nuclear system from the point of view of kinetics and control limitations

  11. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  12. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  13. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    Science.gov (United States)

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  14. Combined ideal and kinetic effects on reversed shear Alfven eigenmodes

    International Nuclear Information System (INIS)

    Gorelenkov, N. N.; Kramer, G. J.; Nazikian, R.

    2011-01-01

    A reversed shear Alfven eigenmodes (RSAEs) theory has been developed for reversed magnetic field shear plasmas when the safety factor minimum, q min , is at or above a rational value. The modes we study are known sometimes as either the bottom of the frequency sweep or the down sweeping RSAEs. We show that, strictly speaking, the ideal MHD theory is not compatible with the eigenmode solution in the reversed shear plasma with q min above integer values. Corrected by a special analytic finite Larmor radius (FLR) condition, MHD dispersion of these modes nevertheless can be developed. Numerically, MHD structure can serve as a good approximation for the RSAEs.The large radial scale part of the analytic RSAE solution can be obtained from ideal MHD and expressed in terms of the Legendre functions. The kinetic equation with FLR effects for the eigenmode is solved numerically and agrees with the analytic solutions. Properties of RSAEs and their potential implications for plasma diagnostics are discussed.

  15. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects.

    Science.gov (United States)

    Lemke, Sonja; Handle, Philip H; Plaga, Lucie J; Stern, Josef N; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-21

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  16. Relaxation dynamics and transformation kinetics of deeply supercooled water: Temperature, pressure, doping, and proton/deuteron isotope effects

    Science.gov (United States)

    Lemke, Sonja; Handle, Philip H.; Plaga, Lucie J.; Stern, Josef N.; Seidl, Markus; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Köster, Karsten W.; Gainaru, Catalin; Loerting, Thomas; Böhmer, Roland

    2017-07-01

    Above its glass transition, the equilibrated high-density amorphous ice (HDA) transforms to the low-density pendant (LDA). The temperature dependence of the transformation is monitored at ambient pressure using dielectric spectroscopy and at elevated pressures using dilatometry. It is found that near the glass transition temperature of deuterated samples, the transformation kinetics is 300 times slower than the structural relaxation, while for protonated samples, the time scale separation is at least 30 000 and insensitive to doping. The kinetics of the HDA to LDA transformation lacks a proton/deuteron isotope effect, revealing that this process is dominated by the restructuring of the oxygen network. The x-ray diffraction experiments performed on samples at intermediate transition stages reflect a linear combination of the LDA and HDA patterns implying a macroscopic phase separation, instead of a local intermixing of the two amorphous states.

  17. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  18. LLNL Chemical Kinetics Modeling Group

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  19. Long-term flow/chemistry feedback in a porous medium with heterogenous permeability: Kinetic control of dissolution and precipitation

    International Nuclear Information System (INIS)

    Bolton, E.W.; Lasaga, A.C.; Rye, D.M.

    1999-01-01

    The kinetics of dissolution and precipitation is of central importance to understanding the long-term evolution of fluid flows in crustal environments, with implications for problems as diverse as nuclear waste disposal and crustal evolution. The authors examine the dynamics of such evolution for several geologically relevant permeability distributions (models for en-echelon cracks, an isolated sloping fractured zone, and two sloping high-permeability zones that are close enough together to interact). Although the focus is on a simple quartz matrix system, generic features emerge from this study that can aid in the broader goal of understanding the long-term feedback between flow and chemistry, where dissolution and precipitation is under kinetic control. Examples of thermal convection in a porous medium with spatially variable permeability reveal features of central importance to water-rock interaction. After a transient phase, an accelerated rate of change of porosity may be used with care to decrease computational time, as an alternative to the quasi-stationary state approximation (Lichtner, 1988). Kinetic effects produce features not expected by traditional assumptions made on the basis of equilibrium, for example, that cooling fluids are oversaturated and heating fluids are undersaturated with respect to silicic acid equilibrium. Indeed, the authors observe regions of downwelling oversaturated fluid experiencing heating and regions of upwelling, yet cooling, undersaturated fluid. When oscillatory convection is present, the amplitudes of oscillation generally increase with time in near-surface environments, whereas amplitudes tend to decrease over long times near the heated lower boundary. The authors examine the scaling behavior of characteristic length scales, of terms in the solute equation, and of the typical deviation from equilibrium, each as a function of the kinetic rate parameters

  20. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Tapan, Mücip; Yalçın, Zeynel; İçelli, Orhan; Kara, Hüsnü; Orak, Salim; Özvan, Ali; Depci, Tolga

    2014-01-01

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO 2 , Fe 2 O 3 , CaO, MgO, TiO 2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  1. The effect of preparation conditions and the ionizing radiation on the kinetics of cupric oxide reduction by hydrogen

    International Nuclear Information System (INIS)

    Pospisil, M.; Taras, P.

    1977-01-01

    Cupric oxide reduction in the temperature interval 170 to 350 degC was studied by thermogravimetry. The reduction kinetics can be quantitatively described by the modified Prout-Tompkinson equation, with the apparent activation energy varying within the limits (4.94 to 5.82)x10 4 J/mol. Irregularities observed during the reduction of the oxide of the oxalate origin are due to the high content of the metallic phase. The p-semiconducting nature of these oxides was proved for all samples. The effect of the pre-irradiation of samples with γ-rays (with an absorbed dose of (1.4 to 4.75)x10 6 J/kg) on the reduction kinetics depends on the origin of the cupric oxide. In contrast to NiO no correlation between the content of super-stoichiometric oxygen and the reduction kinetics was found. After irradiation with γ-rays or with fast neutrons at a dose of 79.8 J/kg the reduction rate increases and the activation energy decreases regardless of the oxide origin. At the same time the concentration of the ionic form of super-stoichiometric oxygen increases. (author)

  2. Effect of exercise position during stress testing on cardiac and pulmonary thallium kinetics and accuracy in evaluating coronary artery disease

    International Nuclear Information System (INIS)

    Lear, J.L.

    1986-01-01

    We compared the effects of symptom-limited upright and supine exercise on 201Tl distribution and kinetics in the heart and lungs of 100 consecutive patients. Our analysis was based on data obtained with a digital gamma camera in the 45 degrees left anterior oblique position at 5, 40, 240, and 275 min postadministration of [201Tl]chloride. We found significant differences in the results at the 5- and 40-min intervals; viz, higher cardiac and lower pulmonary thallium activity after upright exercise in 94 subjects at both intervals, and greater variability in total and regional cardiac thallium kinetics after supine exercise. With supine exercise, the relatively low initial cardiac activity, relatively high lung activity, and the greater variability in thallium kinetics combined to make interpretation of quantitative data and cardiac images difficult and less accurate with respect to detection of coronary artery disease. These observations have important implications for the interpreting physician when thallium stress tests are performed in the supine position

  3. Recrystallization of deformed copper - kinetics and microstructural evolution

    DEFF Research Database (Denmark)

    Lin, Fengxiang

    The objective of this study is to investigate the recrystallization kinetics and microstructural evolution in copper deformed to high strains, including copper deformed by cold-rolling and copper deformed by dynamic plastic deformation (DPD). Various characterization techniques were used, including...... electron backscatter diffraction (EBSD), Vickers hardness test, 3D X-ray diffraction (3DXRD) and differential scanning calorimetry (DSC). For the cold-rolled samples, a series of initial parameters was investigated for their effects on the recrystallization kinetics and textures, including initial grain...

  4. Kinetic Tremor: Differences Between Smokers and Non-smokers

    OpenAIRE

    Louis, Elan D.

    2006-01-01

    Tremor is among the acute effects of nicotine exposure. Published studies have focused on smoking-related postural (static) hand tremor rather than kinetic tremor (tremor during hand use), and gender differences in smoking-related tremor have not been examined. In a group of adults who were sampled from a population (mean ± SD = 65.7 ± 11.5 years, range = 18 - 92 years), the investigator assessed whether the severity of postural and kinetic tremors differed in smokers versus non-smokers, and ...

  5. Kinetics of in situ combustion. SUPRI TR 91

    Energy Technology Data Exchange (ETDEWEB)

    Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

    1993-07-01

    Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

  6. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (K sampler/soil ) and the uptake rate constant (k u ) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both K sampler/soil and k u values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both K sampler/soil and k u values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The effect of knee extensor open kinetic chain resistance training in the ACL-injured knee.

    Science.gov (United States)

    Barcellona, Massimo G; Morrissey, Matthew C; Milligan, Peter; Clinton, Melissa; Amis, Andrew A

    2015-11-01

    To investigate the effect of different loads of knee extensor open kinetic chain resistance training on anterior knee laxity and function in the ACL-injured (ACLI) knee. Fifty-eight ACLI subjects were randomised to one of three (12-week duration) training groups. The STAND group trained according to a standardised rehabilitation protocol. Subjects in the LOW and HIGH group trained as did the STAND group but with the addition of seated knee extensor open kinetic chain resistance training at loads of 2 sets of 20 repetition maximum (RM) and 20 sets of 2RM, respectively. Anterior knee laxity and measurements of physical and subjective function were performed at baseline, 6 and 12 weeks. Thirty-six subjects were tested at both baseline and 12 weeks (STAND n = 13, LOW n = 11, HIGH n = 12). The LOW group demonstrated a reduction in 133 N anterior knee laxity between baseline and 12 weeks testing when compared to the HIGH and the STAND groups (p = 0.009). Specifically, the trained-untrained knee laxity decreased an average of approximately 5 mm in the LOW group while remaining the same in the other two groups. Twelve weeks of knee extensor open kinetic chain resistance training at loads of 2 sets of 20RM led to a reduction in anterior knee laxity in the ACLI knee. This reduction in laxity does not appear to offer any significant short-term functional advantages when compared to a standard rehabilitation protocol. These results indicate that knee laxity can be decreased with resistance training of the thigh muscles. Randomised controlled trial, Level II.

  8. Adsorption of selected emerging contaminants onto PAC and GAC: Equilibrium isotherms, kinetics, and effect of the water matrix.

    Science.gov (United States)

    Real, Francisco J; Benitez, F Javier; Acero, Juan L; Casas, Francisco

    2017-07-03

    The removal of three emerging contaminants (ECs) (amitriptyline hydrochloride (AH), methyl salicylate (MS) and 2-phenoxyethanol (PE)) dissolved in several water matrices by means of their adsorption onto powdered activated carbon (PAC) and granular activated carbon (GAC) has been investigated. When dissolved in ultrapure water, adsorption of the ECs followed the trend of AH > MS > PE, with a positive effect of the adsorbent dose. According to the analysis of the adsorption isotherms and adsorption kinetics, PAC showed strongly higher adsorption efficiency in both capacity and velocity of the adsorption, in agreement with its higher mesoporosity. Equilibrium isotherm data were fitted by Langmuir and Freundlich models. Pseudo-second order kinetics modeled very successfully the adsorption process. Finally, the effect of the presence of dissolved organic matter (DOM) in the water matrices (ultrapure water, surface water and two effluents from wastewater treatment plants) on the adsorption of the selected ECs onto PAC was established, as well as its performance on the removal of water quality parameters. Results show a negative effect of the DOM content on the adsorption efficiency. Over 50% of organic matter was removed with high PAC doses, revealing that adsorption onto PAC is an effective technology to remove both micro-pollutants and DOM from water matrices.

  9. Drawing students' attention to relevant assessment criteria: effects on self-assessment skills and performance

    NARCIS (Netherlands)

    Fastré, Greet; Van der Klink, Marcel; Sluijsmans, Dominique; Van Merriënboer, Jeroen

    2012-01-01

    Fastré, G. M. J., Van der Klink, M. R., Sluijsmans, D., & Van Merriënboer, J. J. G. (2012). Drawing students’ attention to relevant assessment criteria: effects on self-assessment skills and performance. Journal of Vocational Education & Training, 64(2), 185-198. doi:10.1080/13636820.2011.630537

  10. Conformational kinetics of aliphatic tails

    Science.gov (United States)

    Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi

    The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.

  11. Age and self-relevance effects on information search during decision making.

    Science.gov (United States)

    Hess, Thomas M; Queen, Tara L; Ennis, Gilda E

    2013-09-01

    We investigated how information search strategies used to support decision making were influenced by self-related implications of the task to the individual. Consistent with the notion of selective engagement, we hypothesized that increased self-relevance would result in more adaptive search behaviors and that this effect would be stronger in older adults than in younger adults. We examined search behaviors in 79 younger and 81 older adults using a process-tracing procedure with 2 different decision tasks. The impact of motivation (i.e., self-related task implications) was examined by manipulating social accountability and the age-related relevance of the task. Although age differences in search strategies were not great, older adults were more likely than younger adults to use simpler strategies in contexts with minimal self-implications. Contrary to expectations, young and old alike were more likely to use noncompensatory than compensatory strategies, even when engaged in systematic search, with education being the most important determinant of search behavior. The results support the notion that older adults are adaptive decision makers and that factors other than age may be more important determinants of performance in situations where knowledge can be used to support performance.

  12. 13C Kinetic isotopic effect of polymerization on monomers with multiple bond

    International Nuclear Information System (INIS)

    Berman, E.L.; Polyakov, V.B.; Makovetskij, K.L.; Golenko, T.G.; Galimov, Eh.M.; AN SSSR, Moscow. Inst. Organicheskoj Khimii; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1988-01-01

    13 C kinetic isotopic effect (KIE) of anionic and radical polymerization and metathesis reaction of monomers with multiple bonds are studied and correlation between the found KIE values of polymerization and the structure of transition state is established. 13 C KIE of polymerization reactions are investigated using monomers with natural content of the isotope. Polymerization was carried out using high-vacuum equipment: radical polymerization of methyl acrylate (MA) and vinyl acetate in benzene solution under the effect of benzoyl peroxide (60 deg C); anionic polymerization of MA, initiated by potassium butyl cellosolvolate, was realized in mass at 25 deg C; cyclopentene metathesis reaction was conducted in benzene under the effect of initiating system WCl 6 - (C 3 H 5 ) 2 Si(CH 3 ) 2 at -30 deg C; phenylacetylene polymers were prepared by polymerization in benzene solution at 20 deg C under the effect of WCl 6 . It is ascertained that 13 C KIE of radical and anionic polymerization of olefins and cycloolefin metathesis constitutes 2.0 -2.4%. Polymerization of compound with ternary bond is accompanied by a lower value of 13 C KIE (<1%), which is explained by double bond of reacting bond in transition state

  13. On the kinetic theory of the one-component plasma

    International Nuclear Information System (INIS)

    Cohen, J.S.

    1984-01-01

    In this thesis, kinetic theory is applied to transport phenomena of a one-component plasma. Existing kinetic equations, containing both dynamical screening effects and close binary collisions do not suffer from divergencies. Recently an approximation for the pair correlation function has been proposed that is valid for small values of the plasma collision parameter. Upon insertion of this expression into the general form of the collision integral, one obtains another convergent kinetic equation. This thesis shows that both kinetic equations yield the same coefficient of heat conductivity and viscosity; and that for a hot dilute plasma the arbitrary transport coefficient is rather insensitive to the pair correlation function. In the second part, the author studies the diffusion of a tagged particle in an external magnetic field. It is found that the longitudinal self-diffusion coefficient contra-varies monotonically with the magnetic field strength. (Auth.)

  14. No Effect of Resveratrol on VLDL-TG Kinetics and Insulin Sensitivity in Obese Men with Nonalcoholic Fatty Liver Disease

    DEFF Research Database (Denmark)

    Poulsen, Marianne K; Nellemann, Birgitte; Bibby, Bo Martin

    2018-01-01

    The present study assess long-term effects of high-dose Resveratrol (RSV) on basal and insulin-mediated very low-desity lipoprotein triglyceride (VLDL-TG), palmitate and glucose kinetics, and liver fat content in men with nonalcoholic fatty liver disease (NAFLD). Participants (n=16) were non...

  15. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  16. Kinetic modeling of the effect of solids retention time on methanethiol dynamics in anaerobic digestion.

    Science.gov (United States)

    Zhang, Dian; Strawn, Mary; Novak, John T; Wang, Zhi-Wu

    2018-07-01

    The highly volatile methanethiol (MT) with an extremely low odor threshold and distinctive putrid smell is often identified as a major odorous compound generated under anaerobic conditions. As an intermediate compound in the course of anaerobic digestion, the extent of MT emission is closely related to the time of anaerobic reaction. In this study, lab-scale anaerobic digesters were operated at solids retention time (SRTs) of 15, 20, 25, 30, 40 and 50 days to investigate the effect of SRT on MT emission. The experimental results demonstrated a bell-shaped curve of MT emission versus SRT with a peak around 20 days SRT. In order to understand this SRT effect, a kinetic model was developed to describe MT production and utilization dynamics in the course of anaerobic digestion and calibrated with the experimental results collected from this study. The model outcome revealed that the high protein content in the feed sludge together with the large maintenance coefficient of MT fermenters are responsible for the peak MT emission emergence in the range of typical SRT used for anaerobic digestion. A further analysis of the kinetic model shows that it can be extensively simplified with reasonable approximation to a form that anaerobic digestion practitioners could easily use to predict the MT and SRT relationship. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Iodine kinetics and effectiveness of stable iodine prophylaxis after intake of radioiodine: a review

    International Nuclear Information System (INIS)

    Geoffroy, B.; Verger, P.; Le Guen, B.

    2000-01-01

    Ingestion of stable iodine (potassium iodide) offers an efficient protection against the irradiation of the thyroid when an accidental exposure to radioiodine occurs. This prophylaxis aims at obtaining a rapid and maximum thyroid protection without antithyroid effects. This article reviews studies on iodine kinetics in the human and on stable iodine effectiveness to protect the thyroid. In adults with a normal thyroid function, ingestion of 100 mg of iodide just before exposure to radioiodine allows a percentage of thyroid averted dose equal or greater than 95%. If the exposure persists after iodide ingestion (100 mg), the percentage of averted dose may decrease significantly. Repeated ingestion of daily amounts of 15 mg of stable iodine would then allow to maintain a 90% effectiveness. Iodide effectiveness and antithyroid effects also depend on external and individual factors such as iodine amounts in the diet, thyroid function and age. It is recommended to adapt the amount of ingested stable iodine according to age at the time of exposure. (author)

  18. Kinetic concepts of thermally stimulated reactions in solids

    Science.gov (United States)

    Vyazovkin, Sergey

    Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.

  19. Sum rule limitations of kinetic particle-production models

    International Nuclear Information System (INIS)

    Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.

    1988-04-01

    Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)

  20. Separate effects of ischemia, hypoxia, and contractility on thallium-201 kinetics in rabbit myocardium

    International Nuclear Information System (INIS)

    Leppo, J.A.; Macneil, P.B.; Moring, A.F.; Apstein, C.S.

    1986-01-01

    The effects of hypoxia and ischemia, as well as altered contractility, on thallium-201 ( 201 TI) kinetics were evaluated in 42 isolated isovolumetrically contracting rabbit hearts. In Group A, three subgroups (n = 7 each) were studied that had either normal flow and oxygenation, hypoxia and normal flow, or ischemic flow and normal perfusate oxygen content. In Group B, three subgroups (n = 7 each) were studied and all hearts had normal flow but the contractile state was either enhanced with isoproterenol or impaired by hypocalcemia. A hemoglobin-free buffer perfusate was used in all experiments and multiple timed collections of arterial and coronary sinus effluent were used to model myocardial isotope activity during 30 min of constant uptake followed by 30 min of tracer clearance. During ischemia, hypoxia and hypocalcemia peak developed pressure and peak positive and negative dP/dt were all significantly reduced when compared to normal hemodynamic parameters (p less than 0.01). As expected, isoproterenol significantly elevated these parameters (p less than 0.04). Myocardial 201 TI kinetics were adequately described utilizing a bi-exponential model having a fast and slow component. Only ischemic hearts had significantly lower rate constants for 201 TI uptake and clearance than normal hearts (p less than 0.001). The mean (+/- s.d.) myocardial uptake and clearance rates for 201 TI (%/min) varied between 4.86 +/- 0.87 and 7.18 +/- 1.45 for the remaining groups of hearts. Therefore, myocardial 201 TI kinetics appear to be dominated by coronary flow and may not reflect marked alterations in the metabolic and contractile state. These data suggest that normal 201 TI uptake in impaired or hypercontractile cells, receiving normal flow, may not represent normal cellular function

  1. Correlation of contrast agent kinetics between iodinated contrast-enhanced spectral tomosynthesis and gadolinium-enhanced MRI of breast lesions

    International Nuclear Information System (INIS)

    Froeling, Vera; Diekmann, Felix; Renz, Diane M.; Fallenberg, Eva M.; Steffen, Ingo G.; Diekmann, Susanne; Schmitzberger, Florian F.; Lawaczeck, Ruediger

    2013-01-01

    Assessment of contrast agent kinetics in contrast-enhanced MRI (CE-MRI) with gadolinium-containing contrast agents offers the opportunity to predict breast lesion malignancy. The goal of our study was to determine if similar patterns exist for spectral contrast-enhanced digital breast tomosynthesis (CE-DBT) using an iodinated contrast agent. The protocol of our prospective study was approved by the relevant institutional review board and the German Federal Office for Radiation Protection. All patients provided written informed consent. We included 21 women with a mean age of 62.4 years. All underwent ultrasound-guided biopsy of a suspect breast lesion, spectral CE-DBT and CE-MRI. For every breast lesion, contrast agent kinetics was assessed by signal intensity-time curves for spectral CE-DBT and CE-MRI. Statistical comparison used Cohen's kappa and Spearman's rho test. Spearman's rho of 0.49 showed significant (P = 0.036) correlation regarding the contrast agent kinetics in signal intensity-time curves for spectral CE-DBT and CE-MRI. Cohen's kappa indicated moderate agreement (kappa = 0.438). There is a statistically significant correlation between contrast agent kinetics in the signal intensity-time curves for spectral CE-DBT and CE-MRI. Observing intralesional contrast agent kinetics in spectral CE-DBT may aid evaluation of malignant breast lesions. (orig.)

  2. Influence of step length and landing pattern on patellofemoral joint kinetics during running.

    Science.gov (United States)

    Willson, J D; Ratcliff, O M; Meardon, S A; Willy, R W

    2015-12-01

    Elevated patellofemoral joint kinetics during running may contribute to patellofemoral joint symptoms. The purpose of this study was to test for independent effects of foot strike pattern and step length on patellofemoral joint kinetics while running. Effects were tested relative to individual steps and also taking into account the number of steps required to run a kilometer with each step length. Patellofemoral joint reaction force and stress were estimated in 20 participants running at their preferred speed. Participants ran using a forefoot strike and rearfoot strike pattern during three different step length conditions: preferred step length, long (+10%) step length, and short (-10%) step length. Patellofemoral kinetics was estimated using a biomechanical model of the patellofemoral joint that accounted for cocontraction of the knee flexors and extensors. We observed independent effects of foot strike pattern and step length. Patellofemoral joint kinetics per step was 10-13% less during forefoot strike conditions and 15-20% less with a shortened step length. Patellofemoral joint kinetics per kilometer decreased 12-13% using a forefoot strike pattern and 9-12% with a shortened step length. To the extent that patellofemoral joint kinetics contribute to symptoms among runners, these running modifications may be advisable for runners with patellofemoral pain. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.

    2004-12-01

    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  4. Effect, Feasibility, and Clinical Relevance of Cell Enrichment in Large Volume Fat Grafting

    DEFF Research Database (Denmark)

    Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor

    2017-01-01

    Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal...... and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft...... enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat...

  5. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Vital-Jacome, Miguel [Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360 México DF, México (Mexico); Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor [Laboratory for Research on Advanced Process for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76320, México (Mexico); Thalasso, Frederic, E-mail: thalasso@cinvestav.mx [Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, 07360 México DF, México (Mexico)

    2016-08-05

    Highlights: • Microrespirometry was used to characterize aerobic granules. • Kinetic parameters for 4-chorophenol degradation were determined. • Intrinsic and apparent kinetic parameters were quantified and contrasted. • Aerobic granules presented lower μ{sub max} and higher K{sub S} than disaggregated granules. • Microrespirometry can be useful in model development and calibration. - Abstract: In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9 kg COD m{sup −3} d{sup −1}, and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems.

  6. Microrespirometric determination of the effectiveness factor and biodegradation kinetics of aerobic granules degrading 4-chlorophenol as the sole carbon source

    International Nuclear Information System (INIS)

    Vital-Jacome, Miguel; Buitrón, Germán; Moreno-Andrade, Ivan; Garcia-Rea, Victor; Thalasso, Frederic

    2016-01-01

    Highlights: • Microrespirometry was used to characterize aerobic granules. • Kinetic parameters for 4-chorophenol degradation were determined. • Intrinsic and apparent kinetic parameters were quantified and contrasted. • Aerobic granules presented lower μ_m_a_x and higher K_S than disaggregated granules. • Microrespirometry can be useful in model development and calibration. - Abstract: In this study, a microrespirometric method was used, i.e., pulse respirometry in microreactors, to characterize mass transfer and biodegradation kinetics in aerobic granules. The experimental model was an aerobic granular sludge in a sequencing batch reactor (SBR) degrading synthetic wastewater containing 4-chlorophenol as the sole carbon source. After 15 days of acclimation, the SBR process degraded 4-chlorophenol at a removal rate of up to 0.9 kg COD m"−"3 d"−"1, and the degradation kinetics were well described by the Haldane model. The microrespirometric method consisted of injecting pulses of 4-chlorophenol into the 24 wells of a microreactor system containing the SBR samples. From the respirograms obtained, the following five kinetic parameters were successfully determined during reactor operation: (i) Maximum specific oxygen uptake rate, (ii) substrate affinity constant, (iii) substrate inhibition constant, (iv) maximum specific growth rate, and (v) cell growth yield. Microrespirometry tests using granules and disaggregated granules allowed for the determination of apparent and intrinsic parameters, which in turn enabled the determination of the effectiveness factor of the granular sludge. It was concluded that this new high-throughput method has the potential to elucidate the complex biological and physicochemical processes of aerobic granular biosystems.

  7. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  8. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

    Science.gov (United States)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.

    2018-07-01

    The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

  9. Effect of intensified training on muscle ion kinetics, fatigue development and repeated short term performance in endurance trained cyclists

    DEFF Research Database (Denmark)

    Gunnarsson, Thomas Gunnar Petursson; Christensen, Peter Møller; Thomassen, Martin

    2013-01-01

    The effects of intensified training in combination with a reduced training volume on muscle ion kinetics, transporters and work capacity were examined. Eight well-trained cyclists replaced their regular training with speed-endurance training (12x30-s sprints) 2-3 times per wk and aerobic high...

  10. Muscular Oxygen Uptake Kinetics in Aged Adults.

    Science.gov (United States)

    Koschate, J; Drescher, U; Baum, K; Eichberg, S; Schiffer, T; Latsch, J; Brixius, K; Hoffmann, U

    2016-06-01

    Pulmonary oxygen uptake (V˙O2) kinetics and heart rate kinetics are influenced by age and fitness. Muscular V˙O2 kinetics can be estimated from heart rate and pulmonary V˙O2. In this study the applicability of a test using pseudo-random binary sequences in combination with a model to estimate muscular V˙O2 kinetics was tested. Muscular V˙O2 kinetics were expected to be faster than pulmonary V˙O2 kinetics, slowed in aged subjects and correlated with maximum V˙O2 and heart rate kinetics. 27 elderly subjects (73±3 years; 81.1±8.2 kg; 175±4.7 cm) participated. Cardiorespiratory kinetics were assessed using the maximum of cross-correlation functions, higher maxima implying faster kinetics. Muscular V˙O2 kinetics were faster than pulmonary V˙O2 kinetics (0.31±0.1 vs. 0.29±0.1 s; p=0.004). Heart rate kinetics were not correlated with muscular or pulmonary V˙O2 kinetics or maximum V˙O2. Muscular V˙O2 kinetics correlated with maximum V˙O2 (r=0.35; p=0.033). This suggests, that muscular V˙O2 kinetics are faster than estimates from pulmonary V˙O2 and related to maximum V˙O2 in aged subjects. In the future this experimental approach may help to characterize alterations in muscular V˙O2 under various conditions independent of motivation and maximal effort. © Georg Thieme Verlag KG Stuttgart · New York.

  11. RETRAN-02 one-dimensional kinetics model: a review

    International Nuclear Information System (INIS)

    Gose, G.C.; McClure, J.A.

    1986-01-01

    RETRAN-02 is a modular code system that has been designed for one-dimensional, transient thermal-hydraulics analysis. In RETRAN-02, core power behavior may be treated using a one-dimensional reactor kinetics model. This model allows the user to investigate the interaction of time- and space-dependent effects in the reactor core on overall system behavior for specific LWR operational transients. The purpose of this paper is to review the recent analysis and development activities related to the one dimensional kinetics model in RETRAN-02

  12. The effects of age and step length on joint kinematics and kinetics of large out-and-back steps.

    Science.gov (United States)

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2008-06-01

    Maximum step length (MSL) is a clinical test that has been shown to correlate with age, various measures of fall risk, and knee and hip joint extension speed, strength, and power capacities, but little is known about the kinematics and kinetics of the large out-and-back step utilized. Body motions and ground reaction forces were recorded for 11 unimpaired younger and 10 older women while attaining maximum step length. Joint kinematics and kinetics were calculated using inverse dynamics. The effects of age group and step length on the biomechanics of these large out-and-back steps were determined. Maximum step length was 40% greater in the younger than in the older women (P<0.0001). Peak knee and hip, but not ankle, angle, velocity, moment, and power were generally greater for younger women and longer steps. After controlling for age group, step length generally explained significant additional variance in hip and torso kinematics and kinetics (incremental R2=0.09-0.37). The young reached their peak knee extension moment immediately after landing of the step out, while the old reached their peak knee extension moment just before the return step liftoff (P=0.03). Maximum step length is strongly associated with hip kinematics and kinetics. Delays in peak knee extension moment that appear to be unrelated to step length, may indicate a reduced ability of older women to rapidly apply force to the ground with the stepping leg and thus arrest the momentum of a fall.

  13. Effects of antidiuretic hormone on kinetic and energetic determinants of active sodium transport in frog skin.

    Science.gov (United States)

    Lau, Y T; Lang, M A; Essig, A

    1981-10-02

    The effects of antidiuretic hormone (ADH) on the rate of transepithelial active Na transport JaNa and the rate of suprabasal O2 consumption of Jsbr were studied in paired hemiskins of frog. Within some 30 min following administration of ADH both JaNa and Jsbr increased to near-maximal levels and then remained stable for at least an hour. On symmetric perturbation of the transepithelial electrical potential delta psi at 6-min intervals, the dependence of JaNa and Jsbr on delta psi was near-linear, both in control and experimental hemi-skins. The stability and near-linearity of the system permitted systematic analysis of the parameters of linear non-equilibrium thermodynamic (NET) and electrical equivalent circuit (EC) formulations. ADH (100 mU/ml) stimulated two of the three NET phenomenological L coefficients, as well as A, the affinity (negative Gibbs free energy) of a metabolic reaction driving transport. Observations at partially depressed levels of transport indicated that the effects of kinetic and energetic factors are to some extent discrete. EC analysis showed stimulation of the amiloride-sensitive conductance Ka, but not of the apparent electromitive force of Na transport 'ENa'. Similar effects were produced by 10 mU/ml of ADH or by 10 mM dibutyryl cyclic AMP, although less marked effects on the L coefficients were noted with the lower concentration of hormone. It is suggested that, in contrast to EC analysis, the NET formulation distinguishes between kinetic and energetic determinants of transport, supporting a dual mechanism of action of ADH.

  14. Attainable and Relevant Moral Exemplars Are More Effective than Extraordinary Exemplars in Promoting Voluntary Service Engagement.

    Science.gov (United States)

    Han, Hyemin; Kim, Jeongmin; Jeong, Changwoo; Cohen, Geoffrey L

    2017-01-01

    The present study aimed to develop effective moral educational interventions based on social psychology by using stories of moral exemplars. We tested whether motivation to engage in voluntary service as a form of moral behavior was better promoted by attainable and relevant exemplars or by unattainable and irrelevant exemplars. First, experiment 1, conducted in a lab, showed that stories of attainable exemplars more effectively promoted voluntary service activity engagement among undergraduate students compared with stories of unattainable exemplars and non-moral stories. Second, experiment 2, a middle school classroom-level experiment with a quasi-experimental design, demonstrated that peer exemplars, who are perceived to be attainable and relevant to students, better promoted service engagement compared with historic figures in moral education classes.

  15. Kinetic Dissection of the Pre-existing Conformational Equilibrium in the Trypsin Fold*

    Science.gov (United States)

    Vogt, Austin D.; Chakraborty, Pradipta; Di Cera, Enrico

    2015-01-01

    Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold. PMID:26216877

  16. Effect of the molecular structure of lignin-based polyoxyethylene ether on enzymatic hydrolysis efficiency and kinetics of lignocelluloses.

    Science.gov (United States)

    Lin, Xuliang; Qiu, Xueqing; Zhu, Duming; Li, Zihao; Zhan, Ningxin; Zheng, Jieyi; Lou, Hongming; Zhou, Mingsong; Yang, Dongjie

    2015-10-01

    Effect of the molecular structure of lignin-based polyoxyethylene ether (EHL-PEG) on enzymatic hydrolysis of Avicel and corn stover was investigated. With the increase of PEG contents and molecular weight of EHL-PEG, glucose yield of corn stover increased. EHL-PEG enhanced enzymatic hydrolysis of corn stover significantly at buffer pH 4.8-5.5. Glucose yield of corn stover at 20% solid content increased from 32.8% to 63.8% by adding EHL-PEG, while that with PEG4600 was 54.2%. Effect of EHL-PEG on enzymatic hydrolysis kinetics of cellulose film was studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM). An enhancing mechanism of EHL-PEG on enzymatic hydrolysis kinetics of cellulose was proposed. Cellulase aggregates dispersed by EHL-PEG excavated extensive cavities into the surface of cellulose film, making the film become more loose and exposed. After the maximum enzymatic hydrolysis rate, the film was mainly peeled off layer by layer until equilibrium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Adsorption analysis equilibria and kinetics

    CERN Document Server

    Do, Duong D

    1998-01-01

    This book covers topics of equilibria and kinetics of adsorption in porous media. Fundamental equilibria and kinetics are dealt with for homogeneous as well as heterogeneous particles. Five chapters of the book deal with equilibria and eight chapters deal with kinetics. Single component as well as multicomponent systems are discussed. In kinetics analysis, we deal with the various mass transport processes and their interactions inside a porous particle. Conventional approaches as well as the new approach using Maxwell-Stefan equations are presented. Various methods to measure diffusivity, such

  18. Kinetic studies on the transesterification of sunflower oil with 1-butanol catalyzed by Rhizomucor miehei lipase in a biphasic aqueous-organic system

    NARCIS (Netherlands)

    Ilmi, Miftahul; Hommes, Arne; Winkelman, Jozef; Hidayat, C.; Heeres, Hero

    2016-01-01

    The kinetics of sunflower oil transesterification with 1-butanol using a homogeneous lipase (Rhizomucor miehei) in an aqueous-organic biphasic system were studied in a stirred batch reactor set-up. An initial screening study was performed to optimize relevant process conditions (enzyme

  19. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  20. Kinetics model of bainitic transformation with stress

    Science.gov (United States)

    Zhou, Mingxing; Xu, Guang; Hu, Haijiang; Yuan, Qing; Tian, Junyu

    2018-01-01

    Thermal simulations were conducted on a Gleeble 3800 simulator. The main purpose is to investigate the effects of stress on the kinetics of bainitic transformation in a Fe-C-Mn-Si advanced high strength bainitic steel. Previous studies on modeling the kinetics of stress affected bainitic transformation only considered the stress below the yield strength of prior austenite. In the present study, the stress above the yield strength of prior austenite is taken into account. A new kinetics model of bainitic transformation dependent on the stress (including the stresses below and above the yield strength of prior austenite) and the transformation temperature is proposed. The new model presents a good agreement with experimental results. In addition, it is found that the acceleration degree of stress on bainitic transformation increases with the stress whether its magnitude is below or above the yield strength of austenite, but the increasing rate gradually slows down when the stress is above the yield strength of austenite.

  1. Effects of Fishmeal or Urea Supplementation on Ruminal Fibre Digestion and Passage Kinetics in Bali Cows

    DEFF Research Database (Denmark)

    I.G.N, Jelantik; C., Leo-Penu; J., Jeremias

    2010-01-01

    Five non-pregnant Bali cows were used in a 5x5 latin square experimental design with the objective to study the effects of supplementation of graded levels of urea or fishmeal on fibre intake and digestion kinetics in Bali cows consuming low quality tropical grass hay. The animals were given ad...... to improve the intake of low quality fibrous tropical grass hay in Bali cows were 152 g/d and 74 g/d, respectively....

  2. Relevance: An Interdisciplinary and Information Science Perspective

    Directory of Open Access Journals (Sweden)

    Howard Greisdorf

    2000-01-01

    Full Text Available Although relevance has represented a key concept in the field of information science for evaluating information retrieval effectiveness, the broader context established by interdisciplinary frameworks could provide greater depth and breadth to on-going research in the field. This work provides an overview of the nature of relevance in the field of information science with a cursory view of how cross-disciplinary approaches to relevance could represent avenues for further investigation into the evaluative characteristics of relevance as a means for enhanced understanding of human information behavior.

  3. The interaction of C60 on Si(111 7x7 studied by Supersonic Molecular Beams: interplay between precursor kinetic energy and substrate temperature in surface activated processes.

    Directory of Open Access Journals (Sweden)

    Lucrezia eAversa

    2015-06-01

    Full Text Available Buckminsterfullerene (C60 is a molecule fully formed of carbon that can be used, owing to its electronic and mechanical properties, as clean precursor for the growth of carbon-based materials, ranging from -conjugated systems (graphenes to synthesized species, e.g. carbides such as silicon carbide (SiC. To this goal, C60 cage rupture is the main physical process that triggers material growth. Cage breaking can be obtained either thermally by heating up the substrate to high temperatures (630°C, after C60 physisorption, or kinetically by using Supersonic Molecular Beam Epitaxy (SuMBE techniques. In this work, aiming at demonstrating the growth of SiC thin films by C60 supersonic beams, we present the experimental investigation of C60 impacts on Si(111 7x7 kept at 500°C for translational kinetic energies ranging from 18 to 30 eV. The attained kinetically activated synthesis of SiC submonolayer films is probed by in-situ surface electron spectroscopies (XPS and UPS. Furthermore, in these experimental conditions the C60-Si(111 7×7 collision has been studied by computer simulations based on a tight-binding approximation to Density Functional Theory, DFT. Our theoretical and experimental findings point towards a kinetically driven growth of SiC on Si, where C60 precursor kinetic energy plays a crucial role, while temperature is relevant only after cage rupture to enhance Si and carbon reactivity. In particular, we observe a counterintuitive effect in which for low kinetic energy (below 22 eV, C60 bounces back without breaking more effectively at high temperature due to energy transfer from excited phonons. At higher kinetic energy (22 < K < 30 eV, for which cage rupture occurs, temperature enhances reactivity without playing a major role in the cage break. These results are in good agreement with ab-initio molecular dynamics simulations. SuMBE is thus a technique able to drive materials growth at low temperature regime.

  4. Slow VO₂ kinetics during moderate-intensity exercise as markers of lower metabolic stability and lower exercise tolerance.

    Science.gov (United States)

    Grassi, Bruno; Porcelli, Simone; Salvadego, Desy; Zoladz, Jerzy A

    2011-03-01

    An analysis of previously published data obtained by our group on patients characterized by markedly slower pulmonary VO₂ kinetics (heart transplant recipients, patients with mitochondrial myopathies, patients with McArdle disease) was carried out in order to suggest that slow VO₂ kinetics should not be considered the direct cause, but rather a marker, of impaired exercise tolerance. For a given ATP turnover rate, faster (or slower) VO₂ kinetics are associated with smaller (or greater) muscle [PCr] decreases. The latter, however, should not be taken per se responsible for the higher (or lower) exercise tolerance, but should be considered within the general concept of "metabolic stability". Good muscle metabolic stability at a given ATP turnover rate (~power output) is associated with relatively smaller decreases, compared to rest, in [PCr] and in the Gibbs free energy of ATP hydrolysis, as well as with relatively smaller increases in [Pi], [ADP(free)], [AMP(free)], and [IMP(free)], metabolites directly related to fatigue. Disturbances in muscle metabolic stability can affect muscle function in various ways, whereas good metabolic stability is associated with less fatigue and higher exercise tolerance. Smaller [PCr] decreases, however, are strictly associated with a faster VO₂ kinetics. Thus, faster VO₂ kinetics may simply be an "epiphenomenon" of a relatively higher metabolic stability, which would then represent the relevant variable in terms of fatigue and exercise tolerance.

  5. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal-matrix composites

    International Nuclear Information System (INIS)

    Ilo, S.; Just, Ch.; Badisch, E.; Wosik, J.; Danninger, H.

    2010-01-01

    Research highlights: The dissolution reaction kinetics and the formation of intermediate layers of tungsten carbides in Ni-(Cr)-B-Si matrices were studied in liquid-phase sintering with well-defined temperature/time relationship. → The internal intermediate layer formation, close to the original primary tungsten carbide showed diffusion-controlled kinetic (∼t 0.5 ), whereas the outside layer thickness formation, proportional to the processing time (∼t), was formed by the subsequent eutectic reaction of the Ni-(Cr)-B-Si matrix with the WC/W 2 C component. → Cr-addition in the matrix highly influences the inner layer thickness caused probably by increasing the C-diffusion rate, whereas the outer layer thickness was not dependent on the initial Cr-content in the matrix. Generally, the Cr-addition in the Ni-based matrix increased the hardness and elastic modulus of the intermediate phases along the carbide/matrix interface. → The different microstructure gradients are depended mainly on the interface growth kinetics. → The intermediate layers are hard phases (carbides, borides or carbo-borides). → The hardness of the carbide/matrix interface area is significantly lower as the hardness of the original primary tungsten carbides. - Abstract: Hard-particle metal-matrix composites (MMC) are generally used to increase the lifetime of machinery equipment exposed to severe wear conditions. Depending on the manufacturing technology, dissolution reactions of hard phases undergo different temperature/time profiles during processing affecting the microstructure and mechanical properties of the MMCs. Therefore, quantification of the carbide dissolution effects on the microstructure and micro-mechanical properties is the key to success in the development and optimisation of MMCs. Dissolution kinetics of WC/W 2 C in Ni-based matrices were determined in the liquid-sintering with a well-defined temperature/time profile. Microscopic evaluation of the samples showed two

  6. A quiver kinetic formulation of radio frequency heating and confinement in collisional edge plasmas

    International Nuclear Information System (INIS)

    Catto, P.J.; Myra, J.R.

    1989-01-01

    The near fields in the collisional edge plasma of a radio frequency heated tokamak can cause one or more charged species to oscillate in the applied field with a quiver (or jitter) speed comparable to its thermal speed. By assuming the quiver motion dominates over drifts and gyromotion a completely new kinetic description of the flows in an edge plasma is formulated which retains Coulomb collisions and the relevant atomic processes. Moment equations are employed to obtain a description in which only a lowest order quiver kinetic equation need be solved to evaluate the slow time particle fluxes and current induced by the applied fields. The electron heating by collisional randomization of their quiver motion (inverse bremsstrahlung) is balanced by impact excitation losses since equilibration with the ions is too weak. A model plasma of electrons, neutrals, and a single cold ion species is considered to illustrate the utility of the quiver kinetic formulation. The model predicts local electrostatic potential changes and a local /rvec E//times//rvec B/ convective flux that is of the same magnitude and scaling as would be predicted by Bohm diffusion. 30 refs

  7. Bumetanide kinetics in renal failure

    International Nuclear Information System (INIS)

    Pentikaeinen, P.J.P.; Pasternack, A.; Lampainen, E.; Neuvonen, P.J.; Penttilae, A.

    1985-01-01

    To study the effects of renal failure on bumetanide kinetics, the authors administered single intravenous doses of 1.0 mg/3.08 microCi 14 C-bumetanide to six healthy subjects and 22 patients with variable degrees of renal failure. The kinetics of 14 C-bumetanide and total 14 C were adequately described by a two-compartment open model in the control subjects and in the patients. The volume of the central compartment and the distribution t1/2 were of the same order in both groups, whereas the mean (+/- SE) volume at steady state was larger (22.1 +/- 1.6 and 16.9 +/- 1.0 L) and the elimination t1/2 was longer (1.9 +/- 0.2 and 1.4 +/- 0.1 hours) in patients with renal failure than in healthy controls. Bumetanide renal clearance was lower (10 +/- 3 and 90 +/- 13 ml/min) in patients than in subjects and correlated with creatinine clearance (r = 0.784) and log serum creatinine level (r = -0.843), whereas nonrenal clearance was significantly higher in the patients (153 +/- 14 and 99 +/- 6 ml/min). Bumetanide total plasma clearance did not significantly change. The non-protein-bound, free fraction of bumetanide was higher in patients and correlated with plasma albumin levels (r = -0.777). The kinetics of total 14 C showed similar but greater changes than those of 14C-bumetanide. Thus the most important changes in bumetanide kinetics in patients with renal failure are low renal clearance and a high free fraction, with a consequent increase in nonrenal clearance, volume of distribution, and elimination t1/2

  8. Present status on numerical algorithms and benchmark tests for point kinetics and quasi-static approximate kinetics

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1976-12-01

    Review studies have been made on algorithms of numerical analysis and benchmark tests on point kinetics and quasistatic approximate kinetics computer codes to perform efficiently benchmark tests on space-dependent neutron kinetics codes. Point kinetics methods have now been improved since they can be directly applied to the factorization procedures. Methods based on Pade rational function give numerically stable solutions and methods on matrix-splitting are interested in the fact that they are applicable to the direct integration methods. An improved quasistatic (IQ) approximation is the best and the most practical method; it is numerically shown that the IQ method has a high stability and precision and the computation time which is about one tenth of that of the direct method. IQ method is applicable to thermal reactors as well as fast reactors and especially fitted for fast reactors to which many time steps are necessary. Two-dimensional diffusion kinetics codes are most practicable though there exist also three-dimensional diffusion kinetics code as well as two-dimensional transport kinetics code. On developing a space-dependent kinetics code, in any case, it is desirable to improve the method so as to have a high computing speed for solving static diffusion and transport equations. (auth.)

  9. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    International Nuclear Information System (INIS)

    Kaida, Atsushi; Miura, Masahiko

    2013-01-01

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions

  10. Age-related differences in norepinephrine kinetics: Effect of posture and sodium-restricted diet

    International Nuclear Information System (INIS)

    Supiano, M.A.; Linares, O.A.; Smith, M.J.; Halter, J.B.

    1990-01-01

    We used compartmental analysis to study the influence of age on the kinetics of norepinephrine (NE) distribution and metabolism. Plasma NE and [3H]NE levels were measured in 10 young (age 19-33 yr) and 13 elderly (age 62-73 yr) subjects in the basal supine position, during upright posture, and after 1 wk of a sodium-restricted diet. We found that the basal supine release rate of NE into the extravascular compartment, which is the site of endogenous NE release (NE2), was significantly increased in the elderly group (young, 9.6 +/- 0.5; elderly, 12.3 +/- 0.8 nmol.min-1.m-2; means +/- SE; P = 0.016), providing direct evidence for an age-related increase in sympathetic nervous system (SNS) tone. Although upright posture led to a greater increase in plasma NE in the young (0.90 +/- 0.07 to 2.36 +/- 0.16 nM) than in the elderly (1.31 +/- 0.11 to 2.56 +/- 0.31 nM; age group-posture interaction, P = 0.02), the increase in NE2 was similar between the young (9.6 +/- 0.6 to 16.2 +/- 1.5 nmol.min-1.m-2) and the elderly (11.6 +/- 1.4 to 16.1 +/- 2.4 nmol.min-1.m-2; posture effect, P = 0.001; age group-posture interaction, P = 0.15). Thus the increase in SNS tone resulting from upright posture was similar in young and elderly subjects. Plasma NE levels increased similarly in both groups after a sodium-restricted diet (diet effect, P = 0.001; age group-diet interaction, P = 0.23). However, NE2 did not increase significantly in either group (diet effect, P = 0.26), suggesting that SNS tone did not increase after a sodium-restricted diet. Compartmental analysis provides a description of age-related differences in NE kinetics, including an age-related increase in the extravascular NE release rate

  11. Effects of electrostatic interactions on ligand dissociation kinetics

    Science.gov (United States)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  12. Granulocyte kinetics

    International Nuclear Information System (INIS)

    Peters, A.M.; Lavender, J.P.; Saverymuttu, S.H.

    1985-01-01

    By using density gradient materials enriched with autologous plasma, the authors have been able to isolate granulocutes from other cellular elements and label them with In-111 without separation from a plasma environment. The kinetic behavior of these cells suggests that phenomena attributed to granulocyte activation are greatly reduced by this labeling. Here, they review their study of granulocyte kinetics in health and disease in hope of quantifying sites of margination and identifying principal sites of destruction. The three principle headings of the paper are distribution, life-span, and destruction

  13. Kinetic theory of runaway air breakdown and the implications for lightning initiation

    International Nuclear Information System (INIS)

    Roussel-Dupre, R.A.; Gurevich, A.V.; Tunnell, T.; Milikh, G.M.

    1993-11-01

    The kinetic theory for a new air breakdown mechanism advanced in a previous paper is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuring a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms and are examined in the context of lightning initiation

  14. Rayleigh-Brillouin scattering in SF6 in the kinetic regime

    Science.gov (United States)

    Wang, Yuanqing; Yu, Yin; Liang, Kun; Marques, Wilson; van de Water, Willem; Ubachs, Wim

    2017-02-01

    Rayleigh-Brillouin spectral profiles are measured with a laser-based scatterometry setup for a 90° scattering angle at a high signal-to-noise ratio (r.m.s. noise below 0.15% w.r.t. peak intensity) in sulfur-hexafluoride gas for pressures in the range 0.2-5 bar and for a wavelength of λ = 403.0 nm. The high quality data are compared to a number of light scattering models in order to address the effects of rotational and vibrational relaxation. While the vibrational relaxation rate is so slow that vibration degrees of freedom remain frozen, rotations relax on time scales comparable to those of the density fluctuations. Therefore, the heat capacity, the thermal conductivity and the bulk viscosity are all frequency-dependent transport coefficients. This is relevant for the Tenti model that depends on the values chosen for these transport coefficients. This is not the case for the other two models considered: a kinetic model based on rough-sphere interactions, and a model based on fluctuating hydrodynamics. The deviations with the experiment are similar between the three different models, except for the hydrodynamic model at pressures p≲ 2bar . As all models are in line with the ideal gas law, we hypothesize the presence of real gas effects in the measured spectra.

  15. EFFECT OF DIATOMEAOUS EARTH TREATMENT USING HYDROGEN CHLORIDE AND SULFURIC ACID ON KINETICS OF CADMIUM(II ADSORPTION

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl and sulfuric acid (H2SO4 on kinetics of Cd(II adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II in aqueous solution with various concentrations. The Cd(II adsorbed was determined by analyzing the rest of Cd(II in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I followed by reaction of reversible first order (step II. Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol.     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.

  16. Elucidation of molecular kinetic schemes from macroscopic traces using system identification.

    Directory of Open Access Journals (Sweden)

    Miguel Fribourg

    2017-02-01

    Full Text Available Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic processes from the overall (macroscopic response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE. SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology

  17. Chemical kinetics of detonation in some liquid mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Raikova, Vlada M.; Likholatov, Evgeny A. [Mendeleev University of Chemical Technology, Moscow (Russian Federation)

    2005-09-01

    The main objective of this work is to study the chemical kinetics of detonation reactions in some nitroester mixtures and solutions of nitrocompounds in concentrated nitric acid. The main source of information on chemical kinetics in the detonation wave was the experimental dependence of failure diameter on composition of mixtures. Calculations were carried out in terms of classic theory of Dremin using the SGKR computer code. Effective values for the activation energies and pre-exponential factors for detonation reactions in the mixtures under investigation have been defined. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  18. First lattice calculation of the B-meson binding and kinetic energies

    CERN Document Server

    Crisafulli, M; Martinelli, G; Sachrajda, Christopher T C

    1995-01-01

    We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy -\\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. This calculation has required the non-perturbative subtraction of the power divergences present in matrix elements of the Lagrangian operator \\bar h D_4 h and of the kinetic energy operator \\bar h \\vec D^2 h. The non-perturbative renormalisation of the relevant operators has been implemented by imposing suitable renormalisation conditions on quark matrix elements, in the Landau gauge. Our numerical results have been obtained from several independent numerical simulations at \\beta=6.0 and 6.2, and using, for the meson correlators, the results obtained by the APE group at the same values of \\beta. Our best estimate, obtained by combining results at different values of \\beta, is \\labar =190 \\err{50}{30} MeV. For the \\overline{MS} running mass, we obtain \\overline {m}_b(\\overline {m}_b) =4.17 \\pm 0.06 GeV, in reasonable agreement with previous...

  19. Precipitation kinetics in binary Fe–Cu and ternary Fe–Cu–Ni alloys via kMC method

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-08-01

    Full Text Available The precipitation kinetics of coherent Cu rich precipitates (CRPs in binary Fe–Cu and ternary Fe–Cu–Ni alloys during thermal aging was modelled by the kinetic Monte Carlo method (kMC. A good agreement of the precipitation kinetics of Fe–Cu was found between the simulation and experimental results, as observed by means of advancement factor and cluster number density. This agreement was obtained owing to the correct description of the fast cluster mobility. The simulation results indicate that the effects of Ni are two-fold: Ni promotes the nucleation of Cu clusters; while the precipitation kinetics appears to be delayed by Ni addition during the coarsening stage. The apparent delayed precipitation kinetics is revealed to be related with the cluster mobility, which are reduced by Ni addition. The reduction effect of the cluster mobility weakens when the CRPs sizes increase. The results provide a view angle on the effects of solute elements upon Cu precipitation kinetics through the consideration of the non-conventional cluster growth mechanism, and kMC is verified to be a powerful approach on that.

  20. Studies Relevent to Catalytic Activation Co & other small Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Peter C

    2005-02-22

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.