WorldWideScience

Sample records for relevant inspection robot

  1. Development of an ITER relevant inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, L.; Bayetti, P.; Cordier, J.J.; Grisolia, C.; Hatchressian, J.C. [Association Euratom-CEA, Cadarache (France). Dept. de Recherche sur la Fusion Controlee; Friconneau, J.P.; Keller, D.; Perrot, Y. [CEA-LIST Robotics and Interactive Systems Unit, Fontenay aux Roses (France)

    2007-07-01

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in vessel inspection operations without loss of conditioning could be very useful. Within this framework, the aim of the project called AIA (Articulated Inspection Arm) is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 11 degrees of freedom and a total range of 8 m. The project is currently developed by the CEA within the European workprogramme. Its first in situ tests are planned this summer on the Tore Supra tokamak at Cadarache (France). They will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for generic application. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is currently being manufactured and will allow for close visual inspection of the complex Plasma Facing Components (limiters, neutralisers, RF antennae, diagnostic windows, etc.). - In situ localisation of leakage based on helium sniffer is also studied to improve maintenance operations. - Finally the laser ablation system for PFC detritiation, also developed in CEA laboratories, is being fitted to be implanted into the robot and put into operation in Tore Supra. This paper deals with the integration of the robot in the Tore Supra tokamak and the advances in the development of the listed processes. It also introduces the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions. (orig.)

  2. Development of an ITER relevant inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Laurent [Association Euratom-CEA, Departement de Recherche sur la Fusion Controlee, CE Cadarache 13108 (France)], E-mail: laurent.gargiulo@cea.fr; Bayetti, Pascal; Bruno, Vincent; Cordier, Jean-Jacques [Association Euratom-CEA, Departement de Recherche sur la Fusion Controlee, CE Cadarache 13108 (France); Friconneau, Jean-Pierre [CEA-LIST Robotics and Interactive Systems Unit, CE Fontenay Aux Roses (France); Grisolia, Christian; Hatchressian, Jean-Claude; Houry, Michael [Association Euratom-CEA, Departement de Recherche sur la Fusion Controlee, CE Cadarache 13108 (France); Keller, Delphine; Perrot, Yann [CEA-LIST Robotics and Interactive Systems Unit, CE Fontenay Aux Roses (France)

    2008-12-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in-vessel inspection operations without loss of conditioning will be mandatory. In this context, an Articulated Inspection Arm (AIA) is currently developed by the CEA within the European work programme framework, which aims at demonstrating the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 8 degrees of freedom and a total range of 8 m. The first in situ tests will take place by the end of 2007 on the Tore Supra Tokamak at Cadarache (France). They will validate concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for various applications. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is already manufactured and will allow close visual inspection of the complex Plasma Facing Components (PFC) (limiters, neutralisers, RF antenna, diagnostic windows, etc.). - In situ localisation of water leakage based on a helium sniffing system is also being studied to improve and facilitate maintenance operations. - Finally a laser ablation system for PFC detritiation, developed in CEA laboratories, is being fitted to be implemented on the robot for future operation in Tore Supra. This paper deals with the integration of the robot into Tore Supra and the progress in the development of the processes listed above. It also describes the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions.

  3. Development of an ITER relevant inspection robot

    International Nuclear Information System (INIS)

    Gargiulo, L.; Bayetti, P.; Cordier, J.J.; Grisolia, C.; Hatchressian, J.C.

    2007-01-01

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in vessel inspection operations without loss of conditioning could be very useful. Within this framework, the aim of the project called AIA (Articulated Inspection Arm) is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 11 degrees of freedom and a total range of 8 m. The project is currently developed by the CEA within the European workprogramme. Its first in situ tests are planned this summer on the Tore Supra tokamak at Cadarache (France). They will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for generic application. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is currently being manufactured and will allow for close visual inspection of the complex Plasma Facing Components (limiters, neutralisers, RF antennae, diagnostic windows, etc.). - In situ localisation of leakage based on helium sniffer is also studied to improve maintenance operations. - Finally the laser ablation system for PFC detritiation, also developed in CEA laboratories, is being fitted to be implanted into the robot and put into operation in Tore Supra. This paper deals with the integration of the robot in the Tore Supra tokamak and the advances in the development of the listed processes. It also introduces the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions. (orig.)

  4. Development of an ITER relevant inspection robot

    International Nuclear Information System (INIS)

    Gargiulo, Laurent; Bayetti, Pascal; Bruno, Vincent; Cordier, Jean-Jacques; Friconneau, Jean-Pierre; Grisolia, Christian; Hatchressian, Jean-Claude; Houry, Michael; Keller, Delphine; Perrot, Yann

    2008-01-01

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In particular, in-vessel inspection operations without loss of conditioning will be mandatory. In this context, an Articulated Inspection Arm (AIA) is currently developed by the CEA within the European work programme framework, which aims at demonstrating the feasibility of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier (up to 10 kg). It is composed of 5 segments with 8 degrees of freedom and a total range of 8 m. The first in situ tests will take place by the end of 2007 on the Tore Supra Tokamak at Cadarache (France). They will validate concepts for operations under ITER relevant vacuum and temperature conditions. After qualification, the arm will constitute a promising tool for various applications. Several processes are already considered for ITER maintenance and will be demonstrated on the AIA robot carrier: - The first embedded process is the viewing system. It is already manufactured and will allow close visual inspection of the complex Plasma Facing Components (PFC) (limiters, neutralisers, RF antenna, diagnostic windows, etc.). - In situ localisation of water leakage based on a helium sniffing system is also being studied to improve and facilitate maintenance operations. - Finally a laser ablation system for PFC detritiation, developed in CEA laboratories, is being fitted to be implemented on the robot for future operation in Tore Supra. This paper deals with the integration of the robot into Tore Supra and the progress in the development of the processes listed above. It also describes the current test campaign aiming to qualify the robot performance and reliability under vacuum and temperature conditions

  5. Operation of an ITER relevant inspection robot on Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Laurent [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)], E-mail: laurent.gargiulo@cea.fr; Bayetti, Pascal; Bruno, Vincent; Hatchressian, Jean-Claude; Hernandez, Caroline; Houry, Michael [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Keller, Delphine [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Martins, Jean-Pierre [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Measson, Yvan; Perrot, Yann [CEA, LIST, Service de Robotique Interactive, F-92265 Fontenay aux Roses (France); Samaille, Frank [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2009-06-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. CEA has developed a multipurpose carrier able to realize deployments in the plasma vessel without breaking the Ultra High Vacuum (UHV) and temperature conditioning. A 6 years R and D programme was jointly conducted by CEA-LIST Interactive Robotics Unit and the Institute for Magnetic Fusion Research (IRFM) in order to demonstrate the feasibility and reliability of an in-vessel inspection robot relevant to ITER requirements. The Articulated Inspection Arm robot (AIA) is an 8-m long multilink carrier with a payload up to 10 kg operable between plasma under tokamak conditioning environment; its geometry allows a complete close inspection of Plasma Facing Components (PFCs) of the Tore Supra vessel. Different tools are being developed by CEA to be plugged at the front head of the carrier. The diagnostic presently in operation consists in a viewing system offering accurate visual inspection of PFCs. Leak detection of first wall based on helium sniffing and laser compact system for carbon co-deposited layers characterizations or treatments are also considered for demonstration. In April 2008, the AIA robot equipped with its vision diagnostic has realized a complete deployment into Tore Supra and the first closed inspection of the vessel under UHV conditions. During the upcoming experimental campaign, the same operation will be performed under relevant conditions (10{sup -6} Pa and 120 deg. C) after a conditioning phase at 200 deg. C to avoid outgassing pollution of the chamber. This paper describes the different steps of the project development, robot capabilities with the present operations conducted on Tore Supra and future requirements for making the robot a tool for tokamak routine operation.

  6. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  7. Development of inspection robots for bridge cables.

    Science.gov (United States)

    Yun, Hae-Bum; Kim, Se-Hoon; Wu, Liuliu; Lee, Jong-Jae

    2013-01-01

    This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  8. Development of Inspection Robots for Bridge Cables

    Directory of Open Access Journals (Sweden)

    Hae-Bum Yun

    2013-01-01

    Full Text Available This paper presents the bridge cable inspection robot developed in Korea. Two types of the cable inspection robots were developed for cable-suspension bridges and cable-stayed bridge. The design of the robot system and performance of the NDT techniques associated with the cable inspection robot are discussed. A review on recent advances in emerging robot-based inspection technologies for bridge cables and current bridge cable inspection methods is also presented.

  9. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Gargiulo, L.; Cordier, J.J.; Friconneau, J.P.; Grisolia, C.; Palmer, J.D.; Perrot, Y.; Samaille, F.

    2007-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools

  10. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, L. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)], E-mail: laurent.gargiulo@cea.fr; Cordier, J.J. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Grisolia, C. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France); Palmer, J.D. [EFDA CSU, Max-Planck-Institut fuer Plasma Physik Boltzmannstr. 2, D-85748 Garching (Germany); Perrot, Y. [CEA-LIST Robotics and Interactive Systems Unit, BP6 F-92265 Fontenay aux Roses Cedex (France); Samaille, F. [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA/Cadarache, F-13108 Saint Paul Lez Durance Cedex (France)

    2007-10-15

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel remote handling inspection system using a long reach, limited payload carrier. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development will allow close inspection of the Tore Supra plasma facing components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be simulated on Tore Supra through the deuterium inventory under long-time plasma discharges. The in situ leakage localisation of a damaged plasma facing component is also one of the major ITER maintenance challenges that could use remote handling inspection tools.

  11. An intelligent inspection and survey robot. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    ARIES number-sign 1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data

  12. An intelligent inspection and survey robot. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    ARIES {number_sign}1 (Autonomous Robotic Inspection Experimental System), has been developed for the Department of Energy to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum. A new version of the Cybermotion series of mobile robots is the base mobile vehicle for ARIES. The new Model K3A consists of an improved and enhanced mobile platform and a new turret that will permit turning around in a three-foot aisle. Advanced sonar and lidar systems were added to improve navigation in the narrow drum aisles. Onboard computer enhancements include a VMEbus computer system running the VxWorks real-time operating system. A graphical offboard supervisory UNIX workstation is used for high-level planning, control, monitoring, and reporting. A camera positioning system (CPS) includes primitive instructions for the robot to use in referencing and positioning the payload. The CPS retracts to a more compact position when traveling in the open warehouse. During inspection, the CPS extends up to deploy inspection packages at different heights on the four-drum stacks of 55-, 85-, and 110-gallon drums. The vision inspection module performs a visual inspection of the waste drums. This system will locate and identify each drum, locate any unique visual features, characterize relevant surface features of interest and update a data-base containing the inspection data.

  13. Hydro-Quebec inspection robot RIT-LRG

    International Nuclear Information System (INIS)

    Champagne, D.; Rinfret, F.; Bourgault, Y.G.

    2008-01-01

    Hydro Quebec's Research Centre (IREQ), has developed a variety of inspection tools over the years. The Metar bracelet for the feeder tubes, the REC robot for the heat exchanger and the RIT robot for the Delayed Neutron system just to name a few. This paper discusses with the successful deployment of the Camera Probe Positioning robot for Visual Inspection of the sample lines of the delayed neutron system of CANDU power plants. This RIT robot has three possible configurations (Face, Cabinet and LRG configurations) and has remained a prototype version although it has been used over the years in many outage inspection campaigns since 1997. The main advantages of using this robot are: the significant reduction in radiation exposure, the high quality of the data collected and the archiving of inspection data for further analysis and reports. In 2007, Gentilly-2 (G-2), decided to industrialize the LRG configuration of the RIT robot and to designate it the standard tool for the inspection of the Delayed Neutron System. An improved RIT-LRG robot, along with its control box and command station was developed. The software had to be rewritten requiring an ergonomics analysis of user tasks, work station and interface display. These issues included both physical and cognitive requirements aspects. The two principal topics of this paper will be on the Inspection Robot Technology developed and highlights of the 2008 outage inspection campaign. (author)

  14. Hydro-Quebec inspection robot RIT-LRG

    Energy Technology Data Exchange (ETDEWEB)

    Champagne, D., E-mail: champagne.dominique@ireq.ca [Inst. de recherche d' Hydro-Quebec, Quebec (Canada); Rinfret, F.; Bourgault, Y.G., E-mail: rinfret.francois@hydro.qc.ca, E-mail: bourgault.yves.g@hydro.qc.ca [Hydro-Quebec, Becancour, Quebec (Canada)

    2008-07-01

    Hydro Quebec's Research Centre (IREQ), has developed a variety of inspection tools over the years. The Metar bracelet for the feeder tubes, the REC robot for the heat exchanger and the RIT robot for the Delayed Neutron system just to name a few. This paper discusses with the successful deployment of the Camera Probe Positioning robot for Visual Inspection of the sample lines of the delayed neutron system of CANDU power plants. This RIT robot has three possible configurations (Face, Cabinet and LRG configurations) and has remained a prototype version although it has been used over the years in many outage inspection campaigns since 1997. The main advantages of using this robot are: the significant reduction in radiation exposure, the high quality of the data collected and the archiving of inspection data for further analysis and reports. In 2007, Gentilly-2 (G-2), decided to industrialize the LRG configuration of the RIT robot and to designate it the standard tool for the inspection of the Delayed Neutron System. An improved RIT-LRG robot, along with its control box and command station was developed. The software had to be rewritten requiring an ergonomics analysis of user tasks, work station and interface display. These issues included both physical and cognitive requirements aspects. The two principal topics of this paper will be on the Inspection Robot Technology developed and highlights of the 2008 outage inspection campaign. (author)

  15. Conceptual design for transmission line inspection robot

    International Nuclear Information System (INIS)

    Jalal, M F Abdul; Sahari, K S Mohamed; Anuar, A; Arshad, A D Mohd; Idris, M S

    2013-01-01

    Power transmission line is used for power distribution purposes due to their cost effective measure compared to underlying cable. However, prolonged exposure to natural weather may cause fatigue stress to the lines as well as induce material failure. Therefore, periodical line inspection is considered uttermost important as a preventive measure to avoid power outage. However, transmission line inspection has always been a high risk and expensive work. Hazardous works that may harm operator as well as routine that requires precise handling can be performed by robots. Various types of robots have been designed and developed for line inspection but only perform well on a straight and continuous line. As these robots encounter an obstacle during the inspection, then the real problem in terms of robot stability and smooth operation arises. In this paper, conceptual design and evaluation for transmission line inspection robot is presented. The inspection robot mobile robot must be able to bypass or avoid obstacles as it travels along the power transmission line.

  16. Robotic inspection technology-process an toolbox

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Markus [ROSEN Group (United States). R and D Dept.

    2005-07-01

    Pipeline deterioration grows progressively with ultimate aging of pipeline systems (on-plot and cross country). This includes both, very localized corrosion as well as increasing failure probability due to fatigue cracking. Limiting regular inspecting activities to the 'scrapable' part of the pipelines only, will ultimately result into a pipeline system with questionable integrity. The confidence level in the integrity of these systems will drop below acceptance levels. Inspection of presently un-inspectable sections of the pipeline system becomes a must. This paper provides information on ROSEN's progress on the 'robotic inspection technology' project. The robotic inspection concept developed by ROSEN is based on a modular toolbox principle. This is mandatory. A universal 'all purpose' robot would not be reliable and efficient in resolving the postulated inspection task. A preparatory Quality Function Deployment (QFD) analysis is performed prior to the decision about the adequate robotic solution. This enhances the serviceability and efficiency of the provided technology. The word 'robotic' can be understood in its full meaning of Recognition - Strategy - Motion - Control. Cooperation of different individual systems with an established communication, e.g. utilizing Bluetooth technology, support the robustness of the ROSEN robotic inspection approach. Beside the navigation strategy, the inspection strategy is also part of the QFD process. Multiple inspection technologies combined on a single carrier or distributed across interacting container must be selected with a clear vision of the particular goal. (author)

  17. Towards operations on Tore Supra of an ITER relevant inspection robot and associated processes

    International Nuclear Information System (INIS)

    Laurent Gargiulo, L.; Cordier, J.-J.; Samaille, F.; Grisolia, Ch.; Perrot, Y.; Olivier, D.; Friconneau, J.-P.; Palmer, J.

    2006-01-01

    The aim of the project is to demonstrate on Tore Supra the reliability of a multi-purpose in-vessel Remote Handling inspection system using a long reach, limited payload carrier. This project called AIA (Articulated Inspection Arm) is currently being developed at CEA under a European EFDA work program. The paper describes the detailed design, the manufacturing processes and the results of the first module test campaign in the CEA Tore Supra ME60 facility, at representative vacuum, temperature and nominal loading conditions. The second part of this work that is reported in the paper, concerns the description of the whole integration of the device on the Tore Supra tokamak that is foreseen to be operated on Tore Supra early 2007. The deployer system and the 10 m long storage vacuum vessel are presented. The robot prototype is fully representative of the deployment carrier system that could be required on ITER. The demonstration on Tore Supra will help in the understanding of operation issues that could occur in the tokamak vacuum vessel equipped of actively cooled components. The viewing process that is currently under development is presented in the paper. It will allow close inspection of the Tore Supra Plasma Facing Components that are representative of the ITER divertor targets in terms of confined environment and identification of possible tiles failure of CFC carbon tiles. Such viewing process could be used on ITER during the early stage of operation under a limited radiation level. The AIA technology is also showing promising potential for generic application in alternative systems for ITER. The feasibility study for viewing inspection of the beam line components in the neutral beam test facility is presented. One of the other potential inspection processes that is foreseen to be tested using the AIA carrier in Tore Supra is the laser ablation system of the CFC armour. It could be fully relevant for the ITER wall detritiation issues. Such process can be

  18. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1994-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low-level nuclear waste. This article describes the technology and how it could be used. 3 refs., 3 figs

  19. Low-level stored waste inspection using mobile robots

    International Nuclear Information System (INIS)

    Byrd, J.S.; Pettus, R.O.

    1996-01-01

    A mobile robot inspection system, ARIES (Autonomous Robotic Inspection Experimental System), has been developed for the U.S. Department of Energy to replace human inspectors in the routine, regulated inspection of radioactive waste stored in drums. The robot will roam the three-foot aisles of drums, stacked four high, making decisions about the surface condition of the drums and maintaining a database of information about each drum. A distributed system of onboard and offboard computers will provide versatile, friendly control of the inspection process. This mobile robot system, based on a commercial mobile platform, will improve the quality of inspection, generate required reports, and relieve human operators from low-level radioactive exposure. This paper describes and discusses primarily the computer and control processes for the system

  20. Drum inspection robots: Application development

    International Nuclear Information System (INIS)

    Hazen, F.B.; Warner, R.D.

    1996-01-01

    Throughout the Department of Energy (DOE), drums containing mixed and low level stored waste are inspected, as mandated by the Resource Conservation and Recovery Act (RCRA) and other regulations. The inspections are intended to prevent leaks by finding corrosion long before the drums are breached. The DOE Office of Science and Technology (OST) has sponsored efforts towards the development of robotic drum inspectors. This emerging application for mobile and remote sensing has broad applicability for DOE and commercial waste storage areas. Three full scale robot prototypes have been under development, and another project has prototyped a novel technique to analyze robotically collected drum images. In general, the robots consist of a mobile, self-navigating base vehicle, outfitted with sensor packages so that rust and other corrosion cues can be automatically identified. They promise the potential to lower radiation dose and operator effort required, while improving diligence, consistency, and documentation

  1. Remote-Controlled Inspection Robot for Nuclear Facilities in Underwater Environment

    International Nuclear Information System (INIS)

    Yasuhiro Miwa; Syuichi Satoh; Naoya Hirose

    2002-01-01

    A remote-controlled inspection robot for nuclear facilities was developed. This is a underwater robot technology combined with inspection and flaw removal technologies. This report will describe the structure and performance of this robot. The inspection robot consists of two parts. The one is driving equipment, and the other is inspection and grinding units. It can swim in the tank, move around the tank wall, and stay on the inspection area. After that it starts inspection and flaw removal with a special grinding wheel. This technology had been developed to inspect some Radioactive Waste (RW) tanks in operating nuclear power plants. There are many RW tanks in these plants, which human workers can be hard to access because of a high level dose. This technology is too useful for inspection works of human-inaccessible areas. And also, in conventional inspection process, some worker go into the tank and set up scaffolding after full drainage and decontamination. It spends too much time for these preparations. If tank inspection and flaw removal can be performed in underwater, the outage period will be reduced. Remote-controlled process can be performed in underwater. This is the great advantage for plant owners. Since 1999 we have been applying this inspection robot to operating nuclear 11 facilities in Japan. (authors)

  2. Development of a remote inspection robot for high pressure structures

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  3. Development of a remote inspection robot for high pressure structures

    International Nuclear Information System (INIS)

    Lee, Jae C.; Kim, Jae H.; Choi, Yu R.; Moon, Soon S.

    1999-10-01

    The high pressure structures in industrial plants must be periodically inspected for ensure their safety. Currently, the examination of them is manually performed by human inspectors, and there are many restrictions to examine the large containers which enclose dangerous chemicals or radioactive materials. We developed a remotely operated robot to examine these structures using recent mobile robot and computer technologies. Our robot has two magnetic caterpillars that make the robot can adhere to the structures made of steel like materials. The robot moves to the position for examination, and scans that position using ultrasonic probes equipped on it's arm, and transmits the result to the inspector according to his/her commands. Without building any auxiliary structures the robot can inspect the places where manual inspection can't reach. Therefore the robot can make shortening the inspection time as well as preventing the inspector from an accident. (author)

  4. SAFIRE - a robotic inspection system for CANDU feeders

    Energy Technology Data Exchange (ETDEWEB)

    Buckingham, R. [OC Robotics, Bristol (United Kingdom)

    2011-07-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience

  5. SAFIRE - a robotic inspection system for CANDU feeders

    International Nuclear Information System (INIS)

    Buckingham, R.

    2011-01-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience gained

  6. Robotics for waste storage inspection: A user's perspective

    International Nuclear Information System (INIS)

    Hazen, F.B.

    1994-01-01

    Self-navigating robotic vehicles are now commercially available, and the technology supporting other important system components has also matured. Higher reliability and the obtainability of system support now make it practical to consider robotics as a way of addressing the growing operational requirement for the periodic inspection and maintenance of radioactive, hazardous, and mixed waste inventories. This paper describes preparations for the first field deployment of an autonomous container inspection robot at a Department of Energy (DOE) site. The Stored Waste Autonomous Mobile Inspector (SWAMI) is presently being completed by engineers at the Savannah River Technology Center (SRTC). It is a modified version of a commercially available robot. It has been outfitted with sensor suites and cognition that allow it to perform inspections of drum inventories and their storage facilities

  7. A study on in-pipe inspection mobile robots, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Uemura, Masahiro.

    1990-01-01

    This paper deals with inspection path planning for in-pipe inspection mobile robots which have the capability of moving through complicated pipeline networks. It is imperative that the robot systems have an inspection path planning system for such networks for their reasonable and rational operation, controlled by themselves or by the operators. The planning mainly requires two projects: the selection of the place to put the robot in or out, and the generation of the paths in the networks. This system provides the for complicated problems with plural inspection points using a basic strategy of systematically producing patterns and dividing partial problems of simple searches based on rules. (author)

  8. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  9. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  10. Development of automatic inspection robot for nuclear power plants

    International Nuclear Information System (INIS)

    Yamada, K.; Suzuki, K.; Saitoh, K.; Sakaki, T.; Ohe, Y.; Mizutani, T.; Segawa, M.; Kubo, K.

    1987-01-01

    This robot system has been developed for automatic inspection of nuclear power plants. The system configuration is composed of vehicle that runs on monorail, the sensors on the vehicle, an image processer that processes the image information from the sensors, a computer that creates the inspection planning of the robot and an operation panel. This system has two main features, the first is the robot control system. The vehicle and the sensors are controlled by the output data calculated in the computer with the three dimensional plant data. The malfunction is recognized by the combination of the results of image processing, information from the microphone and infrared camera. Tests for a prototype automatic inspection robot system have been performed in the simulated main steam piping room of a nuclear power plant

  11. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  12. A survey on inspecting structures using robotic systems

    Directory of Open Access Journals (Sweden)

    Randa Almadhoun

    2016-11-01

    Full Text Available Advancements in robotics and autonomous systems are being deployed nowadays in many application domains such as search and rescue, industrial automation, domestic services and healthcare. These systems are developed to tackle tasks in some of the most challenging, labour intensive and dangerous environments. Inspecting structures (e.g. bridges, buildings, ships, wind turbines and aircrafts is considered a hard task for humans to perform and of critical importance since missing any details could affect the structure’s performance and integrity. Additionally, structure inspection is time and resource intensive and should be performed as efficiently and accurately as possible. Inspecting various structures has been reported in the literature using different robotic platforms to: inspect difficult to reach areas and detect various types of faults and anomalies. Typically, inspection missions involve performing three main tasks: coverage path planning, shape, model or surface reconstruction and the actual inspection of the structure. Coverage path planning ensures the generation of an optimized path that guarantees the complete coverage of the structure of interest in order to gather highly accurate information to be used for shape/model reconstruction. This article aims to provide an overview of the recent work and breakthroughs in the field of coverage path planning and model reconstruction, with focus on 3D reconstruction, for the purpose of robotic inspection.

  13. Mechatronics Design of an Autonomous Pipe-Inspection Robot

    Directory of Open Access Journals (Sweden)

    Abdellatif Mohamed

    2018-01-01

    Full Text Available Pipelines require periodical inspection to detect corrosion, deformation and congestion with obstacles in the network. Autonomous mobile robots are good solutions for this task. Visual information from the pipe interior associated with a location stamp is needed for inspection. In this paper, the previous designs of autonomous robots are reviewed and a new robot is developed to ensure simple design and smooth motion. Images are processed online to detect irregularity in pipe and then start capturing high resolution pictures to conserve the limited memory size. The new robot moves in pipes and provides video stream of pipe interior with location stamp. The visual information can later be processed offline to extract more information of pipeline condition to make maintenance decisions.

  14. Development of bus duct inspection robot at nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, Mamoru; Hoshi, Teruaki; Komura, Yoshinari

    2017-01-01

    Under the present situation, nuclear power plant has some places which are inspected with difficulty or not inspected due to narrowness or physical restriction, when carrying out periodical inspection. The subject of our research and development is to improve the accuracy of inspection and also to save labor (liberation from distress work of the worker) by applying a robot technology to the periodical inspection of the nuclear power plant. As a specific example, we report that developed robot can inspect inside the narrow space of Isolated Phase Bus ducts, which connect between a turbine generator and the main transformer. (author)

  15. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  16. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  17. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System), is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a database of pertinent information about each drum

  18. An intelligent inspection and survey robot

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, J.S. [Univ. of South Carolina, Columbia, SC (United States)

    1995-10-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum.

  19. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    Large quantities of mixed and low-level radioactive waste contained in 55-, 85-, and 110-gallon steel drums are stored at Department of Energy (DOE) warehouses located throughout the United States. The steel drums are placed on pallets and stacked on top of one another, forming a column of drums ranging in heights of one to four drums and up to 16 feet high. The columns of drums are aligned in rows forming an aisle approximately three feet wide between the rows of drums. Tens of thousands of drums are stored in these warehouses throughout the DOE complex. ARIES (Autonomous Robotic Inspection Experimental System) is under development for the DOE to survey and inspect these drums. The robot will navigate through the aisles and perform an inspection operation, typically performed by a human operator, making decisions about the condition of the drums and maintaining a data of pertinent information about each drum

  20. Robotics Inspection Vehicle for Advanced Storages

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Emilio; Renaldi, Graziano; Puig, David; Franzetti, Michele; Correcher, Carlos [European Commission, Ispra (Italy). Inst. for the Protection and Security of the Citizen

    2003-05-01

    After the dismantling of nuclear weapons and the probable release of large quantities of weapon graded materials under international verification regimes, there will be a wide interest in unmanned, highly automated and secure storage areas. In such circumstances, robotics technologies can provide an effective answer to the problem of securing, manipulating and inventorying all stored materials. In view of this future application JRC's NPNS started the development and construction of an advanced robotics prototype and demonstration system, named Robotics Inspection Vehicle (RIV), for remote inspection, surveillance and remote handling in those areas. The system was designed to meet requirements of reliability, security, high availability, robustness against radiation effects, self-maintainability (i.e., auto-repair capability), and easy installation. Due to its innovative holonomic design, RIV is a highly maneuverable and agile platform able to move in any direction, including sideways. The platform carries on-board a five degree of freedom manipulator arm. The high maneuverability and operation modes take into account the needs for accessing in the most easy way materials in the storage area. The platform is prepared to operate in one of three modes: i) manual tele-operation, ii) semiautonomous and iii) fully autonomous. The paper describes RIV's main design features, and details its GENERIS based control software [JRC's software architecture for robotics] and embedded sensors (i.e., 3D laser range, transponder antenna, ultra-sound, vision-based robot guidance, force-torque sensors, etc.). RIV was designed to incorporate several JRC innovative surveillance and inspection technologies and reveals that the current state of technology is mature to effectively provide a solution to novel storage solutions. The system is available for demonstration at JRC's Rialto Laboratory.

  1. Pipelines inspection robots; Robos para inspecao de linhas de servico

    Energy Technology Data Exchange (ETDEWEB)

    Archila Diaz, John Faber; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Robotica

    2008-07-01

    One of the problems existing in the area of maintenance of systems for the transport of mass and / or energy is to examine the integrity of the lines of service in the basic infrastructure of cities and industries. For the development of maintenance, whether predictive, preventive or corrective is necessary to conduct the inspection of these lines. To carry out this task is necessary count on help of appropriate technological tools. The main tools for inspection of service lines come from the area of external inspection of pipelines and are also in development, the problem happens when we need to achieve internal or external failures in places of difficult access, and move the inspection equipment to places where it's going to fail. In these cases it is necessary to the use of mechatronic systems, more specifically robotic systems, which may be developed for inspection. This paper aims to present the main robotic systems used for inspection, especially for internal inspection of pipelines. These systems have been developed by the research groups in Brazil, Japan, and Belgium among others, giving up a classification of robots for inspection of pipelines and the main features necessary for its project. (author)

  2. Pipelines inspection robots; Robos para inspecao de linhas de servico

    Energy Technology Data Exchange (ETDEWEB)

    Archila Diaz, John Faber; Dutra, Max Suell [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Robotica

    2008-07-01

    One of the problems existing in the area of maintenance of systems for the transport of mass and / or energy is to examine the integrity of the lines of service in the basic infrastructure of cities and industries. For the development of maintenance, whether predictive, preventive or corrective is necessary to conduct the inspection of these lines. To carry out this task is necessary count on help of appropriate technological tools. The main tools for inspection of service lines come from the area of external inspection of pipelines and are also in development, the problem happens when we need to achieve internal or external failures in places of difficult access, and move the inspection equipment to places where it's going to fail. In these cases it is necessary to the use of mechatronic systems, more specifically robotic systems, which may be developed for inspection. This paper aims to present the main robotic systems used for inspection, especially for internal inspection of pipelines. These systems have been developed by the research groups in Brazil, Japan, and Belgium among others, giving up a classification of robots for inspection of pipelines and the main features necessary for its project. (author)

  3. Trajectory planning of tokamak flexible in-vessel inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China); Lai, Yinping; He, Tao [Department of Automation, Shanghai Jiao Tong University, 200240 Shanghai (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai (China)

    2015-10-15

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  4. Trajectory planning of tokamak flexible in-vessel inspection robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Lai, Yinping; He, Tao

    2015-01-01

    Highlights: • A tokamak flexible in-vessel inspection robot is designed. • Two trajectory planning methods are used to ensure the full coverage of the first wall scanning. • The method is tested on a simulated platform of EAST with the flexible in-vessel inspection robot. • Experimental results show the effectiveness of the proposed algorithm. - Abstract: Tokamak flexible in-vessel inspection robot is mainly designed to carry a camera for close observation of the first wall of the vacuum vessel, which is essential for the maintenance of the future tokamak reactor without breaking the working condition of the vacuum vessel. A tokamak flexible in-vessel inspection robot is designed. In order to improve efficiency of the remote maintenance, it is necessary to design a corresponding trajectory planning algorithm to complete the automatic full coverage scanning of the complex tokamak cavity. Two different trajectory planning methods, RS (rough scanning) and FS (fine scanning), according to different demands of the task, are used to ensure the full coverage of the first wall scanning. To quickly locate the damage position, the first trajectory planning method is targeted for quick and wide-ranging scan of the tokamak D-shaped section, and the second one is for careful observation. Furthermore, both of the two different trajectory planning methods can ensure the full coverage of the first wall scanning with an optimal end posture. The method is tested on a simulated platform of EAST (Experimental Advanced Superconducting Tokamak) with the flexible in-vessel inspection robot, and the results show the effectiveness of the proposed algorithm.

  5. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    Science.gov (United States)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  6. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  7. A locomotive inspection robot for turbine building interior inspection in nuclear power plants

    International Nuclear Information System (INIS)

    Obama, M.; Ozaki, F.; Asano, K.

    1985-01-01

    A locomotive inspection robot, named Turbine Building Inspection System (TBIS), has been developed for turbine building interior inspections in nuclear power plants. This robot is made up of a vehicle, a telescopic support, turning head and a multijoint arm which has dual TV cameras and a diagnostic rod on its tip. The multijoint arm has 17 degrees of freedom and its length is 243 cm. Minimum and maximum heights for the multijoint arm shoulder are 1.5 meter and 4 meters respectively. The total degree of freedom in the combination of the multijoint arm, turning head and telescopic support is 19 and the area, it is capable of inspecting, is equal to the cylindrical dome whose height and diameter are 6.4 meters and 4.8 meters respectively. The design philosophy, hardware structure and operation method of the TBIS are described. 2 refs.; 10 figs

  8. Research on the inspection robot for cable tunnel

    Science.gov (United States)

    Xin, Shihao

    2017-03-01

    Robot by mechanical obstacle, double end communication, remote control and monitoring software components. The mechanical obstacle part mainly uses the tracked mobile robot mechanism, in order to facilitate the design and installation of the robot, the other auxiliary swing arm; double side communication part used a combination of communication wire communication with wireless communication, great improve the communication range of the robot. When the robot is controlled by far detection range, using wired communication control, on the other hand, using wireless communication; remote control part mainly completes the inspection robot walking, navigation, positioning and identification of cloud platform control. In order to improve the reliability of its operation, the preliminary selection of IPC as the control core the movable body selection program hierarchical structure as a design basis; monitoring software part is the core part of the robot, which has a definite diagnosis Can be instead of manual simple fault judgment, instead the robot as a remote actuators, staff as long as the remote control can be, do not have to body at the scene. Four parts are independent of each other but are related to each other, the realization of the structure of independence and coherence, easy maintenance and coordination work. Robot with real-time positioning function and remote control function, greatly improves the IT operation. Robot remote monitor, to avoid the direct contact with the staff and line, thereby reducing the accident casualties, for the safety of the inspection work has far-reaching significance.

  9. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  10. Fault Tree Analysis for an Inspection Robot in a Nuclear Power Plant

    Science.gov (United States)

    Ferguson, Thomas A.; Lu, Lixuan

    2017-09-01

    The life extension of current nuclear reactors has led to an increasing demand on inspection and maintenance of critical reactor components that are too expensive to replace. To reduce the exposure dosage to workers, robotics have become an attractive alternative as a preventative safety tool in nuclear power plants. It is crucial to understand the reliability of these robots in order to increase the veracity and confidence of their results. This study presents the Fault Tree (FT) analysis to a coolant outlet piper snake-arm inspection robot in a nuclear power plant. Fault trees were constructed for a qualitative analysis to determine the reliability of the robot. Insight on the applicability of fault tree methods for inspection robotics in the nuclear industry is gained through this investigation.

  11. A mobile robot for remote inspection of radioactive waste

    International Nuclear Information System (INIS)

    Suh, Y. C.; Kim, C. H.; Cho, J. W.; Choi, Y. S.; Kim, S. H.

    2004-01-01

    Tele-operation and remote monitoring techniques are essential and important technologies for the inspection and maintenance of the radioactive waste. A mobile robot has been developed for the application of remote monitoring and inspection of nuclear facilities, where human access is limited because of the high-level radioactive environments. The mobile robot was designed with reconfigurable crawler type of wheels attached on the front and rear side in order to pass through the ditch. The extendable mast, mounted on the mobile robot, car be extended up to 8 m vertically. The robust controller for radiation is designed in focus on electric components to prevent abnormal operation in a highly radioactivated area during reactor operation. This robot system will enhance the reliability of nuclear power facilities, and cope with the unexpected radiation accident

  12. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  13. Variable geometry truss manipulators: A new type of robot for site inspection and remediation

    International Nuclear Information System (INIS)

    Naccarato, F.

    1996-01-01

    A new type of robotic manipulator has been developed that offers many potential advantages over conventional robot arms for site inspection and remediation. This new robot is based on the variable geometry truss manipulator (VGTM) concept which combines the structural properties of a truss with the dexterous capabilities of a manipulator. By substituting linear actuators for some of the fixed-length members within a truss, the structure can be made to change its overall shape. By coordinating the motion of these actuators appropriately, a VGTM can perform tasks that are relevant to hazardous waste clean-up, including deployment through curved ducts, probing into crevices and obstacle avoidance. Trussarm trademark, a prototype VGTM with twelve degrees-of-freedom, has been constructed by Dynacon Enterprises Limited

  14. Long-reach articulated robots for inspection and mini-invasive interventions in hazardous environments: Recent robotics research, qualification testing, and tool developments

    International Nuclear Information System (INIS)

    Perrot, Yann; Kammerer, Nolwenn; Measson, Yvan; Verney, Alexandre; Gargiulo, Laurent; Houry, Michael; Keller, Delphine; Piolain, Gerard

    2012-01-01

    The Interactive Robotics Laboratory of CEA LIST is in charge of the development of remote handling technologies to meet energy industry requirements. This paper reports the research and development activities in advanced robotics systems for inspection or light intervention in hazardous environments with limited access such as blind hot cells in the nuclear industry or the thermonuclear experimental Tokamak fusion reactor. A long-reach carrier robot called the articulated inspection arm (AIA) and diagnostics and tools for inspection or intervention are described. Finally experimental field tests are presented and actual challenges in modeling the robot's flexibilities are discussed. (authors)

  15. Robots in pipe and vessel inspection: past, present, and future

    International Nuclear Information System (INIS)

    Mueller, T.A.; Tyndall, J.F.

    1984-01-01

    Over the past several decades, remotely operated scanners have been employed to inspect piping and pressure vessels. These devices in their early forms were manually controlled manipulators functioning as mere extensions of the operator. With the addition of limit sensing, speed control, and positional feedback and display, the early manipulators became primitive robots. By adding computer controls with their degree of intelligence to the devices, they achieved the status of robots. Future applications of vision, adaptive control, proximity sensing, and pattern recognition will bring these devices to a level of intelligence that will make automated robotic inspection of pipes and pressure vessels a true reality

  16. Design considerations for an intelligent mobile robot for mixed-waste inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sias, F.R.; Dawson, D.M.; Schalkoff, R.J. [Clemson Univ., SC (United States). Dept. of Electrical and Computer Engineering; Byrd, J.S.; Pettus, R.O. [South Carolina Univ., Columbia, SC (United States). Dept. of Electrical and Computer Engineering

    1993-06-01

    Large quantities of low-level radioactive waste are stored in steel drums at various Department of Energy (DOE) sites in the United States. Much of the stored waste qualifies as mixed waste and falls under Environmental Protection Agency (EPA) regulations that require periodic inspection. A semi-autonomous mobile robot is being developed during Phase 1 of a DOE contract to perform the inspection task and consequently reduce the radiation exposure of inspection personnel to ALARA (as low as reasonably achievable). The nature of the inspection process, the resulting robot design requirements, and the current status of the project are the subjects of this paper.

  17. Design considerations for an intelligent mobile robot for mixed-waste inspection

    International Nuclear Information System (INIS)

    Sias, F.R.; Dawson, D.M.; Schalkoff, R.J.; Byrd, J.S.; Pettus, R.O.

    1993-01-01

    Large quantities of low-level radioactive waste are stored in steel drums at various Department of Energy (DOE) sites in the United States. Much of the stored waste qualifies as mixed waste and falls under Environmental Protection Agency (EPA) regulations that require periodic inspection. A semi-autonomous mobile robot is being developed during Phase 1 of a DOE contract to perform the inspection task and consequently reduce the radiation exposure of inspection personnel to ALARA (as low as reasonably achievable). The nature of the inspection process, the resulting robot design requirements, and the current status of the project are the subjects of this paper

  18. Remote radioactive waste drum inspection with an autonomous mobile robot

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Ward, C.R.; Wagner, D.G.

    1992-01-01

    An autonomous mobile robot is being developed to perform remote surveillance and inspection task on large numbers of stored radioactive waste drums. The robot will be self guided through narrow storage aisles and record the visual image of each viewable drum for subsequent off line analysis and archiving. The system will remove the personnel from potential exposure to radiation, perform the require inspections, and improve the ability to assess the long term trends in drum conditions

  19. Localization of a Robotic Crawler for CANDU Fuel Channel Inspection

    Science.gov (United States)

    Manning, Mark

    This thesis discusses the design and development of a pipe crawling robot for the purpose of CANDU fuel channel inspection. The pipe crawling robot shall be capable of deploying the existing CIGAR (Channel Inspection and Gauging Apparatus for Reactors) sensor head. The main focus of this thesis is the design of the localization system for this robot and the many tests that were completed to demonstrate its accuracy. The proposed localization system consists of three redundant resolver wheels mounted to the robot's frame and two resolvers that are mounted inside a custom made cable drum. This cable drum shall be referred to in this thesis as the emergency retrieval device. This device serves the dual-purpose of providing absolute position measurements (via the cable that is tethered to the robot) as well as retrieving the robot if it is inoperable. The estimated accuracy of the proposed design is demonstrated with the use of a proof-of-concept prototype and a custom made test bench that uses a vision system to provide a more accurate estimate of the robot's position. The only major difference between the proof-of-concept prototype and the proposed solution is that the more expensive radiation hardened components were not used in the proof-of-concept prototype design. For example, the proposed solution shall use radiation hardened resolver wheels, whereas the proof-of-concept prototype used encoder wheels. These encoder wheels provide the same specified accuracy as the radiation hardened resolvers for the most realistic results possible. The rationale behind the design of the proof-of-concept prototype, the proposed final design, the design of the localization system test bench, and the test plan for developing all of the components of the design related to the robot's localization system are discussed in the thesis. The test plan provides a step by step guide to the configuration and optimization of an Unscented Kalman Filter (UKF). The UKF was selected as the ideal

  20. Selection of Shear Horizontal Wave Transducers for Robotic Nondestructive Inspection in Harsh Environments

    Directory of Open Access Journals (Sweden)

    Sungho Choi

    2016-12-01

    Full Text Available Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs and magnetostrictive transducers (MSTs. Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel.

  1. Development of an amphibious robot for visual inspection of APR1400 Npp IRWST strainer

    International Nuclear Information System (INIS)

    Jang, You Hyun; Kim, Jong Seog

    2014-01-01

    An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole

  2. Development of an amphibious robot for visual inspection of APR1400 Npp IRWST strainer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, You Hyun; Kim, Jong Seog [Korea Hydro Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole

  3. Design and construction of an in-pipe robot for inspection and maintenance

    KAUST Repository

    Sibai, Fadi N.

    2012-12-01

    Inspection and maintenance of aging pipelines is crucial to the reliable and continued distribution of hydrocarbons. In this paper, we describe the design and construction of a robotic platform for inspection and minor maintenance of pipelines. The 7.5 kg robotic platform was demonstrated to move straight inside 12″ to 16″ diameter pipes in a forward or backward direction, and either horizontally or vertically. The experimental robotic platform has three sets of two wheels, and three driving motors. The equations governing the mechanical frame\\'s component sizes are presented and the robotic frame component dimensions derived. The paper also discusses the construction and testing of the robot. Future work includes adding sensors, controls for turning, a microcontroller board, and a robotic arm for performing maintenance tasks. © 2012 IEEE.

  4. Design and construction of an in-pipe robot for inspection and maintenance

    KAUST Repository

    Sibai, Fadi N.; Sayegh, Amer Ahmed; Al-Taie, Ihsan

    2012-01-01

    Inspection and maintenance of aging pipelines is crucial to the reliable and continued distribution of hydrocarbons. In this paper, we describe the design and construction of a robotic platform for inspection and minor maintenance of pipelines. The 7.5 kg robotic platform was demonstrated to move straight inside 12″ to 16″ diameter pipes in a forward or backward direction, and either horizontally or vertically. The experimental robotic platform has three sets of two wheels, and three driving motors. The equations governing the mechanical frame's component sizes are presented and the robotic frame component dimensions derived. The paper also discusses the construction and testing of the robot. Future work includes adding sensors, controls for turning, a microcontroller board, and a robotic arm for performing maintenance tasks. © 2012 IEEE.

  5. Transfer system development for a remote inspection robot in nuclear power plants

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohnuma, M.; Hamada, K.; Mizutani, T.; Shimada, A.; Segawa, M.; Kubo, K.

    1984-01-01

    A remote operated robot system has been developed for inspection inside the primary containment vessel (PCV) of nuclear power plants. This system consists of an inspection vehicle, a monorail driving system, a signal transmission system, a power supply system and an operator console.. The system has two main features. First is that the operator can transfer the vehicle at any time from outside the PCV to inside or vice versa through a personnel airlock. The second feature is that the vehicle can be transported from one inspection route to another route at junction points. A prototype inspection robot system was fabricated on a trial basis. Running and inspection performances were confirmed utilizing actual size test apparatus

  6. The SWAMI inspection robot: Fernald site requirements

    International Nuclear Information System (INIS)

    Hazen, F.B.

    1993-01-01

    The purpose of this document is to introduce and describe the Stored Waste Autonomous Mobile Inspector (SWAMI) robot project and to identify issues that will need to be addressed prior to its field demonstration at Fernald in mid-1995. SWAMI is a mobile robotic vehicle that will perform mandated weekly inspections of waste containers. Fernald has a large inventory of these containers and a need to protect workers from radiation hazards while enhancing the efficiency and effectiveness of the inspections. Fernald's role in this project is to supply the demonstration site and make all necessary preparations. This includes identification of the test areas and plans, and identification and compliance to Federal, State, DOE, and Site regulations on system safety and quality. In addition, Fernald will link SWAMI output images to off-line mass data storage, and also to an on-line ORACLE database. The authors shall initiate a dialog with State and Federal regulators towards the near term goal of acceptance of the SWAMI test plan and a longer term goal of acceptance of SWAMI as a supplement and improvement to present mandated RCRA inspections

  7. In-service inspection robot for PFBR main vessel- concept

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, S; Ramakumar, M S [Bhabha Atomic Research Centre, Mumbai (India). Div. of Remote Handling and Robotics

    1994-12-31

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs.

  8. In-service inspection robot for PFBR main vessel- concept

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1994-01-01

    In-service inspection (ISI) of critical components in a nuclear reactor is one of the foremost and important tasks which reveals the state of health of the system, thereby ensuring the safety of the plant, personnel and environment. Prototype Fast Breeder Reactor (PFBR) is designed as a pool type reactor. A safety vessel is provided in the design which envelopes the main reactor vessel. The ISI of the main vessel is mandatory and will be carried out by a robot which will operate on this annular gap. The design of the robot is such that it can crawl around the vessel and into the gap at the bottom of the vessel relying on friction grip. The mobile robot will carry a CCTV camera and the inspection technique packages into the interspace, position and orient these to carry out the ISI of the main vessel. The paper discusses about the design features of the robot including the gripping mechanism and the crawling sequence to perform ISI of the reactor vessel. 3 figs

  9. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1994-12-31

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author).

  10. Teleoperated mobile robot (KAEROT) for inspection in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Byung-Soo; Kim, Chang-Hoi; Hwang, Suk-Young; Kim, Seung-Ho; Lee, Jong-Min

    1994-01-01

    A teleoperated mobile robot, named as KAEROT, has been developed for inspection and maintenance in nuclear facilities. It is composed of the planetary wheel-type mobile unit and 5 DOF manipulator one. The mobile unit is able to climb up and down stairs with high stability. This paper presents the kinematic analysis of KAEROT and the stair climbing algorithm. The proposed algorithm consists of two parts; one is to generate the moving path, and the other is to calculate the angular velocity of each wheel to follow up the generated reference path. Simulations and experiments on the irregular stairs have been carried out with the developed mobile robot. The proposed algorithm is proved to be very effective for inspection in nuclear facilities. The inclination angle of robot is maintained below 30.8deg while it is climbing up the stairs of a slope of 25deg. (author)

  11. Present state of inspection robot technology in nuclear power facilities. Case of fast breeder reactors

    International Nuclear Information System (INIS)

    Ara, Kuniaki

    1995-01-01

    In the maintenance works in nuclear power facilities such as checkup, inspection and repair, for the main purpose of radiation protection, remote operation technology was introduced since relatively early stage, and at present, the robots that carry out the inspection works for confirming the soundness of main equipment have been developed and put to practical use. At the time of introducing these technologies, in addition to the research and development of robots proper, the coordination with the design of plant machinery and equipment facilities as the premise of introducing robots is an important requirement. In this report, the present state of the development of remote inspection technology for fast breeder reactors is introduced, and the matters to which attention is paid in the plant design for introducing robots are explained. First, fast breeder reactors are described. The needs of robotizing and adopting remote operation in nuclear power facilities are explained, using the examples of the inspection system for a reactor vessel and the inspection system for steam generator heat transfer tubes. (K.I.)

  12. Robotic fabrication and inspection for power plants

    International Nuclear Information System (INIS)

    Date, Ranjit

    2002-01-01

    The usage of Robotic Automation is now an integral part of the modern manufacturing systems. Applications in nuclear power plants is no exception. As a matter of fact, as a result of the hazards of radiations for the human workers makes automation of the on-site working highly desirable. This presentation will focus on the broad benefits by use of automation in Power plants. Various processes and technologies for robotic applications in fabrication, maintenance and inspection will be highlighted. The specific technology features for use in nuclear environments will be highlighted

  13. Inspection and repair of steam generator tubing with a robot

    International Nuclear Information System (INIS)

    Boehm, H.H.; Foerch, H.

    1985-01-01

    During inspection and repair of steam generator tubing, radiation exposure to personnel is an unrequested endowment. To combat this intrinsic handicap, a robot has been designed for deployment in all operations inside the steam generator water chamber. This measure drastically reduces entering time and also improves inspection capabilities with regard to the accuracy and reproduction of the desired tube address. The inherent flexibility of the robot allows for performing various inspection and repair techniques: eddy-current testing of tubing; ultrasonic testing of tubing; visual examination of tube ends; profilometry measurements; tube plugging; plug removal; tube extraction; sleeving of tubes; tube end repair; chemical cleaning; and thermal treatment. Plant experience has highlighted the following features of the robot: 1) short installation and demounting periods; 2) installation independent of manhole location; 3) installation possible from outside the steam generator; 4) only one relocation required to address all the tube positions; 5) fast and highly accurate positioning; 6) operational surveillance not required; and 7) drastic reduction of radiation exposure to personnel during repair work

  14. DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

    Directory of Open Access Journals (Sweden)

    YOU HYUN JANG

    2014-06-01

    Full Text Available An amphibious inspection robot system (hereafter AIROS is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of

  15. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  16. Analysis and optimization on in-vessel inspection robotic system for EAST

    International Nuclear Information System (INIS)

    Zhang, Weijun; Zhou, Zeyu; Yuan, Jianjun; Du, Liang; Mao, Ziming

    2015-01-01

    Since China has successfully built her first Experimental Advanced Superconducting TOKAMAK (EAST) several years ago, great interest and demand have been increasing in robotic in-vessel inspection/operation systems, by which an observation of in-vessel physical phenomenon, collection of visual information, 3D mapping and localization, even maintenance are to be possible. However, it has been raising many challenges to implement a practical and robust robotic system, due to a lot of complex constraints and expectations, e.g., high remanent working temperature (100 °C) and vacuum (10"−"3 pa) environment even in the rest interval between plasma discharge experiments, close-up and precise inspection, operation efficiency, besides a general kinematic requirement of D shape irregular vessel. In this paper we propose an upgraded robotic system with redundant degrees of freedom (DOF) manipulator combined with a binocular vision system at the tip and a virtual reality system. A comprehensive comparison and discussion are given on the necessity and main function of the binocular vision system, path planning for inspection, fast localization, inspection efficiency and success rate in time, optimization of kinematic configuration, and the possibility of underactuated mechanism. A detailed design, implementation, and experiments of the binocular vision system together with the recent development progress of the whole robotic system are reported in the later part of the paper, while, future work and expectation are described in the end.

  17. Accurately Localize and Recognize Instruments with Substation Inspection Robot in Complex Environments

    Directory of Open Access Journals (Sweden)

    Hui Song

    2014-07-01

    Full Text Available This paper designs and develops an automatic detection system in the substation environment where complex and multi-inspecting objects exist. The inspection robot is able to fix and identify the objects quickly using a visual servo control system. This paper focuses on the analysis of fast lockup and recognition method of the substation instruments based on an improved Adaboost algorithm. The robot adjusts its position to the best view point and best resolution for the instrument in real-time. The dial and pointer of the instruments are detected with an improved Hough algorithm, and the angle of the pointer is converted to the corresponding readings. The experimental results indicate that the inspection robot can fix and identify the substation instruments quickly, and has a wide range of practical applications.

  18. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Science.gov (United States)

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  19. Autonomous navigation system for mobile robots of inspection; Sistema de navegacion autonoma para robots moviles de inspeccion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo S, P. [ITT, Metepec, Estado de Mexico (Mexico); Segovia de los Rios, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: pedrynteam@hotmail.com

    2005-07-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  20. A cable-tunnel inspecting robot for dangerous environment

    Directory of Open Access Journals (Sweden)

    Fu Zhuang

    2008-09-01

    Full Text Available This paper presents a kind of mobile robot used for inspecting the cable tunnel online in the dangerous environment. Usually, the calble tunnel is full of poisonous gases after fire, such as CO, CH4, CO2 and so on. Then, the mobile robot is able to tell us whether the tunnel environment is safe or not. In this paper the architecture of the robot is designed at first to meet the motion requirement in the tunnel. These characteristics distinguish the mobile robot from others like compact structure, small size, little weight and easily being carried. Next, the moving mechanism and its kinematics are described. And thus, the operating procedure and experiments are introuduced to validate its reliablity.

  1. A Cable-tunnel Inspecting Robot for Dangerous Environment

    Directory of Open Access Journals (Sweden)

    Fu Zhuang

    2008-11-01

    Full Text Available This paper presents a kind of mobile robot used for inspecting the cable tunnel online in the dangerous environment. Usually, the calble tunnel is full of poisonous gases after fire, such as CO,CH4, CO2 and so on. Then, the mobile robot is able to tell us whether the tunnel environment is safe or not. In this paper the architecture of the robot is designed at first to meet the motion requirement in the tunnel. These characteristics distinguish the mobile robot from others like compact structure,small size,little weight and easily being carried. Next, the moving mechanism and its kinematics are described. And thus, the operating procedure and experiments are introuduced to validate its reliablity.

  2. A Collaborative Approach for Surface Inspection Using Aerial Robots and Computer Vision

    Directory of Open Access Journals (Sweden)

    Martin Molina

    2018-03-01

    Full Text Available Aerial robots with cameras on board can be used in surface inspection to observe areas that are difficult to reach by other means. In this type of problem, it is desirable for aerial robots to have a high degree of autonomy. A way to provide more autonomy would be to use computer vision techniques to automatically detect anomalies on the surface. However, the performance of automated visual recognition methods is limited in uncontrolled environments, so that in practice it is not possible to perform a fully automatic inspection. This paper presents a solution for visual inspection that increases the degree of autonomy of aerial robots following a semi-automatic approach. The solution is based on human-robot collaboration in which the operator delegates tasks to the drone for exploration and visual recognition and the drone requests assistance in the presence of uncertainty. We validate this proposal with the development of an experimental robotic system using the software framework Aerostack. The paper describes technical challenges that we had to solve to develop such a system and the impact on this solution on the degree of autonomy to detect anomalies on the surface.

  3. Robotic inspection of fiber reinforced composites using phased array UT

    Science.gov (United States)

    Stetson, Jeffrey T.; De Odorico, Walter

    2014-02-01

    Ultrasound is the current NDE method of choice to inspect large fiber reinforced airframe structures. Over the last 15 years Cartesian based scanning machines using conventional ultrasound techniques have been employed by all airframe OEMs and their top tier suppliers to perform these inspections. Technical advances in both computing power and commercially available, multi-axis robots now facilitate a new generation of scanning machines. These machines use multiple end effector tools taking full advantage of phased array ultrasound technologies yielding substantial improvements in inspection quality and productivity. This paper outlines the general architecture for these new robotic scanning systems as well as details the variety of ultrasonic techniques available for use with them including advances such as wide area phased array scanning and sound field adaptation for non-flat, non-parallel surfaces.

  4. Thermal Tracking in Mobile Robots for Leak Inspection Activities

    Directory of Open Access Journals (Sweden)

    Iñaki Maurtua

    2013-10-01

    Full Text Available Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  5. Thermal tracking in mobile robots for leak inspection activities.

    Science.gov (United States)

    Ibarguren, Aitor; Molina, Jorge; Susperregi, Loreto; Maurtua, Iñaki

    2013-10-09

    Maintenance tasks are crucial for all kind of industries, especially in extensive industrial plants, like solar thermal power plants. The incorporation of robots is a key issue for automating inspection activities, as it will allow a constant and regular control over the whole plant. This paper presents an autonomous robotic system to perform pipeline inspection for early detection and prevention of leakages in thermal power plants, based on the work developed within the MAINBOT (http://www.mainbot.eu) European project. Based on the information provided by a thermographic camera, the system is able to detect leakages in the collectors and pipelines. Beside the leakage detection algorithms, the system includes a particle filter-based tracking algorithm to keep the target in the field of view of the camera and to avoid the irregularities of the terrain while the robot patrols the plant. The information provided by the particle filter is further used to command a robot arm, which handles the camera and ensures that the target is always within the image. The obtained results show the suitability of the proposed approach, adding a tracking algorithm to improve the performance of the leakage detection system.

  6. Control system for a multi-joint inspection robot

    International Nuclear Information System (INIS)

    Asano, K.

    1984-01-01

    Remote systems, in which a human operator in a safe zone determines pertinent circumstances and makes decisions on work procedures, while a robot does direct work in hazardous environments, have been becoming more and more important in accordance with the increase in nuclear facilities. In such remote systems, to perform tasks which are merely ambiguously defined beforehand, it is very important that the systems have the ability to execute desired tasks easily and immediately without any programming or teaching work on the spot. A control system, named Self Approach System (SAS), for a multi-joint inspection robot has been developed as a key component in a remote inspection system for use in physically difficult or dangerous environments. It has 8 joints and 17 degrees-of-freedom and was designed taking many of the above points into account. This paper describes SAS details

  7. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    Directory of Open Access Journals (Sweden)

    Bat-erdene Byambasuren

    2016-02-01

    Full Text Available Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  8. Development of Pipe Holding Mechanism for Pipe Inspection Robot Using Flexible Pneumatic Cylinder

    Directory of Open Access Journals (Sweden)

    Choi Kyujun

    2016-01-01

    Full Text Available A pipe inspection robot is useful to reduce the inspection cost. In the previous study, a novel pipe inspection robot using a flexible pneumatic cylinder that can move forward along to the pipe by changing the robot’s body naturally was proposed and tested. In this paper, to improve its mobility for a corner of a pipe, the thin pipe holding mechanism using pneumatic bellows was proposed and tested. As a result of its driving test, the holding performance of the mechanism was confirmed.

  9. Analysis and optimization on in-vessel inspection robotic system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weijun, E-mail: zhangweijun@sjtu.edu.cn; Zhou, Zeyu; Yuan, Jianjun; Du, Liang; Mao, Ziming

    2015-12-15

    Since China has successfully built her first Experimental Advanced Superconducting TOKAMAK (EAST) several years ago, great interest and demand have been increasing in robotic in-vessel inspection/operation systems, by which an observation of in-vessel physical phenomenon, collection of visual information, 3D mapping and localization, even maintenance are to be possible. However, it has been raising many challenges to implement a practical and robust robotic system, due to a lot of complex constraints and expectations, e.g., high remanent working temperature (100 °C) and vacuum (10{sup −3} pa) environment even in the rest interval between plasma discharge experiments, close-up and precise inspection, operation efficiency, besides a general kinematic requirement of D shape irregular vessel. In this paper we propose an upgraded robotic system with redundant degrees of freedom (DOF) manipulator combined with a binocular vision system at the tip and a virtual reality system. A comprehensive comparison and discussion are given on the necessity and main function of the binocular vision system, path planning for inspection, fast localization, inspection efficiency and success rate in time, optimization of kinematic configuration, and the possibility of underactuated mechanism. A detailed design, implementation, and experiments of the binocular vision system together with the recent development progress of the whole robotic system are reported in the later part of the paper, while, future work and expectation are described in the end.

  10. ROBOTIC TANK INSPECTION END EFFECTOR

    International Nuclear Information System (INIS)

    Rachel Landry

    1999-01-01

    The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related sub-tasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these sub-tasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these sub-tasks were derived from the original intent

  11. Mini AERCam Inspection Robot for Human Space Missions

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  12. Ultra light inspection robotic arm, design and modeling

    International Nuclear Information System (INIS)

    Voisembert, S.

    2012-01-01

    One of the major challenges in robotics is the improvement of inspections operations in confined and hazardous area using unmanned remote handling systems. Articulated arm are used in this case to carry some diagnostic tools for the inspection tasks. These long reach multi-link carriers should be characterized by a large workspace and reduced mass. Today, with about ten degrees of freedom and ten meters long they have reached their performance limit. Indeed, for long reach, the arm should have enough torque to carry its own weight plus the payload in cantilever mode and enough stiffness to minimize the deflection caused by the gravity. Despite the use of best materials and components, this kind of robot has reach its performance limit. Overcoming this limit needs a change in paradigm. Therefore a problem-solving, analysis and forecasting tool TRIZ (theory of inventive problem solving) is used. It leads naturally to identify the origin of the dilemma: the proper weight of the arm and so its mass under gravity. In particular, it proposes to postulate that a no-mass robot exists. An analysis of the properties of such a robot leads to the patented concept of an ultra light inflatable robot with unique and constant volume and constant diameter joints. This new object would benefit from advantages such as easy implementation, harmlessness toward its environment and so the ability to lean on it without damage. Therefore it could easily increase its range and its foreseen low-cost building would open a wide field of new applications. This thesis work, elaborates appropriate technical concepts and dimensioning methods for ultra light inflatable robots. The payload and length performances of an inflatable robot are analytically validated. Experimentations and a finite-element modeling are used for a pre-dimensioning of the joints and different modes of construction are prototyped in partnership with, specialized company in thigh-tech textile. The joints are also modeled with

  13. Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor

    Science.gov (United States)

    Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang

    2017-01-01

    In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.

  14. An intelligent inspection and survey robot. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-15

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified.

  15. An intelligent inspection and survey robot. Volume 2

    International Nuclear Information System (INIS)

    1995-01-01

    Radioactive materials make up a significant part of the hazardous-material inventory of the Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. This report examines several scenarios, the damage that may be inflicted, and methods that may be used to protect radiation-hardened robot control systems. Commercial sources of components and microcomputers that can withstand high radiation exposure are identified

  16. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  17. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  18. An intelligent inspection and survey robot

    International Nuclear Information System (INIS)

    Byrd, J.; Holland, J.M.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a semi-autonomous robotic system intended for use in the automatic inspection of stored containers of low level nuclear waste. The project is being performed by a team under the SCUREF (South Carolina University Research and Education Foundation) comprised of the University of South Carolina, and Clemson University, and their industrial partner Cybermotion Inc., with funding from METC, Morgantown, WV. The ARIES program is unusual in the level of cooperation between the universities and Cybermotion. By maintaining daily communications via telephone and E-Mall, participating in frequent meetings with each other and the end users, and by developing an open flow of (sometimes sensitive) technical information, the team has been able to build on a very broad base of intellectual strengths and existing technology without wasteful duplication. This base includes all of the navigation and control software and hardware developed by Cybermotion over nearly a decade and the deep technology resources of the university partners. It is anticipated that the result will be a technically advanced system that is much closer to a deployable configuration than is typical for this stage of research. In this decade of shrinking budgets, such relationships can provide a crucial advantage for all participants

  19. Intelligent robots for nuclear power plant inspection and surveillance

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo; Suzuki, Kazumi; Fujie, Hideo; Fujii, Masaaki; Asai, Takashi; Sugimoto, Hiroshi.

    1986-01-01

    Recently, the research and development of robotizing the patrol and works in nuclear power plants have been actively carried out since the TMI-2 accident in March, 1979. In this paper, among these robots, six examples of the movable robots, of which the working and movement were intellectualized by using information processing techniques and others, are reported, and their intellectualization is concretely discussed. In Japan, the development of the supporting system for nuclear power generation was carried out for five years from fiscal year 1980 as the project subsidized by the Ministry of International Trade and Industry, and during this period, the inspection robots for LWR plants were developed. The development of the robots for ultimate working as the large scale project of the Agency of Industrial Science and Technology aiming at further heightening the function is in progress as the eight-year project from fiscal year 1983. Monorail type automatic surveillance robots, system maintenance robots 'AMOOTY', variable crawler type intelligent movable robots, hybrid running type intelligent movable robots, monorail running type small checkup robots, and floor running type checkup and light work robots are reported. Sense information processing control and a robot language processor for expanding the function of autonomous control are outlined. (Kako, I.)

  20. An approach to software quality assurance for robotic inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1993-10-01

    Software quality assurance (SQA) for robotic systems used in nuclear waste applications is vital to ensure that the systems operate safely and reliably and pose a minimum risk to humans and the environment. This paper describes the SQA approach for the control and data acquisition system for a robotic system being developed for remote surveillance and inspection of underground storage tanks (UST) at the Hanford Site

  1. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  2. Genetic Optimization and Simulation of a Piezoelectric Pipe-Crawling Inspection Robot

    Science.gov (United States)

    Hollinger, Geoffrey A.; Briscoe, Jeri M.

    2004-01-01

    Using the DarwinZk development software, a genetic algorithm (GA) was used to design and optimize a pipe-crawling robot for parameters such as mass, power consumption, and joint extension to further the research of the Miniature Inspection Systems Technology (MIST) team. In an attempt to improve on existing designs, a new robot was developed, the piezo robot. The final proposed design uses piezoelectric expansion actuators to move the robot with a 'chimneying' method employed by mountain climbers and greatly improves on previous designs in load bearing ability, pipe traversing specifications, and field usability. This research shows the advantages of GA assisted design in the field of robotics.

  3. 49 CFR 556.9 - Public inspection of relevant information.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Public inspection of relevant information. 556.9... NONCOMPLIANCE § 556.9 Public inspection of relevant information. Information relevant to a petition under this... Administration, 400 Seventh Street, SW., Washington, DC 20590. Copies of available information may be obtained in...

  4. Some advanced concepts of mobile robotics for plant inspection and maintenance

    International Nuclear Information System (INIS)

    Halme, A.

    1994-01-01

    The paper introduces two concepts in robotics the feasibility of which are presently being studied for plant inspection/maintenance purposes. One of them is a walking machine platform which utilizes walking on discrete set of points making it possible to feed energy trough legs and/or grip on fixing points when needing strong support or climbing on walls. The other is a robot society concept in which the work is distributed among the member robots of the society. The society has an inner communication system trough which information is spread between the members. The control system of the society takes care of the task coordination and communication between the society and the user. As a special feature energy distribution within the society is considered. The concept is suggested for inspection and cleaning type of work in process equipment area and also inside processes in some cases. (author)

  5. Robotic inspection of nuclear waste storage facilities

    International Nuclear Information System (INIS)

    Fulbright, R.; Stephens, L.M.

    1995-01-01

    The University of South Carolina and the Westinghouse Savannah River Company have developed a prototype mobile robot designed to perform autonomous inspection of nuclear waste storage facilities. The Stored Waste Autonomous Mobile Inspector (SWAMI) navigates and inspects rows of nuclear waste storage drums, in isles as narrow as 34 inches with drums stacked three high on each side. SWAMI reads drum barcodes, captures drum images, and monitors floor-level radiation levels. The topics covered in this article reporting on SWAMI include the following: overall system design; typical mission scenario; barcode reader subsystem; video subsystem; radiation monitoring subsystem; position determination subsystem; onboard control system hardware; software development environment; GENISAS, a C++ library; MOSAS, an automatic code generating tool. 10 figs

  6. Control system of the inspection robots group applying auctions and multi-criteria analysis for task allocation

    Science.gov (United States)

    Panfil, Wawrzyniec; Moczulski, Wojciech

    2017-10-01

    In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.

  7. SAFER vehicle inspection: a multimodal robotic sensing platform

    Science.gov (United States)

    Page, David L.; Fougerolle, Yohan; Koschan, Andreas F.; Gribok, Andrei; Abidi, Mongi A.; Gorsich, David J.; Gerhart, Grant R.

    2004-09-01

    The current threats to U.S. security both military and civilian have led to an increased interest in the development of technologies to safeguard national facilities such as military bases, federal buildings, nuclear power plants, and national laboratories. As a result, the Imaging, Robotics, and Intelligent Systems (IRIS) Laboratory at The University of Tennessee (UT) has established a research consortium, known as SAFER (Security Automation and Future Electromotive Robotics), to develop, test, and deploy sensing and imaging systems for unmanned ground vehicles (UGV). The targeted missions for these UGV systems include -- but are not limited to --under vehicle threat assessment, stand-off check-point inspections, scout surveillance, intruder detection, obstacle-breach situations, and render-safe scenarios. This paper presents a general overview of the SAFER project. Beyond this general overview, we further focus on a specific problem where we collect 3D range scans of under vehicle carriages. These scans require appropriate segmentation and representation algorithms to facilitate the vehicle inspection process. We discuss the theory for these algorithms and present results from applying them to actual vehicle scans.

  8. An autonomous mobil robot to perform waste drum inspections

    International Nuclear Information System (INIS)

    Peterson, K.D.; Ward, C.R.

    1994-01-01

    A mobile robot is being developed by the Savannah River Technology Center (SRTC) Robotics Group of Westinghouse Savannah River company (WSRC) to perform mandated inspections of waste drums stored in warehouse facilities. The system will reduce personnel exposure and create accurate, high quality documentation to ensure regulatory compliance. Development work is being coordinated among several DOE, academic and commercial entities in accordance with DOE's technology transfer initiative. The prototype system was demonstrated in November of 1993. A system is now being developed for field trails at the Fernald site

  9. Towards an automated checked baggage inspection system augmented with robots

    Science.gov (United States)

    DeDonato, Matthew P.; Dimitrov, Velin; Padır, Taskin

    2014-05-01

    We present a novel system for enhancing the efficiency and accuracy of checked baggage screening process at airports. The system requirements address the identification and retrieval of objects of interest that are prohibited in a checked luggage. The automated testbed is comprised of a Baxter research robot designed by Rethink Robotics for luggage and object manipulation, and a down-looking overhead RGB-D sensor for inspection and detection. We discuss an overview of current system implementations, areas of opportunity for improvements, robot system integration challenges, details of the proposed software architecture and experimental results from a case study for identifying various kinds of lighters in checked bags.

  10. X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection

    International Nuclear Information System (INIS)

    Banjak, Hussein

    2016-01-01

    The number of industrial applications of computed tomography (CT) is large and rapidly increasing with typical areas of use in the aerospace, automotive and transport industry. To support this growth of CT in the industrial field, the identified requirements concern firstly software development to improve the reconstruction algorithms and secondly the automation of the inspection process. Indeed, the use of robots gives more flexibility in the acquisition trajectory and allows the control of large and complex objects, which cannot be inspected using classical CT systems. In this context of new CT trend, a robotic platform has been installed at CEA LIST to better understand and solve specific challenges linked to the robotization of the CT process. The considered system integrates two robots that move the X-ray generator and detector. This thesis aims at achieving this new development. In particular, the objective is to develop and implement analytical and iterative reconstruction algorithms adapted to such robotized trajectories. The main focus of this thesis is concerned with helical-like scanning trajectories. We consider two main problems that could occur during acquisition process: truncated and limited-angle data. We present in this work experimental results for reconstruction on such non-standard trajectories. CIVA software is used to simulate these complex inspections and our developed algorithms are integrated as reconstruction tools. This thesis contains three parts. In the first part, we introduce the basic principles of CT and we present an overview of existing analytical and iterative algorithms for non-standard trajectories. In the second part, we modify the approximate helical FDK algorithm to deal with transversely truncated data and we propose a modified FDK algorithm adapted to reverse helical trajectory with the scan range less than 360 degrees. For iterative reconstruction, we propose two algebraic methods named SART-FISTA-TV and DART

  11. Conceptual design of an in-vessel inspection robotic system for Tokamak environment

    International Nuclear Information System (INIS)

    Kumar, Prabhat; Raju, Daniel; Ranjan, Vaibhav; Patel, Prateek; Dave, Jatinkumar; Naik, Mehul

    2013-01-01

    An in-vessel inspection robotic system has been conceptualized for operation inside a tokamak vessel. The robotic system is envisaged to comprise of a robotic arm, end-effector, microcontroller and wireless communication system. The end-effector is envisaged to be a special purpose camera for in-situ inspection between plasma shots. The three-link robotic arm, designed for ITER-like environment, has 4 revolute joints- 3 providing manipulation in poloidal plane and the fourth one providing limited movement in adjacent toroidal planes. This paper provides the conceptual design of the system along with kinematic analysis of robotic arm. Solutions have been derived for forward and inverse kinematic models and the Jacobian matrix for the robotic arm linkage. In forward kinematic model, given a set of joint-link parameters, the position and orientation of end-effector are determined with respect to a reference frame. In inverse kinematic model, given the specified position and orientation of end-effector with respect to a reference frame, a set of joint variables are derived that would bring the end-effector into the required posture. Using Jacobian matrix, the relation between the end-effector velocity and the joint velocity of a manipulator is obtained i.e. given the individual joint velocity; the end-effector velocity is obtained. A CAD model has been generated using CATIA to simulate the kinematic model and carry out computational stress analysis. (author)

  12. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  13. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  14. Development of a SG Tube Inspection/maintenance Robot

    International Nuclear Information System (INIS)

    Shin, Ho Cheol; Jung, Kyung Min; Choi, Chang Hwan; Kim, Seung Ho

    2005-01-01

    A radiation hardened robot system is developed which assists in an automatic non-destructive testing and the repair of nuclear steam generator tubes. And a control system is developed. For easy carriage and installation, the robot system consists of three separable parts: a manipulator, a water chamber entering and leaving device of the manipulator and a manipulator base pose adjusting device. The kinematic analysis using the grid method was performed to search for the optimal manipulator's link parameters, and the stress analysis of the robotic system was also carried out for a structural safety verification. The robotic control system consists of a main personal computer placed near the operator and a local robotic position controller placed near the steam generator. A software program to control and manage the robotic system has been developed on the NT based OS to increase the usability. The software program provides a robot installation function, a robot calibration function, a managing and arranging function for the eddy-current test, a real time 3- D graphic simulation function which offers a remote reality to operators and so on. The image information acquired from the camera attached to the end-effector is used to calibrate the end-effector pose error and the time-delayed control algorithm is applied to calculate the optimal PID gain of the position controller. Eddy-current probe guide devices, a brushing tool, a motorized plugging tool and a U-tube internal visual inspection system have been developed. A data acquisition system was built to acquire and process the eddy-current signals, and a software program for eddy-current signal acquisition and processing. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in a laboratory. The final function test was carried out at the Kori Npp type steam generator mockup in the Kori training center

  15. A Novel Method of Autonomous Inspection for Transmission Line based on Cable Inspection Robot LiDAR Data

    Directory of Open Access Journals (Sweden)

    Xinyan Qin

    2018-02-01

    Full Text Available With the growth of the national economy, there is increasing demand for electricity, which forces transmission line corridors to become structurally complicated and extend to complex environments (e.g., mountains, forests. It is a great challenge to inspect transmission line in these regions. To address these difficulties, a novel method of autonomous inspection for transmission line is proposed based on cable inspection robot (CIR LiDAR data, which mainly includes two steps: preliminary inspection and autonomous inspection. In preliminary inspection, the position and orientation system (POS data is used for original point cloud dividing, ground point filtering, and structured partition. A hierarchical classification strategy is established to identify the classes and positions of the abnormal points. In autonomous inspection, CIR can autonomously reach the specified points through inspection planning. These inspection targets are imaged with PTZ (pan, tilt, zoom cameras by coordinate transformation. The feasibility and effectiveness of the proposed method are verified by test site experiments and actual line experiments, respectively. The proposed method greatly reduces manpower and improves inspection accuracy, providing a theoretical basis for intelligent inspection of transmission lines in the future.

  16. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  17. Kinematic and dynamic analysis of a serial-link robot for inspection process in EAST vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Peng Xuebing, E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China); Yuan Jianjun; Zhang Weijun [Research Institute of Robotics, Mechanical Engineering School, Shanghai Jiao Tong University, No.800, Dong Chuan Road, Min Hang District, Shanghai 200240 (China); Yang Yang; Song Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A serial-link robot FIVIR is proposed for inspection of EAST PFCs between plasma shots. Black-Right-Pointing-Pointer The FIVIR is a function modular design and has specially designed curvilinear mechanism for axes 4-6. Black-Right-Pointing-Pointer The D-H coordinate systems, forward and inverse kinematic model can be easily established and solved for the FIVIR. Black-Right-Pointing-Pointer The FIVIR can fulfill the required workspace and has a good dynamic performance in the inspection process. - Abstract: The present paper introduces a serial-link robot which is named flexible in-vessel inspection robot (FIVIR) and developed for Experimental Advanced Superconducting Tokamak (EAST). The task of the robot is to carry process tools, such as viewing camera and leakage detector, to inspect the components installed inside of EAST vacuum vessel. The FIVIR can help to understand the physical phenomena which could be happened in the vacuum vessel during plasma operation and could be one part of EAST remote handling system if needed. The FIVIR was designed with the consideration of having easy control and a good mechanics property which drives it resulted in function modular design. The workspace simulation and kinematic analysis are given in this paper. The dynamic behavior of the FIVIR is studied by multi-body system simulation using ADAMS software. The study result shows the FIVIR has ascendant kinematic and dynamic performance and can fulfill the design requirement for inspection process in EAST vacuum vessel.

  18. Kinematic and dynamic analysis of a serial-link robot for inspection process in EAST vacuum vessel

    International Nuclear Information System (INIS)

    Peng Xuebing; Yuan Jianjun; Zhang Weijun; Yang Yang; Song Yuntao

    2012-01-01

    Highlights: ► A serial-link robot FIVIR is proposed for inspection of EAST PFCs between plasma shots. ► The FIVIR is a function modular design and has specially designed curvilinear mechanism for axes 4–6. ► The D-H coordinate systems, forward and inverse kinematic model can be easily established and solved for the FIVIR. ► The FIVIR can fulfill the required workspace and has a good dynamic performance in the inspection process. - Abstract: The present paper introduces a serial-link robot which is named flexible in-vessel inspection robot (FIVIR) and developed for Experimental Advanced Superconducting Tokamak (EAST). The task of the robot is to carry process tools, such as viewing camera and leakage detector, to inspect the components installed inside of EAST vacuum vessel. The FIVIR can help to understand the physical phenomena which could be happened in the vacuum vessel during plasma operation and could be one part of EAST remote handling system if needed. The FIVIR was designed with the consideration of having easy control and a good mechanics property which drives it resulted in function modular design. The workspace simulation and kinematic analysis are given in this paper. The dynamic behavior of the FIVIR is studied by multi-body system simulation using ADAMS software. The study result shows the FIVIR has ascendant kinematic and dynamic performance and can fulfill the design requirement for inspection process in EAST vacuum vessel.

  19. Completion of development of robotics systems for inspecting unpiggable transmission pipelines.

    Science.gov (United States)

    2013-02-01

    This document presents the final report for a program focusing on the completion of the : research, development and demonstration effort, which was initiated in 2001, for the : development of two robotic systems for the in-line, live inspection of un...

  20. Development of the robot for pressurizer electric heater inspection and repairing

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1999-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heaters. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraints such as its weight and collision with pressurized wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code

  1. Designing and implementing transparency for real time inspection of autonomous robots

    Science.gov (United States)

    Theodorou, Andreas; Wortham, Robert H.; Bryson, Joanna J.

    2017-07-01

    The EPSRC's Principles of Robotics advises the implementation of transparency in robotic systems, however research related to AI transparency is in its infancy. This paper introduces the reader of the importance of having transparent inspection of intelligent agents and provides guidance for good practice when developing such agents. By considering and expanding upon other prominent definitions found in literature, we provide a robust definition of transparency as a mechanism to expose the decision-making of a robot. The paper continues by addressing potential design decisions developers need to consider when designing and developing transparent systems. Finally, we describe our new interactive intelligence editor, designed to visualise, develop and debug real-time intelligence.

  2. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  3. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2010-12-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  4. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  5. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    Science.gov (United States)

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  6. Design of the reactor vessel inspection robot for the advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and Oak Ridge National Laboratory designed a prototype wall-crawling robot to perform weld inspection in an advanced nuclear reactor. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a mock non-hostile environment and shown to perform as expected, as detailed in this report

  7. Outer navigation of a inspection robot by means of feedback of global guidance

    International Nuclear Information System (INIS)

    Segovia de los R, A.; Bucio V, F.; Garduno G, M.

    2008-01-01

    The objective of this article is the presentation of an inspection system to mobile robot navigating in exteriors by means of the employment of a feedback of instantaneous guidance with respect to a global reference throughout moment of the displacement. The robot evolves obeying the commands coming from the one tele operator which indicates the diverse addresses by means of the operation console that the robot should take using for it information provided by an electronic compass. The mobile robot employee in the experimentations is a Pioneer 3-AT, which counts with a sensor series required to obtain an operation of more autonomy. The electronic compass offers geographical information coded in a format SPI, reason for which a micro controller (μC) economic of general use has been an employee for to transfer the information to the format RS-232, originally used by the Pioneer 3-AT. The orientation information received by the robot by means of their serial port RS-232 secondary it is forwarded to the computer hostess in the one which a program Java is used to generate the commands for the robot navigation control and to deploy one graphic interface user utilized to receive the order of the operator. This research is part of an ambitious project in which it is tried to count on an inspection system and monitoring of sites in which risks of high radiation levels could exist, thus a navigation systems in exteriors could be very useful. The complete system will count besides the own sensors of the robot, with certain numbers of agree sensors to the variables that are desired to monitor. The resulting values of such measurements will be visualized in real time in the graphic interface user, thanks to a bidirectional wireless communication among the station of operation and the mobile robot. (Author)

  8. Design and implementation of motion planning of inspection and maintenance robot for ITER-like vessel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Lai, Yinping [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Cao, Qixin [Institute of Robotics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-12-15

    Robot motion planning is a fundamental problem to ensure the robot executing the task without clashes, fast and accurately in a special environment. In this paper, a motion planning of a 12 DOFs remote handling robot used for inspecting the working state of the ITER-like vessel and maintaining key device components is proposed and implemented. Firstly, the forward and inverse kinematics are given by analytic method. The work space and posture space of this manipulator are both considered. Then the motion planning is divided into three stages: coming out of the cassette mover, moving along the in-vessel center line, and inspecting the D-shape section. Lastly, the result of experiments verified the performance of the motion design method. In addition, the task of unscrewing/screwing the screw demonstrated the feasibility of system in function.

  9. Robot technology in remote inspection and repair

    International Nuclear Information System (INIS)

    Lowe, D.B.

    1981-01-01

    The development of remotely controlled equipment for use in a hostile (eg radioactive) environment is reviewed. Inspection and repair work in the core vessel of a nuclear reactor is a particular example of the need for robot devices. Devices with the ability to reach out after entering the interior of the reactor and perform specified operations some distance from the entry axis are needed. It is also necessary to design with tool retrieval emergencies in mind. Should an accident or malfunction prevent withdrawal of the equipment by normal means there must be a fail-safe mechanism of collapse and withdrawal. Visual contact with the device, usually by closed circuit TV is also necessary. Recent developments are described. These include stereoscopic imaging, a flexible arm of increased reach, dexterity and strength, and a computerized robotic arm with seven degrees of freedom to be deployed by the flexible arm. Microprocessors are used to analyse information and command functions. A current solution of the need for precise positioning and tracking of a NDT head round a reactor core is illustrated. (U.K.)

  10. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection; Conception d'un micro robot a actionneur asservi electropneumatique pour l'inspection intratubulaire

    Energy Technology Data Exchange (ETDEWEB)

    Anthierens, C

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60{mu}m. A PID control law is used to control the robot but state feed back control law is planed. (author)

  11. Hand-eye coordination of a robot for the automatic inspection of steam-generator tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, D.H.; Song, Y.C.; Kim, J.H.; Kim, J.G.

    2004-01-01

    The inspection of steam-generator tubes in nuclear power plants needs to collect test signals in a highly radiated region that is not accessible by humans. In general, a robot equipped with a camera and a test probe is used to handle such a dangerous environment. The robot moves the probe to right below a tube to be inspected and then the probe is inserted into the tube. The inspection signals are acquired while the probe is pulling back. Currently, an operator in a control room controls all the process remotely. To make a fully automatic inspection system, first of all, a control mechanism is needed to position the probe to the proper location. This is so called a hand-eye coordination problem. In this paper, a hand-eye coordination method for a robot has been presented. The proposed method consists of the two consecutive control modes: rough positioning and fine-tuning. The rough positioning controller tries to position its probe near a target place using kinematics information and the known environments, and then the fine-tuning controller tries to adjust the probe to the target using the image acquired by the camera attached to the robot. The usefulness of the proposed method has been tested and verified through experiments. (orig.)

  12. A Mobile Robotic System for the Inspection and Repair of SG Tubes in NPPs

    Directory of Open Access Journals (Sweden)

    Yong-Chil Seo

    2016-04-01

    Full Text Available The reliability and performance of a steam generator (SG is one of the serious concerns in the operation of pressurized water nuclear power plants. Because of high levels of radiation, robotic systems have been used to inspect and repair SG tubes. In this paper, we present a mobile robotic system that positions the inspection and repair tools while hanging down from the tube sheets where the tubes are fixed. All of the driving mechanisms of the mobile robot are actuated by electric motors to start its works, providing that the electric power is prepared without the additional need for an on-site air services. A special tube-holding mechanism with a high holding force has been developed to prevent falling from the tube sheets, even in the case of an electric power failure. We have also developed a quick installation guide device that guides the mobile robot to desired initial positions in the tube sheet exactly and quickly, which helps to reduce the radiation exposure of human workers during the installation work. This paper also provides on-site experimental results and lessons learned.

  13. Development of a light weighted mobile robot for SG tube inspection in NPP

    International Nuclear Information System (INIS)

    Seo, Yong Chil; Jeong, Kyung Min; Shin, Hochul; Gweng, Jung Ju; Lee, Sung Uk; Jeong, Seung Ho; Choi, Young Soo; Kim, Seung Ho; Shin, Chun Sup; Park, Ki Tae

    2012-01-01

    Steam generators (SG) are among the most critical components of pressurized water Nuclear Power Plants (NPP). SG tubes must provide a reliable pressure boundary between the primary and secondary cooling water, because any leakage from tube defects could result in the release of radioactivity to the environment. Thus degradations of steam generators tubes should be monitored and inspected periodically under nuclear regulation. In service inspections of SG tubes are carried out using eddy current test (ECT) and the defected tubes are usually plugged. Because the radioactivity in the internal SG chambers limits free access of human workers, remote manipulators are required. In South Korea, Manipulators such as the Zet ec SM series and the Westinghouse ROSA series have bee used. Such manipulators are rigidly mounted to man ways or tube sheets of SG. Confusions of the inspected tubes may occur from deflection of the manipulators. To reduce the deflections of the manipulators for covering the large working areas of tube sheets, sufficient rigidity is required and that leads to an increase of the weight. Such weight increase results in some difficulties for handling and more radiation exposure of human workers. Recently light weighed mobile robots have been introduced by Westinghouse and Zet ec. The robots can move keeping in contact with the tube sheets using devices which are commonly called cam locks. They are easier to handle and provide no confusion for the position of the inspected tubes. But when the clamping forces are loosed accidentally, they can be fall down and light repair works can be performed. This paper provides the design results for a lightweight mobile robot which is being developed in cooperation of our institutes

  14. Development of a light weighted mobile robot for SG tube inspection in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Chil; Jeong, Kyung Min; Shin, Hochul; Gweng, Jung Ju; Lee, Sung Uk; Jeong, Seung Ho; Choi, Young Soo; Kim, Seung Ho [KAERI, Daejeon (Korea, Republic of); Shin, Chun Sup; Park, Ki Tae [Korea Plant Service and Engineering, Busan (Korea, Republic of)

    2012-10-15

    Steam generators (SG) are among the most critical components of pressurized water Nuclear Power Plants (NPP). SG tubes must provide a reliable pressure boundary between the primary and secondary cooling water, because any leakage from tube defects could result in the release of radioactivity to the environment. Thus degradations of steam generators tubes should be monitored and inspected periodically under nuclear regulation. In service inspections of SG tubes are carried out using eddy current test (ECT) and the defected tubes are usually plugged. Because the radioactivity in the internal SG chambers limits free access of human workers, remote manipulators are required. In South Korea, Manipulators such as the Zet ec SM series and the Westinghouse ROSA series have bee used. Such manipulators are rigidly mounted to man ways or tube sheets of SG. Confusions of the inspected tubes may occur from deflection of the manipulators. To reduce the deflections of the manipulators for covering the large working areas of tube sheets, sufficient rigidity is required and that leads to an increase of the weight. Such weight increase results in some difficulties for handling and more radiation exposure of human workers. Recently light weighed mobile robots have been introduced by Westinghouse and Zet ec. The robots can move keeping in contact with the tube sheets using devices which are commonly called cam locks. They are easier to handle and provide no confusion for the position of the inspected tubes. But when the clamping forces are loosed accidentally, they can be fall down and light repair works can be performed. This paper provides the design results for a lightweight mobile robot which is being developed in cooperation of our institutes.

  15. Development of wall ranging radiation inspection robot

    International Nuclear Information System (INIS)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S.

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall

  16. Development of wall ranging radiation inspection robot

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. J.; Yoon, J. S.; Park, Y. S.; Hong, D. H.; Oh, S. C.; Jung, J. H.; Chae, K. S

    1999-03-01

    With the aging of nation's nuclear facilities, the target of this project is to develop an under water wall ranging robotic vehicle which inspects the contamination level of the research reactor (TRIGA MARK III) as a preliminary process to dismantling. The developed vehicle is driven by five thrusters and consists of small sized control boards, and absolute position detector, and a radiation detector. Also, the algorithm for autonomous navigation is developed and its performance is tested through under water experiments. Also, the test result at the research reactor shows that the vehicle firmly attached the wall while measuring the contamination level of the wall.

  17. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf; Daphne D' Zurko

    2004-10-31

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  18. Development of the robot for pressurizer electric heater inspection and repairing

    International Nuclear Information System (INIS)

    Jung, Seung Ho; Kim, Seung Ho; Su, Yong Chil

    1998-01-01

    In this study a robot system has been developed for inspection and maintenance of the pressurizer and the rod heater. The developed robot system consists of four parts: two links, a support frame, a movable gripper, and a controller box. The robot is attached on the support frame, which is attached at the man-way flange of the pressurizer such that the robot is positioned inside pressurizer. To access arbitrary heater, at first two links horizontally rotate, and then the gripper suspended by two steel wires moves up and down by turing wire drum because the rod heaters are located about 8 meters under the robot and are arranged in two circular rows. The robot must be designed under several constraint such as its weight and collision with pressurizer wall or spray nozzle because the robot is positioned and moves inside the pressurizer. To verify that the designed robot is free from collision during installation procedure and it can access any desired rod heater, it is simulated by 3-dimensional graphic software (RobCAD). For evaluating stress of the support frame finite element analysis is performed by using the ANSYS code. For gripping the rod heater the passive self-locking mechanism is adopted, which is made up three balls and springs. Because the mechanism is very simple, it is very hardly defected than that adopted motor. (author). 11 refs., 8 tabs., 13 figs

  19. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    International Nuclear Information System (INIS)

    Scott Hower; Luiza Vladu; Adrian Nichisov; Mihai Cretu

    2006-01-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  20. Eddy currents inspection of CANDU steam generator' tubes using Zetec's ZR-1 Robot: experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Hower, S. [Zetec Inc., Quebec, Quebec (Canada); Serban, M. [CNE-Prod U1 Cernavoda (Romania); Vladu, L. [Compcontrol Ing., Bucharest (Romania)

    2006-07-01

    'Full text:' The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience-based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of toolheads, ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, lightweight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The Cernavoda plant has four Advanced 600 MW CANDU-design generators that have been in service since 1996. The paper presents also the Zetec's filed experience and customer experience with this system. It describes the equipment setup in Cernavoda's generator mock-up, functional testes and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (author)

  1. ITER Articulated Inspection Arm (AIA): Geometric calibration issues of a long-reach flexible robot

    International Nuclear Information System (INIS)

    Arhur, D.; Perrot, Y.; Bidard, C.; Friconneau, J.P.; Palmer, J.D.; Semeraro, L.

    2005-01-01

    This paper is part of the Remote Handling (RH) activities for the future fusion reactor ITER. Specifically it relates to the possibility to carry out close inspection tasks of the Vacuum Vessel first wall using a long reach robot called the 'Articulated Inspection Arm' (AIA). Early studies for this device identified the need of improving the accuracy of the end-effector position in such robot structures. Therefore, the aim of this R and D program performed under the European Fusion Development Agreement (EFDA) work program is to develop a flexible parametric model with localised compliances of an AIA-like system, in order to compensate for its flexibilities. The geometric calibration is performed using a non-linear multivariable optimisation technique, which minimizes the average error between the simulated and real robot position. The optimised set of parameters, tested on the first segment of the robot, enables to divide by 3 the error on the end-effector position, in comparison to a rigid model. We expect better prediction after mechanical improvements to reduce the serious backlash in the joints. The prediction model applied to the whole arm will enable errors to be reduced from more than 1 m, in some configurations, to a final accuracy of a few centimetres

  2. Development of a robotic nozzle inspection with a flexible transducer array

    International Nuclear Information System (INIS)

    Dobigny, Blandine; Wattiau, Olivier; Bey, Sebastien; Vanhoye, Arnaud; Ancrenaz, Patrick; Dumas, Philippe; Fournier, Laurent

    2016-01-01

    The evaluation of the integrity of the nuclear plant components is a major issue. It is mandatory to assess the degradation due to the aging. NDE aim is to detect potential defects, resulting of thermal fatigue, and to be able to evaluate their dimensions. Ultrasonic non destructive testing has demonstrated its efficiency for detection and characterization of such defects and industrial probes offer satisfactory results in various applications. However, the complex geometry of some components (nozzle,..) severely limits the inspection performances. Indeed, the use of conventional probes is restricted to regular surfaces. Flexible transducer arrays technology provides an attractive solution in ultrasonic NDT for the inspection of complex geometry components. Its ability to conform to the wavy surface of the component and to ensure a good coupling when the limits of conventional probes are reached, makes it suitable for the characterization of a defect detected in a nozzle. To develop and implement a flexible probe inspection of a nozzle weld, several skills are needed: especially ultrasonic, robotic, simulation skills. Moreover, an innovative tool dedicated to delay laws and probe position calculation is used to optimize the performance of such phased array probes. In the framework of a partnership, EDF, the CEA LIST and AREVA have developed a robotic inspection tool able to be operate on nuclear site, in order to characterize defects located in the inner radius of a nozzle with a flexible transducer array. The article describes the use of the new tools developed for the nozzle case. It also presents acquisition results and the contribution of this technology of potential defect characterization. These results are compared to classical phased-array methods.

  3. A remote telepresence robotic system for inspection and maintenance of a nuclear power plant

    International Nuclear Information System (INIS)

    Crane, C.D. III; Tulenko, J.S.

    1993-01-01

    Progress in reported in the areas of environmental hardening; database/world modeling; man-machine interface; development of the Advanced Liquid Metal Reactor (ALMR) maintenance inspection robot design; and Articulated Transporter/Manipulator System (ATMS) development

  4. Soft computing in advanced robotics

    CERN Document Server

    Kobayashi, Ichiro; Kim, Euntai

    2014-01-01

    Intelligent system and robotics are inevitably bound up; intelligent robots makes embodiment of system integration by using the intelligent systems. We can figure out that intelligent systems are to cell units, while intelligent robots are to body components. The two technologies have been synchronized in progress. Making leverage of the robotics and intelligent systems, applications cover boundlessly the range from our daily life to space station; manufacturing, healthcare, environment, energy, education, personal assistance, logistics. This book aims at presenting the research results in relevance with intelligent robotics technology. We propose to researchers and practitioners some methods to advance the intelligent systems and apply them to advanced robotics technology. This book consists of 10 contributions that feature mobile robots, robot emotion, electric power steering, multi-agent, fuzzy visual navigation, adaptive network-based fuzzy inference system, swarm EKF localization and inspection robot. Th...

  5. Basic maneuvers for an inspection robot for small diameter gas distribution mains

    NARCIS (Netherlands)

    Dertien, Edwin Christian; Stramigioli, Stefano

    2011-01-01

    This video shows the design of a mechanical structure of a miniature pipe inspection robot (MPR) capable of moving trough very small pipes (up to 41 mm inner diameter) as well as a wide range of diameters (63 to 125 mm outer diameter). The requirement to negotiate bends, T-joints and steep

  6. Decentralized real time control system of inspection robot programmed in APL

    International Nuclear Information System (INIS)

    Dupeyrat, Benoit; Liabot, M.J.; Vertut, Jean

    1979-01-01

    The running of the SUPER PHENIX vessel inspection robot meets with special practical necessities: the distance between the robot and the computer responsible for its management is important since the piloting station is outside the safety enclosure. For this reason the control and alarm functions have been separated from those of strategy and readjustment. The system described here is thus made up of: a mini-computer to manage the piloting station and a microprocessor as close as possible to the machine for control and safety duties. This arrangement has the advantage of limiting the input/output volume of the mini-computer which can thus be programmed in APL, a language particularly efficient and well suited to the problem [fr

  7. PWR vessel inspection performance improvements

    International Nuclear Information System (INIS)

    Blair Fairbrother, D.; Bodson, Francis

    1998-01-01

    A compact robot for ultrasonic inspection of reactor vessels has been developed that reduces setup logistics and schedule time for mandatory code inspections. Rather than installing a large structure to access the entire weld inspection area from its flange attachment, the compact robot examines welds in overlapping patches from a suction cup anchor to the shell wall. The compact robot size allows two robots to be operated in the vessel simultaneously. This significantly reduces the time required to complete the inspection. Experience to date indicates that time for vessel examinations can be reduced to fewer than four days. (author)

  8. Development and application of underwater robot vehicle for close inspection of spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Yun, J. S.; Park, B. S.; Song, T. G.; Kim, S. H.; Cho, M. W.; Ahn, S. H.; Lee, J. Y.; Oh, S. C.; Oh, W. J.; Shin, K. W.; Woo, D. H.; Kim, H. G.; Park, J. S

    1999-12-01

    The research and development efforts of the underwater robotic vehicle for inspection of spent fuels are focused on the development of an robotic vehicle which inspects spent fuels in the storage pool through remotely controlled actuation. For this purpose, a self balanced vehicle actuated by propellers is designed and fabricated, which consists of a radiation resistance camera, two illuminators, a pressure transducer and a manipulator. the algorithm for autonomous navigation is developed and its performance is tested at the swimming pool. The results of the underwater vehicle shows that the vehicle can easily navigate into the arbitrary directions while maintaining its balanced position. The camera provides a clear view of working environment by using the macro and zoom functions. The camera tilt device provides a wide field of view which is enough for monitoring the operation of manipulator. Also, the manipulator can pick up the dropped objects up to 4 kgf of weight. (author)

  9. A fast position estimation method for a control rod guide tube inspection robot with a single camera

    International Nuclear Information System (INIS)

    Lee, Jae C.; Seop, Jun H.; Choi, Yu R.; Kim, Jae H.

    2004-01-01

    One of the problems in the inspection of control rod guide tubes using a mobile robot is accurate estimation of the robot's position. The problem is usually explained by the question 'Where am I?'. We can solve this question by a method called dead reckoning using odometers. But it has some inherent drawbacks such that the position error grows without bound unless an independent reference is used periodically to reduce the errors. In this paper, we presented one method to overcome this drawback by using a vision sensor. Our method is based on the classical Lucas Kanade algorithm for on image tracking. In this algorithm, an optical flow must be calculated at every image frame, thus it has intensive computing load. In order to handle large motions, it is preferable to use a large integration window. But a small integration window is more preferable to keep the details contained in the images. We used the robot's movement information obtained from the dead reckoning as an input parameter for the feature tracking algorithm in order to restrict the position of an integration window. By means of this method, we could reduce the size of an integration window without any loss of its ability to handle large motions and could avoid the trade off in the accuracy. And we could estimate the position of our robot relatively fast without on intensive computing time and the inherent drawbacks mentioned above. We studied this algorithm for applying it to the control rod guide tubes inspection robot and tried an inspection without on operator's intervention

  10. Incore inspection and repairing device

    International Nuclear Information System (INIS)

    Ito, Arata; Kimura, Motohiko

    1998-01-01

    The present invention provides a device for inspecting and repairing the inside of a reactor container even if it is narrow, with no trouble by using a swimming-type operation robot. Namely, the device of the present invention conducts inspection and repairing operations for the inside of the reactor by introducing a swimming type operation robot into the reactor container. The swimming-type operation robot comprises a robot main body having a propeller, a balancer operably disposed to the robot main body and an inspection and repairing unit attached detachable to the balancer. In the device of the present invention, since the inspection and preparing unit is attached detachably to the swimming robot, a robot which transports tools is formed as a standard product. As a result, the production cost can be reduced, and the reliability of products can be improved. Appropriate operations can be conducted by using best tools. (I.S.)

  11. Development of a surveillance robot for dimensional and visual inspection of fuel and reflector elements from the Fort St. Vrain HTGR

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Marsh, N.I.; Miller, C.M.; Saurwein, J.J.; Smith, T.L.

    1979-11-01

    A robotic device has been developed for dimensional and visual inspection of irradiated HTGR core components. The robot consists of a rotary table and a two-finger probe, driven by stepping motors, and four remotely controlled television cameras. Automated operation is accomplished via minicomputer control. A total of 51 irradiated fuel and reflector elements were inspected at a fraction of the time and cost required for conventional methods

  12. Evaluation of effectiveness of monorail type inspection robot at nuclear power plant

    International Nuclear Information System (INIS)

    Nakagawa, Katsuei; Kimura, Motohiko; Ito, Takao; Sasaki, Keiichi.

    1991-01-01

    An inspection robot, with a TV camera, infrared camera and microphone as sensors, was tentatively installed in the main steam tunnel room of Kashiwazaki-Kariwa N.P.S. no.1 to evaluate its effectiveness in actual plant use. After a one and a half-year run, it appeared to have the ability to perform daily patrol tasks inplace of human beings. (author)

  13. Eddy Currents Inspection of CANDU Steam Generator Tubes using Zetec's ZR-1 Robot. Experience in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hower [Zetec Inc. (Romania); Luiza Vladu; Adrian Nichisov; Mihai Cretu [COMPCONTROL ING. (Romania)

    2006-07-01

    Full text of publication follows: The commercial operation of Unit 1 of Cernavoda NPP started on 2 December, 1996. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium. The nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant has four CANDU - design steam generators that have been in service since 1996. The paper introduces the new ZR-1 Robot System for Inspection and Maintenance/Repair from Zetec that combines the newest state-of-the-art robotics technology with Zetec experience - based innovation to address the needs for inspection and repair of steam generators. The multipurpose ZR-1 can be easily installed to perform the necessary eddy current inspection and remain installed ready for follow-up maintenance and repair. It has superior technical performances and a modular three axis motion of arm that enables 100% coverage of tube sheet. Automated, repeatable, and precise positioning of tool heads ensures accurate delivery and reducing costly rework and reduces inspection time by 30%. The modular, light weight, and portable design permits easy assembly and disassembly through small openings and it reduces setup/tear down time by 30%. The first deployment of the new ZR-1 Robot was made in September 2004 at the Cernavoda NPP inspection outage. The unit's reactor type is PHWR-CANDU 6 (electrical capacity 706 MWe), using natural uranium; the nuclear fuel is manufactured in Romania. The Cernavoda nuclear power plant Unit 1 has four CANDU - design steam generators that have been in service since 1996. The paper presents also the Zetec's field experience and customer experience with this system. It describes the equipment setup in Cernavoda's steam generators mock-up, functional tests and calibration. Finally, provides details on the execution of the inspection, options for standardizing the inspection techniques and conclusions. (authors)

  14. Trajectory-tracking control of underwater inspection robot for nuclear reactor internals using Time Delay Control

    International Nuclear Information System (INIS)

    Park, Joon-Young; Cho, Byung-Hak; Lee, Jae-Kyung

    2009-01-01

    This paper addresses the trajectory control problem of an underwater inspection robot for nuclear reactor internals. From the viewpoint of control engineering, the trajectory control of the underwater robot is a difficult task due to its nonlinear dynamics, which includes various hydraulic forces such as buoyancy and hydrodynamic damping, the difference between the centres of gravity and buoyancy, and disturbances from a tether cable. To solve such problems, we applied Time Delay Control to the underwater robot. This control law has a very simple structure not requiring nonlinear plant dynamics, and was proven to be highly robust against nonlinearities, uncertainties and disturbances. We confirmed its effectiveness through experiments.

  15. Robotics for nuclear power plants

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Kimura, Motohiko; Abe, Akira

    1993-01-01

    A continuing need exists for automatic or remote-controlled machines or robots which can perform inspection and maintenance tasks in nuclear power plants. Toshiba has developed several types of monofunctional and multi- functional robots for such purposes over the past 20 years, some of which have already been used in actual plants. This paper describes new multifunctional robots for inspection and maintenance. An inspection robot has been applied in an actual plant for two years for performance testing. Maintenance robots for grinding tasks have also been developed, which can be easily teleoperated by the operator using automatic control. These new robots are expected to be applied to actual inspection and maintenance work in nuclear power plants. (author)

  16. Design of a micro-robot with an electro-pneumatic servo-actuator for the intra-pipe inspection

    International Nuclear Information System (INIS)

    Anthierens, C.

    1999-12-01

    Micro Electro Mechanical Systems (MEMS) are integrated in many current products and are not only the concern of military defence or medicine. Nowadays micro actuators are diversified by using different kind of energy, and creating different motions. Several applications require small systems to inspect confined and hostile places. Vapour generators in nuclear plants are composed with 3000 to 5000 vertical pipes of 17 mm diameter. These pipes endure high mechanical constraints and have to be inspected to detect eventual cracks. Our study is based on the design, modelling and implementation of a micro-robot enable to move up and carry sensors in these pipes. It moves as an inchworm and then is composed by 2 blocking modules that brace the robot on the pipe sides, and one stretching module that creates a step. This actuator is pneumatic and composed by metal bellows. By this original design, the micro-robot have a good power to volume ratio and thus it can carry a load higher than 1 kg. Its good positioning accuracy is proved with a 90 mm course where the error of positioning is less than 60μm. A PID control law is used to control the robot but state feed back control law is planed. (author)

  17. The conceptual design of the sensing system for patrolling and inspecting a nuclear facility by the intelligent robot

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi

    1993-11-01

    Supposing that an intelligent robot, instead of a human worker, patrols and inspects nuclear facilities, it is indispensable for such robot to be capable of moving with avoiding obstacles and recognizing various abnormal conditions, carrying out some ordered works based on information from sensors mounted on the robot. The present robots being practically used in nuclear facilities, however, have the limited capability such as identifying a few specific abnormal conditions using data detected by specific sensors on them. Hence, a conceptual design of a sensor-fusion-based system, which is named 'sensing system', has been performed to collect various kinds of information required for patrol and inspection. This sensing system combines a visual sensor, which consists of a monocular camera and a range finder by the active stereopsis method, an olfactory, acoustic and dose sensors. This report describes the hardware configuration and the software function for processing sensed data. An idea of sensor fusion and the preliminary consideration in respect of applying the neural network to image data processing are also described. (author)

  18. CMS cavern inspection robot

    CERN Document Server

    Ibrahim, Ibrahim

    2017-01-01

    Robots which are immune to the CMS cavern environment, wirelessly controlled: -One actuated by smart materials (Ionic Polymer-Metal Composites and Macro Fiber Composites) -One regular brushed DC rover -One servo-driven rover -Stair-climbing robot

  19. Tracking the position of the underwater robot for nuclear reactor inspection

    International Nuclear Information System (INIS)

    Jeo, J. W.; Kim, C. H.; Seo, Y. C.; Choi, Y. S.; Kim, S. H.

    2003-01-01

    The tracking procedure of the underwater mobile robot moving and submerging ahead to nuclear reactor vessel for visual inspection, which is required to find the foreign objects such as loose parts, is described. The yellowish underwater robot body tends to present a big contrast to boron solute cold water of nuclear reactor vessel, tinged with indigo by the Cerenkov effect. In this paper, we have found and tracked the positions of underwater mobile robot using the two color information, yellow and indigo. From the horizontal and vertical profiles analysis of the color image, the blue, green, and the gray component have the inferior signal-to-noise characteristics compared to the red component. The center coordinates extraction procedures areas follows. The first step is to segment the underwater robot body to cold water with indigo background. From the RGB color components of the entire monitoring image taken with the color CCD camera, we have selected the red color component. In the selected red image, we extracted the positions of the underwater mobile robot using the following process sequences; binarization, labelling, and centroid extraction techniques. In the experiment carried out at the Youngkwang unit 5 nuclear reactor vessel, we have tracked the center positions of the underwater robot submerged near the cold leg and the hot leg way, which is fathomed to 10m deep in depth. When the position of the robot vehicle fluctuates between the previous and the current image frame due to the flickering noise and light source, installed temporally in the bottom of the reactor vessel, we adaptively adjusted the ROI window. Adding the ROI windows of the previous frame to the current frame, and then setting up the ROI window of the next image frame, we can robustly track the positions of the underwater robot and control the target position's divergence. From these facts, we can conclude that using the red component from color camera is more efficient tracking method

  20. Robotized system for in-pipe inspection using pressure tolerant electronics technique

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ramon R; Hsu, Liu; Peixoto, Alessandro J; Gomes, Luiz P.C.S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica. Grupo de Simulacao e Controle em Automacao e Robotica (GSCAR)]. E-mail: ramon, liu, jacoud, lpgomes@coep.ufrj.br; Reis, Ney R.S. dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Lab. de Robotica]. E-mail: salvireis@cenpes.petrobras.com.br

    2003-07-01

    This paper reports the development and experimental evaluation of a robotized system devised to perform two kinds of measurements inside a pipeline: the thickness of the internal wall painting layer and the internal radius. The thickness measurement allows the inspection of the painting layer quality and by measuring several radii it is possible to estimate the pipeline transversal section shape. The proposed scheme is shown to yield very satisfactory results on an actual 14'' (inches) pipeline in a real site. (author)

  1. Robotized system for in-pipe inspection using pressure tolerant electronics technique

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ramon R.; Hsu, Liu; Peixoto, Alessandro J.; Gomes, Luiz P.C.S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica. Grupo de Simulacao e Controle em Automacao e Robotica (GSCAR)]. E-mail: ramon, liu, jacoud, lpgomes@coep.ufrj.br; Reis, Ney R.S. dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Lab. de Robotica]. E-mail: salvireis@cenpes.petrobras.com.br

    2003-07-01

    This paper reports the development and experimental evaluation of a robotized system devised to perform two kinds of measurements inside a pipeline: the thickness of the internal wall painting layer and the internal radius. The thickness measurement allows the inspection of the painting layer quality and by measuring several radii it is possible to estimate the pipeline transversal section shape. The proposed scheme is shown to yield very satisfactory results on an actual 14'' (inches) pipeline in a real site. (author)

  2. Outer navigation of a inspection robot by means of feedback of global guidance; Navegacion exterior de un robot de inspeccion mediante retroalimentacion de la orientacion global

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los R, A.; Bucio V, F. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico); Garduno G, M. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Metepec, Estado de Mexico 52140 (Mexico)]. e-mail: asegovia@nuclear.inin.mx

    2008-07-01

    The objective of this article is the presentation of an inspection system to mobile robot navigating in exteriors by means of the employment of a feedback of instantaneous guidance with respect to a global reference throughout moment of the displacement. The robot evolves obeying the commands coming from the one tele operator which indicates the diverse addresses by means of the operation console that the robot should take using for it information provided by an electronic compass. The mobile robot employee in the experimentations is a Pioneer 3-AT, which counts with a sensor series required to obtain an operation of more autonomy. The electronic compass offers geographical information coded in a format SPI, reason for which a micro controller ({mu}C) economic of general use has been an employee for to transfer the information to the format RS-232, originally used by the Pioneer 3-AT. The orientation information received by the robot by means of their serial port RS-232 secondary it is forwarded to the computer hostess in the one which a program Java is used to generate the commands for the robot navigation control and to deploy one graphic interface user utilized to receive the order of the operator. This research is part of an ambitious project in which it is tried to count on an inspection system and monitoring of sites in which risks of high radiation levels could exist, thus a navigation systems in exteriors could be very useful. The complete system will count besides the own sensors of the robot, with certain numbers of agree sensors to the variables that are desired to monitor. The resulting values of such measurements will be visualized in real time in the graphic interface user, thanks to a bidirectional wireless communication among the station of operation and the mobile robot. (Author)

  3. Inspection, maintenance, and repair of large pumps and piping systems using advanced robotic tools

    International Nuclear Information System (INIS)

    Lewis, R.K.; Radigan, T.M.

    1998-01-01

    Operating and maintaining large pumps and piping systems can be an expensive proposition. Proper inspections and monitoring can reduce costs. This was difficult in the past, since detailed pump inspections could only be performed by disassembly and many portions of piping systems are buried or covered with insulation. Once these components were disassembled, a majority of the cost was already incurred. At that point, expensive part replacement usually took place whether it was needed or not. With the completion of the Pipe Walkertrademark/LIP System and the planned development of the Submersible Walkertrademark, this situation is due to change. The specifications for these inspection and maintenance robots will ensure that. Their ability to traverse both horizontal and vertical, forward and backward, make them unique tools. They will open the door for some innovative approaches to inspection and maintenance of large pumps and piping systems

  4. Robotics for nuclear facilities

    International Nuclear Information System (INIS)

    Abe, Akira; Nakayama, Ryoichi; Kubo, Katsumi

    1988-01-01

    It is highly desirable that automatic or remotely controlled machines perform inspection and maintenance tasks in nuclear facilities. Toshiba has been working to develop multi-functional robots, with one typical example being a master-slave manipulator for use in reprocessing facilities. At the same time, the company is also working on the development of multi-purpose intelligent robots. One such device, an automatic inspection robot, to be deployed along a monorail, performs inspection by means of image processing technology, while and advanced intelligent maintenance robot is equipped with a special wheel-locomotion mechanism and manipulator and is designed to perform maintenance tasks. (author)

  5. Robotics and remote systems applications

    International Nuclear Information System (INIS)

    Rabold, D.E.

    1996-01-01

    This article is a review of numerous remote inspection techniques in use at the Savannah River (and other) facilities. These include: (1) reactor tank inspection robot, (2) californium waste removal robot, (3) fuel rod lubrication robot, (4) cesium source manipulation robot, (5) tank 13 survey and decontamination robots, (6) hot gang valve corridor decontamination and junction box removal robots, (7) lead removal from deionizer vessels robot, (8) HB line cleanup robot, (9) remote operation of a front end loader at WIPP, (10) remote overhead video extendible robot, (11) semi-intelligent mobile observing navigator, (12) remote camera systems in the SRS canyons, (13) cameras and borescope for the DWPF, (14) Hanford waste tank camera system, (15) in-tank precipitation camera system, (16) F-area retention basin pipe crawler, (17) waste tank wall crawler and annulus camera, (18) duct inspection, and (19) deionizer resin sampling

  6. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.

    Science.gov (United States)

    Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela

    2016-02-24

    The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.

  7. Autonomy and manual operation in a small robotic system for under-vehicle inspections at security checkpoints

    Science.gov (United States)

    Smuda, William; Muench, Paul L.; Gerhart, Grant R.; Moore, Kevin L.

    2002-07-01

    Unmanned ground vehicle (UGV) technology can be used in a number of ways to assist in counter-terrorism activities. In addition to the conventional uses of tele-operated robots for unexploded ordinance handling and disposal, water cannons and other crowd control devices, robots can also be employed for a host of terrorism deterrence and detection applications. In previous research USU developed a completely autonomous prototype robot for performing under- vehicle inspections in parking areas (ODIS). Testing of this prototype and discussions with the user community indicated that neither the technology nor the users are ready for complete autonomy. In this paper we present a robotic system based on ODIS that balances the users' desire/need for tele- operation with a limited level of autonomy that enhances the performance of the robot. The system can be used by both civilian law enforcement and military police to replace the traditional mirror on a stick system of looking under cars for bombs and contraband.

  8. Development of an automatic reactor inspection system

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Seop; Lee, Jae Cheol; Choi, Yoo Raek; Moon, Soon Seung

    2002-02-01

    Using recent technologies on a mobile robot computer science, we developed an automatic inspection system for weld lines of the reactor vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new automatic inspection system using a small mobile robot crawling on the vertical wall of the reactor vessel. According to our conceptual design, we developed the reactor inspection system including an underwater inspection robot, a laser position control subsystem, an ultrasonic data acquisition/analysis subsystem and a main control subsystem. We successfully carried out underwater experiments on the reactor vessel mockup, and real reactor ready for Ulchine nuclear power plant unit 6 at Dusan Heavy Industry in Korea. After this project, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 4 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants

  9. Robot vision

    International Nuclear Information System (INIS)

    Hall, E.L.

    1984-01-01

    Almost all industrial robots use internal sensors such as shaft encoders which measure rotary position, or tachometers which measure velocity, to control their motions. Most controllers also provide interface capabilities so that signals from conveyors, machine tools, and the robot itself may be used to accomplish a task. However, advanced external sensors, such as visual sensors, can provide a much greater degree of adaptability for robot control as well as add automatic inspection capabilities to the industrial robot. Visual and other sensors are now being used in fundamental operations such as material processing with immediate inspection, material handling with adaption, arc welding, and complex assembly tasks. A new industry of robot vision has emerged. The application of these systems is an area of great potential

  10. Full autonomous microline trace robot

    Science.gov (United States)

    Yi, Deer; Lu, Si; Yan, Yingbai; Jin, Guofan

    2000-10-01

    Optoelectric inspection may find applications in robotic system. In micro robotic system, smaller optoelectric inspection system is preferred. However, as miniaturizing the size of the robot, the number of the optoelectric detector becomes lack. And lack of the information makes the micro robot difficult to acquire its status. In our lab, a micro line trace robot has been designed, which autonomous acts based on its optoelectric detection. It has been programmed to follow a black line printed on the white colored ground. Besides the optoelectric inspection, logical algorithm in the microprocessor is also important. In this paper, we propose a simply logical algorithm to realize robot's intelligence. The robot's intelligence is based on a AT89C2051 microcontroller which controls its movement. The technical details of the micro robot are as follow: dimension: 30mm*25mm*35*mm; velocity: 60mm/s.

  11. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  12. A study on an autonomous pipeline maintenance robot, 8

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Niitsu, Shunichi; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the path planning and sensing planning expert system with learning functions for the pipeline inspection and maintenance robot, Mark IV. The robot can carry out inspection tasks to autonomously detect malfunctions in a plant pipeline system. Furthermore, the robot becomes more intelligent by adding the following functions: (1) the robot, Mark IV, is capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces; (2) in path planning, the robot has a learning function using information generated in the past such as a moving path, task level and control commands of the robot; (3) in inspecting a pipeline system with plant equipment such as valves, franges, T- and L-joints, the robot is capable of inspecting continuous surfaces in pipeline. Thus, together with the improved path planning expert system (PPES) and the sensing planning expert system (SPES), the Mark IV robot becomes intelligent enough to automatically carry out given inspection tasks. (author)

  13. ARIES: A mobile robot inspector

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is a mobile robot inspection system being developed for the Department of Energy (DOE) to survey and inspect drums containing mixed and low-level radioactive waste stored in warehouses at DOE facilities. The drums are typically stacked four high and arranged in rows with three-foot aisle widths. The robot will navigate through the aisles and perform an autonomous inspection operation, typically performed by a human operator. It will make real-time decisions about the condition of the drums, maintain a database of pertinent information about each drum, and generate reports

  14. Flexible mobile robot system for smart optical pipe inspection

    Science.gov (United States)

    Kampfer, Wolfram; Bartzke, Ralf; Ziehl, Wolfgang

    1998-03-01

    Damages of pipes can be inspected and graded by TV technology available on the market. Remotely controlled vehicles carry a TV-camera through pipes. Thus, depending on the experience and the capability of the operator, diagnosis failures can not be avoided. The classification of damages requires the knowledge of the exact geometrical dimensions of the damages such as width and depth of cracks, fractures and defect connections. Within the framework of a joint R&D project a sensor based pipe inspection system named RODIAS has been developed with two partners from industry and research institute. It consists of a remotely controlled mobile robot which carries intelligent sensors for on-line sewerage inspection purpose. The sensor is based on a 3D-optical sensor and a laser distance sensor. The laser distance sensor is integrated in the optical system of the camera and can measure the distance between camera and object. The angle of view can be determined from the position of the pan and tilt unit. With coordinate transformations it is possible to calculate the spatial coordinates for every point of the video image. So the geometry of an object can be described exactly. The company Optimess has developed TriScan32, a special software for pipe condition classification. The user can start complex measurements of profiles, pipe displacements or crack widths simply by pressing a push-button. The measuring results are stored together with other data like verbal damage descriptions and digitized images in a data base.

  15. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    Science.gov (United States)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits

  16. Signal sensing of the internal ducts inspection robot: GIRINO (Get Inside Robot to Impel Normal Operation); Sensoriamento de sinais do robo de inspecao interna de dutos: GIRINO (Gabarito Interno Robotizado de Incidencia Normal ao Oleoduto)

    Energy Technology Data Exchange (ETDEWEB)

    Panta, Pedro G.; Dutra, Max S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Santos, Auderi V.; Ferreira, Rodrigo C. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil). Centro de Estudos em Telecomunicacoes; Reis, Ney S. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2004-07-01

    One of the major challenges in the operation field of subway oil pipelines is the presence of blockades caused by paraffin and hydrates accumulation. The maintenance and inspection inside pipelines practiced until now imply complicated risky processes for people and equipment involved in daily operational activities. The Get Inside Robot to Impel Normal Operation (G.I.R.I.N.O.) is a robot developed by the Robotic Laboratory of PETROBRAS Research Center, that aims at looking for less risky ways in internal inspection process of pipelines which displacement movements are generated by hydraulic energy. In order to get the inspection and displacement functions, the G.I.R.I.N.O. needs a constant internal movement monitoring that is made by its several parts; the interaction with the environment in diverse processes. This paper has the objective of proposing a monitoring system for the 14 inch duct G.I.R.I.N.O. For this end, a study of available components for receiving , signal processing and visualization used in the industry that fulfill the basic requirements of the robot's performance was done. The choice of the proposed devices considers these main features: size, power consumption and marinization capability. (author)

  17. Accuracy Analysis of a Robotic Radionuclide Inspection and Mapping System for Surface Contamination

    International Nuclear Information System (INIS)

    Mauer, Georg F.; Kawa, Chris

    2008-01-01

    The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a wall or floor surface, the robot can map the radiation levels over a surface area of up to 3 m by 3 m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. The accuracy and repeatability of the robotically conducted contamination surveys is directly influenced by the sensors and other hardware employed. This paper presents an in-depth analysis of various non-contact sensors for gap measurement, and the means to compensate for predicted systematic errors that arise during the area survey scans. The range sensor should maintain a constant gap between the radiation counter and the surface being inspected. The inspection robot scans the wall surface horizontally, moving down at predefined vertical intervals after each scan in a meandering pattern. A number of non-contact range sensors can be employed for the measurement of the gap between the robot end effector and the wall. The nominal gap width was specified as 10 mm, with variations during a single scan not to exceed ± 2 mm. Unfinished masonry or concrete walls typically exhibit irregularities, such as holes, gaps, or indentations in mortar joints. These irregularities can be sufficiently large to indicate a change of the wall contour. The responses of different sensor types to the wall irregularities vary, depending on their underlying principles of operation. We explored

  18. Inspection system performance test procedure

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-01-01

    This procedure establishes requirements to administer a performance demonstration test. The test is to demonstrate that the double-shell tank inspection system (DSTIS) supplied by the contractor performs in accordance with the WHC-S-4108, Double-Shell Tank Ultrasonic Inspection Performance Specification, Rev. 2-A, January, 1995. The inspection system is intended to provide ultrasonic (UT) and visual data to determine integrity of the Westinghouse Hanford Company (WHC) site underground waste tanks. The robotic inspection system consists of the following major sub-systems (modules) and components: Mobile control center; Deployment module; Cable management assembly; Robot mechanism; Ultrasonic testing system; Visual testing system; Pneumatic system; Electrical system; and Control system

  19. Clinical relevance of studies on the accuracy of visual inspection for detecting caries lesions

    DEFF Research Database (Denmark)

    Gimenez, Thais; Piovesan, Chaiana; Braga, Mariana M

    2015-01-01

    Although visual inspection is the most commonly used method for caries detection, and consequently the most investigated, studies have not been concerned about the clinical relevance of this procedure. Therefore, we conducted a systematic review in order to perform a critical evaluation considering...... the clinical relevance and methodological quality of studies on the accuracy of visual inspection for assessing caries lesions. Two independent reviewers searched several databases through July 2013 to identify papers/articles published in English. Other sources were checked to identify unpublished literature...... to clinical relevance and the methodological quality of the studies were evaluated. 96 of the 5,578 articles initially identified met the inclusion criteria. In general, most studies failed in considering some clinically relevant aspects: only 1 included study validated activity status of lesions, no study...

  20. Mechanical Implementation and Simulation of MoboLab, A Mobile Robot for Inspection of Power Transmission Lines

    Directory of Open Access Journals (Sweden)

    Mahmud Saadat Foumani

    2008-11-01

    Full Text Available This paper describes the first phase in development of a mobile robot that can navigate aerial power transmission lines completely unattended by human operator. Its ultimate purpose is to automate inspection of power transmission lines and their equipments. The authors have developed a scaled functional model of such a mobile robot with a preliminary simple computer based on-off controller. MoboLab (Mobile Laboratory navigates a power transmission line between two strain towers. It can maneuver over obstructions created by line equipments such as insulators, warning spheres, dampers, and spacer dampers. It can also easily negotiate the towers by its three flexible arms. MoboLab has an internal main screw which enables the robot to move itself or its two front and rear arms independently through changing gripped points. When the front arm gets close to an obstacle, the arm detaches from the line and goes down, the robot moves forward, the arm passes the obstacle and grippes the line again. In a same way another arms pass the obstacle.

  1. A trend of robotics in nuclear facilities

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi

    1993-01-01

    In order to operate stably nuclear power stations, the periodic inspection determined by the law has been carried out once every year in Japan. For reducing the radiation exposure of workers and improving work efficiency and work quality, the automation and the use of robots have been promoted. Also in fuel reprocessing plants and the facilities for storing radioactive wastes, the remotely operated devices for handling uranium and plutonium are indispensable. The course of the development of the robots for nuclear power plants classified by ages is shown. The research and development have been advanced from special automatic machines of first generation since 1965, through versatile robots of second generation since 1980 to intellectual robots of third generation since 1985. Automatic fuel exchanger, control rod moving mechanism and the ultrasonic flaw detector for pipings are those of first generation. As those of second generation, various movable inspection robots and the manipulators for them were developed. The ultimate working robot completed in 1990 is that of third generation. As the trend of the practical use, monorail type inspection robots and underwater inspection robots and various manipulators are reported. (K.I.)

  2. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Xu, Lifei; Chen, Weidong

    2016-01-01

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  3. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-05-15

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  4. Automated Inspection of Aircraft

    Science.gov (United States)

    1998-04-01

    This report summarizes the development of a robotic system designed to assist aircraft inspectors by remotely deploying non-destructive inspection (NDI) sensors and acquiring, processing, and storing inspection data. Carnegie Mellon University studie...

  5. Development and Evaluation of Compact Robot Imitating a Hermit Crab for Inspecting the Outer Surface of Pipes

    Directory of Open Access Journals (Sweden)

    Naoto Imajo

    2015-01-01

    Full Text Available Terrestrial hermit crabs which are a type of hermit crabs live on land, whereas typical hermit crabs inhabit the sea. They have an ability of climbing a tree vertically. Their claws allow them to hang on the tree. In this study, an outer-pipe inspection robot was developed. Its locomotion mechanism was developed in imitation of the terrestrial hermit crab’s claws. It is equipped with two rimless wheels. Each of the spokes is tipped with a neodymium magnet, which allows the robot to remain attached to even a vertical steel pipe. Moreover, the robot has a mechanism for adjusting the camber angle of the right and left wheels, allowing it to tightly grip pipes with different diameters. Experiments were conducted to check the performance of the robot using steel pipes with different diameters, placed horizontally, vertically, or obliquely. The robot attempted to move a certain distance along a pipe, and its success rate was measured. It was found that the robot could successfully travel along pipes with vertical orientations, although it sometimes fell from oblique or horizontal pipes. The most likely reason for this is identified and discussed. Certain results were obtained in laboratory. Further experiments in actual environment are required.

  6. Usage of industrial robots in nuclear power industry

    International Nuclear Information System (INIS)

    Matsuo, Yoshio; Hamada, Kenjiro

    1982-01-01

    Japan is now at the top level in the world in robot technology.Its application to nuclear power field is one of the most expected. However, their usage spreads over various types of nuclear power plants, their manufacture and operation, and other areas such as fuel reprocessing plants and reactor plant decommissioning. The robots as used for the operation of BWR nuclear power plants, already developed and under development, are described: features in the nuclear-power usage of robots, the robots used currently for automatic fuel exchange, the replacement of control rod drives and in-service inspection; the robots under development for travelling inspection device and the inspection of main steam-relief safety valves, future development of robots. By robot usage, necessary personnel, work period and radiation exposure can be greatly reduced, and safety and reliability are also raised. (Mori, K.)

  7. An Articulated Inspection Arm for fusion purposes

    Energy Technology Data Exchange (ETDEWEB)

    Villedieu, E., E-mail: eric.villedieu@cea.fr [CEA-IRFM, 13108 Saint Paul lez Durance (France); Bruno, V.; Pastor, P.; Gargiulo, L. [CEA-IRFM, 13108 Saint Paul lez Durance (France); Song, Y.T.; Cheng, Y.; Feng, H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Liu, C. [CEA-IRFM, 13108 Saint Paul lez Durance (France); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Shi, S.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2016-11-01

    Highlights: • Requirements for in vacuum tokamak inspection are presented. • Development of a prototype of the Articulated Inspection Arm is described. • The upgrade of the prototype to convert it into a fully operational device is detailed. • Future applications of inspection robots in the new fusion reactors is discussed. - Abstract: Fusion Tokamaks are complex machines which require special conditions for their operation, in particular, high vacuum inside the vessel and high temperature of the vessel walls. During plasma phases, the first wall components are highly stressed and a control is necessary in case of doubt about their condition. To be able to make safely such an inspection in a short period of time is a great advantage. The Articulated Inspection Arm (AIA) developed by the CEA provides the capability for fast inspections of the first wall overall surface keeping the vacuum and temperature conditions of the vessel. The robot prototype was validated in Tore Supra in 2008. In the frame of a joint laboratory, CEA/IRFM and ASIPP have decided to upgrade the existing AIA prototype to use it routinely in the EAST and WEST tokamaks. The robot has followed an important upgrade program in 2013 and 2014. The document presents the various upgrades made on the mechanics, the sensors, the electronics, the control station and the integration adaptation for the operation on EAST. From the AIA experience, thoughts for future inspection robots are given.

  8. An Articulated Inspection Arm for fusion purposes

    International Nuclear Information System (INIS)

    Villedieu, E.; Bruno, V.; Pastor, P.; Gargiulo, L.; Song, Y.T.; Cheng, Y.; Feng, H.; Liu, C.; Shi, S.S.

    2016-01-01

    Highlights: • Requirements for in vacuum tokamak inspection are presented. • Development of a prototype of the Articulated Inspection Arm is described. • The upgrade of the prototype to convert it into a fully operational device is detailed. • Future applications of inspection robots in the new fusion reactors is discussed. - Abstract: Fusion Tokamaks are complex machines which require special conditions for their operation, in particular, high vacuum inside the vessel and high temperature of the vessel walls. During plasma phases, the first wall components are highly stressed and a control is necessary in case of doubt about their condition. To be able to make safely such an inspection in a short period of time is a great advantage. The Articulated Inspection Arm (AIA) developed by the CEA provides the capability for fast inspections of the first wall overall surface keeping the vacuum and temperature conditions of the vessel. The robot prototype was validated in Tore Supra in 2008. In the frame of a joint laboratory, CEA/IRFM and ASIPP have decided to upgrade the existing AIA prototype to use it routinely in the EAST and WEST tokamaks. The robot has followed an important upgrade program in 2013 and 2014. The document presents the various upgrades made on the mechanics, the sensors, the electronics, the control station and the integration adaptation for the operation on EAST. From the AIA experience, thoughts for future inspection robots are given.

  9. Pyrotechnic robot - constructive design and command

    Directory of Open Access Journals (Sweden)

    Ionel A. Staretu

    2013-10-01

    Full Text Available Pyrotechnic robots are service robots used to reduce the time for intervention of pyrotechnic troops and to diminish the danger for the operators. Pyrotechnic robots are used to inspect dangerous areas or/and to remove and to distroy explosive or suspicious devices/objects. These robots can be used to make corridors through mined battle fields, for manipulation and neutralization of unexploded ammunition, for inspection of vehicles, trains, airplanes and buildings. For these robots, a good functional activity is determined with regard to work space dimensions,, robotic arm kinematics and gripper characteristics. The paper shows the structural, kinematic, static synthesis and analysis as well as the design and functional simulation of the robotic arm and the grippers attached on the pyrotechnic robot designed by the authors.

  10. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  11. Development of a running robot in super high speed tube. Aiming at realization of in-tube inspection for primary cooler and so forth of nuclear reactor

    International Nuclear Information System (INIS)

    Kato, Shigeo

    2000-01-01

    Authors have carried out a study on an in-tube running robot in living body on a base of laying stretching of bellows at a means of running by thinking application of in-tube inspection in living body such as large and small bowels. As a result, an in-tube running robot with about 20 mm in inner diameter capable of running in soft small bowel as well as in hard running tube was developed successfully. After an accident of the Tsuruga nuclear power plant, inspection of a large diameter tube with 76 mm in inner diameter was found to be much important, to begin development of an in-tube running robot for 50 mm class diameter tube. As a result, an in-tube running robot capable of enough holding a micro video camera with about 20 g in mass and showing 4.6 N in tension at more than ten times higher speed of 248 mm/s in no loading state, could be made in trial. Here was reported on a foothold realizable on an in-tube running robot for the 76 mm class large diameter tube to be investigated in future. (G.K.)

  12. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  13. Design of an Infrared Imaging System for Robotic Inspection of Gas Leaks in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Ramon Barber

    2015-03-01

    Full Text Available Gas detection can become a critical task in dangerous environments that involve hazardous or contaminant gases, and the use of imaging sensors provides an important tool for leakage location. This paper presents a new design for remote sensing of gas leaks based on infrared (IR imaging techniques. The inspection system uses an uncooled microbolometer detector, operating over a wide spectral bandwidth, that features both low size and low power consumption. This equipment is boarded on a robotic platform, so that wide objects or areas can be scanned. The detection principle is based on the use of active imaging techniques, where the use of external IR illumination enhances the detection limit and allows the proposed system to operate in most cases independently from environmental conditions, unlike passive commercial approaches. To illustrate this concept, a fully radiometric description of the detection problem has been developed; CO2 detection has been demonstrated; and simulations of typical gas detection scenarios have been performed, showing that typical industrial leaks of CH4 are well within the detection limits. The mobile platform where the gas sensing system is going to be implemented is a robot called TurtleBot. The control of the mobile base and of the inspection device is integrated in ROS architecture. The exploration system is based on the technique of Simultaneous Localization and Mapping (SLAM that makes it possible to locate the gas leak in the map.

  14. ACEC: remote inspection, remote intervention, autonomous vehicle

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Early in 1979, the accident at the TMI-2 nuclear power station focused attention on the lack of inspection and intervention means in containments where high radiation levels do not allow the entrance of humans. Recent years have seen a trend towards significant developments in the application of robotic technology to maintenance and inspection in nuclear facilities. This paper presents the general development concept and the technical specifications of a mobile robot [fr

  15. A Decentralized Interactive Architecture for Aerial and Ground Mobile Robots Cooperation

    OpenAIRE

    Harik, El Houssein Chouaib; Guérin, François; Guinand, Frédéric; Brethé, Jean-François; Pelvillain, Hervé

    2014-01-01

    International audience; —This paper presents a novel decentralized interactive architecture for aerial and ground mobile robots cooperation. The aerial mobile robot is used to provide a global coverage during an area inspection, while the ground mobile robot is used to provide a local coverage of ground features. We include a human-in-the-loop to provide waypoints for the ground mobile robot to progress safely in the inspected area. The aerial mobile robot follows continuously the ground mobi...

  16. Explorer-II: Wireless Self-Powered Visual and NDE Robotic Inspection System for Live Gas Distribution Mains

    Energy Technology Data Exchange (ETDEWEB)

    Carnegie Mellon University

    2008-09-30

    Carnegie Mellon University (CMU) under contract from Department of Energy/National Energy Technology Laboratory (DoE/NETL) and co-funding from the Northeast Gas Association (NGA), has completed the overall system design, field-trial and Magnetic Flux Leakage (MFL) sensor evaluation program for the next-generation Explorer-II (X-II) live gas main Non-destructive Evaluation (NDE) and visual inspection robot platform. The design is based on the Explorer-I prototype which was built and field-tested under a prior (also DoE- and NGA co-funded) program, and served as the validation that self-powered robots under wireless control could access and navigate live natural gas distribution mains. The X-II system design ({approx}8 ft. and 66 lbs.) was heavily based on the X-I design, yet was substantially expanded to allow the addition of NDE sensor systems (while retaining its visual inspection capability), making it a modular system, and expanding its ability to operate at pressures up to 750 psig (high-pressure and unpiggable steel-pipe distribution mains). A new electronics architecture and on-board software kernel were added to again improve system performance. A locating sonde system was integrated to allow for absolute position-referencing during inspection (coupled with external differential GPS) and emergency-locating. The power system was upgraded to utilize lithium-based battery-cells for an increase in mission-time. The resulting robot-train system with CAD renderings of the individual modules. The system architecture now relies on a dual set of end camera-modules to house the 32-bit processors (Single-Board Computer or SBC) as well as the imaging and wireless (off-board) and CAN-based (on-board) communication hardware and software systems (as well as the sonde-coil and -electronics). The drive-module (2 ea.) are still responsible for bracing (and centering) to drive in push/pull fashion the robot train into and through the pipes and obstacles. The steering modules

  17. Multi-robots to micro-surgery: Selected robotic applications at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, P.C. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1996-11-01

    The Intelligent Systems and Robotics Center (ISRC) at Sandia National Laboratories is a multi-program organization, pursuing research, development and applications in a wide range of field. Activities range from large-scale applications such as nuclear facility dismantlement for the US Department of Energy (DOE), to aircraft inspection and refurbishment, to automated script and program generation for robotic manufacturing and assembly, to miniature robotic devices and sensors for remote sensing and micro-surgery. This paper describes six activities in the large and small scale that are underway and either nearing technology transfer stage or seeking industrial partners to continue application development. The topics of the applications include multiple arm coordination for intuitively maneuvering large, ungainly work pieces; simulation, analysis and graphical training capability for CP-5 research reactor dismantlement; miniature robots with volumes of 16 cubic centimeters and less developed for inspection and sensor deployment; and biomedical sensors to enhance automated prosthetic device production and fill laparoscopic surgery information gap.

  18. On-rail solution for autonomous inspections in electrical substations

    Science.gov (United States)

    Silva, Bruno P. A.; Ferreira, Rafael A. M.; Gomes, Selson C.; Calado, Flavio A. R.; Andrade, Roberto M.; Porto, Matheus P.

    2018-05-01

    This work presents an alternative solution for autonomous inspections in electrical substations. The autonomous system is a robot that moves on rails, collects infrared and visible images of selected targets, also processes the data and predicts the components lifetime. The robot moves on rails to overcome difficulties found in not paved substations commonly encountered in Brazil. We take advantage of using rails to convey the data by them, minimizing the electromagnetic interference, and at the same time transmitting electrical energy to feed the autonomous system. As part of the quality control process, we compared thermographic inspections made by the robot with inspections made by a trained thermographer using a scientific camera Flir® SC660. The results have shown that the robot achieved satisfactory results, identifying components and measuring temperature accurately. The embodied routine considers the weather changes along the day, providing a standard result of the components thermal response, also gives the uncertainty of temperature measurement, contributing to the quality in the decision making process.

  19. A survey on the application of robot techniques to an atomic power plant

    International Nuclear Information System (INIS)

    Hasegawa, Tsutomu; Sato, Tomomasa; Hirai, Shigeoki; Suehiro, Takashi; Okada, Tokuji

    1982-01-01

    Tasks of workers in atomic power plants have been surveyed from the viewpoint of necessity and possibility of their robotization. The daily tasks are classified into the following: (1) plant operation; (2) periodical examination; (3) patrol and inspection; (4) in-service inspection; (5) maintenance and repaire; (6) examination and production of the fuel; (7) waste disposal; (8) decommission of the plant. The necessity and present status of the robotization in atomic power plants are investigated according to the following classification: (1) inspection robots; (2) patrol inspection/maintenance robots; (3) hot cell robots; (4) plant decommission robots. The following have been made clear through the survey: (1) Various kinds of tasks are necessary for an atomic power plant: (2) Because of most of the tasks taking place in intense radiation environments, it is necessary to introduce robots into atomic power plants: (3) In application of robots in atomic power plant systems, it is necessary to take account of various severe conditions concerning spatial restrictions, radioactive endurance and reliability. Lastly wide applicability of the techniques of knowledge robots, which operate interactively with men, has been confirmed as a result of the survey. (author)

  20. An underwater robot controls water tanks in nuclear power plants

    International Nuclear Information System (INIS)

    Lardiere, C.

    2015-01-01

    The enterprises Newton Research Labs and IHI Southwest Technologies have developed a robot equipped with sensors to inspect the inside walls (partially) and bottom of water tanks without being obliged to empty them. The robot called 'Inspector' is made up of 4 main components: a chassis with 4 independent steering wheels, a camera video system able to provide a 360 degree view, various non-destructive testing devices such as underwater laser scanners, automated ultra-sound or Foucault current probes and an operation system for both driving the robot and controlling the testing. The Inspector robot has been used to inspect the inside bottom of an operating condensate tank at the Palo Verde nuclear station. The robot was able to check all the welds joining the bottom plates and the welds between the walls and the bottom. The robot is also able to come back to the exact place where a defect was detected during a previous inspection. (A.C.)

  1. A remote inspection system for use inside reactor containment vessels

    International Nuclear Information System (INIS)

    Aoki, Toshihiko; Kashiwai, Jun-ichi; Yamamoto, Ikuo; Fukada, Koichi; Yamanaka, Yoshinobu.

    1985-01-01

    The harsh environment in the reactor-containment vesels of pressurized-water reactor nuclear-power plants precludes the possibility of direct circuit inspection; a remote-inspection system is essential. A robot for performing this task must not only be able to withstand the harsh conditions but must also be small and maneuverable enough to function effectively within complex and confined spaces. The article describes a monorail-type remote-inspection robot developed by Mitsubishi Electric to meet these needs, which is now under trial production and testing. (author)

  2. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  3. A study on autonomous maintenance robot, 7

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Hosokai, Hidemi; Shimasaka, Naoki; Kaneshige, Masanori; Iwasaki, Shinnosuke.

    1990-01-01

    This paper deals with the new mechanism of a new maintenance robot, Mark IV, following the previous reports on pipeline inspection and maintenance robots of Mark I, II, and III. The Mark IV has a mechanism capable of inspecting surfaces of storage tanks as well as pipeline outer surfaces, which is another capability of the maintenance robots, different from the previous ones. The main features of Mark IV are as follows, (i) The robot has a multijoint structure, so that it has better adaptability to the curvartures of pipelines and storage tanks. (ii) The joint of the robot has SMA actuators to make the robot lighter in weight. Some actuator shape characteristics are also examined for the robot structure and control. (iii) The robot has suckers at both ends so that the robot can climb up along the wall from the ground. (iv) A robot with the inch worm mechanisms has many functional motions, such that it can pass over flanges and T-joints, and transfer to adjacent pipelines with a wider range of pipe diameters. (v) A control method is given for the mobile motion control. Thus, the functional level of the maintenance robot has been greatly improved by the introduction of the Mark IV robot. (author)

  4. The development of robot system for pressurizer maintenance in NPPs

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Chang Hoi; Jung, Seung Ho; Seo, Yong Chil; Lee, Young Kwang; Go, Byung Yung; Lee, Kwang Won; Lee, Sang Ill; Yun, Jong Yeon; Lee, Hyung Soon; Park, Mig Non; Park, Chang Woo; Cheol, Kwon

    1999-12-01

    The pressurizer that controls the pressure variation of primary coolant system, consists of a vessel, electric heaters and a spray, is one of the safety related equipment in nuclear power plants. Therefore it is required to inspect and maintain it regularly. Because the inside of pressurizer os contaminated by radioactivity, when inspection and repairing it, the radiation exposure of workers is inevitable. In this research two robot system has been developed for inspection and maintenance of the pressurizer for the water filled case and the water sunken case. The one robot system for the water filled case consists of two links, movable gripper using wire string, and support frame for the attachment of robot. The other robot is equipped propeller in order to navigate on the water. It also equipped high performance water resistance camera to make inspection possible. The developed robots are designed under several constraints such as its weight and collision with pressurizer wall. To verify the collision free robot link length and accessibility to the any desired rod heater it is simulated by 3-dimensional graphic simulation software(RobCard). For evaluation stress of the support frame finite element analysis is performed by using the ANSYS code. (author)

  5. The Robots for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Choi, Chang Hwan; Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil; Shin, Ho Cheol; Lee, Sung Uk; Jung, Kyung Min; Jung, Seung Ho; Choi, Young So

    2005-01-01

    Nuclear energy becomes a major energy source worldwide even though the debating environmental and safety dispute. In order to cope with the issues related to the nuclear power plant, the uncertain human factors need to be minimized by automating the inspection and maintenance work done by human workers. The demands of robotic system in nuclear industry have been growing to ensure the safety of nuclear facilities, to detect early unusual condition of it through an inspection, to protect the human workers from irradiation, and to maintain it efficiently. NRL (Nuclear Robotics Laboratory) in KAERI has been developing robotic systems to inspect and maintain nuclear power plants in stead of human workers for over thirteen years. In order to carry out useful tasks, a nuclear robot generally requires the followings. First, the robot should be protected against radiation. Second, a mobile system is required to access to the work place. Third, a kind of manipulator is required to complete the tasks such as handling radioactive wastes and other contaminated objects, etc. Fourth, a sensing system such as cameras, ultrasonic sensors, temperature sensors, dosimetry equipments etc., are required for operators to observe the work place. Lastly, a control system to help the operators control the robots. The control system generally consists of a supervisory control part and remote control part. The supervisory control part consists of a man-machine interface such as 3D graphics and a joystick. The remote control part manages the robot so that it follow the operator's command

  6. Designs for remote inspection of the ALMR Reactor Vessel Auxiliary Cooling System (RVACS)

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Carroll, D.G.; Chen, C.; Crane, C.; Dalton, R.; Taylor, J.R.; Tosunoglu, S.; Weymouth, T.

    1993-01-01

    One of the most important safety systems in General Electric's (GI) Advanced Liquid Metal Reactor (ALMR) is the Reactor Vessel Auxiliary Cooling System (RVACS). Because of high temperature, radiation, and restricted space conditions, GI desired methods to remotely inspect the RVACS, emissive coatings, and reactor vessel welds during normal refueling operations. The DOE/NE Robotics for Advanced Reactors program formed a team to evaluate the ALMR design for remote inspection of the RVACS. Conceptual designs for robots to perform the required inspection tasks were developed by the team. Design criteria for these remote systems included robot deployment, power supply, navigation, environmental hardening of components, tether management, communication with an operator, sensing, and failure recovery. The operation of the remote inspection concepts were tested using 3-D simulation models of the ALMR. In addition, the team performed an extensive technology review of robot components that could survive the environmental conditions in the RVACS

  7. Strategies to reduce PWR inspection time

    International Nuclear Information System (INIS)

    Guerra, J.; Gonzalez, E.

    2001-01-01

    During last few years, a constant reduction in inspection time was clearly demanded by most nuclear plant owners. This requirement has to be accomplished without any impact in inspection quality that, in general, has also to be improved. All this in a market with increasing competition that forces price reductions. Under these new demands from our customers, Tecnatom reoriented its development efforts to improve his products and services to meet this challenges. Two of our main inspection activities that have clear impact in outage duration are Steam Generator and Vessel inspections. This paper describes the improvements made in these two activities as an example of the reorientation of our development efforts with a focus on the technical improvements made on the software and robotic tools applied as in the data acquisition and analysis systems. In the Steam Generator inspections, new robots with dual guide tubes are commonly used. New eddy current instruments and software were developed to keep up with the data rates produced by the faster acquisition system. Use of automatic analysis software is also helping to improve speed while reducing cost and improving overall job quality. Production rates are close to double from the previous inspection system. (author)

  8. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  9. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Science.gov (United States)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  10. Robotics in near-earth space

    Science.gov (United States)

    Card, Michael E.

    1991-01-01

    The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.

  11. Robots take a hand in inspection, maintenance and repair

    International Nuclear Information System (INIS)

    Cruickshank, A.

    1985-01-01

    In the search for better economic performance through higher availability, utilities are beginning to look with interest at the uses of robotics. However, while some routine surveillance jobs may be amenable to existing commercial robot technology, most maintenance and repair tasks are not. A lot of work still needs to be done to develop robotic devices that can be employed effectively in the sometimes congested and inaccessible environments inside containments. (author)

  12. Robots take a hand in inspection, maintenance and repair

    Energy Technology Data Exchange (ETDEWEB)

    Cruickshank, A

    1985-04-01

    In the search for better economic performance through higher availability, utilities are beginning to look with interest at the uses of robotics. However, while some routine surveillance jobs may be amenable to existing commercial robot technology, most maintenance and repair tasks are not. A lot of work still needs to be done to develop robotic devices that can be employed effectively in the sometimes congested and inaccessible environments inside containments.

  13. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  14. Underground mining robot: a CSIR project

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging-wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  15. The development of radiation hardened robot for nuclear facility

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed

  16. The development of radiation hardened robot for nuclear facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Seung Ho; Kim, Byung Soo and others

    2000-04-01

    The work conducted in this stage covers development of core technology of tele-robot system including monitoring technique in high-level radioactive area, tele-sensing technology and radiation-hardened technology for the non-destructive tele-inspection system which monitors the primary coolant system during the normal operations of PHWR(Pressurized Heavy Water Reactor) NPPs and measures the decrease of bending part of feeder pipe during overall. Based on the developed core technology, the monitoring mobile robot system of the primary coolant system and the feeder pipe inspecting robot system are developed.

  17. Application status and performance analysis of robot in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Chengze; Yan Zhi; Deng Jingshan

    2012-01-01

    Application status of robot in nuclear power plants in some countries is summarized. The related robots include accident response robot, dismantling and cleaning robot, in-service inspection robot, special-purpose robot and so on. Finally, some key technologies such as the radiation-tolerance and reliability of the robot systems are analyzed in details. (authors)

  18. Review of activities relevant to in-service inspection

    International Nuclear Information System (INIS)

    Imanaka, N.

    1980-01-01

    Nuclear power plants are requested to provide continuing safety that cannot compare with other industries, as plant safety is a matter of much concern. To provide continuous assurance for plant safety there is increasing tendency to demand much of inspection of components during the lifetime. This inservice inspection of LMFBRs should be investigated from a view point of different systems and characteristics from LWRs. In this paper a review for inservice inspection of LMFBRs is described. To provide a continuous assurance of safety to the LMFBR, it is essential to develop how to construct the components to maintain the integrity throughout the service lifetime. Especially how to design is urged for this object. In-service inspection should be located only to compensate some uncertainty remained at the design stage, as it is too much complex in practice. As for inspection techniques, leak monitoring is assumed to be a best way to assure the plant safety continuously with the minimum plant outage time and minimum radioactive hazard to the inspectors

  19. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    International Nuclear Information System (INIS)

    Lee, Jin Hyuck; Kim, Dae Hyun

    2015-01-01

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  20. Shape-estimation of human hand using polymer flex sensor and study of its application to control robot arm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hyuck; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2015-02-15

    Ultrasonic inspection robot systems have been widely researched and developed for the real-time monitoring of structures such as power plants. However, an inspection robot that is operated in a simple pattern has limitations in its application to various structures in a plant facility because of the diverse and complicated shapes of the inspection objects. Therefore, accurate control of the robot is required to inspect complicated objects with high-precision results. This paper presents the idea that the shape and movement information of an ultrasonic inspector's hand could be profitably utilized for the accurate control of robot. In this study, a polymer flex sensor was applied to monitor the shape of a human hand. This application was designed to intuitively control an ultrasonic inspection robot. The movement and shape of the hand were estimated by applying multiple sensors. Moreover, it was successfully shown that a test robot could be intuitively controlled based on the shape of a human hand estimated using polymer flex sensors.

  1. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  2. Proceedings of '85 International conference on advanced robotics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    In these proceedings on advanced robotics four contributions are recorded devoted to the application of robotics in remote handling equipment for interior maintenance and inspection of nuclear power plants. refs.; figs.; tabs.

  3. Development of an automated remote inspection system for the interior of the primary containment vessel of a nuclear power plant

    International Nuclear Information System (INIS)

    Senoo, Makoto; Yoshida, Tomiharu; Omote, Tatsuyuki; Tanaka, Keiji; Koga, Kazunori

    1996-01-01

    An automated remote inspection system has been developed for the interior of the primary containment vessel of a nuclear power plant. This system consists of an inspection robot and an operator's console. The inspection robot travels along a monorail provided in the interior of the primary containment vessel. The operator's console is located in the central control room of the power plant. We have made efforts to downsize the robot and automate the inspection and monitoring machinery. As for downsizing the robot, a 152 mm wide, 290 mm high cross-sectional area and 15 kg weight can be realized using commercially available small sensors and rearranging the parts in those sensors. As for automating the inspection and monitoring, several monitoring functions are developed using image processing, frequency analysis and other techniques applied to signals from sensors such as an ITV camera, an infrared camera and a microphone, which are mounted on the robot. Endurance tests show resistance of the robot to radiational and thermal conditions is adequate for actual use in actual power plants. (author)

  4. Aerial service robotics: the AIRobots perspective

    NARCIS (Netherlands)

    Marconi, L.; Basile, F.; Caprari, G.; Carloni, Raffaella; Chiacchio, P.; Hurzeler, C.; Lippiello, V.; Naldi, R.; Siciliano, B.; Stramigioli, Stefano; Zwicker, E.

    This paper presents the main vision and research activities of the ongoing European project AIRobots (Innova- tive Aerial Service Robot for Remote Inspection by Contact, www.airobots.eu). The goal of AIRobots is to develop a new generation of aerial service robots capable of supporting human beings

  5. PIPEBOT: a mobile system for duct inspection

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Emanuel; Goncalves, Eder Mateus; Botelho, Silvia; Oliveira, Vinicius; Souto Junior, Humberto; Almeida, Renan de; Mello Junior, Claudio; Santos, Thiago [Universidade Federal do Rio Grande (FURG), RS (Brazil); Gulles, Roger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    In this paper, it is presented the development of an innovative and low-cost robotic mobile system to be employed in inspection of pipes. The system is composed of a robot with different sensors which permit to move inside pipes and detect faults as well as incipient faults. The robot is a semiautonomous one, i.e. it can navigate by human tele operation or autonomously one. The autonomous mode uses computer vision techniques and signals from position sensor of the robot to navigating and localizing it. It is showed the mechanical structure of the robot, the overall architecture of the system and preliminary results. (author)

  6. Advanced robotics for decontamination and dismantlement

    International Nuclear Information System (INIS)

    Hamel, W.R.; Haley, D.C.

    1994-01-01

    The decontamination and dismantlement (D ampersand D) robotics technology application area of the US Department of Energy's Robotics Technology Development Program is explained and described. D ampersand D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given

  7. Biologically inspired robots as artificial inspectors

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2002-06-01

    Imagine an inspector conducting an NDE on an aircraft where you notice something is different about him - he is not real but rather he is a robot. Your first reaction would probably be to say 'it's unbelievable but he looks real' just as you would react to an artificial flower that is a good imitation. This science fiction scenario could become a reality at the trend in the development of biologically inspired technologies, and terms like artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. For many years, the trend has been to automate processes in order to increase the efficiency of performing redundant tasks where various systems have been developed to deal with specific production line requirements. Realizing that some parts are too complex or delicate to handle in small quantities with a simple automatic system, robotic mechanisms were developed. Aircraft inspection has benefitted from this evolving technology where manipulators and crawlers are developed for rapid and reliable inspection. Advancement in robotics towards making them autonomous and possibly look like human, can potentially address the need to inspect structures that are beyond the capability of today's technology with configuration that are not predetermined. The operation of these robots may take place at harsh or hazardous environments that are too dangerous for human presence. Making such robots is becoming increasingly feasible and in this paper the state of the art will be reviewed.

  8. Path Planning & Measurement Registration for Robotic Structural Asset Monitoring

    OpenAIRE

    Pierce , Stephen Gareth; Macleod , Charles Norman; Dobie , Gordon; Summan , Rahul

    2014-01-01

    International audience; The move to increased levels of autonomy for robotic delivery of inspection for asset monitoring, demands a structured approach to path planning and measurement data presentation that greatly surpasses the more ad‐,hoc approach typically employed by remotely controlled, but manually driven robotic inspection vehicles. The authors describe a traditional CAD/CAM approach to motion planning (as used in machine tool operation) which has numerous benefits including the...

  9. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  10. The Development of a Radiation Hardened Robot for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil (and others)

    2007-04-15

    We has been developed two remotely controlled robotic systems. One is a underwater vehicle for inspection of the internal structures of PWRs and retrieving foreign stubs in the reactor pressure vessels and reactor coolant pipes. The other robotic system consists of a articulated-type mobile robot capable of recovering the failure of the fuel exchange machine and a mini modular mobile robot for inspection of feeder pipes with ultrasonic array sensors in PHWRs. The underwater robot has been designed by considering radiation effect, underwater condition, and accessibility to the working area. The size of underwater robot is designed to enter the cold legs. A extendable manipulator is mounted on the mobile robot, which can restore nuclear fuel exchange machine. The mini modular mobile robot is composed of dual inch worm mechanisms, which are constructed by two gripper bodies that can fix the robot body on to the pipe and move along the longitudinal and to rotate in a circumferential direction to access all of the outer surfaces of the pipe.

  11. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  12. Collective Modular Underwater Robotic System for Long-Term Autonomous Operation

    DEFF Research Database (Denmark)

    Christensen, David Johan; Andersen, Jens Christian; Blanke, Mogens

    This paper provides a brief overview of an underwater robotic system for autonomous inspection in confined offshore underwater structures. The system, which is currently in development, consist of heterogeneous modular robots able to physically dock and communicate with other robots, transport...

  13. Underwater welding using remote controlled robots. Development of remote underwater welding technology with a high power YAG laser

    International Nuclear Information System (INIS)

    Miwa, Yasuhiro; Sato, Syuuichi; Kojima, Toshio; Owaki, Katsura; Hirose, Naoya

    2002-01-01

    As components in nuclear power plant have been periodically carried out their inspection and repair to keep their integrity, on radioactive liquid wastes storage facility, because of difficulty on their inspection by human beings, some are remained without inspection, and even when capable of inspection, conversion from human works to remote operations is desired from a viewpoint of their operation efficiency upgrading. For response to these needs, some developments on a technology capable of carrying out inspection of their inside at underwater environment and repairing welding with YAG laser by means of remote operation, have been performed. Remote underwater inspection and repair technology is a combination technology of already applied underwater mobile technique (underwater inspection robot) with underwater YAG laser welding technique which is recently at actual using level. Therefore, this technology is composed of an inspection robot and a repair welding robot. And, testing results using the underwater inspection robot and welding test results using the underwater repair welding robot, were enough preferable to obtain forecasting applicable to actual apparatuses. This technology is especially effective for inspection and repair of inside of nuclear fuel cycle apparatuses and relatively high dose apparatuses, and can be thought to be applicable also to large capacity tanks, tanks dealing with harmful matters, underwater structures, and so on, in general industries. (G.K.)

  14. Robot Aesthetics

    DEFF Research Database (Denmark)

    Jochum, Elizabeth Ann; Putnam, Lance Jonathan

    This paper considers art-based research practice in robotics through a discussion of our course and relevant research projects in autonomous art. The undergraduate course integrates basic concepts of computer science, robotic art, live performance and aesthetic theory. Through practice...... in robotics research (such as aesthetics, culture and perception), we believe robot aesthetics is an important area for research in contemporary aesthetics....

  15. The development of mobile robot for security application and nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. S.; Lee, Y. B.; Choi, Y. S.; Seo, Y. C.; Park, Y. M

    1999-12-01

    The use of a mobile robot system in nuclear radioactive environments has the advantage of watching and inspecting the NPP safety-related equipment systematically and repairing damaged parts efficiently, thereby enhancing the safe operations of NPPs as well as reducing significantly personnel's dose rate to radioactive environment. Key technology achieved through the development of such robotic system can be used for security application and can offer new approaches to many of the tasks faced to the industry as well. The mobile robot system was composed of a mobile subsystem, a manipulator subsystem, a control subsystem, and a sensor subsystem to use in security application and nuclear radioactive environments. The mobile subsystem was adopted to synchro-drive method to improve the mobility of it. And the manipulator subsystem was developed to minimize the weight and easy to control at remote site. Finally, we developed the USB-based robot control system considering the expandability and modularity. The developed mobile robot for inspection and security was experimented for the collision avoidance and autonomous algorithm, and then it was confirmed that the mobile robot was very effective to the security application and inspection of nuclear facilities. (author)

  16. The development of mobile robot for security application and nuclear facilities

    International Nuclear Information System (INIS)

    Kim, B. S.; Lee, Y. B.; Choi, Y. S.; Seo, Y. C.; Park, Y. M.

    1999-12-01

    The use of a mobile robot system in nuclear radioactive environments has the advantage of watching and inspecting the NPP safety-related equipment systematically and repairing damaged parts efficiently, thereby enhancing the safe operations of NPPs as well as reducing significantly personnel's dose rate to radioactive environment. Key technology achieved through the development of such robotic system can be used for security application and can offer new approaches to many of the tasks faced to the industry as well. The mobile robot system was composed of a mobile subsystem, a manipulator subsystem, a control subsystem, and a sensor subsystem to use in security application and nuclear radioactive environments. The mobile subsystem was adopted to synchro-drive method to improve the mobility of it. And the manipulator subsystem was developed to minimize the weight and easy to control at remote site. Finally, we developed the USB-based robot control system considering the expandability and modularity. The developed mobile robot for inspection and security was experimented for the collision avoidance and autonomous algorithm, and then it was confirmed that the mobile robot was very effective to the security application and inspection of nuclear facilities. (author)

  17. Investigation In Two Wheels Mobile Robot Movement: Stability and Motion Paths

    Directory of Open Access Journals (Sweden)

    Abdulrahman A.A. Emhemed

    2013-01-01

    Full Text Available This paper deals with the problem of dynamic modelling of inspection robot two wheels. Fuzzy controller based on robotics techniques for optimize of an inspection stability. The target is to enhancement of robot direction and avoids the obstacles. To find collision free area, distance-sensors such as ultra-sonic sensors and laser scanners or vision systems are usually employed. The distance-sensors offer only distance information between mobile robots and obstacles. Also the target are shown can be reached by different directions. The fuzzy logic controller is effect to avoid the abstacles and get ideal direction to “the target box”.

  18. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  19. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    International Nuclear Information System (INIS)

    Chen, H J; Gao, B T; Zhang, X H; Deng, Z Q

    2006-01-01

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot

  20. Drive Control System for Pipeline Crawl Robot Based on CAN Bus

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H J [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Gao, B T [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Zhang, X H [Department of Electrical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China); Deng, Z Q [School of Mechanical Engineering, Harbin Institute of Technology Harbin, Heilongjiang, 150001 (China)

    2006-10-15

    Drive control system plays important roles in pipeline robot. In order to inspect the flaw and corrosion of seabed crude oil pipeline, an original mobile pipeline robot with crawler drive unit, power and monitor unit, central control unit, and ultrasonic wave inspection device is developed. The CAN bus connects these different function units and presents a reliable information channel. Considering the limited space, a compact hardware system is designed based on an ARM processor with two CAN controllers. With made-to-order CAN protocol for the crawl robot, an intelligent drive control system is developed. The implementation of the crawl robot demonstrates that the presented drive control scheme can meet the motion control requirements of the underwater pipeline crawl robot.

  1. Cooperative Behaviours with Swarm Intelligence in Multirobot Systems for Safety Inspections in Underground Terrains

    Directory of Open Access Journals (Sweden)

    Chika Yinka-Banjo

    2014-01-01

    Full Text Available Underground mining operations are carried out in hazardous environments. To prevent disasters from occurring, as often as they do in underground mines, and to prevent safety routine checkers from disasters during safety inspection checks, multirobots are suggested to do the job of safety inspection rather than human beings and single robots. Multirobots are preferred because the inspection task will be done in the minimum amount of time. This paper proposes a cooperative behaviour for a multirobot system (MRS to achieve a preentry safety inspection in underground terrains. A hybrid QLACS swarm intelligent model based on Q-Learning (QL and the Ant Colony System (ACS was proposed to achieve this cooperative behaviour in MRS. The intelligent model was developed by harnessing the strengths of both QL and ACS algorithms. The ACS optimizes the routes used for each robot while the QL algorithm enhances the cooperation between the autonomous robots. A description of a communicating variation within the QLACS model for cooperative behavioural purposes is presented. The performance of the algorithms in terms of without communication, with communication, computation time, path costs, and the number of robots used was evaluated by using a simulation approach. Simulation results show achieved cooperative behaviour between robots.

  2. Robust controller with adaptation within the boundary layer: application to nuclear underwater inspection robot

    International Nuclear Information System (INIS)

    Park, Gee Yong; Yoon, Ji Sup; Hong, Dong Hee; Jeong, Jae Hoo

    2002-01-01

    In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improve control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer. Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement

  3. Distributed mechatronics controller for modular wall climbing robot

    CSIR Research Space (South Africa)

    Tlale, NS

    2006-07-01

    Full Text Available - climbing robot for inspection in nuclear power plants.”, Proc. IEEE Int. Conf. on Robotics and Automation, pp. 409-1414. (Chen 2001) Chen, D-. J., 2001, “Architecture for Systematic Development of Mechatronics Software Systems”, Licentiate Thesis... provide a more cost effective solution to the problem (Luk et al 1991). Such robots are termed service robots by the International Service Robot Association (ISRA) (Pransky 1996). They are defined as machines that sense, think, and act to benefit (or...

  4. Developing sensor-driven robots for hazardous environments

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Gonzalez, R.C.; Abidi, M.A.

    1987-01-01

    Advancements in robotic technology are sought to provide enhanced personnel safety and reduced costs of operation associated with nuclear power plant manufacture, construction, maintenance, operation, and decommissioning. The authors describe main characteristics of advanced robotic systems for such applications and suggest utilization of sensor-driven robots. Research efforts described in the paper are directed towards developing robotic systems for automatic inspection and manipulation of various tasks associated with a test panel mounted with a variety of switches, controls, displays, meters, and valves

  5. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    International Nuclear Information System (INIS)

    Boomer, Kayle D.; Engeman, Jason K.; Gunter, Jason R.; Joslyn, Cameron C.; Vazquez, Brandon J.; Venetz, Theodore J.; Garfield, John S.

    2014-01-01

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line

  6. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  7. The development of fire detection robot

    OpenAIRE

    Sucuoğlu, Hilmi Saygın

    2015-01-01

    The aim of this thesis is to design and manufacture a fire detection robot that especially operates in industrial areas for fire inspection and early detection. Robot is designed and implemented to track prescribed paths with obstacle avoidance function through obstacle avoidance and motion planning units and to scan the environment in order to detect fire source using fire detection unit. Robot is able to track patrolling routes using virtual lines that defined to the motion planning unit. ...

  8. A Practical Solution Using A New Approach To Robot Vision

    Science.gov (United States)

    Hudson, David L.

    1984-01-01

    Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write

  9. Facilitating Programming of Vision-Equipped Robots through Robotic Skills and Projection Mapping

    DEFF Research Database (Denmark)

    Andersen, Rasmus Skovgaard

    The field of collaborative industrial robots is currently developing fast both in the industry and in the scientific community. Companies such as Rethink Robotics and Universal Robots are redefining the concept of an industrial robot and entire new markets and use cases are becoming relevant for ...

  10. Articulated inspection arm for ITER, a demonstration in the Tore Supra tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, J.J.; Gargiulo, L.; Grisolia, C.; Samaille, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Friconneau, J.P.; Perrot, Y. [CEA Fontenay-aux-Roses, LIST Robotics and Interactive Systems Unit, 92 (France); Palmer, J.D. [Max-Planck-Institut fuer Plasmaphysik Boltzmannstr.2, Garching (Germany)

    2003-07-01

    The aim of this program is to demonstrate for ITER the feasibility of an in-vessel remote handling inspection using a long reach, limited payload carrier (1 to 10 kg) for penetration of the ITER chamber through the openings. This device is dedicated to close inspection of the Plasma Facing Components (PFC). An articulated demonstrator called articulated inspection arm (AIA) has been manufactured. A feasibility study of a full AIA operation in Tore Supra was performed, taking into account ITER reference requirements. A scale one demonstration of the AIA under ITER relevant condition is feasible on Tore Supra and would give significant improvement in research results for ITER remote Handling equipment. The test of the AIA demonstrator behaviour is foreseen in 2005 in real Tokamak conditions. The paper presents the full robot concept, the results of the first test campaign, the AIA new design and its integration on Tore Supra. Several potential uses of the AIA for the in vessel components inspection are being studied such as PFC visual inspection, water loop leak testing, laser ablation for wall detritiation and carbon dust and flakes removal are foreseen as utilities to be placed at the AIA head. These various systems are described in the paper.

  11. Articulated inspection arm for ITER, a demonstration in the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Cordier, J.J.; Gargiulo, L.; Grisolia, C.; Samaille, F.; Palmer, J.D.

    2003-01-01

    The aim of this program is to demonstrate for ITER the feasibility of an in-vessel remote handling inspection using a long reach, limited payload carrier (1 to 10 kg) for penetration of the ITER chamber through the openings. This device is dedicated to close inspection of the Plasma Facing Components (PFC). An articulated demonstrator called articulated inspection arm (AIA) has been manufactured. A feasibility study of a full AIA operation in Tore Supra was performed, taking into account ITER reference requirements. A scale one demonstration of the AIA under ITER relevant condition is feasible on Tore Supra and would give significant improvement in research results for ITER remote Handling equipment. The test of the AIA demonstrator behaviour is foreseen in 2005 in real Tokamak conditions. The paper presents the full robot concept, the results of the first test campaign, the AIA new design and its integration on Tore Supra. Several potential uses of the AIA for the in vessel components inspection are being studied such as PFC visual inspection, water loop leak testing, laser ablation for wall detritiation and carbon dust and flakes removal are foreseen as utilities to be placed at the AIA head. These various systems are described in the paper

  12. Lessons of nuclear robot history

    International Nuclear Information System (INIS)

    Oomichi, Takeo

    2014-01-01

    Severe accidents occurred at Fukushima Daiichi Nuclear Power Station stirred up people's great expectation of nuclear robot's deployment. However unexpected nuclear disaster, especially rupture of reactor building caused by core meltdown and hydrogen explosion, made it quite difficult to introduce nuclear robot under high radiation environment to cease accidents and dispose damaged reactor. Robotics Society of Japan (RSJ) set up committee to look back upon lessons learned from 50 year's past experience of nuclear robot development and summarized 'Lessons of nuclear robot history', which was shown on the home page website of RSJ. This article outlined it with personal comment. History of nuclear robot developed for inspection and maintenance at normal operation and for specific required response at nuclear accidents was reviewed with many examples at home and abroad for TMI, Chernobyl and JCO accidents. Present state of Fukushima accident response robot's introduction and development was also described with some comments on nuclear robot development from academia based on lessons. (T. Tanaka)

  13. Development of non-destructive diagnosis technology for pipe internal in thermal power plants based on robotics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungho; Kim, Changhoi; Seo, Yongchil; Lee, Sunguk; Jung, Seungho; Jung, Seyoung

    2011-11-15

    The Pipelines of power plants may have tiny crack by corrosion. Pipe safety inspection should be performed periodically and non-periodically to ensure their safety and integrity. It is difficult to inspection pipes inside defect since pipes of power plant is covered thermal insulation material. Normally pipes inspection was performed part of pipes on outside. A mobile robot was developed for the inspection of pipe of 100 mm inside diameter. The robot is adopted screw type drive mechanism in order to move vertical, horizontal pipes inside. The multi-laser and camera module, which is mounted in front of the robot, captures a sequence of 360 degree shapes of the inner surface of a pipe. The 3D inner shape of pipe is reconstructed from a multi laser triangulation techniques for the inspection of pipes.

  14. In service inspection of superphenix 1 vessels: MIR

    International Nuclear Information System (INIS)

    Asty, M.; Viard, J.; Lerat, B.; Saglio, R.

    1985-02-01

    Presentation of the in-service inspection device, MIR, which has been specially developed for the visual and ultrasonic examination of Super Phenix 1 vessels (surface and internal defects). The inspections take place during fuel handling operations. The inspection device is a robot with a four-wheel drive vehicle which guidance along the welds is achieved by eddy-current devices; visual examination is performed by a television camera and ultrasonic probes are specially resistent to high temperatures

  15. 1st Iberian Robotics Conference

    CERN Document Server

    Sanfeliu, Alberto; Ferre, Manuel; ROBOT2013; Advances in robotics

    2014-01-01

    This book contains the proceedings of the ROBOT 2013: FIRST IBERIAN ROBOTICS CONFERENCE and it can be said that included both state of the art and more practical presentations dealing with implementation problems, support technologies and future applications. A growing interest in Assistive Robotics, Agricultural Robotics, Field Robotics, Grasping and Dexterous Manipulation, Humanoid Robots, Intelligent Systems and Robotics, Marine Robotics, has been demonstrated by the very relevant number of contributions. Moreover, ROBOT2013 incorporates a special session on Legal and Ethical Aspects in Robotics that is becoming a topic of key relevance. This Conference was held in Madrid (28-29 November 2013), organised by the Sociedad Española para la Investigación y Desarrollo en Robótica (SEIDROB) and by the Centre for Automation and Robotics - CAR (Universidad Politécnica de Madrid (UPM) and Consejo Superior de Investigaciones Científicas (CSIC)), along with the co-operation of Grupo Temático de Robótica CEA-GT...

  16. Human Robotic Systems (HRS): Controlling Robots over Time Delay Element

    Data.gov (United States)

    National Aeronautics and Space Administration — This element involves the development of software that enables easier commanding of a wide range of NASA relevant robots through the Robot Application Programming...

  17. Developing sensor-based robots with utility to waste management applications

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Abidi, M.A.; Gonzalez, R.C.

    1990-01-01

    There are several Environmental Restoration and Waste Management (ER and WM) application areas where autonomous or teleoperated robotic systems can be utilized to improve personnel safety and reduce operation costs. In this paper the authors describe continuing research undertaken by their group in intelligent robotics area which should have a direct relevance to a number of ER and WM applications. The authors' current research is sponsored by the advanced technology division of the U.S. Department of Energy. It is part of a program undertaken at four universities (Florida, Michigan, Tennessee, and Texas) and the Oak ridge National Laboratory directed towards the development of advanced robotic systems for use in nuclear environments. The primary motivation for using robotic (autonomous and/or teleoperated) technology in such hazardous environments is to reduce exposure and costs associated with performing tasks such as surveillance, maintenance and repair. The main focus of the authors' research a the University of Tennessee has been to contribute to the development of autonomous inspection and manipulation systems which utilize a wide array of sensory inputs in controlling the actions of a stationary robot. The authors' experimental research effort is directed towards design and evaluation of new methodologies using a laboratory based robotic testbed. A unique feature of this testbed is a multisensor module useful in the characterization of the robot workspace. In this paper, the authors describe the development of a robot vision system for automatic spill detection, localization and clean-up verification; and the development of efficient techniques for analyzing range images using a parallel computer. The 'simulated spill cleanup' scenario allows us to show the applicability of robotic systems to problems encountered in nuclear environments

  18. Remote inspection system for hazardous sites

    International Nuclear Information System (INIS)

    Redd, J.; Borst, C.; Volz, R.A.; Everett, L.J.

    1999-04-01

    Long term storage of special nuclear materials poses a number of problems. One of these is a need to inspect the items being stored from time to time. Yet the environment is hostile to man, with significant radiation exposure resulting from prolonged presence in the storage facility. This paper describes research to provide a remote inspection capability, which could lead to eliminating the need for humans to enter a nuclear storage facility. While there are many ways in which an RI system might be created, this paper describes the development of a prototype remote inspection system, which utilizes virtual reality technology along with robotics. The purpose of this system is to allow the operator to establish a safe and realistic telepresence in a remote environment. In addition, it was desired that the user interface for the system be as intuitive to use as possible, thus eliminating the need for extensive training. The goal of this system is to provide a robotic platform with two cameras, which are capable of providing accurate and reliable stereographic images of the remote environment. One application for the system is that it might be driven down the corridors of a nuclear storage facility and utilized to inspect the drums inside, all without the need for physical human presence. Thus, it is not a true virtual reality system providing simulated graphics, but rather an augmented reality system, which performs remote inspection of an existing, real environment

  19. Robotics in space-age manufacturing

    Science.gov (United States)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  20. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human`s eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. 203 figs, 12 tabs, 72 refs. (Author).

  1. Eddy current inspection of steam generator tubing plugs

    International Nuclear Information System (INIS)

    Cullen, W.K.

    1990-01-01

    In response to the issues raised regarding the integrity of nuclear steam generator tubing plugs manufactured from certain heats of Inconel 600, Westinghouse engineers have developed, qualified and implemented an eddy current inspection system for the in-place assessment of these plugs. The heart of the system is a robotic and effector which delivers an eddy current sensor through the reduced diameter of the plug expander and actuates the coil to physical contact with the expanded inside bore of the plug. Once deployed, the eddy current sensor is rotated along a helical path to produce a detailed scan of the plug surface above the final position of the expander. This testing produces an isometric display of degradation due to primary water stress corrosion cracking, on the inside surface of the plug. To date, successful inspections have been conducted at two nuclear units with two different robotic delivery systems. While designed specifically for mechanical plugs with a bottle bore cavity, the inspection system can also be used for expanded straight bore plugs. Details of the inspection system along with a discussion of qualification activities and actual field results are presented in this paper

  2. Snake Robots Modelling, Mechatronics, and Control

    CERN Document Server

    Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2013-01-01

    Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...

  3. Major upgrade of the articulated inspection arm control system to fulfill daily operation requirements

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, P., E-mail: patrick.pastor@cea.fr [CEA, IRFM, Institut de Recherche sur la Fusion par confinement Magnétique (France); Villedieu, E.; Allegretti, L.; Vincent, B.; Barbuti, A.; Bruno, V.; Coquillat, P.; Dechelle, C.; Gargiulo, L.; Le, R.; Malard, P.; Martinez, A.; Nouailletas, R. [CEA, IRFM, Institut de Recherche sur la Fusion par confinement Magnétique (France); Yuntao, Song; Yong, Cheng; Chen, Liu; Hansheng, Feng; Shanshuang, Shi [ASIPP, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2015-10-15

    Highlights: • We propose an overview of the work which has been done to upgrade the control system of the AIA robot (articulated inspection arm) to fulfill daily operation requirements for tokamak inspection. • The control system is based on the use of new position sensors, new electronics design and new supervisor software. • Final tests are ongoing in the EAST scale 1 tokamak mock-up. Routine operation of the robot at EAST will start in the beginning of 2015. - Abstract: An articulated inspection arm (AIA) has been developed by CEA for visual inspection between pulses inside the Tore Supra tokamak vacuum vessel without breaking temperature and vacuum conditions. The eight meters length robot is composed of a shuttle and six articulated segments with a video camera at its end. A demonstration prototype has been achieved in 2008 at Tore Supra (Gargiulo, 2007; Houry, 2008; Perrot, 2003). A project to upgrade the AIA into a fully operational robot has been undertaken by IRFM and ASIPP in an Associated Laboratory. It will be in operation first in the EAST machine and afterwards in Tore Supra in its WEST (W/Tungsten Environment in Steady-state Tokamak) configuration where it is of paramount importance to survey possible degradation of W component surface. The control system of the robot has been extensively upgraded. The effort has been focused on three areas: (1) improvement of the arm position accuracy, (2) increase of the operational robustness, (3) use of a powerful graphical user interface including simulation of trajectories and robot deployment capabilities in a 3D viewer environment. The aim of this paper is to detail the architecture of the AIA control system.

  4. Aerial service robots: an overview of the AIRobots activity

    NARCIS (Netherlands)

    Marconi, L.; Naldi, R.; Torre, A.; Nikolic, J.; Huerzeler, C.; Caprari, G.; Zwicker, E.; Siciliano, B.; Lippiello, V.; Carloni, Raffaella; Stramigioli, Stefano

    This video paper outlines some of the results achieved during the first two years of the ongoing European project AIRobots (Innovative Aerial Service Robots for Remote Inspection by Contact, www.airobots.eu). Goal of AIRobots is to develop a new generation of aerial service robots capable of

  5. Robotics in hostile environment I. S. I. S. robot - automatic positioning and docking with proximity and force feed back sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gery, D

    1987-01-01

    Recent improvements in control command systems and the development of tactile proximity and force feed back sensors make it possible to robotize complex inspection and maintenance operations in hostile environment, which could have not been possible by classical remotely operated manipulators. We describe the I.S.I.S. robot characteristics, the control command system software principles and the tactile and force-torque sensors which have been developed for the different sequences of an hostile environment inspection and repair: access trajectories generation with obstacles shunning, final positioning and docking using parametric algorithms taking into account measurement of the end of arm proximity and force-torque sensors.

  6. Cecil gives in-bundle access for inspection and lancing [steam generators

    International Nuclear Information System (INIS)

    Trovato, S.A.; Ruggieri, S.K.

    1989-01-01

    Cecil (Consolidated Edison Combined Inspection and Lancing System) is a robotic device which makes it possible to take inspection and sludge lancing equipment deep inside steam generator tube bundles. Cecil is teleoperated to perform tube bundle inspections, sludge sampling and sludge lancing. The first field test of Cecil at Indian Point 2 reactor, successfully demonstrated its capability for high quality inspection, and its potential for improved sludge removal, both with reduced personnel radiation exposure. (U.K.)

  7. A development methodology for a remote inspection system with JAVA and socket

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2004-01-01

    We have developed RISYS (Reactor Inspection System) which inspects reactor vessel welds by an underwater mobile robot. The system consists of a main control computer and an inspection robot which is controlled by the main control computer. Since the environments of the inspection tasks in a nuclear plant, like in other industrial fields, is very poor, serious accidents often happen. Therefore the necessity for remote inspection and control system has increased more and more. We have carried out the research for a remote inspection model for RISYS, and have adopted the world wide web, java, and socket technologies for it. Client interface to access the main control computer that controls the inspection equipment is essential for the development of a remote inspection system. It has been developed with a traditional programming language, for example, Visual C++, Visual Basic and X-Window. However, it is too expensive to vend and maintain the version of a interface program because of the different computer O/S. Nevertheless web and java technologies come to the fore to solve the problems but the java interpreting typed language could incur a performance problem in operating the remote inspection system. We suggest a methodology for developing a remote inspection system with java, a traditional programming language, and a socket programming that solves the java performance problem in this paper

  8. JACoW A dual arms robotic platform control for navigation, inspection and telemanipulation

    CERN Document Server

    Di Castro, Mario; Ferre, Manuel; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    High intensity hadron colliders and fixed target experiments require an increasing amount of robotic tele-manipulation to prevent excessive exposure of maintenance personnel to the radioactive environment. Telemanipulation tasks are often required on old radioactive devices not conceived to be maintained and handled using standard industrial robotic solutions. Robotic platforms with a level of dexterity that often require the use of two robotic arms with a minimum of six degrees of freedom are instead needed for these purposes. In this paper, the control of a novel robust robotic platform able to host and to carry safely a dual robotic arm system is presented. The control of the arms is fully integrated with the vehicle control in order to guarantee simplicity to the operators during the realization of the robotic tasks. A novel high-level control architecture for the new robot is shown, as well as a novel low level safety layer for anti-collision and recovery scenarios. Preliminary results of the system comm...

  9. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  10. Robots show us how to teach them: feedback from robots shapes tutoring behavior during action learning.

    Science.gov (United States)

    Vollmer, Anna-Lisa; Mühlig, Manuel; Steil, Jochen J; Pitsch, Karola; Fritsch, Jannik; Rohlfing, Katharina J; Wrede, Britta

    2014-01-01

    Robot learning by imitation requires the detection of a tutor's action demonstration and its relevant parts. Current approaches implicitly assume a unidirectional transfer of knowledge from tutor to learner. The presented work challenges this predominant assumption based on an extensive user study with an autonomously interacting robot. We show that by providing feedback, a robot learner influences the human tutor's movement demonstrations in the process of action learning. We argue that the robot's feedback strongly shapes how tutors signal what is relevant to an action and thus advocate a paradigm shift in robot action learning research toward truly interactive systems learning in and benefiting from interaction.

  11. Robots cut maintenance costs at PSE and G

    International Nuclear Information System (INIS)

    Roman, H.T.

    1992-01-01

    This paper reports that teleoperated robots are routinely used for cleaning, sampling, and remote inspections at PSE and G's nuclear and fossil power plants. Robots are rapidly becoming a strategic technology in the electric utility industry. Since 1983, more than 200 applications of these devices have been documented, often resulting in significant time and manpower savings. In nuclear plants, these devices have reduced radiation exposure to human workers. Public Service Electric and Gas Co. (PSE and G) has been evaluating, testing, and applying robotic technology since 1984. The work has been characterized by a two-step approach - interdepartmental task forces identify and assess potential applications, then five-year plans are developed to introduce the technology, apply it, and measure cost effectiveness. Throughout this effort, PSE and G has maintained a strong partnership with robot vendors/developers, making them an integral part of the program. Work on robotics at PSE and G's Salem and Hope Creek plants has been a pioneering effort. From 1987 through 1991, in the company's first five-year plan, it spent $1.6 million on robotic applications. Savings to date exceed $5 million, Figure 1. It is projected that by 1993 the savings will increase to $6-7 million. Applications for the next five-year plan, 1992-1996, are being finalized. These will concentrate on the development of robots for operation and maintenance applications. The first five-year plan concentrated on inspection, surveillance, and monitoring tasks

  12. The development of advanced robotics for the nuclear industry -The development of advanced robotic technology-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Park, Soon Yong; Cho, Jae Wan; Lee, Nam Hoh; Kim, Woong Kee; Moon, Byung Soo; Kim, Seung Hoh; Kim, Chang Heui; Kim, Byung Soo; Hwang, Suk Yong; Lee, Yung Kwang; Moon, Je Sun

    1995-07-01

    Main activity in this year is to develop both remote handling system and telepresence techniques, which can be used for people involved in extremely hazardous working area to alleviate their burden. In the robot vision technology part, KAERI-PSM system, stereo imaging camera module, stereo BOOM/MOLLY unit, and stereo HMD unit are developed. Also, autostereo TV system which falls under the category of next generation stereo imaging technology has been studied. The performance of KAERI-PSM system for remote handling task is evaluated and compared with other stereo imaging systems as well as general TV imaging system. The result shows that KAERI-PSM system is superior to the other stereo imaging systems about remote operation speedup and accuracy. The automatic recognition algorithm of instrument panel is studied and passive visual target tracking system is developed. The 5 DOF camera serving unit has been designed and fabricated. It is designed to function like human's eye. In the sensing and intelligent control research part, thermal image database system for thermal image analysis is developed and remote temperature monitoring technique using fiber optics is investigated. And also, two dimensional radioactivity sensor head for radiation profile monitoring system is designed. In the part of intelligent robotics, mobile robot is fabricated and its autonomous navigation using fuzzy control logic is studied. These remote handling and telepresence techniques developed in this project can be applied to nozzle-dam installation/removal robot system, reactor inspection unit, underwater nuclear pellet inspection and pipe abnormality inspection. And these developed remote handling and telepresence techniques will be applied in general industry, medical science, and military as well as nuclear facilities. It has been looking for these techniques to expand the working area of human, raise the working efficiencies of remote task to the highest degree, and enhance the industrial

  13. Socially Impaired Robots: Human Social Disorders and Robots' Socio-Emotional Intelligence

    OpenAIRE

    Vitale, Jonathan; Williams, Mary-Anne; Johnston, Benjamin

    2016-01-01

    Social robots need intelligence in order to safely coexist and interact with humans. Robots without functional abilities in understanding others and unable to empathise might be a societal risk and they may lead to a society of socially impaired robots. In this work we provide a survey of three relevant human social disorders, namely autism, psychopathy and schizophrenia, as a means to gain a better understanding of social robots' future capability requirements. We provide evidence supporting...

  14. Modular robotic applications in nuclear power plant maintenance

    International Nuclear Information System (INIS)

    Glass, S.W.; Ranson, C.C.; Reinholtz, C.F.; Calkins, J.M.

    1996-01-01

    General-purpose factory automation robots have experienced limited use in nuclear maintenance and hazardous-environment work spaces due to demanding requirements on size, weight, mobility and adaptability. Robotic systems in nuclear power plants are frequently custom designed to meet specific space and performance requirements. Examples of these custom configurations include Framatome Technologies COBRA trademark Steam Generator Manipulator and URSULA trademark Reactor Vessel Inspection Manipulator. The use of custom robots in nuclear plants has been limited because of the lead time and expense associated with custom design. Developments in modular robotics and advanced robot control software coupled with more powerful low-cost computers, however, are helping to reduce the cost and schedule for deploying custom robots. A modular robotic system allows custom robot configurations to be implemented using standard (modular) joints and adaptable controllers. This paper discusses Framatome Technologies (FTI) current and planned developments in the area of modular robot system design

  15. Scarab III Remote Vehicle Deployment for Waste Retrieval and Tank Inspection

    International Nuclear Information System (INIS)

    Burks, B.L.; Falter, D.D.; Noakes, M.; Vesco, D.

    1999-01-01

    The Robotics Technology Development Program now known as the Robotics Crosscut Program, funded the development and deployment of a small remotely operated vehicle for inspection and cleanout of small horizontal waste storage tanks that have limited access. Besides the advantage of access through tank risers as small as 18-in. diameter, the small robotic system is also significantly less expensive to procure and to operate than larger remotely operated vehicle (ROV) systems. The vehicle specified to support this activity was the ROV Technologies, Inc., Scarab. The Scarab is a tracked vehicle with an independently actuated front and rear ''toe'' degree-of-freedom which allows the stand-off and angle of the vehicle platform with respect to the floor to be changed. The Scarab is a flexible remote tool that can be used for a variety of tasks with its primary uses targeted for inspection and small scale waste retrieval. The vehicle and any necessary process equipment are mounted in a deployment and containment enclosure to simplify deployment and movement of the system from tank to tank. This paper outlines the technical issues related to the Scarab vehicle and its deployment for use in tank inspection and waste retrieval operation

  16. Mobile robot for power plant inspection and maintenance

    International Nuclear Information System (INIS)

    White, J.R.; Farnstrom, K.A.; Harvey, H.W.; Upton, R.G.; Walker, K.L.

    1988-01-01

    An all-terrain, mobile robot (called SURBOT-T) has been developed to perform remote visual, sound, and radiation surveillance within contaminated areas of nuclear power plants. The robot can be equipped with a two-armed, telerobotic manipulator system to perform remote maintenance work. The SURBOT-T vehicle has a double-articulating track base that is capable of climbing 45-deg slopes and stairs and over 16-in.-high obstacles. The overall size of SURBOT-T is 28 in. wide by 38 in. long with the front and rear tracks raised and 52 in. high with the camera lowered. With the tracks in a level position, the base provides a sturdy work platform and can ascend/descend stairs without fear of tipping over. The track can be pivoted straight down to elevate the base 14 in. and pass through water up to 24 in. deep. All motors, amplifiers, computer boards, and other electronic components are contained within a sealed housing. The color television camera, spotlight, and directional microphone are mounted on a pan/tilt, which is attached to an elevating mechanism that has 8 ft of vertical travel. An air sampler, radiation detector, and temperature/humidity probe are mounted on the vehicle. The slave manipulator arms on the vehicle can be teleoperated using master arms that are attached to a portable stand near the control console. They can also be taught to perform motions or tasks by computer control much like robot arms in the automated manufacturing industry

  17. Robotic system for the servicing of the orbiter thermal protection system

    Science.gov (United States)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  18. CSIR Centre for Mining Innovation and the mine safety platform robot

    CSIR Research Space (South Africa)

    Green, JJ

    2012-11-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR) in South Africa is currently developing a robot for the inspection of the ceiling (hanging wall) in an underground gold mine. The robot autonomously navigates the 30 meter long by 3 meter...

  19. Legal Frame of Non-Social Robots

    NARCIS (Netherlands)

    Fosch Villaronga, Eduard; Husty, M.; Hofbaur, M.; Can Dede, M.I.

    2016-01-01

    This paper describes some relevant legal aspects concerning non-social robots. Special attention is drawn to Person Carrier Robots (PCaR) and Physical Assistant Robots (PAR). Although concrete legal binding regulations concerning these two sub-types of Personal Care Robots (PCR) are missing, the

  20. Amooty, a stair climbing intelligent maintenance robot

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants.

  1. The Remotely Controlled Robot System for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Koh, Kwangill; Lee, Gwangnam; Lim, Kyeyoung

    1993-01-01

    The problem of radioactivity has been our major concern. So, it makes the needs of remotely controlled robot system necessary for maintenance and repair services. Up to now, several foreign companies have been contracted for the maintenance of the steam generators of nuclear power plants in Korea, to acquire its own capability of maintaining the steam generators of it impossible for Korea to acquire its own capability of maintaining the steam generators. In case of emergency, it is difficult to take appropriate steps on its own. In order to resolve the above problems, it seems inevitable to develop the robot system for the inspection and repair of steam generator. This project intends to acquire domestic capabilities of maintaining steam generators, so that this advanced skills could be applied to the related areas. As a result, it will save immense money in the future. the purposes of development of the remotely controlled robot system are : to perform the desired tasks at the polluted area without requiring entry of personnel. to closely inspect the steam generator U-tubes at high speed. to inspect the steam generator intelligently and efficiently under the extreme circumstances where radioactivity problem is very severe. to use for the repair of steam generator tube. Considering from the social and technical standpoint, we can say that the development of the remotely controlled robot system for nuclear power plants resulted in great achievements. From the social standpoint, it should be recognized that domestic robot for nuclear power plant was successfully developed and operator was protected against radioactivity. Also, we advanced our skills in the area of mechanical and control system design for an articulated robot. Using the robot controller in hierarchical structure, it was possible to control the robot remotely. In addition, resolver feedback typed A C servo drive was proven to be sturdy in hazardous environment. Now we are confident that our robot will

  2. DEVELOPMENT OF AN INSPECTION PLATFORM AND A SUITE OF SENSORS FOR ASSESSING CORROSION AND MECHANICAL DAMAGE ON UNPIGGABLE TRANSMISSION MAINS

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis; William Leary

    2004-03-01

    The National Energy Technology Laboratory of the US Department of Energy (under Award DE-FC26-02NT41645) and the NYSEARCH Committee of the Northeast Gas Association (previous the New York Gas Group), have sponsored research to develop a robotic pipeline inspection system capable of navigation through the typical physical and operational obstacles that make transmission and distribution pipelines unpiggable. The research contractors, Foster-Miller and GE Oil & Gas (PII North America) have performed an engineering study and developed a conceptual design that meets all the requirements for navigating and inspecting unpiggable transmission pipelines. Based on Foster-Miller's previous efforts developing the Pipe Mouse robot, the RoboScan inspection robot (Figure ES-1) meets the navigational and physical challenges of unpiggable pipelines through an innovative modular platform design, segmented MFL inspection modules and improvements to the inter-module coupling design.

  3. Innovative Robot Archetypes for In-Space Construction and Maintenance

    Science.gov (United States)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  4. Robotic systems for the high level waste tank farm replacement project at INEL

    International Nuclear Information System (INIS)

    Berger, A.; White, D.; Thompson, B.; Christensen, M.

    1993-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is specifying and designing a new high level waste tank farm at the Idaho National Engineering Laboratory (INEL). The farm consists of four underground storage tanks, which replace the existing tanks. The new facility includes provisions for remote operations. One of the planned remote operations is robotic inspection of the tank from the interior and exterior. This paper describes the process used to design the robotic system for the inspection tasks

  5. Amooty, a stair climbing intelligent maintenance robot

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Toshiba Corporation and a team from Tokyo University have jointly developed a prototype of a mobile, stair climbing intelligent robot, named Amooty, for inspection and maintenance tasks in nuclear power plants. (author)

  6. LHC train control system for autonomous inspections and measurements

    OpenAIRE

    Di Castro, Mario; Baiguera Tambutti, Maria Laura; Gilardoni, Simone; Losito, Roberto; Lunghi, Giacomo; Masi, Alessandro

    2018-01-01

    Intelligent robotic systems are becoming essential for inspection and measurements in harsh environments, such as the European Organization for Nuclear Research (CERN) accelerators complex. Aiming at increasing safety and machine availability, robots can help to perform repetitive or dangerous tasks, reducing the risk for the personnel as the exposure to radiation. The Large Hadron Collider (LHC) tunnel at CERN has been equipped with fail-safe trains on monorail able to perform autonomously d...

  7. An Automated Sensing System for Steel Bridge Inspection Using GMR Sensor Array and Magnetic Wheels of Climbing Robot

    Directory of Open Access Journals (Sweden)

    Rui Wang

    2016-01-01

    Full Text Available Corrosion is one of the main causes of deterioration of steel bridges. It may cause metal loss and fatigue cracks in the steel components, which would lead to the collapse of steel bridges. This paper presents an automated sensing system to detect corrosion, crack, and other kinds of defects using a GMR (Giant Magnetoresistance sensor array. Defects will change the relative permeability and electrical conductivity of the material. As a result, magnetic field density generated by ferromagnetic material and the magnetic wheels will be changed. The defects are able to be detected by using GMR sensor array to measure the changes of magnetic flux density. In this study, magnetic wheels are used not only as the adhesion device of the robot, but also as an excitation source to provide the exciting magnetic field for the sensing system. Furthermore, compared to the eddy current method and the MFL (magnetic flux leakage method, this sensing system suppresses the noise from lift-off value fluctuation by measuring the vertical component of induced magnetic field that is perpendicular to the surface of the specimen in the corrosion inspection. Simulations and experimental results validated the feasibility of the system for the automated defect inspection.

  8. Getting to grips with remote handling and robotics

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, D [Ontario Hydro, Toronto (Canada)

    1984-12-01

    A report on the Canadian Nuclear Society Conference on robotics and remote handling in the nuclear industry, September 1984. Remote handling in reactor operations, particularly in the Candu reactors is discussed, and the costs and benefits of use of remote handling equipment are considered. Steam generator inspection and repair is an area in which practical application of robotic technology has made a major advance.

  9. A survey report for the turning of biped locomotion robot

    International Nuclear Information System (INIS)

    Kato, Ichiro; Takanishi, Atsuo; Kume, Etsuo.

    1992-12-01

    A mechanical design study of biped locomotion robots is going on at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the turning of biped locomotion robot: the WL-10R designed and developed at Waseda University. This report includes the control method of turning, machine model and control system. (author)

  10. Automatic inspection Pads second generation; Inspeccion automatica de pastillas de segunda generacion

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Lancho gonzalez, J. F.

    2010-07-01

    In recent years, development has addressed Enusa a second generation robot for automatic inspection of tablets incorporating the following advances: more advanced systems that improve vision quality inspection equipment, conducting the inspection in line with the grinding operation, increased productivity of the inspection process to be unnecessary pills buildup in trays and lay-out of the most rational equipment allowing cleaning it easier and faster. This second generation machine is already part of the automatic inspection equipment developed by Enusa and is an example of the ongoing commitment to the development Enusa and innovation in nuclear technology.

  11. Marine Robot Autonomy

    CERN Document Server

    2013-01-01

    Autonomy for Marine Robots provides a timely and insightful overview of intelligent autonomy in marine robots. A brief history of this emerging field is provided, along with a discussion of the challenges unique to the underwater environment and their impact on the level of intelligent autonomy required.  Topics covered at length examine advanced frameworks, path-planning, fault tolerance, machine learning, and cooperation as relevant to marine robots that need intelligent autonomy.  This book also: Discusses and offers solutions for the unique challenges presented by more complex missions and the dynamic underwater environment when operating autonomous marine robots Includes case studies that demonstrate intelligent autonomy in marine robots to perform underwater simultaneous localization and mapping  Autonomy for Marine Robots is an ideal book for researchers and engineers interested in the field of marine robots.      

  12. Automatic weld joint X-ray inspection

    International Nuclear Information System (INIS)

    Richter, H.U.; Linke, D.; Siems, K.D.; Kruse, H.; Schuetze, E.

    1990-01-01

    A gantry mounted robotic x-ray inspection unit has been developed for the series testing of small and medium sized welded components (pipe bends and nozzles). The unit features computer controlled positioning of the x-ray tube and x-ray image amplifier. Image quality classes 2 and even 1 could be achieved without difficulty. (author)

  13. DESIGN OF A WELDING AND INSPECTION SYSTEM FOR WASTE STORAGE CLOSURE

    International Nuclear Information System (INIS)

    H.B. Smartt; A.D. Watkins; D.P. Pace; R.J. Bitsoi; E.D. Larsen T.R. McJunkin; C.R. Tolle

    2005-01-01

    This work reported here was done to provide a conceptual design for a robotic welding and inspection system for the Yucca Mountain Repository waste package closure system. The welding and inspection system is intended to make the various closure welds that seal and/or structurally join the lids to the waste package vessels. The welding and inspection system will also perform surface and volumetric inspections of the various closure welds and has the means to repair closure welds, if required. The system is designed to perform these various activities remotely, without the necessity of having personnel in the closure cell

  14. Visual servo simulation of EAST articulated maintenance arm robot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Wu, Huapeng [Lappeenranta University of Technology, Skinnarilankatu 34, Lappeenranta (Finland)

    2016-03-15

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  15. Visual servo simulation of EAST articulated maintenance arm robot

    International Nuclear Information System (INIS)

    Yang, Yang; Song, Yuntao; Pan, Hongtao; Cheng, Yong; Feng, Hansheng; Wu, Huapeng

    2016-01-01

    For the inspection and light-duty maintenance of the vacuum vessel in the EAST tokamak, a serial robot arm, called EAST articulated maintenance arm, is developed. Due to the 9-m-long cantilever arm, the large flexibility of the EAMA robot introduces a problem in the accurate positioning. This article presents an autonomous robot control to cope with the robot positioning problem, which is a visual servo approach in context of tile grasping for the EAMA robot. In the experiments, the proposed method was implemented in a simulation environment to position and track a target graphite tile with the EAMA robot. As a result, the proposed visual control scheme can successfully drive the EAMA robot to approach and track the target tile until the robot reaches the desired position. Furthermore, the functionality of the simulation software presented in this paper is proved to be suitable for the development of the robotic and computer vision application.

  16. Potential applications of robotics in advanced liquid-metal reactors

    International Nuclear Information System (INIS)

    Carroll, D.G.; Thompson, M.L.

    1990-01-01

    The advanced liquid-metal reactor (ALMR) design includes a range of robots and automation devices. They extend from stationary robots that are a part of the current design to more exotic concepts with mobile, autonomous units, which may become part of the design. Development of robotic application requirements is enhanced by using computer models of work spaces in three dimensions. The primary goals of the more autonomous machines are to: (1) extent and/or enhance one's capabilities in a hazardous environment; some tasks could encounter high temperatures (up to 800 degree F), high radiation (fields up to several hundred thousand roentgens per hour), rooms filled with inert gas and/or sodium aerosol, or combinations of these; (2) reduce operating and maintenance cost through inservice inspection (ISI) of various parts of the reactor, through consideration of as-low-as-reasonably achievable radiation levels, and through automation of some maintenance/processing operations. This paper discusses some applications in the fuel cycle, in refueling operations, and in inspection

  17. Future of robots in nuclear plants and processes

    International Nuclear Information System (INIS)

    Fisher, J.J.; Byrd, J.S.

    1985-01-01

    The role of robotics at the Savannah River Plant and Laboratory is reviewed. The site's remote process areas are described briefly, and existing remote handling equipment and robots are discussed. Three technology areas under development and relating to process automation are reviewed. These are: inspection systems to detect and evaluate process problems or to determine equipment integrity, process monitoring systems to analyze plant operations and to supply information in the event of an unusual occurrence, and remote manipulator systems and controls to handle instruments and tools. A technique is presented for employing future intelligent robots through process networks. These networks will represent the integration of robotic technology with dedicated process knowledge bases

  18. Report on the actual situations of the commercially applied, industrial robots; Sangyoyo robot ni kansuru kigyo jittai chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-08-01

    Described herein are the actual situations of industrial robots as the FY 1991 questionnaire survey results. The questionnaires were sent to 541 factories, and 74% thereof were recovered. The major machine types fall into categories of manual manipulator, stationary sequence manipulator, remote controlling robot, sequence robot, playback robot, numerically controlling robot and intelligent robot. They are mainly driven by hydraulic, pneumatic, or electrical power. Their mechanism types cover polar coordinate, cylindrical coordinate, rectangular coordinate and articulation types, among others. They are mainly controlled by electronically, electrically (hydraulic or relay), or pneumatically. The major purposes for general works include casting, forging, resin processing, heat treatment, pressing, welding, coating, machining, cutting, assembling, reception/delivery of goods, and testing/inspection. The special works they are in service include those for power/gas/water services, construction works, and research and development. By work step, they are in service, e.g., for loading/unloading goods, palletising/packing goods, supporting, screening, welding, spraying/coating, grinding, clamping, assembling, and riveting. (NEDO)

  19. Development of remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Kunikata, Michio; Kawamura, Hironobu.

    1985-01-01

    For nuclear facilities, various types of remote maintenance and inspection devices have been developed to reduce radiation exposure to workers, save labor, and improve the operating rate of the plant. Existing robot technology, however, could not be employed when we were recently called upon to inspect and repair pinhole defects which had occurred in the spent fuel dissolvers of the Power Reactor and Nuclear Fuel Development Corporation's Tokai Reprocessing Plant, because the work had to be done in an extremely radioactive environment, conditions too extreme for conventional robots. For this reason, we developed highly radiation-resistant repair robots capable of fully remote-controlled operation inside the barrels of the dissolvers, which have the inconvenient shape of 270 mm inside diameter and 6 m length. The process for developing the six different repair robots and the their functions are described in this paper. This development was sponsored by the Power Reactor and Nuclear Fuel Development Corporation (PNC) under contract with Hitachi, Ltd. (author)

  20. Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities †

    Directory of Open Access Journals (Sweden)

    Filippo Sanfilippo

    2017-03-01

    Full Text Available In nature, snakes can gracefully traverse a wide range of different and complex environments. Snake robots that can mimic this behaviour could be fitted with sensors and transport tools to hazardous or confined areas that other robots and humans are unable to access. In order to carry out such tasks, snake robots must have a high degree of awareness of their surroundings (i.e., perception-driven locomotion and be capable of efficient obstacle exploitation (i.e., obstacle-aided locomotion to gain propulsion. These aspects are pivotal in order to realise the large variety of possible snake robot applications in real-life operations such as fire-fighting, industrial inspection, search-and-rescue, and more. In this paper, we survey and discuss the state of the art, challenges, and possibilities of perception-driven obstacle-aided locomotion for snake robots. To this end, different levels of autonomy are identified for snake robots and categorised into environmental complexity, mission complexity, and external system independence. From this perspective, we present a step-wise approach on how to increment snake robot abilities within guidance, navigation, and control in order to target the different levels of autonomy. Pertinent to snake robots, we focus on current strategies for snake robot locomotion in the presence of obstacles. Moreover, we put obstacle-aided locomotion into the context of perception and mapping. Finally, we present an overview of relevant key technologies and methods within environment perception, mapping, and representation that constitute important aspects of perception-driven obstacle-aided locomotion.

  1. Future use of robots in the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, M P

    1982-01-01

    The future will see a dramatic increase in the number of robots used in the automotive industry. Well established applications, such as resistance spot welding, will continue to grow in the short term. Longer term, the much wider use of structural adhesives will supplant the spot welding process with robots applying the adhesives. Practical perception systems will enhance robot performance in arc welding, grinding, fettling, seam sealing and assembly operations, leading again to robot growth as vital elements of truly flexible manufacturing systems (FMS). A major robotic impact will be made in automotive paint shops as the need to conserve energy increases. The development of alternative painting materials, offering improved performance will add further impetus. Robotics of the future will progressively move to a CAD/CAM orientated data base, offering off-line programming capability, which together with essential inspection elements, will provide the means for totally automatic manufacture.

  2. Approaches to probabilistic model learning for mobile manipulation robots

    CERN Document Server

    Sturm, Jürgen

    2013-01-01

    Mobile manipulation robots are envisioned to provide many useful services both in domestic environments as well as in the industrial context. Examples include domestic service robots that implement large parts of the housework, and versatile industrial assistants that provide automation, transportation, inspection, and monitoring services. The challenge in these applications is that the robots have to function under changing, real-world conditions, be able to deal with considerable amounts of noise and uncertainty, and operate without the supervision of an expert. This book presents novel learning techniques that enable mobile manipulation robots, i.e., mobile platforms with one or more robotic manipulators, to autonomously adapt to new or changing situations. The approaches presented in this book cover the following topics: (1) learning the robot's kinematic structure and properties using actuation and visual feedback, (2) learning about articulated objects in the environment in which the robot is operating,...

  3. R and D on robots for nuclear power plants in 'advanced robot technology' project

    International Nuclear Information System (INIS)

    Ando, Hiroaki

    1987-01-01

    The project aims at developing a safe man-robot system of high mobility and workability, highly adaptable to the working environment, and readily and reliably remote-controlled. The plan is to develop 'multi-purpose robots' that can do monitoring, inspection and light work quickly and correctly in areas where access of humans is difficult (e.g. hot spots and the inner space of the primary containment vessel), and 'robots used exclusively for valves, pumps, and other equipment, multi-functional to be used only for specific purposes'. This can be expected to be completed on the basis of results in research and development for the multi-purpose robots. R and D on the total system means manufacturing an optimum system with sufficient functions and performance required for the robot by combining existing technologies most adequately on the basis of the results of research and development on the project. After conceptual drawing and conceptual design, the system will be manufactured and demonstration tests will be completed by fiscal 1987 or 1988. This report describes the total image of the robots concerning the shape, locomotion, manipulation, perception, communication, control management, reliability and environmental durability, and then outlines the research and development activities regarding locomotion, manipulator, tectile sensor, actuator, single-eye three-dimensional measurement, visual data processing, optical spacial transmission, failure repair controller, functional reduction, robot health care and radiation resistance. (Nogami, K.)

  4. Robot-operated quality control station based on the UTT method

    Science.gov (United States)

    Burghardt, Andrzej; Kurc, Krzysztof; Szybicki, Dariusz; Muszyńska, Magdalena; Nawrocki, Jacek

    2017-03-01

    This paper presents a robotic test stand for the ultrasonic transmission tomography (UTT) inspection of stator vane thickness. The article presents the method of the test stand design in Autodesk Robot Structural Analysis Professional 2013 software suite. The performance of the designed test stand solution was simulated in the RobotStudio software suite. The operating principle of the test stand measurement system is presented with a specific focus on the measurement strategy. The results of actual wall thickness measurements performed on stator vanes are presented.

  5. Numerical simulation for design of biped locomotion robots

    International Nuclear Information System (INIS)

    Kume, Etsuo; Takanishi, Atsuo

    1993-01-01

    A mechanical design study of anthropomorphic walking robots for patrol and inspection in nuclear facilities is being performed at Computing and Information Systems Center (CISC) of JAERI. We mainly focus on developing a software system to find a stable walking pattern, given robot models described by links, joints and so on. One of the features of our software is that some of the body elements, such as actuators and sensors, can be modeled as material particles as well as rigid bodies. The other is that our software has the cabability of obtaining unknown part of robot motions under given part of robot motions, satisfying a stable constraint. In this paper, we present the numerical models and the simulated results. (orig.)

  6. Development of robots for nuclear power plants

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi

    1982-01-01

    In nuclear power plants, the reduction of maintenance time, the reduction of radiation exposure and man-power saving are increasingly required. To achieve these purposes, various remote-controlled devices, such as robots in a broad sense, have been earnestly developed. Of these, three machines for replacing, four devices for inspection, two systems for cleaning, and two equipment for processing are tabulated in this paper. Typical eight machines or equipment are briefly introduced, mainly describing their features or characteristics. Those are: a remotely handling machine for control rod drive mechanism, an automatic refueling machine, an automatic ultrasonic flaw detection system replacing for a manually operated testing system for the welded parts of primary cooling system, an automatic cask washing machine for decontamination, a floor-type remote inspection vehicle for various devices operating inside power plants, a monorail-type remote inspection vehicle for inspection in spaces where floor space is short, and a remote-controlled automatic pipe welding machine for welding operations in a radioactive environment such as replacing the piping of primary cooling system. Most of these devices serves for radiation exposure reduction at the same time. Existing nuclear power plant design assumes direct manual maintenance, which limits the introduction of robots. Future nuclear power plants should be designed on the assumption of automatic remote-controlled tools and devices being used in maintenance work. (Wakatsuki, Y.)

  7. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  8. Intelligent control system for nuclear power plant mobile robot

    International Nuclear Information System (INIS)

    Koenig, A.; Lecoeur-Taibi, I.; Crochon, E.; Vacherand, F.

    1991-01-01

    In order to fully optimize the efficiency of the perception and navigation components available on a mobile robot, the upper level of a mobile robot control requires intelligence support to unload the work of the teleoperator. This knowledge-based system has to manage a priori data such as the map of the workspace, the mission, the characteristics of sensors and robot, but also, the current environment state and the running mission. It has to issue a plan to drive the sensors to focus on relevant objects or to scan the environment and to select the best algorithms depending on the current situation. The environment workspace is a nuclear power plant building. The teleoperated robot is a mobile wheeled or legged vehicle that moves inside the different floors of the building. There are three types of mission: radio-activity survey, inspection and intervention. To perform these goals the robot must avoid obstacles, pass through doors, possibly climb stairs and recognize valves and pipes. The perception control system has to provide the operator with a synthetic view of the surroundings. It manages background tasks such as obstacle detection and free space map building, and specific tasks such as beacon recognition for odometry relocalization and valve detection for maintenance. To do this, the system solves perception resources conflicts, taking into account the current states of the sensors and the current conditions such as lightness or darkness, cluttered scenes, sensor failure. A perception plan is issued from the mission goals, planned path, relocalization requirements and available perception resources. Basically, the knowledge-based system is implemented on a blackboard architecture which includes two parts: a top-down planning part and a bottom-up perception part. The results of the perception are continuously sent to the operator who can trigger new perception actions. (author)

  9. Research project RoboGas{sup Inspector}. Gas leak detection with autonomous mobile robots; Forschungsprojekt RoboGas{sup Inspector}. Gaslecksuche mit autonomen mobilen Robotern

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Abdelkarim [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Bonow, Gero; Kroll, Andreas [Fachgebiet Mess- und Regelungstechnik, Universitaet Kassel, Kassel (Germany); Hegenberg, Jens; Schmidt, Ludger [Fachgebiet Mensch-Maschine-Systemtechnik, Universitaet Kassel, Kassel (Germany); Barz, Thomas; Schulz, Dirk [Fraunhofer FKIE, Unbemannte Systeme, Wachtberg (Germany)

    2013-05-15

    As part of the promotional program AUTONOMIK of the Federal Ministry of Economics and Technology (Berlin, Federal Republic of Germany) a consortium of nine project partners developed a prototype of an autonomous mobile robot looking for gas leaks in extended industrial equipment. The autonomous mobility of the system for any systems was implemented using different types of sensors for self-localization and navigation. The tele-operation enables a manual intervention in the process. The robot performs inspection tasks in industrial plants by means of video technology and remote gas measurement technology without driving into the possible risk areas and without the presence of humans. The robot can be used for routine inspections of facilities or for the targeted inspection of specific plant components. Thanks to the remote sensing technique also plant components can be inspected which are difficult to be inspected due to their limited accessibility by conventional measurement techniques.

  10. System safety analysis of an autonomous mobile robot

    International Nuclear Information System (INIS)

    Bartos, R.J.

    1994-01-01

    Analysis of the safety of operating and maintaining the Stored Waste Autonomous Mobile Inspector (SWAMI) II in a hazardous environment at the Fernald Environmental Management Project (FEMP) was completed. The SWAMI II is a version of a commercial robot, the HelpMate trademark robot produced by the Transitions Research Corporation, which is being updated to incorporate the systems required for inspecting mixed toxic chemical and radioactive waste drums at the FEMP. It also has modified obstacle detection and collision avoidance subsystems. The robot will autonomously travel down the aisles in storage warehouses to record images of containers and collect other data which are transmitted to an inspector at a remote computer terminal. A previous study showed the SWAMI II has economic feasibility. The SWAMI II will more accurately locate radioactive contamination than human inspectors. This thesis includes a System Safety Hazard Analysis and a quantitative Fault Tree Analysis (FTA). The objectives of the analyses are to prevent potentially serious events and to derive a comprehensive set of safety requirements from which the safety of the SWAMI II and other autonomous mobile robots can be evaluated. The Computer-Aided Fault Tree Analysis (CAFTA copyright) software is utilized for the FTA. The FTA shows that more than 99% of the safety risk occurs during maintenance, and that when the derived safety requirements are implemented the rate of serious events is reduced to below one event per million operating hours. Training and procedures in SWAMI II operation and maintenance provide an added safety margin. This study will promote the safe use of the SWAMI II and other autonomous mobile robots in the emerging technology of mobile robotic inspection

  11. Panoramic optical-servoing for industrial inspection and repair

    Science.gov (United States)

    Sallinger, Christian; O'Leary, Paul; Retschnig, Alexander; Kammerhofer, Martin

    2004-05-01

    Recently specialized robots were introduced to perform the task of inspection and repair in large cylindrical structures such as ladles, melting furnaces and converters. This paper reports on the image processing system and optical servoing for one such a robot. A panoramic image of the vessels inner surface is produced by performing a coordinated robot motion and image acquisition. The level of projective distortion is minimized by acquiring a high density of images. Normalized phase correlation calculated via the 2D Fourier transform is used to calculate the shift between the single images. The narrow strips from the dense image map are then stitched together to build the panorama. The mapping between the panoramic image and the positioning of the robot is established during the stitching of the images. This enables optical feedback. The robots operator can locate a defect on the surface by selecting the area of the image. Calculation of the forward and inverse kinematics enable the robot to automatically move to the location on the surface requiring repair. Experimental results using a standard 6R industrial robot have shown the full functionality of the system concept. Finally, were test measurements carried out successfully, in a ladle at a temperature of 1100° C.

  12. PROTECTION OF PUBLIC INTEREST GUARANTEED BY ENVIRONMENTAL INSPECTION AND RELEVANT INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Ulsi Manja

    2017-12-01

    Full Text Available Albania's natural environment and resources are vital to its economic success and the health and well-being of its citizens. Environmental crime threatens resources on which it is heavily dependent on the pillars of the Albanian economy and acts as a major obstacle and obstacle as Albania moves towards an efficient economy with resources, employment and safe growth. The greatest challenges in today's environment do not conspire in natural disasters, but in the grave, immoral and inexperienced behavior of man to the environment and its elements. Impotence is another important element of this story that is killing us every day, though it does not seem to touch us with any expected tree, no bird that no longer has to stand, no fish that took the river's river hydroelectric power plant.... Inspection in particular, is an important part of environmental protection, because in my view it is the key to everything, based on the ever-popular popular expression "fear preserves the vineyard". The impotence of environmental crime is one of the most important advantages and methods for preserving environmental elements. Inspection in the entirety of many advantages in other instrument reports as a previously studied, well-defined, non-corroborated inspection is efficient both for the environment and economic efficiency, as it affects the ability to increase revenue publicity, transparency, flexibility, etc. Inspection today is considered to be the only pathway that affects law enforcement by all actors set out in it. It is the only tool that, having the authority to take administrative or criminal measures, directly affects the work and life of the objects subject to inspection. In this context, inspection has been successfully used to address a wide range of environmental crime, including waste disposal, water pollution and air emissions.

  13. Dynamic navigation simulation of an articulated multi-link arm for in-vessel inspection tasks in a Tokamak

    International Nuclear Information System (INIS)

    Rastogi, Naveen; Prakash, Ravi; Dutta, Pramit; Virpara, Nirav

    2013-01-01

    This paper is part of the remote handling (RH) activities towards preparedness for the future fusion machines. The aim of the R and D program performed is to demonstrate the feasibility of the inspection tasks inside the Vacuum Vessel. Due to the toroidal geometry and huge dimensions of the Vacuum Vessel, there is an inevitable need of a precise and fast automated articulated inspection system that can perform the required inspection tasks without damaging the surface and to maintain the machine availability for the maximum time. When considering generic Tokamak relevant conditions, the set of major challenges for the Remote Equipment is to sustain the severe operating conditions: ultra high vacuum, temperature and tritium level. The limited number of machine access ports and the very constrained environment complicate the introduction of a robot into the machine. The Multi Link inspection arm is required to be deployed in the bounded environment inside the Tokamak Vessel. This paper presents the development of software for implementation of autonomous navigation motion control algorithms based design simulations for the inspection Arm for routine inspection tasks, navigation to the targeted coordinates inside the Vessel, clash avoidance and to perform other auxiliary mechanical tasks. The software is also capable to store the joints and frame locations at every interval which can be used for the real time control application. The developed software has the flexibility to work with any number of links and joints. (author)

  14. Safety assessment of a robotic system handling nuclear material

    International Nuclear Information System (INIS)

    Atcitty, C.B.; Robinson, D.G.

    1996-01-01

    This paper outlines the use of a Failure Modes and Effects Analysis for the safety assessment of a robotic system being developed at Sandia National Laboratories. The robotic system, The Weigh and Leak Check System, is to replace a manual process at the Department of Energy facility at Pantex by which nuclear material is inspected for weight and leakage. Failure Modes and Effects Analyses were completed for the robotics process to ensure that safety goals for the system had been meet. These analyses showed that the risks to people and the internal and external environment were acceptable

  15. Anthropomorphism in Human-Robot Co-evolution.

    Science.gov (United States)

    Damiano, Luisa; Dumouchel, Paul

    2018-01-01

    Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents - social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots "social presence" and "social behaviors" that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of 'applied anthropomorphism' as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a "cheating" technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns "anthropomorphism-based" social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, "synthetic ethics," which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth.

  16. Robot hunts sludge and hoses it away

    International Nuclear Information System (INIS)

    Trovato, S.A.

    1988-01-01

    Engineers are frustrated by the need to maintain equipment that tools can only reach with difficulty and that human hands cannot reach at all. Accessibility for inspection and maintenance is a frequently overlooked factor in the design of many types of equipment. Such is the case with pressurized-water-reactor (PWR) nuclear power plants that use steam generators. The steam generators form the boundary between the nuclear reactor coolant system and the secondary turbine cycle. Inspection and maintenance are hindered not only by inaccessibility but by radiation as well. To facilitate inspection and maintenance on the secondary side of these generators, Consolidated Edison of New York has collaborated in the development of a robot called Cecil - the Con Edison Combined Inspection and Lancing system. This article describe CECIL

  17. Employing innovative techniques to reduce inspection times

    International Nuclear Information System (INIS)

    Heumueller, R.; Guse, G.; Dirauf, F.; Fischer, E.

    1997-01-01

    Shorter inspection periods mean lower revision costs and less tight revision schedules, but must not detract from the quality of inspection findings. This requirement imposes upon the company performing the inspection the need for top achievements both in quality management and in the use of innovative techniques. Flexible equipment systems and inspection techniques adapted to specific purposes are able to reduce inspection times in many inspection jobs. As part of a complete system designed to reduce inspection times, the new Saphir (Siemens Alok Phased Array Integrated Reliable UT-System) inspection equipment system is the core of most of the recent innovations. Being an integrated inspection equipment system, it is able to handle conventional US probes as well as arrays and phased arrays. It is open for further matching to specific inspection and administrative requirements and developments, and it may be incorporated in the network of an integrated system with a database. A technological leap in probe design in the past few years has allowed controllable wave fields to be generated which are in no way inferior to those of conventional probes with fixed angles of incidence. In this way, a number of inspection techniques can be implemented with a single probe. This reduces inspection times, setup and retooling times, and doses. Typical examples already used in practice are the LLT (longitudinal-longitudinal-transverse waves) technique and the integration of inspections for longitudinal and transverse defects in a single run. In the near future, surfaces with complicated curvatures will be inspected by novel modular robot systems consisting of individual modules of linear axes and rotational axes. (orig.) [de

  18. Generation IV SFR Nuclear Reactors: Under Sodium Robotics for ASTRID

    International Nuclear Information System (INIS)

    Jouan-de-Kervenoael, T.; Rey, F.; Baque, F.

    2013-06-01

    For non-removable components of the future ASTRID prototype, repair operations will be performed in a gas environment. If the faulty area is located under the sodium free level, the gas-tight system will have to contain the inspection and repair tools and to protect them from the surrounding liquid sodium. Concerning repair tools, the unique laser tool has been selected for future SFRs: the repair scenario for in-sodium structures will first involve removing the sodium (after bulk draining), then machining and finally welding. Concerning conventional tools (brush or gas blower for sodium removal, milling machine for machining and TIG for welding for which its feasibility was demonstrated in the 1990's) are still considered as a back-up solution. The maintenance of future ASTRID nuclear reactor prototype (inspection, repair) will be performed during shut down periods with some robotic carriers which have to be introduced within the main vessel, in primary 200 deg. C sodium coolant with argon gas cover. Inspection campaigns will be 20 days long. These robots (or carriers) will allow bringing inspection and repairing tools up to concerned components and structures. The needed degrees of freedom associated to these operations will be assumed either directly by the carrier itself or by specifics lower end carrier device for accurate local positioning. Several carriers will be designed, well adapted to specific needs: type of maintenance operation and location of inspection and repair sites. Feedback experience was gained during Superphenix SFR operation with the MIR robot which allowed to successfully make the Non Destructive Examination of main vessel welding joints, the carrier being outside bulk sodium. Operating conditions for the ASTRID robots will be harder from those of the MIR robot: temperature ranging from 180 deg. C to 200 deg. C, radiation dose ranging from 105 to 106 Gy, but mainly direct immersion within liquid sodium coolant. At the design phase of

  19. Mechanical deployment system on aries an autonomous mobile robot

    International Nuclear Information System (INIS)

    Rocheleau, D.N.

    1995-01-01

    ARIES (Autonomous Robotic Inspection Experimental System) is under development for the Department of Energy (DOE) to survey and inspect drums containing low-level radioactive waste stored in warehouses at DOE facilities. This paper focuses on the mechanical deployment system-referred to as the camera positioning system (CPS)-used in the project. The CPS is used for positioning four identical but separate camera packages consisting of vision cameras and other required sensors such as bar-code readers and light stripe projectors. The CPS is attached to the top of a mobile robot and consists of two mechanisms. The first is a lift mechanism composed of 5 interlocking rail-elements which starts from a retracted position and extends upward to simultaneously position 3 separate camera packages to inspect the top three drums of a column of four drums. The second is a parallelogram special case Grashof four-bar mechanism which is used for positioning a camera package on drums on the floor. Both mechanisms are the subject of this paper, where the lift mechanism is discussed in detail

  20. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    Science.gov (United States)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  1. Development of an ISI robot for the fast breeder reactor MONJU primary heat transfer system piping

    International Nuclear Information System (INIS)

    Tagawa, Akihiro; Ueda, Masashi; Yamashita, Takuya; Narisawa, Masataka; Haga, Kouichi

    2011-01-01

    This paper describes the development of a new inspection robot for the In-Service Inspection of the heat transfer system of the Fast Breeder Reactor MONJU. The inspection was carried out using a tire-type ultrasonic sensor for volumetric tests at high temperature (atmosphere, 55degC; piping surface, 80degC) and radiation exposure condition (dose rate, 10 mGy/h; piping surface dose rate, 15 mGy/h). An inspection robot using a new tire type for the ultrasonic testing sensor and a new control method was developed. A signal-to-noise ratio S/N over 2 was obtained during the functional test for a calibration defect with a depth of 50%t (from the tube wall thickness). In the automatic inspection test, an EDM slit with a depth of 9% from the pipe thickness was detectable and with an S/N ratio = 4.0 (12.0 dB). (author)

  2. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  3. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  4. Anthropomorphism in Human–Robot Co-evolution

    Directory of Open Access Journals (Sweden)

    Luisa Damiano

    2018-03-01

    Full Text Available Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth.

  5. Anthropomorphism in Human–Robot Co-evolution

    Science.gov (United States)

    Damiano, Luisa; Dumouchel, Paul

    2018-01-01

    Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth. PMID:29632507

  6. Wireless Communication Enhancement Methods for Mobile Robots in Radiation Environments

    CERN Document Server

    Nattanmai Parasuraman, Ramviyas; Ferre, Manuel

    In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs ...

  7. Construction inspection manual of procedures

    Science.gov (United States)

    2009-01-01

    This manual provides highway construction personnel with relevant, practical information in order to perform accurate inspections and provide relevant construction procedural information for the various roadway and structures items of work. It is the...

  8. Rail-guided robotic end-effector position error due to rail compliance and ship motion

    NARCIS (Netherlands)

    Borgerink, Dian; Stegenga, J.; Brouwer, Dannis Michel; Woertche, H.J.; Stramigioli, Stefano

    2014-01-01

    A rail-guided robotic system is currently being designed for the inspection of ballast water tanks in ships. This robotic system will manipulate sensors toward the interior walls of the tank. In this paper, the influence of rail compliance on the end-effector position error due to ship movement is

  9. Uncertainty covariances in robotics applications

    International Nuclear Information System (INIS)

    Smith, D.L.

    1984-01-01

    The application of uncertainty covariance matrices in the analysis of robot trajectory errors is explored. First, relevant statistical concepts are reviewed briefly. Then, a simple, hypothetical robot model is considered to illustrate methods for error propagation and performance test data evaluation. The importance of including error correlations is emphasized

  10. The technology of mobile robot with articulated crawler mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Suh, Yong Chil; Lee, Yung Kwang; Sin, Jae Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-01-01

    The main application of a mobile robot are to do the inspection and maintenance tasks in the primary and auxiliary building, and to meet with the radiological emergency response in nuclear power plant. Our project to develop crawler-type mobile robot has been divided into 3 phases. In 1 st phase, the-state-of-the-arts of mobile robot technology were studied and analyzed. And then the technical report `development of mobile robot technology for the light work` was published on July, 1993. In current phase, the articulated crawler type mobile robot named as ANDROS Mark VI was purchased to evaluate deeply its mechanism and control system. Then we designed the autonomous track surface, to get the inclination angle of robot, and to control the front and rear auxiliary track autonomously during climbing up and down stairs. And also, the autonomous stair-climbing algorithm has been developed to going over stairs with high stability. For the final phase, the advanced model of articulated crawler type mobile robot is going to be developed. (Author) 13 refs., 30 figs., 12 tabs.

  11. The technology of mobile robot with articulated crawler mechanism

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Byung Soo; Kim, Chang Hoi; Hwang, Suk Yong; Suh, Yong Chil; Lee, Yung Kwang; Sin, Jae Ho

    1995-01-01

    The main application of a mobile robot are to do the inspection and maintenance tasks in the primary and auxiliary building, and to meet with the radiological emergency response in nuclear power plant. Our project to develop crawler-type mobile robot has been divided into 3 phases. In 1 st phase, the-state-of-the-arts of mobile robot technology were studied and analyzed. And then the technical report 'development of mobile robot technology for the light work' was published on July, 1993. In current phase, the articulated crawler type mobile robot named as ANDROS Mark VI was purchased to evaluate deeply its mechanism and control system. Then we designed the autonomous track surface, to get the inclination angle of robot, and to control the front and rear auxiliary track autonomously during climbing up and down stairs. And also, the autonomous stair-climbing algorithm has been developed to going over stairs with high stability. For the final phase, the advanced model of articulated crawler type mobile robot is going to be developed. (Author) 13 refs., 30 figs., 12 tabs

  12. Kinematic and Dynamic Analysis of a Cable-Climbing Robot

    Directory of Open Access Journals (Sweden)

    Xu Fengyu

    2015-07-01

    Full Text Available To inspect broken cables or a cracked protective layer on cable-stayed bridges, a cable-climbing robot has been proposed and designed. In this paper, the complex 3D obstacles that may be encountered on cables are theoretically described, in order to investigate the obstacle-climbing capability of the cable-climbing robot. A climbing model is then proposed and used to design the robot. In the climbing model, two driven wheels are independently supported with a spring. Kinematics and dynamics models are further derived for the obstacle-climbing capabilities of the driving and driven wheels of the robot. In addition, the robot's obstacle-climbing tracks and its obstacle-climbing performance are simulated. Payload and obstacle-climbing experiments were conducted on the climbing robot in the laboratory. Based on the results of the simulation and the experiments, we obtained the variation of the driving torque in obstacle climbing. The contribution of this paper is intended to provide a basis for the precise motion control of the robot.

  13. Robotics in the nuclear environment-inspection and repairs inside the primary coolant system

    International Nuclear Information System (INIS)

    Guillet, J.; Marcel Tortolano

    2005-01-01

    The increase in the lifetime of the power plants and the ageing of materials require the intervention inside the components to carry out controls and possibly repairs in the event of discovered defects. Within this framework, EDF is investigating the feasibility of robotized repairs of the components and pipes of the main primary coolant system of a nuclear power plant. For several years, EDF R and D has engaged projects whose subject of study is the possibility of repairing components such as the main vessel; the pressurizer or the primary coolant pipes with the help of robots and dedicated tools. INTERVENTIONS INSIDE PRIMARY COOLANT PIPES: Studies undertaken by EDF highlighted that certain zones, particularly in pipe connections, can be affected by thermal fatigue which causes crackling defects or crackings. In anticipation of this phenomenon which would affect primary pipes and to avoid their replacements, EDF R and D has been studying the feasibility of examining and repairing these zones using robots. Robotized repair consists in introducing into the pipe while passing by the vessel, a 6 degrees of freedom manipulator mounted on a mobile carrier. This robot implements and carries out the trajectories of the different processes of repair: - Precise localization of the defects, - Elimination (possibly sampling) of the defects by machining, - Control that the defects were eliminated, - Weld metal buildup if the repair cavity is too deep, - Grinding followed by a new control of the surface. These studies and tests were conducted in the laboratory of EDF R and D in Chatou. The sequence of operations included machining by grinding and milling, profilometric control, dye penetrant testing, TIG welding and ultrasonic examinations. The results of the tests, executed on full scale models of components, are satisfactory and show the advantages of robotics compared with classical methods. ROBOTIZED INTERVENTIONS IN THE REACTOR VESSEL: Another difficult issue is the

  14. Sprint: The first flight demonstration of the external work system robots

    Science.gov (United States)

    Price, Charles R.; Grimm, Keith

    1995-01-01

    The External Works Systems (EWS) 'X Program' is a new NASA initiative that will, in the next ten years, develop a new generation of space robots for active and participative support of zero g external operations. The robotic development will center on three areas: the assistant robot, the associate robot, and the surrogate robot that will support external vehicular activities (EVA) prior to and after, during, and instead of space-suited human external activities respectively. The EWS robotics program will be a combination of technology developments and flight demonstrations for operational proof of concept. The first EWS flight will be a flying camera called 'Sprint' that will seek to demonstrate operationally flexible, remote viewing capability for EVA operations, inspections, and contingencies for the space shuttle and space station. This paper describes the need for Sprint and its characteristics.

  15. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  16. Remotely deployable aerial inspection using tactile sensors

    Science.gov (United States)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Sullivan, J. C.; Pipe, A. G.; Dobie, G.; Summan, R.

    2014-02-01

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  17. Advanced robotics R+D at KfK

    International Nuclear Information System (INIS)

    Rininsland, H.; Smidt, D.; Trauboth, H.; Kernforschungszentrum Karlsruhe G.m.b.H.; Kernforschungszentrum Karlsruhe G.m.b.H.

    1987-01-01

    Particular considerations for teleoperated and very long reach robotic systems are given. Robotic systems involving long reach referred to, include the TFTR maintenance boom developed for the Princeton fusion reactor and future automated cranes and bridge inspection equipment. A project to develop such long reach booms currently involves Putzmeister and the NRC, who will be responsible for developing the collision avoidance algorithms as part of a 'computer aided telemanipulation' approach. Problems encountered with operating equipment of this kind remotely were addressed during the recent Chernobyl disaster at which a range of equipment developed by Putzmeister was applied to combat the disaster. (orig./HP)

  18. Computer-controlled wall servicing robot

    Energy Technology Data Exchange (ETDEWEB)

    Lefkowitz, S. [Pentek, Inc., Corapolis, PA (United States)

    1995-03-01

    After four years of cooperative research, Pentek has unveiled a new robot with the capability to automatically deliver a variety of cleaning, painting, inspection, and surveillance devices to large vertical surfaces. The completely computer-controlled robot can position a working tool on a 50-foot tall by 50-foot wide vertical surface with a repeatability of 1/16 inch. The working end can literally {open_quotes}fly{close_quotes} across the face of a wall at speed of 60 per minute, and can handle working loads of 350 pounds. The robot was originally developed to decontaminate the walls of reactor fueling cavities at commercial nuclear power plants during fuel outages. If these cavities are left to dry after reactor refueling, contamination present in the residue could later become airborne and move throughout the containment building. Decontaminating the cavity during the refueling outage reduces the need for restrictive personal protective equipment during plant operations to limit the dose rates.

  19. Inspection and repairing method and device for inside of nuclear reactor

    International Nuclear Information System (INIS)

    Ito, Shin; Yuguchi, Yasuhiro; Sato, Katsuhiko

    1996-01-01

    A swimming robot handling device is disposed on a floor of a reactor pit floor or a reactor floor. A swimming robot is connected to a winding device of a composite cable incorporating optical fibers. The swimming robot comprises a robot propulsion device for propelling the robot itself, a laser beam irradiating optical device for irradiating pulsative laser beams introduced by an optical fiber and an antenna mechanism having ultrasonic probe in an antenna-like shape. The swimming robot is lowered in a reactor filled with water and caused to swim to a portion to be welded, and pulsative laser beams are irradiated to the portion to be welded in a state where the antenna mechanism is brought into contact with the portion to be welded to improve the state of stresses on the surface. Further, the ultrasonic oscillations generated upon irradiation of the laser beams are measured using the ultrasonic probe to perform physical inspection. The surface of the portion to be welded can be modified or repaired stably and efficiently by remote control. (N.H.)

  20. Design, Modeling and Control of a Biped Line-Walking Robot

    Directory of Open Access Journals (Sweden)

    Ludan Wang

    2010-12-01

    Full Text Available The subject of this paper is the design and analysis of a biped line walking robot for inspection of power transmission lines. With a novel mechanism the centroid of the robot can be concentrated on the axis of hip joint to minimize the drive torque of the hip joint. The mechanical structure of the robot is discussed, as well as forward kinematics. Dynamic model is established in this paper to analyze the inverse kinematics for motion planning. The line-walking cycle of the line-walking robot is composed of a single-support phase and a double-support phase. Locomotion of the line-walking robot is discussed in details and the obstacle-navigation process is planed according to the structure of power transmission line. To fulfill the demands of line-walking, a control system and trajectories generation method are designed for the prototype of the line-walking robot. The feasibility of this concept is then confirmed by performing experiments with a simulated line environment.

  1. University of Florida, University research program in robotics. Annual technical progress report

    International Nuclear Information System (INIS)

    Crane, C.D. III; Tulenko, J.S.

    1994-05-01

    Progress is reported in the areas of environmental hardening, database, world modeling, vision, man-machine interface, advanced liquid metal reactor inspection robot, and articulated transporter/manipulator system (ATMS) development

  2. University of Florida, University research program in robotics. Annual technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Crane, C.D. III; Tulenko, J.S.

    1994-05-01

    Progress is reported in the areas of environmental hardening, database, world modeling, vision, man-machine interface, advanced liquid metal reactor inspection robot, and articulated transporter/manipulator system (ATMS) development.

  3. In-pile inspections of the Calder and Chapelcross nuclear reactors

    International Nuclear Information System (INIS)

    Stewart, G.

    1984-01-01

    The subject is discussed under the headings: introduction (relevant data about the reactors); inspection policy; photographic inspection (equipment; inspection results (vessel seam welds and plates; top dome welds; top dome internals)); ultrasonic equipment; manipulator; television inspections; concluding remarks. (U.K.)

  4. Exploring the ethical landscape of robot-assisted Search and Rescue

    NARCIS (Netherlands)

    Harbers, M.; Greeff, J. de; Kruijff-Korbayová, I.; Neerincx, M.A.; Hindriks, K.V.

    2017-01-01

    As robots are increasingly used in Search and Rescue (SAR) missions, it becomes highly relevant to study how SAR robots can be developed and deployed in a responsible way. In contrast to some other robot application domains, e.g. military and healthcare, the ethics of robot-assisted SAR are

  5. Research and development of advanced robots for nuclear power plants

    International Nuclear Information System (INIS)

    Tsukune, Hideo; Hirukawa, Hirohisa; Kitagaki, Kosei; Liu, Yunhui; Onda, Hiromu; Nakamura, Akira

    1994-01-01

    Social and economic demands have been pressing for automation of inspection tasks, maintenance and repair jobs of nuclear power plants, which are carried out by human workers under circumstances with high radiation level. Since the plants are not always designed for introduction of automatic machinery, sophisticated robots shall play a crucial role to free workers from hostile environments. We have been studying intelligent robot systems and regarded nuclear industries as one of the important application fields where we can validate the feasibility of the methods and systems we have developed. In this paper we firstly discuss on the tasks required in nuclear power plants. Secondly we introduce current status of R and D on special purpose robots, versatile robots and intelligent robots for automatizing the tasks. Then we focus our discussions on three major functions in realizing robotized assembly tasks under such unstructured environments as in nuclear power plants; planning, vision and manipulation. Finally we depict an image of a prototype robot system for nuclear power plants based on the advanced functions. (author) 64 refs

  6. Robotic Comfort Zones

    National Research Council Canada - National Science Library

    Likhachev, Maxim; Arkin, Ronald C

    2006-01-01

    .... A review of the existing study of human comfort, especially regarding its presence in infants, is conducted with the goal being to determine the relevant characteristics for mapping it onto the robotics domain...

  7. DOE EM industry programs robotics development

    International Nuclear Information System (INIS)

    Staubly, R.; Kothari, V.

    1998-01-01

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy's (DOE's) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution

  8. Instruction understanding for intelligent robots in nuclear facilities

    International Nuclear Information System (INIS)

    Kambayashi, Shaw; Abe, Yasuaki

    1993-01-01

    As a first step to realize an autonomous mobile robot for plant maintenance, where the robot is capable to understand instructions written in natural languages, we have developed a prototype of instruction understanding system which makes the robot construct its motion sequences to approach instrumentations and inspect them from input sentences written in Japanese. In the prototype system, the instruction understanding and planning capabilities are integrated by an inference engine which consists of a cyclic operation of three processings, i.e., sensing, decision, and execution. Based on environmental data and current states of the robot, a proper process such as natural language processing is triggered by the decision part of the inference engine to accomplish the input instructions. The multiple- and dynamic-planning capabilities, which are necessary to cope with dynamic changes of environments surrounding the robot, are achieved by utilizing the cyclic inference engine together with a set of the inference packets which keep intermediate results of natural language processing and planning for respective input instructions. (orig.)

  9. Experiences concerning reactor pressure vessel head penetration inspections; Erfahrungen mit Pruefungen von Reaktordruckbehaelter-Deckeldurchfuehrungen

    Energy Technology Data Exchange (ETDEWEB)

    Debnar, Angelika [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2009-07-01

    Globally observed damage at the control rod drive mechanism nozzles in PWR-type reactors (Bugey-3, Oconee 1,2,3 and ANO-1, David Besse) have triggered enhanced inspection of reactor pressure vessel (RPV) head penetrations. In Germany the regulations require a periodic inspection especially of dissimilar welds. Westinghouse has developed an automated measuring system for RPV heads aimed to inspect welded joints at open nozzles of nozzles with thermosleeves. The testing technology with remote controlled robotics is supposed to perform a weld inspection as complete as possible, restraints result from constructive difficulties for the accessibility. The new gap-scanner DE2008 was qualified at the mock-up and was implemented into the periodic in-service inspection of Neckarwestheim-1.

  10. Interim evaluation report on research and development of robots serviceable under extreme conditions; Kyokugen sagyo robot no kenkyu kaihatsu chukan hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    The research and development project for robots serviceable under extreme conditions are aimed at development of the robots for commercial nuclear power plants, where they are remotely controlled by the operators to implement advanced works, e.g., maintenance, inspection and repair of the facilities; supporting development of submarine oil fields, where they are remotely controlled by the operators to implement advanced works, e.g., maintenance, inspection and repair of the facilities; and for prevention of hazards at oil-producing plants, where they are remotely controlled by the operators to implement advanced works, e.g., controlling hazards, should they occur, and supporting hazard-preventive works. It is also aimed at development of the basic techniques for, e.g., those related to the system structures, and controlling and supporting the other systems. The project has been comprehensively evaluated for the achievements made so far. The individual elementary techniques for the robots for nuclear power plants, submarine oil field development and hazard prevention, and the basic techniques for these systems, are developed as planned as of the end of FY 1987 for the objects in the interim stage, based on the evaluation of the individual techniques developed before. Therefore, the bright prospects are obtained for achieving the final objectives by the end of the project period. (NEDO)

  11. Autonomous flying robots

    CERN Document Server

    Nonami, Kenzo; Suzuki, Satoshi; Wang, Wei; Nakazawa, Daisuke

    2010-01-01

    Worldwide demand for robotic aircraft such as unmanned aerial vehicles (UAVs) and micro aerial vehicles (MAVs) is surging. Not only military but especially civil applications are being developed at a rapid pace. Unmanned vehicles offer major advantages when used for aerial surveillance, reconnaissance, and inspection in complex and inhospitable environments. UAVs are better suited for dirty or dangerous missions than manned aircraft and are more cost-effective. UAVs can operate in contaminated environments, for example, and at altitudes both lower and higher than those typically traversed by m

  12. Generic Techniques for the Calibration of Robots with Application of the 3-D Fixtures and Statistical Technique on the PUMA 500 and ARID Robots

    Science.gov (United States)

    Tawfik, Hazem

    1991-01-01

    A relatively simple, inexpensive, and generic technique that could be used in both laboratories and some operation site environments is introduced at the Robotics Applications and Development Laboratory (RADL) at Kennedy Space Center (KSC). In addition, this report gives a detailed explanation of the set up procedure, data collection, and analysis using this new technique that was developed at the State University of New York at Farmingdale. The technique was used to evaluate the repeatability, accuracy, and overshoot of the Unimate Industrial Robot, PUMA 500. The data were statistically analyzed to provide an insight into the performance of the systems and components of the robot. Also, the same technique was used to check the forward kinematics against the inverse kinematics of RADL's PUMA robot. Recommendations were made for RADL to use this technique for laboratory calibration of the currently existing robots such as the ASEA, high speed controller, Automated Radiator Inspection Device (ARID) etc. Also, recommendations were made to develop and establish other calibration techniques that will be more suitable for site calibration environment and robot certification.

  13. Human - Robot Proximity

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    The media and political/managerial levels focus on the opportunities to re-perform Denmark through digitization. Feeding assistive robotics is a welfare technology, relevant to citizens with low or no function in their arms. Despite national dissemination strategies, it proves difficult to recruit...... the study that took place as multi-sited ethnography at different locations in Denmark and Sweden. Based on desk research, observation of meals and interviews I examine socio-technological imaginaries and their practical implications. Human - robotics interaction demands engagement and understanding...

  14. Development of long range arms for inspection and light intervention in hazardous environment

    Energy Technology Data Exchange (ETDEWEB)

    Yann Perrot [CEA-DRT (France); Jean Jacques Cordier [CEA-DSM (France); Jim Palmer [EFDA-CSU (Germany); Gerard Piolain [COGEMA (France)

    2006-07-01

    Full text of publication follows: The Robotics and Interactive systems Department of CEA is in charge of the development of remote technologies in order to meet the nuclear industry requirements. This paper reports the recent Research and Development activities in advanced robotics systems for inspection or light intervention in hazardous environment with limited access. COGEMA, the French leading company in nuclear fuel manufacturing and reprocessing industry, expressed the need to carry out in its hot cells, light interventions with a long reach manipulator. It may be used as extending existing manipulators accessibility or allow easy interventions into a cell without any device for manipulation. The requested system has to be deployed through horizontal small diameter wall engineering penetrations in a wide range of hot cells. In order to meet these requirements, CEA has developed a very challenging robotic carrier (called P.A.C.) which is able to perform light intervention tasks inside high range of blind hot cells. This long reach multi-link carrier with 11 joints is less than 30 kg weight and is actuated by electrical motors. It includes on-board hardened control electronics qualified up to 10 kGy. It can be remotely operated by means of a control system which includes a graphical user interface providing virtual 3D display as well as on-line collision avoidance capabilities and real-time dynamic simulation. This allows intuitive driving of the arm around the obstacles (pipes, tubs...). An industrial PAC robot is currently under development and will be a 10 meter long robot made of 7 modules with 15 actuated joints. The second project takes place in the Remote Handling (RH) activities for the next step of the fusion reactor as ITER. The aim of the R and D program performed under EFDA work programme is to demonstrate the feasibility of close inspection (e.g. for viewing and leak testing) of the Divertor cassettes and the Vacuum Vessel first wall of ITER. To

  15. Development of long range arms for inspection and light intervention in hazardous environment

    International Nuclear Information System (INIS)

    Yann Perrot; Jean Jacques Cordier; Jim Palmer; Gerard Piolain

    2006-01-01

    Full text of publication follows: The Robotics and Interactive systems Department of CEA is in charge of the development of remote technologies in order to meet the nuclear industry requirements. This paper reports the recent Research and Development activities in advanced robotics systems for inspection or light intervention in hazardous environment with limited access. COGEMA, the French leading company in nuclear fuel manufacturing and reprocessing industry, expressed the need to carry out in its hot cells, light interventions with a long reach manipulator. It may be used as extending existing manipulators accessibility or allow easy interventions into a cell without any device for manipulation. The requested system has to be deployed through horizontal small diameter wall engineering penetrations in a wide range of hot cells. In order to meet these requirements, CEA has developed a very challenging robotic carrier (called P.A.C.) which is able to perform light intervention tasks inside high range of blind hot cells. This long reach multi-link carrier with 11 joints is less than 30 kg weight and is actuated by electrical motors. It includes on-board hardened control electronics qualified up to 10 kGy. It can be remotely operated by means of a control system which includes a graphical user interface providing virtual 3D display as well as on-line collision avoidance capabilities and real-time dynamic simulation. This allows intuitive driving of the arm around the obstacles (pipes, tubs...). An industrial PAC robot is currently under development and will be a 10 meter long robot made of 7 modules with 15 actuated joints. The second project takes place in the Remote Handling (RH) activities for the next step of the fusion reactor as ITER. The aim of the R and D program performed under EFDA work programme is to demonstrate the feasibility of close inspection (e.g. for viewing and leak testing) of the Divertor cassettes and the Vacuum Vessel first wall of ITER. To

  16. Robotics: The next step?

    Science.gov (United States)

    Broeders, Ivo A M J

    2014-02-01

    Robotic systems were introduced 15 years ago to support complex endoscopic procedures. The technology is increasingly used in gastro-intestinal surgery. In this article, literature on experimental- and clinical research is reviewed and ergonomic issues are discussed. literature review was based on Medline search using a large variety of search terms, including e.g. robot(ic), randomized, rectal, oesophageal, ergonomics. Review articles on relevant topics are discussed with preference. There is abundant evidence of supremacy in performing complex endoscopic surgery tasks when using the robot in an experimental setting. There is little high-level evidence so far on translation of these merits to clinical practice. Robotic systems may appear helpful in complex gastro-intestinal surgery. Moreover, dedicated computer based technology integrated in telepresence systems opens the way to integration of planning, diagnostics and therapy. The first high tech add-ons such as near infrared technology are under clinical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A study on improvements of inspection efficiency with remote transmission of inspection data

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro

    2010-01-01

    Current information networks technology brought secure and convenient condition of information transmission, so that inspectorates intend to apply such technology to optimize current inspection efforts. IAEA established the Remote Monitoring Project (RMP) in 1996 and started to draft safeguards concepts, and approaches to refer the implementation of remote monitoring technology and to compromise with relationship between current inspection activities and the remote monitoring technologies. Although communications costs and conditions of secured communication should be further investigated, the technologies would have a possibility to reduce current inspection efforts. We would face at the step to study on the several issues such as what measures could be candidate to use, how much cost we needs, what kind of technical risks would be concerned, further improvements could be achieved by comparison with current inspection costs and effectiveness. This paper reports on the expectation points and relevant technical attention points which are related to apply unattended inspection system with remote data transmission to the flows and inventory verification of item and bulk facility, respectively, in order to improve inspection efforts. (author)

  18. Effects of Robot Facial Characteristics and Gender in Persuasive Human-Robot Interaction

    Directory of Open Access Journals (Sweden)

    Aimi S. Ghazali

    2018-06-01

    Full Text Available The growing interest in social robotics makes it relevant to examine the potential of robots as persuasive agents and, more specifically, to examine how robot characteristics influence the way people experience such interactions and comply with the persuasive attempts by robots. The purpose of this research is to identify how the (ostensible gender and the facial characteristics of a robot influence the extent to which people trust it and the psychological reactance they experience from its persuasive attempts. This paper reports a laboratory study where SociBot™, a robot capable of displaying different faces and dynamic social cues, delivered persuasive messages to participants while playing a game. In-game choice behavior was logged, and trust and reactance toward the advisor were measured using questionnaires. Results show that a robotic advisor with upturned eyebrows and lips (features that people tend to trust more in humans is more persuasive, evokes more trust, and less psychological reactance compared to one displaying eyebrows pointing down and lips curled downwards at the edges (facial characteristics typically not trusted in humans. Gender of the robot did not affect trust, but participants experienced higher psychological reactance when interacting with a robot of the opposite gender. Remarkably, mediation analysis showed that liking of the robot fully mediates the influence of facial characteristics on trusting beliefs and psychological reactance. Also, psychological reactance was a strong and reliable predictor of trusting beliefs but not of trusting behavior. These results suggest robots that are intended to influence human behavior should be designed to have facial characteristics we trust in humans and could be personalized to have the same gender as the user. Furthermore, personalization and adaptation techniques designed to make people like the robot more may help ensure they will also trust the robot.

  19. Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System

    Directory of Open Access Journals (Sweden)

    Manuel F. Silva

    2012-01-01

    Full Text Available This paper presents a climbing robot with wheeled locomotion and adhesion through permanent magnets, developed with the intention of being used in the inspection of different types of man-made ferromagnetic structures, such as towers for wind turbines, fuel storage tanks, and ship hulls. In this paper are presented the main considerations thought for its project, as well as several constructive aspects, among which are detailed its mechanical and electrical construction, the implemented control architecture, and the human-machine interface developed for the manual and automatic control of the vehicle while in operation. Although it can be manually controlled, the vehicle is designed to have a semiautonomous behavior, allowing a remote inspection process controlled by a technician, this way reducing the risks associated with the human inspection of tall structures and ATEX places. The distinguishing characteristic of this robot is its dynamic adjustment system of the permanent magnets in order to assure the machine adhesion to the surfaces, even when crossing slightly irregular and curved surfaces with a large radius.

  20. Robot-arm-based mobile HTS SQUID system for NDE of structures

    Energy Technology Data Exchange (ETDEWEB)

    Yotsugi, K; Hatsukade, Y; Tanaka, S [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp

    2008-02-01

    A robot-arm-based mobile HTS SQUID system was developed for NDE of fixed targets. To realize the system, active magnetic shielding technique using fluxgate as reference sensor for ambient field was applied to a cryocooler-based HTS SQUID gradiometer that was mounted on commercial robot-arm. In this technique, ambient field noise and pulse noise of 550 nT from robot were measured by the fluxgate near the SQUID, and then the fluxgate output was negatively fed back to generate compensation field around the SQUID and fluxgate. The noise from robot was reduced by a factor of about 20 and the shielding technique enabled the HTS SQUID to move in unshielded environment by the robot-arm without flux-trapping or unlocking at 10 mm/s. System noise measurement and inspection of hidden cracks in multi-layer composite-metal structure were demonstrated using the mobile SQUID-NDE system.

  1. DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    DEFF Research Database (Denmark)

    Dang, Vinh Quang

    problem is to minimize the total traveling time of the single mobile robot and thereby increase its availability. For the second scheduling problem, a fleet of mobile robots is considered together with a set of machines to carry out different types of tasks, e.g. pre-assembly or quality inspection. Some...... problem and finding optimal solutions for each one. However, the formulated mathematical models could only be applicable to small-scale problems in practice due to the significant increase of computation time as the problem size grows. Note that making schedules of mobile robots is part of real-time....... For the first scheduling problem, a single mobile robot is considered to collect and transport container of parts and empty them into machine feeders where needed. A limit on carrying capacity of the single mobile robot and hard time windows of part-feeding tasks are considered. The objective of the first...

  2. The development of advanced robotic technology -The development of advanced robotics for the nuclear industry-

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Bum; Kim, Woong Ki; Park, Soon Yong; Kim, Seung Ho; Kim, Chang Hoi; Hwang, Suk Yeoung; Kim, Byung Soo; Lee, Young Kwang

    1994-07-01

    In this year (the second year of this project), researches and development have been carried out to establish the essential key technologies applied to robot system for nuclear industry. In the area of robot vision, in order to construct stereo vision system necessary to tele-operation, stereo image acquisition camera module and stereo image displayer have been developed. Stereo matching and storing programs have been developed to analyse stereo images. According to the result of tele-operation experiment, operation efficiency has been enhanced about 20% by using the stereo vision system. In a part of object recognition, a tele-operated robot system has been constructed to evaluate the performance of the stereo vision system and to develop the vision algorithm to automate nozzle dam operation. A nuclear fuel rod character recognition system has been developed by using neural network. As a result of perfomance evaluation of the recognition system, 99% recognition rate has been achieved. In the area of sensing and intelligent control, temperature distribution has been measured by using the analysis of thermal image histogram and the inspection algorithm has been developed to determine of the state be normal or abnormal, and the fuzzy controller has been developed to control the compact mobile robot designed for path moving on block-typed path. (Author)

  3. Two-dimensional laser servoing for precision motion control of an ODV robotic license plate recognition system

    Science.gov (United States)

    Song, Zhen; Moore, Kevin L.; Chen, YangQuan; Bahl, Vikas

    2003-09-01

    As an outgrowth of series of projects focused on mobility of unmanned ground vehicles (UGV), an omni-directional (ODV), multi-robot, autonomous mobile parking security system has been developed. The system has two types of robots: the low-profile Omni-Directional Inspection System (ODIS), which can be used for under-vehicle inspections, and the mid-sized T4 robot, which serves as a ``marsupial mothership'' for the ODIS vehicles and performs coarse resolution inspection. A key task for the T4 robot is license plate recognition (LPR). For a successful LPR task without compromising the recognition rate, the robot must be able to identify the bumper locations of vehicles in the parking area and then precisely position the LPR camera relative to the bumper. This paper describes a 2D-laser scanner based approach to bumper identification and laser servoing for the T4 robot. The system uses a gimbal-mounted scanning laser. As the T4 robot travels down a row of parking stalls, data is collected from the laser every 100ms. For each parking stall in the range of the laser during the scan, the data is matched to a ``bumper box'' corresponding to where a car bumper is expected, resulting in a point cloud of data corresponding to a vehicle bumper for each stall. Next, recursive line-fitting algorithms are used to determine a line for the data in each stall's ``bumper box.'' The fitting technique uses Hough based transforms, which are robust against segmentation problems and fast enough for real-time line fitting. Once a bumper line is fitted with an acceptable confidence, the bumper location is passed to the T4 motion controller, which moves to position the LPR camera properly relative to the bumper. The paper includes examples and results that show the effectiveness of the technique, including its ability to work in real-time.

  4. Robots and the Limits of Morality

    DEFF Research Database (Denmark)

    Rodogno, Raffaele

    2016-01-01

    In this chapter, I ask whether we can coherently conceive of robots as moral agents and as moral patients. I answer both questions negatively but conditionally: for as long as robots lack certain features, they can be neither moral agents nor moral patients. These answers, of course, are not new...... and biological bases of moral practices and arguing that the relevant differences in such bases are sufficient, for the time being, to exclude robots from adopting, both, an active and a passive moral role....

  5. Comparison of codes and standards for radiographic inspection

    International Nuclear Information System (INIS)

    Bingoeldag, M. M.; Aksu, M.; Akguen, A. F.

    1995-01-01

    This report compares the procedurel requirements and acceptance criteria for radiographic inspections specified in the relevant national and international codes and standards. In particular, detailed analysis of inspection conditions such as exposure arrangements, and contrast requirements are given

  6. Image processing algorithm design and implementation for real-time autonomous inspection of mixed waste

    International Nuclear Information System (INIS)

    Schalkoff, R.J.; Shaaban, K.M.; Carver, A.E.

    1996-01-01

    The ARIES number-sign 1 (Autonomous Robotic Inspection Experimental System) vision system is used to acquire drum surface images under controlled conditions and subsequently perform autonomous visual inspection leading to a classification as 'acceptable' or 'suspect'. Specific topics described include vision system design methodology, algorithmic structure,hardware processing structure, and image acquisition hardware. Most of these capabilities were demonstrated at the ARIES Phase II Demo held on Nov. 30, 1995. Finally, Phase III efforts are briefly addressed

  7. Remote repair robots for dissolvers in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Sugiyama, Sen; Hirose, Yasuo; Kawamura, Hironobu; Minato, Akira; Ozaki, Norihiko.

    1984-01-01

    In nuclear facilities, for the purpose of the reduction of radiation exposure of workers, the shortening of working time and the improvement of capacity ratio of the facilities, the technical development of various devices for remote maintenance and inspection has been advanced so far. This time, an occasion came to inspect and repair the pinhole defects occurred in spent fuel dissolving tanks in the reprocessing plant of Tokai Establishment, Power Reactor and Nuclear Fuel Development Corp. However, since the radiation environmental condition and the restricting condition due to the object of repair were extremely severe, it was impossible to cope with them using conventional robot techniques. Consequently, a repair robot withstanding high level radiation has been developed anew, which can work by totally remote operation in the space of about 270 mm inside diameter and about 6 m length. The repair robot comprises a periscope reflecting mirror system, a combined underwater and atmospheric use television, a grinder, a welder, a liquid penetrant tester and an ultrasonic flaw detector. The key points of the development were the parts withstanding high level radiation and the selection of materials, to make the mechanism small size and the realization of totally remote operation. (Kako, I.)

  8. Study on in-service inspection methods for the above-ground oil tanks floors

    Energy Technology Data Exchange (ETDEWEB)

    Min Xiong; Yewei Kang; Mingchun, Lin; Yi Sun [PetroChina Pipeline R and D Center, Langfang (China)

    2009-07-01

    It is very dangerous to the environment when oil tank floors get corrosion or leak during its long-time service. The traditional inspection methods need to shut down a tank and to empty it, then to clean it in order to inspect the floor. Comparing with the traditional methods, the in-service methods can inspect tank floors rapidly without removing product and opening the tank and can save many costs of tank emptying and cleaning. This paper explores three up-to date in-service inspection methods for the oil tank floors which are acoustic emission technology ultrasonic guided wave technology and mobile robot technology. The theoretic foundation and application status of each method is described. The advantage and disadvantage of each in-service detection technology is concluded. At last some proposals are made. (author)

  9. Mapping of unknown industrial plant using ROS-based navigation mobile robot

    Science.gov (United States)

    Priyandoko, G.; Ming, T. Y.; Achmad, M. S. H.

    2017-10-01

    This research examines how humans work with teleoperated unmanned mobile robot inspection in industrial plant area resulting 2D/3D map for further critical evaluation. This experiment focuses on two parts, the way human-robot doing remote interactions using robust method and the way robot perceives the environment surround as a 2D/3D perspective map. ROS (robot operating system) as a tool was utilized in the development and implementation during the research which comes up with robust data communication method in the form of messages and topics. RGBD SLAM performs the visual mapping function to construct 2D/3D map using Kinect sensor. The results showed that the mobile robot-based teleoperated system are successful to extend human perspective in term of remote surveillance in large area of industrial plant. It was concluded that the proposed work is robust solution for large mapping within an unknown construction building.

  10. Waste tank inspection and characterization with automated UT and robotics

    International Nuclear Information System (INIS)

    McIntosh, J.B.

    1994-01-01

    Equipment and Materials Technology (E ampersand MT of the Westinghouse Savannah river Company) has developed a robotic system to deliver an ultrasonic transducer to the wall of underground storage tanks (USTs). The system is designed to meet the physical and environmental constraints of the USTs and will provide the ability to visually survey the wall, clean the surface and ultrasonically map the wall thickness

  11. Semantic Framework for Social Robot Self-Configuration

    Science.gov (United States)

    Azkune, Gorka; Orduña, Pablo; Laiseca, Xabier; Castillejo, Eduardo; López-de-Ipiña, Diego; Loitxate, Miguel; Azpiazu, Jon

    2013-01-01

    Healthcare environments, as many other real world environments, present many changing and unpredictable situations. In order to use a social robot in such an environment, the robot has to be prepared to deal with all the changing situations. This paper presents a robot self-configuration approach to overcome suitably the commented problems. The approach is based on the integration of a semantic framework, where a reasoner can take decisions about the configuration of robot services and resources. An ontology has been designed to model the robot and the relevant context information. Besides rules are used to encode human knowledge and serve as policies for the reasoner. The approach has been successfully implemented in a mobile robot, which showed to be more capable of solving situations not pre-designed. PMID:23760085

  12. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  13. Robots in P.W.R. nuclear powerplants

    International Nuclear Information System (INIS)

    Dubourg, M.

    1987-01-01

    The satisfactory operation of 37 900-MWe PWR powerplants in France, Belgium and South-Africa and the start-up of 1300 MWe powerplants allowed the development of a wide range of automatic units and robots for the periodic maintenance of nuclear plants, reducing the risk of ionizing radiation for the personnel. A large number of automated tools have been built. Among them: - inspection and maintenance systems for the tube bundle of steam generators, - robotized arms ROTETA and ROMEO for the heavy maintenance and delicate operations such as tube extraction or shot peening of tubes to improve their resistance to corrosion; - the versatile manipulator T.A.M. with electrically controlled articulations. The development of functionally versatile tools and robots and the integration of new technologies such as 3-D vision allowed the construction of the self-guided vehicle FRASTAR capable of moving within a nuclear building and in a cluttered environment. This vehicle includes means for avoiding isolated obstacles and can move on stairs [fr

  14. Robotics research in Chile

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar

    2016-12-01

    Full Text Available The development of research in robotics in a developing country is a challenging task. Factors such as low research funds, low trust from local companies and the government, and a small number of qualified researchers hinder the development of strong, local research groups. In this article, and as a case of study, we present our research group in robotics at the Advanced Mining Technology Center of the Universidad de Chile, and the way in which we have addressed these challenges. In 2008, we decided to focus our research efforts in mining, which is the main industry in Chile. We observed that this industry has needs in terms of safety, productivity, operational continuity, and environmental care. All these needs could be addressed with robotics and automation technology. In a first stage, we concentrate ourselves in building capabilities in field robotics, starting with the automation of a commercial vehicle. An important outcome of this project was the earn of the local mining industry confidence. Then, in a second stage started in 2012, we began working with the local mining industry in technological projects. In this article, we describe three of the technological projects that we have developed with industry support: (i an autonomous vehicle for mining environments without global positioning system coverage; (ii the inspection of the irrigation flow in heap leach piles using unmanned aerial vehicles and thermal cameras; and (iii an enhanced vision system for vehicle teleoperation in adverse climatic conditions.

  15. Control of free-flying space robot manipulator systems

    Science.gov (United States)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  16. In-service inspection guidelines for composite aerospace structures

    International Nuclear Information System (INIS)

    Heida, Jaap H.; Platenkamp, Derk J.

    2012-01-01

    The in-service inspection of composite aerospace structures is reviewed, using the results of a evaluation of promising, mobile non-destructive inspection (NDI) methods. The evaluation made use of carbon fibre reinforced specimens representative for primary composite aerospace structures, including relevant damage types such as impact damage, delaminations and disbonds. A range of NDI methods were evaluated such as visual inspection, vibration analysis, phased array ultrasonic inspection, shearography and thermography inspection. Important aspects of the evaluation were the capability for defect detection and characterization, portability of equipment, field of view, couplant requirements, speed of inspection, level of training required and the cost of equipment. The paper reviews the damage tolerance design approach for composites, and concludes with guidelines for the in-service inspection of composite aerospace structures.

  17. Human-robot skills transfer interfaces for a flexible surgical robot.

    Science.gov (United States)

    Calinon, Sylvain; Bruno, Danilo; Malekzadeh, Milad S; Nanayakkara, Thrishantha; Caldwell, Darwin G

    2014-09-01

    In minimally invasive surgery, tools go through narrow openings and manipulate soft organs to perform surgical tasks. There are limitations in current robot-assisted surgical systems due to the rigidity of robot tools. The aim of the STIFF-FLOP European project is to develop a soft robotic arm to perform surgical tasks. The flexibility of the robot allows the surgeon to move within organs to reach remote areas inside the body and perform challenging procedures in laparoscopy. This article addresses the problem of designing learning interfaces enabling the transfer of skills from human demonstration. Robot programming by demonstration encompasses a wide range of learning strategies, from simple mimicking of the demonstrator's actions to the higher level imitation of the underlying intent extracted from the demonstrations. By focusing on this last form, we study the problem of extracting an objective function explaining the demonstrations from an over-specified set of candidate reward functions, and using this information for self-refinement of the skill. In contrast to inverse reinforcement learning strategies that attempt to explain the observations with reward functions defined for the entire task (or a set of pre-defined reward profiles active for different parts of the task), the proposed approach is based on context-dependent reward-weighted learning, where the robot can learn the relevance of candidate objective functions with respect to the current phase of the task or encountered situation. The robot then exploits this information for skills refinement in the policy parameters space. The proposed approach is tested in simulation with a cutting task performed by the STIFF-FLOP flexible robot, using kinesthetic demonstrations from a Barrett WAM manipulator. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. A haptic sensing upgrade for the current EOD robotic fleet

    Science.gov (United States)

    Rowe, Patrick

    2014-06-01

    The past decade and a half has seen a tremendous rise in the use of mobile manipulator robotic platforms for bomb inspection and disposal, explosive ordnance disposal, and other extremely hazardous tasks in both military and civilian settings. Skilled operators are able to control these robotic vehicles in amazing ways given the very limited situational awareness obtained from a few on-board camera views. Future generations of robotic platforms will, no doubt, provide some sort of additional force or haptic sensor feedback to further enhance the operator's interaction with the robot, especially when dealing with fragile, unstable, and explosive objects. Unfortunately, the robot operators need this capability today. This paper discusses an approach to provide existing (and future) robotic mobile manipulator platforms, with which trained operators are already familiar and highly proficient, this desired haptic and force feedback capability. The goals of this technology are to be rugged, reliable, and affordable. It should also be able to be applied to a wide range of existing robots with a wide variety of manipulator/gripper sizes and styles. Finally, the presentation of the haptic information to the operator is discussed, given the fact that control devices that physically interact with the operators are not widely available and still in the research stages.

  19. Dynamic Arc Fitting Path Follower for Skid-Steered Mobile Robots

    Directory of Open Access Journals (Sweden)

    Peter Lepej

    2015-10-01

    Full Text Available Many applications, such as surveillance, inspection or search and rescue operations, can be performed with autonomous robots. Our aim is a control of modular autonomous systems in rescue robotics. One of the basic problems with autonomous robotics is the execution part where the control commands (translation and rotational velocities are produced for mobile bases. Therefore we have focused on this area because there is only a small amount of available path following software for skid-steered mobile robots. Our goal was to develop a velocity controller that could be used for multiple skid-steered mobile bases. We considered differential drive mobile bases such as tracked skid-steering mobile bases. Our approach is based on an arc fitting algorithm, which takes into account the robot constraints and kinematical model. It produces a continuous trajectory where fitting to the given path is adapted based on given parameters. Moreover, we have included orientation angle compensation while the mobile robot is moving and ground inclination compensation. Our rescue robot is described, together with the simulation setup and algorithm implementation. We compared our algorithm to the Hector-based software and curvature velocity approach. The results for the proposed algorithm are shown for the simulation results and the experiment.

  20. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  1. Teleoperated Visual Inspection and Surveillance with Unmanned Ground and Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viatcheslav Tretyakov

    2008-11-01

    Full Text Available This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV and an Unmanned Aerial Vehicles (UAV. The paper focuses on three topics of the inspection with the combined UGV and UAV: (A teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C the architecture and hardware of the UAV

  2. Gesture-Based Extraction of Robot Skill Parameters for Intuitive Robot Programming

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Rath; Krüger, Volker

    2015-01-01

    a working system capable of TbD would be ideal. Contrary to current TbD approaches, that generally aim to recognize both action and where it is applied, we propose a division of labor, where the operator manually specifies the action the robot should perform, while gestures are used for specifying...... the relevant action parameter (e.g. on which object to apply the action). Using this two-step method has the advantages that there is no uncertainty of which action the robot will perform, it takes into account that the environment changes, so objects do not need to be at predefined locations......, and the parameter specification is possible even for inexperienced users. Experiments with 24 people in 3 different environments verify that it is indeed intuitive, even for a robotics novice, to program a mobile manipulator using this method....

  3. Remote-automation of nuclear power plant equipment inspection and maintenance

    International Nuclear Information System (INIS)

    Sasaki, Masayoshi; Kawamura, Hironobu; Nakano, Yoshiyuki; Izumi, Shigeru.

    1984-01-01

    The remotely operated automation of the checkup and maintenance of nuclear power generation facilities has largely contributed to the rise of capacity ratio of plants due to the shortening of regular inspection period and to the reduction of radiation exposure dose during working, the labor saving in working and so on. In this paper, the new technologies adopted in an automatic fuel exchanger, a remotely operated automatic CRD exchanger, a new type channel handling machine, pressure-withstanding main steam line plugs and so on for No.2 plant in the Fukushima No.2 Nuclear Power Station, Tokyo Electric Power Co., Inc., are reported. Besides, the state of development of new remotely operated automatic machines for nuclear power use, such as CRD disassembling and cleaning device, volume reduction equipment for spent fuel channel boxes and control rods, multi-functional robots for use under high radiation and so on is described. Also the trend of development of latest robot technology which will be put in practical use in near future is outlined, such as a running manipulator for checkup and inspection, a variable form crawler vehicle and a five-leg movable manipulator. (Kako, I.)

  4. 3rd IFToMM Symposium on Mechanism Design for Robotics

    CERN Document Server

    Ceccarelli, Marco

    2015-01-01

    This volume contains the Proceedings of the 3rd IFToMM Symposium on Mechanism Design for Robotics, held in Aalborg, Denmark, 2-4 June, 2015. The book contains papers on recent advances in the design of mechanisms and their robotic applications. It treats the following topics: mechanism design, mechanics of robots, parallel manipulators, actuators and their control, linkage and industrial manipulators, innovative mechanisms/robots and their applications, among others. The book can be used by researchers and engineers in the relevant areas of mechanisms, machines and robotics.

  5. The development of remote controlled linear guide and mast vertical guide of repair robot for RV head CRDM nozzle region in NPP

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Seo, Yong Chil; Shin, Ho Cheol; Lee, Sung Uk; Jung, Kyung Min

    2006-11-01

    Reactor vessel which is core instrument in NPP must maintains integrity in the high temperature, high pressure and high radiation environment. Therefore RV must be inspected periodically. If there is defect, the RV must be repaired. A remote controlled linear guide and a vertical guide were developed for a welding repair robot of the RV head CRDM nozzle region. During inspection/maintenance, the RV head is placed RV head storage which is a double circled concrete structure. A linear guide was developed to provide a linear motion to the repair robot, which locates the robot under the RV head. The linear guide also provides a strong support to the robot not to overturn when the robot repairs the RV head. The robot needs lifting about 2m to reach the CRDM nozzle, therefore a vertical guide was developed. For easy traveling, the linear guide is designed 4 parts and the vertical guide is designed 3 parts. A control system was developed to remotely control the guide system which is composed of a connecter box, cables, control box, a computer and a control program. A monitoring system was developed to monitor operation of the guide system

  6. The development of remote controlled linear guide and mast vertical guide of repair robot for RV head CRDM nozzle region in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Seo, Yong Chil; Shin, Ho Cheol; Lee, Sung Uk; Jung, Kyung Min

    2006-11-15

    Reactor vessel which is core instrument in NPP must maintains integrity in the high temperature, high pressure and high radiation environment. Therefore RV must be inspected periodically. If there is defect, the RV must be repaired. A remote controlled linear guide and a vertical guide were developed for a welding repair robot of the RV head CRDM nozzle region. During inspection/maintenance, the RV head is placed RV head storage which is a double circled concrete structure. A linear guide was developed to provide a linear motion to the repair robot, which locates the robot under the RV head. The linear guide also provides a strong support to the robot not to overturn when the robot repairs the RV head. The robot needs lifting about 2m to reach the CRDM nozzle, therefore a vertical guide was developed. For easy traveling, the linear guide is designed 4 parts and the vertical guide is designed 3 parts. A control system was developed to remotely control the guide system which is composed of a connecter box, cables, control box, a computer and a control program. A monitoring system was developed to monitor operation of the guide system.

  7. Visual inspection of vessel internals; Visuelle Inspektion von Kerneinbauten

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, G. [Siemens AG KWU, Erlangen (Germany)

    1999-08-01

    Visual inspection has matured to a qualified testing method and has become a standard method for inspection of reactor pressure vessels. Until today, all known defects in RPV internals have been detected by visual inspection. The codes KTA 3204 and DIN 25435-4 describe the framework conditions and requirements for visual inspections, which should be adhered to to the most possible extent. Visual inspections are carried by now at all RPV internals, also at those where access is difficult and limited. The inspection robot SUSI is applied in most cases. The camera and manipulator technology meanwhile has been upgraded to a standard performance quality allowing reliable, fast and easy visual inspection. The personnel is trained accordingly, so as to keep abreast with enhancements. Qualification of the inspection system has been simplified and standardised to a large extent. (orig/CB) [Deutsch] Die Sichtpruefung ist zu einem qualifizierten Pruefverfahren gereift und hat bei der Inspektion der RDB-Einbauten einen festen Platz eingenommen. Bisher wurden alle bekannten Schaeden an den RDB-Einbauten bei der Sichtpruefung festgestellt. In der KTA 3204 und der DIN 25435-4 sind die Rahmenbedingungen und Anforderungen an die Sichtpruefung beschrieben, die es gilt, weitestgehend einzuhalten. Mittlerweile werden an allen RDB-Einbauten, auch an den nur bedingt zugaenglichen, Sichtpruefungen vorgenommen. Dabei hat das Inspektionsfahrzeug SUSI inzwischen den breitesten Raum eingenommen. Die Entwicklung der Kamera- und Manipulatortechnik hat inzwischen einen Stand erreicht, der eine sichere, schnelle und einfache Sichtpruefung zulaesst. Das Pruefpersonal wird laufend fuer die Sichtpruefung geschult und qualifiziert. Die Qualifizierung des Inspektionssystems wurde weitestgehend vereinfacht und standardisiert. (orig.)

  8. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available of thickness up to 200mm can be cut to create prototype chassis/ bodies or even the final product. One of the few limitations is the cutting of certain laminated materials, as this tends to produce delaminated cutting edges or even fractures in the case... mine inspection robot (Shongololo). Shongololo’s frame is made from engineering plastics while the chassis of Dassie was made from aluminium and cut using abrasive waterjet machining. The advantage of using abrasive waterjet machining is the speed...

  9. 3D printing of soft robotic systems

    Science.gov (United States)

    Wallin, T. J.; Pikul, J.; Shepherd, R. F.

    2018-06-01

    Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.

  10. National Metal Casting Research Institute final report. Development of an automated ultrasonic inspection cell for detecting subsurface discontinuities in cast gray iron. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Burningham, J.S. [University of Northern Iowa, Cedar Falls, IA (United States). Dept. of Industrial Technology

    1995-08-01

    This inspection cell consisted of an ultrasonic flaw detector, transducer, robot, immersion tank, computer, and software. Normal beam pulse-echo ultrasonic nondestructive testing, using the developed automated cell, was performed on 17 bosses on each rough casting. Ultrasonic transducer selection, initial inspection criteria, and ultrasonic flow detector (UFD) setup parameters were developed for the gray iron castings used in this study. The software were developed for control of the robot and UFD in real time. The software performed two main tasks: emulating the manual operation of the UFD, and evaluating the ultrasonic signatures for detecting subsurface discontinuities. A random lot of 105 castings were tested; the 100 castings that passed were returned to the manufacturer for machining into finished parts and then inspection. The other 5 castings had one boss each with ultrasonic signatures consistent with subsurface discontinuities. The cell was successful in quantifying the ultrasonic echo signatures for the existence of signature characteristics consistent with Go/NoGo criteria developed from simulated defects. Manual inspection showed that no defects in the areas inspected by the automated cell avoided detection in the 100 castings machined into finished parts. Of the 5 bosses found to have subsurface discontinuities, two were verified by manual inspection. The cell correctly classified 1782 of the 1785 bosses (99.832%) inspected.

  11. Overview of steam generator tube-inspection technology

    International Nuclear Information System (INIS)

    Obrutsky, L.; Renaud, J.; Lakhan, R.

    2014-01-01

    Degradation of steam generator (SG) tubing due to both mechanical and corrosion modes has resulted in extensive repairs and replacement of SGs around the world. The variety of degradation modes challenges the integrity of SG tubing and, therefore, the stations' reliability. Inspection and monitoring aimed at timely detection and characterization of the degradation is a key element for ensuring tube integrity. Up to the early-70's, the in-service inspection of SG tubing was carried out using single-frequency eddy current testing (ET) bobbin coils, which were adequate for the detection of volumetric degradation. By the mid-80's, additional modes of degradation such as pitting, intergranular attack, and axial and circumferential inside or outside diameter stress corrosion cracking had to be addressed. The need for timely, fast detection and characterization of these diverse modes of degradation motivated the development in the 90's of inspection systems based on advanced probe technology coupled with versatile instruments operated by fast computers and remote communication systems. SG inspection systems have progressed in the new millennium to a much higher level of automation, efficiency and reliability. Also, the role of Non Destructive Evaluation (NDE) has evolved from simple detection tools to diagnostic tools that provide input into integrity assessment decisions, fitness-far-service and operational assessments. This new role was motivated by tighter regulatory requirements to assure the safety of the public and the environment, better SG life management strategies and often self-imposed regulations. It led to the development of advanced probe technologies, more reliable and versatile instruments and robotics, better training and qualification of personnel and better data management and analysis systems. This paper provides a brief historical perspective regarding the evolution of SG inspections and analyzes the motivations behind that evolution. It presents an

  12. 1st AAU Workshop on Human-Centered Robotics

    DEFF Research Database (Denmark)

    The 2012 AAU Workshop on Human-Centered Robotics took place on 15 Nov. 2012, at Aalborg University, Aalborg. The workshop provides a platform for robotics researchers, including professors, PhD and Master students to exchange their ideas and latest results. The objective is to foster closer...... interaction among researchers from multiple relevant disciplines in the human-centered robotics, and consequently, to promote collaborations across departments of all faculties towards making our center a center of excellence in robotics. The workshop becomes a great success, with 13 presentations, attracting...... more than 45 participants from AAU, SDU, DTI and industrial companies as well. The proceedings contain 7 full papers selected out from the full papers submitted afterwards on the basis of workshop abstracts. The papers represent major research development of robotics at AAU, including medical robots...

  13. Assistive Robotics in Robotics for healthcare, roadmap study for the EC

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M. de; Cremers, G.; Rensma, A.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  14. Robot-supported assessment of balance in standing and walking.

    Science.gov (United States)

    Shirota, Camila; van Asseldonk, Edwin; Matjačić, Zlatko; Vallery, Heike; Barralon, Pierre; Maggioni, Serena; Buurke, Jaap H; Veneman, Jan F

    2017-08-14

    Clinically useful and efficient assessment of balance during standing and walking is especially challenging in patients with neurological disorders. However, rehabilitation robots could facilitate assessment procedures and improve their clinical value. We present a short overview of balance assessment in clinical practice and in posturography. Based on this overview, we evaluate the potential use of robotic tools for such assessment. The novelty and assumed main benefits of using robots for assessment are their ability to assess 'severely affected' patients by providing assistance-as-needed, as well as to provide consistent perturbations during standing and walking while measuring the patient's reactions. We provide a classification of robotic devices on three aspects relevant to their potential application for balance assessment: 1) how the device interacts with the body, 2) in what sense the device is mobile, and 3) on what surface the person stands or walks when using the device. As examples, nine types of robotic devices are described, classified and evaluated for their suitability for balance assessment. Two example cases of robotic assessments based on perturbations during walking are presented. We conclude that robotic devices are promising and can become useful and relevant tools for assessment of balance in patients with neurological disorders, both in research and in clinical use. Robotic assessment holds the promise to provide increasingly detailed assessment that allows to individually tailor rehabilitation training, which may eventually improve training effectiveness.

  15. Research and development of service robot platform based on artificial psychology

    Science.gov (United States)

    Zhang, Xueyuan; Wang, Zhiliang; Wang, Fenhua; Nagai, Masatake

    2007-12-01

    Some related works about the control architecture of robot system are briefly summarized. According to the discussions above, this paper proposes control architecture of service robot based on artificial psychology. In this control architecture, the robot can obtain the cognition of environment through sensors, and then be handled with intelligent model, affective model and learning model, and finally express the reaction to the outside stimulation through its behavior. For better understanding the architecture, hierarchical structure is also discussed. The control system of robot can be divided into five layers, namely physical layer, drives layer, information-processing and behavior-programming layer, application layer and system inspection and control layer. This paper shows how to achieve system integration from hardware modules, software interface and fault diagnosis. Embedded system GENE-8310 is selected as the PC platform of robot APROS-I, and its primary memory media is CF card. The arms and body of the robot are constituted by 13 motors and some connecting fittings. Besides, the robot has a robot head with emotional facial expression, and the head has 13 DOFs. The emotional and intelligent model is one of the most important parts in human-machine interaction. In order to better simulate human emotion, an emotional interaction model for robot is proposed according to the theory of need levels of Maslom and mood information of Siminov. This architecture has already been used in our intelligent service robot.

  16. Image formation simulation for computer-aided inspection planning of machine vision systems

    Science.gov (United States)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  17. Application of autonomous robotics to surveillance of waste storage containers for radioactive surface contamination

    International Nuclear Information System (INIS)

    Sweeney, F.J.; Beckerman, M.; Butler, P.L.; Jones, J.P.; Reister, D.B.

    1991-01-01

    This paper describes a proof-of-principal demonstration performed with the HERMIES-III mobile robot to automate the inspection of waste storage drums for radioactive surface contamination and thereby reduce the human burden of operating a robot and worker exposure to potentially hazardous environments. Software and hardware for the demonstration were developed by a team consisting of Oak Ridge National Laboratory, and the Universities of Florida, Michigan, Tennessee, and Texas. Robot navigation, machine vision, manipulator control, parallel processing and human-machine interface techniques developed by the team were demonstrated utilizing advanced computer architectures. The demonstration consists of over 100,000 lines of computer code executing on nine computers

  18. Inspection and repair of nuclear components

    International Nuclear Information System (INIS)

    Lahner, K.; Poetz, F.

    1993-01-01

    Despite careful design, manufacturing and operation, some of the important safety-relevant components show deterioration with time. Because of activation and contamination of these components, their inspection and repair has to be performed with manipulators. Some sophisticated manipulators are described, built by ABB Reaktor and used for inspection, maintenance and repair of PWR steam generators, fuel alignment pins, core baffle former bolts and reactor pressure vessel head penetrations. (Z.S.) 7 figs

  19. Developments of STR project in the scope of teleoperation handling robotic for the operation in Spanish nuclear facilities

    International Nuclear Information System (INIS)

    Bielza, M.; Gomez Santamaria, J.; Izquierdo, J.A.; Martinez, S.; Linares, F.; Avello, A.; Gago, M.J.

    1998-01-01

    The main objective of the Teleoperated Robotic Systems project (SRT) is the development of teleoperated robotic systems for use in the inspection, surveillance and maintenance operations in nuclear and radioactive installations. These systems make possible the reduction of the individual and collective doses of the workers that undertake these operations, as well as an increase of plant availability as it is possible to carry out specific tasks of inspection and surveillance in high radiation dose areas without having to reduce the power of the installation. This project started in 1995, deciding to priorize the inspection equipment in a first phase. When this work were advanced, the development of the manipulation activities was carried out to being consider the nuclear installations needs. As a result of this work, the manipulation requirements were elaborated in order to prepare the beginning technical specifications to design the equipment s. These developments are based on a fixed manipulator which is located closed to the equipment that we want to repair, and an arm manipulator which moves by caterpillars, it is easier to control than others; and the navigation system which allows the robot self-locating in the complex area. In this paper the conclusions about the manipulation requirements are described, as well as the state of the manipulation prototype. (Author)

  20. A remotely operated robot for decontamination tasks

    International Nuclear Information System (INIS)

    Dudar, A.M.; Vandewalle, R.C.

    1994-01-01

    Engineers in the Robotics Development Group at the Westinghouse Savannah River Company (WSRC) have developed a robot which will be used to decontaminate a pipe gallery of a tank farm used for nuclear waste storage. Personnel access is required into this pipe gallery to inspect existing pipes and perform repairs to secondary containment walls around the tank farm. Presently, the pipe gallery is littered with debris of various sizes and its surface is contaminated with activity levels up to 2.5E6 DPM (disintegrations per minute) alpha and exposure levels as high as 20 Rad/hr. Cleaning up this pipe gallery win be the mission of an all-hydraulic robotic vehicle developed in-house at WSRC caged the ''Remote Decon'' robot. The Remote Decon is a tracked vehicle which utilizes skid steering and features a six-degree-of-freedom (DOF) manipulator arm, a five-DOF front end loader type bucket with a rotating brush for scrubbing and decontaminating surfaces, and a three-DOF pan/tilt mechanism with cameras and lights. The Remote Decon system is connected to a control console via a 200 foot tethered cable. The control console was designed with ergonomics and simplicity as the main design factors and features three joysticks, video monitors, LED panels, and audible alarms

  1. Demonstrating the capability and reliability of NDT inspections

    International Nuclear Information System (INIS)

    Wooldridge, A.B.

    1996-01-01

    This paper discusses some recent developments in demonstrating the capability of ultrasonics, eddy currents and radiography both theoretically and in practice, and indicates where further evidence is desirable. Magnox Electric has been involved with development of theoretical models for all three of these inspection methods. Feedback from experience on plant is also important to avoid overlooking any practical limitations of the inspections, and to ensure that the metallurgical characteristics of potential defects have been properly taken into account when designing and qualifying the inspections. For critical applications, inspection techniques are often supported by a Technical Justification which draws on all the relevant theoretical and experimental evidence, as well as experience of inspections on plant. The role of technical justifications is discussed in the context of inspection qualification. (author)

  2. Development of robotic mobile platform with the universal chassis system

    Science.gov (United States)

    Ryadchikov, I.; Nikulchev, E.; Sechenev, S.; Drobotenko, M.; Svidlov, A.; Volkodav, P.; Feshin, A.

    2018-02-01

    The problem of stabilizing the position of mobile devices is extremely relevant at the modern level of technology development. This includes the problem of stabilizing aircraft and stabilizing the pitching of ships. In the laboratory of robotics and mechatronics of the Kuban State University, a robot is developed. The robot has additional internal degrees of freedom, responsible for compensating for deflections - the dynamic stabilization system.

  3. MRT fuel element inspection at Dounreay

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.

    1997-08-01

    To ensure that their production and inspection processes are performed in an acceptable manner, ie. auditable and traceable, the MTR Fuel Element Fabrication Plant at Dounreay operates to a documented quality system. This quality system, together with the fuel element manufacturing and inspection operations, has been independently certified to ISO9002-1987, EN29002-1987 and BS5750:Pt2:1987 by Lloyd`s Register Quality Assurance Limited (LRQA). This certification also provides dual accreditation to the relevant German, Dutch and Australian certification bodies. This paper briefly describes the quality system, together with the various inspection stages involved in the manufacture of MTR fuel elements at Dounreay.

  4. Long-term knowledge acquisition using contextual information in a memory-inspired robot architecture

    Science.gov (United States)

    Pratama, Ferdian; Mastrogiovanni, Fulvio; Lee, Soon Geul; Chong, Nak Young

    2017-03-01

    In this paper, we present a novel cognitive framework allowing a robot to form memories of relevant traits of its perceptions and to recall them when necessary. The framework is based on two main principles: on the one hand, we propose an architecture inspired by current knowledge in human memory organisation; on the other hand, we integrate such an architecture with the notion of context, which is used to modulate the knowledge acquisition process when consolidating memories and forming new ones, as well as with the notion of familiarity, which is employed to retrieve proper memories given relevant cues. Although much research has been carried out, which exploits Machine Learning approaches to provide robots with internal models of their environment (including objects and occurring events therein), we argue that such approaches may not be the right direction to follow if a long-term, continuous knowledge acquisition is to be achieved. As a case study scenario, we focus on both robot-environment and human-robot interaction processes. In case of robot-environment interaction, a robot performs pick and place movements using the objects in the workspace, at the same time observing their displacement on a table in front of it, and progressively forms memories defined as relevant cues (e.g. colour, shape or relative position) in a context-aware fashion. As far as human-robot interaction is concerned, the robot can recall specific snapshots representing past events using both sensory information and contextual cues upon request by humans.

  5. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Science.gov (United States)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  6. Dynamic analysis of a bio-inspired climbing robot using ADAMS-Simulink co-simulation

    Science.gov (United States)

    Chattopadhyay, P.; Dikshit, H.; Majumder, A.; Ghoshal, S.; Maity, A.

    2018-04-01

    Climbing robot has been an area of interest since the demand of inspection of pipeline, nuclear power plant, and various big structure is growing up rapidly. This paper represents the development of a bio-inspired modular robot which mimics inchworm locomotion during climbing. In the present paper, the climbing motion is achieved only on a flat vertical plane by magnetic adhesion principle. The robot is modelled as a 4-link planar mechanism with three revolute joints actuated by DC servo motors. Sinusoidal gait pattern is used to approximate the motion of an inchworm. The dynamics of the robot is presented by using ADAMS/MATLAB co-simulation methodology. The simulation result gives the maximum value of joint torque during one complete cycle of motion. This torque value is used for the selection of servo motor specifications required to build the prototype.

  7. 4th IFToMM International Symposium on Robotics and Mechatronics

    CERN Document Server

    Laribi, Med; Gazeau, Jean-Pierre

    2016-01-01

    This volume contains papers that have been selected after review for oral presentation at ISRM 2015, the Fourth IFToMM International Symposium on Robotics and Mechatronics held in Poitiers, France 23-24 June 2015. These papers  provide a vision of the evolution of the disciplines of robotics and mechatronics, including but not limited to: mechanism design; modeling and simulation; kinematics and dynamics of multibody systems; control methods; navigation and motion planning; sensors and actuators; bio-robotics; micro/nano-robotics; complex robotic systems; walking machines, humanoids-parallel kinematic structures: analysis and synthesis; smart devices; new design; application and prototypes. The book can be used by researchers and engineers in the relevant areas of robotics and mechatronics.

  8. Scaling effects in spiral capsule robots.

    Science.gov (United States)

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  9. Toward Speech and Nonverbal Behaviors Integration for Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2012-09-01

    Full Text Available It is essential to integrate speeches and nonverbal behaviors for a humanoid robot in human-robot interaction. This paper presents an approach using multi-object genetic algorithm to match the speeches and behaviors automatically. Firstly, with humanoid robot's emotion status, we construct a hierarchical structure to link voice characteristics and nonverbal behaviors. Secondly, these behaviors corresponding to speeches are matched and integrated into an action sequence based on genetic algorithm, so the robot can consistently speak and perform emotional behaviors. Our approach takes advantage of relevant knowledge described by psychologists and nonverbal communication. And from experiment results, our ultimate goal, implementing an affective robot to act and speak with partners vividly and fluently, could be achieved.

  10. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  11. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  12. Robotic transthoracic esophagectomy.

    Science.gov (United States)

    Puntambekar, Shailesh; Kenawadekar, Rahul; Kumar, Sanjay; Joshi, Saurabh; Agarwal, Geetanjali; Reddy, Sunil; Mallik, Jainul

    2015-04-23

    We have initially published our experience with the robotic transthoracic esophagectomy in 32 patients from a single institute. The present paper is the extension of our experience with robotic system and to best of our knowledge this represents the largest series of robotic transthoracic esophagectomy worldwide. The objective of this study was to investigate the feasibility of the robotic transthoracic esophagectomy for esophageal cancer in a series of patients from a single institute. A retrospective review of medical records was conducted for 83 esophageal cancer patients who underwent robotic esophagectomy at our institute from December 2009 to December 2012. All patients underwent a thorough clinical examination and pre-operative investigations. All patients underwent robotic esophageal mobilization. En-bloc dissection with lymphadenectomy was performed in all cases with preservation of Azygous vein. Relevant data were gathered from medical records. The study population comprised of 50 men and 33 women with mean age of 59.18 years. The mean operative time was 204.94 mins (range 180 to 300). The mean blood loss was 86.75 ml (range 50 to 200). The mean number of lymph node yield was 18. 36 (range 13 to 24). None of the patient required conversion. The mean ICU stay and hospital stay was 1 day (range 1 to 3) and 10.37 days (range 10 to 13), respectively. A total of 16 (19.28%) complication were reported in these patents. Commonly reported complication included dysphagia, pleural effusion and anastomotic leak. No treatment related mortality was observed. After a median follow-up period of 10 months, 66 patients (79.52%) survived with disease free stage. We found robot-assisted thoracoscopic esophagectomy feasible in cases of esophageal cancer. The procedure allowed precise en-bloc dissection with lymphadenectomy in mediastinum with reduced operative time, blood loss and complications.

  13. Intelligence for Human-Assistant Planetary Surface Robots

    Science.gov (United States)

    Hirsh, Robert; Graham, Jeffrey; Tyree, Kimberly; Sierhuis, Maarten; Clancey, William J.

    2006-01-01

    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area.

  14. Research and development on in-service inspection system for reactor vessel of FBR's

    International Nuclear Information System (INIS)

    Rindo, Hiroshi; Mitabe, Noriaki; Ara, Kuniaki; Nagai, Keiichi; Otaka, Masahiko

    1993-01-01

    In-Service Inspection (ISI) is required for main components and piping of FBRs. Visual test and volumetric examination of the reactor vessel (RV) from the outer surface are to be performed under severe conditions such as limited space, high temperature and high gamma dose rate during the reactor shutdown. Therefore, ISI should be performed by using a remote operation system, and the ISI system should be very compact. PNC has been developing the ISI system to apply to the RV inspection. Verification and performance tests of ISI system were carried out by use of the RV test model. This paper describes the system structure, system verification tests including operation and controlling the inspection robot, the functions of the visual test and the volumetric examination under the high temperature

  15. Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dasari, Venkateswara Rao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-13

    This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.

  16. Optimal inspection planning for onshore pipelines subject to external corrosion

    International Nuclear Information System (INIS)

    Gomes, Wellison J.S.; Beck, André T.; Haukaas, Terje

    2013-01-01

    Continuous operation of pipeline systems involves significant expenditures in inspection and maintenance activities. The cost-effective safety management of such systems involves allocating the optimal amount of resources to inspection and maintenance activities, in order to control risks (expected costs of failure). In this context, this article addresses the optimal inspection planning for onshore pipelines subject to external corrosion. The investigation addresses a challenging problem of practical relevance, and strives for using the best available models to describe random corrosion growth and the relevant limit state functions. A single pipeline segment is considered in this paper. Expected numbers of failures and repairs are evaluated by Monte Carlo sampling, and a novel procedure is employed to evaluate sensitivities of the objective function with respect to design parameters. This procedure is shown to be accurate and more efficient than finite differences. The optimum inspection interval is found for an example problem, and the robustness of this optimum to the assumed inspection and failure costs is investigated. It is shown that optimum total expected costs found herein are not highly sensitive to the assumed costs of inspection and failure. -- Highlights: • Inspection, repair and failure costs of pipeline systems considered. • Optimum inspection schedule (OIS) obtained by minimizing total expected life-cycle costs. • Robustness of OIS evaluated w.r.t. estimated costs of inspection and failure. • Accurate non-conservative models of corrosion growth employed

  17. Control method for biped locomotion robots based on ZMP information

    International Nuclear Information System (INIS)

    Kume, Etsuo

    1994-01-01

    The Human Acts Simulation Program (HASP) started as a ten year program of Computing and Information Systems Center (CISC) at Japan Atomic Energy Research Institute (JAERI) in 1987. A mechanical design study of biped locomotion robots for patrol and inspection in nuclear facilities is being performed as an item of the research scope. One of the goals of our research is to design a biped locomotion robot for practical use in nuclear facilities. So far, we have been studying for several dynamic walking patterns. In conventional control methods for biped locomotion robots, the program control is used based on preset walking patterns, so it dose not have the robustness such as a dynamic change of walking pattern. Therefore, a real-time control method based on dynamic information of the robot states is necessary for the high performance of walking. In this study a new control method based on Zero Moment Point (ZMP) information is proposed as one of real-time control methods. The proposed method is discussed and validated based on the numerical simulation. (author)

  18. Development of automated patrol-type monitoring and inspection system for nuclear power plant and application to actual plant

    International Nuclear Information System (INIS)

    Senoo, Makoto; Koga, Kazunori; Hirakawa, Hiroshi; Tanaka, Keiji

    1996-01-01

    An automated patrol-type monitoring and inspection system was developed and applied in a nuclear power plant. This system consists of a monorail, a monitoring robot and an operator's console. The monitoring robot consists of a sensor unit and a control unit. Three kinds of sensor, a color ITV camera, an infrared camera and a microphone are installed in the sensor unit. The features of this monitoring robot are; (1) Weights 15 kg with a cross-sectional dimensions of 152 mm width and 290 mm height. (2) Several automatic monitoring functions are installed using image processing and frequency analysis for three sensor signals. (author)

  19. Ethorobotics: A New Approach to Human-Robot Relationship

    Directory of Open Access Journals (Sweden)

    Ádám Miklósi

    2017-06-01

    Full Text Available Here we aim to lay the theoretical foundations of human-robot relationship drawing upon insights from disciplines that govern relevant human behaviors: ecology and ethology. We show how the paradox of the so called “uncanny valley hypothesis” can be solved by applying the “niche” concept to social robots, and relying on the natural behavior of humans. Instead of striving to build human-like social robots, engineers should construct robots that are able to maximize their performance in their niche (being optimal for some specific functions, and if they are endowed with appropriate form of social competence then humans will eventually interact with them independent of their embodiment. This new discipline, which we call ethorobotics, could change social robotics, giving a boost to new technical approaches and applications.

  20. Ethorobotics: A New Approach to Human-Robot Relationship

    Science.gov (United States)

    Miklósi, Ádám; Korondi, Péter; Matellán, Vicente; Gácsi, Márta

    2017-01-01

    Here we aim to lay the theoretical foundations of human-robot relationship drawing upon insights from disciplines that govern relevant human behaviors: ecology and ethology. We show how the paradox of the so called “uncanny valley hypothesis” can be solved by applying the “niche” concept to social robots, and relying on the natural behavior of humans. Instead of striving to build human-like social robots, engineers should construct robots that are able to maximize their performance in their niche (being optimal for some specific functions), and if they are endowed with appropriate form of social competence then humans will eventually interact with them independent of their embodiment. This new discipline, which we call ethorobotics, could change social robotics, giving a boost to new technical approaches and applications. PMID:28649213

  1. Design And Implementation Of Integrated Vision-Based Robotic Workcells

    Science.gov (United States)

    Chen, Michael J.

    1985-01-01

    Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.

  2. A Skill-based Robot Co-worker for Industrial Maintenance Tasks

    DEFF Research Database (Denmark)

    Koch, Paul Jacob; van Amstel, Marike Koch; Dębska, Patrycja

    2017-01-01

    This paper investigates the concept of a sensor based robot co-worker working in flexible industrial environments together with and alongside human operators. In this particular work, a realisation of a robot co-worker scenario is developed in order to demonstrate the implementation of a robot co......-worker from the starting point of an autonomous industrial mobile manipulator. The cobot is applied on the industrially relevant task of screwing by the use of a skill-based approach. The technical work on the human-robot interface and the screwing skill is described....

  3. Robust optimization of robotic pick and place operations for deformable objects through simulation

    DEFF Research Database (Denmark)

    Bo Jorgensen, Troels; Debrabant, Kristian; Kruger, Norbert

    2016-01-01

    for the task. The solutions are parameterized in terms of the robot motion and the gripper configuration, and after each simulation various objective scores are determined and combined. This enables the use of various optimization strategies. Based on visual inspection of the most robust solution found...

  4. Remote radiation mapping and preliminary intervention using collaborating (European and Russian) mobile robots

    International Nuclear Information System (INIS)

    Piotrowski, L.; Trouville, B.; Halbach, M.; Sidorkin, N.

    1996-12-01

    The primary objective of the IMPACT project is to develop a light-weight and inexpensive mobile robot that can be used for rapid inspection missions within nuclear power plants. These interventions are to cover normal, incident and accident situations and aim at primary reconnaissance (or 'data collecting') missions. The IMPACT robot was demonstrated (April 1996) in a realistic mission at the Russian nuclear plant SMOLENSK. The demonstration, composed of 2 independent but consecutive missions, was held in a radioactive zone near turbine ≠ 4 of Unit 2: remote radiation mapping with localisation of radioactive sources by the IMPACT robot equipped with a (Russian) gamma-radiation sensor; deployment of a Russian intervention robot for the construction of a protective lead shield around one of the identified sources and verification that the ambient radiation level has been reduce. This mission was executed remotely by 2 mobile robots working in collaboration: a NIKIMT robot equipped with a manipulator arm and carrying leads bricks and the IMPACT robot of mission I (radiation measurements and 'side-observer'). This manuscript describes (a) the technical characteristics of the IMPACT reconnaissance robot (3-segmented, caterpillar-tracked body; 6 video cameras placed around the mobile platform with simultaneous presentation of up to 4 video images at the control post; ability to detach remotely one of the robot's segments (i.e. the robot can divide itself into 2 separate mobile robots)) and (b) the SMOLENSK demonstration. (author)

  5. Development of the Inspection and Diagnosis Technology for the NSSS Components Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hee; Eom, Heung Soup; Lee, Jae Cheol and others

    2005-02-15

    This project aims at the development of new technologies for a monitoring, inspection, diagnosis and evaluation of the safety related components in nuclear power plants. These technologies are required to detect the defects in the components of nuclear power plants and to prepare thoroughly against accidents. We performed the 1st stage of the study on the four issues recently focused. Thus we developed an analysis model of dynamic characteristics on the reactor internals, an on-line monitoring technology using an ultrasonic guided wave, a network based remote inspection system and an inspection robot for a control rod guide tube support pin. We also performed a lifetime estimation and degradation analysis of the NPP cables through accelerated degradation tests. The technologies developed in this project are applied to the components of nuclear power plants. The applications include a localization of the NSSS integrity monitoring system, replacement of an in-service inspection by on-line monitoring, remote inspection of the major components of the plants, lifetime estimation of the degraded plant cables, and so on. Elemental technologies obtained through the project can have great ripple effects in general industry, and can be applied to the inspection and diagnosis of the components in the other industries.

  6. Development of the Inspection and Diagnosis Technology for the NSSS Components Integrity

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Soup; Lee, Jae Cheol and others

    2005-02-01

    This project aims at the development of new technologies for a monitoring, inspection, diagnosis and evaluation of the safety related components in nuclear power plants. These technologies are required to detect the defects in the components of nuclear power plants and to prepare thoroughly against accidents. We performed the 1st stage of the study on the four issues recently focused. Thus we developed an analysis model of dynamic characteristics on the reactor internals, an on-line monitoring technology using an ultrasonic guided wave, a network based remote inspection system and an inspection robot for a control rod guide tube support pin. We also performed a lifetime estimation and degradation analysis of the NPP cables through accelerated degradation tests. The technologies developed in this project are applied to the components of nuclear power plants. The applications include a localization of the NSSS integrity monitoring system, replacement of an in-service inspection by on-line monitoring, remote inspection of the major components of the plants, lifetime estimation of the degraded plant cables, and so on. Elemental technologies obtained through the project can have great ripple effects in general industry, and can be applied to the inspection and diagnosis of the components in the other industries

  7. Remote measurements of radioactivity distribution with BROKK robotic system - 16147

    International Nuclear Information System (INIS)

    Ivanov, Oleg; Danilovich, Alexey; Stepanov, Vyacheslav; Smirnov, Sergey; Potapov, Victor

    2009-01-01

    Robotic system for the remote measurement of radioactivity in the reactor areas was developed. The BROKK robotic system replaces hand-held radiation measuring tools. The system consists of a collimated gamma detector, a standard gamma detector, color CCD video camera and searchlights, all mounted on a robotic platform (BROKK). The signals from the detectors are coupled with the video signals and are transferred to an operator's console via a radio channel or a cable. Operator works at a safe position. The video image of the object with imposed exposure dose rate from the detectors generates an image on the monitor screen, and the images are recorded for subsequent analysis. Preliminary work has started for the decommissioning of a research reactor at the RRC 'Kurchatov Institute'. Results of the remote radioactivity measurements with new system during radiation inspection waste storage of this reactor are presented and discussed. (authors)

  8. Mobile robotics application in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.L.; White, J.R. [REMOTEC, Inc., Oak Ridge, TN (United States)

    1995-03-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980`s, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities.

  9. Mobile robotics application in the nuclear industry

    International Nuclear Information System (INIS)

    Jones, S.L.; White, J.R.

    1995-01-01

    Mobile robots have been developed to perform hazardous operations in place of human workers. Applications include nuclear plant inspection/maintenance, decontamination and decommissioning police/military explosive ordinance disposal (EOD), hostage/terrorist negotiations and fire fighting. Nuclear facilities have proven that robotic applications can be cost-effective solutions to reducing personnel exposure and plant downtime. The first applications of mobile robots in the nuclear industry began in the early 1980's, with the first vehicles being one of a kind machines or adaptations of commercial EOD robots. These activities included efforts by numerous commercial companies, the U.S. Nuclear Regulatory Commission, EPRI, and several national laboratories. Some of these efforts were driven by the recovery and cleanup activities at TMI which demonstrated the potential and need for a remote means of performing surveillance and maintenance tasks in nuclear plants. The use of these machines is now becoming commonplace in nuclear facilities throughout the world. The hardware maturity and the confidence of the users has progressed to the point where the applications of mobile robots is not longer considered a novelty. These machines are being used in applications where the result is to help achieve more aggressive goals for personnel radiation exposure and plant availability, perform tasks more efficiently, and allow plant operators to retrieve information from areas previously considered inaccessible. Typical examples include surveillance in high radiation areas (during operation and outage activities), radiation surveys, waste handling, and decontamination evolutions. This paper will discuss this evolution including specific applications experiences, examples of currently available technology, and the benefits derived from the use of mobile robotic vehicles in commercial nuclear power facilities

  10. Development of the Inspection and Diagnosis Technology for the NSSS Components Integrity

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Soup; Lee, Jae Cheol

    2007-02-01

    This project is to develop and demonstrate new technologies for a monitoring, inspection, diagnosis and evaluation of the safety related components in nuclear power plants. These technologies are required to detect the defects in the components of nuclear power plants and to prepare thoroughly against accidents. We studied on the four issues recently focused. Thus we developed an impact analysis model of the reactor and steam generator, and diagnosis software of the reactor internals. As an on-line monitoring technology using an ultrasonic guided wave, we developed a new method enhancing the S/N ratio of the weak signal based on time reversal technique. A network based remote inspection system and an inspection robot for reactor vessel head penetration was developed. We also performed a lifetime estimation and degradation analysis of the NPP cables through accelerated degradation tests. The technologies developed in this project are applied to the components of nuclear power plants. The applications include a localization of the NSSS integrity monitoring system, replacement of an in-service inspection by on-line monitoring, remote inspection of the major components of the plants, lifetime estimation of the degraded plant cables, and so on

  11. Development of the Inspection and Diagnosis Technology for the NSSS Components Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hee; Eom, Heung Soup; Lee, Jae Cheol (and others)

    2007-02-15

    This project is to develop and demonstrate new technologies for a monitoring, inspection, diagnosis and evaluation of the safety related components in nuclear power plants. These technologies are required to detect the defects in the components of nuclear power plants and to prepare thoroughly against accidents. We studied on the four issues recently focused. Thus we developed an impact analysis model of the reactor and steam generator, and diagnosis software of the reactor internals. As an on-line monitoring technology using an ultrasonic guided wave, we developed a new method enhancing the S/N ratio of the weak signal based on time reversal technique. A network based remote inspection system and an inspection robot for reactor vessel head penetration was developed. We also performed a lifetime estimation and degradation analysis of the NPP cables through accelerated degradation tests. The technologies developed in this project are applied to the components of nuclear power plants. The applications include a localization of the NSSS integrity monitoring system, replacement of an in-service inspection by on-line monitoring, remote inspection of the major components of the plants, lifetime estimation of the degraded plant cables, and so on.

  12. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information.

    Science.gov (United States)

    Strauss, Soeren; Woodgate, Philip J W; Sami, Saber A; Heinke, Dietmar

    2015-12-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain's attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO's predictions and also lessons for neurobiologically inspired robotics emerging from this work. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Innovative automation solutions applied to nuclear fuel production and inspection processes

    International Nuclear Information System (INIS)

    Vas, Ananth

    2012-01-01

    The nuclear industry in India is slated for fast paced growth in the coming years, with a great focus on increasing the capacity for producing, inspecting and finally reprocessing of nuclear fuel. Modern techniques of industrial automation such as robotics, machine vision and laser based systems have been deployed extensively to improve the productivity and output of existing and future installations, particularly for the fuel handling stages mentioned

  14. Experiments in augmented teleoperation for mobile robots: I

    Science.gov (United States)

    Witus, Gary; Hunt, Shawn; Ellis, R. Darrin

    2007-04-01

    Teleoperated mobile robots are beginning to be used for a variety of tasks that require movement in close quarters in the vicinity of moving and parked vehicles, buildings and other man-made structures, and the target object for inspection or manipulation. The robots must be close enough to deploy short-range sensors and manipulators, and must be able to maneuver without potentially damaging collisions. Teleoperation is fatiguing and stressful even without the requirement for close positioning. In cooperation with the TARDEC Robotic Mobility Laboratory (TRML), we are investigating approaches to reduce workload and improve performance through augmented teleoperation. Human-robot interfaces for teleoperation commonly provide two degrees-of-freedom (DoF) motion control with visual feedback from an on-board egocentric camera and no supplemental distance or orientation cueing. This paper reports on the results of preliminary experiments to assess the effects on man-machine task performance of several options for augmented teleoperation: (a) 3 DoF motion control (rotation and omni-directional translation) versus 2 DoF control (rotation and forward/reverse motion), (b) on-board egocentric camera versus fixed-position overwatch camera versus dual egocentric-and-overwatch cameras, and (c) presence or absence of distance and orientation visual cueing. We examined three dimensions of performance: completion time, spatial accuracy, and workspace area. We investigated effects on the expected completion time and on the variance in completion time. Spatial accuracy had three components: orientation, aimpoint, and distance. We collected performance under different task conditions: (a) three position-and-orientation tolerance or accuracy objectives, and (b) four travel distances between successive inspection points. We collected data from three subjects. We analyzed the main effects and conditional interaction effects among the teleoperation options and task conditions. We were

  15. Spectrally Queued Feature Selection for Robotic Visual Odometery

    Science.gov (United States)

    2010-11-23

    in these systems has yet to be defined. 1. INTRODUCTION 1.1 Uses of Autonomous Vehicles Autonomous vehicles have a wide range of possible...applications. In military situations, autonomous vehicles are valued for their ability to keep Soldiers far away from danger. A robot can inspect and disarm...just a glimpse of what engineers are hoping for in the future. 1.2 Biological Influence Autonomous vehicles are becoming more of a possibility in

  16. Soft segmented inchworm robot with dielectric elastomer muscles

    Science.gov (United States)

    Conn, Andrew T.; Hinitt, Andrew D.; Wang, Pengchuan

    2014-03-01

    Robotic devices typically utilize rigid components in order to produce precise and robust operation. Rigidity becomes a significant impediment, however, when navigating confined or constricted environments e.g. search-and-rescue, industrial pipe inspection. In such cases adaptively conformable soft structures become optimal. Dielectric elastomers (DEs) are well suited for developing such soft robots since they are inherently compliant and can produce large musclelike actuation strains. In this paper, a soft segmented inchworm robot is presented that utilizes pneumatically-coupled DE membranes to produce inchworm-like locomotion. The robot is constructed from repeated body segments, each with a simple control architecture, so that the total length can be readily adapted by adding or removing segments. Each segment consists of a soft inflatable shell (internal pressure in range of 1.0-15.9 mBar) and a pair of antagonistic DE membranes (VHB 4905). Experimental testing of a single body segment is presented and the relationship between drive voltage, pneumatic pressure and active displacement is characterized. This demonstrates that pneumatic coupling of DE membranes induces complex non-linear electro-mechanical behaviour as drive voltage and pneumatic pressure are altered. Locomotion of a two-segment inchworm robot prototype with a passive length of 80 mm is presented. Artificial setae are included on the body shell to generate anisotropic friction for locomotion. A maximum locomotion speed of 4.1 mm/s was recorded at a drive frequency of 1.5 Hz, which compares favourably to biological counterparts. Future development of the soft inchworm robot are discussed including reflexive low-level control of individual segments.

  17. Rehabilitation robotics in robotics for healthcare ; a roadmap study for the European Commission

    NARCIS (Netherlands)

    Gelderblom, G.J.; Wilt, M.de; Cremers, G.; Rensma, A.R.

    2009-01-01

    To gain understanding in the current status of Robotics in healthcare the European Commission issued a roadmap study into this domain. This paper reports on the main characteristics and results of this study. The study covered the wide domain of Healthcare and in this paper the domains relevant for

  18. Robotic refueling machine

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1996-01-01

    One of the longest critical path operations performed during the outage is removing and replacing the fuel. A design is currently under development for a refueling machine which would allow faster, fully automated operation and would also allow the handling of two fuel assemblies at the same time. This design is different from current designs, (a) because of its lighter weight, making increased acceleration and speed possible, (b) because of its control system which makes locating the fuel assembly more dependable and faster, and (c) because of its dual handling system allowing simultaneous fuel movements. The new design uses two robotic arms to span a designated area of the vessel and the fuel storage area. Attached to the end of each robotic arm is a lightweight telescoping mast with a pendant attached to the end of each mast. The pendant acts as the base unit, allowing attachment of any number of end effectors depending on the servicing or inspection operation. Housed within the pendant are two television cameras used for the positioning control system. The control system is adapted from the robotics field using the technology known as machine vision, which provides both object and character recognition techniques to enable relative position control rather than absolute position control as in past designs. The pendant also contains thrusters that are used for fast, short distance, precise positioning. The new refueling machine system design is capable of a complete off load and reload of an 872 element core in about 5.3 days compared to 13 days for a conventional system

  19. Rough terrain motion planning for actively reconfigurable mobile robots

    International Nuclear Information System (INIS)

    Brunner, Michael

    2015-01-01

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  20. Rough terrain motion planning for actively reconfigurable mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Michael

    2015-02-05

    In the aftermath of the Tohoku earthquake and the nuclear meltdown at the power plant of Fukushima Daiichi in 2011, reconfigurable robots like the iRobot Packbot were deployed. Instead of humans, the robots were used to investigate contaminated areas. Other incidents are the two major earthquakes in Northern Italy in May 2012. Besides many casualties, a large number of historical buildings was severely damaged. Due to the imminent danger of collapse, it was too dangerous for rescue personnel to enter many of the buildings. Therefore, the sites were inspected by reconfigurable robots, which are able to traverse the rubble and debris of the partially destroyed buildings. This thesis develops a navigation system enabling wheeled and tracked robots to safely traverse rough terrain and challenging structures. It consists of a planning mechanism and a controller. The focus of this thesis, however, is on the contribution to motion planning. The planning scheme employs a hierarchical approach to motion planning for actively reconfigurable robots in rough environments. Using a map of the environment the algorithm estimates the traversability under the consideration of uncertainties. Based on this analysis, an initial path search determines an approximate solution with respect to the robot's operating limits.Subsequently, a detailed planning step refines the initial path where it is required. The refinement step considers the robot's actuators and stability in addition to the quantities of the first search. Determining the robot-terrain interaction is very important in rough terrain. This thesis presents two path refinement approaches: a deterministic and a randomized approach. The experimental evaluation investigates the separate components of the planning scheme, the robot-terrain interaction for instance.In simulation as well as in real world experiments the evaluation demonstrates the necessity of such a planning algorithm in rough terrain and it provides

  1. A survey of NASA and military standards on fault tolerance and reliability applied to robotics

    Science.gov (United States)

    Cavallaro, Joseph R.; Walker, Ian D.

    1994-01-01

    There is currently increasing interest and activity in the area of reliability and fault tolerance for robotics. This paper discusses the application of Standards in robot reliability, and surveys the literature of relevant existing standards. A bibliography of relevant Military and NASA standards for reliability and fault tolerance is included.

  2. Hydraulically actuated hexapod robots design, implementation and control

    CERN Document Server

    Nonami, Kenzo; Irawan, Addie; Daud, Mohd Razali

    2014-01-01

    Legged robots are a promising locomotion system, capable of performing tasks that conventional vehicles cannot. Even more exciting is the fact that this is a rapidly developing field of study for researchers from a variety of disciplines. However, only a few books have been published on the subject of multi-legged robots. The main objective of this book is to describe some of the major control issues concerning walking robots that the authors have faced over the past 10 years. A second objective is to focus especially on very large hydraulically driven hexapod robot locomotion weighing more than 2,000 kg, making this the first specialized book on this topic. The 10 chapters of the book touch on diverse relevant topics such as design aspects, implementation issues, modeling for control, navigation and control, force and impedance control-based walking, fully autonomous walking, walking and working tasks of hexapod robots, and the future of walking robots. The construction machines of the future will very likel...

  3. Overview of steam generator tube-inspection technology

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.; Renaud, J.; Lakhan, R., E-mail: obrutskl@aecl.ca, E-mail: renaudj@aecl.ca, E-mail: lakhanr@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-03-15

    Degradation of steam generator (SG) tubing due to both mechanical and corrosion modes has resulted in extensive repairs and replacement of SGs around the world. The variety of degradation modes challenges the integrity of SG tubing and, therefore, the stations' reliability. Inspection and monitoring aimed at timely detection and characterization of the degradation is a key element for ensuring tube integrity. Up to the early-70's, the in-service inspection of SG tubing was carried out using single-frequency eddy current testing (ET) bobbin coils, which were adequate for the detection of volumetric degradation. By the mid-80's, additional modes of degradation such as pitting, intergranular attack, and axial and circumferential inside or outside diameter stress corrosion cracking had to be addressed. The need for timely, fast detection and characterization of these diverse modes of degradation motivated the development in the 90's of inspection systems based on advanced probe technology coupled with versatile instruments operated by fast computers and remote communication systems. SG inspection systems have progressed in the new millennium to a much higher level of automation, efficiency and reliability. Also, the role of Non Destructive Evaluation (NDE) has evolved from simple detection tools to diagnostic tools that provide input into integrity assessment decisions, fitness-far-service and operational assessments. This new role was motivated by tighter regulatory requirements to assure the safety of the public and the environment, better SG life management strategies and often self-imposed regulations. It led to the development of advanced probe technologies, more reliable and versatile instruments and robotics, better training and qualification of personnel and better data management and analysis systems. This paper provides a brief historical perspective regarding the evolution of SG inspections and analyzes the motivations behind that

  4. The development of robotic systems for hazardous environments

    International Nuclear Information System (INIS)

    Collis-Smith, J.A.; Schilling, R.

    1996-01-01

    The need for teleoperated and robotic systems is growing. This growth is driven by several factors such as - statutory requirements; risk reduction and economic pressures. Robotic Systems are needed to provide reliable, economic means to perform surveillance, quantitative inspection, repairs, upgrading and eventual dismantling for decommissioning tasks. The range of potential applications has widened and there is now significant technical cross-fertilisation between developments in diverse environments. The typical robotic system consists of the emplacement equipment, the dextrous arm, the tool and the controls. The control system provides the operator with an integrated interface between the principal components, so that the operator can concentrate fully at the high level on the specific task in hand, while the control system and its software performs all the detail functions within the subparts of the integrated system. This paper develops this underlying logic, and is illustrated by experience drawn from a variety of examples in different environments to show the present state of the art in GEC Alsthom and suggest the way ahead in the near-term future. (Author)

  5. The French A.E.C. nuclear robotic program

    International Nuclear Information System (INIS)

    Foult, T.

    1991-01-01

    The new French nuclear robotic program launched by the CEA was started at the beginning of 1988 for the duration of two years and with the total subsidy of about 130 million French franc. This program includes the following four steps: the definition of model missions dedicated to inspection and intervention in nuclear environment, the system analysis to define the systems, functions and specifications required to perform these model missions, the technological development required to achieve these systems, and the design of demonstration models with the partial integration of the above developments. The whole program including these four steps is called SYROCO (modular SYstem for RObots COoperating in radioactive environment). The repair of leak in a pipe in a reprocessing cell, the model mission in a PWR nuclear power plant, autonomous load bearing mobile robots, squirrel concept light modular carrier concept, radiation hardening, mechanic, perception of environment, communication, control and simulation and the demonstration models are described. SHERPA project, perception management, force controlled manipulator, squirrel project, light modular carrier, processes and NAB model mission simulation are particularly mentioned

  6. A literature review on new robotics : automation from love to war

    OpenAIRE

    Royakkers, L.M.M.; Est, van, Q.C.

    2015-01-01

    This article investigates the social significance of robotics for the years to come in Europe and the US by studying robotics developments in five different areas: the home, health care, traffic, the police force, and the army. Our society accepts the use of robots to perform dull, dangerous, and dirty industrial jobs. But now that robotics is moving out of the factory, the relevant question is how far do we want to go with the automation of care for children and the elderly, of killing terro...

  7. Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory

    Directory of Open Access Journals (Sweden)

    Eduardo Perdices

    2013-01-01

    Full Text Available Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people’s homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios.

  8. Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory

    Science.gov (United States)

    Vega, Julio; Perdices, Eduardo; Cañas, José M.

    2013-01-01

    Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people's homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. PMID:23337333

  9. Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead

    NARCIS (Netherlands)

    Bac, C.W.; Henten, van E.; Hemming, J.; Edan, Y.

    2014-01-01

    This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state-of-the-art of harvesting robots using quantitative

  10. ITER articulated inspection arm (AIA): R and d progress on vacuum and temperature technology for remote handling

    International Nuclear Information System (INIS)

    Perrot, Y.; Cordier, J.J.; Friconneau, J.P.; Gargiulo, L.; Martin, E.; Palmer, J.D.; Tesini, A.

    2005-01-01

    This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R and D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER. It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs. To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 o C). The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility. As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system. This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module

  11. ITER articulated inspection arm (AIA): R and d progress on vacuum and temperature technology for remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Y. [Robotics and Interactive Systems Unit-CEA/LIST, BP6 F-92265 Fontenay aux Roses Cedex (France)]. E-mail: yann.perrot@cea.fr; Cordier, J.J. [DRFC-CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Friconneau, J.P. [Robotics and Interactive Systems Unit-CEA/LIST, BP6 F-92265 Fontenay aux Roses Cedex (France); Gargiulo, L. [DRFC-CEA Cadarache, 13108 Saint Paul Lez Durance Cedex (France); Martin, E. [ITER International Team, Boltzmannstrasse 2, 85748 Garching (Germany); Palmer, J.D. [EFDA CSU Garching, Boltzmannstrasse 2, 85748 Garching (Germany); Tesini, A. [ITER International Team, ITER Naka Joint Work Site, 801-1, Muouyama, Naka-machi, Naka-gun, Iberaki-ken 311-0193 (Japan)

    2005-11-15

    This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R and D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER. It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs. To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 {sup o}C). The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility. As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system. This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module.

  12. Human-Robot Planetary Exploration Teams

    Science.gov (United States)

    Tyree, Kimberly

    2004-01-01

    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus

  13. Design of parallel intersector weld/cut robot for machining processes in ITER vacuum vessel

    International Nuclear Information System (INIS)

    Wu Huapeng; Handroos, Heikki; Kovanen, Janne; Rouvinen, Asko; Hannukainen, Petri; Saira, Tanja; Jones, Lawrence

    2003-01-01

    This paper presents a new parallel robot Penta-WH, which has five degrees of freedom driven by hydraulic cylinders. The manipulator has a large, singularity-free workspace and high stiffness and it acts as a transport device for welding, machining and inspection end-effectors inside the ITER vacuum vessel. The presented kinematic structure of a parallel robot is particularly suitable for the ITER environment. Analysis of the machining process for ITER, such as the machining methods and forces are given, and the kinematic analyses, such as workspace and force capacity are discussed

  14. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  15. Laws on Robots, Laws by Robots, Laws in Robots : Regulating Robot Behaviour by Design

    NARCIS (Netherlands)

    Leenes, R.E.; Lucivero, F.

    2015-01-01

    Speculation about robot morality is almost as old as the concept of a robot itself. Asimov’s three laws of robotics provide an early and well-discussed example of moral rules robots should observe. Despite the widespread influence of the three laws of robotics and their role in shaping visions of

  16. Designing a social and assistive robot for seniors.

    Science.gov (United States)

    Eftring, H; Frennert, S

    2016-06-01

    The development of social assistive robots is an approach with the intention of preventing and detecting falls among seniors. There is a need for a relatively low-cost mobile robot with an arm and a gripper which is small enough to navigate through private homes. User requirements of a social assistive robot were collected using workshops, a questionnaire and interviews. Two prototype versions of a robot were designed, developed and tested by senior citizens (n = 49) in laboratory trials for 2 h each and in the private homes of elderly persons (n = 18) for 3 weeks each. The user requirement analysis resulted in a specification of tasks the robot should be able to do to prevent and detect falls. It was a challenge but possible to design and develop a robot where both the senior and the robot arm could reach the necessary interaction points of the robot. The seniors experienced the robot as happy and friendly. They wanted the robot to be narrower so it could pass through narrow passages in the home and they also wanted it to be able to pass over thresholds without using ramps and to drive over carpets. User trials in seniors' homes are very important to acquire relevant knowledge for developing robots that can handle real life situations in the domestic environment. Very high reliability of a robot is needed to get feedback about how seniors experience the overall behavior of the robot and to find out if the robot could reduce falls and improve the feeling of security for seniors living alone.

  17. A Conceptual Design of Light-weighted Mobile Robot for the Integrity of SG Tubes in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Yong Chil; Jeong, Kyung Min; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Seung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shin, Chun Sup; Park, Ki Tae [Korea Plant Serviceand Engineering, Busan (Korea, Republic of)

    2010-10-15

    Steam generators (SG) are among the most critical components of pressurized water Nuclear Power Plants (NPP). SG tubes must provide a reliable pressure boundary between the primary and secondary cooling water. It is because that any leakage from tube defects could result in the release of radioactivity to the environment. Thus degradations of steam generators tubes should be monitored and inspected periodically under nuclear regulatory. In-service inspections of SG tubes are carried out using eddy current test (ECT) and the defected tubes are usually plugged. Because the radioactivity in the internal of SG chambers limits free access of human worker, remote manipulators are required. In South Korea, Manipulators such as the Zetec SM series and the Westinghouse ROSA series have been used. Such manipulators are rigidly mounted to manways or tube sheets of SG. Confusions for the inspected tubes may occur from deflection of the manipulators. To reduce the deflections of the manipulators for covering the large working areas of tube sheets, sufficient rigidity is required and it leads to the increase of the weight. Such weight increase results in some difficulties for handling and more radiation exposure of human workers. Recently light-weighed mobile robots have been introduced by Westinghouse and Zetec. The robots can move keeping in contact with the tube sheets using devices which are commonly called cam-locks. They are easier to handle and provide no confusion for the position of the inspected tubes. But when the clamping forces are loosed accidently, they can be fall down and light repair works can be performed. This paper provides the design results for a light weighted mobile robot which is recently being developed in cooperation of our institutes

  18. A Conceptual Design of Light-weighted Mobile Robot for the Integrity of SG Tubes in NPP

    International Nuclear Information System (INIS)

    Seo, Yong Chil; Jeong, Kyung Min; Shin, Ho Chul; Lee, Sung Uk; Cho, Jae Wan; Choi, Young Soo; Kim, Seung Ho; Shin, Chun Sup; Park, Ki Tae

    2010-01-01

    Steam generators (SG) are among the most critical components of pressurized water Nuclear Power Plants (NPP). SG tubes must provide a reliable pressure boundary between the primary and secondary cooling water. It is because that any leakage from tube defects could result in the release of radioactivity to the environment. Thus degradations of steam generators tubes should be monitored and inspected periodically under nuclear regulatory. In-service inspections of SG tubes are carried out using eddy current test (ECT) and the defected tubes are usually plugged. Because the radioactivity in the internal of SG chambers limits free access of human worker, remote manipulators are required. In South Korea, Manipulators such as the Zetec SM series and the Westinghouse ROSA series have been used. Such manipulators are rigidly mounted to manways or tube sheets of SG. Confusions for the inspected tubes may occur from deflection of the manipulators. To reduce the deflections of the manipulators for covering the large working areas of tube sheets, sufficient rigidity is required and it leads to the increase of the weight. Such weight increase results in some difficulties for handling and more radiation exposure of human workers. Recently light-weighed mobile robots have been introduced by Westinghouse and Zetec. The robots can move keeping in contact with the tube sheets using devices which are commonly called cam-locks. They are easier to handle and provide no confusion for the position of the inspected tubes. But when the clamping forces are loosed accidently, they can be fall down and light repair works can be performed. This paper provides the design results for a light weighted mobile robot which is recently being developed in cooperation of our institutes

  19. Robot for Investigations and Assessments of Nuclear Areas

    Energy Technology Data Exchange (ETDEWEB)

    Kanaan, Daniel; Dogny, Stephane [AREVA D and S/DT, 30206 Bagnols sur Ceze (France)

    2015-07-01

    RIANA is a remote controlled Robot dedicated for Investigations and Assessments of Nuclear Areas. The development of RIANA is motivated by the need to have at disposal a proven robot, tested in hot cells; a robot capable of remotely investigate and characterise the inside of nuclear facilities in order to collect efficiently all the required data in the shortest possible time. It is based on a wireless medium sized remote carrier that may carry a wide variety of interchangeable modules, sensors and tools. It is easily customised to match specific requirements and quickly configured depending on the mission and the operator's preferences. RIANA integrates localisation and navigation systems. The robot will be able to generate / update a 2D map of its surrounding and exploring areas. The position of the robot is given accurately on the map. Furthermore, the robot will be able to autonomously calculate, define and follow a trajectory between 2 points taking into account its environment and obstacles. The robot is configurable to manage obstacles and restrict access to forbidden areas. RIANA allows an advanced control of modules, sensors and tools; all collected data (radiological and measured data) are displayed in real time in different format (chart, on the generated map...) and stored in a single place so that may be exported in a convenient format for data processing. This modular design gives RIANA the flexibility to perform multiple investigation missions where humans cannot work such as: visual inspections, dynamic localization and 2D mapping, characterizations and nuclear measurements of floor and walls, non destructive testing, samples collection: solid and liquid. The benefits of using RIANA are: - reducing the personnel exposures by limiting the manual intervention time, - minimizing the time and reducing the cost of investigation operations, - providing critical inputs to set up and optimize cleanup and dismantling operations. (authors)

  20. Robot for Investigations and Assessments of Nuclear Areas

    International Nuclear Information System (INIS)

    Kanaan, Daniel; Dogny, Stephane

    2015-01-01

    RIANA is a remote controlled Robot dedicated for Investigations and Assessments of Nuclear Areas. The development of RIANA is motivated by the need to have at disposal a proven robot, tested in hot cells; a robot capable of remotely investigate and characterise the inside of nuclear facilities in order to collect efficiently all the required data in the shortest possible time. It is based on a wireless medium sized remote carrier that may carry a wide variety of interchangeable modules, sensors and tools. It is easily customised to match specific requirements and quickly configured depending on the mission and the operator's preferences. RIANA integrates localisation and navigation systems. The robot will be able to generate / update a 2D map of its surrounding and exploring areas. The position of the robot is given accurately on the map. Furthermore, the robot will be able to autonomously calculate, define and follow a trajectory between 2 points taking into account its environment and obstacles. The robot is configurable to manage obstacles and restrict access to forbidden areas. RIANA allows an advanced control of modules, sensors and tools; all collected data (radiological and measured data) are displayed in real time in different format (chart, on the generated map...) and stored in a single place so that may be exported in a convenient format for data processing. This modular design gives RIANA the flexibility to perform multiple investigation missions where humans cannot work such as: visual inspections, dynamic localization and 2D mapping, characterizations and nuclear measurements of floor and walls, non destructive testing, samples collection: solid and liquid. The benefits of using RIANA are: - reducing the personnel exposures by limiting the manual intervention time, - minimizing the time and reducing the cost of investigation operations, - providing critical inputs to set up and optimize cleanup and dismantling operations. (authors)

  1. Mobile HTS-SQUID NDE system with robot arm and active shielding using fluxgate

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukade, Y. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)], E-mail: hatukade@eco.tut.ac.jp; Yotsugi, K.; Tanaka, S. [Department of Ecological Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2008-09-15

    A robot-arm-based mobile HTS-SQUID NDE system was developed for inspection of advanced structures such as hydrogen fuel cell tanks. In order to realize stable operation of HTS-SQUID exposed in Earth's field and robot arm's noise without flux trapping, flux jumping and unlocking during motion, a new active magnetic shielding (AMS) technique using fluxgate was introduced. The high sensitive fluxgate, which could measure magnetic field of up to several 10 {mu}T, was mounted near an HTS-SQUID gradiometer on the robot arm to measure the ambient noise and feed back its output to a compensation coil, which surrounded both SQUID and fluxgate to cancel the ambient noise around them. The AMS technique successfully enabled the HTS-SQUID gradiometer to be moved at 10 mm/s by the robot arm in unshielded environment without flux trapping, jumping and unlocking. Detection of hidden slots in multi-layer composite-metal structures imitating the fuel cell tank was demonstrated.

  2. System for leaks inspection in a nuclear plant by means of a mobile robot

    International Nuclear Information System (INIS)

    Ramirez S, R.; Segovia de los Rios, J.A.

    2004-01-01

    In this work a supervision system that could allow to carry out the detection of leaks of vapor in pipe lines, using a mobile robot Pioneer 2 -D Xe, which is controlled by means of an external micro controller 68HC912B32 programmed in Forth and using diffuse control to travel a road by means of the one to follow one lines painted in the floor is described. The robot takes in his superior part, a thermographic camera that allows to determine if leaks of vapor exist in pipes and a dosemeter to measure the present radiation levels in the place, besides a video camera. This way, the personnel, can make sure of having a propitious situation to make the maintenance of the facilities. (Author)

  3. Development of small size wall decontamination robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Fujita, Tsuneaki; Takahashi, Tsuyosi

    2004-01-01

    This paper describes the development of wall decontamination robot systems for nuclear power plants. In nuclear power plants, it is required to reduce maintenance costs, including annual inspection, repairs and so on. Most of such maintenance activities are actually performed after decontamination processes are completed. In particular, the decontamination process of reactor wells is very important for reducing the radiation exposure of human workers. In the past, decontamination of reactor wells used to be done by extra large machine and tools, which caused long working hours and tiresome works. It was one of the reasons maintenance costs couldn't have been easily reduced. There are narrow spaces in the reactor wells that have to be decontaminated by human workers. In order to minimize the radiation exposure to humans, wall decontamination robot systems have been developed. The decontamination robots have rolled brushes and suction mechanisms and are capable of removing contaminants attached to the wall surface of the reactor wells. By making the robots smaller, it is possible to work in narrower spaces. In this paper, the effectiveness of decontamination by the developed robots is shown through experiments in the actual nuclear power plants. (author)

  4. Examples of design and achievement of vision systems for mobile robotics applications

    Science.gov (United States)

    Bonnin, Patrick J.; Cabaret, Laurent; Raulet, Ludovic; Hugel, Vincent; Blazevic, Pierre; M'Sirdi, Nacer K.; Coiffet, Philippe

    2000-10-01

    Our goal is to design and to achieve a multiple purpose vision system for various robotics applications : wheeled robots (like cars for autonomous driving), legged robots (six, four (SONY's AIBO) legged robots, and humanoid), flying robots (to inspect bridges for example) in various conditions : indoor or outdoor. Considering that the constraints depend on the application, we propose an edge segmentation implemented either in software, or in hardware using CPLDs (ASICs or FPGAs could be used too). After discussing the criteria of our choice, we propose a chain of image processing operators constituting an edge segmentation. Although this chain is quite simple and very fast to perform, results appear satisfactory. We proposed a software implementation of it. Its temporal optimization is based on : its implementation under the pixel data flow programming model, the gathering of local processing when it is possible, the simplification of computations, and the use of fast access data structures. Then, we describe a first dedicated hardware implementation of the first part, which requires 9CPLS in this low cost version. It is technically possible, but more expensive, to implement these algorithms using only a signle FPGA.

  5. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    Directory of Open Access Journals (Sweden)

    Hooman Samani

    2013-12-01

    Full Text Available In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. According to the importance of the embodiment of robots in the sense of presence, the influence of robots in communication culture is anticipated. The sustainability of robotics culture based on diversity for cultural communities for various acceptance modalities is explored in order to anticipate the creation of different attributes of culture between robots and humans in the future.

  6. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Directory of Open Access Journals (Sweden)

    Hong Zeng

    2017-10-01

    Full Text Available Brain-machine interface (BMI can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback over the open-loop system (with visual inspection only have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes.

  7. Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback

    Science.gov (United States)

    Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng

    2017-01-01

    Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123

  8. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot

    Directory of Open Access Journals (Sweden)

    Yajing Shen

    2015-12-01

    Full Text Available Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  9. Friendly network robotics; Friendly network robotics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper summarizes the research results on the friendly network robotics in fiscal 1996. This research assumes an android robot as an ultimate robot and the future robot system utilizing computer network technology. The robot aiming at human daily work activities in factories or under extreme environments is required to work under usual human work environments. The human robot with similar size, shape and functions to human being is desirable. Such robot having a head with two eyes, two ears and mouth can hold a conversation with human being, can walk with two legs by autonomous adaptive control, and has a behavior intelligence. Remote operation of such robot is also possible through high-speed computer network. As a key technology to use this robot under coexistence with human being, establishment of human coexistent robotics was studied. As network based robotics, use of robots connected with computer networks was also studied. In addition, the R-cube (R{sup 3}) plan (realtime remote control robot technology) was proposed. 82 refs., 86 figs., 12 tabs.

  10. Robot vision for nuclear advanced robot

    International Nuclear Information System (INIS)

    Nakayama, Ryoichi; Okano, Hideharu; Kuno, Yoshinori; Miyazawa, Tatsuo; Shimada, Hideo; Okada, Satoshi; Kawamura, Astuo

    1991-01-01

    This paper describes Robot Vision and Operation System for Nuclear Advanced Robot. This Robot Vision consists of robot position detection, obstacle detection and object recognition. With these vision techniques, a mobile robot can make a path and move autonomously along the planned path. The authors implemented the above robot vision system on the 'Advanced Robot for Nuclear Power Plant' and tested in an environment mocked up as nuclear power plant facilities. Since the operation system for this robot consists of operator's console and a large stereo monitor, this system can be easily operated by one person. Experimental tests were made using the Advanced Robot (nuclear robot). Results indicate that the proposed operation system is very useful, and can be operate by only person. (author)

  11. An Augmented Discrete-Time Approach for Human-Robot Collaboration

    Directory of Open Access Journals (Sweden)

    Peidong Liang

    2016-01-01

    Full Text Available Human-robot collaboration (HRC is a key feature to distinguish the new generation of robots from conventional robots. Relevant HRC topics have been extensively investigated recently in academic institutes and companies to improve human and robot interactive performance. Generally, human motor control regulates human motion adaptively to the external environment with safety, compliance, stability, and efficiency. Inspired by this, we propose an augmented approach to make a robot understand human motion behaviors based on human kinematics and human postural impedance adaptation. Human kinematics is identified by geometry kinematics approach to map human arm configuration as well as stiffness index controlled by hand gesture to anthropomorphic arm. While human arm postural stiffness is estimated and calibrated within robot empirical stability region, human motion is captured by employing a geometry vector approach based on Kinect. A biomimetic controller in discrete-time is employed to make Baxter robot arm imitate human arm behaviors based on Baxter robot dynamics. An object moving task is implemented to validate the performance of proposed methods based on Baxter robot simulator. Results show that the proposed approach to HRC is intuitive, stable, efficient, and compliant, which may have various applications in human-robot collaboration scenarios.

  12. Remote repair and inspection technics in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Koyama, Kenji; Ishibashi, Yuzo; Otani, Yosikuni

    1986-01-01

    Tokai reprocessing plant of Power Reactor and Nuclear Fuel Development Corp. is the only factory in Japan which treats 0.7 t/day of the spent fuel from LWR power stations and recovers remaining uranium and newly produced plutonium. Since the reprocessing plant started the hot test in September, 1977, about eight years have elapsed, and 233 t of spent fuel was treated as of August, 1985. During this period, the development of various remote working techniques have been carried out to cope with the failure of equipment and to strengthen the preventive maintenance of equipment. In this report, the development of the techniques for the remote repair of leaking dissolving tanks and the development of the remote inspection system for confirming the soundness of equipment in cells are described. In nuclear facilities, from the viewpoint of the reduction of radiation exposure accompanying the works under high radiation, labor saving, the increase of capacity factor by shortening the period of repair works, the improvement of safety and reliability of the facilities by perfecting checkup and inspection and so on, it is strongly desired to put robots in practical use for maintenance and inspection. (Kako, I.)

  13. An overview of non destructive inspection services in nuclear power plants

    International Nuclear Information System (INIS)

    Farley, S.

    2004-01-01

    Worldwide nuclear power plants are obliged by international and local authorities to perform periodical inspection and maintenance of safety relevant components. Non-Destructive Testing (NDT) techniques such as eddy current, ultrasonic, visual, dye penetrant and radiographic testing have been used and continually developed to inspect a wide range of components and materials. Inspecting such components invariably poses an interesting chal-lenge due to complex component geometries, radiation exposure and the material make-up of the component or its welds. As a leader in services to the nuclear industry, Westinghouse has an immense knowl-edge and experience in inspecting and repairing primary circuit components such as steam generators, reactor vessels, core internals, primary coolant pumps and loops, fuel elements and many other components in hazardous environments. To fulfil the requirements posed by authorities and inspection standards, remotely operated manipulators and vehicles have been designed to bring a diverse variety of probes and cameras to the object of inspection. Each inspection process is tested and qualified by the relevant qualification body. In some cases the results of an inspection may require further in depth analysis or even repair of part of the component. These added challenges have often been met by specifically designed and qualified processes such as for the repair of vessel head penetrations or the re-pair of vessel nozzle safe end welds. This presentation will give a general overview of a range of inspection capabilities and give a few examples in which repair was successfully performed. (author)

  14. The development of robot application technology in nuclear facilities

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Lee, Jong Min; Kim, Chang Hoe; Kim, Byung Soo; Sohn, Surg Won; Hwoang, Suk Yeoung; Lee, Yong Bum; Kim, Woong Ki

    1992-12-01

    The objective of this project is to establish the basic technologies for advanced robotic systems operated in unstructured environment. The developed robotic system, which is remotely controlled, is expected to reduce the radiation dosage for workers who do the maintenance, inspection, and repairing work in nuclear facilities. The two major work scopes of this project in this year are to study the control scheme of advanced robotic system and develop a mobile robot. An inverse kinematic algorithm of 7 degrees of freedom anthropomorphic manipulator is investigated for dexterous control. Extended closed-loop schemes for solving the inverse kinematics of the redundant manipulator have been proposed and decentralized adaptive controller was designed by utilizing a new cartesian space controller. Control architecture of neural network has been developed, which has a strong capability on solving the kinematics of manipulator. The planetary wheel assembly has been implemented in the design to be suitable for plant. The design of manipulator has been implemented to operate with the battery power in the mobile system. This project will continue to be a major technical driver, with nuclear plant maintenance and waste management applications in conjunction with 'Long-term nuclear development program' over the next decade. (Author)

  15. Actuator Module of Robot Manipulator for Nuclear Power Plants Inspection, Maintenance and Decommission

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Jung, Kyung Min; Seo, Young Chil; Choi, Byung Seon; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    For nuclear facility decommissioning, there are many different electrical manipulators to remotely dismantle a nuclear facility. Various manipulators will be necessary for inspection, maintenance and decommission. Only one manipulator cannot response to many required tasks. Therefore, several manipulators are necessary, depending on the payload capacity, their number of axes and their dexterity. Each manipulator was developed for a specific task. The actuators used at manipulator are varied and many companies sell actuators depending on power, torque and speed. However, the commercial product is not standardized. Therefore, the development of the manipulator is time consuming and expensive. The essential item of the manipulators is the actuator module. If actuator module is standardized, it is easier to develop manipulator. In this paper, we developed two electrical actuator modules to standardize the actuator module and easily develop a manipulator using the proposed actuator modules. The electrical actuator module has a motor, gear and rotary sensor, and is also waterproof. The electrically driven manipulator being used in the proposed actuator modules will be shown. Two modularized electrical actuator modules were developed for inspection, maintenance and decommission. Using the two developed actuator modules, the manipulator inspecting the welding area of reactor vessel is easily developed. Various modularized electrical actuator modules will be developed in terms of size and power.

  16. SRT project: tele-robotics maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Gomez-Santamaria, J.; Calleja, J.M.; Carmena, P.; Avello, A.; Rubio, Y.A.

    2001-01-01

    The main aim of the SRT project was to develop a family of robots to help in the operation of nuclear power plants. Four robotic systems were developed and this paper focuses on three of them: ANAES -a steam leak detector through noise analysis-, MALIBA -a master-slave tele-operation system with force feedback- and ROBICEN -a compact pneumatic wall climbing robot-. ANAES (the Spanish acronym of spectrum analysis) consists of a set of sensor heads attached to a computer. Each head has two microphones and a video camera installed on it, and a DC motor that rotates the head. The heads are shielded with lead and boron steel, especially near the video camera. The noise generated by the plant is recorded every day at the same time and the software compares the recorded noise with the mean values of past records. The system can discern whether the noise has remarkably changed and, through phase analysis of the sound recorded by both microphones, identifies the direction of arrival (DOA) of the new noise, probably a steam leak. Using several heads, the new noise source can be identified. The video camera can be used to ease the location of the steam leaks. The stationariness of the measured noise has been tested in C.N. Cofrentes -a Spanish BWR-6 reactor-. A finished system with six heads has recently been installed in the MSR (moisture separator reheater) of the same plant. MALIBA is a master-slave tele-operated system with force feedback. It consists of two robots: a Stewart platform used as master robot and an open chain robot used as slave. The slave robot follows faithfully the movements of the master, and the master robot can reflect a force proportional to the force exerted by the slave on the environment. Three tools have been developed for the slave robot: a robot hand that includes a small video camera, a pneumatic drill and a rectifier. The results obtained have shown its effectiveness for the designed operations. ROBICEN is a lightweight pneumatic robot

  17. SRT project: tele-robotics maintenance of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Santamaria, J. [Iberdrola SA, Madrid (Spain); Calleja, J.M.; Carmena, P. [Endesa, Madrid (Spain); Avello, A.; Rubio, Y.A. [CEIT-Centro de Estudias e Investigaciones Tecnicas de Guipuzcoa, San Sebastian (Spain)

    2001-07-01

    The main aim of the SRT project was to develop a family of robots to help in the operation of nuclear power plants. Four robotic systems were developed and this paper focuses on three of them: ANAES -a steam leak detector through noise analysis-, MALIBA -a master-slave tele-operation system with force feedback- and ROBICEN -a compact pneumatic wall climbing robot-. ANAES (the Spanish acronym of spectrum analysis) consists of a set of sensor heads attached to a computer. Each head has two microphones and a video camera installed on it, and a DC motor that rotates the head. The heads are shielded with lead and boron steel, especially near the video camera. The noise generated by the plant is recorded every day at the same time and the software compares the recorded noise with the mean values of past records. The system can discern whether the noise has remarkably changed and, through phase analysis of the sound recorded by both microphones, identifies the direction of arrival (DOA) of the new noise, probably a steam leak. Using several heads, the new noise source can be identified. The video camera can be used to ease the location of the steam leaks. The stationariness of the measured noise has been tested in C.N. Cofrentes -a Spanish BWR-6 reactor-. A finished system with six heads has recently been installed in the MSR (moisture separator reheater) of the same plant. MALIBA is a master-slave tele-operated system with force feedback. It consists of two robots: a Stewart platform used as master robot and an open chain robot used as slave. The slave robot follows faithfully the movements of the master, and the master robot can reflect a force proportional to the force exerted by the slave on the environment. Three tools have been developed for the slave robot: a robot hand that includes a small video camera, a pneumatic drill and a rectifier. The results obtained have shown its effectiveness for the designed operations. ROBICEN is a lightweight pneumatic robot

  18. Development of a K3A robot for deployment in radioactive environments

    International Nuclear Information System (INIS)

    Sias, F.R. Jr.

    1996-01-01

    Radioactive materials make up a significant part of the hazardous-material inventory of the United States Department of Energy. Much of the radioactive material will be inspected or handled by robotic systems that contain electronic circuits that may be damaged by gamma radiation and other particles emitted from radioactive material. To use a mobile robot in the vicinity of high-level gamma radiation requires a special design. Since materials and electronic circuits can withstand some radiation without failure, the simplest approach would be simply to use an unmodified commercial mobile robot in the radioactive environment but remove it before failure occurs. Unpowered backup is another method of extending system lifetime in an ionizing radiation environment. When the primary system fails or degrades sufficiently, the backup system can be switched in to maintain system operation. By careful design and production-lot testing, systems can be designed to meet moderate doses of radiation; however, randomly-selected off- the-shelf commercial parts cannot be guaranteed to meet a specified total-dose tolerance. We can define the Basic Radiation-Hardened System to be a teleoperated K3A transport capable of deploying a radiation-hardened video camera for initial entry and inspection applications. The electronics in the K3A mobile base has three essential modules: MA-2 Motor Amplifier Circuit, DC-I Drive Control Computer, and DC/DC Converter for powering the electronics. Design of the system will be discussed

  19. Feeding assistive robotics, imaginaries and care

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt

    2018-01-01

    The media and political/managerial levels focus on the opportunities to re-perform Denmark through digitization. Feeding assistive robotics is a welfare technology, relevant to citizens with low or no function in their arms. Despite national dissemination strategies, it proves difficult to recruit...

  20. Control and applications of cooperating disparate robotic manipulators relevant to nuclear waste management

    Science.gov (United States)

    Lew, Jae Young; Book, Wayne J.

    1991-01-01

    Remote handling in nuclear waste management requires a robotic system with precise motion as well as a large workspace. The concept of a small arm mounted on the end of a large arm may satisfy such needs. However, the performance of such a serial configuration lacks payload capacity which is a crucial factor for handling a massive object. Also, this configuration induces more flexibility on the structure. To overcome these problems, the topology of bracing the tip of the small arm (not the large arm) and having an end effector in the middle of the chain is proposed in this paper. Also, control of these cooperating disparate manipulators is accomplished in computer simulations. Thus, this robotic system can have the accuracy of the small arm, and at the same time, it can have the payload capacity and large workspace of the large arm.

  1. The use of automation and robotic systems to establish and maintain lunar base operations

    Science.gov (United States)

    Petrosky, Lyman J.

    1992-01-01

    Robotic systems provide a means of performing many of the operations required to establish and maintain a lunar base. They form a synergistic system when properly used in concert with human activities. This paper discusses the various areas where robotics and automation may be used to enhance lunar base operations. Robots are particularly well suited for surface operations (exterior to the base habitat modules) because they can be designed to operate in the extreme temperatures and vacuum conditions of the Moon (or Mars). In this environment, the capabilities of semi-autonomous robots would surpass that of humans in all but the most complex tasks. Robotic surface operations include such activities as long range geological and mineralogical surveys with sample return, materials movement in and around the base, construction of radiation barriers around habitats, transfer of materials over large distances, and construction of outposts. Most of the above operations could be performed with minor modifications to a single basic robotic rover. Within the lunar base habitats there are a few areas where robotic operations would be preferable to human operations. Such areas include routine inspections for leakage in the habitat and its systems, underground transfer of materials between habitats, and replacement of consumables. In these and many other activities, robotic systems will greatly enhance lunar base operations. The robotic systems described in this paper are based on what is realistically achievable with relatively near term technology. A lunar base can be built and maintained if we are willing.

  2. Robotics

    Science.gov (United States)

    Popov, E. P.; Iurevich, E. I.

    The history and the current status of robotics are reviewed, as are the design, operation, and principal applications of industrial robots. Attention is given to programmable robots, robots with adaptive control and elements of artificial intelligence, and remotely controlled robots. The applications of robots discussed include mechanical engineering, cargo handling during transportation and storage, mining, and metallurgy. The future prospects of robotics are briefly outlined.

  3. Robot 2015 : Second Iberian Robotics Conference : Advances in Robotics

    CERN Document Server

    Moreira, António; Lima, Pedro; Montano, Luis; Muñoz-Martinez, Victor

    2016-01-01

    This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th-21th, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – “Sociedade Portuguesa de Robótica/ Portuguese Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/ Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/ Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS. Robot 2015 was focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other...

  4. Content and face validity of a comprehensive robotic skills training program for general surgery, urology, and gynecology.

    Science.gov (United States)

    Dulan, Genevieve; Rege, Robert V; Hogg, Deborah C; Gilberg-Fisher, Kristine K; Tesfay, Seifu T; Scott, Daniel J

    2012-04-01

    The authors previously developed a comprehensive, proficiency-based robotic training curriculum that aimed to address 23 unique skills identified via task deconstruction of robotic operations. The purpose of this study was to determine the content and face validity of this curriculum. Expert robotic surgeons (n = 12) rated each deconstructed skill regarding relevance to robotic operations, were oriented to the curricular components, performed 3 to 5 repetitions on the 9 exercises, and rated each exercise. In terms of content validity, experts rated all 23 deconstructed skills as highly relevant (4.5 on a 5-point scale). Ratings for the 9 inanimate exercises indicated moderate to thorough measurement of designated skills. For face validity, experts indicated that each exercise effectively measured relevant skills (100% agreement) and was highly effective for training and assessment (4.5 on a 5-point scale). These data indicate that the 23 deconstructed skills accurately represent the appropriate content for robotic skills training and strongly support content and face validity for this curriculum. Copyright © 2012. Published by Elsevier Inc.

  5. Robotic Milking Implementation in the Sverdlovsk Region

    Directory of Open Access Journals (Sweden)

    Egor Artyomovich Skvortcov

    2017-03-01

    Full Text Available The research topic is relevant due to a high rate of the implementation of milking robots (automatic milking system, AMS in Western Europe and in the Middle Urals. As of January 1, 2016, 21 milking robot systems of six different brands of foreign production were installed in the region. Milking robotics is used in small, medium and large enterprises (by the number of personnel, in contrast to Western Europe, where it is mainly used on the farms of family type. The article examines the socioeconomic causes of the introduction of robotics, as well as the impact of the use of robots to the economic indicators of milk production. The expert survey has revealed as the main reasons for the introduction of robotics, a desire to reduce the risks of personnel (45.5 % and a shortage of staff (18.2 %. The analysis of the utilization efficiency of fixed assets in all organizations introduced robots has shown both a decrease of capital productivity after the introduction of milking robots for 15–60 % or more, and the reduce of the profit rate in 9 out of 11 of the analysed organizations because of the high capital intensity of robotics projects. The analysis of labour indicators and the net cost of milk is carried out in 45.5 % of organizations, where we have obtained the consistent results of the use of robotics. The authors have analysed the direct costs for the production of 1 quintal of milk. In a group of 5 companies, on a robotic farm, it is 5.1 % lower than in a conventional farm. The complexity of the production of milk on a robotic farm is lower by 48.7 %, and labour productivity per person is higher on 95.3 % than on conventional farms. The results of the study can be used as the recommendations for agricultural organizations to use robotics milking to reduce the deficit of staff and to minimize the impact of personnel risks on production results. The growth of the importance of the reasons for the introduction of milking robots and a high

  6. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    Science.gov (United States)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  7. Cultural Robotics: The Culture of Robotics and Robotics in Culture

    OpenAIRE

    Hooman Samani; Elham Saadatian; Natalie Pang; Doros Polydorou; Owen Noel Newton Fernando; Ryohei Nakatsu; Jeffrey Tzu Kwan Valino Koh

    2013-01-01

    In this paper, we have investigated the concept of “Cultural Robotics” with regard to the evolution of social into cultural robots in the 21st Century. By defining the concept of culture, the potential development of a culture between humans and robots is explored. Based on the cultural values of the robotics developers, and the learning ability of current robots, cultural attributes in this regard are in the process of being formed, which would define the new concept of cultural robotics. Ac...

  8. Robots in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Koizumi, Masumichi

    1984-01-01

    The Power Reactor and Nuclear Fuel Development Corp. has carried out the technical development concerning ATRs and FBRs, nuclear fuel cycle, the uranium enrichment by centrifugal separation, the reprocessing of spent fuel, and the treatment and disposal of wastes. For the purpose, the Corp. has operated diversified nuclear facilities, and for the operational management of these nuclear facilities, aiming at the reduction of radiation exposure of workers, the shortening of working time, or the rise of the capacity ratio of the facilities, the technical development related to robots has been advanced. Namely, the equipment for the remote maintenace and repair of facilities, the equipment for checkup and monitoring and the equipment for test and inspection are the main subjects of robot development. Hereafter, it is necessary to develop the equipment to which the function of high grade is given and to automate main processes and checkup and monitoring system as well as to improve the reliability and endurance of facilities. The development of the manipulator system for remote maintenance, the facility of handling high radioactive substances and a master-slave manipulator, a power manipulator and a remote transfer equipment, the development of a remote repair and checkup equipment in the reprocessing plant, a remote maintenance and checkup equipment for FBRs and a remote automatic inspection equipment for ATRs are reported. (Kako, I.)

  9. Proceedings of the international conference on advancements in automation, robotics and sensing: souvenir

    International Nuclear Information System (INIS)

    Vinod, B.; Sundaram, M.; Sujatha, K.S.; Brislin, J. Joe; Prabhakarab, S.

    2016-01-01

    Robotics and automation is a thriving domain in the field of engineering, comprising of major areas like electrical, electronics, mechanical, automation, computer and robotics engineering. This conference address issues related to technical advances in all these fields. Papers relevant to INIS are indexed separately

  10. Robot Actors, Robot Dramaturgies

    DEFF Research Database (Denmark)

    Jochum, Elizabeth

    This paper considers the use of tele-operated robots in live performance. Robots and performance have long been linked, from the working androids and automata staged in popular exhibitions during the nineteenth century and the robots featured at Cybernetic Serendipity (1968) and the World Expo...

  11. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  12. Development of 6-DOF painting robot control system

    Science.gov (United States)

    Huang, Junbiao; Liu, Jianqun; Gao, Weiqiang

    2017-01-01

    With the development of society, the spraying technology of manufacturing industry in China has changed from the manual operation to the 6-DOF (Degree Of Freedom)robot automatic spraying. Spraying painting robot can not only complete the work which does harm to human being, but also improve the production efficiency and save labor costs. Control system is the most critical part of the 6-DOF robots, however, there is still a lack of relevant technology research in China. It is very necessary to study a kind of control system of 6-DOF spraying painting robots which is easy to operation, and has high efficiency and stable performance. With Googol controller platform, this paper develops programs based on Windows CE embedded systems to control the robot to finish the painting work. Software development is the core of the robot control system, including the direct teaching module, playback module, motion control module, setting module, man-machine interface, alarm module, log module, etc. All the development work of the entire software system has been completed, and it has been verified that the entire software works steady and efficient.

  13. Experience in the use of teleoperated robotic equipment in the Spanish Nuclear Power Plants (S.R.T. Project)

    International Nuclear Information System (INIS)

    Bielza, M.; Gomez, J.; Izquierdo, J.A.; Bercedo, A.; Espallardo, J.A.; Martinez, A.; Carmena, P.; Pascual, J.L.

    1998-01-01

    The main objective of the Teleoperated Robotic Systems project (SRT) is the development of teleoperated robotic systems for use in the inspection, surveillance and maintenance operations in nuclear and radioactive installations. These systems make possible the reduction of the individual and collective doses of the workers that undertake these operations, as well as an increase of plant availability as it is possible to carry out specific tasks of inspection and surveillance in high radiation dose areas without to reduce the power of the installation. This project started in 1995 deciding to priorize the inspection equipment in a first phase. As a result of this work currently several semi-industrial products are available: ROBCAR, ROBICEN y ANAES. These have been installed for testing and commercial operation in Spanish nuclear installations. In this paper the experience of using these prototypes in the S.M. de Garona and Cofrentes nuclear power plants is described, as well as the improvements in the design of these systems derived from these experiences that have been incorporated to the industrial prototypes that are currently in the last phase of development. (Author)

  14. The moving vehicle checks, and having checked, moves on: an overview of the use of mobile inspection vehicles within the CEGB

    International Nuclear Information System (INIS)

    Friend, D.B.; Ellis, M.; James, D.W.

    1988-01-01

    In many circumstances, remotely controlled vehicles, tele-operators as distinct from robots, can offer definite advantages in cost, inspection time and in the amount of preparatory work necessary to undertake such inspections. To illustrate this, various vehicles which have been developed and used with the Central Electricity Generating Board, are described and the design philosophy and detailed operation of one sophisticated pipe inspection vehicle is discussed. This serves as an example of what can be achieved with current technology and what is required to produce a 'site-compatible' package. Finally some developments which are currently in hand are described and future requirements considered. (author)

  15. Assistance dogs provide a useful behavioral model to enrich communicative skills of assistance robots.

    Science.gov (United States)

    Gácsi, Márta; Szakadát, Sára; Miklósi, Adám

    2013-01-01

    These studies are part of a project aiming to reveal relevant aspects of human-dog interactions, which could serve as a model to design successful human-robot interactions. Presently there are no successfully commercialized assistance robots, however, assistance dogs work efficiently as partners for persons with disabilities. In Study 1, we analyzed the cooperation of 32 assistance dog-owner dyads performing a carrying task. We revealed typical behavior sequences and also differences depending on the dyads' experiences and on whether the owner was a wheelchair user. In Study 2, we investigated dogs' responses to unforeseen difficulties during a retrieving task in two contexts. Dogs displayed specific communicative and displacement behaviors, and a strong commitment to execute the insoluble task. Questionnaire data from Study 3 confirmed that these behaviors could successfully attenuate owners' disappointment. Although owners anticipated the technical competence of future assistance robots to be moderate/high, they could not imagine robots as emotional companions, which negatively affected their acceptance ratings of future robotic assistants. We propose that assistance dogs' cooperative behaviors and problem solving strategies should inspire the development of the relevant functions and social behaviors of assistance robots with limited manual and verbal skills.

  16. 75 FR 43562 - FANUC Robotics America, Inc., Including On-Site Leased Workers From Right Angle Staffing, Inc...

    Science.gov (United States)

    2010-07-26

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-70,749] FANUC Robotics America... negative determination which was based on the finding that, during the relevant period, Fanuc Robotics... Robotics America, Inc., Rochester Hills, Michigan. Signed in Washington, DC, this 13th day of July 2010...

  17. Toward humanoid robots for operations in complex urban environments

    Science.gov (United States)

    Pratt, Jerry E.; Neuhaus, Peter; Johnson, Matthew; Carff, John; Krupp, Ben

    2010-04-01

    Many infantry operations in urban environments, such as building clearing, are extremely dangerous and difficult and often result in high casualty rates. Despite the fast pace of technological progress in many other areas, the tactics and technology deployed for many of these dangerous urban operation have not changed much in the last 50 years. While robots have been extremely useful for improvised explosive device (IED) detonation, under-vehicle inspection, surveillance, and cave exploration, there is still no fieldable robot that can operate effectively in cluttered streets and inside buildings. Developing a fieldable robot that can maneuver in complex urban environments is challenging due to narrow corridors, stairs, rubble, doors and cluttered doorways, and other obstacles. Typical wheeled and tracked robots have trouble getting through most of these obstacles. A bipedal humanoid is ideally shaped for many of these obstacles because its legs are long and skinny. Therefore it has the potential to step over large barriers, gaps, rocks, and steps, yet squeeze through narrow passageways, and through narrow doorways. By being able to walk with one foot directly in front of the other, humanoids also have the potential to walk over narrow "balance beam" style objects and can cross a narrow row of stepping stones. We describe some recent advances in humanoid robots, particularly recovery from disturbances, such as pushes and walking over rough terrain. Our disturbance recovery algorithms are based on the concept of Capture Points. An N-Step Capture Point is a point on the ground in which a legged robot can step to in order to stop in N steps. The N-Step Capture Region is the set of all N-Step Capture Points. In order to walk without falling, a legged robot must step somewhere in the intersection between an N-Step Capture Region and the available footholds on the ground. We present results of push recovery using Capture Points on our humanoid robot M2V2.

  18. Automated Visual Inspection of Ship Hull Surfaces Using the Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Carlos Fernández-Isla

    2013-01-01

    Full Text Available A new online visual inspection technique is proposed, based on a wavelet reconstruction scheme over images obtained from the hull. This type of visual inspection to detect defects in hull surfaces is commonly carried out at shipyards by human inspectors before the hull repair task starts. We propose the use of Shannon entropy for automatic selection of the band for image reconstruction which provides a low decomposition level, thus avoiding excessive degradation of the image, allowing more precise defect segmentation. The proposed method here is capable of on-line assisting to a robotic system to perform grit blasting operations over damage areas of ship hulls. This solution allows a reliable and cost-effective operation for hull grit spot blasting. A prototype of the automated blasting system has been developed and tested in the Spanish NAVANTIA shipyards.

  19. Independent tube verification and dynamic tracking in et inspection of nuclear steam generator

    International Nuclear Information System (INIS)

    Xiongzi, Li; Zhongxue, Gan; Lance, Fitzgibbons

    2001-01-01

    The full text follows. In the examination of pressure boundary tubes in steam generators of commercial pressurized water nuclear power plants (PWR's), it is critical to know exactly which particular tube is being accessed. There are no definitive landmarks or markings on the individual tubes. Today this is done manually, it is tedious, and interrupts the normal inspection work, and is difficult due to the presence of water on the tube surface, plug ends instead of tube openings in the field of view, and varying lighting quality. In order to eliminate the human error and increase the efficiency of operation, there is a need to identify tube position during the inspection process, independent of robot encoder position and motion. A process based on a Cognex MVS-8200 system and its application function package has been developed to independently identify tube locations. ABB Combustion Engineering Nuclear Power's Outage Services group, USPPL in collaboration with ABB Power Plant Laboratories' Advanced Computers and Controls department has developed a new vision-based Independent Tube Verification system (GENESIS-ITVS-TM ). The system employ's a model-based tube-shape detection algorithm and dynamic tracking methodology to detect the true tool position and its offsets from identified tube location. GENESIS-ITVS-TM is an automatic Independent Tube Verification System (ITVS). Independent tube verification is a tube validation technique using computer vision, and not using any robot position parameters. This process independently counts the tubes in the horizontal and vertical axes of the plane of the steam generator tube sheet as the work tool is moved. Thus it knows the true position in the steam generator, given a known starting point. This is analogous to the operator's method of counting tubes for verification, but it is automated. GENESIS-ITVS-TM works independent of the robot position, velocity, or acceleration. The tube position information is solely obtained from

  20. Archiving plant inspection data in a virtual environment

    International Nuclear Information System (INIS)

    Kita, Nobuyuki; Kita, Yasuyo; Yang, Hai-quan

    2004-01-01

    ''Digital Maintenance Field Technology'' was proposed for reliable and robust maintenance of a nuclear power plant. It digitizes and maintains whole information of maintenance fields in computer system for a long time. Digital Field Archival Technology'' is one of three core technologies of the ''Digital Maintenance Field Technology''. The essential functions of the Digital Field Archival Technology'' is to store, maintain and visualize the inspection data during a long period. In order to enable the operators or other agents to review the plant information at any time, at any location and in any form, the information must be stored with collect indexes of time and space. The virtual space resembling the real space is suitable to store the observed information. In this paper, the concept to store the observed information into the virtual space is realized under the assumption that the geometrical structure of real plant is static and reconstructed in the virtual space. The system for storing observed information especially image data gotten by mobile inspection robots and visualizing the stored data as desired is introduced. (author)