Chiatti, Leonardo
2014-01-01
C.S. Peirce’s semiotic approach admits the possibility of natural signic systems. This article explores the possible connection between the concept of elementary particle and the irreducible relations of Peircean semiotics. The potentialities and the limitations of a semiotic vision of elementary physical processes are addressed.
Marciano, W.J.
1984-12-01
The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references. (WHK)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
ELEMENTARY PARTICLE INTERACTIONS
EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN
2013-07-30
The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.
Sternheimer, J.
1983-12-12
This note offers a new point of view on particle masses. It is shown that they are distributed following a musical scale, the chromatic tempered scale -for stable particles- subdivided into microintervals including unstable particles. A theoretical explanation, based on causality, allows one also to calculate their global distribution along the mass scale, in agreement with experiment, and indicating the existence of ''musical'' laws in the vibratory organisation of matter.
Elementary Particles A New Approach
FranciscoMartnezFlores.
2015-07-01
Full Text Available ABSTRACT It is shown the inexistence of neutrinos to define precisely the concept of relativistics mass under this scheme to elementarys particles as electron and interactions particles like photons correspond an electromagnetic and virtual mass. Nucleons protons and neutrons have real or inertial mass for being composite particles since inertia needs structure it is provided by an interactive network originated by strong and weak forces. This mass is building up atoms and all the material world under Classical Physics and Chemistrys laws.These actual masses may be considered as electromagnetic and virtual one thanks to its charge in order to establish the high energies level needed to obtain all particles physics elementary or not which are governed by the laws of Quantum Physics. With all this one may set up amore reasonable and understandable new Standard Model which being projected into Cosmological Model can get rid of some inconsistencies and concepts difficult to be admitted.
Elementary Particles and Forces.
Quigg, Chris
1985-01-01
Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…
Supersymmetry in Elementary Particle Physics
Peskin, Michael E.
2008-01-01
These lectures, presented at the 2006 TASI summer school, give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions...
Supersymmetry in Elementary Particle Physics
Peskin, Michael E.; /SLAC
2008-02-05
These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.
Are Black Holes Elementary Particles?
Ha, Yuan K
2009-01-01
Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.
Matter and Elementary Particles : Interactions and Qualities
Bezares Roder, Nils Manuel
2005-01-01
The elementary interactions of nature are discussed, based on the structure of the atom. Elementary particles are categorized by their qualities, especially their spin and statistics, but as well charge and compound forms among others. The connection to CP-behaviour and the different elementary interactions are discussed, as well as some open questions and ideas in modern elementary particle physics.The modern physical understanding of matter is reviewed, parting from Quantum Mechanics and Ge...
Harmonic Oscillators and Elementary Particles
Sobouti, Y
2016-01-01
Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...
A research Program in Elementary Particle Physics
Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David
2013-07-25
Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.
Elementary particle physics at the University of Florida
1991-12-01
This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).
Elementary particles under the lens of the black holes
Matsas, George Emanuel Avraam [UNESP
2004-01-01
After a brief review of the historical development and CLASSICAL properties of the BLACK HOLES, we discuss how our present knowledge of some of their QUANTUM properties shed light on the very concept of ELEMENTARY PARTICLE. As an illustration, we discuss in this context the decay of accelerated protons, which may be also relevant to astrophysics.
Current experiments in elementary particle physics, 1989
Lawrence Berkeley Nat. Laboratory. Berkeley; Armstrong, F E; Trippe, T G; Yost, G P; Oyanagi, Y; Dodder, D C; Ryabov, Yu G; Slabospitsky, S R; Frosch, R; Olin, A; Lehar, F; Klumov, I A; Ivanov, I I
1989-01-01
Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.
Beam Line: 100 years of elementary particles
Pais, A.; Weinberg, S.; Quigg, C.; Riordan, M.; Panofsky, W. K. H.
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
Teaching Elementary Particle Physics: Part I
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…
On the Origin of Elementary Particle Masses
Hansson, Johan
2012-01-01
The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary particles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of the field with itself. A simple application of this idea to the fermions is seen to yield a mass for the neutrino in line with constraints from direct experimental upper limits and correct order of magnitude predictions of mass separations between neutrinos, charged leptons and quarks. The neutrino interacts only through the weak force, hence becomes light. The electron interacts also via electromagnetism and accordingly becomes heavier. The quarks also have strong interactions and become heavy. The photon is the only fundamental particle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, ...
Do elementary particles survive composite systems?
Nagahiro, Hideko
2014-01-01
The "compositeness" or "elementarity" is investigated for s-wave composite states dynamically generated by energy-dependent and independent interactions. The bare mass of the corresponding fictitious elementary particle in an equivalent Yukawa model is shown to be infinite, indicating that the wave function renormalization constant Z is equal to zero. The idea can be equally applied to both resonant and bound states. In a special case of zero-energy bound states, the condition Z = 0 does not necessarily mean that the elementary particle has the infinite bare mass. We also emphasize arbitrariness in the "elementarity" leading to multiple interpretations of a physical state, which can be either a pure composite state with Z = 0 or an elementary particle with Z \
Elementary particle physics in early physics education
Wiener, Gerfried
2017-01-01
Current physics education research is faced with the important question of how best to introduce elementary particle physics in the classroom early on. Therefore, a learning unit on the subatomic structure of matter was developed, which aims to introduce 12-year-olds to elementary particles and fundamental interactions. This unit was iteratively evaluated and developed by means of a design-based research project with grade-6 students. In addition, dedicated professional development programmes were set up to instruct high school teachers about the learning unit and enable them to investigate its didactical feasibility. Overall, the doctoral research project led to successful results and showed the topic of elementary particle physics to be a viable candidate for introducing modern physics in the classroom. Furthermore, thanks to the design-based research methodology, the respective findings have implications for both physics education and physics education research, which will be presented during the PhD defen...
Theoretical Studies in Elementary Particle Physics
Collins, John C.; Roiban, Radu S
2013-04-01
This final report summarizes work at Penn State University from June 1, 1990 to April 30, 2012. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
Introduction to Elementary Particle Physics
Salinas, C. J. Solano; Hurtado, K.; Romero, C.
2009-04-01
This is a short review of Particle Physics and the most widely accepted theory, the Standard Model, with its questions and limitations. We also show a quick review of some of te theories beyonf the Standard Model. It is based in the introductory talk given the Third School on Cosmic Rays and Astrophysics held in Arequipa, Peru.
Research in Elementary Particle Physics
White, Andrew Paul [Univ. of Texas, Arlington, TX (United States); De, Kaushik [Univ. of Texas, Arlington, TX (United States); Brandt, Andrew [Univ. of Texas, Arlington, TX (United States); Yu, Jaehoon [Univ. of Texas, Arlington, TX (United States); Farbin, Amir [Univ. of Texas, Arlington, TX (United States)
2015-02-02
This report details the accomplishments and research results for the High Energy Physics Group at the University of Texas at Arlington at the Energy and Intensity Frontiers. For the Energy Frontier we have made fundamental contributions in the search for supersymmetric particles, proposed to explain the stabilization of the mass of the Higgs Boson – the agent giving mass to all known particles. We have also made major contributions to the search for additional Higgs Bosons and to the planning for future searches. This work has been carried out in the context of the ATLAS Experiment at CERN (European Nuclear Research Laboratory) and for which we have made major contributions to computing and data distribution and processing, and have worked to calibrate the detector and prepare upgraded electronics for the future. Our other contribution to the Energy Frontier has been to the International Linear Collider (ILC) project, potentially hosted by Japan, and to the Silicon Detector Concept (SiD) in particular. We have lead the development of the SiD Concept and have worked on a new form of precise energy measurement for particles from the high energy collisions of electrons and positrons at the ILC. For the Intensity Frontier, we have worked to develop the concept of Long Baseline Neutrino Experiment(s) (LBNE) at the Fermi National Accelerator Laboratory. Our contributions to detector development, neutrino beam studies, particle identification, software development will facilitate future studies of the oscillation of one type of neutrino into other type(s), establish the order of the neutrino masses, and, through an innovative new idea, allow us to create a beam of dark matter particles.
Investigations in Elementary Particle Theory
Weiler, Thomas J. [Vanderbilt Univ., Nashville, TN (United States); Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States); Scherrer, Robert J. [Vanderbilt Univ., Nashville, TN (United States)
2014-07-02
The research interests of our three Co-PI’s complement each other very well. Kephart works mainly on models of particle unification in four or higher dimensions, on aspects of gravity such as inflation, black-holes, and the very early Universe, and on applications of knot theory and topology to various physical systems (including gluon dynamics). Scherrer works mainly on aspects of the intermediate-aged Universe, including dark matter and dark energy, and particle physics in the early Universe. Weiler works mainly on neutrino physics, dark matter signatures, and extreme particle-astrophysics in the late Universe, including origins of the highest-energy cosmic-rays and gamma-rays, and the future potential of neutrino astrophysics. Kephart and Weiler have lately devoted some research attention to the LHC and its reach for probing physics beyond the Standard Model. During the 3-year funding period, our grant supported one postdoc (Chiu Man Ho) and partially supported two students, Peter Denton and Lingjun Fu. Chiu Man collaborated with all three of the Co-PI’s during the 3-year funding period and published 16 refereed papers. Chiu Man has gone on to a postdoc with Steve Hsu at Michigan State University. Denton and Fu will both receive their PhDs during the 2014-15 academic year. The total number of our papers published in refereed journals by the three co-PIs during the period of this grant (2011-present) is 54. The total number of talks given by the group members during this time period, including seminars, colloquia, and conference presentations, is 47. Some details of the accomplishments of our DOE funded researchers during the grant period include Weiler being named a Simons Fellow in 2013. He presented an invited TEDx talk in 2012. His paper on closed timelike curves (2013) garnered a great deal of national publicity. Scherrer’s paper on the “little rip” (2011) fostered a new area of cosmological research, and the name “little rip” has now entered
Current experiments in elementary particle physics. Revision
Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others
1994-08-01
This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Elementary Particles The first hundred years
Perkins, Donald Hill
1997-01-01
To mark the centenary of the discovery of that first elementary particle, the electron, some remarks and recollections from the early days of high energy physics, including the impact of early experiments and ideas on todayÕs research. Much of our progress in this field has been carefully anticipated and planned, but a surprising number of successes were the result of incredibly lucky breaks, where headway was made despite - or even because of - incorrect experimental results, crossed wires or simply asking the wrong question at the right time. We can be sure therefore that the next century - or perhaps even what remains of this one - will have unexpected surprises in store.
Elementary particle physics in a nutshell
Tully, Christopher C
2011-01-01
The new experiments underway at the Large Hadron Collider at CERN in Switzerland may significantly change our understanding of elementary particle physics and, indeed, the universe. This textbook provides a cutting-edge introduction to the field, preparing first-year graduate students and advanced undergraduates to understand and work in LHC physics at the dawn of what promises to be an era of experimental and theoretical breakthroughs. Christopher Tully, an active participant in the work at the LHC, explains some of the most recent experiments in the field. But this book, which emerged fr
Elementary particles and emergent phase space
Zenczykowski, Piotr
2014-01-01
The Standard Model of elementary particles, although very successful, contains various elements that are put in by hand. Understanding their origin requires going beyond the model and searching for ""new physics"". The present book elaborates on one particular proposal concerning such physics. While the original conception is 50 years old, it has not lost its appeal over time. Its basic idea is that space - an arena of events treated in the Standard Model as a classical background - is a concept which emerges from a strictly discrete quantum layer in the limit of large quantum numbers. This bo
Current experiments in elementary particle physics. Revised
Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)
1992-06-01
This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Current experiments in elementary particle physics
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Current experiments in elementary particle physics
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
On the Origin of Elementary Particle Masses
Hansson J.
2014-04-01
Full Text Available The oldest enigma in fundamental particle physics is: Where do the observed masses of elementary particles come from? Inspired by observation of the empirical particle mass spectrum we propose that the masses of elementary parti cles arise solely due to the self-interaction of the fields associated with a particle. We thus assume that the mass is proportional to the strength of the interaction of th e field with itself. A simple application of this idea to the fermions is seen to yield a mas s for the neutrino in line with constraints from direct experimental upper limits and correct order of magnitude predictions of mass separations between neutrinos, charge d leptons and quarks. The neutrino interacts only through the weak force, hence becom es light. The electron in- teracts also via electromagnetism and accordingly becomes heavier. The quarks also have strong interactions and become heavy. The photon is the only fundamental parti- cle to remain massless, as it is chargeless. Gluons gain mass comparable to quarks, or slightly larger due to a somewhat larger color charge. Inclu ding particles outside the standard model proper, gravitons are not exactly massless, but very light due to their very weak self-interaction. Some immediate and physically interesting consequences arise: i Gluons have an e ff ective range ∼ 1 fm, physically explaining why QCD has finite reach; ii Gravity has an effective range ∼ 100 Mpc coinciding with the largest known structures, the cosmic voids; iii Gravitational waves undergo dispersion even in vacuum, and have all five polarizations (not just the two of m = 0, which might explain why they have not yet been detected.
(Research in elementary particles and interactions). [1992
Adair, R.; Sandweiss, J.; Schmidt, M.
1992-05-01
Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.
Elementary Particle Spectroscopy in Regular Solid Rewrite
Trell, Erik
2008-10-01
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it "is the likely keystone of a fundamental computational foundation" also for e.g. physics, molecular biology and neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)×O(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each
Elementary Particles and the Laws of Physics
Feynman, Richard P.; Weinberg, Steven
1987-11-01
Developing a theory that seamlessly combines relativity and quantum mechanics, the most important conceptual breakthroughs in twentieth century physics, has proved to be a difficult and ongoing challenge. This book details how two distinguished physicists and Nobel laureates have explored this theme in two lectures given in Cambridge, England, in 1986 to commemorate the famous British physicist Paul Dirac. Given for nonspecialists and undergraduates, the talks transcribed in Elementary Particles and the Laws of Physics focus on the fundamental problems of physics and the present state of our knowledge. Professor Feynman examines the nature of antiparticles, and in particular the relationship between quantum spin and statistics. Professor Weinberg speculates on how Einstein's theory of gravitation might be reconciled with quantum theory in the final law of physics. Highly accessible, deeply thought provoking, this book will appeal to all those interested in the development of modern physics.
Energy related applications of elementary particle physics
Rafelski, J.
1991-08-31
The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise.
Elementary particle physics at the University of Florida. Annual progress report
1991-12-01
This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).
Elementary particle physics and the superconducting super collider.
Quigg, C; Schwitters, R F
1986-03-28
The present status and future prospects of elementary particle physics are reviewed, and some of the scientific questions that motivate the construction of a major new accelerator complex in the United States are summarized.
The origin of mass elementary particles and fundamental symmetries
Iliopoulos, John
2017-01-01
The discovery of a new elementary particle at the Large Hadron Collider at CERN in 2012 made headlines in world media. Since we already know of a large number of elementary particles, why did this latest discovery generate so much excitement? This small book reveals that this particle provides the key to understanding one of the most extraordinary phenomena which occurred in the early Universe. It introduces the mechanism that made possible, within tiny fractions of a second after the Big Bang, the generation of massive particles. The Origin of Mass is a guided tour of cosmic evolution, from the Big Bang to the elementary particles we study in our accelerators today. The guiding principle of this book is a concept of symmetry which, in a profound and fascinating way, seems to determine the structure of the Universe.
Current experiments in elementary particle physics, 1976-87
Lawrence Berkeley Nat. Laboratory. Berkeley
Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.
Resource Letter HEPP-1: History of elementary-particle physics
Hovis, R.C. (Department of Physics, Clark Hall, Cornell University, Ithaca, New York (USA)); Kragh, H. (TISK Project, Roskilde University Centre, Postbox 260, 4000 Roskilde (Denmark))
1991-09-01
This Resource Letter provides a guide to literature on the history of modern elementary-particle physics. Histories that treat developments from the 1930s through the 1980s are focused on and a sampling is included of the historiography covering the period c. 1890--1930, the prehistory of elementary-particle physics as a discipline. Also included are collections of scientific papers, which might be especially valuable to individuals who wish to undertake historical research on particular scientists or subfields of elementary-particle physics. The introduction presents some statistical data and associated references for elementary-particle physics and surveys historiographical approaches and issues that are represented in historical accounts in the bibliography. All references are assigned a rating of E (Elementary), I (Intermediate), or A (Advanced) based on their technical or conceptual difficulty or their appropriateness for a person attempting a graduated study of the history of modern particle physics. That is, items labeled E are suitable for the layman or would be fundamental to a beginning exploration of the history of particle physics, whereas items labeled A are technically demanding (mathematically, historiographically, or philosophically) or would be most appropriate for specialized or advanced examinations of various topics.
Theoretical & Experimental Studies of Elementary Particles
McFarland, Kevin
2012-10-04
Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad program of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities
Latest AMS Results on elementary particles in cosmic rays
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.
Teaching Elementary Particle Physics, Part II
Hobson, Art
2011-01-01
In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…
Elementary Particle Interactions with CMS at LHC
Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)
2016-07-31
The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.
Elementary Particle Interactions with CMS at LHC
Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)
2016-07-31
The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.
A search for free fractional electric charge elementary particles
Halyo, Valerie
2001-07-01
A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 × 10-22 particles per nucleon with 95% confidence.
Search for free fractional electric charge elementary particles
Halyo, V.
1999-10-29
The authors have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup {minus}22} particles per nucleon with 95% confidence.
A Search for Free Fractional Electric Charge Elementary Particles
Halyo, Valerie
2000-12-04
A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.
Search for Free Fractional Electric Charge Elementary Particles
Halyo, V; Lee, E R; Lee, I T; Loomba, D; Perl, Martin Lewis
2000-01-01
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than $4.71\\times10^{-22}$ particles per nucleon with 95% confidence.
A Search for Free Fractional Electric Charge Elementary Particles
Halyo, Valerie
2000-12-04
A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.
Quantum Optics, Diffraction Theory, and Elementary Particle Physics
CERN. Geneva
2009-01-01
Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.
The Birth of Elementary-Particle Physics.
Brown, Laurie M.; Hoddeson, Lillian
1982-01-01
Traces the origin and development of particle physics, concentrating on the roles of cosmic rays and theory. Includes charts highlighting significant events in the development of cosmic-ray physics and quantum field theory. (SK)
An introduction to elementary particle phenomenology
Ratcliffe, Philip G
2014-01-01
This book deals with the development of particle physics, in particular through the exacting and all-important interplay between theory and experiment, an area that has now become known as phenomenology. Particle physics phenomenology provides the connection between the mathematical models created by theoretical physicists and the experimentalists who explore the building blocks of matter and the forces that operate between them. Assuming no more background knowledge than the basics of quantum mechanics, relativistic mechanics and nuclear physics, the author presents a solid and clear motivation for the developments witnessed by the particle physics community at both high and low energies over that last 50 or 60 years. In particular, the role of symmetries and their violation is central to many of the discussions. Including exercises and many references to original experimental and theoretical papers, as well as other useful sources, it will be essential reading for all students and researchers in ...
The Mathematical Structure of Elementary Particles. II.
1985-05-01
Functions, Dover, New York, (1965). (2] Berestetski, V., Lifchitz, E., Pitayevski, L., Th6orie Quantique Relativiste, Physique Thdorique (Landau et Lifchitz...M6canique Quantique , Thgorie Non- Relativiste, Physique Th’orique Tome III, Mir, Moscow (1966). C(lO] Omn~s, R., Introduction to Particle Physics, Wiley
Elementary particles, dark matter candidate and new extended standard model
Hwang, Jaekwang
2017-01-01
Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.
Search for Free Fractional Electric Charge Elementary Particles
Halyo, V.; Kim, P.; Lee, E. R.; Lee, I T; Loomba, D.; Perl, M. L.
1999-01-01
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied - about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than $4.71\\times...
Charting the Course for Elementary Particle Physics
Richter, B.
2007-02-16
"It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.
MAJOR DETECOTRS IN ELEMENTARY PARTICLE PHYSICS - May 1985 Suppl.
Gidal, G.; Armstrong, B.; Rittenberg, A.
1985-05-01
This report is the second edition of a loose-leaf compendium of the properties and performance characteristics of the major detectors of elementary particle physics. This introduces the second edition of the LBL-91 Supplement 'Major Detectors in Elementary Particle Physics.' For some detectors the update merely documents minor modifications or provides additional references. Others have undergone major rebuilding or have been augmented with new subsystems. The new LEP, SLC, TRISTAN, BEPC, and FNAL detectors have had their designs fixed and are now under construction. Some detectors have completed their programs since the last edition and so are omitted. The use of colored loose-leaf paper should allow users to maintain a historical record of each detector. We again thank those physicists working with each detector who took the time to summarize its properties and supply us with the appropriate drawings.
Elementary particles in the early Universe
Gromov, Nikolai A
2015-01-01
The low energy limit of Electroweak Model is obtained from first principles of gauge theory. The very weak neutrino-matter interaction especially at low energies is explained by zero tending contraction parameter, which depend on the neutrino energy. The high-energy limit of Standard Model is generated by the contractions of gauge groups. Contraction parameters of gauge group $SU(2)$ of Electroweak Model and gauge group $SU(3)$ of Quantum Chromodynamics are taken identical and tending to zero when energy increase. At the infinite energy limit all particles lose masses, all quarks have only one color. Electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of Standard Model in the early Universe from the Big Bang up to the end of several milliseconds.
Current experiments in elementary-particle physics - March 1983
Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.
1983-03-01
Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)
Brueckner, Thomas Christian
2015-07-01
After a description of the standard model of elementary-particle physics the author describes structuralistic reconstructions. Then the problem of the theoretical terms is discussed. Therafter the reconstruction of the standard-model elementary particles is described. Finally the ontology of leptons, quarks and both free and in atoms bound protons is considered.
"What's (the) Matter?", A Show on Elementary Particle Physics with 28 Demonstration Experiments
Dreiner, Herbi K; Borzyszkowski, Mikolaj; Braun, Maxim; Faßbender, Alexander; Hampel, Julia; Hansen, Maike; Hebecker, Dustin; Heepenstrick, Timo; Heinz, Sascha; Hortmanns, Katharina; Jost, Christian; Kortmann, Michael; Kruckow, Matthias U; Leuteritz, Till; Lütz, Claudia; Mahlberg, Philip; Müllers, Johannes; Opferkuch, Toby; Paul, Ewald; Pauli, Peter; Rossbach, Merlin; Schaepe, Steffen; Schiffer, Tobias; Schmidt, Jan F; Schüller-Ruhl, Jana; Schürmann, Christoph; Ubaldi, Lorenzo; Wagner-Carena, Sebastian
2016-01-01
We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published. Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid...
Space-Time Quantization, Elementary Particles and Dark Matter
Meessen, A
2011-01-01
Relativity and quantum mechanics are generalized by considering a finite limit for the smallest measurable distance. The value a of this quantum of length is unknown, but it is a universal constant, like c and h. It depends on the total energy content of our universe (hc/2a) and physical laws are modified when it is finite. The eigenvalues of (x, y, z, ct) coordinates are integer or half-integer multiples of a. This yields four new quantum numbers, specifying "particle states" in terms of phase differences at the smallest possible scale. They account for all known elementary particles and predict the existence of neutral ones that could constitute dark matter particles. This theory is thus experimentally testable.
Elementary Particles and the Causet Approach to Discrete Quantum Gravity
Gudder, Stan
2014-01-01
In a previous paper, the author introduced a covariant causet ($c$-causet) approach to discrete quantum gravity. A $c$-causet is a finite partially ordered set that is invariant under labeling. The invariant labeling of a $c$-causet $x$ enables us to uniquely specify $x$ by a sequence $\\brac{s_j(x)}$, $j=0,1,2,\\ldots$, of positive integers called a shell sequence of $x$. A $c$-causet $x$ describes the microscopic structure of a possible universe at a particular time step. In general, $x$ represents one of many universes in a multiverse and $x$ grows by a single element at each time step. Since early stages of a universe were probably composed of elementary particles, we propose that elementary particles can be described by simple $c$-causets. Although we do not have a rigorous theory for such a description, we present our guess as to how it might appear. The shell sequence can be applied to find theoretical masses of particles and these seem to approximately agree with known masses. We point out that the caus...
Current experiments in elementary particle physics. Revision 1-85
Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.
1985-01-01
This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Knots on a Torus: A Model of the Elementary Particles
Jack S. Avrin
2012-02-01
Full Text Available Two knots; just two rudimentary knots, the unknot and the trefoil. That’s all we need to build a model of the elementary particles of physics, one with fermions and bosons, hadrons and leptons, interactions weak and strong and the attributes of spin, isospin, mass, charge, CPT invariance and more. There are no quarks to provide fractional charge, no gluons to sequester them within nucleons and no “colors” to avoid violating Pauli’s principle. Nor do we require the importation of an enigmatic Higgs boson to confer mass upon the particles of our world. All the requisite attributes emerge simply (and relativistically invariant as a result of particle conformation and occupation in and of spacetime itself, a spacetime endowed with the imprimature of general relativity. Also emerging are some novel tools for systemizing the particle taxonomy as governed by the gauge group SU(2 and the details of particle degeneracy as well as connections to Hopf algebra, Dirac theory, string theory, topological quantum field theory and dark matter. One exception: it is found necessary to invoke the munificent geometry of the icosahedron in order to provide, as per the group “flavor” SU(3, a scaffold upon which to organize the well-known three generations—no more, no less—of the particle family tree.
[Research in elementary particles and interactions]. Technical progress report
Adair, R.; Sandweiss, J.; Schmidt, M.
1992-05-01
Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.
Physics through the 1990s: Elementary-particle physics
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: Elementary-particle physics
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Japaridze, George
2015-01-01
I discuss an upper bound on the boost and the energy of elementary particles. The limit is derived utilizing the core principle of relativistic quantum mechanics stating that there is a lower limit for localization of an elementary quantum system and the suggestion that when the localization scale reaches the Planck length, elementary particles are removed from observables. The limit for the boost and energy, $M_{Planck}/m$ and $M_{Planck}c^{2}\\approx\\,8.6* 10^{27}$ eV, is defined in terms of fundamental constants and the mass of elementary particle and does not involve any dynamic scale. These bounds imply that the cosmic ray flux of any flavor may stretch up to energies of order $10^{18}$ GeV and will cut off at this value.
Elementary particle physics at the University of Florida. Annual progress report
NONE
1996-12-01
This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.
Energy related applications of elementary particle physics. Final report
Rafelski, J.
1991-08-31
The current research position is summarized, and what could be done in the future to clarify issues which were opened up by the research is indicated. Following on the discussion of the viability of catalyzed fusion, there is presented along with the key experimental results, a short account of the physics surrounding the subject. This is followed by a discussion of key research topics addressed. In consequence of the progress made, it appears that the feasibility of a small-scale fusion based on catalyzed reactions rests on either the remote chance that a yet undiscovered ultraheavy negatively charged elementary particle exists in Nature, or on the possible technical realization of a system based on muon-catalyzed fusion (MuCF) in high-density degenerate hydrogen plasma (density 1000 LHD, temperature O(100 eV)). The lattter is considered to have practical promise.
Theoretical and Experimental Studies of Elementary Particle Physics
Evans, Harold G [Indiana University; Kostelecky, V Alan [Indiana University; Musser, James A [Indiana University
2013-07-29
The elementary particle physics research program at Indiana University spans a broad range of the most interesting topics in this fundamental field, including important contributions to each of the frontiers identified in the recent report of HEPAP's Particle Physics Prioritization Panel: the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. Experimentally, we contribute to knowledge at the Energy Frontier through our work on the D0 and ATLAS collaborations. We work at the Intensity Frontier on the MINOS and NOvA experiments and participate in R&D for LBNE. We are also very active on the theoretical side of each of these areas with internationally recognized efforts in phenomenology both in and beyond the Standard Model and in lattice QCD. Finally, although not part of this grant, members of the Indiana University particle physics group have strong involvement in several astrophysics projects at the Cosmic Frontier. Our research efforts are divided into three task areas. The Task A group works on D0 and ATLAS; Task B is our theory group; and Task C contains our MINOS, NOvA, and LBNE (LArTPC) research. Each task includes contributions from faculty, senior scientists, postdocs, graduate and undergraduate students, engineers, technicians, and administrative personnel. This work was supported by DOE Grant DE-FG02-91ER40661. In the following, we describe progress made in the research of each task during the final period of the grant, from November 1, 2009 to April 30, 2013.
Inertial mass of an elementary particle from the holographic scenario
Giné, Jaume
2017-03-01
Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently, it has been proposed that this mechanism is as follows: when an object accelerates in one direction, a dynamical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always opposes the acceleration, just like inertia, although the masses predicted are twice those expected, see Ref. 17. In a later work, an error was corrected so that its prediction improves to within 26% of the Planck mass, see Ref. 10. In this paper, the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle.
Major detectors in elementary-particle physics. [Portfolio
Gidal, G.; Armstrong, B.; Rittenberg, A.
1983-03-01
With the 1983 issue of LBL-91 we introduce a supplement - a folio of descriptions of the world's major elementary particle physics detectors. Modern high energy physics usually involves the use of massive, costly, carefully engineered, large solid angle detectors. These detectors require a long lead time for construction, are often integrated with an accelerator, accumulate data over many years, and are in reality a combination of numerous subsystems. As was the case with bubble chambers, many experiments are performed with the same data, or with data taken after relatively minor changes or additions to the detector configuration. These experiments are often reported in journals whose space limitations make repeated full descriptions of the detector impossible. The detailed properties and performance of the detector are usually described in a fragmented series of papers in more specialized, technologically oriented journals. New additions are often not well documented. Several detectors often make similar measurements and physicists want to make quick comparisons of their respective capabilities. Designers of new large detectors and even of smaller experiments need to know what already exists and what performance has been achieved. To aid the physics community, the Particle Data Group has produced this brief folio of the world's major large detectors. This first edition has some notable omissions: in particular, the bubble chambers and any associated spectrometers, and the still somewhat tentative LEP, SLC, and TRISTAN detectors.
Major detectors in elementary-particle physics. [Portfolio
Gidal, G.; Armstrong, B.; Rittenberg, A.
1983-03-01
With the 1983 issue of LBL-91 we introduce a supplement - a folio of descriptions of the world's major elementary particle physics detectors. Modern high energy physics usually involves the use of massive, costly, carefully engineered, large solid angle detectors. These detectors require a long lead time for construction, are often integrated with an accelerator, accumulate data over many years, and are in reality a combination of numerous subsystems. As was the case with bubble chambers, many experiments are performed with the same data, or with data taken after relatively minor changes or additions to the detector configuration. These experiments are often reported in journals whose space limitations make repeated full descriptions of the detector impossible. The detailed properties and performance of the detector are usually described in a fragmented series of papers in more specialized, technologically oriented journals. New additions are often not well documented. Several detectors often make similar measurements and physicists want to make quick comparisons of their respective capabilities. Designers of new large detectors and even of smaller experiments need to know what already exists and what performance has been achieved. To aid the physics community, the Particle Data Group has produced this brief folio of the world's major large detectors. This first edition has some notable omissions: in particular, the bubble chambers and any associated spectrometers, and the still somewhat tentative LEP, SLC, and TRISTAN detectors.
Alexei V. Melkikh
2004-03-01
Full Text Available The possibility of a complicated internal structure of an elementary particle was analyzed. In this case a particle may represent a quantum computer with many degrees of freedom. It was shown that the probability of new species formation by means of random mutations is negligibly small. Deterministic model of evolution is considered. According to this model DNA nucleotides can change their state under the control of elementary particle internal degrees of freedom.
Elementary particle physics at the University of Florida. Annual report
Field, R.D.; Ramond, P.M.; Sikivie, P. [and others
1995-12-01
This is the annual progress report of the University of Florida`s elementary particle physics group. The theoretical high energy physics group`s research covers a broad range of topics, including both theory and phenomenology. Present work of the experimental high energy physics group is directed toward the CLEO detector, with some effort going to B physics at Fermilab. The Axion Search project is participating in the operation of a large-scale axion detector at Lawrence Livermore National Laboratory, with the University of Florida taking responsibility for this experiment`s high-resolution spectrometer`s assembly, programming, and installation, and planning to take shifts during operation of the detector in FY96. The report also includes a continuation of the University`s three-year proposal to the United States Department of Energy to upgrade the University`s high-energy physics computing equipment and to continue student support, system manager/programmer support, and maintenance. Report includes lists of presentations and publications by members of the group.
2008-01-01
The skeleton conception of elementary particles is considered in the paper. Conventional particle dynamics is formulated in an unaccomplished form, which is adequate only in the continuous space-time geometry. The conventional differential equations of the particle motion cannot be written in the discrete space-time geometry. In the discrete space-time geometry the particle world line is replaced by the world chain. The world chain links has a finite length (not infinitesimal). The world chai...
Experimental Studies of Elementary Particle Interactions at High Energies
Goulianos, Konstantin [The Rockefeller University
2013-07-31
This is the final report of a program of research on ``Experimental Studies of Elementary Particle Interactions at High Energies'' of the High Energy Physics (HEP) group of The Rockefeller University. The research was carried out using the Collider Detector at Fermilab (CDF) and the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN. Three faculty members, two research associates, and two postdoctoral associates participated in this project. At CDF, we studied proton-antiproton collisions at an energy of 1.96 TeV. We focused on diffractive interactions, in which the colliding antiproton loses a small fraction of its momentum, typically less than 1%, while the proton is excited into a high mass state retaining its quantum numbers. The study of such collisions provides insight into the nature of the diffractive exchange, conventionally referred to as Pomeron exchange. In studies of W and Z production, we found results that point to a QCD-based interpretation of the diffractive exchange, as predicted in a data-driven phenomenology developed within the Rockefeller HEP group. At CMS, we worked on diffraction, supersymmetry (SUSY), dark matter, large extra dimensions, and statistical applications to data analysis projects. In diffraction, we extended our CDF studies to higher energies working on two fronts: measurement of the single/double diffraction and of the rapidity gap cross sections at 7 TeV, and development of a simulation of diffractive processes along the lines of our successful model used at CDF. Working with the PYTHIA8 Monte Carlo simulation authors, we implemented our model as a PYTHIA8-MBR option in PYTHIA8 and used it in our data analysis. Preliminary results indicate good agreement. We searched for SUSY by measuring parameters in the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM) and found results which, combined with other experimental constraints and theoretical considerations, indicate
100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997
Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K.H.; Trimble, Virginia
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
On the number of elementary particles in a resolution dependent fractal spacetime
He Jihuan [College of Science, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051 (China)]. E-mail: jhhe@dhu.edu.cn
2007-06-15
We reconsider the fundamental question regarding the number of elementary particles in a minimally extended standard model. The main conclusion is that since the dimension of E-infinity spacetime is resolution dependent, then the number of elementary particles is also resolution dependent. For D = 10 of superstrings, D = 11 of M theory and D = 12 of F theory one finds N(SM) equal to (6)(10) = 60 (6)(11) = 66 and (6)(12) = 72 particles, respectively. This is in perfect agreement with prediction made previously by Mohamed Saladin El-Naschie and Marek-Crnjac.
100 years of Elementary Particles [Beam Line, vol. 27, issue 1, Spring 1997
Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K. H.; Trimble, Virginia
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
A few remarks on the relationship between elementary particle physics, gravitation and cosmology
Mostepanenko, V M
2016-01-01
We discuss some current problems in the relationship between elementary particle physics and gravitation, i.e., in the subject investigated by Prof.~K.~P.~Staniukovich half a century ago. Specifically, the inflationary stage of the Universe evolution, originating from the vacuum polarization and particle creation, corrections to Newton's gravitational law due to exchange of light elementary particles or spontaneous compactification of extra dimensions, and constraints on the parameters of axions as probable constituents of dark matter in our Universe are considered. It is pointed out that presently the relationship between elementary particles and gravitation has become an experimental science, and many experiments, directed towards resolution of all related problems, are performed in many countries.
Reframing conceptual physics: Improving relevance to elementary education and sonography majors
LaFazia, David Gregory
This study outlines the steps taken to reframe the Waves and Periodicity unit within a conceptual physics course. Beyond this unit reframing process, this paper explores the activities that made up the reframed unit and how each was developed and revised. The unit was reframed to improve relevance of the activities to the Elementary Education and Diagnostic Medical Sonography majors who make up the bulk of the course roster. The unit was reframed around ten design principles that were built on best practices from the literature, survey responses, and focused interviews. These principles support the selection of a biology-integrated themed approach to teaching physics. This is done through active and highly kinesthetic learning across three realms of human experience: physical, social, and cognitive. The unit materials were designed around making connections to students' future careers while requiring students to take progressively more responsibility in activities and assessments. Several support strategies are employed across these activities and assessments, including an energy-first, guided-inquiry approach to concept scaffolding and accommodations for diverse learners. Survey responses were solicited from physics instructors experienced with this population, Elementary Education and Sonography program advisors, and curriculum design, learning strategies, and educational technology experts. The reframed unit was reviewed by doctoral-level science education experts and revised to further improve the depth and transparency with which the design principles reframe the unit activities. The reframed unit contains a full unit plan, lesson plans, and full unit materials. These include classroom and online activities, assessments, and templates for future unit and lesson planning. Additional supplemental materials are provided to support Elementary Education and Sonography students and program advisors and also further promote the reframed unit materials and design
The connection between the order of simple groups and the maximum number of elementary particles
Marek-Crnjac, L. [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, SI-2000 Maribor (Slovenia)], E-mail: leila.marek@fmf.uni-lj.si
2008-02-15
The aim of this article is to present spherical, Euclidean and hyperbolic polyhedra and find some connections of the order of their reflection groups and simple groups such as PGL(2, 7), PGL(2, 8), PGL(2, 7) x C{sub 2}, PSL(2, 31) x C{sub 2} to the number of elementary particles. In the present work we show that a larger number of 72 or 84 elementary particles is consistent with super string theory, M-theory and heterotic string theory. The philosophy of the work is based on El Naschie's E-infinity interpretation of Emmy Noether's theorem.
On the intrinsically cyclic nature of space-time in elementary particles
Dolce, Donatello
2012-01-01
We interpret the relativistic quantum behavior of elementary particles in terms of elementary cycles. This represents a generalization of the de Broglie hypothesis of intrinsically "periodic phenomenon", also known as "de Broglie internal clock". Similarly to a "particle in a box" or to a "vibrating string", the constraint of intrinsic periodicity represents a semi-classical quantization condition, with remarkable formal correspondence to ordinary relativistic quantum mechanics. In this formalism the retarded local variations of four-momentum characterizing relativistic interactions can be equivalently expressed in terms of retarded local modulations of de Broglie space-time periodicity, revealing a geometrodynamical nature of gauge interaction.
Research program in elementary-particle theory, 1983. Progress report
Sudarshan, E C.G.; Ne& #x27; eman, Y
1983-08-01
Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed. (WHK)
Essay: the tau lepton and thirty years of changes in elementary particle physics research.
Perl, M L
2008-02-22
Starting with the 1975 discovery of the tau lepton, I look back on the last three decades of change in the substance and style of experimental and theoretical research in elementary particle physics. I recount the major accomplishments of those decades and predict a bright future for particle physics in the next two decades. Turning to three problems, I lament the change in theoretical style and taste, I discuss the growth in the complexity, size, and cost of particle physics experiments, and I conclude with a pessimistic comment on the size of particle physics collaborations.
Halyo, V.; Kim, P.; Lee, E. R.; Lee, I. T.; Loomba, D.; Perl, M. L.
2000-03-20
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10{sup -22} particles per nucleon with 95% confidence. (c) 2000 The American Physical Society.
Halyo, V.; Kim, P.; Lee, E. R.; Lee, I. T.; Loomba, D.; Perl, M. L.
2000-03-01
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71×10-22 particles per nucleon with 95% confidence.
Final Report May 1, 2012 to May 31, 2015: "Theoretical Studies in Elementary Particle Physics"
Collins, John C. [Pennsylvania State Univ., State College, PA (United States); Roiban, Radu [Pennsylvania State Univ., State College, PA (United States)
2015-08-19
This final report summarizes work at Penn State University from May 1, 2012 to May 31, 2015. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
CERN and the Hunt for Elementary Particles and Forces
Tsesmelis, Emmanuel
2008-04-01
CERN is the European Laboratory for Particle Physics, the world's largest particle physics research centre. Founded in 1954, the Laboratory was one of Europe's first joint ventures and has become a premier example of international collaboration. CERN's subject of study is pure science and is concentrated on exploring the Universe's most fundamental questions, such as What is it made of? and How did it come to be the way it is? The Laboratory's tools, the particle accelerators and particle detectors, are amongst the world's largest and most complex scientific instruments. The Laboratory's primary aims will be presented and a look at past achievements and present endeavours, particularly the Large Hadron Collider (LHC), will be reviewed. A brief look into the future will also be given.
Geitner, Uwe W.
2013-04-01
The series The Inner Life of the Elementary Particles attempts to develop the elementary particles along of a genealogical tree, which begins before the ''big bang''. The simple presentation without mathematics opens also for the interested layman a plastic understanding. Volume IX discusses the known puzzles of particle physics and cosmology and offers for many of them explanation models. Explanation approaches are among others the ''DNA'' of the elementary particles and the interpretation of the quanta and the spin.
FINE AND COARSE PARTICLES: CONCENTRATION RELATIONSHIPS RELEVANT TO EPIDEMIOLOGICAL STUDIES
Fine particles and coarse particles are defined in terms of the modal structure of particle size distributions typically observed in the atmosphere. Differences among the various modes are discussed. The fractions of fine and coarse particles collected in specific size ranges, ...
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
Research in elementary particle physics. [Ohio State Univ. , Columbus
1992-01-01
Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.
Research program in elementary particle theory, 1980. Progress report
Sudarshan, E. C.G.; Ne' eman, Y.
1980-01-01
Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)
Spectrum of elementary particles in a model of hadron supersymmetry
Kiyanov-Charsky, S A
1995-01-01
We investigate a spectrum of the low-energy composite particles with the quantum numbers J^p=0^\\pm,\\frac {1}{2}^\\pm in a SU_{F}(3) model of hadron supersymmetry. We derive the mass spectrum of two, three and four-quark states and determine all free parameters of a theory, including the masses of quarks and diquarks.
An improved search for elementary particles with fractional electric charge
Lee, E.R.
1996-08-01
The SLAC Quark Search Group has demonstrated successful operation of a low cost, high mass throughput Millikan apparatus designed to search for fractionally charged particles. About six million silicone oil drops were measured with no evidence of fractional charges. A second experiment is under construction with 100 times greater throughput which will utilize optimized search fluids.
Theoretical elementary particle research at the University of Florida
Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B. [Univ. of Florida, Gainesville, FL (United States)
1996-12-01
This is the annual progress report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present the group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), two Associate Professors (Qiu, Woodard), and one Assistant Professor (Kennedy). In addition, the group has four postdoctoral research associates and three graduate students. The research of the group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years and an outline of the current research program.
Ellwanger, Ulrich
2012-01-01
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is r...
A full computation-relevant topological dynamics classification of elementary cellular automata
SchÜle, M.; Stoop, R.
2012-01-01
Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universal...
[Research in theoretical and experimental elementary particle physics. Final report
NONE
1998-11-01
This report gives summaries of particle physics research conducted by different group members for Task A. A summary of work on the CLEO experiment and detector is included for Task B along with a list of CLEO publications. During the present grant period for Task C, the authors had responsibility for the design, assembly, and programming of the high-resolution spectrometer which looks for narrow peaks in the output of the cavity in the LLNL experiment. They successfully carried out this task. Velocity peaks are expected in the spectrum of dark matter axions on Earth. The computing proposal (Task S) is submitted in support of the High Energy Experiment (CLEO, Fermilab, CMS) and the Theory tasks.
Modern elementary particle physics explaining and extending the standard model
Kane, Gordon
2017-01-01
This book is written for students and scientists wanting to learn about the Standard Model of particle physics. Only an introductory course knowledge about quantum theory is needed. The text provides a pedagogical description of the theory, and incorporates the recent Higgs boson and top quark discoveries. With its clear and engaging style, this new edition retains its essential simplicity. Long and detailed calculations are replaced by simple approximate ones. It includes introductions to accelerators, colliders, and detectors, and several main experimental tests of the Standard Model are explained. Descriptions of some well-motivated extensions of the Standard Model prepare the reader for new developments. It emphasizes the concepts of gauge theories and Higgs physics, electroweak unification and symmetry breaking, and how force strengths vary with energy, providing a solid foundation for those working in the field, and for those who simply want to learn about the Standard Model.
Resolution of a conflict between Laser and Elementary Particle Physics
Leader, Elliot
2015-01-01
The claim some years ago, contrary to all textbooks, that the angular momentum of a photon (and gluon) can be split in a gauge-invariant way into an orbital and spin term, sparked a major controversy in the Particle Physics community. A further cause of upset was the realization that the gluon polarization in a nucleon, a supposedly physically meaningful quantity, corresponds only to the gauge-variant gluon spin derived from Noether's theorem, evaluated in a particular gauge. On the contrary, Laser Physicists have, for decades, been happily measuring physical quantities which correspond to orbital and spin angular momentum evaluated in a particular gauge. This paper reconciles the two points of view.
Models for Quarks and Elementary Particles --- Part IV: How Much Do We Know of This Universe?
Ulrich K. W. Neumann
2008-07-01
Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggregation levels of matter such as molecules, metal crystals, atoms and elementary particles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the second strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.
Impact on Astrophysics and Elementary Particle Physics of recent and future solar neutrino data
Antonelli, Vito; Miramonti, Lino
2013-01-01
The study of neutrinos is fundamental to connect astrophysics and elementary particle physics. In this last decade solar neutrino experiments and KamLAND confirmed the LMA solution and further clarified the mass and oscillation pattern. Borexino attacked also the study of the low energy neutrino spectrum. However, important points still need clarification, like the apparent anomaly in the vacuum to matter transition region. Besides, a more detailed study of the low energy components of the pp...
Improved search for elementary particles with fractional electric charge
Mar, N.M.; Lee, E.R.; Fleming, G.R.; Casey, B.C.; Perl, M.L.; Garwin, E.L. [Stanford Linear Accelerator Center, Stanford, California 94309 (United States); Hendricks, C.D. [W. J. Schafer Associates, Livermore, California 94550 (United States); Lackner, K.S. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Shaw, G.L. [Department of Physics, University of California, Irvine, California 92717 (United States)
1996-06-01
We have devised and demonstrated the successful operation of a low-cost, high-mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a charge coupled device video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, we have looked at 5974941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95{percent} confidence, the concentration of isolated quarks with {plus_minus}1/3{ital e} or {plus_minus}2/3{ital e} in silicone oil is less than one per 2.14{times}10{sup 20} nucleons. {copyright} {ital 1996 The American Physical Society.}
Improved search for elementary particles with fractional electric charge
Mar, Nancy M.; Lee, Eric R.; Fleming, George R.; Casey, Brendan C. K.; Perl, Martin L.; Garwin, Edward L.; Hendricks, Charles D.; Lackner, Klaus S.; Shaw, Gordon L.
1996-06-01
We have devised and demonstrated the successful operation of a low-cost, high-mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a charge coupled device video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, we have looked at 5 974 941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with +/-1/3e or +/-2/3e in silicone oil is less than one per 2.14×1020 nucleons.
Models for Quarks and Elementary Particles. Part IV: How Much do We Know of This Universe?
Neumann U. K. W.
2008-07-01
Full Text Available Essential laws and principles of the natural sciences were discovered at the high aggre- gation levels of matter such as molecules, metal crystals, atoms and elementary parti- cles. These principles reappear in these models in modified form at the fundamental level of the quarks. However, the following is probably true: since the principles apply at the fundamental level of the quarks they also have a continuing effect at the higher aggregation levels. In the manner of the law of mass action, eight processes for weak interaction are formulated, which are also called Weak Processes here. Rules for quark exchange of the reacting elementary particles are named and the quasi-Euclidian or complex spaces introduced in Part I associated with the respective particles. The weak processes are the gateway to the “second” strand of this universe which we practically do not know. The particles with complex space, e.g. the neutrino, form this second strand. According to the physical model of gravitation from Part III the particles of both strands have >-fields and are thus subject to the superposition, which results in the attraction by gravity of the particles of both strands. The weak processes (7 and (8 offer a fair chance for the elimination of highly radioactive waste.
Optical properties of nonspherical atmospheric particles and relevant applications
P. Yang
2011-09-01
Full Text Available Recent progress in the study of the single-scattering properties of nonspherical ice crystals within cirrus clouds and nonspherical dust particles is reviewed. We have been using the finite-difference time domain (FDTD method, the discrete dipole approximation (DDA, and an improved geometric optics method (IGOM to compute the single-scattering properties of nonspherical particles. We have incorporated the so-called edge effect associated with the surface wave into the IGOM extinction and absorption efficiencies. The simulation results in the solar and thermal infrared spectral regimes are presented. Furthermore, the impacts of particle nonsphericity on downstream remote sensing implementations and radiative transfer simulations involving ice clouds and dust aerosols are also summarized.
Albijanic, Boris; Ozdemir, Orhan; Nguyen, Anh V; Bradshaw, Dee
2010-08-11
Bubble-particle attachment in water is critical to the separation of particles by flotation which is widely used in the recovery of valuable minerals, the deinking of wastepaper, the water treatment and the oil recovery from tar sands. It involves the thinning and rupture of wetting thin films, and the expansion and relaxation of the gas-liquid-solid contact lines. The time scale of the first two processes is referred to as the induction time, whereas the time scale of the attachment involving all the processes is called the attachment time. This paper reviews the experimental studies into the induction and attachment times between minerals and air bubbles, and between oil droplets and air bubbles. It also focuses on the experimental investigations and mathematical modelling of elementary processes of the wetting film thinning and rupture, and the three-phase contact line expansion relevant to flotation. It was confirmed that the time parameters, obtained by various authors, are sensitive enough to show changes in both flotation surface chemistry and physical properties of solid surfaces of pure minerals. These findings should be extended to other systems. It is proposed that measurements of the bubble-particle attachment can be used to interpret changes in flotation behaviour or, in conjunction with other factors, such as particle size and gas dispersion, to predict flotation performance.
Gholibeigian, Hassan; Gholibeigian, Zeinab
2015-04-01
Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.
Fragmentation energetics of clusters relevant to atmospheric new particle formation.
Bzdek, Bryan R; DePalma, Joseph W; Ridge, Douglas P; Laskin, Julia; Johnston, Murray V
2013-02-27
The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation (NPF), but basic species such as ammonia are also important. Few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation to investigate time- and collision-energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/quasi-equilibrium theory modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: (1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and (2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e., diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.
Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation
Bzdek, Bryan R.; Depalma, Joseph W.; Ridge, Douglas P.; Laskin, Julia; Johnston, Murray V.
2013-02-27
The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation, but basic species such as ammonia are also important. However, few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation (FTICR-SID) to investigate time- and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: 1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and 2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e. diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.
Atoms and Forces of Interaction Between Elementary Particles in the Expanding Universe
Gorbatenko, M V
2011-01-01
The earlier developed algorithm for constructing a self-conjugate Hamiltonian in the representation for Dirac particles interacting with a general gravitational field is extended to the case of electromagnetic fields. This Hamiltonian is applied to the case when the gravitational field describes the spatially flat Friedmann model, and the electromagnetic field is the Coulomb potential extended to the case of this model. The analysis of atomic systems and electromagnetic forces of interaction under the conditions of spatially flat expansion of the universe has demonstrated that the system of atomic levels does not change with cosmological time. Spectral lines of atoms in the spatially flat Friedmann model are identical at different points of cosmological time. In this case the redshift is stipulated entirely by the growth of wavelength of photons at movement in the expending universe. At the same time force of interaction between elementary particles can change with expansion of the universe.
H. J. Bhabha and the birth of the second family of elementary particles
Cowsik, Ramanath
2007-04-01
Homi Jehangir Bhabha was one of the great pioneers of theoretical high energy physics, known to present day physicists through extensive eponymous citations to Bhabha scattering. Perhaps because of this, much of his other superlative contributions have been well nigh forgotten. In this presentation, we provide an overview of a sequence of papers written by Bhabha during an 11-month period between December 1936 and October 1937 that argue in a compelling way for the presence of a massive charged particle very similar to the electron in every way, except for its mass, which he estimated to be in excess of 100 me. This particle is called a muon and today it is classified as a member of the second family of elementary constituents of matter, along with the muon-neutrino, charmed and strange quarks. These three new members of the family were discovered after a gap of nearly 25 years; in the decade of the 1960's.
Kuusela, Mikael
2015-01-01
We consider the high energy physics unfolding problem where the goal is to estimate the spectrum of elementary particles given observations distorted by the limited resolution of a particle detector. This important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN consists in estimating the intensity function of an indirectly observed Poisson point process. Unfolding typically proceeds in two steps: one first produces a regularized point estimate of the unknown intensity and then uses the variability of this estimator to form frequentist confidence intervals that quantify the uncertainty of the solution. In this paper, we propose forming the point estimate using empirical Bayes estimation which enables a data-driven choice of the regularization strength through marginal maximum likelihood estimation. Observing that neither Bayesian credible intervals nor standard bootstrap confidence intervals succeed in achieving good frequentist coverage in this problem due to the inh...
Bennequin, Daniel
2016-01-01
We propose a geometric explanation of the standard model of Glashow, Weinberg and Salam for the known elementary particles. Our model is a generic Quantum Field Theory in dimension four, obtained by developing along a Lorentz sub-manifold the lagrangian of Einstein and Dirac in dimension twelve. The main mechanism which gives birth to the standard model is a certain gauge fixing of triality, which permits to identify the multiplicity of fermions, as seen from the four dimensional world, with the eight unseen dimensions of the generating universe. In this way we get the known tables of particles, explaining the series of fermions and the gauge bosons. We suggest that the Higgs field dynamics could appear through a bosonization of the right handed neutrino and correspond to a displacement in the unseen dimensions. We also propose hypotheses for dark matter, and perhaps dark energy. Then we suggest predictions to go beyond the standard model.
Rest masses of elementary particles as efective masses at zero temperature
Quimbay, C; Quimbay, Carlos; Morales, John
2001-01-01
We introduce a new approach to generate dinamically the masses of elementary particles in the $SU(3)_C \\times SU(2)_L \\times U(1)_Y$ Standard Model without Higgs Sector (SMWHS). We start from the assumption that rest masses correspond to the effective masses of particles in an elementary quantum fluid at zero temperature. These effective masses are obtained through radiative corrections, at one-loop order, in the context of the real time formalism of quantum field theory at finite temperature and density. The quantum fluid is described in structure and dynamics by the SMWHS and it is characterized by non-vanishing chemical potentials associated to the different fermion flavour species. Starting from the experimental mass values for quarks and leptons, taking the top quark mass as $m_t = 172.916$ GeV, we can compute, as an evidence of the consistency of our approach, the experimental central mass values for the $W^{\\pm}$ and $Z^0$ gauge bosons. Subsequently we introduce in the SMWHS a massless scalar field lea...
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.; DeWolfe, Oliver; Ford, William T.; Hasenfratz, Anna; Mahanthappa, K. T.; Marino, Alysia D.; Nauenberg, Uriel; Smith, James G.; Stenson, Kevin; Wagner, Stephen R.; Zimmerman, Eric D.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions, lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.
THEORY OF ELECTROMAGNETIC DRIVE WITH ELEMENTARY PARTICLES CURRENT AND VACUUM POLARIZATION
Trunev A. P.
2016-01-01
Full Text Available The article discusses a model of rocket motor of electromagnetic type, consisting of a source of electromagnetic radio frequency oscillations and the conical cavity, in which electromagnetic waves are excited. We have created a multi-dimensional transient numerical model describing the process of establishing electromagnetic oscillations in the resonator, taking into account the finite conductivity of the walls. Separately, the standing waves in the cavity with conducting walls have been simulated. It is shown that the oscillations mode in the conducting resonator different from that in an ideal resonator, both in a case of steady and unsteady waves. We have built a dynamic model taking into account the thermal conductivity and electrical conductivity of the walls, waves and particles emission and vacuum polarization. We have also developed a dynamic model enables to optimize a thrust force on a considerable number of parameters without the involvement of the hypotheses about the physics of the phenomenon. We run the optimization of the operating parameters of the device, namely by the excitation frequency, the frequency of the modulating signal, the magnitude of heat losses of electromagnetic energy by thermal radiation in the IR spectrum, the parameters of forced heat transfer and the temperature dependence of the resistance of the material of the cavity walls. It is found that the pulse modulation greatly improves the efficiency of conversion of electromagnetic energy into thrust. The mechanism of formation of traction, adjusting the metrics of space-time, the current contribution of elementary particles, the Yang-Mills and electromagnetic fields is proposed. It is shown that the contribution of the elementary particles in the thrust force is proportional to the electrical conductivity of the system multiplied by Abraham force
Relativistic Dirac Representation of Dynamically-Generated Elementary-Particle Mass
Chew, Geoffrey F
2008-01-01
Special-relativistic dynamically-generated elementary-particle mass is represented by a self-adjoint energy operator acting on a rigged Hilbert space (RHS) of functions over the 6-dimensional Euclidean-group manifold. Even though this operator's eigenvalues correspond to total energy, it is not the generator of infinitesimal wave-function evolution in classical time. Extending formalism which Dirac invented and applied non-relativistically, unitary Poincar\\'e-group representation is provided by the wave functions of a spacelike entity that we call "preon". Six continuous Feynman-path-contacting preon coordinates specify spatial location (3 coordinates), lightlike-velocity-direction (2 coordinates) and transverse polarization (1 coordinate). [Utility of the the term "preon observable" is dubious.] Velocity and spatial location collaborate to define a preon time operator conjugate to the energy operator. In RHS bases alternative to functions over the group manifold, the wave function depends on a preon "velocit...
Impact on Astrophysics and Elementary Particle Physics of recent and future Solar Neutrino data
Antonelli, V.; Miramonti, L.
2014-06-01
The study of neutrinos is fundamental to connect astrophysics and elementary particle physics. In this last decade solar neutrino experiments and Kam-LAND confirmed the LMA solution and further clarified the oscillation pattern. Borexino attacked also the study of the low energy neutrino spectrum. However, important points still need clarification, like the apparent anomaly in the vacuum to matter transition region. Besides, a more detailed study of the low energy components of the pp cycle, combined with a measurement of CNO fluxes, is compulsory, also to discriminate between the low and the high Z versions of the Solar Standard Models and solve the metallicity problem. We discuss the main recent advancements and the possibilities of studying these open problems with Borexino, SNO+ and the future experiments, like the next generation of scintillators.
Trell, Erik
2014-12-01
Santilli's revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new, centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.
A Physics Show Performed by Students for Kids: From Mechanics to Elementary Particle Physics
Dreiner, H K
2007-01-01
We describe an initiative at the University of Bonn, where the students develop and perform a 2 hour physics show for school classes and the general public. The show is entertaining and educational and is aimed at children aged 10 and older. For the physics students this is a unique experience to apply their knowledge at an early stage and gives them the chance to develop skills in the public presentation of science, in front of 520 people per show. We have extended the activity to put on an elementary particle physics show for teenagers. Furthermore, local high schools have picked up the idea; their students put on similar shows for fellow students and parents. We would be interested in hearing about related activities elsewhere.
Impact on Astrophysics and Elementary Particle Physics of recent and future solar neutrino data
Antonelli, Vito
2013-01-01
The study of neutrinos is fundamental to connect astrophysics and elementary particle physics. In this last decade solar neutrino experiments and KamLAND confirmed the LMA solution and further clarified the mass and oscillation pattern. Borexino attacked also the study of the low energy neutrino spectrum. However, important points still need clarification, like the apparent anomaly in the vacuum to matter transition region. Besides, a more detailed study of the low energy components of the pp cycle, combined with a measurement of CNO fluxes, is compulsory, also to discriminate between the low and the high Z versions of the Solar Standard Models and solve the metallicity problem. We discuss the main recent advancements and the possibilities of studying these open problems with Borexino, SNO+ and the future experiments, like the next generation of scintillators.
Trell, Erik, E-mail: erik.trell@gmail.com [Faculty of Health Sciences, University of Linköping, Se-581 83 Linköping (Sweden)
2014-12-10
Santilli’s revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new, centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.
12th DESY Workshop on Elementary Particle Physics: Loops and Legs in Quantum Field Theory
LL2014
2014-01-01
The bi-annual international conference “Loops and Legs in Quantum Field Theory” has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the ...
Superstrings, entropy and the elementary particles content of the standard model
El Naschie, M.S. [Department of Physics, University of Alexandria, Alexandria (Egypt); Department of Astrophysics, Cairo University (Egypt); Department of Physics, Mansura University (Egypt)
2006-07-15
A number of interconnected issues involving superstring theory, entropy and the particle content of the standard model of high energy physics are discussed in the present work. It is found that within a non-transfinite approximation, the number of elementary particles is given by DimSU(8) in full agreement with the prediction gained from dividing the total number of the massless level of Heterotic string theory (256)(16)=8064 by the spin representation 2{sup 7}=128 which gives DimSU(8)=(8){sup 2}-1=(8064)/(128)=63 particles. For the exact transfinite case however, one finds our previously established E-infinity result:N=(336+16k)(3/2+k)(16+k)/(128+8k)={alpha}-bar {sub o}/2,where k={phi}{sup 3}(1-{phi}{sup 3}), {phi}=(5-1)/2 and {alpha}-bar {sub o}/2=68.54101965. Setting k=0 one finds that n=63 exactly as in the non-transfinite case.
Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK
Konstantinova, O. Tanaka
2017-03-01
High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.
Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK
(Konstantinova), O. Tanaka
2017-03-01
High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.
Synthesis of Co/Co3O4 Nanocomposite Particles Relevant to Magnetic Field Processing
Srivastava, A.K.; Madhavi, S.; Menon, Mohan
2010-01-01
Co/Co3O4 nanocomposite particles of various morphologies were synthesized by the reverse micelle technique. Equiaxed, rod and faceted crystals with rectangular, pentagonal and hexagonal cross sections were observed. Annealing resulted in the formation of a composite of cobalt oxide (Co3O4) and fcc...... cobalt (Co). Removal of boron residues from the final product was established by surface characterization. Magnetic moment of these nanocomposite particles is relevant to magnetic field processing....
Lind, O.C.; Salbu, B. (Norwegian Univ. of Life Sciences (Norway)); Nygren, U.; Thaning, L.; Ramebaeck, H. (Swedish Defense Research Agency (FOI) (Sweden)); Sidhu, S. (Inst. for Energy Technology (Norway)); Roos, P. (Technical Univ. of Denmark. Risoe DTU, Roskilde (Denmark)); Poellaenen, R. (STUK (Finland)); Ranebo, Y.; Holm, E. (Univ. Lund (Sweden))
2008-10-15
The present overview report show that there are many existing and potential sources of radioactive particle contamination of relevance to the Nordic countries. Following their release, radioactive particles represent point sources of short- and long-term radioecological significance, and the failure to recognise their presence may lead to significant errors in the short- and long-term impact assessments related to radioactive contamination at a particular site. Thus, there is a need of knowledge with respect to the probability, quantity and expected impact of radioactive particle formation and release in case of specified potential nuclear events (e.g. reactor accident or nuclear terrorism). Furthermore, knowledge with respect to the particle characteristics influencing transport, ecosystem transfer and biological effects is important. In this respect, it should be noted that an IAEA coordinated research project was running from 2000-2006 (IAEA CRP, 2001) focussing on characterisation and environmental impact of radioactive particles, while a new IAEA CRP focussing on the biological effects of radioactive particles will be launched in 2008. (author)
Baldwin, K. A.; Hauge, R.; Dechaine, J. M.; Varrella, G.; Egger, A. E.
2013-12-01
The development and adoption of the Next Generation Science Standards (NGSS) raises a challenge in teacher preparation: few current teacher preparation programs prepare students to teach science the way it is presented in the NGSS, which emphasize systems thinking, interdisciplinary science, and deep engagement in the scientific process. In addition, the NGSS include more geoscience concepts and methods than previous standards, yet this is a topic area in which most college students are traditionally underprepared. Although nationwide, programmatic reform is needed, there are a few targets where relatively small, course-level changes can have a large effect. One of these targets is the 'science methods' course for pre-service elementary teachers, a requirement in virtually all teacher preparation programs. Since many elementary schools, both locally and across the country, have adopted a kit based science curriculum, examining kits is often a part of a science methods course. Unfortunately, solely relying on a kit based curriculum may leave gaps in science content curriculum as one prepares teachers to meet the NGSS. Moreover, kits developed at the national level often fall short in connecting geoscientific content to the locally relevant societal issues that engage students. This highlights the need to train pre-service elementary teachers to supplement kit curriculum with inquiry based geoscience investigations that consider relevant societal issues, promote systems thinking and incorporate connections between earth, life, and physical systems. We are developing a module that teaches geoscience concepts in the context of locally relevant societal issues while modeling effective pedagogy for pre-service elementary teachers. Specifically, we focus on soils, an interdisciplinary topic relevant to multiple geoscience-related societal grand challenges (e.g., water, food) that is difficult to engage students in. Module development is funded through InTeGrate, NSF
"Loops and Legs in Quantum Field Theory", 12th DESY Workshop on Elementary Particle Physics
The bi-annual international conference "Loops and Legs in Quantum Field Theory" has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the world, presenting more than 75 contributions, most of which have been written up for these pro- ceedings. The present volume demonstrates in an impressive way the enormous development of the field during the last few years, reaching the level of 5-loop calculations in QCD and a like- wise impressive development in massive next-to-leading order and next-to-next-to-leading order processes. Computer algebraic and numerical calculations require terabyte storage and many CPU years, even after intense parallelization, to obtain state-of-the-art theoretical predictions. The city of Weimar gave a suitable frame to the conference, with its rich history, especially in literature, music, arts, and architecture. Goethe, Schiller, Wieland, Herder, Bach and Liszt lived there and created many of their masterpieces. The many young participants signal that our field is prosperous and faces an exciting future. The conference hotel "Kaiserin Augusta" offered a warm hospitality and
Pierce, J. R.; Westervelt, D. M.; Atwood, S. A.; Barnes, E. A.; Leaitch, W. R.
2014-08-01
Aerosol particle nucleation, or new-particle formation, is the dominant contributor to particle number in the atmosphere. However, these particles must grow through condensation of low-volatility vapors without coagulating with the larger, preexisting particles in order to reach climate-relevant sizes (diameters larger than 50-100 nm), where the particles may affect clouds and radiation. In this paper, we use 1 year of size-distribution measurements from Egbert, Ontario, Canada to calculate the frequency of regional-scale new-particle-formation events, new-particle-formation rates, growth rates and the fraction of new particles that survive to reach climate-relevant sizes. Regional-scale new-particle-formation events occur on 14-31% of the days (depending on the stringency of the classification criteria), with event frequency peaking in the spring and fall. New-particle-formation rates and growth rates are similar to those measured at other midlatitude continental sites. We calculate that roughly half of the climate-relevant particles (with diameters larger than 50-100 nm) at Egbert are formed through new-particle-formation events. With the addition of meteorological and SO2 measurements, we find that new-particle formation at Egbert often occurs under synoptic conditions associated with high surface pressure and large-scale subsidence that cause sunny conditions and clean-air flow from the north and west. However, new-particle formation also occurs when air flows from the polluted regions to the south and southwest of Egbert. The new-particle-formation rates tend to be faster during events under the polluted south/southwest flow conditions.
Rice, Diana C.; Kaya, Sibel
2012-01-01
This study investigated the relations among preservice elementary teachers' ideas about evolution, their understanding of basic science concepts and college science coursework. Forty-two percent of 240 participants did not accept the theory of human evolution, but held inconsistent ideas about related topics, such as co-existence of humans and…
Rice, Diana C.; Kaya, Sibel
2012-01-01
This study investigated the relations among preservice elementary teachers' ideas about evolution, their understanding of basic science concepts and college science coursework. Forty-two percent of 240 participants did not accept the theory of human evolution, but held inconsistent ideas about related topics, such as co-existence of humans and…
Analytical expressions for stopping-power ratios relevant for accurate dosimetry in particle therapy
Lühr, Armin; Jäkel, Oliver; Sobolevsky, Nikolai; Bassler, Niels
2010-01-01
In particle therapy, knowledge of the stopping-power ratios (STPRs) of the ion beam for air and water is necessary for accurate ionization chamber dosimetry. Earlier work has investigated the STPRs for pristine carbon ion beams, but here we expand the calculations to a range of ions (1 <= z <= 18) as well as spread out Bragg peaks (SOBPs) and provide a theoretical in-depth study with a special focus on the parameter regime relevant for particle therapy. The Monte Carlo transport code SHIELD-HIT is used to calculate complete particle-fluence spectra which are required for determining STPRs according to the recommendations of the International Atomic Energy Agency (IAEA). We confirm that the STPR depends primarily on the current energy of the ions rather than on their charge z or absolute position in the medium. However, STPRs for different sets of stopping-power data for water and air recommended by the International Commission on Radiation Units & Measurements (ICRU) are compared, including also the...
El Naschie, M.S
2004-12-01
A careful counting routine of all experimentally confirmed elementary particles plus the theoretically conjectured ones needed for a sound formulation of a mathematically consistent field theory is undertaken within a minimal N=1 super symmetric extension of the standard model of high energy physics. The number arrived at is subsequently linked to certain massless on shell representations connected to the quantized gravity interaction. Finally with the help of number theoretical arguments arising from a rigorous application of the formalism of transfinite Heterotic super string and E-infinity theory, we show that the proposed scheme would lack mathematical consistency and elegant simplicity unless we retain a postulated triplet which is logically identified as the H{sup +}, H{sup -} and H{sup 0} Higgs particles. Connections to the 11 dimensional M theory and Harari's extended 'sub-quarks' theory is also discussed.
Ellwanger, Ulrich [Paris-Sud Univ. (France). Lab. de Physique Theorique et Hautes Energies
2015-07-01
The aim of this text is to present the present status of our knowledges of the natural laws from cosmology to the elementary particles. The text begins with a survey starting from the universe via atoms, their nuclei until to the elementary particles. Thereafter the corresponding concepts and physical phenomena are detailedly discussed. Finally the at time still speculative theories are briefly scatched. (HSI)
Particle swarm optimization of neural network CAD systems with clinically relevant objectives
Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.
2007-03-01
Neural networks (NN) are typically developed to minimize the squared difference between the network's output and the target value for a set of training patterns; namely the mean squared error (MSE). However, lower MSE does not necessarily translate into a clinically more useful decision model. The purpose of this study was to investigate the particle swarm optimization (PSO) algorithm as an alternative way of NN optimization with clinically relevant objective functions (e.g., ROC and partial ROC area indices). The PSO algorithm was evaluated with respect to a NN-based CAD system developed to discriminate mammographic regions of interest (ROIs) that contained masses from normal regions based on 8 computer-extracted morphology-oriented features. Neural networks were represented as points (particle locations) in a D-dimensional search/optimization space where each dimension corresponded to one adaptable NN parameter. The study database of 1,337 ROIs (681 with masses, 656 normal) was split into two subsets to implement two-fold cross-validation sampling scheme. Neural networks were optimized with the PSO algorithm and the following objective functions (1) MSE, (2) ROC area index AUC, and (3) partial ROC area indices TPFAUC with TPF=0.90 and TPF=0.98. For comparison, performance of neural networks of the same architecture trained with the traditional backpropagation algorithm was also evaluated. Overall, the study showed that when the PSO algorithm optimized network parameters using a particular training objective, the NN test performance was superior with respect to the corresponding performance index. This was particularly true for the partial ROC area indices where statistically significant improvements were observed.
Evnin, O E
1997-01-01
Inner and empirically consistent model of elementary particles, including two matter structural levels beyond the quark one is built. Excitements spectra, masses and interactions are analysed using the phenomenological notion of non-pertubative vacuum condensate. Essential low-energy predictions of developed concepts are classified. Effective gauge U(1)xU(1)xSU(2)-theory of quark-lepton excitements behavior based on the performed analysis of preon-subpreon phenomenology is consistently built. The ability of its expansion with fermions and scalar leptoquark coupling is also considered. Shown that the coupling constants family hierarchy is the same as family hierarchy of quark masses. Using the built theory cross-sections of d-quark-positron scattering processes with both charged and neutral currents are calculated. The obtained resonance peak is proposed to be a possible explanation of deviating from Standard Model predictions discovered in DESY in the beginning of 1997 year.
Particle model of full-size ITER-relevant negative ion source.
Taccogna, F; Minelli, P; Ippolito, N
2016-02-01
This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j(H(-)) = 660 A/m(2) from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.
Particle model of full-size ITER-relevant negative ion source
Taccogna, F., E-mail: francesco.taccogna@nanotec.cnr.it; Minelli, P. [CNR-Nanotec, Bari 70126 (Italy); INFN, Bari 70126 (Italy); Ippolito, N. [INFN, Bari 70126 (Italy)
2016-02-15
This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j{sub H{sup −}} = 660 A/m{sup 2} from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.
Particle model of full-size ITER-relevant negative ion source
Taccogna, F.; Minelli, P.; Ippolito, N.
2016-02-01
This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of jH- = 660 A/m2 from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.
Muhammad Imran
2014-01-01
Full Text Available One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF coupled with support vector machine (SVM has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO. The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.
2003-01-01
"Cornell University will be awarded up to $124 million over the next five years by the National Science Foundation (NSF) to support research at the Laboratory for Elementary-Particle Physics (LEPP) and the Cornell High Energy Synchrotron Source (CHESS), a national user facility" (1 page).
KARSCH, F.
2006-03-26
At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density.
Marek-Crnjac, L
2003-01-01
In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed.
An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles
Ilie, Ioana M.; Briels, Wim J. [Computational Biophysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Otter, Wouter K. den, E-mail: w.k.denotter@utwente.nl [Computational Biophysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)
2015-03-21
Brownian Dynamics is the designated technique to simulate the collective dynamics of colloidal particles suspended in a solution, e.g., the self-assembly of patchy particles. Simulating the rotational dynamics of anisotropic particles by a first-order Langevin equation, however, gives rise to a number of complications, ranging from singularities when using a set of three rotational coordinates to subtle metric and drift corrections. Here, we derive and numerically validate a quaternion-based Rotational Brownian Dynamics algorithm that handles these complications in a simple and elegant way. The extension to hydrodynamic interactions is also discussed.
Hedberg Yolanda
2010-09-01
after 24 h exposure. Conclusion It is evident that particle and alloy characteristics such as particle size and surface composition are important aspects to consider when assessing particle toxicity and metal release from alloy particles compared to pure metal particles. Generated results clearly elucidate that neither the low released concentrations of metals primarily as a result of protective and poorly soluble surface oxides, nor non-bioavailable chromium complexes, nor the particles themselves of occupational relevance induced significant acute toxic response, with exception of DNA damage from stainless steel.
Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.
1992-10-01
Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.
Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992
Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.
1992-10-01
Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.
A guide to experimental elementary particle physics literature, 1988--1992. Revision
Alekhin, S.I.; Ezhela, V.V.; Filimonov, B.B. [Institute for High Energy Physics, Protvino, Moscow Region (Russian Federation)] [and others
1993-09-01
We present an indexed guide to the literature experimental particle physics for the years 1988--1992. About 4,000 papers are indexed by Beam/Target/Momentum, Reaction Momentum (including the final state), Final State Particle, and Accelerator/Detector/Experiment. All indices are cross-referenced to the paper`s title and reference in the ID/Reference/Title Index. The information in this guide is also publicly available from a regularly updated computer database.
Topics in gauge theories and the unification of elementary particle interactions
Srivastava, Y.N.; Vaughn, M.T.
1990-12-01
We report on work done by the principal investigators and their collaborators on phenomenology of low and medium p{sub t} physics, standard model results for macroscopic systems, same sign dilepton signals from massive Majorana neutrinos, Casimir effects for charged particles, further macroscopic effects in quantum electrodynamics, and n-particle amplitudes for large n beyond the tree approximation, renormalization group analysis of unified gauge theories.
González-Espada, Wilson; Llerandi-Román, Pablo; Fortis-Santiago, Yaihara; Guerrero-Medina, Giovanna; Ortiz-Vega, Nicole; Feliú-Mójer, Mónica; Colón-Ramos, Daniel
2015-01-01
Although researchers have argued that textbooks should be customized to local cultures and experiences, they rarely are. Ciencia Puerto Rico, a non-profit group interested in promoting science literacy and education among Latino(a)s/Hispanics, identified a need to provide schools with culturally relevant materials. The result was the publication…
Research in elementary particle physics. Annual report, January 1--October 31, 1992
1992-11-01
Experimental and theoretical work on high energy physics is reviewed. Included are preparations to study high-energy electron-proton interactions at HERA, light-cone QCD, decays of charm and beauty particles, neutrino oscillation, electron-positron interactions at CLEO II, detector development, and astrophysics and cosmology.
A guide to experimental elementary particle physics literature, 1985--1989
Alekhin, S.I.; Bazeeva, V.V.; Ezhela, V.V.; Filimonov, B.B.; Lugovsky, S.B.; Nikolaev, A.S.; Petrova, N.L.; Slabospitsky, S.R.; Striganov, S.I.; Stroganov, Y.G.; Shelkovenko, A.N.; Yuschenko, O.P. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Yost, G.P.; Rittenberg, A.; Armstrong, F.E.; Barnett, R.M.; Simpson, K.H.; Trippe, T.G.; Wagman, G.S.; W
1990-11-01
We present an indexed guide to experimental high energy physics literature for the years 1985--1989. No actual data are given, but approximately 3500 papers are indexed by Beam/Target/Momentum, Reaction/Momentum (including the final stare), Final State Particle, and Accelerator/Experiment/ Detector.
The mass question: do the elementary particles known as neutrinos have mass?
Witten, Edward
2002-01-01
"Until recently neutrinos were thought to be massless particles, but scientists have now determined that neutrinos have tiny none-zero masses that measure roughly ten million times smaller than an electron's mass. The research of Klapdor-Kleingrothaus has found that the three types of neutriono have almost identical mass".
Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions
Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.
2013-12-01
Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.
Havnes, O.; Gumbel, J.; Antonsen, T.; Hedin, J.; La Hoz, C.
2014-10-01
We present the results from a new dust probe MUDD on the PHOCUS payload which was launched in July 2011. In the interior of MUDD all the incoming NLC/PMSE icy dust particles will collide, at an impact angle ~70° to the surface normal, with a grid constructed such that no dust particles can directly hit the bottom plate of the probe. Only collision fragments will continue down towards the bottom plate. We determine an energy distribution of the charged fragments by applying a variable electric field between the impact grid and the bottom plate of MUDD. We find that ~30% of the charged fragments have kinetic energies less than 10 eV, ~20% have energies between 10 and 20 eV while ~50% have energies above 20 eV. The transformation of limits in kinetic energy for ice or meteoric smoke particles (MSP) to radius is dependent on many assumptions, the most crucial being fragment velocity. We find, however, that the sizes of the charged fragments most probably are in the range of 1 to 2 nm if meteoric smoke particles (MSP), and slightly higher if ice particles. The observed high charging fraction and the dominance of fragment sizes below a few nm makes it very unlikely that the fragments can consist mainly of ice but that they must be predominantly MSP as predicted by Havnes and Næsheim (2007) and recently observed by Hervig et al. (2012). The MUDD results indicate that MSP are embedded in NLC/PMSE ice particles with a minimum volume filling factor of ~.05% in the unlikely case that all embedded MSP are released and charged. A few % volume filling factor (Hervig et al., 2012) can easily be reached if ~10% of the MSP are released and that their charging probability is ~0.1.
Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.
1993-11-01
This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.
Kuusela, Mikael
2015-01-01
The high energy physics unfolding problem is an important statistical inverse problem arising in data analysis at the Large Hadron Collider at CERN. The problem arises in making nonparametric inferences about a particle spectrum from measurements smeared by the finite resolution of the particle detectors. Existing unfolding methodology has major practical limitations stemming from ad hoc discretization and regularization of the problem. As a result, confidence intervals derived using the current methods can have significantly lower coverage than expected. In this work, we regularize the problem by imposing physically justified shape constraints. We quantify the uncertainty by constructing a nonparametric confidence set for the true spectrum consisting of all spectra that satisfy the shape constraints and that predict observations within an appropriately calibrated level of fit to the data. Projecting that set produces simultaneous confidence intervals for all functionals of the spectrum, including averages wi...
Reines, F.; Sobel, H.W.
1991-08-01
Physics interests of the group are focused primarily on tests of conservation laws and studies of fundamental interactions between particles. There is also a significant interest in astrophysics and cosmic rays. Task A consists of three experimental programs; a Double-Beta Decay study (currently at the Hoover Dam), a Reactor Neutrino program (until this year at Savannah River), and the IMB Proton Decay experiment in a Cleveland salt mine. Discussion of the research in each area is given.
Gulumian Mary
2009-04-01
Full Text Available Abstract In vitro studies with particles are a major staple of particle toxicology, generally used to investigate mechanisms and better understand the molecular events underlying cellular effects. However, there is ethical and financial pressure in nanotoxicology, the new sub-specialty of particle toxicology, to avoid using animals. Therefore an increasing amount of studies are being published using in vitro approaches and such studies require careful interpretation. We point out here that 3 different conventional pathogenic particle types, PM10, asbestos and quartz, which cause diverse pathological effects, have been reported to cause very similar oxidative stress effects in cells in culture. We discuss the likely explanation and implications of this apparent paradox, and its relevance for testing in nanotoxicology.
Gravitational instanton in Hilbert space and the mass of high energy elementary particles
El Naschie, M.S
2004-06-01
While the theory of relativity was formulated in real spacetime geometry, the exact formulation of quantum mechanics is in a mathematical construction called Hilbert space. For this reason transferring a solution of Einstein's field equation to a quantum gravity Hilbert space is far of being a trivial problem. On the other hand {epsilon}{sup ({infinity}}{sup )} spacetime which is assumed to be real is applicable to both, relativity theory and quantum mechanics. Consequently, one may expect that a solution of Einstein's equation could be interpreted more smoothly at the quantum resolution using the Cantorian {epsilon}{sup ({infinity}}{sup )} theory. In the present paper we will attempt to implement the above strategy to study the Eguchi-Hanson gravitational instanton solution and its interpretation by 't Hooft in the context of quantum gravity Hilbert space as an event and a possible solitonic 'extended' particle. Subsequently we do not only reproduce the result of 't Hooft but also find the mass of a fundamental 'exotic' symplictic-transfinite particle m{approx_equal}1.8 MeV as well as the mass M{sub x} and M (Planck) which are believed to determine the GUT and the total unification of all fundamental interactions respectively. This may be seen as a further confirmation to an argument which we put forward in various previous publications in favour of an alternative mass acquisition mechanism based on unification and duality considerations. Thus even in case that we never find the Higgs particle experimentally, the standard model would remain substantially intact as we can appeal to tunnelling and unification arguments to explain the mass. In fact a minority opinion at present is that finding the Higgs particle is not a final conclusive argument since one could ask further how the Higgs particle came to its mass which necessitates a second Higgs field. By contrast the present argument could be viewed as an ultimate theory
Fritzsch, Harald
2014-01-01
This book provides a broad introduction into the field of particle physics for the general reader through virtual discussions among prominent physicists, Albert Einstein, Murray Gell-Mann, Issac Newton and a modern physicists. Matter is composed of quarks and electrons. The electrons interact with the atomic nuclei by the exchange of photons. The forces between the quarks are generated by the exchange of gluons, which leads to the confinement of the quarks. The weak bosons provide the weak forces among the leptons and quarks. The book is suitable for non-experts in physics. Readership: General readers, students and researchers in physics.
Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.
1994-12-01
This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.
p-adic description of Higgs mechanism; 3, calculation of elementary particle masses
Pitkänen, M
1994-01-01
This paper belongs to the series devoted to the calculation of particle masses in the framework of p-adic conformal field theory limit of Topological GeometroDynamics. In paper II the general formulation of p-adic Higgs mechanism was given. In this paper the calculation of the fermionic and bosonic masses is carried out. The calculation of the masses necessitates the evaluation of dege- neracies for states as a function of conformal weight in certain tensor product of Super Virasoro algebras. The masses are very sen- sitive to the degeneracy ratios: Planck mass results unless the ratio for the degeneracies for first excited states and massless states is an integer multiple of 2/3. For leptons, quarks and gauge bosons this miracle occurs. The main deviation from standard model is the prediction of light color excited leptons and quarks as well as colored boson exotics. Higgs particle is absent from spectrum as is also graviton: the latter is due to the basic approximation of p-adic TGD. Reason for replacement:...
Models for Quarks and Elementary Particles. Part II: What is Mass?
Neumann U. K. W.
2008-04-01
Full Text Available It is extremely productive to give the resultant vector ( EV from the outer vector product (Part I of this article series a physical significance. The EV is assumed as electric flux < with the dimensions [Vm]. Based on Maxwell’s laws this develops into the idea of the magnetic monopole (MMP in each quark. The MMP can be brought in relation with the Dirac monopole. The massless MMP is a productive and important idea on the one hand to recognise what mass is and on the other hand to develop the quark structure of massless photon (-likes from the quark composition of the electron. Based on the experiments by Shapiro it is recognised that the sinusoidal oscillations of the quark can be spiralled in the photons. In an extreme case the spiralling of such a sinusoidal arc produces the geometric locus loop of a quark in a mass-loaded particle.
Models for Quarks and Elementary Particles --- Part II: What is Mass?
Neumann U. K. W.
2008-04-01
Full Text Available It is extremely productive to give the resultant vector (EV from the outer vector product (Part I of this article series a physical significance. The EV is assumed as electric flux with the dimensions [Vm]. Based on Maxwell's laws this develops into the idea of the magnetic monopole (MMP in each quark. The MMP can be brought in relation with the Dirac monopole. The massless MMP is a productive and important idea on the one hand to recognise what mass is and on the other hand to develop the quark structure of massless photon (-likes from the quark composition of the electron. Based on the experiments by Shapiro it is recognised that the sinusoidal oscillations of the quark can be spiralled in the photons. In an extreme case the spiralling of such a sinusoidal arc produces the geometric locus loop of a quark in a mass-loaded particle.
The gluino-glue particle and relevant scales for the simulations of supersymmetric Yang-Mills theory
Bergner, Georg; Münster, Gernot; Sandbrink, Dirk; Özugurel, Umut D
2012-01-01
Supersymmetric Yang-Mills theory is in several respects different from QCD and pure Yang-Mills theory. Therefore, a reinvestigation of the scales, at which finite size effects and lattice artifacts become relevant, is necessary. Both, finite size effects and lattice artifacts, induce a breaking of supersymmetry. In view of the unexpected mass gap between bosonic and fermionic particles an estimation of these effects is essential.
Mar, N
2003-01-01
The have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with +- 1/3e or +- 2/3e in silicone oil is less than one per 2.14 x 10 sup 2 sup 0 nucleons.
Mar, Nancy
2003-08-18
The authors have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with {+-} 1/3e or {+-} 2/3e in silicone oil is less than one per 2.14 x 10{sup 20} nucleons.
Freytag, Carl; Osterhage, Wolfgang W.
2016-07-01
This book explains the physical foundations and the technology of the elementary-particle research and describes the particle accelerators, the detector, and their concerted acting. On some milestones of the research - from the production of transuranium elements via the discovery of exotic mesons until the Higgs particle - the way from theory via the experiment to the research result is shown.
El Naschie, M.S. [King Abdullah Al Saud Institute of Nano and Advanced Technologies KSU, Riyadh (Saudi Arabia); Frankfurt Institute for the Advancement of Science, Frankfurt (Germany)], E-mail: Chaossf@aol.com
2008-11-15
The maximal number of elementary particles which could be expected to be found within a modestly extended energy scale of the standard model was found using various methods to be N = 69. In particular using E-infinity theory the present Author found the exact transfinite expectation value to be
El Naschie, M.S. [P.O. Box 272, Cobham, Surrey KT11 2FQ (United Kingdom)
2005-04-01
The paper gives a short outline of some interesting relations between sphere packing in higher dimensional spaces, the theory of P-Brane and the number of elementary particles in the standard model. In particular we show that the 336 independent components of the Riemann curvature tensor may be represented by the contact points of 336 nine-dimensional spheres with a single central sphere embedded in 10 dimensions. Subsequently we show that the number of states in the 11-dimensional P-Brane super gravity, namely 528 may be found from the number of the contact points by scale transformation involving the seven-dimensional sphere and 11-dimensional M theory. Finally by eliminating shadow particles and using Kappa-like invariance, the theoretical number of elementary particles to be expected at an energy scale close to that of electro weak unification is found to beN(SM)=[(336)(11/7)]/8=66.Considering that there are at present only 60 experimentally confirmed particles, the result implies that there are some 6 particles still missing.
Statistical relevance of vorticity conservation with the Hamiltonian particle-mesh method
Dubinkina, S.; Frank, J.E.
2009-01-01
We conduct long simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experiments. The observed results a
Statistical relevance of vorticity conservation with the Hamiltonian particle-mesh method
Dubinkina, S.; Frank, J.E.
2010-01-01
We conduct long-time simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field of the discretization. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experime
Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method
S. Dubinkina; J. Frank
2010-01-01
We conduct long-time simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field of the discretization. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experime
FInal Report: DE-FG02-04ER41310 "Elementary Particle Physics"
Izen, Joseph M. [University of Texas at Dallas; Ishak-Boushaki, Mustapha [University of Texas at Dallas
2013-10-18
vATLAS and the LHC are delivering on the promise of discovery physics at the high energy frontier. Using 4.8 fb^-1 of 2011 √s=7 TeV data and the first 5.8 fb?1 of 2012 √s=8 TeV data, ATLAS published the observation of a new particle with a mass of 126 GeV with a significance of 5.9σ that is compatible with a Standard Model (SM) Higgs. The LHC is outperforming intial projections for the 2012 run, and ATLAS is on track to integrate ~20 fb^(-1) of proton-proton collisions in 2012 before Long Shutdown 1 (LS1) begins in Spring 2013. University of Texas at Dallas (UTD) physicists will complete work on two ATLAS analyses this fall. The first is the search for the gauge bosons of a hypothesized dark sector. For 2011 data, UTD is responsible for the ?dark photon?search in the electron-jet channel, and we are looking forward to an expanded leadership role in the dark photon search using the full 2012 data set. Our second analysis interest is the study of X/Y/Z exotic states having cc content, which builds on our experience in this field from the BABAR experiment After completing a measurement of the Xc(3872) production cross section this fall, we will search for evidence of the Z(4430)+ which is reported by Belle but not confirmed by BABAR. The UTD group has played a strong role in ATLAS operations, with group members serving as Pixel Run Coordinator, ATLAS Shift Leader, and Pixel/Inner Detector Shifter. For most of the current 3-year funding cycle, a group member coordinated the development of the Pixel DAQ code, and another continues to build and maintain the data quality monitoring (DQM) application that is used by the Inner Detector control room shifter. Additionally, members of our group take Pixel on-call expert shifts for DQM and DAQ. We led an optoboard lifetime study to assess concerns of premature on-detector VCSEL failure using the Pixel working prototype detector at CERN. Physicists based at UTD participated through Pixel Offline DQM and ATLAS Distributed
Lühr, Armin; Hansen, David C; Jäkel, Oliver; Sobolevsky, Nikolai; Bassler, Niels
2011-04-21
In particle therapy, knowledge of the stopping-power ratio (STPR) of the ion beam for water and air is necessary for accurate ionization chamber dosimetry. Earlier work has investigated the STPR for pristine carbon ion beams, but here we expand the calculations to a range of ions (1 ≤ z ≤ 18) as well as spread-out Bragg peaks (SOBPs) and provide a theoretical in-depth study with a special focus on the parameter regime relevant for particle therapy. The Monte Carlo transport code SHIELD-HIT is used to calculate complete particle-fluence spectra which are required for determining the STPR according to the recommendations of the International Atomic Energy Agency. The STPR at a depth d depends primarily on the average energy of the primary ions at d rather than on their charge z or absolute position in the medium. However, STPRs for different sets of stopping-power data for water and air recommended by the International Commission on Radiation Units and Measurements are compared, including also the recently revised data for water, yielding deviations up to 2% in the plateau region. In comparison, the influence of the secondary particle spectra on the STPR is about two orders of magnitude smaller in the whole region up till the practical range. The gained insights enable us to propose simple analytical expressions for the STPR for both pristine and SOBPs as a function of penetration depth depending parametrically on the practical range.
Kaiser, R. I.; Asvany, O.; Lee, Y. T.
2000-04-01
The reactions of ground state carbon atoms, C( 3P j), with benzene, C 6H 6, and phenyl radicals, C 6H 5, with methylacetylene, CH 3CCH, were investigated in crossed beam experiments at collision energies of 21.8 and 140 kJ mol -1 to investigate elementary reactions relevant to the formation and chemistry of polycyclic aromatic hydrocarbons (PAHs) in extraterrestrial environments. The C( 3P j) reaction proceeds via complex formation and gives a cyclic, seven-membered C 7H 5 doublet radical plus atomic hydrogen. This pathway has neither an entrance nor exit barrier, and is exothermic. Together with the experimental verification of the carbon versus hydrogen exchange under single collision conditions, the findings have an important impact on the chemistry of aromatic molecules in interstellar clouds and outflow of carbon stars. Even in the coldest molecular clouds ( T=10 K), the benzene molecule can be destroyed upon reaction with carbon atoms, whereas they are resistant toward an attack of oxygen and nitrogen atoms. Since the aromatic benzene unit is ubiquitous in extraterrestrial, PAH-like material, our results suggest that PAHs might react with carbon atoms as well. On the other side, the reaction of C 6H 5 radicals with methylacetylene to form phenylmethylacetylene is direct. Since an entrance barrier inhibits the reaction in cold molecular clouds and in the atmospheres of hydrocarbon rich planets like Jupiter and Saturn and satellites such as Titan, this reaction is expected to play a role in PAH synthesis only in high temperature interstellar environments, such as circumstellar outflows of carbon stars.
Astrophysics and elementary particles
Carraminana, Alberto [Instituto Nacional de AstrofIsica, Optica y Electronica, Luis Enrique Erro 1, Tonantzintla, Puebla 72840 (Mexico)
2005-01-01
These are the lecture notes of an astroparticle course constructed from the local astrophysical environment out to the cosmological domain. The subjects reviewed are stellar physics, focusing on the standard solar model and the case of solar neutrinos; the Galactic interstellar medium and the origin of its cosmic rays; the more energetic extragalactic high energy cosmic rays, supernovae and neutrinos in the nearby universe; finally, a short digression is made into astroparticles at cosmological scales, regarding the nature of dark matter.
Catterall, Simon [Syracuse University; Hubisz, Jay [Syracuse University; Balachandran, Aiyalam [Syracuse University; Schechter, Joe [Syracuse University
2013-01-05
This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.
Fragmentation and growth energetics of clusters relevant to new particle formation
Bzdek, Bryan R.; DePalma, Joseph W.; Ridge, Douglas P.; Laskin, Julia; Johnston, Murray V.
2013-05-01
The chemical mechanisms governing atmospheric new particle formation are not fully resolved, although this process may significantly impact cloud condensation nuclei levels. Whereas sulfuric acid is the key component, bases are also important in promoting nucleation and growth. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) equipped with surface-induced dissociation (SID) to investigate time-and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to thermodynamic values. If cluster growth is considered the reverse of cluster dissociation, the results suggest that an activation barrier exists to the incorporation of ammonia into acidic clusters and that diffusion-limited cluster growth should not be assumed.
Alonso, J.R.
1980-11-01
In past years particle accelerators have become increasingly important tools for the advancement of medical science. From the pace of advancing technology and current directions in medical research, it is clear that this relationship between accelerators and medicine will only grow stronger in future years. In view of this importance, this relationship is investigated in some detail, with an eye not so much towards the medical uses of the beams produced, but more towards the technology associated with these accelerators and the criteria which make for successful incorporation of these machines into the clinical environment. In order to lay the necessary groundwork, the different kinds of accelerators found in medical use today are reviewed briefly discussing salient points of each.
Fragmentation and Growth Energetics of Clusters Relevant to Atmospheric New Particle Formation
Bzdek, B. R.; DePalma, J. W.; Ridge, D. P.; Laskin, J.; Johnston, M. V.
2013-12-01
The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation. However, basic species such as ammonia are also important. Few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation (FTICR-SID) to investigate time- and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. The assumption underlying the experiment is that cluster growth can be considered the reverse of cluster fragmentation. Critical energies for fragmentation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster fragmentation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: 1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and 2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results suggest that these clusters can grow by first adding sulfuric acid and then adding ammonia. Additionally, these results suggest the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and therefore imply that kinetically (i.e. diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric new particle formation should be revised to consider
Kulkarni, Gourihar R.; China, Swarup; Liu, Shang; Nandasiri, Manjula I.; Sharma, Noopur; Wilson, Jacqueline M.; Aiken, A. C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail S.; Shilling, John E.; Shutthanandan, V.; Zelenyuk, Alla; Zaveri, Rahul A.
2016-04-16
The role of atmospheric relevant soot particles that are processed in the atmosphere toward ice nucleation at cirrus cloud condition is poorly understood. In this study, the ice nucleating properties of diesel soot particles subjected to various physical and chemical aging treatments were investigated at temperatures ranging from -40 to -50 °C. We show that bare soot particles nucleate ice in deposition mode, but coating with secondary organics suppresses the heterogeneous ice nucleation potential of soot particles requiring homogeneous freezing threshold conditions. However, the ice nucleation efficiency of soot particles coated with an aqueous organic layer was similar to bare soot particles. Hydration of bare soot particles slightly enhanced the ice nucleation efficiency, and the IN abilities of compact soot particles (roundness = ~ 0.6) were similar to bare lacey soot particles (roundness = ~ 0.4). These results indicate that ice nucleation properties are sensitive to the various aging treatments.
Wenliao Du
2013-01-01
Full Text Available Promptly and accurately dealing with the equipment breakdown is very important in terms of enhancing reliability and decreasing downtime. A novel fault diagnosis method PSO-RVM based on relevance vector machines (RVM with particle swarm optimization (PSO algorithm for plunger pump in truck crane is proposed. The particle swarm optimization algorithm is utilized to determine the kernel width parameter of the kernel function in RVM, and the five two-class RVMs with binary tree architecture are trained to recognize the condition of mechanism. The proposed method is employed in the diagnosis of plunger pump in truck crane. The six states, including normal state, bearing inner race fault, bearing roller fault, plunger wear fault, thrust plate wear fault, and swash plate wear fault, are used to test the classification performance of the proposed PSO-RVM model, which compared with the classical models, such as back-propagation artificial neural network (BP-ANN, ant colony optimization artificial neural network (ANT-ANN, RVM, and support vectors, machines with particle swarm optimization (PSO-SVM, respectively. The experimental results show that the PSO-RVM is superior to the first three classical models, and has a comparative performance to the PSO-SVM, the corresponding diagnostic accuracy achieving as high as 99.17% and 99.58%, respectively. But the number of relevance vectors is far fewer than that of support vector, and the former is about 1/12–1/3 of the latter, which indicates that the proposed PSO-RVM model is more suitable for applications that require low complexity and real-time monitoring.
2000-01-01
On 23-24 March 1998, the International Life Sciences Institute (ILSI) Risk Science Institute convened a workshop entitled "Relevance of the Rat Lung Response to Particle Overload for Human Risk Assessment." The workshop addressed the numerous study reports of lung tumors in rats resulting from chronic inhalation exposures to poorly soluble, nonfibrous particles of low acute toxicity and not directly genotoxic. These poorly soluble particles, indicated by the acronym PSPs (e.g., carbon black, coal dust, diesel soot, nonasbestiform talc, and titanium dioxide), elicit tumors in rats when deposition overwhelms the clearance mechanisms of the lung resulting in a condition referred to as "overload." These PSPs have been shown not to induce tumors in mice and hamsters, and the available data in humans are consistently negative. The objectives were twofold: (1) to provide guidance for risk assessment on the interpretation of neoplastic and nonneoplastic responses of the rat lung to PSPs; and (2) to identify important data gaps in our understanding of the lung responses of rats and other species to PSPs. Utilizing the five critical reviews of relevant literature that follow herein and the combined expertise and experience of the 30 workshop participants, a number of questions were addressed. The consensus views of the workshop participants are presented in this report. Because it is still not known with certainty whether high lung burdens of PSPs can lead to lung cancer in humans via mechanisms similar to those of the rat, in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential carcinogenic hazards to humans. Since the apparent responsiveness of the rat model at overload is dependent on coexistent chronic active inflammation and cell proliferation, at lower lung doses where chronic active inflammation and cell proliferation are not present, no lung cancer hazard is anticipated.
Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles
Roedel, Erik Q., E-mail: Erik.Roedel@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Cafasso, Danielle E., E-mail: Danielle.Cafasso@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Lee, Karen W.M., E-mail: Karen.W.Lee@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Pierce, Lisa M., E-mail: Lisa.Pierce@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States)
2012-02-15
Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ► Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ► W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ► W
Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles.
Roedel, Erik Q; Cafasso, Danielle E; Lee, Karen W M; Pierce, Lisa M
2012-02-15
Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals.
Bzdek, B. R.; DePalma, J.; Ridge, D. P.; Laskin, J.; Johnston, M. V.
2012-12-01
New particle formation (NPF) may significantly impact cloud albedo and global climate by influencing cloud condensation nuclei levels. The climate effects of NPF are governed by both the nucleation of new clusters and their growth to larger sizes. A firm understanding of the chemical mechanisms of small cluster growth to larger sizes is required to accurately model NPF. However, experimental measurements of the energetics of cluster growth are challenging. This presentation discusses results obtained using a new approach to studying cluster growth, by making measurements of cluster dissociation and inferring growth from the inverse process. In this work, the fragmentation energetics of positively charged ammonium bisulfate clusters of the form [(NH4)x(HSO4)x-1]+ were studied using a 6T Fourier transform ion cyclotron resonance mass spectrometer equipped with surface induced dissociation (SID), a method to fragment ions by impacting them on a surface at a precisely known collision energy. An ammonium bisulfate cluster was isolated and then fragmented by SID. Fragmentation efficiency curves were plotted as a function of collision energy and were fit to a Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) model in order to extract threshold energies for dissociation. Two pathways exist for fragmentation of positively charged ammonium bisulfate clusters. The first is a one-step fragmentation pathway whereby the cluster loses an ammonium bisulfate molecule, [(NH4)(HSO4)]. The second fragmentation pathway is a two-step pathway, whereby the cluster first loses an ammonia molecule and next loses a sulfuric acid molecule. Assuming that cluster growth mechanisms are the reverse of cluster dissociation mechanisms, these observations suggest two potential growth pathways for ammonium bisulfate clusters: 1) growth by addition of an ammonium bisulfate molecule to a preexisting cluster and 2) stepwise growth by sequential addition of a sulfuric acid molecule
Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng
2013-08-01
Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms.
Assessment of potential advantages of relevant ions for particle therapy: A model based study
Grün, Rebecca, E-mail: r.gruen@gsi.de [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390 (Germany); Medical Faculty of Philipps-University Marburg, Marburg 35032 (Germany); Friedrich, Thomas; Krämer, Michael; Scholz, Michael [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291 (Germany); Zink, Klemens [Institute of Medical Physics and Radiation Protection, University of Applied Sciences Gießen, Gießen 35390, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany); Durante, Marco [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt 64291, Germany and Department of Condensed Matter Physics, Darmstadt University of Technology, Darmstadt 64289 (Germany); Engenhart-Cabillic, Rita [Medical Faculty of Philipps-University Marburg, Marburg 35032, Germany and Department of Radiotherapy and Radiation Oncology, University Medical Center Giessen and Marburg, Marburg 35043 (Germany)
2015-02-15
Purpose: Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ({sup 12}C), helium ({sup 4}He), and protons ({sup 1}H) for different treatment scenarios. Methods: A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PER{sub PHY} {sub S}), the RBE (PER{sub RBE}), and the RBE-weighted dose (PER{sub BIO}) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. Results: The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PER{sub RBE} for the analyzed configurations. Due to the fact that protons show a somewhat better PER{sub PHY} {sub S} compared to helium and carbon ions whereas helium shows a higher PER{sub RBE} compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PER{sub RBE} with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PER{sub BIO} is observed when using an orthogonal field configuration
Gatu Johnson, M.; Zylstra, A. B.; Bacher, A.; Brune, C. R.; Casey, D. T.; Forrest, C.; Herrmann, H. W.; Hohenberger, M.; Sayre, D. B.; Bionta, R. M.; Bourgade, J.-L.; Caggiano, J. A.; Cerjan, C.; Craxton, R. S.; Dearborn, D.; Farrell, M.; Frenje, J. A.; Garcia, E. M.; Glebov, V. Yu.; Hale, G.; Hartouni, E. P.; Hatarik, R.; Hohensee, M.; Holunga, D. M.; Hoppe, M.; Janezic, R.; Khan, S. F.; Kilkenny, J. D.; Kim, Y. H.; Knauer, J. P.; Kohut, T. R.; Lahmann, B.; Landoas, O.; Li, C. K.; Marshall, F. J.; Masse, L.; McEvoy, A.; McKenty, P.; McNabb, D. P.; Nikroo, A.; Parham, T. G.; Paris, M.; Petrasso, R. D.; Pino, J.; Radha, P. B.; Remington, B.; Rinderknecht, H. G.; Robey, H.; Rosenberg, M. J.; Rosse, B.; Rubery, M.; Sangster, T. C.; Sanchez, J.; Schmitt, M.; Schoff, M.; Séguin, F. H.; Seka, W.; Sio, H.; Stoeckl, C.; Tipton, R. E.
2017-04-01
This paper describes the development of a platform to study astrophysically relevant nuclear reactions using inertial-confinement fusion implosions on the OMEGA and National Ignition Facility laser facilities, with a particular focus on optimizing the implosions to study charged-particle-producing reactions. Primary requirements on the platform are high yield, for high statistics in the fusion product measurements, combined with low areal density, to allow the charged fusion products to escape. This is optimally achieved with direct-drive exploding pusher implosions using thin-glass-shell capsules. Mitigation strategies to eliminate a possible target sheath potential which would accelerate the emitted ions are discussed. The potential impact of kinetic effects on the implosions is also considered. The platform is initially employed to study the complementary T(t,2n)α, T(3He,np)α and 3He(3He,2p)α reactions. Proof-of-principle results from the first experiments demonstrating the ability to accurately measure the energy and yields of charged particles are presented. Lessons learned from these experiments will be used in studies of other reactions. The goals are to explore thermonuclear reaction rates and fundamental nuclear physics in stellar-like plasma environments, and to push this new frontier of nuclear astrophysics into unique regimes not reachable through existing platforms, with thermal ion velocity distributions, plasma screening, and low reactant energies.
WANG Yao; TANG Jian-guo
2006-01-01
The surface-passivated and non-surface-passivated zinc oxide nano-particles (marked as s-nanoZnO and ns-nanoZnO respectively) were evcnly dispersed in polymer solutions with thc aid of ultrasonic vibration to prepare nanocomposite film by free casting and to prepare nanocomposite fibers by wet spinning and to prepare nanocomposites coating by surface smearing. The dispersion of s-nanoZnO and nsnanoZnO in PAN matrix were observed by transmittance electron microscopy, the mechanical properties of the relevant composite samples were studied by INSRTON tensile strength tester. It was found that s-nanoZnO behaves a well-disporsed morphology in PAN films and fibers when its concentration was 2 wt% but ns-nanoZnO nano particles agglomerate into larger congeries in PAN films. It means that the surface-passivated process on zinc oxide nanoparticles was effective to disperse. The relative intensity and elongation at break of s-nanoZnO-PAN composite fibers show maximum values with the increase of nano particle content in composites (from 0 wt% to 2 wt% of snanoZnO). The elasticity of the conposite fibers increases whereas their modulus declines. Balanced the changes of the properties mentioned above, 2 wt% s-nanoZnO in PAN matrix is a proper content for the composite fibers spun by wet spinning. The result of surface smearing test means that the reaction between s-nanoZnO and polymer can be indicated by the color of nanocomposite surface coat on fibers.
Dolce Donatello
2013-09-01
Full Text Available Elementary particles, i.e. the basic constituents of nature, are characterized by quantum recurrences in time. The flow of time of every physical system can be therefore decomposed in elementary cycles of time. This allows us to enforce the local nature of relativistic time, yielding interesting unified descriptions of fundamental aspects of modern physics, as shown in recent publications. Every particle can be regarded as a reference clock with time resolution of the order of the Compton time particle, many orders of magnitude more accurate than the atomic clocks. Here we report basic implications about the resulting notion of time.
Deep Agnani
Full Text Available P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the
El Naschie, Mohamed Saladin [Department of Physics, University of Alexandria (Egypt); Department of Astrophysics, Cairo University (Egypt); Department of Physics, Mansura University (Egypt)
2006-08-15
This work is concerned with showing, using various arguments, the possibility of giving an interpretation of the fundamental interactions conveying a mental picture in which gravity and general relativity would appear to be less fundamental than high energy particle physics.
Bleck-Neuhaus, Joern [Bremen Univ. (Germany). FB 1 Physik
2010-07-01
The actual state of knowledge of nuclear and elementary-particle physics has a fluctuating history of origin, often characterized by shockingly new formations of terms, which until today are for studyings of physics often only under difficulties accessible. This books uses the controverse and at the same time instructive development processes themselves for the access to the difficult new concepts. It makes understandable, how the physical picture of the smallest particles looks today und why it has arised so and not otherwise: From the detection of the existence of the atoms up to the present standard model of elementary-particle physics, in a steady exchange between established theoretical models, confirming and contradicting experimental findings, sometimes controversial new formations of terms, improved experiments etc. - a process, which certainly continues in the future. Guidance of the presentation is an also in the detail reproducible argumentation. Studyings of physics before their B.Sc. examination will get knowledges about subatomar physics, which belong to the genralknowledge of their field. Also for teachings of physics at schools or universities this new presentation might be interesting. [German] Der aktuelle Wissensstand der Kern- und Elementarteilchenphysik hat eine wechselvolle Entstehungsgeschichte, oft gekennzeichnet durch schockierend neue Begriffsbildungen, die sich bis heute den Physik-Studierenden oft nur unter Muehen erschliessen. Dieses Buch nutzt die kontroversen und zugleich lehrreichen Entwicklungsprozesse selber fuer den Zugang zu den schwierigen neuen Konzepten. Es macht verstaendlich, wie das physikalische Bild von den kleinsten Teilchen heute aussieht und warum es so und nicht anders entstanden ist: Vom Nachweis der Existenz der Atome bis zum derzeitigen Standard-Modell der Elementarteilchenphysik, in einem staendigen Wechselspiel zwischen etablierten theoretischen Modellen, bestaetigenden oder widersprechenden experimentellen
Dellino, P.; Liotino, G.
2002-03-01
Image processing analysis is used to check the ability of the fractal dimension for quantitatively describing the shape of volcanic ash particles. Digitized scanning electron microscopy images of fine pyroclasts from the eruptions of Monte Pilato-Rocche Rosse (Lipari, Italy) are investigated to test the efficiency of the fractal dimension to discriminate between particles of different eruptive processes. Multivariate analysis of multiple fractal components allows distinction between magmatic particles and phreatomagmatic particles, which however is less significant than the discrimination obtained in previous studies by the use of simple 'adimensional' shape parameters. Approximation of the actual particle boundary and the not rotation invariant nature of the fractal data frequently result in a significant scatter of data points in the Mandelbrot-Richardson plot. Such behavior obscures in some cases the actual information of particle shape and renders the discriminating power of fractal analysis less effective than classical shape descriptors. Data less affected by scatter reveal that phreatomagmatic particles of the Monte Pilato-Rocche Rosse eruptions are true (mono) fractals, whereas magmatic particles are multifractals. The textural (small-scale) fractal of magmatic particles is similar to the fractal dimension value of phreatomagmatic particles, and is attributed to the rheological behavior of melt upon brittle fragmentation. The structural (large-scale) fractal of magmatic particles refers to the walls of ruptured vesicles that lay on the particle outline. The high difference between the values of the textural and structural fractals of magmatic particles of the Monte Pilato-Rocche Rosse eruptions suggests two distinct and independent processes in the formation of such pyroclasts. At the scales corresponding to the textural fractal, the fragmentation process is independent of vesicles. Magmatic fragmentation is not simply related to growth, expansion
Sudarshan, E.C.G.; Ne' eman, Y.
1980-01-01
A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed. (RWR)
Elementary operators - still not elementary?
Martin Mathieu
2016-01-01
Full Text Available Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.
Bochdansky, Alexander B.; Clouse, Melissa A.; Hansell, Dennis A.
2017-02-01
The Ross Sea plays a major role in the transfer of organic carbon from the surface into the deep sea due to the combination of high seasonal productivity and Antarctic bottom water formation. Here we present a particle inventory of the Ross Sea based on a combined deployment of a video particle profiler (VPP) and a high-resolution digital holographic microscope (DIHM). Long-distance (100 s of kilometers) and short-distance (10 s of kilometers) sections showed high variability of particle distributions that co-varied with the density structure of the water column. Particle export was apparent at sites of locally weakened pycnoclines, likely an indirect effect of nutrient mixing into the surface layer and local blooms that lead to export. Particle volume abundances at 200-300 m depth were highly correlated with particle volume abundances in the upper mixed layer (export rather than lateral advection. Phaeocystis antarctica (Haptophyta) colonies that were initially retained in the mixed layer sank below the euphotic zone within a period of two weeks. Fine-scale analysis at a resolution < 1 m revealed a significantly overdispersed (i.e., highly patchy) environment in all casts. Patchiness, as determined by the Lloyd index of patchiness and the Index of Aggregation, increased in and below the pycnocline presumably due to aggregation of particles while accumulating on density gradients. In contrast, particles in the upper mixed layer and in the nepheloid layers were more randomly distributed. In 40 of the 84 VPP depth profiles, a periodicity of particle peaks ranged from 10 to 90 m with a mode of 30 m, which can be regarded as the "relevant scale" or "characteristic patch size" of the vertical distribution of particles. While chlorophyll fluorescence and particle mass determined by VPP were significantly correlated at higher particle abundances, the relationship changed from cast to cast, reflecting changes in the relative contribution of fresh phytoplankton to total
Warheit, D B; Kreiling, R; Levy, Len
2016-01-01
The relevance of particle-overload related lung tumors in rats for human risk assessment following chronic inhalation exposures to poorly soluble particulates (PSP) has been a controversial issue for more than three decades. In 1998, an ILSI (International Life Sciences) Working Group of health scientists was convened to address this issue of applicability of experimental study findings of lung neoplasms in rats for lifetime-exposed production workers to PSPs. A full consensus view was not re...
Final Report for 3-year grant no. DE-FG05-85ER40226. Investigations in Elementary Particle Theory.
Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States); Scherrer, Robert J. [Vanderbilt Univ., Nashville, TN (United States); Weiler, Thomas J. [Vanderbilt Univ., Nashville, TN (United States)
2014-11-23
The research interests of our three Co-PI’s complement each other very well. Kephart works mainly on models of particle unification in four or higher dimensions, on aspects of gravity such as inflation, black-holes, and the very early Universe, and on applications of knot theory and topology to various physical systems (including gluon dynamics). Scherrer works mainly on aspects of the intermediate-aged Universe, including dark matter and dark energy, and particle physics in the early Universe. Weiler works mainly on neutrino physics, dark matter signatures, and extreme particle-astrophysics in the late Universe, including origins of the highest-energy cosmic-rays and gamma-rays, and the future potential of neutrino astrophysics. Kephart and Weiler have lately devoted some research attention to the LHC and its reach for probing physics beyond the Standard Model. During the 3-year funding period, our grant supported one postdoc (Chiu Man Ho) and partially supported two students, Peter Denton and Lingjun Fu. Chiu Man collaborated with all three of the Co-PI’s during the 3-year funding period and published 16 refereed papers. Chiu Man has gone on to a postdoc with Steve Hsu at Michigan State University. Denton and Fu will both receive their PhDs during the 2014-15 academic year. The total number of our papers published in refereed journals by the three co-PIs during the period of this grant (2011-present) is 54. The total number of talks given by the group members during this time period, including seminars, colloquia, and conference presentations, is 47. Some details of the accomplishments of our DOE funded researchers during the grant period include Weiler being named a Simons Fellow in 2013. He presented an invited TEDx talk in 2012. His paper on closed timelike curves (2013) garnered a great deal of national publicity. Scherrer’s paper on the “little rip” (2011) fostered a new area of cosmological research, and the name “little rip” has now entered
Sardin, G
1999-01-01
An alternative approach to the Standard Model is outlined, being motivated by the increasing theoretical and experimental difficulties encountered by this model, which furthermore fails to be unitary. In particular, the conceptual uneasiness generated by the excessive multiplicity of fundamental elements of the Quark Model, 36 different quarks whose cohesion needs 8 different types of gluons, has logically led some physicists to propose a variety of quark substructures in an effort to reach unity. In order to avoid the forward escape corresponding to the attribution of a substructure to quarks and to stand away from the conceptual strangling to which the Standard model has led, we have instead opted for different fundamentals. These, in contrast to those of the Standard Model, are extremely simple and based on the assumption of a single fundamental corpuscle, of dual manifestation as corpuscle and anticorpuscle, to which is always associated an orbital that determines the structure of particles. In such a fra...
Bopp, Fritz W. [Siegen Univ. (Germany)
2015-07-01
One of the most important developments in physics is the increasing understanding of subatomic phenomena. The subatomic physics belong today to the canonical parts of a study of physics. In many universities therefore for this an introductory course is offered. The first edition arose from a script for such courses. The subatomic physic has since the first edition distinctly changed. Because I keep the concept of the book still as usual for good I have decided for a new edition. Many textbooks and courses in nuclear and particle physics try to motivate students in a certain direction. This is surely appropriate in an advanced state of a study. In the bachelor range this can lead to a not suffiecently wide development, and the book tries to counteract to this. How physical phenomena are to be describe depends on each energy scale. In the book for each scale a concise introduction is given to the occasionally required description. By this way regularity is reached, and it is avoided to give to the fields wrong priorities. The list of the meanwhile necessary changes is long, and I want to cite here only some topics. The chapter about high-energy accelerators is antiquated, many of the accelerators planned at that time were not realize. The realized new accelerators open new regions in hadron and heavy-ion physics, and maybe new observations and concepts are to be cited for this. How quarks bind to hadrons is today better understood and requires an extensive discussion. To be mentioned is also that the application range of perturbative quantum chromodynamics could be extended in different directions by new methods. The essential cause of the new edition is the experimental detection of the Higgs particle, which must now be treated extensively. A careful revision of the new edition led to a very large number of corrections and smaller improvements.
Kursunoglu, N.
2003-06-01
This paper was originally published without the accompanying figures. The complete paper is published in the Appendix of AIP Conference Proceedings 672, Short Distance Behavior of Fundamental Interactions, edited by B. N. Kursunoglu et al., pp. 210-219, 2003. The correct citation to be used for this paper is AIP Conference Proceedings 624, Cosmology and Elementary Particle Physics, edited by B. N. Kursunoglu et al., pp. 201-210, 2002. The online version of this paper has been corrected.
Han, Yuemei; Stroud, Craig A.; Liggio, John; Li, Shao-Meng
2016-11-01
Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2-7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6-36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0-1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33-35 % and CxHyO2+ 16-17 %) in the total organics and the O / C ratio (0.52-0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39-40, 17-19, and
Klippel, N.; Nussbaumer, T.
2007-03-15
This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at the relevance of fine-dust particles (PM10, particulate matter smaller than 10 microns) emitted from wood-fired boilers in comparison with soot from diesel engines. Medicinal basics with reference to the particles concerned are explained, including the physiology of the human respiratory system, its defence mechanisms against fine dust as well as detrimental health effects to the nose, lungs and cardio-vascular system. Also, allergic reactions and effects at cell level are discussed. The mechanisms involved in the emission of the particles in ovens and diesel engines are examined and compared. The methods used to take samples of the particles are explained and the results of cell-tests are presented and discussed. Estimates of the particle concentrations in the lung are presented and comparisons are made of loading during smog-periods. The report is rounded off with a comprehensive list of literature on the subject.
Drell, Sidney D.
1978-01-01
Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…
Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa
2017-02-01
While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles.
Jing, Bo; Peng, Chao; Wang, Yidan; Liu, Qifan; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa
2017-01-01
While water uptake of aerosols exerts considerable impacts on climate, the effects of aerosol composition and potential interactions between species on hygroscopicity of atmospheric particles have not been fully characterized. The water uptake behaviors of potassium chloride and its internal mixtures with water soluble organic compounds (WSOCs) related to biomass burning aerosols including oxalic acid, levoglucosan and humic acid at different mass ratios were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA). Deliquescence points of KCl/organic mixtures were observed to occur at lower RH values and over a broader RH range eventually disappearing at high organic mass fractions. This leads to substantial under-prediction of water uptake at intermediate RH. Large discrepancies for water content between model predictions and measurements were observed for KCl aerosols with 75 wt% oxalic acid content, which is likely due to the formation of less hygroscopic potassium oxalate from interactions between KCl and oxalic acid without taken into account in the model methods. Our results also indicate strong influence of levoglucosan on hygroscopic behaviors of multicomponent mixed particles. These findings are important in further understanding the role of interactions between WSOCs and inorganic salt on hygroscopic behaviors and environmental effects of atmospheric particles. PMID:28240258
Hedberg, Yolanda S; Hedberg, Jonas F; Isaksson, Sara; Mei, Nanxuan; Blomberg, Eva; Wold, Susanna; Odnevall Wallinder, Inger
2017-02-11
Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu). The aims of this study were to investigate particle stability and transformation/dissolution properties of nanoparticles (NPs) of WC-Co compared with NPs of tungsten carbide (WC), cobalt (Co), and Cu. Their physicochemical characteristics (primarily surface oxide and charge) are compared with their extent of sedimentation and metal release in synthetic surface water (SW) with and without two different model organic molecules, 2,3- and 3,4-dihydroxybenzoic acid (DHBA) mimicking certain sorption sites of humic substances, for time periods up to 22 days. The WC-Co NPs possessed a higher electrochemical and chemical reactivity in SW with and without DHBA molecules as compared with NPs of WC, Co, and Cu. Co was completely released from the WC-Co NPs within a few hours of exposure, although it remained adsorbed/bonded to the particle surface and enabled the adsorption of negatively charged DHBA molecules, in contrast with the WC NPs (no adsorption of DHBA). The DHBA molecules were found to rapidly adsorb on the Co and Cu NPs. The sedimentation of the WC and WC-Co NPs was not influenced by the presence of the 2,3- or 3,4-DHBA molecules. A slight influence (slower sedimentation) was observed for the Co NPs, and a strong influence (slower sedimentation) was observed for the Cu NPs in SW with 2,3-DHBA compared with SW alone. The extent of metal release increased in the order: WC < Cu < Co < WC-Co NPs. All NPs released more than 1 wt-% of their metal total mass. The release from the Cu NPs was most influenced by the presence of DHBA molecules.
Anja Wittig
2017-01-01
Full Text Available Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR and mitogen-activated protein kinases (MAPK signaling pathways—both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the
Wittig, Anja; Gehrke, Helge; Del Favero, Giorgia; Fritz, Eva-Maria; Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten; Sami, Haider; Ogris, Manfred; Marko, Doris
2017-01-13
Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) signaling pathways-both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs) were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the concentration
Mead, W.C.
1980-09-11
Ion acoustic turbulence is examined as one mechanism which could contribute to the inhibition of electron thermal transport which has been inferred from many laser-plasma experiments. The behavior of the ion acoustic instability is discussed from the viewpoint of the literature of 2-dimensional particle-in-cell simulations. Simulation techniques, limitations, and reported saturation mechanisms and levels are discussed. A scaling law for the effective collision frequency ..nu..* can be fit to several workers' results to within an order-of-magnitude. The inferred ..nu..* is shown to be 1-2 orders-of-magnitude too small to account for the transport inhibition seen in Nd-laser-produced plasmas. Several differences between the simulation conditions and laser-produced plasma conditions are noted.
Research in elementary particle physics
Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.
1992-01-01
We describe theoretical work on effective action expansion on an effective low energy theory of hadrons and lattice gauge theories. The high energy experimental group at Louisiana State University has analyzed data on a neutrino oscillation experiment at LAMPF. The LSND neutrino experiment is preparing to take data in 1993. IMB data has been analyzed. Preparations for a beam test at KEK for IMB are in progress. Dumand is preparing to test one string of the detector early next summer. The ZEUS electron proton colliding beam experiment has started to take data. Early results have been reported.
Research in elementary particle physics
Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Blocker, C.A.
1992-01-01
This report discusses research in the following areas of high energy physics: B meson mixing; CDF response to low energy jets; jet scaling behavior; search for pair produced leptoquarks at CDF; SSC program; quantum field theory; and neural networks. (LSP).
McKeague, Charles P
1981-01-01
Elementary Algebra 2e, Second Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first tackles the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the substitution method, solving linear systems by graphing, solutions to linear equations in two variables, multiplication property of equality, word problems, addition property of equality, and subtraction, addition, multiplication, and division of real numbers. The manuscript then examines exponents and polynomials, factoring, and rational e
McKeague, Charles P
1986-01-01
Elementary Algebra, Third Edition focuses on the basic principles, operations, and approaches involved in elementary algebra. The book first ponders on the basics, linear equations and inequalities, and graphing and linear systems. Discussions focus on the elimination method, solving linear systems by graphing, word problems, addition property of equality, solving linear equations, linear inequalities, addition and subtraction of real numbers, and properties of real numbers. The text then takes a look at exponents and polynomials, factoring, and rational expressions. Topics include reducing ra
I. R. Zamora
2013-09-01
Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different
Bleck-Neuhaus, Joern [Bremen Univ. (Germany)
2013-07-01
The current state of knowledge of nuclear and elementary-particle physics has a checkered history, often characterized by shocking new concept formations, which also opens up to the present day students of physics only with difficulty. This book uses those controversial yet educational development in order to enable learners to improve access to the new concepts. It helps to understand how the physical picture of the smallest particles is today, and why it is so and not otherwise originated: Beginning in the detection of the atoms up to the current standard model of elementary-particle physics and the Higgs boson. So readers gain an impression of that great field, which is originated in the constant interplay between established theoretical models, confirmatory or contradictory findings, sometimes controversial new concept formations, and improved experiments - a process, that surely continues in the future. Guideline of the presentation is a comprehensible also in detail as possible reasoning argumentation. Students of physics before their B.Sc. degree will thus be able to acquire knowledge of the subatomic physics relating to general knowledge in their field. Also for physics teachers at schools or colleges, this new representation should be interesting. The second edition has been updated to the newest state of knowledge, in particular first results of the LHC have been incorporated.
I. R. Zamora
2013-01-01
Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic Aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (a_{w} parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA-inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the a_{w} range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high a_{w} values. The remaining four mixtures were based on
Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2016-08-26
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
Aguilar, M; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2016-01-01
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×105 antiproton events and 2.42×109 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p¯, proton p, and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e− flux exhibits a different rigidity dependence. Below 60 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the (p¯/p), (p¯/e+), and (p/e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; BaşeÇ§mez-du Pree, S.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2016-08-01
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 ×1 05 antiproton events and 2.42 ×1 09 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ˜60 to ˜500 GV , the antiproton p ¯, proton p , and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e- flux exhibits a different rigidity dependence. Below 60 GV, the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios each reaches a maximum. From ˜60 to ˜500 GV , the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
The Richtmyer Memorial Lecture--When is a Particle?
Drell, Sidney D.
1978-01-01
Discusses the concept of elementary particles. Reviews the history of the neutrino, and explains why the quarks, although they themselves are not "observed" in isolation, are to be considered elementary particles. (GA)
Snell, K S; Langford, W J; Maxwell, E A
1966-01-01
Elementary Analysis, Volume 2 introduces several of the ideas of modern mathematics in a casual manner and provides the practical experience in algebraic and analytic operations that lays a sound foundation of basic skills. This book focuses on the nature of number, algebraic and logical structure, groups, rings, fields, vector spaces, matrices, sequences, limits, functions and inverse functions, complex numbers, and probability. The logical structure of analysis given through the treatment of differentiation and integration, with applications to the trigonometric and logarithmic functions, is
Wolstenholme, E Œ
1978-01-01
Elementary Vectors, Third Edition serves as an introductory course in vector analysis and is intended to present the theoretical and application aspects of vectors. The book covers topics that rigorously explain and provide definitions, principles, equations, and methods in vector analysis. Applications of vector methods to simple kinematical and dynamical problems; central forces and orbits; and solutions to geometrical problems are discussed as well. This edition of the text also provides an appendix, intended for students, which the author hopes to bridge the gap between theory and appl
Goli, Mohammad
2013-01-01
In this contribution, pursuing our research program extending the atoms in molecules analysis into unorthodox domains, another key ingredient of the two-component quantum theory of atoms in molecules (TC-QTAIM) namely, the theory of localization/delocalization of quantum particles, is disclosed. The unified proposed scheme is able not only to deal with the localization/delocalization of electrons in/between atomic basins, but also to treat nuclei as well as exotic particles like positrons and muons equally. Based on the general reduced second order density matrices for indistinguishable quantum particles, the quantum fluctuations of atomic basins are introduced and then used as a gauge to quantify the localization/delocalization introducing proper indexes. The explicit mass-dependence of the proposed indexes is demonstrated and it is shown that a single localization/delocalization index is capable of being used for all kind of quantum particles regardless of their masses or charge content. For various non-Bor...
Yongliang Lin
2016-10-01
Full Text Available In this paper, we propose a multiple kernel relevance vector machine (RVM method based on the adaptive cloud particle swarm optimization (PSO algorithm to map landslide susceptibility in the low hill area of Sichuan Province, China. In the multi-kernel structure, the kernel selection problem can be solved by adjusting the kernel weight, which determines the single kernel contribution of the final kernel mapping. The weights and parameters of the multi-kernel function were optimized using the PSO algorithm. In addition, the convergence speed of the PSO algorithm was increased using cloud theory. To ensure the stability of the prediction model, the result of a five-fold cross-validation method was used as the fitness of the PSO algorithm. To verify the results, receiver operating characteristic curves (ROC and landslide dot density (LDD were used. The results show that the model that used a heterogeneous kernel (a combination of two different kernel functions had a larger area under the ROC curve (0.7616 and a lower prediction error ratio (0.28% than did the other types of kernel models employed in this study. In addition, both the sum of two high susceptibility zone LDDs (6.71/100 km2 and the sum of two low susceptibility zone LDDs (0.82/100 km2 demonstrated that the landslide susceptibility map based on the heterogeneous kernel model was closest to the historical landslide distribution. In conclusion, the results obtained in this study can provide very useful information for disaster prevention and land-use planning in the study area.
Idini, A.; Potel, G.; Barranco, F.; Vigezzi, E.; Broglia, R. A.
2015-09-01
A complete characterization of the structure of nuclei can be obtained by combining information arising from inelastic scattering, Coulomb excitation, and γ -decay, together with one- and two-particle transfer reactions. In this way it is possible to probe both the single-particle and collective components of the nuclear many-body wave function resulting from the coupling of these modes and, as a result, diagonalizing the low-energy Hamiltonian. We address the question of how accurately such a description can account for experimental observations in the case of superfluid nuclei. Our treatment goes beyond the traditional approach, in which these properties are calculated separately, and most often for systems near closed shells, based on perturbative approximations (weak coupling). It is concluded that renormalizing empirically and on equal footing bare single-particle and collective motion of open-shell nuclei in terms of self-energy (mass) and vertex corrections (screening), as well as particle-hole and pairing interactions through particle-vibration coupling (PVC), leads to a detailed, quantitative account of the data, constraining the possible values of the k mass, of the 1S0 bare N N interaction, and of the PVC strengths within a rather narrow window.
Kulkarni, Gourihar; China, Swarup; Liu, Shang; Nandasiri, Manjula; Sharma, Noopur; Wilson, Jacqueline; Aiken, Allison C.; Chand, Duli; Laskin, Alexander; Mazzoleni, Claudio; Pekour, Mikhail; Shilling, John; Shutthanandan, Vaithiyalingam; Zelenyuk, Alla; Zaveri, Rahul A.
2016-04-01
Ice formation by diesel soot particles was investigated at temperatures ranging from -40 to -50°C. Size-selected soot particles were physically and chemically aged in an environmental chamber, and their ice nucleating properties were determined using a continuous flow diffusion type ice nucleation chamber. Bare (freshly formed), hydrated, and compacted soot particles, as well as α-pinene secondary organic aerosol (SOA)-coated soot particles at high relative humidity conditions, showed ice formation activity at subsaturation conditions with respect to water but below the homogeneous freezing threshold conditions. However, SOA-coated soot particles at dry conditions were observed to freeze at homogeneous freezing threshold conditions. Overall, our results suggest that heterogeneous ice nucleation activity of freshly emitted diesel soot particles are sensitive to some of the aging processes that soot can undergo in the atmosphere.
Sherman, H; Nguyen, A V; Bruckard, W
2016-11-22
Atomic force microscopy makes it possible to measure the interacting forces between individual colloidal particles and air bubbles, which can provide a measure of the particle hydrophobicity. To indicate the level of hydrophobicity of the particle, the contact angle can be calculated, assuming that no interfacial deformation occurs with the bubble retaining a spherical profile. Our experimental results obtained using a modified sphere tensiometry apparatus to detach submillimeter spherical particles show that deformation of the bubble interface does occur during particle detachment. We also develop a theoretical model to describe the equilibrium shape of the bubble meniscus at any given particle position, based on the minimization of the free energy of the system. The developed model allows us to analyze high-speed video captured during detachment. In the system model deformation of the bubble profile is accounted for by the incorporation of a Lagrange multiplier into both the Young-Laplace equation and the force balance. The solution of the bubble profile matched to the high-speed video allows us to accurately calculate the contact angle and determine the total force balance as a function of the contact point of the bubble on the particle surface.
Bahr, Benjamin [Albert-Einstein-Institut (Max-Planck Institut fuer Gravitationsphysik), Golm (Germany); Riebe, Kristin [Potsdam Univ. (Germany). Leibniz-Institut fuer Astrophysik; Resag, Joerg
2013-07-01
''Fascinating physics'' is a picturesque expedition through 140 themes of classical and modern physics. On each one double-page to the reader is thereby offered a compact access in each one theme: From the aurora until the black hole, from the particle accelerator until the GPS system, from the curved space-time until the supersymmetry, from the oscillating dipole until Foucault's pendulum - a large variety of themes is taken up and carefully explained. Thereby the special strength of the book lies in the clear language and the explanations get along mostly without formulas - accompanied by breathtaking pictures, which lead the beauty of our world in front of the eyes.
Baldisseri, A
2006-05-15
This document reviews the theoretical, experimental and technical achievements of the author since the beginning of his scientific career. Works in 5 fields have been highlighted: 1) rare decays of the {eta} meson, 2) neutrino oscillations in NOMAD experiment, 3) quark and gluon plasma, 4) the PHENIX experiment at RHIC, and 5) the ALICE experiment in LHC. The PHENIX experiment was dedicated to the accurate measuring of photons and dileptons (particularly J/{psi}, {psi}' resonances) produced in heavy ion collisions. The ALICE experiment is devoted to the study of the quark gluon plasma. Its detector must be able to detect charged particles with a broad range of transverse momenta (from 100 MeV/c to 100 GeV/c). This document presented before an academic board will allow his author to manage research works and particularly to tutor thesis students.
Lederman, Leon M
2013-01-01
On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars.
Elementary Mathematics Leaders
Fennell, Francis; Kobett, Beth McCord; Wray, Jonathan A.
2013-01-01
Elementary school mathematics leaders often come to the realization that their position, however titled and determined, although dedicated to addressing needs in math teaching and learning, also entails and directly involves leadership. Elementary school math specialists/instructional leaders (referenced here as elementary mathematics leaders, or…
B. J. Murray
2012-09-01
Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I_{2}O_{4}, while elemental analysis of laboratory generated particles suggests soluble I_{2}O_{5} or its hydrated form iodic acid, HIO_{3} (I_{2}O_{5}·H_{2}O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the
PARTICLE PROPERTIES--PROMISE AND NEGLECT
Wolfgang Peukert
2003-01-01
We see two major trends in Particle Technology. First, the focus is shifted from unit operations towards functional products, i.e. towards product engineering. Second, modeling will become more and more important. Processes cannot yet be designed from basic molecular understanding. Nanotechnology, however, begins to bridge this gap between molecules and particles and may thus open new ways not only for the production and handling of particulate matter but also for the engineered design of advanced material properties. Starting from the concept of product engineering we investigate the basic preconditions for tailoring nanoparticulate properties, i.e. the control of the particle interactions. Nanotechnology can only be transferred to industrial production if the interactions are effectively controlled.Material and particle properties are essential for predictive models. Although strong tools like MD, DEM or population balance models are available, these models are only predictive if realistic material and particle properties are available which is often not the case. We show for selected examples how particle properties can be obtained by studying the physically relevant elementary processes. The impact breakage behavior of many different materials is described by a master curve. Particle adhesion can be modeled if the roughness of particle and substrate and the Hamaker constant are known. The latter is obtained from adsorption studies.
B. J. Murray
2012-03-01
Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. There has been some debate over the chemical identity of these particles. Hygroscopic measurements have been used to infer that they are composed of insoluble I_{2}O_{4}, while elemental analysis of laboratory generated particles suggests soluble I_{2}O_{5} or its hydrated form iodic acid, HIO_{3} (I_{2}O_{5} · H_{2}O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass, but subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only ~6 %, which is remarkably small for a highly soluble material. We suggest that the small growth factor of aqueous iodic acid solution droplets is consistent with the small aerosol growth factors observed in field experiments.
Conferenza internazionale di Siena sulle particelle elementari
1964-01-01
Last year the editor of CERN Courier was privileged to be able to attend the Sienna international conference on elementary particles, held in the historic Italian city at the beginning of October. The following article is a personal recollection of the conference activities, both formal and informal, and of the physics that was discussed there.
Northrop Frye in the Elementary Classroom
Sloan, Glenna
2009-01-01
Northrop Frye (1912-1991) was one of the leading literary theorists of his day, and this article shows the ways in which his theories continue to be relevant for both the field of literary criticism and elementary classroom education today. The author, an eminent scholar in the field of children's literature in her own right and a student of…
Preservice Elementary Teachers' Understanding of Logical Inference
Hauk, Shandy; Judd, April Brown; Tsay, Jenq Jong; Barzilai, Harel; Austin, Homer
2009-01-01
This article reports on the logical reasoning efforts of five prospective elementary school teachers as they responded to interview prompts involving nonsense, natural, and mathematical representations of conditional statements. The interview participants evinced various levels of reliance on personal relevance, linguistic contextualization, and…
Elementary Mathematics Teachers' Knowledge of Equity Pedagogy
Jackson, Christa
2013-01-01
Currently, mathematics instruction in U.S. classrooms is far from achieving equity for African American students. This qualitative study reports the results of eight successful elementary mathematics teachers' knowledge of equity pedagogy, specifically their knowledge of culturally relevant pedagogy, cultural competence, and critical…
Elementary Mathematics Teachers' Knowledge of Equity Pedagogy
Jackson, Christa
2013-01-01
Currently, mathematics instruction in U.S. classrooms is far from achieving equity for African American students. This qualitative study reports the results of eight successful elementary mathematics teachers' knowledge of equity pedagogy, specifically their knowledge of culturally relevant pedagogy, cultural competence, and critical…
Big Bang Day: 5 Particles - 3. The Anti-particle
Franck Close
2008-01-01
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.
Elzohiery, Mohamed; Mohassab, Yousef; Abdelghany, Amr; Zhang, Shengqin; Chen, Feng; Sohn, Hong Yong
A novel ironmaking process is under development at the University of Utah aimed at producing iron directly from iron oxide concentrate in a flash reactor. This process will reduce hazardous emissions and save energy. The kinetics of magnetite reduction with hydrogen was previously investigated in our laboratory in the temperature range 1150 to 1400 °C at large temperature increments ( 100 °C increments). Due to the significant melting that occurs above 1350 °C, the reduction kinetics was measured and analyzed in two distinct temperature ranges of 1150 to 1350 °C and 1350 to 1600 °C ( 50 °C increments). Experiments were performed using magnetite concentrate particles of different sizes under various hydrogen partial pressures and residence times. Reduction degrees of more than 90 % were achieved in a few seconds at temperatures as low as 1250 °G Different rate expressions were needed to obtain reliable agreement with experimental data.
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energy for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.
Elementary Particle Physics at Baylor (Final Report)
Dittmann, J.R.
2012-08-25
This report summarizes the activities of the Baylor University Experimental High Energy Physics (HEP) group on the Collider Detector at Fermilab (CDF) experiment from August 15, 2005 to May 31, 2012. Led by the Principal Investigator (Dr. Jay R. Dittmann), the Baylor HEP group has actively pursued a variety of cutting-edge measurements from proton-antiproton collisions at the energy frontier.
Elementary particles in the service of man
1966-01-01
This article was prepared by the Atomic Energy Research Establishment, Harwell, and the Rutherford Laboratory in the U.K., for a Physics Exhibition in March of this year and is reproduced here with acknowledgement. It is an account of how some of the knowledge gained in the previous generation of our research has already been applied 'in the service of man'.
Research in theoretical and elementary particle physics
Mitselmakher, G. [Univ. of Florida, Gainesville, FL (United States)
1996-12-01
In 1995 the University of Florida started a major expansion of the High Energy Experimental Physics group (HEE) with the goal of adding four new faculty level positions to the group in two years. This proposal covers the second year of operation of the new group and gives a projection of the planned research program for the next five years, when the group expects their activities to be broader and well defined. The expansion of the HEE group started in the Fall of 1995 when Guenakh Mitselmakher was hired from Fermilab as a Full Professor. A search was then performed for two junior faculty positions. The first being a Research Scientist/Scholar position which is supported for 9 months by the University on a faculty line at the same level as Assistant Professor but without the teaching duties. The second position is that of an Assistant Professor. The search has been successfully completed and Jacobo Konigsberg from Harvard University has accepted the position of Research Scientist and Andrey Korytov from MIT has accepted the position of Assistant Professor. They will join the group in August 1996. The physics program for the new group is focused on hadron collider physics. G. Mitselmakher has been leading the CMS endcap muon project since 1994. A Korytov is the coordinator of the endcap muon chamber effort for CMS and a member of the CDF collaboration and J. Konigsberg is a member of CDF where he has participated in various physics analyses and has been coordinator of the gas calorimetry group. The group at the U. of Florida has recently been accepted as an official collaborating institution on CDF. They have been assigned the responsibility of determining the collider beam luminosity at CDF and they will also be an active participant in the design and operation of the muon detectors for the intermediate rapidity region. In addition they expect to continue their strong participation in the present and future physics analysis of the CDF data.
Properties and Interactions of Elementary Particles
Amidei, Dante; Campbell, Myron; Huterer, Dragan; Kane, Gordon; Liu, James; Qian, Jianming; Tarle, Gregory; Zhou, Bing
2012-08-25
We summarize the accomplishments over the last renewal period in a broad program of research in experimental and theoretical High Energy Physics, conducted at the University of Michigan, and supported by the U.S. Department of Energy.
The Mathematical Structure of Elementary Particles.
1983-10-01
Physical Mathematics) *Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, 22460 Rio de Janeiro, Brazil Sponsored by the United...is the basic method of analysis to be employed in this work. *Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, 22460 Rio de Janeiro
A Generalized Curve Approach to Elementary Particles.
1982-01-01
MPA, Instituto de Matematica Pura e Aplicada , Rio de Janeiro. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. -. ~ I A...Madison, Wisconsin. IMPA, Instituto de Matematica Pura e Aplicada , Rio de Janeiro. Sponsored by the United States Army under ontract No. DAAGM9-80-C-0041
Theoretical nuclear physics---elementary particles
Kuti, J.
1989-01-01
This report briefly discusses the following topics: Thermodynamics with Wilson Fermions; beta function with Wilson Fermions; grand challenge; light flavors and nonperturbative QCD; the spin structure of the proton; the heavy Higgs Meson Problem; the heavy top quark problem; SU(2) Higgs Model; nontrivial quantum electrodynamics; vortex sheet dynamics; random surfaces and quantum gravity; strange baryon matter; supersymmetric model with the Higgs as a lepton; and Hamilton equations on group manifolds.
A Model of Elementary Particle Interactions
Khan, I
2000-01-01
There is a second kind of light which does not interact with our electrons. However it interacts with some of our protons (p) and some of our neutrons (n) which are both of two kinds: protons (p, p`), neutrons (n`, n) differing in the two kinds of charges (Q1, Q2) associated with the two kinds of light. p [p`] and n` [n] have (Q1, Q2) values equal to (1, 1) [(1, 0)] and (0, 0) [(0, 1)] respectively. There is also a second kind of electron (Q2 =1, Q1= 0), equal in mass to our electron (Q1 = -1, Q2= 0), which does not interact with our (the first) kind of light. Three major scenarios S1, S2 and X4 arise. In S1, matter in the solar system on large scales is predominantly neutralized in both kinds of charges and the weak forces of attraction among the sun and planets are due to a fundamental force of nature. However in this scenario we must postulate that human consciousness is locked on to chemical reactions in the retina involving the first kind of light and the first kind of electrons only. It is oblivious to ...
Elementary Particle Physics in Belgium Exhibition
2000-01-01
The experimental activities of the Belgian Universities and Institutes are performed within the framework of large international collaborations. Moreover, the universities whose name is colored in light blue with * on the map of Belgium also take part into theoretical work. (All these activities are mainly supported by the FNRS-FWO research foundations.)
Collinson, Chris
1995-01-01
* Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u
Marsh, Gerald E
2016-01-01
The idea that particles are the basic constituents of all matter dates back to ancient times and formed the basis of physical thought well into modern times. The debate about whether light was a wave or a stream of particles also lasted until relatively recently. It was the advent of de Broglie's work and its implications that revolutionized the concept of an elementary particle -- but unfortunately did not banish the idea of a point particle despite its difficulties in both classical and quantum physics. Some of these problems are discussed in this essay, which covers chiral oscillations, Penrose's "zigzag" picture of particles satisfying the Dirac equation, and some ideas derived from string theory.
Krauss, Lawrence M
1997-01-01
Astrophysics and cosmology provide fundamental testing grounds for many ideas in elementary particle physics, and include potential probes which are well beyond the range of current or even planned accelerators. In this series of 3 lectures, I will give and overview of existing constraints, and a discussion of the potential for the future. I will attempt whenever possible to demonstrate the connection between accelerator-based physics and astrophysicas/cosmology. The format of the kectures will be to examine observables from astrophysics, and explore how these can be used to constrain particle physics. Tentatively, lecture 1 will focus on the age and mass density of the universe and galaxy. Lecture 2 will focus on stars, stellar evolution, and the abundance of light elements. Lecture 3 will focus on various cosmic diffuse backgrounds, including possibly matter, photons, neutrinos and gravitational waves.
Elementary Teachers' Perceptions of Elementary Principals' Effectiveness
Fridenvalds, Kriss R.
2012-01-01
This dissertation examined the beliefs of elementary teachers to determine if their perceptions of effective principal leadership align to transformational leadership theory vis-a-vis the Educational Leadership Policy Standards (ELPS). A phenomenological, single-case study approach was utilized by means of a mixed-methodological, Web-based survey,…
Drell, S.D.
1978-06-01
Particle physics, like poetry, no longer hews to its former rigid rules, hence the standard for accepting quarks as elementary consituents is less severe than the neutrino's was in the 1930's: in fact, we may never see a quark.
Experiment in Elementary Statistics
Fernando, P. C. B.
1976-01-01
Presents an undergraduate laboratory exercise in elementary statistics in which students verify empirically the various aspects of the Gaussian distribution. Sampling techniques and other commonly used statistical procedures are introduced. (CP)
Violation of Particle Anti-particle Symmetry
CERN. Geneva
2001-01-01
Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...
Induced gravity with Higgs potential. Elementary interactions and quantum processes
Bezares Roder, Nils Manuel
2010-07-01
This work is intended to first serve as introduction in fundamental subjects of physics in order to be then able to review the mechanism of symmetry breakdown and its essential character in physics. It introduces the concept of scalar-tensor theories of gravity based on Bergmann-Wagoner models with a Higgs potential. The main physical context aimed is the problem of Dark Matter and Dark Energy. On the one hand, there is gravitation. Within this context, we have Dark Matter as an especially relevant concept. This work entails the following main contributions: - General features of Einstein's theory are introduced together with generalities of the different elementary interactions of physics from which the concepts of dark sectors and Higgs Mechanism are derived. - The concept of symmetry breaking and especially the Higgs Mechanism of mass generation are discussed in their relevance for the most different subjects of physics, especially in relation to the Standard Model of elementary particle physics with elementary Higgs fields. - Scalar-Tensor Theories are introduced in order to build in them the process of Higgs Mechanism. This is then fulfilled with a theory of induced gravity with a Higgs potential which seems renormalizable according to deWitt's power counting criterion, and with mass-generating Higgs fields which only couple gravitationally as well as with Higgs fields which act analogously to cosmon fields. - Further, the energy density of the gravitational field is derived for the specific model of induced gravity from an analogy to electrodynamics. It is shown that a nonvanishing value of pressure related to the scalar field is necessary in order to reproduce standard linear solar-relativistic dynamics. Within astrophysical considerations for flat rotation curves of galaxies, a possible dark-matter behavior is concluded within spherical symmetry. The scalar field and the dark-matter profile of total energy density are derived. An analogous
Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems
Hilke, H J
2011-01-01
Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...
Lemmer, Boris
2014-06-01
There where's becomes small the world suddenly becomes suddenly totally crazy: From pure energy particles are produced, matter particles get siblings of antimatter, particles, which actually should not exist, are created from scratch. The nature borrows energy, which is actually not there. Forces act, which behave completely differently than anything, what we know from everyday life. This is the world of particle physics. Particle physicist build the largest experiments of all time, in order to study the smallest particles of the universe. They go to the limits of the technically feasible and exceed thereby the limits of our countries. Who finds that all also so exciting - as the particle physicists - is heartily invited to read this book. Who believes that without a study of particle physics nothing is understood, also. Quantum field theories, particle accelerators, Higgs mechanisms etc. are instead by nasty formulas explained by means of monkeys, ants, hedgehogs, beavers, and illustrative pictures. And by means of linked videos in can be directly submerged into the world of CERN, the LHC particle accelerator, and the ATLAS experiment.
Describing Elementary Certification Methods across the Elementary Music Career Cycle
Svec, Christina L.
2017-01-01
The purpose of the study was to describe elementary music method choice and certification method choice overall and across the elementary music career cycle. Participants (N = 254) were categorized as Level I or Elementary Division in a southwestern music education association database. The questionnaire included 25 four-point Likert-type items…
Fractions in elementary education
Quinn, Frank
2013-01-01
This paper is one of a series in which elementary-education practice is analyzed by comparison with the history of mathematics, mathematical structure, modern practice, and (occasionally) cognitive neuroscience. The primary concerns are: Why do so many children find elementary mathematics difficult? And, why are the ones who succeed still so poorly prepared for college material needed for technical careers? The answer provided by conventional wisdom is essentially that mathematics is difficult. Third-graders are not developmentally ready for the subtlety of fractions, for instance, and even high-performing students cannot be expected to develop the skills of experienced users. However we will see that this is far from the whole story and is probably wrong: elementary-education fractions are genuinely harder and less effective than the version employed by experienced users. Experts discard at least 90% of what is taught in schools. Our educational system is actually counterproductive for skill development, and...
The role of multivalency in the association kinetics of patchy particle complexes
Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.
2017-06-01
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
Particles, Feynman Diagrams and All That
Daniel, Michael
2006-01-01
Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.
Dudley, Underwood
2008-01-01
Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta
Logic in elementary mathematics
Exner, Robert M
2011-01-01
This applications-related introductory treatment explores facets of modern symbolic logic useful in the exposition of elementary mathematics. The authors convey the material in a manner accessible to those trained in standard elementary mathematics but lacking any formal background in logic. Topics include the statement calculus, proof and demonstration, abstract mathematical systems, and the restricted predicate calculus. The final chapter draws upon the methods of logical reasoning covered in previous chapters to develop solutions of linear and quadratic equations, definitions of order and
Elementary classical hydrodynamics
Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C
1967-01-01
Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c
Elementary topology problem textbook
Viro, O Ya; Netsvetaev, N Yu; Kharlamov, V M
2008-01-01
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. The book is tailored for the reader who is determined to work actively. The proofs of theorems are separated from their formulations and are gathered at the end of each chapter. This makes the book look like a pure problem book and encourages the reader to think through each formulation. A reader who prefers a more traditional style can either find the pr
Age, Gender and Job Satisfaction among Elementary School Head Teachers in Pakistan
Ghazi, Safdar Rehman; Maringe, Felix
2011-01-01
The purpose of this study was to explore general job satisfaction of elementary school head teachers in Pakistan with respect to their age and gender. One hundred and eighty head teachers were sampled from government elementary schools of Toba Tek Singh, Punjab, Pakistan, to collect the relevant data using a modified version of the Minnesota…
Urban Elementary STEM Initiative
Parker, Carolyn; Abel, Yolanda; Denisova, Ekaterina
2015-01-01
The new standards for K-12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large-scale, urban elementary-focused science, technology, engineering,…
Bowling for Elementary Students
Curtis, Joyce M.
2005-01-01
Physical education programs at the elementary school level play an important role in developing students' interest and skill in lifelong physical activities. With increasing inactivity, overweight, and obesity among children, school physical education programs are challenged with presenting activities that can be enjoyed in childhood and…
2017-01-01
Elementary, Dear Albert! fiction based upon every physicist's dream: have a chat with Albert Einstein. Starring theoretical physicist Alvaro de Rujula in the role of Dr. Nuts and experimental physicist Federico Antinori in the role of Albert Einstein. Directed by Silvano de Gennaro
Elementary introduction to Moonshine
Kachru, Shamit
2016-01-01
These notes provide an elementary (and incomplete) sketch of the objects and ideas involved in monstrous and umbral moonshine. They were the basis for a plenary lecture at the 18th International Congress on Mathematical Physics, and for a lecture series at the Centre International de Recontres Mathematiques school on "Mathematics of String Theory."
Elementary School Principal Effectiveness.
Cross, Ray
A review of research linking elementary principal "antecedents" (defined as traits), behaviors, school conditions, and student outcomes furnishes few supportable generalizations. The studies relating principal antecedents with behavior and principal antecedents with organizational variables reveals that the trait theory of leadership has…
Quartiles in Elementary Statistics
Langford, Eric
2006-01-01
The calculation of the upper and lower quartile values of a data set in an elementary statistics course is done in at least a dozen different ways, depending on the text or computer/calculator package being used (such as SAS, JMP, MINITAB, "Excel," and the TI-83 Plus). In this paper, we examine the various methods and offer a suggestion for a new…
Vision in elementary mathematics
Sawyer, W W
2003-01-01
Sure-fire techniques of visualizing, dramatizing, and analyzing numbers promise to attract and retain students' attention and understanding. Topics include basic multiplication and division, algebra, word problems, graphs, negative numbers, fractions, many other practical applications of elementary mathematics. 1964 ed. Answers to Problems.
Elementary School Computer Literacy.
New York City Board of Education, Brooklyn, NY.
This curriculum guide presents lessons for computer literacy instruction in the elementary grades. The first section of the guide includes 22 lessons on hardware, covering such topics as how computers work, keyboarding, word processing, and computer peripherals. The 13 lessons in the second section cover social topics related to the computer,…
Bowling for Elementary Students
Curtis, Joyce M.
2005-01-01
Physical education programs at the elementary school level play an important role in developing students' interest and skill in lifelong physical activities. With increasing inactivity, overweight, and obesity among children, school physical education programs are challenged with presenting activities that can be enjoyed in childhood and…
Effecting change in elementary school science education
Parravano, C.
1994-12-31
The mission of the Merck Institute for Science Education is to improve the quality of science education during the formative years of kindergarten through eighth grade. To accomplish this mission, the Institute has three primary goals: Transform the teaching of science to communicate the excitement and relevance of science; Reform the education of teachers to instill in tomorrow`s teachers an understanding and appreciation of science; and Create a consensus on the importance of elementary science education among leaders in education, business, and science. Merck has made a minimum ten year commitment of funding and resources to the Institute. The Institute will work very closely with faculty, administration, and community leaders in target school districts to enhance science education in the elementary grades of their schools. Once the Institute`s goals have been achieved in these initial partner districts, the Institute will replicate its programs in other districts.
The Phase Space Elementary Cell in Classical and Generalized Statistics
Piero Quarati
2013-10-01
Full Text Available In the past, the phase-space elementary cell of a non-quantized system was set equal to the third power of the Planck constant; in fact, it is not a necessary assumption. We discuss how the phase space volume, the number of states and the elementary-cell volume of a system of non-interacting N particles, changes when an interaction is switched on and the system becomes or evolves to a system of correlated non-Boltzmann particles and derives the appropriate expressions. Even if we assume that nowadays the volume of the elementary cell is equal to the cube of the Planck constant, h3, at least for quantum systems, we show that there is a correspondence between different values of h in the past, with important and, in principle, measurable cosmological and astrophysical consequences, and systems with an effective smaller (or even larger phase-space volume described by non-extensive generalized statistics.
Cooper, Necia Grant; West, Geoffrey B.
1988-06-01
Preface; Introduction; Part I. Theoretical Framework: 1. Scale and dimension - From animals to quarks Geoffrey B. West; 2. Particle physics and the standard model Stuart Raby, Richard C. Slansky and Geoffrey B. West; QCD on a Cray: the masses of elementary particles Gerald Guralnik, Tony Warnock and Charles Zemach; Lecture Notes - From simple field theories to the standard model; 3. Toward a unified theory: an essay on the role of supergravity in the search for unification Richard C. Slansky; 4. Supersymmetry at 100 GeV Stuart Raby; 5. The family problem T. Goldman and Michael Martin Nieto; Part II. Experimental Developments: 6. Experiments to test unification schemes Gary H. Sanders; 7. The march toward higher energies S. Peter Rosen; LAMPF II and the High-Intensity Frontier Henry A. Thiessen; The SSC - An engineering challenge Mahlon T. Wilson; 8. Science underground - the search for rare events L. M. Simmons, Jr; Part III. Personal Perspectives: 9. Quarks and quirks among friends Peter A. Carruthers, Stuart Raby, Richard C. Slansky, Geoffrey B. West and George Zweig; Index.
A Huge Responsibility: Three Keys to Teaching Elementary Students
Davison, Leslie
2014-01-01
Based on her 20 years of teaching Spanish, Leslie Davison strives for a holistic approach to teaching and learning that is authentic and relevant to her young language learners. Herein, she shares three keys to teaching elementary level students in a way that ensures they will have a "Can Do" attitude in terms of language proficiency and…
Andrilli, Stephen
2010-01-01
Elementary Linear Algebra develops and explains in careful detail the computational techniques and fundamental theoretical results central to a first course in linear algebra. This highly acclaimed text focuses on developing the abstract thinking essential for further mathematical study. The authors give early, intensive attention to the skills necessary to make students comfortable with mathematical proofs. The text builds a gradual and smooth transition from computational results to general theory of abstract vector spaces. It also provides flexbile coverage of practical applications, expl
Groot, De, Julie; Moolenaar, Ben; Boers, Eralt; Mombarg,, Remo
2016-01-01
The aim of the project is stimulating sport participation among elementary school children in the province of Friesland. The ultimate aim is to provide three hours of physical education, provided by an physical education specialist, plus two extra hours of sport activities. Part one is about describing the differences and part two is about effective interventions after school, every week. The following instruments are used during the research: Movement Assessment Battery for Children (M-ABC-2...
Elementary Nonrelativistic Quantum Mechanics
Rosu, H C
2000-01-01
This is a graduate course on elementary quantum mechanics written for the benefit of undergraduate and graduate students. It is the English version of physics/0003106, which I did at the suggestion of several students from different countries. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Introduction to the Quantum Theory of Elementary Cycles
Dolce, Donatello
Elementary Cycles Theory (ECT) is a novel exact formulation of quantum-relativistic mechanics. Here, we present an introduction to its basic quantum aspects. On the one hand, Newton's law of inertia states that every isolated particle has persistent motion, i.e. constant energy and momentum. On the other hand, undulatory mechanics associates, by means of the Planck constant, a recurrence in time and space to the energy and the momentum of an elementary particle, respectively. Paraphrasing these two fundamental principles of modern physics, ECT postulates that every elementary constituent of nature (every elementary particle) is characterized by persistent intrinsic periodicity (as long it does not interact) whose space-time duration determines its kinematical state (energy and momentum). In other words, undulatory mechanics is imposed as constraint "overdetermining" relativistic mechanics, with fundamental motivations on Einstein's proposal of unification of quantum and relativistic theories. Every free particle is a (de Broglie) "periodic phenomenon" which can also be regarded as a reference clock and every system is decomposable in modulated elementary cycles. Indeed, ECT introduces a cyclic nature to the ordinary relativistic space-time coordinates. The resulting classical-relativistic mechanics turns out to be fully consistent with relativity and, at the same time, reproduces exactly all the fundamental aspects of ordinary quantum-relativistic mechanics (without any explicit quantisation). Relativity only fixes the differential structure of space-time without giving any prescription about the boundary of space-time, and the constraint of covariant periodicity (or similar relativistic boundary conditions) is allowed by the variational principle for relativistic theories. The constraint of intrinsic periodicity enforces the local nature of relativistic space-time and the wave-particle duality. Besides such unified description of relativistic and quantum dynamics
Beyond Millikan: The Dynamics of Charging Events on Individual Colloidal Particles
Beunis, Filip; Strubbe, Filip; Neyts, Kristiaan; Petrov, Dmitri
2012-01-01
By measuring the stable charge on oil drops in air, Millikan demonstrated the discrete nature of electric charge. We extend his approach to the charge on solid-liquid interfaces, and focus on the dynamics of the discrete fluctuations. Our measurements are accurate and fast enough to observe changes of one elementary charge. Experiments over thousands of seconds yield information about the fast dynamics of electrochemical reactions, relevant for physicochemical and biological systems. As an example, we study (dis)charging processes on colloidal particles in a nonpolar liquid.
TransPlanckian Particles and the Quantization of Time
Hooft, G. 't
1999-01-01
Trans-Planckian particles are elementary particles accelerated such that their energies surpass the Planck value. There are several reasons to believe that trans-Planckian particles do not represent independent degrees of freedom in Hilbert space, but they are controlled by the cis-Planckian particl
Current experiments in particle physics, 1996
Lawrence Berkeley Nat. Laboratory. Berkeley; Lehár, F; Klioukhine, V I; Ryabov, Yu; Bilak, S V; Illarionova, N S; Khachaturov, B A; Strokovsky, E A; Hoffman, C M; Kettle, P R; Olin, A; Armstrong, F E
1996-01-01
Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.
Kommer, Christoph (ed.) [Heidelberg Univ. (Germany); DKFZ, Heidelberg (Germany); Satz, Helmut [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Blanchard, Philippe [Bielefeld Univ. (Germany). Abt. Theoretische Physik
2016-07-01
The following topics are dealt with: Research from the highest energies to the smallest particles at CERN, the laborious way to the Large Hadronic Collider, CERN as accelerator of techniques, culture, and society, a philosophical and sociological perspective of questions concerning CERN, quark matter research at CERN, the FAIR facility for antiproton and ion research. (HSI)
Landua, Rolf
2007-01-01
"The appearance of particles dates back to a period physicists find embarrassing, one when the amount of energy active in the Universe was so enormous that they simply cannot descrit it. It is, however, possible to imagine the birth of the elementary building blocks that make up matter and energy."(1 page)
The Future of Particle Physics
Bjorken, James
2000-06-15
After a very brief review of twentieth century elementary particle physics, prospects for the next century are discussed. First and most important are technological limits of opportunities; next, the future experimental program, and finally the status of the theory, in particular its limitations as well as its opportunities.
Scintillation Detectors for Charged Particles and Photons
Lecoq, P
2011-01-01
Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...
Elementary Goldstone Higgs Boson and Dark Matter
Alanne, Tommi; Gertov, Helene; Sannino, Francesco
2015-01-01
We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrising the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due...... of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found...... to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints....
Supersymmetry and the MSSM: An Elementary Introduction
Aitchison, Ian Johnston Rhind
2005-01-01
These notes are an expanded version of a short course of lectures given for graduate students in particle physics at Oxford. The level was intended to be appropriate for students in both experimental and theoretical particle physics.The purpose is to present an elementary and self-contained introduction to SUSY that follows on, relatively straightforwardly, from graduate-level courses in relativistic quantum mechanics and introductory quantum field theory. The notation adopted, at least initially, is one widely used in RQM courses, rather than the `spinor calculus' (dotted and undotted indices) notation found in most SUSY sources, though the latter is introduced in optional Asides. There is also a strong preference for a `do-it-yourself' constructive approach, rather than for a top-down formal deductive treatment. The main goal is to provide a practical understanding of how the softly broken MSSM is constructed. Relatively less space is devoted to phenomenology, though simple `classic' results are covered, in...
Why relevance theory is relevant for lexicography
Bothma, Theo; Tarp, Sven
2014-01-01
, socio-cognitive and affective relevance. It then shows, at the hand of examples, why relevance is important from a user perspective in the extra-lexicographical pre- and post-consultation phases and in the intra-lexicographical consultation phase. It defines an additional type of subjective relevance...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...
Neave, Henry R
2012-01-01
This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat
Rosu, H C
2000-01-01
This is the first graduate course on elementary quantum mechanics in Internet written in Romanian for the benefit of Romanian speaking students (Romania and Moldova). It is a translation (with corrections) of the Spanish version of the course (physics/9808031, English translation is under consideration), which I did at the request of students of physics in Bucharest. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Eves, Howard
1980-01-01
The usefulness of matrix theory as a tool in disciplines ranging from quantum mechanics to psychometrics is widely recognized, and courses in matrix theory are increasingly a standard part of the undergraduate curriculum.This outstanding text offers an unusual introduction to matrix theory at the undergraduate level. Unlike most texts dealing with the topic, which tend to remain on an abstract level, Dr. Eves' book employs a concrete elementary approach, avoiding abstraction until the final chapter. This practical method renders the text especially accessible to students of physics, engineeri
Elementary heat transfer analysis
Whitaker, Stephen; Hartnett, James P
1976-01-01
Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra
El Naschie, M.S
2004-05-01
To sustain the global symplictic structure of the VAK of vacuum fluctuation, transfinite quantities of energy of the order of k=phi{sup 3}(1-phi{sup 3})=0.18033989 MeV and k{sub 0}=phi{sup 5}(1-phi{sup 5})=0.08203939 MeV must be added to it. In the ten dimensional core of the super string space this leads to the formation of particle masses of the order of m(k)=(10)(k)=1.8033989 MeV. Using {epsilon}{sup (}'{infinity}') theory and the M-dualities between high and low energy domains, one could make a second prediction regarding a unification-related particle m({alpha}-bar{sub gs})=10/2(m(k))(phi+1){sup 7}=26.18033989 MeV. The possible experimental ramifications of the theory are also discussed.
Standard Model Particles from Split Octonions
Gogberashvili M.
2016-01-01
Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Standard Model Particles from Split Octonions
Gogberashvili, Merab
2016-01-01
We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.
Assessing Elementary Algebra with STACK
Sangwin, Christopher J.
2007-01-01
This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system, http://www.stack.bham.ac.uk/, which uses the CAS…
Elementary School Philosophy: A Response
Wartenberg, Thomas E.
2012-01-01
This article is a response to criticism of my book "Big Ideas for Little Kids." The main topics addressed are: Who is the audience for the book? Can people without formal philosophical training can be good facilitators of elementary school philosophy discussions? Is it important to assess attempts to teach philosophy in elementary school? Should…
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Abe, Keina; Akamatsu, Rie
2013-01-01
Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…
Abe, Keina; Akamatsu, Rie
2013-01-01
Purpose/Objectives: The purpose of this study was to identify the aspects of the Theory of Planned Behavior with the greatest relevance to plate waste (PW) among elementary school children in Tokyo, Japan. Methods: A total of 111 fifth- and sixth-grade students at an elementary school in Tokyo, Japan responded to a self-report questionnaire. The…
Matter and Interactions: a particle physics perspective
Organtini, Giovanni
2011-01-01
In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics of elementary particles comprehensible even to high school students, the only prerequisite being the knowledge of the conservation of mechanical energy.
Summer Workshop on Particle Physics
Chamseddine, A H; Nath, Pran
1984-01-01
These lectures give an elementary introduction to the important recent developments of the applications of N=1 supergravity to the construction of unified models of elementary particle interactions. Topics covered include couplings of supergravity with matter, spontaneous symmetry breaking and the super-higgs effect, construction of supergravity unified models, and the phenomenon of SU(2) x U(1) electroweak-symmetry breaking by supergravity. Experimental consequences of N-1 supergravity unified theory, in particular, the possible supersymmetric decays of the W ± and Z 0 bosons, are also discus
Elementary differential geometry
Pressley, Andrew
2001-01-01
Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood Differential geometry is concerned with the precise mathematical formulation of some of these questions, and with trying to answer them using calculus techniques It is a subject that contains some of the most beautiful and profound results in mathematics yet many of these are accessible to higher-level undergraduates Elementary Differential Geometry presents the main results in the differential geometry of curves and surfaces while keeping the prerequisites to an absolute minimum Nothing more than first courses in linear algebra and multivariate calculus are required, and the most direct and straightforward approach is used at all times Numerous diagrams illustrate both the ideas in the text and the examples of curves and surfaces discussed there The book will provide an invaluable resource to all those taking a first course in differential geometry, for their lecture...
... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...
Experiences of Redesigning an Elementary Education Program
Chang, Sau Hou
2016-01-01
This paper aims to share the experiences of redesigning an elementary education program. Steps of redesigning the elementary education program were enumerated. Challenges in the redesign of the elementary education program were discussed. The new elementary education program was described. Lessons learned from the redesign of the elementary…
P.J.W.H. Kappelle; G.M. Dallinga-Thie; R.P.F. Dullaart
2010-01-01
The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein
Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.
The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein
Kappelle, Paul J.W.H.; Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.
2010-01-01
The extent to which atorvastatin treatment affects LDL size, LDL subfraction levels and remnant-like particle cholesterol (RLP-C) was determined in type 2 diabetes. We also compared LDL size and RLP-C in relation to guideline cut-off values for LDL cholesterol, non-HDL cholesterol and apolipoprotein
Wiedemann, Helmut
2015-01-01
This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...
Obituaries: Oreste Piccioni, 86, a leader in particle physics field
2002-01-01
Oreste Piccioni, a leading scientist in the field of elementary particle physics and emeritus professor at the University of California, San Diego, USA, has died of complications from diabetes and lung cancer. He was 86 (1 page).
The review-of-particle-properties system
Trippe, Thomas G.
1984-08-01
The Berkeley Particle Data Group is engaged in a major modernization of its primary project, the Review of Particle Properties, a compilation of experimental data on elementary particles. The goal of this modernization is to develop an integrated system for data storage, manipulation, interactive access and publication using modern techniques for database management, text processing and phototypesetting. The existing system and the plans for modernization are described. The group's other projects and the computer systems used are also discussed.
Quantum objects as elementary units of causality and locality
Diel, Hans H
2016-01-01
The author's attempt to construct a local causal model of quantum theory (QT) that includes quantum field theory (QFT) resulted in the identification of "quantum objects" as the elementary units of causality and locality. Quantum objects are collections of particles (including single particles) whose collective dynamics and measurement results can only be described by the laws of QT and QFT. Local causal models of quantum objects' internal dynamics are not possible if a locality is understood as a space-point locality. Within quantum objects, state transitions may occur which instantly affect the whole quantum object. The identification of quantum objects as the elementary units of causality and locality has two primary implications for a causal model of quantum objects: (1) quantum objects run autonomously with system-state update frequencies based on their local proper times and with either no or minimal dependency on external parameters. (2) The laws of physics that describe global (but relativistic) inter...
Composite and elementary nature of a resonance in the sigma model
Nagahiro, Hideko
2013-01-01
We analyze the mixing nature of the low-lying scalar resonance consisting of the pipi composite and the elementary particle within the sigma model. A method to disentangle the mixing is formulated in the scattering theory with the concept of the two-level problem. We investigate the composite and elementary components of the sigma meson by changing a mixing parameter. We also study the dependence of the results on model parameters such as the cut-off value and the mass of the elementary sigma meson.
Predicting Success in Elementary Algebra
Mogull, R. G.; Rosengarten, W., Jr.
1974-01-01
The purpose of this study was to develop a device for predicting student success in a high school Elementary Algebra course. It was intended to assist guidance counselors in advising students in selecting the most appropriate mathematics course. (Editor)
Astronomy in the Elementary Schools.
Gaides, Ed
1981-01-01
Presents two sets of astronomy activities for elementary students: (1) constructing scale models of the solar system which depict relative distances and diameters, and (2) demonstrating the effects of factors responsible for the seasons. (WB)
Enhancing pre-service elementary
Mehmet AYDENİZ
2010-03-01
Full Text Available This study explored the impact of a reflective teaching method on pre-service elementary teachers’ conceptual understanding of the lunar phases, reasons for seasons, and simple electric circuits. Data were collected from 40 pre-service elementary teachers about their conceptual understanding of the lunar phases, reasons for seasons and day and night, and simple electric circuits pre and post instruction. Findings show that the instructional approach adopted by a science teacher educator had a significant impact on pre-serviceelementary school teachers’ conceptual understanding of lunar phases, seasonal changes and simple electric circuits. The discussion focuses on pre-service elementary school teachers’ misconceptions about the lunar phases, seasonal changes and simple electric circuits as revealed through their answers to the pre-test questions. Further discussion focuses on the implications of the findings for pre-service elementary school science teacher education.
Bahr, Benjamin [Albert-Einstein-Institut (Max-Planck Institut fuer Gravitationsphysik), Golm (Germany); Riebe, Kristin [Potsdam Univ. (Germany). Leibniz-Institut fuer Astrophysik; Resag, Joerg
2015-07-01
The present book is an expedition across modern physics and simultaneously an illustrated voyage through the solved and unsolved enigmas of our universe. The twentieth century brought a manifold of physical discoveries. The atomic structure of matter was experimentally proved, and stepwise the structure of the atoms was decoded. Alber Einstein revolutionized with his special and general relativity theory our understanding of spca and time and unified so mechanic with electrodynamics and gravitation. Probably the most momentous upheaval learned our worldview by quantum mechanics. In the second half of the twentieth century by ever larger particle accelerators it was increasingly faced deeper penetrated into the structure of matter. Around the year 1967 it succeeded to answer the hereby occurring questions in the framework of the so-called Standard Model. Beside these fields also further partial fields of physics exist,which are not so closely connected with the inquiry of natural laws. We have four of these fields token in our book: Solid-state physics, geophysics, astronomy with astrophysics, as well as cosmology.
Elementary number theory with programming
Lewinter, Marty
2015-01-01
A successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and con
Duality and 'particle' democracy
Castellani, Elena
2017-08-01
Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.
Lioma, Christina; Larsen, Birger; Petersen, Casper
2016-01-01
train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared......What if Information Retrieval (IR) systems did not just retrieve relevant information that is stored in their indices, but could also "understand" it and synthesise it into a single document? We present a preliminary study that makes a first step towards answering this question. Given a query, we...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....
Particle physics with the LHC data
Hagiwara, Kaoru
2012-07-01
In this talk, I give reasons why we regard GUT as a part of the Standard Model of Elementary Particle Physics that explain all phenomena observed at high energy experiments and in the universe, with a few notable exceptions. It is based on my introduction-to-elementary-particle-physics lectures for the first year graduate students at Sokendai, Graduate University for Advanced Studies. No new observation is made, but I think that it is important for us to examine the LHC data from the GUT viewpoint together with our fresh students.
Ullaland, O
2011-01-01
Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...
Dual Language Teachers' Stated Barriers to Implementation of Culturally Relevant Pedagogy
Freire, Juan A.; Valdez, Verónica E.
2017-01-01
Culturally relevant pedagogy receives limited attention in many U.S. dual language classrooms. This article focuses on understanding the barriers eight elementary Spanish-English dual language teachers saw as preventing the implementation of culturally relevant pedagogy in their urban classrooms. Employing critical sociocultural theory and drawing…
Fuzziness and Relevance Theory
Grace Qiao Zhang
2005-01-01
This paper investigates how the phenomenon of fuzzy language, such as `many' in `Mary has many friends', can be explained by Relevance Theory. It is concluded that fuzzy language use conforms with optimal relevance in that it can achieve the greatest positive effect with the least processing effort. It is the communicators themselves who decide whether or not optimal relevance is achieved, rather than the language form (fuzzy or non-fuzzy) used. People can skillfully adjust the deployment of different language forms or choose appropriate interpretations to suit different situations and communication needs. However, there are two challenges to RT: a. to extend its theory from individual relevance to group relevance; b. to embrace cultural considerations (because when relevance principles and cultural protocols are in conflict, the latter tends to prevail).
Perceptions of document relevance
Peter eBruza
2014-07-01
Full Text Available This article presents a study of how humans perceive the relevance of documents.Humans are adept at making reasonably robust and quick decisions about what information is relevant to them, despite the ever increasing complexity and volume of their surrounding information environment. The literature on document relevance has identified various dimensions of relevance (e.g., topicality, novelty, etc., however little is understood about how these dimensions may interact.We performed a crowdsourced study of how human subjects judge two relevance dimensions in relation to document snippets retrieved from an internet search engine.The order of the judgement was controlled.For those judgements exhibiting an order effect, a q-test was performed to determine whether the order effects can be explained by a quantum decision model based on incompatible decision perspectives.Some evidence of incompatibility was found which suggests incompatible decision perspectives is appropriate for explaining interacting dimensions of relevance.
Relevance Theory in Translation
Shao Jun; Jiang Min
2008-01-01
In perspective of relevance theory, translation is regarded as communication. According to relevance theory, communication not only requires encoding, transfer and decoding processes, but also involves inference in addition. As communication, translation decision-making is also based on the human beings' inferential mental faculty. Concentrating on relevance theory, this paper tries to analyze and explain some translation phenomena in two English versions of Cai Gen Tan-My Crude Philosophy of Life.
Ludes, G.; Siebers, B. [simuPlan, Dorsten (Germany); Kuhlbusch, T.; Quass, U.; Beyer, M. [Institut fuer Energie- und Umwelttechnik, Duisburg (Germany); Weber, F. [Stadt Hagen (Germany)
2010-05-15
Due to the coming into effect of the twenty-second BImSchV comprehensive investigations on the ambient air quality have been carried out in the city of Hagen in recent years by means of measurement and modelling. High concentrations of nitrogen dioxide and respirable dust have been found along the main streets and the roads belonging to the city ring road system. Main cause of the present situation is road traffic, esp. heavy duty vehicles (HDV). Therefore the concept of measures for the implementation of the air monitoring plan and the action plan set up by the project group includes a HDV-routing system and dynamic, immission-relevant re-routing of traffic. Through this research project the practicability and the effects on air quality of the dynamic, immission-relevant re-routing of HDV-traffic will especially be examined within the highly polluted area of the ''Maerkischer Ring''. By making use of the control programme simDRIVE this innovative concept allows temporary closures of the ''Maerkischer Ring'' for HDV-traffic if transgression of critical limit values is prognosticated due to traffic volume and meteorological circumstances. During these closure periods HDV-traffic will be diverted to alternative and previously determined routes by dynamic and static traffic signs in order to guarantee that intended destinations can be reached. With the help of this research project it should be demonstrated in addition (a) if and how this particular method for NO{sub 2} can also be applied on the reduction of respirable dust, (b) how this measure affects the situation of air pollution regarding respirable dust in other parts of Hagen and (c) if the transfer of methods for the use in other cities is possible. (orig.)
Ludes, G.; Siebers, B. [simuPlan, Dorsten (Germany); Kuhlbusch, T.; Quass, U.; Beyer, M. [Institut fuer Energie- und Umwelttechnik, Duisburg (Germany); Weber, F. [Stadt Hagen (Germany)
2010-05-15
Due to the coming into effect of the twenty-second BImSchV comprehensive investigations on the ambient air quality have been carried out in the city of Hagen in recent years by means of measurement and modelling. High concentrations of nitrogen dioxide and respirable dust have been found along the main streets and the roads belonging to the city ring road system. Main cause of the present situation is road traffic, esp. heavy duty vehicles (HDV). Therefore the concept of measures for the implementation of the air monitoring plan and the action plan set up by the project group includes a HDV-routing system and dynamic, immission-relevant re-routing of traffic. Through this research project the practicability and the effects on air quality of the dynamic, immission-relevant re-routing of HDV-traffic will especially be examined within the highly polluted area of the ''Maerkischer Ring''. By making use of the control programme simDRIVE this innovative concept allows temporary closures of the ''Maerkischer Ring'' for HDV-traffic if transgression of critical limit values is prognosticated due to traffic volume and meteorological circumstances. During these closure periods HDV-traffic will be diverted to alternative and previously determined routes by dynamic and static traffic signs in order to guarantee that intended destinations can be reached. With the help of this research project it should be demonstrated in addition (a) if and how this particular method for NO{sub 2} can also be applied on the reduction of respirable dust, (b) how this measure affects the situation of air pollution regarding respirable dust in other parts of Hagen and (c) if the transfer of methods for the use in other cities is possible. (orig.)
Cosmology and particle physics
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Framing Prospective Elementary Teachers' Conceptions of Dissolving as a Ladder of Explanations
Subramaniam, Karthigeyan; Esprivalo Harrell, Pamela
2013-11-01
The paper details an exploratory qualitative study that investigated 61 prospective teachers' conceptual understanding of dissolving salt and sugar in water respectively. The study was set within a 15-week elementary science methods course that included a 5E learning cycle lesson on dissolving, the instructional context. Oversby's (Prim Sci Rev 63:6-19, 2002, Aspects of teaching secondary science, Routledge Falmer, London, 2002) ladder of explanations for the context of dissolving, current scientific explanations for dissolving and perspectives on conceptions and misconceptions provided the unified framework for the study. Concept maps, interview transcripts, written artifacts, and drawings and narratives were used as data to investigate these prospective teachers' conceptual understanding of dissolving throughout the 15-weeks of the methods course. Analysis revealed that participants' explanations of dissolving were predominantly descriptive explanations (39 %) and interpretative explanations (38 %), with lower percentage occurrences of intentional (14 %) and cause and effect (9 %) level explanations. Most of these explanations were also constructed by a set of loosely connected and reinforcing everyday concepts abstracted from common everyday experiences making them misconceptions. Implications include: (1) the need for science teacher educators to use multiple platforms to derive their prospective elementary teachers' conceptual understandings of science content; and (2) to identify and help them identify their own scientific conceptions and misconceptions and how they influence the construction of scientific/nonscientific explanations. Science teacher educators also need to emphasize the role of meaningful frameworks associated with the concept that is being introduced during the Engage phase of the 5E learning cycle. This is important because, relevant prior knowledge is associated with the knowledge of the particle theory of matter and both are part of larger
Elementary functions algorithms and implementation
Muller, Jean-Michel
2016-01-01
This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithm...
Acoustics in the elementary classroom
Hansen, Uwe J.
2005-04-01
The need for increased science exposure at all educational levels continues to be acute. Science is almost universally perceived as difficult, and its ability to raise the quality of life in the presence of apparently insurmountable social problems is increasingly suspect. Over the past 15 years we have conducted teacher workshops, visited classrooms, have organized hands-on demonstration sessions, judged science fairs, and mentored high school students in research efforts, all in an attempt to raise the level of enthusiasm for science. A look ahead suggests that the need continues. Elementary school teachers all too often limit their own science skills to plants and animals, and thus physics concepts do not get the exposure needed to generate the necessary excitement for the physical sciences. Workshops for Elementary grade teachers will be described, which are aimed at preparing teachers to use music as a vehicle to introduce basic physics concepts in the upper elementary grades.
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
Eick, Charles; Deutsch, Bill; Fuller, Jennifer; Scott, Fletcher
2008-01-01
Science teachers are always looking for ways to demonstrate the relevance of science to students. By connecting science learning to important societal issues, teachers can motivate students to both enjoy and engage in relevant science (Bennet, Lubben, and Hogarth 2007). To develop that connection, teachers can help students take an active role in…
Elementary processes in gas discharges
Bronold, Franz X
2008-01-01
This chapter presents, from a quantum-mechanical point of view, a tutorial discussion of elementary collision processes in the bulk of a gas discharge. Instead of merely listing kitchen-made cross section formulae and unrelated cross section data, emphasis has been given on an unified description of elementary processes based on general principles of quantum-mechanical multi-channel scattering theory. By necessity, the presentation is rather dense. Technical details left out, as well as cross section data, can be found, respectively, in the quoted original papers and the review articles, monographs, and web-sites mentioned in the introductory remarks to this chapter.
2-bit Flip Mutation Elementary Fitness Landscapes
Langdon, William
2010-01-01
Genetic Programming parity is not elementary. GP parity cannot be represented as the sum of a small number of elementary landscapes. Statistics, including fitness distance correlation, of Parity's fitness landscape are calculated. Using Walsh analysis the eigen values and eigenvectors of the Laplacian of the two bit flip fitness landscape are given and a ruggedness measure for elementary landscapes is proposed. An elementary needle in a haystack (NIH) landscape is g...
Testing Elementary Cycles Formulation of Quantum Mechanics in Carbon Nanotubes and Superconductivity
Dolce, Donatello
2016-01-01
Elementary Cycles are intrinsic periodic phenomena, classical in the essence, whose classical relativistic dynamics reproduce the complete coherence (perfect recurrences) typically associated to the pure quantum behaviours of elementary particles. They can be regarded as effective representations of 't Hooft Cellular Automata. By means of Elementary Cycles physics we obtain a consistent, intuitive, novel derivation of the peculiar quantum dynamics of electrons in Carbon Nanotubes, as well as of Superconductivity fundamental phenomenology. In particular we derive, from classical arguments, the essential electronic properties of graphene systems, such as energy bands and density of states. Similarly, in the second part of the paper, we derive the Superconductivity fundamental phenomenology in terms of simple geometrical considerations, directly from the Elementary Cycles dynamics rather than from empirical aspects and effective quantities connected to the microscopical characteristics of materials as in the sta...
Research on particle imaging detectors
1995-01-01
Much instrumentation has been developed for imaging the trajectories of elementary particles produced in high energy collisions. Since 1968, gaseous detectors, beginning with multiwire chambers and drift chambers, have been used for the visualisation of particle trajectories and the imaging of X-rays, neutrons, hard gamma rays, beta rays and ultraviolet photons. This book commemorates the groundbreaking research leading to the evolution of such detectors carried out at CERN by Georges Charpak, Nobel Prizewinner for Physics in 1992. Besides collecting his key papers, the book also includes original linking commentary which sets his work in the context of other worldwide research.
Revisiting the Montessori Elementary Biology Sequence.
Scott, Judy; Lanaro, Pamela
1994-01-01
Suggests a revised Montessori elementary biology sequence based on the new five-kingdom model. In keeping with Montessori principles that move the learner from the whole to the parts and from the simple to the complex, offers a proposed outline of instruction for the lower elementary (6-9) level and for the upper elementary (9-12) level. (TJQ)
Languages in Elementary Schools. International Education Series.
Muller, Kurt E., Ed.
Ten essays address aspects of second language instruction at the elementary school level: "Elementary School Foreign Languages: Perspectives, Practices, and Promises" (Carol Ann Pesola, Helena Anderson Curtain); "The Integrated Curriculum: Rethinking the Elementary School Foreign Language Program for the '90s" (Virginia…
The Science Semester: Cross-Disciplinary Inquiry for Prospective Elementary Teachers
Ford, Danielle J.; Fifield, Steve; Madsen, John; Qian, Xiaoyu
2013-10-01
We describe the Science Semester, a semester-long course block that integrates three science courses and a science education methods course for elementary teacher education majors, and examine prospective elementary teachers’ developing conceptions about inquiry, science teaching efficacy, and reflections on learning through inquiry. The Science Semester was designed to provide inquiry-oriented and problem-based learning experiences, opportunities to examine socially relevant issues through cross-disciplinary perspectives, and align with content found in elementary curricula and standards. By the end of the semester, prospective elementary teachers moved from naïve to intermediate understandings of inquiry and significantly increased self-efficacy for science teaching as measured on one subscore of the STEBI-B. Reflecting on the semester, prospective teachers understood and appreciated the goals of the course and the PBL format, but struggled with the open-ended and student-directed elements of the course.
Unification of Classical Mechanics and Quantum Mechanics in Unique Conception of Particle Dynamics
Rylov, Yuri A.
2017-08-01
It is shown that motion of quantum particles and classical particles can be described in the framework of the same formalism. Stochasticity of particle motion depends on the form of the space-time geometry, which is to be described as a physical geometry, i.e. a geometry obtained as a result of deformation of the proper Euclidean geometry. The new method of the particle motion description does not use quantum principles. It admits one to use the structural approach to theory of elementary particles. The structural approach admits one to consider structure and arrangement of elementary particles, that cannot been obtained at conventional approach, using quantum principles.
Elementary excitations and avalanches in the Coulomb glass
Palassini, Matteo; Goethe, Martin
2012-07-01
We study numerically the statistics of elementary excitations and charge avalanches in the classical Coulomb glass model of localized charges with unscreened Coulomb interaction and disorder. We compute the single-particle density of states with an energy minimization algorithm for systems of up to 1003 sites. The shape of the Coulomb gap is consistent with a power-law with exponent δ simeq 2.4 and marginally consistent with exponential behavior. The results are also compared with a recently proposed self-consistent approach. We then analyze the size distribution of the charge avalanches produced by a small perturbation of the system. We show that the distribution decays as a power law in the limit of large system size, and explain this behavior in terms of the elementary excitations. Similarities and differences with the scale-free avalanches observed in mean-field spin glasses are discussed.
Correlation energy for elementary bosons: Physics of the singularity
Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung
2016-04-01
We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman "bubble" diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose-Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman "bubble" diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.
Correlation energy for elementary bosons: Physics of the singularity
Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China); Combescot, Monique [Institut des NanoSciences de Paris, Université Pierre et Marie Curie, CNRS, 4 place Jussieu, 75005 Paris (France); Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw [Research Center for Applied Sciences, Academia Sinica, Taipei, 115, Taiwan (China); Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan (China)
2016-04-15
We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary boson approaches, which hide this physics, being inappropriate to do so.
Elementary evolutions in Banach algebra
Lindsay, J. Martin; Das, Bata Krishna
2013-01-01
An elementary class of evolutions in unital Banach algebras is obtained by integrating product functions over Guichardet's symmetric measure space on the half-line. These evolutions, along with a useful subclass, are characterised and a Lie-Trotter product formula is proved. The class is rich enough to form the basis for a recent approach to quantum stochastic evolutions.
Cooperative Learning in Elementary Schools
Slavin, Robert E.
2015-01-01
Cooperative learning refers to instructional methods in which students work in small groups to help each other learn. Although cooperative learning methods are used for different age groups, they are particularly popular in elementary (primary) schools. This article discusses methods and theoretical perspectives on cooperative learning for the…
Multicultural Mini-Units. Elementary.
Flora, Sherrill B.
The teaching mini-units in this teacher's guide are designed for use with elementary level students. Thematic study units are given for each of the following countries or continents: Africa, Australia, Brazil, Canada, China, England, France, Germany, Greece, India, Israel, Italy, Japan, Mexico, Netherlands, Russia, Spain, Sweden, Thailand, and the…
Elementary School Teachers' Manipulative Use
Uribe-Florez, Lida J.; Wilkins, Jesse L. M.
2010-01-01
Using data from 503 inservice elementary teachers, this study investigated the relationship between teachers' background characteristics, teachers' beliefs about manipulatives, and the frequency with which teachers use manipulatives as part of their mathematics instruction. Findings from the study show that teachers' grade level and beliefs about…
Elementary Algebra Connections to Precalculus
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…
Assessment in Elementary Dance Education
Englebright, Krissa; Mahoney, Meg Robson
2012-01-01
In this article, two public school elementary dance educators share their experiences developing and implementing dance performance assessments. The assessments were developed for the State of Washington Office of the Superintendent of Public Instruction to assess student learning in dance education and bring dance assessment to an equal platform…
Elementary Students' Metaphors for Democracy
Dundar, Hakan
2012-01-01
The purpose of the research was to reveal elementary 8th grade students' opinions concerning democracy with the aid of metaphors. The students were asked to produce metaphors about the concept of democracy. 140 students from 3 public schools in Ankara (Turkey) participated in the research. 55% of the students were females and 45% were males. The…
Multicultural Mini-Units. Elementary.
Flora, Sherrill B.
The teaching mini-units in this teacher's guide are designed for use with elementary level students. Thematic study units are given for each of the following countries or continents: Africa, Australia, Brazil, Canada, China, England, France, Germany, Greece, India, Israel, Italy, Japan, Mexico, Netherlands, Russia, Spain, Sweden, Thailand, and the…
Thomas Edison Accelerated Elementary School.
Levin, Henry M.; Chasin, Gene
This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…
Teaching Elementary Students about Japan
Fitzhugh, William P.
This paper presents a study unit on Japan for elementary students which can be adapted for any level. Lessons include: (1) "Video Traveling Activities To Accompany Students on Their Journey to Japan"; (2) "Travel Brochure"; (3) "Discovering Culture by Using a Realia Kit"; (4) "Comparative Geography Using the Five Fundamental Themes of Geography";…
Electrical elementary diagrams and operators
Patterson, B.K. [Human Factors Practical Inc., Dipper Harbour, New Brunswick (Canada)]. E-mail: HumanFactors@netscape.ca
2005-07-01
After 40 years of reading and interrupting electrical elementary logic drawings, I have concluded that we need to make a change. We need to write and express our nuclear power plant logic in some other language than relay ladder logic, solid state logic or computer mnemonics. The language should be English, or your native language, and the format should be Descriptive Block Diagrams. (author)
Digital Photography for Elementary Students
Neckers, Matt
2009-01-01
Most elementary students approach photography in an open-minded, experimental way. As a result, their images are often more playful than those taken by adults. Students discover more through their own explorations than they would learn through overly structured lessons. In this article, the author describes how he introduces his elementary…
Digital Photography for Elementary Students
Neckers, Matt
2009-01-01
Most elementary students approach photography in an open-minded, experimental way. As a result, their images are often more playful than those taken by adults. Students discover more through their own explorations than they would learn through overly structured lessons. In this article, the author describes how he introduces his elementary…
Franklin Elementary PTA's "Sweet Success"
Freemon, Jennifer
2012-01-01
Just a few short years ago, Franklin Elementary in Glendale, California, was in danger of closing its doors because enrollment was so low. The school district decided to put into place a series of language immersion programs at the site. It currently houses Spanish, Italian, and German immersion programs. These programs have boosted Franklin's…
Elementary Students' Metaphors for Democracy
Dundar, Hakan
2012-01-01
The purpose of the research was to reveal elementary 8th grade students' opinions concerning democracy with the aid of metaphors. The students were asked to produce metaphors about the concept of democracy. 140 students from 3 public schools in Ankara (Turkey) participated in the research. 55% of the students were females and 45% were males. The…
Elementary Algebra Connections to Precalculus
Lopez-Boada, Roberto; Daire, Sandra Arguelles
2013-01-01
This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…
Assessment in Elementary Dance Education
Englebright, Krissa; Mahoney, Meg Robson
2012-01-01
In this article, two public school elementary dance educators share their experiences developing and implementing dance performance assessments. The assessments were developed for the State of Washington Office of the Superintendent of Public Instruction to assess student learning in dance education and bring dance assessment to an equal platform…
Dark matter reflection of particle symmetry
Khlopov, Maxim Yu.
2017-05-01
In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.
Introducing 12 year-olds to elementary particles
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2017-07-01
We present a new learning unit, which introduces 12 year-olds to the subatomic structure of matter. The learning unit was iteratively developed as a design-based research project using the technique of probing acceptance. We give a brief overview of the unit’s final version, discuss its key ideas and main concepts, and conclude by highlighting the main implications of our research, which we consider to be most promising for use in the physics classroom.
Final Report for Studies in Elementary Particle Physics
Piilonen, Leo; Takeuchi, Tatsu; Minic, Djordje; Link, Jonathan
2013-11-01
This is the final report of DOE Grant DE-FG05-92ER40709 awarded to the Virginia Tech high energy physics group. It covers the period February 1, 2010 through April 30, 2013. The high energy physics program at Virginia Tech supported by this grant is organized into three tasks: A for theory (Profs. Tatsu Takeuchi and Djordje Minic), B for heavy flavor physics with the Belle and Belle II experiments (Prof. Leo Piilonen), and N for neutrino physics (Profs. Jonathan Link and Piilonen).
Elementary particle physics. Progress report, July 1992--October 1994
Izen, J.M.
1994-10-01
The University of Texas at Dallas (UTD) is participating in two e{sup +}e{sup -}, experiments, Beijing Spectrometer (BES) and BABAR, the PEP-11 B Factory detector. The UTD group consists of Profs. Joseph M. Izen and Xinchou Lou, seven Ph.D. students. A post-doc is requested to join them in this work. BES explores the physics of the {tau}-charm threshold region. Associated production of {tau} and charmed mesons allow for absolute branching fraction measurements with good control of backgrounds. BES is uniquely positioned to study the leptonic and hadronic decays of quarkonia. The Beijing Electron Positron Collider (BEPC) delivers luminosities an order of magnitude higher than earlier facilities. BES and BEPC will be upgraded following the 1994-5 run, and will resume data taking in Fall, 1996 with an improved detector and a Three-fold increase in luminosity. The raison d`etre of BABAR is the exploration of CP violation in the B meson system. An asymmetric storage ring is required to observe the time-dependence of the CP asymmetry. Other BABAR physics includes measurements of CKM matrix elements, rare B decays, penguin diagrams, B{sub s} decays, and precision measurements of {tau} and D meson decays. The scheduled BABAR turn-on in 1999 provides the UTD group with a natural evolution with continuous physics during this period. Professors Joseph M. Izen and Xinchou Lou are leading the BES and BABAR program at UTD. Both have specialized in e{sup +}e{sup -} collider experiments and share 22 years of experience at the SPEAR, BEPC, CESR, PETRA, SLC and LEP rings.
Quantum field theory and the internal states of elementary particles
Greben, JM
2011-01-01
Full Text Available basic model considerably, we limit our- selves in this paper to the trivial Higgs solution, namely ` = 0. However, this also eliminates the Higgs param- eter ? from the model, so that it is unclear how this basic theory acquires a scale. The question... of the basic scale parameters in Nature has been considered in the context of cosmology elsewhere [2]. Interestingly, we flnd that for the light quarks general relativity has to be in- troduced to ensure the existence of the quarks, so that for this basic...
Elementary Particle Physics Experiment at the University of Massachusetts, Amherst
Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane
2013-07-30
In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.
Applications of flavor symmetry to the phenomenology of elementary particles
Kaeding, T.A. [Lawrence Berkeley Lab., CA (United States)
1995-05-01
Some applications of flavor symmetry are examined. Approximate flavor symmetries and their consequences in the MSSM (Minimal Supersymmetric Standard Model) are considered, and found to give natural values for the possible B- and L-violating couplings that are empirically acceptable, except for the case of proton decay. The coupling constants of SU(3) are calculated and used to parameterize the decays of the D mesons in broken flavor SU(3). The resulting couplings are used to estimate the long-distance contributions to D-meson mixing.
Final research report [Task A: Theory of elementary particles
Deshpande, N.G.
1996-07-01
This is a summary of some of the work carried out in electroweak physics by the author in collaboration with postdoctoral fellows and students at Oregon, and other colleagues around the world. The past five years have been extraordinarily productive with over thirty refereed publications and over ten presentations in major conferences. The impact of the work on the field has been very significant, especially that related to B physics. In most cases the work is either inspired by experiments or has important consequences for future experiments. The work completed covers a broad spectrum of topics, and can be divided roughly into the following four categories: (1) rare B decays and methods of measuring CP violation at B factories; (2) models of CP violation and their consequences; (3) neutrino properties; and (4) grand unification and its low energy consequences.
Theoretical Advanced Study Institute in Elementary Particle Physics
2017-01-01
The program will consist of a pedagogical series of lectures and seminars. Lectures will be given over a four-week period, three or four lectures per day, Monday through Friday. The audience will be composed primarily of advanced theoretical graduate students. Experimentalists with a strong background in theory are also encouraged to apply. Some post-doctoral fellows will be admitted, but preference will be given to applicants who will not have received their Ph.D. before 2017. The minimum background needed to get full benefit of TASI is a knowledge of quantum field theory (including RGEs) and familiarity with the Standard Model. Some familiarity with SUSY would be helpful. We hope to provide some subsidy, but students will need partial support from other sources. Rooms, meals, and access to all facilities will be provided at reasonable rates in beautifully located dormitories at the University of Colorado.
Criticisms of Relevance Theory
尚静; 孟晔; 焦丽芳
2006-01-01
This paper briefly introduces first the notion of Sperber and Wilson's Relevance Theory. Then, the motivation of S & W putting forward their RT is also mentioned. Secondly, the paper gives some details about the methodology of RT, in which ostensive-inferential communication, context and optimal relevance are highlighted. Thirdly, the paper focuses on the criticisms of RT from different areas of research on human language and communication. Finally, the paper draws a conclusion on the great importance of RT in pragmatics.
Elementary derivation of the expressions of momentum and energy in special relativity
Peliti, Luca
2015-01-01
The expressions of momentum and energy of a particle in special relativity are often derived in a quite unconvincing manner in elementary text, by resorting either to electrodynamic or quantum considerations, or via the introduction of the less-than-elementary concept of a four-vector. It is instead possible, by exploiting considerations introduced by P. Epstein and A. Einstein and exploited later by Feynman, to obtain a fully elementary derivation of these expressions and of the $E=mc^2$ formula exploiting only Lorentz transformations and the postulate of the conservation of quantities defined for point-like particles which reduce to the Newtonian expressions of momentum and energy in the classical limit.
Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis
Kanehisa Minoru
2006-04-01
broader identification of physiologically relevant elementary modes among the very large number of stoichiometrically possible modes.
Skinny W particle offers thinspiration for US physicists
Sherriff, Lucy
2007-01-01
"It seems even elementary particles resolve to lose weight in the new year. A new calculation of the mass of the W particle (instrumental in radioactive decay) suggests that it is lighter than scientists had thought up until now." (1 page)
Quarks, Leptons, and Bosons: A Particle Physics Primer.
Wagoner, Robert; Goldsmith, Donald
1983-01-01
Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)
Bolemon, Jay S.; Etzold, David J.
1974-01-01
Discusses the use of a small computer to solve self-consistent field problems of one-dimensional systems of two or more interacting particles in an elementary quantum mechanics course. Indicates that the calculation can serve as a useful introduction to the iterative technique. (CC)
Overview of secondary neutron production relevant to shielding inspace
Heilbronn, L.; Nakamura, T.; Iwata, Y.; Kurosawa, T.; Iwase, H.; Townsend, L.W.
2004-12-03
An overview of experimental secondary neutron measurements relevant to space-related activities is presented. Stopping target yields and cross section measurements conducted at particle accelerators using heavy ions with energies >100 MeV per nucleon are discussed.
The Effect of a Noise Reducing Test Accommodation on Elementary Students with Learning Disabilities
Smith, Gregory W.; Riccomini, Paul J.
2013-01-01
Researchers in the fields of cognitive psychology and education have been studying the negative effects of noise on human performance for almost a century. A new empirical study that builds upon past relevant research on (1) test accommodations and (2) auditory distraction and academic performance was conducted with elementary age students.…
Between Kohlberg and Gilligan: Levels of Moral Judgment among Elementary School Principals
Vitton, Charles J.; Wasonga, Teresa A.
2009-01-01
This research investigated levels of moral judgment among public elementary school principals as measured by the Defining Issues Test Version 2 for occupationally relevant and other moral dilemmas. The participants scored lower (38.7) than the predicted average P score (postconventional thinking) for individuals who have attained graduate level…
Averill, M.; Briggle, A.
2006-12-01
Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.
Maxwell's equations and their consequences elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W 0
2013-01-01
Elementary Electromagnetic Theory Volume 3: Maxwell's Equations and their Consequences is the third of three volumes that intend to cover electromagnetism and its potential theory. The third volume considers the implications of Maxwell's equations, such as electromagnetic radiation in simple cases, and its relation between Maxwell's equation and the Lorenz transformation. Included in this volume are chapters 11-14, which contain an in-depth discussion of the following topics: Electromagnetic Waves The Lorentz Invariance of Maxwell's Equation Radiation Motion of Charged Particles Intended
Dunham, L. L.
1971-01-01
The "legacy" of the humanities is discussed in terms of relevance, involvement, and other philosophical considerations. Reasons for studying foreign literature in language classes are developed in the article. Comment is also made on attitudes and ideas culled from the writings of Clifton Fadiman, Jean Paul Sartre, and James Baldwin. (RL)
Müller, Emmanuel; Assent, Ira; Günnemann, Stephan
2009-01-01
. We prove that computation of this model is NP-hard. For RESCU, we propose an approximative solution that shows high accuracy with respect to our relevance model. Thorough experiments on synthetic and real world data show that RESCU successfully reduces the result to manageable sizes. It reliably...... achieves top clustering quality while competing approaches show greatly varying performance....
Is Information Still Relevant?
Ma, Lia
2013-01-01
Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…
Müller, Emmanuel; Assent, Ira; Günnemann, Stephan;
2009-01-01
Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace c...
Current Experiments in Particle Physics (September 1996)
Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.
1996-09-01
This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.
Design and elementary realization of the Vision Earth System
无
2007-01-01
The Vision Earth System is a interactive system by employing B/S model. The system has the function of query display and mutuaUy displays relevant geologic information, integrating image information of one outcrop and realizing 3D geologic visualization. In this system, the basis is effective store, transmitting, display and quick query of enormous images and their properties data. From Java technology, this essay researches the elementary realization of Vision Earth System by adopting store formality of enormous images database,quick display image of website and quick image storage method.
NONE
2005-07-01
Theoretical and experimental papers are presented in these proceedings on the following subjects: elementary particles phenomenology, field theories, particles interactions, symmetry, quark model, invariance principles, cosmological models and experimental high energy physics.
NONE
2004-07-01
Theoretical and experimental papers are presented in these proceedings on the following subjects: elementary particles phenomenology, field theories, particles interactions, symmetry, quark model, invariance principles, cosmological models and experimental high energy physics.
Philosophy of particles in super quantum structure
Arezu Jahanshir
2012-11-01
Full Text Available A structure bases on new observations of physics theories that able to express today’s scientific developments. This article is a starting points of philosophically perceive in particle physics. It is imagining and accenting on the new quantum particles which exist beyond the bosons and fermions. Topics for discussion about space and super quantum filed has been written due to justify physical fields and particles. In general, the transfer particles, fields and particles produced have been established in this approach. Presenting an approach and providing a new perspective on the primary structure of the world and around us from past until now, is the integral part of the different science such as physics.The scholars and experts in the area of elementary particles and fields generally have proposed just a model for the patterns and structures of matter through them the result of practical experiments and theoretical calculations were orientated to each other. In other words, the structure and definition of elementary particles haven’t provided which integrate all the characteristics of fields and particles from bosons to fermions and describe their characteristics and essence. So well we can try to investigate the word and structure of cosmos before and much earlier than the Big Bang moment. Due to this view, many uncertainties and vague concepts will be cleared and the way to interesting theories and equations in physics will be opened to us.
Elementary School Students’ Perceptions of Technology in their Pictorial Representations
Adile Aşkım Kurt
2011-01-01
Full Text Available The current study aimed to reveal elementary school students’ perceptions of technology through their pictorial representations and their written expressions based on their pictorial representations. Content analysis based on the qualitative research method along with art-based inquiry was applied. The “coding system for the concepts revealed from the research data” was implemented. Visual language used in pictorial representations produce messages, with its specialized codes. The degree of students to understand and explain their perception on technology composes the visual codes in this research. The study carried out with fifth-grade elementary school students was applied to a class of 28 students. The elementary school students participating in the present study had diverse perceptions of today’s technology, and most of their perceptions of technology were based on computer and electronic household appliances. Some students’ perceptions of technology were based on the Internet and mobile device technologies. Their perceived future technology was observed as human-computer interaction in the area of computer technology. Findings were discussed followed by relevant implications.
Functions of modal particles in Hungarian
Marusynets, Marianna
2014-01-01
The article discusses the functions of Hungarian modal particles from the Relevance Theory perspective, which offers a cognitive account of utterance interpretation. It is argued that Hungarian modal particles govern the selection of context by guiding the hearer towards relevant interpretation.
Clinical Relevance of Adipokines
Matthias Blüher
2012-10-01
Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.
Bergenholtz, Henning; Gouws, Rufus
2007-01-01
as detrimental to the status of a dictionary as a container of linguistic knowledge. This paper shows that, from a lexicographic perspective, such a distinction is not relevant. What is important is that definitions should contain information that is relevant to and needed by the target users of that specific......In explanatory dictionaries, both general language dictionaries and dictionaries dealing with languages for special purposes, the lexicographic definition is an important item to present the meaning of a given lemma. Due to a strong linguistic bias, resulting from an approach prevalent in the early...... phases of the development of theoretical lexicography, a distinction is often made between encyclopaedic information and semantic information in dictionary definitions, and dictionaries had often been criticized when their definitions were dominated by an encyclopaedic approach. This used to be seen...
Light scattering by horizontally oriented particles: Symmetry properties of the phase matrix
Hovenier, J.W.; Muñoz, O.; Muinonen, K.; Penttilä, A.; Lindqvist, H.; Nousiainen, T.; Videen, G.
2010-01-01
Using elementary symmetry considerations, we present seven symmetry relations for the phase matrix of horizontally oriented particles. These relations have a wide range of validity and hold for all directions of incident and scattered electromagnetic radiation.
System aspects of small computers in particle physics a personal view
Zacharov, B
1972-01-01
A general review of those areas where small computers are used in the whole field of elementary particle physics is presented. Detailed considerations are made of some particular aspects, mainly interfacing of equipment and communications links. (7 refs).
Wildemuth, Barbara M.
2009-01-01
A user's interaction with a DL is often initiated as the result of the user experiencing an information need of some kind. Aspects of that experience and how it might affect the user's interactions with the DL are discussed in this module. In addition, users continuously make decisions about and evaluations of the materials retrieved from a DL, relative to their information needs. Relevance judgments, and their relationship to the user's information needs, are discussed in this module. Draft
General many-body formalism for composite quantum particles.
Combescot, M; Betbeder-Matibet, O
2010-05-21
This Letter provides a formalism capable of exactly treating Pauli blocking between n-fermion particles. This formalism is based on an operator algebra made of commutators and anticommutators which contrasts with the usual scalar formalism of Green functions developed half a century ago for elementary quantum particles. We also provide the diagrams which visualize the very specific many-body physics induced by fermion exchanges between composite quantum particles.
From fixed-energy MSA to dynamical localization: A continuing quest for elementary proofs
Chulaevsky, Victor
2012-01-01
We review several techniques and ideas initiated by a remarkable work by Spencer [26], used and further developed in numerous subsequent researches. We also describe a relatively short and elementary derivation of the spectral and strong dynamical Anderson localization from the fixed-energy analysis of the Green functions, obtained either by the Multi-Scale Analysis (MSA) or by the Fractional-Moment Method (FMM). This derivation goes in the same direction as the Simon--Wolf criterion [28], but provides quantitative estimates, applies also to multi-particle models and, combined with a simplified variant of the Germinet--Klein argument [20], results in an elementary proof of dynamical localization.
Pascolini, A.; Pietroni, M.
2002-01-01
We report on an educational project in particle physics based on Feynman diagrams. By dropping the mathematical aspect of the method and keeping just the iconic one, it is possible to convey many different concepts from the world of elementary particles, such as antimatter, conservation laws, particle creation and destruction, real and virtual…
An introduction to particle dark matter
Profumo, Stefano
2017-01-01
What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...
Low energy heavy particle collisions relevant to gas divertor physics
Onda, Kunizo [Science Univ. of Tokyo (Japan)
1997-01-01
Cross sections for rotational and vibrational excitations of H{sub 2} molecules caused by impact of electron, proton, H atom, H{sub 2}, H{sub 2}{sup +}, or H{sup -} are compared with one another and reviewed for rotational excitations by examining an interaction potential between collision partners. It is pointed out what are difficulties in theoretical approaches to collision of atoms with H{sub 2} molecules initially in vibrationally and rotationally excited states. A theoretical approach developed by our group, which aims quantum mechanically to investigate vibrationally inelastic scattering, exchange reaction, or dissociation of molecule in vibrationally excited states collided with an atom or its ion, is presented. Newly obtained dissociation cross sections of H{sub 2} in vibrationally excited states by He impact are presented and compared in magnitude with those of H{sub 2} caused by electron impact. (author)
Physical considerations relevant to HZE-particle transport in matter
Schimmerling, W.
1988-01-01
High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.
Physical considerations relevant to HZE-particle transport in matter.
Schimmerling, W
1988-06-01
High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.
Scalar spin of elementary fermions
Jourjine, A., E-mail: jourjine@pks.mpg.de
2014-01-20
We show that, using the experimentally observed values of CKM and PMNS mixing matrices, all known elementary fermions can be assigned a new quantum number, the scalar spin, in a unique way. This is achieved without introduction of new degrees of freedom. The assignment implies that tau-neutrino should be an anti-Dirac spinor, while mu–tau leptons and charm–top, strange–bottom quarks form Dirac–anti-Dirac scalar spin doublets. The electron and its neutrino remain as originally described by Dirac.
Elementary linear programming with applications
Kolman, Bernard
1995-01-01
Linear programming finds the least expensive way to meet given needs with available resources. Its results are used in every area of engineering and commerce: agriculture, oil refining, banking, and air transport. Authors Kolman and Beck present the basic notions of linear programming and illustrate how they are used to solve important common problems. The software on the included disk leads students step-by-step through the calculations. The Second Edition is completely revised and provides additional review material on linear algebra as well as complete coverage of elementary linear program
The most elementary Bell inequalities
Sadiq, Muhamad; Bourennane, Mohamed; Cabello, Adan
2011-01-01
Every nontrivial Bell inequality can be associated to a graph with some special properties. The simplest of these graphs is the pentagon. In this sense, any Bell inequality associated to a pentagon can be regarded as elementary. We show that there are three of them: one is a primitive Bell inequality inside the Clauser-Horne-Shimony-Holt inequality and, surprisingly, it is not maximally violated by maximally entangled states. The other two are maximally violated by maximally entangled states and are related to the Clauser-Horne inequality and the I3322 inequality, respectively. We report experimental violations of the three inequalities with pairs of photons entangled in polarization.
The Need for a Culturally Relevant Approach to Gifted Education: The Case of Cyprus
Ieridou, Alexandra N.
2013-01-01
This article presents an overview of the status of gifted education in Cyprus and argues for the need for a culturally relevant approach. First, the history of education in Cyprus is briefly reviewed. Then, past unsuccessful efforts to provide education for academically advanced students in the public elementary schools are critically examined.…
The pricing relevance of insider information; Die Preiserheblichkeit von Insiderinformationen
Kruse, Dominik
2011-07-01
The publication attempts to describe the so far discussion concerning the feature of pricing relevance and to develop it further with the aid of new research approaches. First, a theoretical outline is presented of the elementary regulation problem of insider trading, its historical development, and the regulation goals of the WpHG. This is followed by an analysis of the concrete specifications of the law. In view of the exemplarity of US law, a country with long experience in regulation of the capital market, the materiality doctrine of US insider law is gone into in some detail. The goals and development of the doctrine are reviewed in the light of court rulings. The third part outlines the requirements of German law in order to forecast the pricing relevance of insider information, while the final part presents a critical review of the current regulations on pricing relevance. (orig./RHM)
Reading Disability and the Elementary School Counselor.
Martinez, David H.; Phelps, R. Neal
1980-01-01
Provides the elementary school counselor with a knowledge base in the reading and reading disability areas. The discussion on reading highlights four major areas with which the elementary school counselor should be familiar: definition of reading, proliferation of terms, reading skills assessment, and reading disability. (Author)
Assessment, Autonomy, and Elementary Social Studies Time
Fitchett, Paul G.; Heafner, Tina L.; Lambert, Richard
2014-01-01
Background/context: In an era of accountability and standardization, elementary social studies is consistently losing its curricular foothold to English/language arts, math, and science instruction. Purpose: This article examines the relationship between elementary teachers' perceptions of instructional autonomy, teaching context, state testing…
Career Paths of Female Elementary Assistant Principals
Baier, Hope C.
2013-01-01
The purpose of this research was to explore the worklife experiences and personal issues of female elementary assistant principals and examine the influence of these factors on their intent to remain in their position or leave. The worklife experiences and perceptions of female elementary assistant principals were categorized as institutional or…
Applying Disciplinary Literacy in Elementary Geography
Britt, Judy; Ming, Kavin
2017-01-01
In this article, a social studies teacher and a literacy teacher describe a vision for social studies that highlights reading practices that foster disciplinary literacy in elementary geography. Their purpose is to share a practical approach for enriching elementary social studies lessons and activities with a geographic lens. During the…
Preservice Elementary Teachers' Images of Inventors
Rule, Audrey C.; Bisbo, Erica Lyn; Waloven, Valerie
2008-01-01
Technology and invention are an integral part of the elementary school science curriculum, addressed by national standards. Student drawings of scientists have been studied extensively, but little is known of student mental conceptions and drawings of inventors. To uncover student's images of inventors, ninety preservice elementary teachers at a…
Techniques for Vocabulary Teaching in Elementary English
刘丽华
2004-01-01
All teachers know very well how important vocabulary is in learning language, but, for many years, vocabulary has all been neglected in language teaching. In this essay will try to introduce some practical and effective methods in presenting, practising,and consolidating vocabulary in elementary level in which, I wish, the elementary teachers may get some inspiration for their vocabulary teaching.
Self-Efficacy, Taiwan Elementary Teachers Perspective
Jack, Brady M.; Liu, Chia-Ju; Chiu, Hoan-Lin
2005-01-01
This paper presents the results of a case study involving Taiwanese elementary teachers who teach science at the elementary grade school level. It advocates the position that a teacher's personal science efficacy belief influences his or her science teaching outcome expectations. It promotes the position that the success Taiwan has experienced in…
Student Leadership Education in Elementary Classrooms
Hess, Lindsay
2010-01-01
As I began my career as a teacher, I assumed leadership education would naturally be integrated into the elementary classroom curriculum because I was intrigued by this topic. However, as I spent more time in the classroom I quickly realized leadership skills were not part of regular classroom learning or practice for elementary age students. I…
Introducing Technology Education at the Elementary Level
McKnight, Sean
2012-01-01
Many school districts are seeing a need to introduce technology education to students at the elementary level. Pennsylvania's Penn Manor School District is one of them. Pennsylvania has updated science and technology standards for grades 3-8, and after several conversations the author had with elementary principals and the assistant superintendent…
Elementary Principals' Role in Science Instruction
Casey, Patricia; Dunlap, Karen; Brown, Kristen; Davison, Michele
2012-01-01
This study explores the role elementary school principals play in science education. Specifically, the study employed an online survey of 16 elementary school principals at high-performing campuses in North Texas to explore their perceptions of how they influenced science education on their campuses. The survey used a combination of Likert-type…
Vacuum alignment with and without elementary scalars
Alanne, Tommi; Gertov, Helene; Meroni, Aurora
2016-01-01
We systematically elucidate differences and similarities of the vacuum alignment issue in composite and renormalizable elementary extensions of the Standard Model featuring a pseudo-Goldstone Higgs. We also provide general conditions for the stability of the vacuum in the elementary framework......, thereby extending previous studies of the vacuum alignment....
Vacuum alignment with and without elementary scalars
Alanne, Tommi; Gertov, Helene; Meroni, Aurora;
2016-01-01
We systematically elucidate differences and similarities of the vacuum alignment issue in composite and renormalizable elementary extensions of the Standard Model featuring a pseudo-Goldstone Higgs. We also provide general conditions for the stability of the vacuum in the elementary framework......, thereby extending previous studies of the vacuum alignment....
Vacuum alignment with(out) elementary scalars
Alanne, Tommi; Meroni, Aurora; Sannino, Francesco
2016-01-01
We systematically elucidate differences and similarities of the vacuum alignment issue in composite and renormalizable elementary extensions of the Standard Model featuring a pseudo-Goldstone Higgs. We also provide general conditions for the stability of the vacuum in the elementary framework, thereby extending previous studies of the vacuum alignment.
Elementary lesions in dermatological semiology: literature review.
Cardili, Renata Nahas; Roselino, Ana Maria
2016-01-01
Discrepancies in the terminology of elementary lesions persist when texts from Dermatology and Semiology books are compared, which can cause some confusion in both the teaching of undergraduate medical students and the learning acquired by professionals in the field. This review aims to compare and clarify the differences in the description of elementary lesions by many authors, used as references for specialists in dermatology.
Preventing Substance Abuse: An Elementary School Guide.
Alsup, Ben; Boundy, Donna; Brown, Jordan; Reisman, David; Rothbart, Betty
This booklet is designed to be used by teachers in elementary schools with the Public Broadcasting Systems series "Moyers on Addiction: Close to Home." The series explores the science, treatment, prevention, and politics of addiction. This booklet discusses strategies for preventing substance abuse in elementary school. Also examined are…
Elementary Reading Guide, Level 1-6.
Caverna Independent School District, Horse Cave, KY.
This elementary reading curriculum guide is designed to provide a well-rounded program of reading instruction and includes the following components: a philosophy of elementary education, behavioral objectives, and characteristics of children of age 5 through age 15. The bulk of the document consists of plans which describe appropriate activities…
A Billiard-Theoretic Approach to Elementary 1d Elastic Collisions
Redner, S
2004-01-01
A simple relation is developed between elastic collisions of freely-moving point particles in one dimension and a corresponding billiard system. For two particles with masses m_1 and m_2 on the half-line x>0 that approach an elastic barrier at x=0, the corresponding billiard system is an infinite wedge. The collision history of the two particles can be easily inferred from the corresponding billiard trajectory. This connection nicely explains the classic demonstrations of the ``dime on the superball'' and the ``baseball on the basketball'' that are a staple in elementary physics courses. It is also shown that three elastic particles on an infinite line and three particles on a finite ring correspond, respectively, to the motion of a billiard ball in an infinite wedge and on on a triangular billiard table. It is shown how to determine the angles of these two sets in terms of the particle masses.
A New Mechanism of Higgs Bosons in Producing Charge Particles
Javadi, Hossein; Forouzbakhsh, Farshid
2006-01-01
A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time.......A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time....
Steyerl, A; Müller, G; Malik, S S; Desai, A M; Golub, R
2014-01-01
Pendlebury $\\textit{et al.}$ [Phys. Rev. A $\\textbf{70}$, 032102 (2004)] were the first to investigate the role of geometric phases in searches for an electric dipole moment of elementary particles based on Ramsey-separated oscillatory field magnetic resonance with trapped ultracold neutrons and comagnetometer atoms. Their work was based on the Bloch equation and later work using the density matrix corroborated the results and extended the scope to describe the dynamics of spins in general fields and in bounded geometries. We solve the Schr\\"odinger equation directly for cylindrical trap geometry and obtain a full description of EDM-relevant spin behavior in general fields, including the short-time transients and vertical spin oscillation in the entire range of particle velocities. We apply this method to general macroscopic fields and to the field of a microscopic magnetic dipole.
Explorations in Elementary Mathematical Modeling
Mazen Shahin
2010-06-01
Full Text Available In this paper we will present the methodology and pedagogy of Elementary Mathematical Modeling as a one-semester course in the liberal arts core. We will focus on the elementary models in finance and business. The main mathematical tools in this course are the difference equations and matrix algebra. We also integrate computer technology and cooperative learning into this inquiry-based learning course where students work in small groups on carefully designed activities and utilize available software to support problem solving and understanding of real life situations. We emphasize the use of graphical and numerical techniques, rather than theoretical techniques, to investigate and analyze the behavior of the solutions of the difference equations.As an illustration of our approach, we will show a nontraditional and efficient way of introducing models from finance and economics. We will also present an interesting model of supply and demand with a lag time, which is called the cobweb theorem in economics. We introduce a sample of a research project on a technique of removing chaotic behavior from a chaotic system.
Different Higgs models and the number of Higgs particles
Marek-Crnjac, L. [University of Maribor, Faculty of Mechanical Engineering, Smetanova ulica 17, SI-2000 Maribor (Slovenia)] e-mail: fs.taj06@uni-mb.si
2006-02-01
In this short paper we discuss some interesting Higgs models. It is concluded that the most likely scheme for the Higgs particles consists of five physical Higgs particles. These are two charged H{sup +}, H{sup -} and three neutrals h {sup 0}, H{sup 0}, A{sup 0}. Further more the most probably total number of elementary particles for each model is calculated [El Naschie MS. Experimental and theoretical arguments for the number of the mass of the Higgs particles. Chaos, Solitons and Fractals 2005;23:1091-8; El Naschie MS. Determining the mass of the Higgs and the electroweak bosons. Chaos, Solitons and Fractals 2005;24:899-905; El Naschie MS. On 366 kissing spheres in 10 dimensions, 528 P-Brane states in 11 dimensions and the 60 elementary particles of the standard model. Chaos, Solitons and Fractals 2005;24:447-57].
Co-evolution of strain design methods based on flux balance and elementary mode analysis
Machado, Daniel; Herrgard, Markus
2015-01-01
optimization to couple cellular growth with the production of a target product. This initiated the development of a family of strain design methods based on the concept of flux balance analysis. Another family of strain design methods, based on the concept of elementary mode analysis, has also been growing......More than a decade ago, the first genome-scale metabolic models for two of the most relevant microbes for biotechnology applications, Escherichia coli and Saccaromyces cerevisiae, were published. Shortly after followed the publication of OptKnock, the first strain design method using bilevel....... Although the computation of elementary modes is hindered by computational complexity, recent breakthroughs have allowed applying elementary mode analysis at the genome scale. Here we review and compare strain design methods and look back at the last 10 years of in silico strain design with constraint...
Chronobiology: relevance for tuberculosis.
Santos, Lígia Gabrielle; Pires, Gabriel Natan; Azeredo Bittencourt, Lia Rita; Tufik, Sergio; Andersen, Monica Levy
2012-07-01
Despite the knowledge concerning the pathogenesis of tuberculosis, this disease remains one of the most important causes of mortality worldwide. Several risk factors are well-known, such poverty, HIV infection, and poor nutrition, among others. However, some issues that may influence tuberculosis warrant further investigation. In particular, the chronobiological aspects related to tuberculosis have garnered limited attention. In general, the interface between tuberculosis and chronobiology is manifested in four ways: variations in vitamin D bioavailability, winter conditions, associated infections, and circannual oscillations of lymphocytes activity. Moreover, tuberculosis is related to the following chronobiological factors: seasonality, latitude, photoperiod and radiation. Despite the relevance of these topics, the relationship between them has been weakly reviewed. This review aims to synthesize the studies regarding the association between tuberculosis and chronobiology, as well as urge critical discussion and highlight its applicability to health policies for tuberculosis.
Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta;
2013-01-01
Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when...... the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN...... concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3...
Raju, M.R.
1993-09-01
Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.
M. V. Tchernycheva
2017-01-01
Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation
High-energy nuclear optics of polarized particles
Baryshevsky, Vladimir G
2012-01-01
The various phenomena caused by refraction and diffraction of polarized elementary particles in matter have opened up a new research area in the particle physics: nuclear optics of polarized particles. Effects similar to the well-known optical phenomena such as birefringence and Faraday effects, exist also in particle physics, though the particle wavelength is much less than the distance between atoms of matter. Current knowledge of the quasi-optical effects, which exist for all particles in any wavelength range (and energies from low to extremely high), will enable us to investigate different properties of interacting particles (nuclei) in a new aspect. This pioneering book will provide detailed accounts of quasi-optical phenomena in the particle polarization, and will interest physicists and professionals in experimental particle physics.
Martin, B R
2008-01-01
An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod
Basics of particle therapy: introduction to hadrons.
Welsh, James S
2008-10-01
With the arrival of 3-dimensional conformal radiation therapy and intensity modulated radiation therapy, radiation dose distributions in radiation oncology have improved dramatically over the past couple of decades. As part of a natural progression there recently has been a resurgence of interest in hadron therapy, specifically charged particle therapy, because of the even better dose distributions potentially achievable. In principle, using charged particle beams, radiation dose distributions can be achieved that surpass those possible with even the most sophisticated photon radiation delivery techniques. Certain charged particle beams might possess some biologic advantages in terms of tumor kill potential as well as this dosimetric advantage. The particles under consideration for such clinical applications all belong to the category of particles known as hadrons. This review introduces some of the elementary physics of the various hadron species previously used, currently used or being considered for future use in radiation oncology.
Extra-dimensional confinement of quantum particles
Hedin, Eric R
2016-01-01
A basic theoretical framework is developed in which elementary particles have a component of their wave function extending into higher spatial dimensions. This model postulates an extension of the Schrodinger equation to include a 4th and 5th spatial component. A higher-dimensional simple harmonic oscillator confining potential localizes particles into 3-d space, characterizing the brane tension which confines Standard Model particles to the sub-manifold. Quantum effects allow a non-zero probability for a particle's evanescent existence in the higher dimensions, and suggest an experimental test for the validity of this model via particles being temporarily excited into the first excited state of the extra-dimensional potential well, in which their probability of existing in 3-d space transiently drops to zero. Several consistency checks of the outcomes of this extra-dimensional model are included in this paper. Among the outcomes of this model are: a match with the quantum phenomenon of zitterbewegung; the pr...
Yilmaz-Tüzün, Özgül; Topcu, Mustafa Sami
2010-03-01
The research questions addressed in this study were: what types of epistemological beliefs do elementary students have; what types of metacognition do elementary students have; and what are the relationships among students’ perceived characteristics of constructivist learning environment, metacognition, and epistemological beliefs. A total of 626 students enrolled in sixth, seventh, and eight grades of nine elementary public schools located in Ankara, Turkey constituted the participants of this study. Constructivist learning environment survey (CLES), Junior metacognitive awareness inventory (Jr. MAI), and Schommer epistemological belief questionnaire (EB) were administered to students. Factor Analysis of Jr. MAI revealed both knowledge of cognition and regulation of cognition items were loaded into one factor. Confirmatory factor analysis of EB revealed a four factor structure namely innate ability, quick learning, omniscient authority, and certain knowledge. Regression analyses revealed that metacognition and omniscient authority were significant predictors of personal relevance dimension of CLES. Metacognition was found as the only predictor of the student negotiation. Innate ability and metacognition significantly contributed to uncertainty. This study revealed that the elementary students with different mastery levels hold different epistemological beliefs and multi-faceted nature of elementary school students’ metacognition was seemed to be supported with this study. It was found that metacognition contributed to model more than epistemological beliefs for all three dimensions of CLES.
Elementary Concepts of Quantum Theory
Warren, J. W.
1974-01-01
Discusses the importance and difficulties of teaching basic quantum theory. Presents a discussion of wave-particle duality, indeterminacy, the nature of a quantized state of a system, and the exclusion principle. (MLH)
The Particle as a Statistical Ensemble of Events in Stueckelberg–Horwitz–Piron Electrodynamics
Martin Land
2017-05-01
Full Text Available In classical Maxwell electrodynamics, charged particles following deterministic trajectories are described by currents that induce fields, mediating interactions with other particles. Statistical methods are used when needed to treat complex particle and/or field configurations. In Stueckelberg–Horwitz–Piron (SHP electrodynamics, the classical trajectories are traced out dynamically, through the evolution of a 4D spacetime event x μ ( τ as τ grows monotonically. Stueckelberg proposed to formalize the distinction between coordinate time x 0 = c t (measured by laboratory clocks and chronology τ (the temporal ordering of event occurrence in order to describe antiparticles and resolve problems of irreversibility such as grandfather paradoxes. Consequently, in SHP theory, the elementary object is not a particle (a 4D curve in spacetime but rather an event (a single point along the dynamically evolving curve. Following standard deterministic methods in classical relativistic field theory, one is led to Maxwell-like field equations that are τ -dependent and sourced by a current that represents a statistical ensemble of instantaneous events distributed along the trajectory. The width λ of this distribution defines a correlation time for the interactions and a mass spectrum for the photons emitted by particles. As λ becomes very large, the photon mass goes to zero and the field equations become τ -independent Maxwell’s equations. Maxwell theory thus emerges as an equilibrium limit of SHP, in which λ is larger than any other relevant time scale. Thus, statistical mechanics is a fundamental ingredient in SHP electrodynamics, and its insights are required to give meaning to the concept of a particle.
Minimal length and bouncing-particle spectrum
Nozari, K.; Pedram, P.
2010-12-01
In this paper we study the effects of the Generalized Uncertainty Principle (GUP) on the spectrum of a particle that is bouncing vertically and elastically on a smooth reflecting floor in the Earth's gravitational field (a quantum bouncer). We calculate energy levels and corresponding wave functions of this system in terms of the GUP parameter. We compare the outcomes of our study with the results obtained from elementary quantum mechanics. A potential application of the present study is discussed finally.
Minimal Length and Bouncing Particle Spectrum
Nozari, Kourosh
2010-01-01
In this paper we study the effects of the Generalized Uncertainty Principle (GUP) on the spectrum of a particle that is bouncing vertically and elastically on a smooth reflecting floor in the Earth's gravitational field (a quantum bouncer). We calculate energy levels and corresponding wave functions of this system in terms of the GUP parameter. We compare the outcomes of our study with the results obtained from elementary quantum mechanics. A potential application of the present study is discussed finally.
Rosenfeld, Carl [Univ of South Carolina; Mishra, Sanjib R. [Univ of South Carolina; Petti, Roberto [Univ of South Carolina; Purohit, Milind V. [Univ of South Carolina
2014-08-31
The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the Ba
Some Elementary Aspects of Means
Mowaffaq Hajja
2013-01-01
Full Text Available We raise several elementary questions pertaining to various aspects of means. These questions refer to both known and newly introduced families of means, and include questions of characterizations of certain families, relations among certain families, comparability among the members of certain families, and concordance of certain sequences of means. They also include questions about internality tests for certain mean-looking functions and about certain triangle centers viewed as means of the vertices. The questions are accessible to people with no background in means, and it is also expected that these people can seriously investigate, and contribute to the solutions of, these problems. The solutions are expected to require no more than simple tools from analysis, algebra, functional equations, and geometry.
An excursion through elementary mathematics
Caminha Muniz Neto, Antonio
2017-01-01
This book provides a comprehensive, in-depth overview of elementary mathematics as explored in Mathematical Olympiads around the world. It expands on topics usually encountered in high school and could even be used as preparation for a first-semester undergraduate course. This first volume covers Real Numbers, Functions, Real Analysis, Systems of Equations, Limits and Derivatives, and much more. As part of a collection, the book differs from other publications in this field by not being a mere selection of questions or a set of tips and tricks that applies to specific problems. It starts from the most basic theoretical principles, without being either too general or too axiomatic. Examples and problems are discussed only if they are helpful as applications of the theory. Propositions are proved in detail and subsequently applied to Olympic problems or to other problems at the Olympic level. The book also explores some of the hardest problems presented at National and International Mathematics Olympiads, as we...
Light in elementary biological reactions
Sundström, Villy
2000-09-01
Light plays an important role in biology. In this review we discuss several processes and systems where light triggers a biological response, i.e. photosynthesis, vision, photoreceptors. For these functions Nature has chosen simple elementary chemical reactions, which occur in highly specialized and organized structures. The high efficiency and specificity of these reactions make them interesting for applications in light energy conversion and opto-electronics. In order to emphasize the synergism in studies of natural and synthetic systems we will discuss a few of each kind, with similar functions. In all cases light triggers a rapid sequence of events, which makes ultrafast spectroscopy an ideal tool to disentangle reaction mechanisms and dynamics.
Interaction of particles with complex electrostatic structures and 3D clusters
Antonova, Tetyana
2007-10-16
Particles of micrometer size externally introduced in plasmas usually find their positions of levitation in the plasma sheath, where the gravity force is compensated by the strong electric field. Here due to electrostatic interaction they form different structures, which are interesting objects for the investigation of strongly coupled systems and critical phenomena. Because of the low damping (e.g. in comparison to colloidal suspension) it is possible to measure the dynamics up to the relevant highest frequency (e.g. Einstein frequency) at the most elementary level of single particle motion. The task of this work was to analyze the three dimensional structure, dynamical processes and the limit of the cooperative behavior in small plasma crystals. In addition to the study of the systems formed, the immersed particles themselves may be used for diagnostics of the plasma environment: estimation of parameters or monitoring of the processes inside plasma. The laboratory experiments are performed in two radio-frequency (RF) plasma reactors with parallel plate electrodes, where the lower electrode is a so-called 'adaptive electrode'. This electrode is segmented into 57 small 'pixels' independently driven in DC (direct current) and/or RF voltage. When RF voltage is applied to one of these pixels, a bright localized glow, 'secondary plasma ball', appears above. Three dimensional dust crystals with less than 100 particles are formed inside this 'plasma ball' - the ideal conditions for the investigation of the transition from cluster systems to collective systems. The investigation of the particle interactions in crystals is performed with an optical diagnostic, which allows determination of all three particle coordinates simultaneously with time resolution of 0.04 sec. The experimental results are: 1. The binary interaction among particles in addition to the repelling Coulomb force exhibits also an attractive part, which is
On the invertibility of elementary operators
Boudi, Nadia; Bračič, Janko
2013-01-01
Let $\\mathscr{X}$ be a complex Banach space and $\\mathcal{L}(\\mathscr{X})$ be the algebra of all bounded linear operators on $\\mathscr{X}$. For a given elementary operator $\\Phi$ of length $2$ on $\\mathcal{L}(\\mathscr{X})$, we determine necessary and sufficient conditions for the existence of a solution of the equation ${\\rm X} \\Phi=0$ in the algebra of all elementary operators on $\\mathcal{L}(\\mathscr{X})$. Our approach allows us to characterize some invertible elementary operators of length...
Analysis of particle kinematics in spheronization via particle image velocimetry.
Koester, Martin; Thommes, Markus
2013-02-01
Spheronization is a wide spread technique in pellet production for many pharmaceutical applications. Pellets produced by spheronization are characterized by a particularly spherical shape and narrow size distribution. The particle kinematic during spheronization is currently not well-understood. Therefore, particle image velocimetry (PIV) was implemented in the spheronization process to visualize the particle movement and to identify flow patterns, in order to explain the influence of various process parameters. The spheronization process of a common formulation was recorded with a high-speed camera, and the images were processed using particle image velocimetry software. A crosscorrelation approach was chosen to determine the particle velocity at the surface of the pellet bulk. Formulation and process parameters were varied systematically, and their influence on the particle velocity was investigated. The particle stream shows a torus-like shape with a twisted rope-like motion. It is remarkable that the overall particle velocity is approximately 10-fold lower than the tip speed of the friction plate. The velocity of the particle stream can be correlated to the water content of the pellets and the load of the spheronizer, while the rotation speed was not relevant. In conclusion, PIV was successfully applied to the spheronization process, and new insights into the particle velocity were obtained.
Laser-induced alteration of Raman spectra for micron-sized solid particles
Böttger, U.; Pavlov, S. G.; Deßmann, N.; Hanke, F.; Weber, I.; Fritz, J.; Hübers, H.-W.
2017-04-01
The Raman Laser Spectrometer (RLS) instrument on board of the future ESAs ExoMars mission will analyze micron-sized powder samples in a low pressure atmosphere. Such micron-sized polycrystalline solid particles might be heated by the laser during the Raman measurements. Here, we report on the temperature-induced alteration of Raman spectra from micron-sized polycrystalline solid particles by comparing Raman spectra on silicon and the rock forming minerals olivine and pyroxene taken at different laser intensities and different ambient temperatures. Our analyses indicate that laser-induced heating results in both broadening and shifting of characteristic Raman lines in the Stokes and anti-Stokes spectral regions. For elementary crystalline silicon a significant local temperature increase and relevant changes in Raman spectra have been observed in particles with median sizes below 250 μm. In comparison, significantly weaker laser-induced Raman spectral changes were observed in more complex rock-forming silicate minerals; even for lower grain sizes. Laser power densities realized in the RLS ExoMars instrument should cause only low local heating effects and, thus, negligible frequency shifts of the major Raman lines in common silicate minerals such as olivine and pyroxene.
Elementary examples of adiabatic invariance
Crawford, F.S. (Physics Department, University of California, Berkeley, CA (USA) Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720 (USA))
1990-04-01
Simple classical one-dimensional systems subject to adiabatic (gradual) perturbations are examined. The first examples are well known: the adiabatic invariance of the product {ital E}{tau} of energy {ital E} and period {tau} for the simple pendulum and for the simple harmonic oscillator. Next, the adiabatic invariants of the vertical bouncer are found---a ball bouncing elastically from the floor of a rising elevator having slowly varying velocity and acceleration. These examples lead to consideration of adiabatic invariance for one-dimensional systems with potentials of the form {ital V}={ital ax}{sup {ital n}}, with {ital a}={ital a}({ital t}) slowly varying in time. Then, the horizontal bouncer is considered---a mass sliding on a smooth floor, bouncing back and forth between two impenetrable walls, one of which is slowly moving. This example is generalized to a particle in a bound state of a general potential with one slowly moving turning point.'' Finally, circular motion of a charged particle in a magnetic field slowly varying in time under three different configurations is considered: (a) a free particle in a uniform field; (b) a free particle in a nonuniform betatron'' field; and (c) a particle constrained to a circular orbit in a uniform field.
The laws of Newton and Coulomb as information transmission by virtual particles
Malyshev, V A
2016-01-01
In elementary particle physics the philosophy of virtual particles is widely used. We use this philosophy to obtain the famous inverse square law of classical physics. We define a formal model without fields or forces, but with virtual particle - information transmitter. This formal model admits very simple (school level) interpretation with two classical particles and one virtual. Then we prove (in a mathematically rigorous way) that the trajectories in our model converge to standard Newtonian trajectories of classical physics.
Exploring how teachers talk in elementary science classrooms
Mattison, Sandra Harbol
The purpose of this study was to gain a greater understanding of how teachers talk in elementary science classrooms and how that talk assists students in making meaning of science. A premise of this study was the recognition of the importance of the goal of scientific literacy for students. Individuals who are scientifically literate have more opportunities for employment and the potential for an improved quality of life. The process of educating students in scientific literacy begins in elementary school, thus underscoring the importance of quality elementary science education. Using socio-cultural theory and the role of social languages in classrooms as a lens, this study explored the role of teacher talk in the development of student understanding in science. The literature review identified three areas of instruction that were relevant to the teaching of science. The three areas were patterns of teacher talk (IRE/IRF), the authoritative/dialogic continuum and the development of everyday/academic language. The research questions aligned with these three areas focusing on control of talk in classrooms as evidenced through patterns of talk and the development of the academic language of science. Two fourth grade teachers were observed during science instruction and the transcripts of their talk was used for data analysis. Data analysis generated quantitative and qualitative data sets. The results showed that language played two different roles in assisting students construct an understanding of science. The primary use of language by one teacher was the transmission of science content and checking student understanding. The other teacher viewed language as important for both teacher and students; using language as an instructional device to further student understanding.
Creating contextually authentic science in a low-performing urban elementary school
Buxton, Cory A.
2006-09-01
This article reports on a 2-year collaborate project to reform the teaching and learning of science in the context of Mae Jemison Elementary, the lowest performing elementary school in the state of Louisiana. I outline a taxonomy of authentic science inquiry experiences and then use the resulting framework to focus on how project participants interpreted and enacted ideas about collaboration and authenticity. The resulting contextually authentic science inquiry model links the strengths of a canonically authentic model of science inquiry (grounded in the Western scientific canon) with the strengths of a youth-centered model of authenticity (grounded in student-generated inquiry), thus bringing together relevant content standards and topics with critical social relevance. I address the question of how such enactments may or may not promote doing science together and consider the implications of this model for urban science education.
Teaching Elementary Probability Through its History.
Kunoff, Sharon; Pines, Sylvia
1986-01-01
Historical problems are presented which can readily be solved by students once some elementary probability concepts are developed. The Duke of Tuscany's Problem; the problem of points; and the question of proportions, divination, and Bertrand's Paradox are included. (MNS)
Elementary process theory axiomatic introduction and applications
Cabbolet, Marcoen J T F
2011-01-01
Modern physics lacks a unitary theory that applies to all four fundamental interactions. This PhD thesis is a proposal for a single, complete, and coherent scheme of mathematically formulated elementary laws of nature. While the first chapter presents the general background, the second chapter addresses the method by which the main result has been developed. The next three chapters rigorously introduce the Elementary Process Theory, its mathematical foundations, and its applications to physics, cosmology and philosophy of mind. The final two chapters discuss the results and present the conclusions. Summarizing, the Elementary Process Theory is a scheme of seven well-formed closed expressions, written in the mathematical language of set matrix theory – a generalization of Zermelo-Fraenkel set theory. In the physical world, these seven expressions can be interpreted as elementary principles governing the universe at supersmall scale. The author critically confronts the theory with Quantum Mechanics and Genera...
A Perspective on Teaching Elementary Statistics.
Wainwright, Barbara A.; Austin, Homer W.
1997-01-01
Shares the perspectives of two instructors of elementary statistics at the college level. Describes a course developed to increase statistics learning and student motivation to learn statistics by introducing writing into the course content. (DDR)
Notices about using elementary statistics in psychology
松田, 文子; 三宅, 幹子; 橋本, 優花里; 山崎, 理央; 森田, 愛子; 小嶋, 佳子
2003-01-01
Improper uses of elementary statistics that were often observed in beginners' manuscripts and papers were collected and better ways were suggested. This paper consists of three parts: About descriptive statistics, multivariate analyses, and statistical tests.
Scripted collaborative drawing in elementary science education
van Dijk, Alieke Mattia; Gijlers, Aaltje H.; Weinberger, Armin
2014-01-01
Creating graphical representations can foster knowledge gains on science topics in elementary school students by promoting active integration and translation of new information. Collaborating on joint representations may encourage children to discuss and elaborate their knowledge. To foster producti
Foreign Language Activities in Hibizaki Elementary School
小野, 章
2011-01-01
Foreign language activities were introduced in Japanese elementary schools in April 2011. Hibizaki Municipal Elementary School in Onomichi City had been experimentally involved in the activities for six years between 2005 and 2010, and I witnessed them as an advisor. This paper aims to point out some characteristic features of the foreign language activities conducted in Hibizaki. First, the school has a clear vision of what the pupils should achieve through foreign language activities, and t...
Elementary Components of the Quadratic Assignment Problem
Chicano, Francisco; Alba, Enrique
2011-01-01
The Quadratic Assignment Problem (QAP) is a well-known NP-hard combinatorial optimization problem that is at the core of many real-world optimization problems. We prove that QAP can be written as the sum of three elementary landscapes when the swap neighborhood is used. We present a closed formula for each of the three elementary components and we compute bounds for the autocorrelation coefficient.
Elementary lesions in dermatological semiology: literature review*
Cardili, Renata Nahas; Roselino, Ana Maria
2016-01-01
Discrepancies in the terminology of elementary lesions persist when texts from Dermatology and Semiology books are compared, which can cause some confusion in both the teaching of undergraduate medical students and the learning acquired by professionals in the field. This review aims to compare and clarify the differences in the description of elementary lesions by many authors, used as references for specialists in dermatology. PMID:27828637
Barbara S Sixt
Full Text Available The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB, has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS, ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS, and ultra-performance liquid chromatography mass spectrometry (UPLC-MS was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila
Navigating a sea of ideas: Teacher and students negotiate a course toward mutual relevance
Flick, Lawrence B.
Theories of social cognition and verbal communication were used to analyze the science teaching of an experienced fourth-grade teacher. Her teaching skills in language arts and reading were assets in negotiating the rapid flow of relatively unstructured information typical of inquiry in elementary classrooms, to help students generate relevant information about hands-on experience. The teacher was a collaborator in this case study of her thinking and instructional planning, and her students' learning in a unit of instruction about space. Implications for elementary science instruction include recognizing the importance of embedded speech in conceptually broad discussions with students. Efforts to reform elementary science instruction should attend to these instructional skills more common to language arts instruction.Received: 13 September 1993; Revised: 28 June 1994;
Constructing Cultural Relevance in Science: A Case Study of Two Elementary Teachers
Patchen, Terri; Cox-Petersen, Anne
2008-01-01
Classrooms across the United States increasingly find White teachers paired with ethnic minority students, but few of these teachers are prepared for the disparities such cultural integration presents. This is particularly true vis-a-vis science education. While classrooms have diversified, science instruction has not necessarily followed suit.…
Hynd, Cynthia; And Others
1997-01-01
Investigates changes in preservice teachers' conceptions about projectile motion brought about by a combination of reading and demonstration and appeal to usefulness. Results indicate the effectiveness of a combined Demo-Text condition on immediate posttests and effectiveness of text in producing long-term change. Analysis also indicates an…
Elementary Quantum Mechanics in a Space-time Lattice
Bhatia, Manjit
2010-01-01
Studies of quantum fields and gravity suggest the existence of a minimal length, such as Planck length \\cite{Floratos,Kempf}. It is natural to ask how the existence of a minimal length may modify the results in elementary quantum mechanics (QM) problems familiar to us \\cite{Gasiorowicz}. In this paper we address a simple problem from elementary non-relativistic quantum mechanics, called "particle in a box", where the usual continuum (1+1)-space-time is supplanted by a space-time lattice. Our lattice consists of a grid of $\\lambda_0 \\times \\tau_0 $ rectangles, where $\\lambda_0$, the lattice parameter, is a fundamental length (say Planck length) and, we take $\\tau_0$ to be equal to $\\lambda_0/c$. The corresponding Schrodinger equation becomes a difference equation, the solution of which yields the $q$-eigenfunctions and $q$-eigenvalues of the energy operator as a function of $\\lambda_0 $. The $q$-eigenfunctions form an orthonormal set and both $q$-eigenfunctions and $q$-eigenvalues reduce to continuum solutions...
Examining Different Regions of Relevance: From Highly Relevant to Not Relevant.
Spink, Amanda; Greisdorf, Howard; Bateman, Judy
1998-01-01
Proposes a useful concept of relevance as a relationship and an effect on the movement of a user through the iterative stages of their information seeking process, and that users' relevance judgments can be plotted on a Three-Dimensional Spatial Model of Relevance Level, Degree and Time. Discusses implications for the development of information…
Tumbling in Turbulence: How much does particle shape effect particle motion?
Variano, E. A.; Andersson, H. I.; Zhao, L.; Byron, M.
2014-12-01
Natural particles suspended in surface water are often non-spherical. We explore the ways in which particle shape effects particle motion, focusing specifically on how particle rotation is divided into spinning and tumbling components. This, in turn, will effect particle collision, clustering, and settling rates. We focus on idealized axisymmetric particles shaped as rods, discs, and spheroids. They are chosen so as to explain the physics of aspherical-particle motion that will be relevant for natural particles such as plankton, sediment, or aggregates (e.g. oil-mineral aggregates, clay flocs, or bio-sediment aggregates held together by TEP). Our work begins with laboratory measurements of particle motion in a turbulence tank built to mimic the flow found in rivers, estuaries, and the ocean surface mixed layer. We then proceed to direct numerical simulation of particle-flow interactions in sheared turbulence similar to that which is found in the surface water of creeks and rivers. We find that shape has only a very weak effect on particle angular velocity, which is a quantity calculated with respect the global reference frame (i.e. east/north/up). If we analyze rotation in a particle's local frame (i.e. the particle's principle axes of rotation), then particle shape has a strong effect on rotation. In the local frame, rotation is described by two components: tumbling and spinning. We find that rod-shaped particles spin more than they tumble, and we find that disc-shaped particles tumble more than they spin. Such behavior is indicative of how particles respond the the directional influence of vortex tubes in turbulence, and such response has implications for particle motion other than rotation. Understanding particle alignment is relevant for predicting particle-particle collision rates, particle-wall collision rates, and the shear-driven breakup of aggregates. We discuss these briefly in the context of what can be concluded from the rotation data discussed above.
How important is thermodynamics for identifying elementary flux modes?
Peres, Sabine; Jolicœur, Mario; Moulin, Cécile
2017-01-01
We present a method for computing thermodynamically feasible elementary flux modes (tEFMs) using equilibrium constants without need of internal metabolite concentrations. The method is compared with the method based on a binary distinction between reversible and irreversible reactions. When all reactions are reversible, adding the constraints based on equilibrium constants reduces the number of elementary flux modes (EFMs) by a factor of two. Declaring in advance some reactions as irreversible, based on reliable biochemical expertise, can in general reduce the number of EFMs by a greater factor. But, even in this case, computing tEFMs can rule out some EFMs which are biochemically irrelevant. We applied our method to two published models described with binary distinction: the monosaccharide metabolism and the central carbon metabolism of Chinese hamster ovary cells. The results show that the binary distinction is in good agreement with biochemical observations. Moreover, the suppression of the EFMs that are not consistent with the equilibrium constants appears to be biologically relevant. PMID:28222104
Motivating quantum field theory: the boosted particle in a box
Vutha, Amar C
2013-01-01
It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided, using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, that are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation.
Searches for Fractionally Charged Particles: What Should Be Done Next?
Perl, Martin L.; /SLAC
2009-01-15
Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?