WorldWideScience

Sample records for relevant clock genes

  1. Circadian expression of clock genes and clock-controlled genes in the rat retina

    NARCIS (Netherlands)

    Kamphuis, Willem; Cailotto, Cathy; Dijk, Frederike; Bergen, Arthur; Buijs, Ruud M.

    2005-01-01

    The circadian expression patterns of genes encoding for proteins that make up the core of the circadian clock were measured in rat retina using real-time quantitative PCR (qPCR). Transcript levels of several genes previously used for normalization of qPCR assays were determined and the effect of

  2. Diurnal oscillations of soybean circadian clock and drought responsive genes.

    Directory of Open Access Journals (Sweden)

    Juliana Marcolino-Gomes

    Full Text Available Rhythms produced by the endogenous circadian clock play a critical role in allowing plants to respond and adapt to the environment. While there is a well-established regulatory link between the circadian clock and responses to abiotic stress in model plants, little is known of the circadian system in crop species like soybean. This study examines how drought impacts diurnal oscillation of both drought responsive and circadian clock genes in soybean. Drought stress induced marked changes in gene expression of several circadian clock-like components, such as LCL1-, GmELF4- and PRR-like genes, which had reduced expression in stressed plants. The same conditions produced a phase advance of expression for the GmTOC1-like, GmLUX-like and GmPRR7-like genes. Similarly, the rhythmic expression pattern of the soybean drought-responsive genes DREB-, bZIP-, GOLS-, RAB18- and Remorin-like changed significantly after plant exposure to drought. In silico analysis of promoter regions of these genes revealed the presence of cis-elements associated both with stress and circadian clock regulation. Furthermore, some soybean genes with upstream ABRE elements were responsive to abscisic acid treatment. Our results indicate that some connection between the drought response and the circadian clock may exist in soybean since (i drought stress affects gene expression of circadian clock components and (ii several stress responsive genes display diurnal oscillation in soybeans.

  3. Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice*

    Science.gov (United States)

    Takarada, Takeshi; Kodama, Ayumi; Hotta, Shogo; Mieda, Michihiro; Shimba, Shigeki; Hinoi, Eiichi; Yoneda, Yukio

    2012-01-01

    We have previously shown transient promotion by parathyroid hormone of Period-1 (Per1) expression in cultured chondrocytes. Here we show the modulation by clock genes of chondrogenic differentiation through gene transactivation of the master regulator of chondrogenesis Indian hedgehog (IHH) in chondrocytes of the growth plate. Several clock genes were expressed with oscillatory rhythmicity in cultured chondrocytes and rib growth plate in mice, whereas chondrogenesis was markedly inhibited in stable transfectants of Per1 in chondrocytic ATDC5 cells and in rib growth plate chondrocytes from mice deficient of brain and muscle aryl hydrocarbon receptor nuclear translocator-like (BMAL1). Ihh promoter activity was regulated by different clock gene products, with clear circadian rhythmicity in expression profiles of Ihh in the growth plate. In BMAL1-null mice, a predominant decrease was seen in Ihh expression in the growth plate with a smaller body size than in wild-type mice. BMAL1 deficit led to disruption of the rhythmic expression profiles of both Per1 and Ihh in the growth plate. A clear rhythmicity was seen with Ihh expression in ATDC5 cells exposed to dexamethasone. In young mice defective of BMAL1 exclusively in chondrocytes, similar abnormalities were found in bone growth and Ihh expression. These results suggest that endochondral ossification is under the regulation of particular clock gene products expressed in chondrocytes during postnatal skeletogenesis through a mechanism relevant to the rhythmic Ihh expression. PMID:22936800

  4. Clock gene variation in Tachycineta swallows.

    Science.gov (United States)

    Dor, Roi; Cooper, Caren B; Lovette, Irby J; Massoni, Viviana; Bulit, Flor; Liljesthrom, Marcela; Winkler, David W

    2012-01-01

    Many animals use photoperiod cues to synchronize reproduction with environmental conditions and thereby improve their reproductive success. The circadian clock, which creates endogenous behavioral and physiological rhythms typically entrained to photoperiod, is well characterized at the molecular level. Recent work provided evidence for an association between Clock poly-Q length polymorphism and latitude and, within a population, an association with the date of laying and the length of the incubation period. Despite relatively high overall breeding synchrony, the timing of clutch initiation has a large impact on the fitness of swallows in the genus Tachycineta. We compared length polymorphism in the Clock poly-Q region among five populations from five different Tachycineta species that breed across a hemisphere-wide latitudinal gradient (Fig. 1). Clock poly-Q variation was not associated with latitude; however, there was an association between Clock poly-Q allele diversity and the degree of clutch size decline within breeding seasons. We did not find evidence for an association between Clock poly-Q variation and date of clutch initiation in for any of the five Tachycineta species, nor did we found a relationship between incubation duration and Clock genotype. Thus, there is no general association between latitude, breeding phenology, and Clock polymorphism in this clade of closely related birds.Figure 1Photos of Tachycineta swallows that were used in this study: A) T. bicolor from Ithaca, New York, B) T. leucorrhoa from Chascomús, Argentina, C) T. albilinea from Hill Bank, Belize, D) T. meyeni from Puerto Varas, Chile, and E) T. thalassina from Mono Lake, California, Photographers: B: Valentina Ferretti; A, C-E: David Winkler.

  5. Sleep Loss Reduces the DNA-Binding of BMAL1, CLOCK, and NPAS2 to Specific Clock Genes in the Mouse Cerebral Cortex

    OpenAIRE

    Mongrain, Valerie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory s...

  6. Circadian rhythms and light responsiveness of mammalian clock gene, Clock and BMAL1, transcripts in the rat retina.

    Science.gov (United States)

    Namihira, M; Honma, S; Abe, H; Tanahashi, Y; Ikeda, M; Honma, K

    1999-08-13

    Circadian expression and light-responsiveness of the mammalian clock genes, Clock and BMAL1, in the rat retina were examined by in situ hydbribization under constant darkness. A small but significant daily variation was detected in the Clock transcript level, but not in BMAL1. Light increased the Clock and BMAL1 expressions significantly when examined 60 min after exposure. The light-induced gene expression was phase-dependent for Clock and peaked at ZT2, while rather constant throughout the day for BMAL1. These findings suggest that Clock and BMAL1 play different roles in the generation of circadian rhytm in the retina from those in the suprachiasmatic nucleus. Different roles are also suggested between the two genes in the photic signal transduction in the retina.

  7. Direct Repression of Evening Genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis Circadian Clock.

    Science.gov (United States)

    Kamioka, Mari; Takao, Saori; Suzuki, Takamasa; Taki, Kyomi; Higashiyama, Tetsuya; Kinoshita, Toshinori; Nakamichi, Norihito

    2016-03-01

    The circadian clock is a biological timekeeping system that provides organisms with the ability to adapt to day-night cycles. Timing of the expression of four members of the Arabidopsis thaliana PSEUDO-RESPONSE REGULATOR(PRR) family is crucial for proper clock function, and transcriptional control of PRRs remains incompletely defined. Here, we demonstrate that direct regulation of PRR5 by CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) determines the repression state of PRR5 in the morning. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) analyses indicated that CCA1 associates with three separate regions upstream of PRR5 CCA1 and its homolog LATE ELONGATED HYPOCOTYL (LHY) suppressed PRR5 promoter activity in a transient assay. The regions bound by CCA1 in the PRR5 promoter gave rhythmic patterns with troughs in the morning, when CCA1 and LHY are at high levels. Furthermore,ChIP-seq revealed that CCA1 associates with at least 449 loci with 863 adjacent genes. Importantly, this gene set contains genes that are repressed but upregulated incca1 lhy double mutants in the morning. This study shows that direct binding by CCA1 in the morning provides strong repression of PRR5, and repression by CCA1 also temporally regulates an evening-expressed gene set that includes PRR5. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.

    Directory of Open Access Journals (Sweden)

    Haipeng Ci

    Full Text Available BACKGROUND: The arginine vasopressin receptor (AVPR and oxytocin receptor (OXTR genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. METHODOLOGY/PRINCIPAL FINDINGS: This study assessed interactions between the clock gene (rs1801260, rs6832769 and the OXTR (rs1042778, rs237887 and AVPR1b (rs28373064 genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436. The Prosocial Tendencies Measure (PTM-R was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. CONCLUSIONS: The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.

  9. Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.

    Science.gov (United States)

    Ci, Haipeng; Wu, Nan; Su, Yanjie

    2014-01-01

    The arginine vasopressin receptor (AVPR) and oxytocin receptor (OXTR) genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. This study assessed interactions between the clock gene (rs1801260, rs6832769) and the OXTR (rs1042778, rs237887) and AVPR1b (rs28373064) genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436). The Prosocial Tendencies Measure (PTM-R) was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.

  10. Clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint?

    Science.gov (United States)

    Krabbenhoft, Trevor J; Turner, Thomas F

    2014-01-01

    Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.

  11. An association between clock genes and clock-controlled cell cycle genes in murine colorectal tumors

    Czech Academy of Sciences Publication Activity Database

    Soták, Matúš; Polidarová, Lenka; Ergang, Peter; Sumová, Alena; Pácha, Jiří

    2013-01-01

    Roč. 132, č. 5 (2013), s. 1032-1041 ISSN 0020-7136 R&D Projects: GA MZd(CZ) NS9982 Institutional research plan: CEZ:AV0Z50110509 Keywords : cancer * circadian rhythm * peripheral circadian clock Subject RIV: FE - Other Internal Medicine Disciplines Impact factor: 5.007, year: 2013

  12. Mining for novel candidate clock genes in the circadian regulatory network

    OpenAIRE

    Bhargava, Anuprabha; Herzel, Hanspeter; Ananthasubramaniam, Bharath

    2015-01-01

    Background Most physiological processes in mammals are temporally regulated by means of a master circadian clock in the brain and peripheral oscillators in most other tissues. A transcriptional-translation feedback network of clock genes produces near 24 h oscillations in clock gene and protein expression. Here, we aim to identify novel additions to the clock network using a meta-analysis of public chromatin immunoprecipitation sequencing (ChIP-seq), proteomics and protein-protein interaction...

  13. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    Science.gov (United States)

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  14. A role for clock genes in sleep homeostasis.

    Science.gov (United States)

    Franken, Paul

    2013-10-01

    The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Daily rhythmicity of clock gene transcripts in atlantic cod fast skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Carlo C Lazado

    Full Text Available The classical notion of a centralized clock that governs circadian rhythmicity has been challenged with the discovery of peripheral oscillators that enable organisms to cope with daily changes in their environment. The present study aimed to identify the molecular clock components in Atlantic cod (Gadus morhua and to investigate their daily gene expression in fast skeletal muscle. Atlantic cod clock genes were closely related to their orthologs in teleosts and tetrapods. Synteny was conserved to varying degrees in the majority of the 18 clock genes examined. In particular, aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2, RAR-related orphan receptor A (rora and timeless (tim displayed high degrees of conservation. Expression profiling during the early ontogenesis revealed that some transcripts were maternally transferred, namely arntl2, cryptochrome 1b and 2 (cry1b and cry2, and period 2a and 2b (per2a and per2b. Most clock genes were ubiquitously expressed in various tissues, suggesting the possible existence of multiple peripheral clock systems in Atlantic cod. In particular, they were all detected in fast skeletal muscle, with the exception of neuronal PAS (Per-Arnt-Single-minded domain-containing protein (npas1 and rora. Rhythmicity analysis revealed 8 clock genes with daily rhythmic expression, namely arntl2, circadian locomotor output cycles kaput (clock, npas2, cry2, cry3 per2a, nuclear receptor subfamily 1, group D, member 1 (nr1d1, and nr1d2a. Transcript levels of the myogenic genes myogenic factor 5 (myf5 and muscleblind-like 1 (mbnl1 strongly correlated with clock gene expression. This is the first study to unravel the molecular components of peripheral clocks in Atlantic cod. Taken together, our data suggest that the putative clock system in fast skeletal muscle of Atlantic cod has regulatory implications on muscle physiology, particularly in the expression of genes related to myogenesis.

  16. Expression of core clock genes in colorectal tumour cells compared with normal mucosa

    DEFF Research Database (Denmark)

    Fonnes, S; Donatsky, A M; Gögenur, I

    2015-01-01

    AIM: Experimental studies have shown that some circadian core clock genes may act as tumour suppressors and have an important role in the response to oncological treatment. This study investigated the evidence regarding modified expression of core clock genes in colorectal cancer and its...... expression of colorectal cancer cells compared with healthy mucosa cells from specimens analysed by real-time or quantitative real-time polymer chain reaction. The expression of the core clock genes Period, Cryptochrome, Bmal1 and Clock in colorectal tumours were compared with healthy mucosa and correlated...... with clinicopathological features and survival. RESULTS: Seventy-four articles were identified and 11 studies were included. Overall, gene expression of Period was significantly decreased in colorectal cancer cells compared with healthy mucosa cells. This tendency was also seen in the gene expression of Clock. Other core...

  17. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-05-25

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.

  18. The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin

    International Nuclear Information System (INIS)

    Bluhm, A.P.C.; Obeid, N.N.; Castrucci, A.M.L.; Visconti, M.A.

    2012-01-01

    Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression

  19. A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response.

    Directory of Open Access Journals (Sweden)

    Michael J McCarthy

    Full Text Available Circadian rhythm abnormalities in bipolar disorder (BD have led to a search for genetic abnormalities in circadian "clock genes" associated with BD. However, no significant clock gene findings have emerged from genome-wide association studies (GWAS. At least three factors could account for this discrepancy: complex traits are polygenic, the organization of the clock is more complex than previously recognized, and/or genetic risk for BD may be shared across multiple illnesses. To investigate these issues, we considered the clock gene network at three levels: essential "core" clock genes, upstream circadian clock modulators, and downstream clock controlled genes. Using relaxed thresholds for GWAS statistical significance, we determined the rates of clock vs. control genetic associations with BD, and four additional illnesses that share clinical features and/or genetic risk with BD (major depression, schizophrenia, attention deficit/hyperactivity. Then we compared the results to a set of lithium-responsive genes. Associations with BD-spectrum illnesses and lithium-responsiveness were both enriched among core clock genes but not among upstream clock modulators. Associations with BD-spectrum illnesses and lithium-responsiveness were also enriched among pervasively rhythmic clock-controlled genes but not among genes that were less pervasively rhythmic or non-rhythmic. Our analysis reveals previously unrecognized associations between clock genes and BD-spectrum illnesses, partly reconciling previously discordant results from past GWAS and candidate gene studies.

  20. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan

    2016-01-01

    BACKGROUND: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation...... of clock gene expression in depressive patients many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats associates with alternations of the diurnal expression of clock genes....... The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We...

  1. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    International Nuclear Information System (INIS)

    Shimizu, Takashi; Hirai, Yuko; Murayama, Chiaki; Miyamoto, Akio; Miyazaki, Hitoshi; Miyazaki, Koyomi

    2011-01-01

    Highlights: → Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. →Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. → Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. →Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. → The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.

  2. Circadian Clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp [Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Hirai, Yuko; Murayama, Chiaki; Miyamoto, Akio [Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Miyazaki, Hitoshi [Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572 (Japan); Miyazaki, Koyomi [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566 (Japan)

    2011-08-19

    Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.

  3. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures.

    Directory of Open Access Journals (Sweden)

    Purificación Gómez-Abellán

    Full Text Available to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V and subcutaneous (S adipose tissue (AT in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX on positive and negative clock genes expression.VAT and SAT biopsies were obtained from morbid obese women (body mass index ≥ 40 kg/m(2 (n = 6. In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX and AT explants treated with DEX (2 hours were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR.CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements in the SAT (situation not present in VAT. A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues.24 h patterns in CLOCK and BMAL1 (positive clock elements and PER2 (negative element mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.

  4. Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas.

    Science.gov (United States)

    Payton, Laura; Perrigault, Mickael; Bourdineaud, Jean-Paul; Marcel, Anjara; Massabuau, Jean-Charles; Tran, Damien

    2017-08-01

    RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.

  5. Association between circadian clock genes and diapause incidence in Drosophila triauraria.

    Directory of Open Access Journals (Sweden)

    Hirokazu Yamada

    Full Text Available Diapause is an adaptive response triggered by seasonal photoperiodicity to overcome unfavorable seasons. The photoperiodic clock is a system that controls seasonal physiological processes, but our knowledge about its physiological mechanisms and genetic architecture remains incomplete. The circadian clock is another system that controls daily rhythmic physiological phenomena. It has been argued that there is a connection between the two clocks. To examine the genetic connection between them, we analyzed the associations of five circadian clock genes (period, timeless, Clock, cycle and cryptochrome with the occurrence of diapause in Drosophila triauraria, which shows a robust reproductive diapause with clear photoperiodicity. Non-diapause strains found in low latitudes were compared in genetic crosses with the diapause strain, in which the diapause trait is clearly dominant. Single nucleotide polymorphism and deletion analyses of the five circadian clock genes in backcross progeny revealed that allelic differences in timeless and cryptochrome between the strains were additively associated with the differences in the incidence of diapause. This suggests that there is a molecular link between certain circadian clock genes and the occurrence of diapause.

  6. Association between genetic variants of the clock gene and obesity and sleep duration.

    Science.gov (United States)

    Valladares, Macarena; Obregón, Ana María; Chaput, Jean-Philippe

    2015-12-01

    Obesity is a multifactorial disease caused by the interaction of genetic and environmental factors related to lifestyle aspects. It has been shown that reduced sleep is associated with increased body mass index (BMI). Circadian Locomotor Output Cycles Kaput (CLOCK) gene variants have also been associated with obesity. The objective of this mini-review was to discuss the available literature related to CLOCK gene variants associated with adiposity and sleep duration in humans. In total, 16 articles complied with the terms of the search that reported CLOCK variants associated with sleep duration, energy intake, and BMI. Overall, six CLOCK single nucleotide polymorphisms (SNPs) have been associated with sleep duration, and three variants have been associated with energy intake variables. Overall, the most studied area has been the association of CLOCK gene with obesity; close to eight common variants have been associated with obesity. The most studied CLOCK SNP in different populations is rs1801260, and most of these populations correspond to European populations. Collectively, identifying at risk CLOCK genotypes is a new area of research that may help identify individuals who are more susceptible to overeating and gaining weight when exposed to short sleep durations.

  7. The Clock gene clone and its circadian rhythms in Pelteobagrus vachelli

    Science.gov (United States)

    Qin, Chuanjie; Shao, Ting

    2015-05-01

    The Clock gene, a key molecule in circadian systems, is widely distributed in the animal kingdom. We isolated a 936-bp partial cDNA sequence of the Clock gene ( Pva-clock) from the darkbarbel catfish Pelteobagrus vachelli that exhibited high identity with Clock genes of other species of fish and animals (65%-88%). The putative domains included a basic helix-loop-helix (bHLH) domain and two period-ARNT-single-minded (PAS) domains, which were also similar to those in other species of fish and animals. Pva-Clock was primarily expressed in the brain, and was detected in all of the peripheral tissues sampled. Additionally, the pattern of Pva-Clock expression over a 24-h period exhibited a circadian rhythm in the brain, liver and intestine, with the acrophase at zeitgeber time 21:35, 23:00, and 23:23, respectively. Our results provide insight into the function of the molecular Clock of P. vachelli.

  8. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  9. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs.

    Science.gov (United States)

    Campoli, Chiara; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2012-06-21

    The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.

  10. Clock genes × stress × reward interactions in alcohol and substance use disorders.

    Science.gov (United States)

    Perreau-Lenz, Stéphanie; Spanagel, Rainer

    2015-06-01

    Adverse life events and highly stressful environments have deleterious consequences for mental health. Those environmental factors can potentiate alcohol and drug abuse in vulnerable individuals carrying specific genetic risk factors, hence producing the final risk for alcohol- and substance-use disorders development. The nature of these genes remains to be fully determined, but studies indicate their direct or indirect relation to the stress hypothalamo-pituitary-adrenal (HPA) axis and/or reward systems. Over the past decade, clock genes have been revealed to be key-players in influencing acute and chronic alcohol/drug effects. In parallel, the influence of chronic stress and stressful life events in promoting alcohol and substance use and abuse has been demonstrated. Furthermore, the reciprocal interaction of clock genes with various HPA-axis components, as well as the evidence for an implication of clock genes in stress-induced alcohol abuse, have led to the idea that clock genes, and Period genes in particular, may represent key genetic factors to consider when examining gene × environment interaction in the etiology of addiction. The aim of the present review is to summarize findings linking clock genes, stress, and alcohol and substance abuse, and to propose potential underlying neurobiological mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    Science.gov (United States)

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  12. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis.

    Science.gov (United States)

    Kwon, Young-Ju; Park, Mi-Jeong; Kim, Sang-Gyu; Baldwin, Ian T; Park, Chung-Mo

    2014-05-19

    The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5' splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock and environmental stress

  13. Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis

    Science.gov (United States)

    2014-01-01

    Background The circadian clock enables living organisms to anticipate recurring daily and seasonal fluctuations in their growth habitats and synchronize their biology to the environmental cycle. The plant circadian clock consists of multiple transcription-translation feedback loops that are entrained by environmental signals, such as light and temperature. In recent years, alternative splicing emerges as an important molecular mechanism that modulates the clock function in plants. Several clock genes are known to undergo alternative splicing in response to changes in environmental conditions, suggesting that the clock function is intimately associated with environmental responses via the alternative splicing of the clock genes. However, the alternative splicing events of the clock genes have not been studied at the molecular level. Results We systematically examined whether major clock genes undergo alternative splicing under various environmental conditions in Arabidopsis. We also investigated the fates of the RNA splice variants of the clock genes. It was found that the clock genes, including EARLY FLOWERING 3 (ELF3) and ZEITLUPE (ZTL) that have not been studied in terms of alternative splicing, undergo extensive alternative splicing through diverse modes of splicing events, such as intron retention, exon skipping, and selection of alternative 5′ splice site. Their alternative splicing patterns were differentially influenced by changes in photoperiod, temperature extremes, and salt stress. Notably, the RNA splice variants of TIMING OF CAB EXPRESSION 1 (TOC1) and ELF3 were degraded through the nonsense-mediated decay (NMD) pathway, whereas those of other clock genes were insensitive to NMD. Conclusion Taken together, our observations demonstrate that the major clock genes examined undergo extensive alternative splicing under various environmental conditions, suggesting that alternative splicing is a molecular scheme that underlies the linkage between the clock

  14. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Directory of Open Access Journals (Sweden)

    Valérie Mongrain

    Full Text Available We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP, we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset, -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  15. Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex.

    Science.gov (United States)

    Mongrain, Valérie; La Spada, Francesco; Curie, Thomas; Franken, Paul

    2011-01-01

    We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.

  16. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    Science.gov (United States)

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  17. Effect of monochromatic light on circadian rhythmic expression of clock genes in the hypothalamus of chick.

    Science.gov (United States)

    Jiang, Nan; Wang, Zixu; Cao, Jing; Dong, Yulan; Chen, Yaoxing

    2017-08-01

    To clarify the effect of monochromatic light on circadian clock gene expression in chick hypothalamus, a total 240 newly hatched chickens were reared under blue light (BL), green light (GL), red light (RL) and white light (WL), respectively. On the post-hatched day 14, 24-h profiles of seven core clock genes (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3) were measured at six time points (CT 0, CT 4, CT 8, CT 12, CT 16, CT 20, circadian time). We found all these clock genes expressed with a significant rhythmicity in different light wavelength groups. Meanwhile, cClock and cBmal1 showed a high level under GL, and followed a corresponding high expression of cCry1. However, RL decreased the expression levels of these genes. Be consistent with the mRNA level, CLOCK and BMAL1 proteins also showed a high level under GL. The CLOCK-like immunoreactive neurons were observed not only in the SCN, but also in the non-SCN brain region such as the nucleus anterior medialis hypothalami, the periventricularis nucleus, the paraventricular nucleus and the median eminence. All these results are consistent with the auto-regulatory circadian feedback loop, and indicate that GL may play an important role on the circadian time generation and development in the chick hypothalamus. Our results also suggest that the circadian clock in the chick hypothalamus such as non-SCN brain region were involved in the regulation of photo information. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Expression of circadian clock genes and proteins in urothelial cancer is related to cancer-associated genes

    International Nuclear Information System (INIS)

    Litlekalsoy, Jorunn; Rostad, Kari; Kalland, Karl-Henning; Hostmark, Jens G.; Laerum, Ole Didrik

    2016-01-01

    The purpose of this study was to evaluate invasive and metastatic potential of urothelial cancer by investigating differential expression of various clock genes/proteins participating in the 24 h circadian rhythms and to compare these gene expressions with transcription of other cancer-associated genes. Twenty seven paired samples of tumour and benign tissue collected from patients who underwent cystectomy were analysed and compared to 15 samples of normal bladder tissue taken from patients who underwent cystoscopy for benign prostate hyperplasia (unrelated donors). Immunohistochemical analyses were made for clock and clock-related proteins. In addition, the gene-expression levels of 22 genes (clock genes, casein kinases, oncogenes, tumour suppressor genes and cytokeratins) were analysed by real-time quantitative PCR (qPCR). Considerable up- or down-regulation and altered cellular distribution of different clock proteins, a reduction of casein kinase1A1 (CSNK1A1) and increase of casein kinase alpha 1 E (CSNK1E) were found. The pattern was significantly correlated with simultaneous up-regulation of stimulatory tumour markers, and a down-regulation of several suppressor genes. The pattern was mainly seen in aneuploid high-grade cancers. Considerable alterations were also found in the neighbouring bladder mucosa. The close correlation between altered expression of various clock genes and common tumour markers in urothelial cancer indicates that disturbed function in the cellular clock work may be an important additional mechanism contributing to cancer progression and malignant behaviour. The online version of this article (doi:10.1186/s12885-016-2580-y) contains supplementary material, which is available to authorized users

  19. Transcriptome Profiling of the Lungs Reveals Molecular Clock Genes Expression Changes after Chronic Exposure to Ambient Air Particles

    Directory of Open Access Journals (Sweden)

    Pengcheng Song

    2017-01-01

    Full Text Available The symptoms of asthma, breathlessness, insomnia, etc. all have relevance to pulmonary rhythmic disturbances. Epidemiology and toxicology studies have demonstrated that exposure to ambient air particles can result in pulmonary dysfunction. However, there are no data directly supporting a link between air pollution and circadian rhythm disorder. In the present study, we found that breathing highly polluted air resulted in changes of the molecular clock genes expression in lung by transcriptome profiling analyses in a rodent model. Compared to those exposed to filtered air, in both pregnant and offspring rats in the unfiltered group, key clock genes (Per1, Per2, Per3, Rev-erbα and Dbp expression level decreased and Bmal1 expression level increased. In both rat dams and their offspring, after continuous exposure to unfiltered air, we observed significant histologic evidence for both perivascular and peribronchial inflammation, increased tissue and systemic oxidative stress in the lungs. Our results suggest that chronic exposure to particulate matter can induce alterations of clock genes expression, which could be another important pathway for explaining the feedbacks of ambient particle exposure in addition to oxidative stress and inflammation.

  20. Photoperiodic regulation of diapause in linden bugs: are period and Clock genes involved?

    Czech Academy of Sciences Publication Activity Database

    Syrová, Zdeňka; Doležel, David; Šauman, Ivo; Hodková, Magdalena

    2003-01-01

    Roč. 60, - (2003), s. 2510-2515 ISSN 1420-682X R&D Projects: GA ČR GA206/02/0900; GA ČR GA204/01/0404 Institutional research plan: CEZ:AV0Z5007907 Keywords : period gene * clock gene * photoperiodism Subject RIV: ED - Physiology Impact factor: 4.995, year: 2003

  1. Investigation of Seasonal and Latitudinal Effects on the Expression of Clock Genes in Drosophila

    Science.gov (United States)

    Hosseini, Seyede Sanaz; Nazarimehr, Fahimeh; Jafari, Sajad

    The primary goal in this work is to develop a dynamical model capturing the influence of seasonal and latitudinal variations on the expression of Drosophila clock genes. To this end, we study a specific dynamical system with strange attractors that exhibit changes of Drosophila activity in a range of latitudes and across different seasons. Bifurcations of this system are analyzed to peruse the effect of season and latitude on the behavior of clock genes. Existing experimental data collected from the activity of Drosophila melanogaster corroborate the dynamical model.

  2. Deleting the Arntl clock gene in the granular layer of the mouse cerebellum

    DEFF Research Database (Denmark)

    Bering, Tenna; Carstensen, Mikkel Bloss; Rath, Martin Fredensborg

    2017-01-01

    nucleus. It has been suggested that the cerebellar circadian oscillator is involved in food anticipation, but direct molecular evidence of the role of the circadian oscillator of the cerebellar cortex is currently unavailable. To investigate the hypothesis that the circadian oscillator of the cerebellum...... is involved in circadian physiology and food anticipation, we therefore by use of Cre-LoxP technology generated a conditional knockout mouse with the core clock gene Arntl deleted specifically in granule cells of the cerebellum, since expression of clock genes in the cerebellar cortex is mainly located...

  3. Association of circadian rhythm genes ARNTL/BMAL1 and CLOCK with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Polona Lavtar

    Full Text Available Prevalence of multiple sclerosis varies with geographic latitude. We hypothesized that this fact might be partially associated with the influence of latitude on circadian rhythm and consequently that genetic variability of key circadian rhythm regulators, ARNTL and CLOCK genes, might contribute to the risk for multiple sclerosis. Our aim was to analyse selected polymorphisms of ARNTL and CLOCK, and their association with multiple sclerosis. A total of 900 Caucasian patients and 1024 healthy controls were compared for genetic signature at 8 SNPs, 4 for each of both genes. We found a statistically significant difference in genotype (ARNTL rs3789327, P = 7.5·10-5; CLOCK rs6811520 P = 0.02 distributions in patients and controls. The ARNTL rs3789327 CC genotype was associated with higher risk for multiple sclerosis at an OR of 1.67 (95% CI 1.35-2.07, P = 0.0001 and the CLOCK rs6811520 genotype CC at an OR of 1.40 (95% CI 1.13-1.73, P = 0.002. The results of this study suggest that genetic variability in the ARNTL and CLOCK genes might be associated with risk for multiple sclerosis.

  4. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    Energy Technology Data Exchange (ETDEWEB)

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  5. Clock Genes and Altered Sleep-Wake Rhythms: Their Role in the Development of Psychiatric Disorders.

    Science.gov (United States)

    Charrier, Annaëlle; Olliac, Bertrand; Roubertoux, Pierre; Tordjman, Sylvie

    2017-04-29

    In mammals, the circadian clocks network (central and peripheral oscillators) controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder). However, the underlying mechanisms of these associations remain to be ascertained and the cause-effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep-wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders). First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep-wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  6. Clock Genes and Altered Sleep–Wake Rhythms: Their Role in the Development of Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Annaëlle Charrier

    2017-04-01

    Full Text Available In mammals, the circadian clocks network (central and peripheral oscillators controls circadian rhythms and orchestrates the expression of a range of downstream genes, allowing the organism to anticipate and adapt to environmental changes. Beyond their role in circadian rhythms, several studies have highlighted that circadian clock genes may have a more widespread physiological effect on cognition, mood, and reward-related behaviors. Furthermore, single nucleotide polymorphisms in core circadian clock genes have been associated with psychiatric disorders (such as autism spectrum disorder, schizophrenia, anxiety disorders, major depressive disorder, bipolar disorder, and attention deficit hyperactivity disorder. However, the underlying mechanisms of these associations remain to be ascertained and the cause–effect relationships are not clearly established. The objective of this article is to clarify the role of clock genes and altered sleep–wake rhythms in the development of psychiatric disorders (sleep problems are often observed at early onset of psychiatric disorders. First, the molecular mechanisms of circadian rhythms are described. Then, the relationships between disrupted circadian rhythms, including sleep–wake rhythms, and psychiatric disorders are discussed. Further research may open interesting perspectives with promising avenues for early detection and therapeutic intervention in psychiatric disorders.

  7. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver.

    Science.gov (United States)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-02-15

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms in the liver. In this study, we investigated the necessity of neural inputs as well as of the feeding and adrenal hormone rhythms for maintaining daily hepatic clock gene rhythms. Clock genes kept their daily rhythm when only one of these three signals was disrupted, or when we disrupted hepatic neuronal inputs together with the adrenal hormone rhythm or with the daily feeding rhythm. However, all clock genes studied lost their daily expression rhythm after simultaneous disruption of the feeding and adrenal hormone rhythm. These data indicate that either a daily rhythm of feeding or adrenal hormones should be present to synchronize clock gene rhythms in the liver with the SCN. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. RNAi of the circadian clock gene period disrupts the circadian rhythm but not the circatidal rhythm in the mangrove cricket

    OpenAIRE

    Takekata, Hiroki; Matsuura, Yu; Goto, Shin G.; Satoh, Aya; Numata, Hideharu

    2012-01-01

    The clock mechanism for circatidal rhythm has long been controversial, and its molecular basis is completely unknown. The mangrove cricket, Apteronemobius asahinai, shows two rhythms simultaneously in its locomotor activity: a circatidal rhythm producing active and inactive phases as well as a circadian rhythm modifying the activity intensity of circatidal active phases. The role of the clock gene period (per), one of the key components of the circadian clock in insects, was investigated in t...

  9. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN. © 2015 The Author(s).

  10. Natural selection against a circadian clock gene mutation in mice.

    Science.gov (United States)

    Spoelstra, Kamiel; Wikelski, Martin; Daan, Serge; Loudon, Andrew S I; Hau, Michaela

    2016-01-19

    Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.

  11. Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population.

    Science.gov (United States)

    Lin, Eugene; Kuo, Po-Hsiu; Liu, Yu-Li; Yang, Albert C; Kao, Chung-Feng; Tsai, Shih-Jen

    2017-04-11

    Previous animal studies have indicated associations between circadian clock genes and cognitive impairment . In this study, we assessed whether 11 circadian clockgenes are associated with cognitive aging independently and/or through complex interactions in an old Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing cognitive aging. A total of 634 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examinations (MMSE) were administered to all subjects, and MMSE scores were used to evaluate cognitive function. Our data showed associations between cognitive aging and single nucleotide polymorphisms (SNPs) in 4 key circadian clock genes, CLOCK rs3749473 (p = 0.0017), NPAS2 rs17655330 (p = 0.0013), RORA rs13329238 (p = 0.0009), and RORB rs10781247 (p = 7.9 x 10-5). We also found that interactions between CLOCK rs3749473, NPAS2 rs17655330, RORA rs13329238, and RORB rs10781247 affected cognitive aging (p = 0.007). Finally, we investigated the influence of interactions between CLOCK rs3749473, RORA rs13329238, and RORB rs10781247 with environmental factors such as alcohol consumption, smoking status, physical activity, and social support on cognitive aging (p = 0.002 ~ 0.01). Our study indicates that circadian clock genes such as the CLOCK, NPAS2, RORA, and RORB genes may contribute to the risk of cognitive aging independently as well as through gene-gene and gene-environment interactions.

  12. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  14. Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary.

    Science.gov (United States)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Hindersson, Peter; Gräs, Søren

    2006-08-01

    Circadian rhythms are generated by endogenous clocks in the central brain oscillator, the suprachiasmatic nucleus, and peripheral tissues. The molecular basis for the circadian clock consists of a number of genes and proteins that form transcriptional/translational feedback loops. In the mammalian gonads, clock genes have been reported in the testes, but the expression pattern is developmental rather than circadian. Here we investigated the daily expression of the two core clock genes, Per1 and Per2, in the rat ovary using real-time RT-PCR, in situ hybridization histochemistry, and immunohistochemistry. Both Per1 and Per2 mRNA displayed a statistically significant rhythmic oscillation in the ovary with a period of 24 h in: 1) a group of rats during proestrus and estrus under 12-h light,12-h dark cycles; 2) a second group of rats representing a mixture of all 4 d of the estrous cycle under 12-h light,12-h dark conditions; and 3) a third group of rats representing a mixture of all 4 d of estrous cycle during continuous darkness. Per1 mRNA was low at Zeitgeber time 0-2 and peaked at Zeitgeber time 12-14, whereas Per2 mRNA was delayed by approximately 4 h relative to Per1. By in situ hybridization histochemistry, Per mRNAs were localized to steroidogenic cells in preantral, antral, and preovulatory follicles; corpora lutea; and interstitial glandular tissue. With newly developed antisera, we substantiated the expression of Per1 and Per2 in these cells by single/double immunohistochemistry. Furthermore, we visualized the temporal intracellular movements of PER1 and PER2 proteins. These findings suggest the existence of an ovarian circadian clock, which may play a role both locally and in the hypothalamo-pituitary-ovarian axis.

  15. Glutamine synthetase gene evolution: A good molecular clock

    International Nuclear Information System (INIS)

    Pesole, G.; Lanvave, C.; Saccone, C.; Bozzetti, M.P.; Preparata, G.

    1991-01-01

    Glutamine synthetase gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. The calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. The data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves

  16. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    Science.gov (United States)

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  17. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.

    Science.gov (United States)

    Benna, Clara; Helfrich-Förster, Charlotte; Rajendran, Senthilkumar; Monticelli, Halenya; Pilati, Pierluigi; Nitti, Donato; Mocellin, Simone

    2017-04-04

    The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate

  18. The Circadian Clock Gene BMAL1 Coordinates Intestinal RegenerationSummary

    Directory of Open Access Journals (Sweden)

    Kyle Stokes

    2017-07-01

    Full Text Available Background & Aims: The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. Methods: We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. Results: The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. Conclusions: Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology. Keywords: Intestine, Circadian Rhythms, Gastrointestinal Syndrome, TNF, Intestinal Stem Cells

  19. Phenotypic effects of genetic variability in human clock genes on ...

    Indian Academy of Sciences (India)

    2008-12-31

    Dec 31, 2008 ... Circadian rhythm-related sleep disorders have also been ..... cause or an effect of the scant attention that has been paid to the Bmal2 gene, no re- .... When sleep de- prived, PER35 homozygotes exhibited much greater deficit.

  20. Altered Rhythm of Adrenal Clock Genes, StAR and Serum Corticosterone in VIP Receptor 2-Deficient Mice

    DEFF Research Database (Denmark)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens

    2012-01-01

    oscillator based on a group of clock genes and their protein products. Mice lacking the VPAC2 receptor display disrupted circadian rhythm of physiology and behaviour, and therefore, we using real-time RT-PCR quantified (1) the mRNAs for the clock genes Per1 and Bmal1 in the adrenal gland and SCN, (2......RNA expression and serum corticosterone concentration. Double immunohistochemistry showed that the PER1 protein and StAR were co-localised in the same steroidogenic cells. Circulating corticosterone plays a role in the circadian timing system and the misaligned corticosterone rhythm in the VPAC2 receptor......The circadian time-keeping system consists of clocks in the suprachiasmatic nucleus (SCN) and in peripheral organs including an adrenal clock linked to the rhythmic corticosteroid production by regulating steroidogenic acute regulatory protein (StAR). Clock cells contain an autonomous molecular...

  1. Rhythmic expression of circadian clock genes in the preovulatory ovarian follicles of the laying hen.

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    Full Text Available The circadian clock is reported to play a role in the ovaries in a variety of vertebrate species, including the domestic hen. However, the ovary is an organ that changes daily, and the laying hen maintains a strict follicular hierarchy. The aim of this study was to examine the spatial-temporal expression of several known canonical clock genes in the granulosa and theca layers of six hierarchy follicles. We demonstrated that the granulosa cells (GCs of the F1-F3 follicles harbored intrinsic oscillatory mechanisms in vivo. In addition, cultured granulosa cells (GCs from F1 follicles exposed to luteinizing hormone (LH synchronization displayed Per2 mRNA oscillations, whereas, the less mature GCs (F5 plus F6 displayed no circadian change in Per2 mRNA levels. Cultures containing follicle-stimulating hormone (FSH combined with LH expressed levels of Per2 mRNA that were 2.5-fold higher than those in cultures with LH or FSH alone. These results show that there is spatial specificity in the localization of clock cells in hen preovulatory follicles. In addition, our results support the hypothesis that gonadotropins provide a cue for the development of the functional cellular clock in immature GCs.

  2. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  3. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial

    Science.gov (United States)

    Background Circadian rhythms regulate key biological processes influencing metabolic pathways. Dysregulation is associated with type 2 diabetes (T2D) and cardiovascular diseases (CVD). Circadian rhythms are generated by a transcriptional autoregulatory feedback loop involving core clock genes. CLOCK...

  4. Suicide attempts in children and adolescents: The place of clock genes and early rhythm dysfunction.

    Science.gov (United States)

    Olliac, Bertrand; Ouss, Lisa; Charrier, Annaëlle

    2016-11-01

    Suicide remains one of the leading causes of death among young people, and suicidal ideation and behavior are relatively common in healthy and clinical populations. Suicide risk in childhood and adolescence is often approached from the perspective of nosographic categories to which predictive variables for suicidal acts are often linked. The cascading effects resulting from altered clock genes in a pediatric population could participate in biological rhythm abnormalities and the emergence of suicide attempts through impaired regulation of circadian rhythms and emotional states with neurodevelopmental effects. Also, early trauma and stressful life events can alter the expression of clock genes and contribute to the emergence of suicide attempts. Alteration of clock genes might lead to desynchronized and abnormal circadian rhythms impairing in turn the synchronization between external and internal rhythms and therefore the adaptation of the individual to his/her internal and external environment with the development of psychiatric disorders associated with increased risk for suicide attempts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia.

    Science.gov (United States)

    Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato

    2015-08-04

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.

  6. Does exercise training impact clock genes in patients with coronary artery disease and type 2 diabetes mellitus?

    Science.gov (United States)

    Steidle-Kloc, Eva; Schönfelder, Martin; Müller, Edith; Sixt, Sebastian; Schuler, Gerhard; Patsch, Wolfgang; Niebauer, Josef

    2016-09-01

    Recent findings revealed negative effects of deregulated molecular circadian rhythm in coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM). Physical exercise training (ET) has been shown to promote anti-diabetic and anti-atherogenic responses in skeletal muscle of these patients, but the role of the circadian clock-machinery remains unknown. This study investigated whether mRNA expression of clock genes in skeletal muscle of CAD and T2DM patients is influenced by physical ET intervention. Nineteen patients with CAD and T2DM (age 64 ± 5 years) were randomised to either six months of ET (four weeks of in-hospital ET followed by a five-month ambulatory programme) or usual care. At the beginning of the study, after four weeks and after six months parameters of metabolic and cardiovascular risk factors, and physical exercise capacity were assessed. Gene expression was measured in skeletal muscle biopsies by quantitative real-time polymerase chain reaction (PCR). A selection of clock genes and associated components (circadian locomoter output cycle kaput protein (CLOCK), period (PER) 1, cryptochrome (CRY) 2 and aminolevulinate-deltA-synthase-1 (ALAS1)) was reliably measured and used for further analysis. A time-dependent effect in gene expression was observed in CLOCK (p = 0.013) and a significant interaction between time and intervention was observed for ALAS1 (p = 0.032; p = 0.014) as a result of ET. This is the first study to analyse clock gene expression in skeletal muscles of patients with CAD and T2DM participating in a long-lasting exercise intervention. ET, as one of the cornerstones in prevention and rehabilitation of CAD and T2DM, exerts no effects on CLOCK genes but meaningful effects on the clock-associated gene ALAS1. © The European Society of Cardiology 2016.

  7. Clock gene polymorphism, migratory behaviour and geographic distribution: a comparative study of trans-Saharan migratory birds.

    Science.gov (United States)

    Bazzi, Gaia; Cecere, Jacopo G; Caprioli, Manuela; Gatti, Emanuele; Gianfranceschi, Luca; Podofillini, Stefano; Possenti, Cristina D; Ambrosini, Roberto; Saino, Nicola; Spina, Fernando; Rubolini, Diego

    2016-12-01

    Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate 'circadian clock' genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans-Saharan migratory bird species, we investigated the relationships between species-level genetic variation at two candidate genes, Clock and Adcyap1, and species' traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in 'circadian clock' genotype frequencies, Clock allele size increased with breeding latitude across species. However, early- and late-migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long-distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long-distance migratory species, likely resulting from the time constraints imposed by late spring migration. © 2016 John Wiley & Sons Ltd.

  8. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  9. Altered cellular redox status, sirtuin abundance and clock gene expression in a mouse model of developmentally primed NASH.

    Science.gov (United States)

    Bruce, Kimberley D; Szczepankiewicz, Dawid; Sihota, Kiran K; Ravindraanandan, Manoj; Thomas, Hugh; Lillycrop, Karen A; Burdge, Graham C; Hanson, Mark A; Byrne, Christopher D; Cagampang, Felino R

    2016-07-01

    We have previously shown that high fat (HF) feeding during pregnancy primes the development of non-alcoholic steatohepatits (NASH) in the adult offspring. However, the underlying mechanisms are unclear. Since the endogenous molecular clock can regulate hepatic lipid metabolism, we investigated whether exposure to a HF diet during development could alter hepatic clock gene expression and contribute to NASH onset in later life. Female mice were fed either a control (C, 7%kcal fat) or HF (45%kcal fat) diet. Offspring were fed either a C or HF diet resulting in four offspring groups: C/C, C/HF, HF/C and HF/HF. NAFLD progression, cellular redox status, sirtuin expression (Sirt1, Sirt3), and the expression of core clock genes (Clock, Bmal1, Per2, Cry2) and clock-controlled genes involved in lipid metabolism (Rev-Erbα, Rev-Erbβ, RORα, and Srebp1c) were measured in offspring livers. Offspring fed a HF diet developed NAFLD. However HF fed offspring of mothers fed a HF diet developed NASH, coupled with significantly reduced NAD(+)/NADH (pNASH in adulthood, involving altered cellular redox status, reduced sirtuin abundance, and desynchronized clock gene expression. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Melanopsin resets circadian rhythms in cells by inducing clock gene Period1

    Science.gov (United States)

    Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika

    2014-02-01

    The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.

  11. Food-Anticipatory Behavior in Neonatal Rabbits and Rodents: An Update on the Role of Clock Genes

    Directory of Open Access Journals (Sweden)

    Mario Caba

    2018-05-01

    Full Text Available In mammals, the suprachiasmatic nucleus (SCN, the master circadian clock, is mainly synchronized to the environmental light/dark cycle. SCN oscillations are maintained by a molecular clockwork in which certain genes, Period 1–2, Cry1–2, Bmal1, and Clock, are rhythmically expressed. Disruption of these genes leads to a malfunctioning clockwork and behavioral and physiological rhythms are altered. In addition to synchronization of circadian rhythms by light, when subjects are exposed to food for a few hours daily, behavioral and physiological rhythms are entrained to anticipate mealtime, even in the absence of the SCN. The presence of anticipatory rhythms synchronized by food suggests the existence of an SCN-independent circadian pacemaker that might be dependent on clock genes. Interestingly, rabbit pups, unable to perceive light, suckle milk once a day, which entrains behavioral rhythms to anticipate nursing time. Mutations of clock genes, singly or in combination, affect diverse rhythms in brain activity and physiological processes, but anticipatory behavior and physiology to feeding time remains attenuated or unaffected. It had been suggested that compensatory upregulation of paralogs or subtypes genes, or even non-transcriptional mechanisms, are able to maintain circadian oscillations entrained to mealtime. In the present mini-review, we evaluate the current state of the role played by clock genes in meal anticipation and provide evidence for rabbit pups as a natural model of food-anticipatory circadian behavior.

  12. Acute Sleep Loss Induces Tissue-Specific Epigenetic and Transcriptional Alterations to Circadian Clock Genes in Men.

    Science.gov (United States)

    Cedernaes, Jonathan; Osler, Megan E; Voisin, Sarah; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Zierath, Juleen R; Schiöth, Helgi B; Benedict, Christian

    2015-09-01

    Shift workers are at increased risk of metabolic morbidities. Clock genes are known to regulate metabolic processes in peripheral tissues, eg, glucose oxidation. This study aimed to investigate how clock genes are affected at the epigenetic and transcriptional level in peripheral human tissues following acute total sleep deprivation (TSD), mimicking shift work with extended wakefulness. In a randomized, two-period, two-condition, crossover clinical study, 15 healthy men underwent two experimental sessions: x sleep (2230-0700 h) and overnight wakefulness. On the subsequent morning, serum cortisol was measured, followed by skeletal muscle and subcutaneous adipose tissue biopsies for DNA methylation and gene expression analyses of core clock genes (BMAL1, CLOCK, CRY1, PER1). Finally, baseline and 2-h post-oral glucose load plasma glucose concentrations were determined. In adipose tissue, acute sleep deprivation vs sleep increased methylation in the promoter of CRY1 (+4%; P = .026) and in two promoter-interacting enhancer regions of PER1 (+15%; P = .036; +9%; P = .026). In skeletal muscle, TSD vs sleep decreased gene expression of BMAL1 (-18%; P = .033) and CRY1 (-22%; P = .047). Concentrations of serum cortisol, which can reset peripheral tissue clocks, were decreased (2449 ± 932 vs 3178 ± 723 nmol/L; P = .039), whereas postprandial plasma glucose concentrations were elevated after TSD (7.77 ± 1.63 vs 6.59 ± 1.32 mmol/L; P = .011). Our findings demonstrate that a single night of wakefulness can alter the epigenetic and transcriptional profile of core circadian clock genes in key metabolic tissues. Tissue-specific clock alterations could explain why shift work may disrupt metabolic integrity as observed herein.

  13. Core clock, SUB1, and ABAR genes mediate flooding and drought responses via alternative splicing in soybean.

    Science.gov (United States)

    Syed, Naeem H; Prince, Silvas J; Mutava, Raymond N; Patil, Gunvant; Li, Song; Chen, Wei; Babu, Valliyodan; Joshi, Trupti; Khan, Saad; Nguyen, Henry T

    2015-12-01

    Circadian clocks are a great evolutionary innovation and provide competitive advantage during the day/night cycle and under changing environmental conditions. The circadian clock mediates expression of a large proportion of genes in plants, achieving a harmonious relationship between energy metabolism, photosynthesis, and biotic and abiotic stress responses. Here it is shown that multiple paralogues of clock genes are present in soybean (Glycine max) and mediate flooding and drought responses. Differential expression of many clock and SUB1 genes was found under flooding and drought conditions. Furthermore, natural variation in the amplitude and phase shifts in PRR7 and TOC1 genes was also discovered under drought and flooding conditions, respectively. PRR3 exhibited flooding- and drought-specific splicing patterns and may work in concert with PRR7 and TOC1 to achieve energy homeostasis under flooding and drought conditions. Higher expression of TOC1 also coincides with elevated levels of abscisic acid (ABA) and variation in glucose levels in the morning and afternoon, indicating that this response to abiotic stress is mediated by ABA, endogenous sugar levels, and the circadian clock to fine-tune photosynthesis and energy utilization under stress conditions. It is proposed that the presence of multiple clock gene paralogues with variation in DNA sequence, phase, and period could be used to screen exotic germplasm to find sources for drought and flooding tolerance. Furthermore, fine tuning of multiple clock gene paralogues (via a genetic engineering approach) should also facilitate the development of flooding- and drought-tolerant soybean varieties. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    Science.gov (United States)

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  15. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  16. Circadian Rhythms and Clock Genes in Reproduction: Insights From Behavior and the Female Rabbit’s Brain

    Directory of Open Access Journals (Sweden)

    Mario Caba

    2018-03-01

    Full Text Available Clock gene oscillations are necessary for a successful pregnancy and parturition, but little is known about their function during lactation, a period demanding from the mother multiple physiological and behavioral adaptations to fulfill the requirements of the offspring. First, we will focus on circadian rhythms and clock genes in reproductive tissues mainly in rodents. Disruption of circadian rhythms or proper rhythmic oscillations of clock genes provoke reproductive problems, as found in clock gene knockout mice. Then, we will focus mainly on the rabbit doe as this mammal nurses the young just once a day with circadian periodicity. This daily event synchronizes the behavior and the activity of specific brain regions critical for reproductive neuroendocrinology and maternal behavior, like the preoptic area. This region shows strong rhythms of the PER1 protein (product of the Per1 clock gene associated with circadian nursing. Additionally, neuroendocrine cells related to milk production and ejections are also synchronized to daily nursing. A threshold of suckling is necessary to entrain once a day nursing; this process is independent of milk output as even virgin does (behaving maternally following anosmia can display circadian nursing behavior. A timing motivational mechanism may regulate such behavior as mesolimbic dopaminergic cells are entrained by daily nursing. Finally, we will explore about the clinical importance of circadian rhythms. Indeed, women in chronic shift-work schedules show problems in their menstrual cycles and pregnancies and also have a high risk of preterm delivery, making this an important field of translational research.

  17. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver.

    Science.gov (United States)

    Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S

    2004-08-01

    An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.

  18. The role of circadian clock genes in the photoperiodic timer of the linden bug Pyrrhocoris apterus during the nymphal stage

    Czech Academy of Sciences Publication Activity Database

    Kotwica-Rolinska, Joanna; Pivarčiová, Lenka; Vaněčková, Hana; Doležel, David

    2017-01-01

    Roč. 42, č. 3 (2017), s. 266-273 ISSN 0307-6962 R&D Projects: GA ČR GA15-23681S; GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316790 - INsecTIME Institutional support: RVO:60077344 Keywords : activity of nympha * circadian clock gene * Clock gene Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 1.364, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/phen.12197/abstract

  19. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner

    Science.gov (United States)

    Ford, Brett; Deng, Weiwei; Clausen, Jenni; Oliver, Sandra; Boden, Scott; Hemming, Megan; Trevaskis, Ben

    2016-01-01

    An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene. PMID:27580625

  20. Existence of a photoinducible phase for ovarian development and photoperiod-related alteration of clock gene expression in a damselfish.

    Science.gov (United States)

    Takeuchi, Yuki; Hada, Noriko; Imamura, Satoshi; Hur, Sung-Pyo; Bouchekioua, Selma; Takemura, Akihiro

    2015-10-01

    The sapphire devil, Chrysiptera cyanea, is a reef-associated damselfish and their ovarian development can be induced by a long photoperiod. In this study, we demonstrated the existence of a photoinducible phase for the photoperiodic ovarian development in the sapphire devil. Induction of ovarian development under night-interruption light schedules and Nanda-Hamner cycles revealed that the photoinducible phase appeared in a circadian manner between ZT12 and ZT13. To characterize the effect of photoperiod on clock gene expression in the brain of this species, we determined the expression levels of the sdPer1, sdPer2, sdCry1, and sdCry2 clock genes under constant light and dark conditions (LL and DD) and photoperiodic (short and long photoperiods). The expression of sdPer1 exhibited clear circadian oscillation under both LL and DD conditions, while sdPer2 and sdCry1 expression levels were lower under DD than under LL conditions and sdCry2 expression was lower under LL than under DD conditions. These results suggest a key role for sdPer1 in circadian clock cycling and that sdPer2, sdCry1, and sdCry2 are light-responsive clock genes in the sapphire devil. After 1 week under a long photoperiod, we observed photoperiod-related changes in sdPer1, sdPer2, and sdCry2 expression, but not in sdCry1 expression. These results suggest that the expression patterns of some clock genes exhibit seasonal variation according to seasonal changes in day length and that such seasonal alteration of clock gene expression may contribute to seasonal recognition by the sapphire devil. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. [Associations between chronotype, road accidents and polymorphisms in genes linked with biological clock and dopaminergic system].

    Science.gov (United States)

    Taranov, A O; Puchkova, A N; Slominsky, P A; Tupitsyna, T V; Dementiyenko, V V; Dorokhov, V B

    2017-01-01

    Public transport driving is a highly demanding activity requiring high skills and responsibility. Shift work, problems with regular sleep schedule negatively impact psychomotor reactions, cognitive functions and ability to react appropriately to the changing environment. For professional drivers all these factors may lead to the increased risk of a road accident. Individual differences in chronotype, cognitive and emotional control are partially genetically determined. Our study aimed to investigate the possible associations between chronotype parameters, traffic accident history and single nucleotide polymorphisms (SNPs) in a number of genes: RORA (rs1159814), CLOCK (rs12649507), PER3 (rs2640909), NPSR1 (rs324981), NPAS2 (rs4851377), DRD3 (rs6280), SLC6A3 (rs6347), DBH (rs1611125). We have studied 303 professional bus drivers working on rolling shifts in the Moscow region who had a recorded history of road accidents. The studied group was genotyped on selected SNPs and has filled out two chronotype questionnaires: MCTQ and shortened SWPAQ (Putilov A.A, 2014). A mixed chronotype with high levels of morning and evening alertness prevailed in the group. A prominent social jetlag caused by shift work was found. For SNP in PER3 gene there was an association with morning activation. SNP in CLOCK gene was associated with social jetlag and the risk to cause a crash. Minor alleles of SNPs in NPSR1and SLC6A3 correlated with later chronotype and increased risk of a road accident. We suppose that these polymorphisms may be amongst the genetic factors connecting chronotype and road accident risk.

  2. Diel pattern of circadian clock and storage protein gene expression in leaves and during seed filling in cowpea (Vigna unguiculata).

    Science.gov (United States)

    Weiss, Julia; Terry, Marta I; Martos-Fuentes, Marina; Letourneux, Lisa; Ruiz-Hernández, Victoria; Fernández, Juan A; Egea-Cortines, Marcos

    2018-02-14

    Cowpea (Vigna unguiculata) is an important source of protein supply for animal and human nutrition. The major storage globulins VICILIN and LEGUMIN (LEG) are synthesized from several genes including LEGA, LEGB, LEGJ and CVC (CONVICILIN). The current hypothesis is that the plant circadian core clock genes are conserved in a wide array of species and that primary metabolism is to a large extent controlled by the plant circadian clock. Our aim was to investigate a possible link between gene expression of storage proteins and the circadian clock. We identified cowpea orthologues of the core clock genes VunLHY, VunTOC1, VunGI and VunELF3, the protein storage genes VunLEG, VunLEGJ, and VunCVC as well as nine candidate reference genes used in RT-PCR. ELONGATION FACTOR 1-A (ELF1A) resulted the most suitable reference gene. The clock genes VunELF3, VunGI, VunTOC1 and VunLHY showed a rhythmic expression profile in leaves with a typical evening/night and morning/midday phased expression. The diel patterns were not completely robust and only VungGI and VungELF3 retained a rhythmic pattern under free running conditions of darkness. Under field conditions, rhythmicity and phasing apparently faded during early pod and seed development and was regained in ripening pods for VunTOC1 and VunLHY. Mature seeds showed a rhythmic expression of VunGI resembling leaf tissue under controlled growth chamber conditions. Comparing time windows during developmental stages we found that VunCVC and VunLEG were significantly down regulated during the night in mature pods as compared to intermediate ripe pods, while changes in seeds were non-significant due to high variance. The rhythmic expression under field conditions was lost under growth chamber conditions. The core clock gene network is conserved in cowpea leaves showing a robust diel expression pattern except VunELF3 under growth chamber conditions. There appears to be a clock transcriptional reprogramming in pods and seeds compared to

  3. There Is No Association Between the Circadian Clock Gene HPER3 and Cognitive Dysfunction After Noncardiac Surgery

    DEFF Research Database (Denmark)

    Voigt Hansen, Melissa; Simon Rasmussen, Lars; Jespersgaard, Cathrine

    2012-01-01

    The specific clock-gene PERIOD3 is important with regard to circadian rhythmicity, sleep homeostasis, and cognitive function. The allele PER3(5/5) has been associated with worse cognitive performance in response to sleep deprivation. We hypothesized that patients with the PER3(5/5) genotype would...

  4. Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.

    Science.gov (United States)

    Snider, Kaitlin H; Dziema, Heather; Aten, Sydney; Loeser, Jacob; Norona, Frances E; Hoyt, Kari; Obrietan, Karl

    2016-07-15

    A large body of literature has shown that the disruption of circadian clock timing has profound effects on mood, memory and complex thinking. Central to this time keeping process is the master circadian pacemaker located within the suprachiasmatic nucleus (SCN). Of note, within the central nervous system, clock timing is not exclusive to the SCN, but rather, ancillary oscillatory capacity has been detected in a wide range of cell types and brain regions, including forebrain circuits that underlie complex cognitive processes. These observations raise questions about the hierarchical and functional relationship between the SCN and forebrain oscillators, and, relatedly, about the underlying clock-gated synaptic circuitry that modulates cognition. Here, we utilized a clock knockout strategy in which the essential circadian timing gene Bmal1 was selectively deleted from excitatory forebrain neurons, whilst the SCN clock remained intact, to test the role of forebrain clock timing in learning, memory, anxiety, and behavioral despair. With this model system, we observed numerous effects on hippocampus-dependent measures of cognition. Mice lacking forebrain Bmal1 exhibited deficits in both acquisition and recall on the Barnes maze. Notably, loss of forebrain Bmal1 abrogated time-of-day dependent novel object location memory. However, the loss of Bmal1 did not alter performance on the elevated plus maze, open field assay, and tail suspension test, indicating that this phenotype specifically impairs cognition but not affect. Together, these data suggest that forebrain clock timing plays a critical role in shaping the efficiency of learning and memory retrieval over the circadian day. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. α1B-Adrenergic receptor signaling controls circadian expression of Tnfrsf11b by regulating clock genes in osteoblasts

    Directory of Open Access Journals (Sweden)

    Takao Hirai

    2015-11-01

    Full Text Available Circadian clocks are endogenous and biological oscillations that occur with a period of <24 h. In mammals, the central circadian pacemaker is localized in the suprachiasmatic nucleus (SCN and is linked to peripheral tissues through neural and hormonal signals. In the present study, we investigated the physiological function of the molecular clock on bone remodeling. The results of loss-of-function and gain-of-function experiments both indicated that the rhythmic expression of Tnfrsf11b, which encodes osteoprotegerin (OPG, was regulated by Bmal1 in MC3T3-E1 cells. We also showed that REV-ERBα negatively regulated Tnfrsf11b as well as Bmal1 in MC3T3-E1 cells. We systematically investigated the relationship between the sympathetic nervous system and the circadian clock in osteoblasts. The administration of phenylephrine, a nonspecific α1-adrenergic receptor (AR agonist, stimulated the expression of Tnfrsf11b, whereas the genetic ablation of α1B-AR signaling led to the alteration of Tnfrsf11b expression concomitant with Bmal1 and Per2 in bone. Thus, this study demonstrated that the circadian regulation of Tnfrsf11b was regulated by the clock genes encoding REV-ERBα (Nr1d1 and Bmal1 (Bmal1, also known as Arntl, which are components of the core loop of the circadian clock in osteoblasts.

  6. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    OpenAIRE

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the...

  7. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from Arabidopsis.

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-07-01

    An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles. Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod. © The Author 2015. Published by Oxford University Press on behalf of the

  8. Cycling of clock genes entrained to the solar rhythm enables plants to tell time: data from arabidopsis

    Science.gov (United States)

    Yeang, Hoong-Yeet

    2015-01-01

    Background and Aims An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm. Methods Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N–H cycles. Key Results Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle. Conclusions Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to ‘anticipate’ dawn, dusk or mid-day respectively, independently of the photoperiod. PMID:26070640

  9. Photoperiodic Modulation of Circadian Clock and Reproductive Axis Gene Expression in the Pre-Pubertal European Sea Bass Brain.

    Directory of Open Access Journals (Sweden)

    Rute S T Martins

    Full Text Available The acquisition of reproductive competence requires the activation of the brain-pituitary-gonad (BPG axis, which in most vertebrates, including fishes, is initiated by changes in photoperiod. In the European sea bass long-term exposure to continuous light (LL alters the rhythm of reproductive hormones, delays spermatogenesis and reduces the incidence of precocious males. In contrast, an early shift from long to short photoperiod (AP accelerates spermatogenesis. However, how photoperiod affects key genes in the brain to trigger the onset of puberty is still largely unknown. Here, we investigated if the integration of the light stimulus by clock proteins is sufficient to activate key genes that trigger the BPG axis in the European sea bass. We found that the clock genes clock, npas2, bmal1 and the BPG genes gnrh, kiss and kissr share conserved transcription factor frameworks in their promoters, suggesting co-regulation. Other gene promoters of the BGP axis were also predicted to be co-regulated by the same frameworks. Co-regulation was confirmed through gene expression analysis of brains from males exposed to LL or AP photoperiod compared to natural conditions: LL fish had suppressed gnrh1, kiss2, galr1b and esr1, while AP fish had stimulated npas2, gnrh1, gnrh2, kiss2, kiss1rb and galr1b compared to NP. It is concluded that fish exposed to different photoperiods present significant expression differences in some clock and reproductive axis related genes well before the first detectable endocrine and morphological responses of the BPG axis.

  10. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    Directory of Open Access Journals (Sweden)

    Julian Lippert

    Full Text Available From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH in comparison to those of healthy controls (HC. Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG and Multiple Sleep Latency Test (MSLT. Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  11. Altered dynamics in the circadian oscillation of clock genes in dermal fibroblasts of patients suffering from idiopathic hypersomnia.

    Science.gov (United States)

    Lippert, Julian; Halfter, Hartmut; Heidbreder, Anna; Röhr, Dominik; Gess, Burkhard; Boentert, Mathias; Osada, Nani; Young, Peter

    2014-01-01

    From single cell organisms to the most complex life forms, the 24-hour circadian rhythm is important for numerous aspects of physiology and behavior such as daily periodic fluctuations in body temperature and sleep-wake cycles. Influenced by environmental cues - mainly by light input -, the central pacemaker in the thalamic suprachiasmatic nuclei (SCN) controls and regulates the internal clock mechanisms which are present in peripheral tissues. In order to correlate modifications in the molecular mechanisms of circadian rhythm with the pathophysiology of idiopathic hypersomnia, this study aimed to investigate the dynamics of the expression of circadian clock genes in dermal fibroblasts of idiopathic hypersomniacs (IH) in comparison to those of healthy controls (HC). Ten clinically and polysomnographically proven IH patients were recruited from the department of sleep medicine of the University Hospital of Muenster. Clinical diagnosis was done by two consecutive polysomnographies (PSG) and Multiple Sleep Latency Test (MSLT). Fourteen clinical healthy volunteers served as control group. Dermal fibroblasts were obtained via punch biopsy and grown in cell culture. The expression of circadian clock genes was investigated by semiquantitative Reverse Transcriptase-PCR qRT-PCR analysis, confirming periodical oscillation of expression of the core circadian clock genes BMAL1, PER1/2 and CRY1/2. The amplitude of the rhythmically expressed BMAL1, PER1 and PER2 was significantly dampened in dermal fibroblasts of IH compared to HC over two circadian periods whereas the overall expression of only the key transcriptional factor BMAL1 was significantly reduced in IH. Our study suggests for the first time an aberrant dynamics in the circadian clock in IH. These findings may serve to better understand some clinical features of the pathophysiology in sleep - wake rhythms in IH.

  12. The expression of the clock gene cycle has rhythmic pattern and is affected by photoperiod in the moth Sesamia nonagrioides.

    Science.gov (United States)

    Kontogiannatos, Dimitrios; Gkouvitsas, Theodoros; Kourti, Anna

    2017-06-01

    To obtain clues to the link between the molecular mechanism of circadian and photoperiod clocks, we have cloned the circadian clock gene cycle (Sncyc) in the corn stalk borer, Sesamia nonagrioides, which undergoes facultative diapause controlled by photoperiod. Sequence analysis revealed a high degree of conservation among insects for this gene. SnCYC consists of 667 amino acids and structural analysis showed that it contains a BCTR domain in its C-terminal in addition to the common domains found in Drosophila CYC, i.e. bHLH, PAS-A, PAS-B domains. The results revealed that the sequence of Sncyc showed a similarity to that of its mammalian orthologue, Bmal1. We also investigated the expression patterns of Sncyc in the brain of larvae growing under long-day 16L: 8D (LD), constant darkness (DD) and short-day 10L: 14D (SD) conditions using qRT-PCR assays. The mRNAs of Sncyc expression was rhythmic in LD, DD and SD cycles. Also, it is remarkable that the photoperiodic conditions affect the expression patterns and/or amplitudes of circadian clock gene Sncyc. This gene is associated with diapause in S. nonagrioides, because under SD (diapause conditions) the photoperiodic signal altered mRNA accumulation. Sequence and expression analysis of cyc in S. nonagrioides shows interesting differences compared to Drosophila where this gene does not oscillate or change in expression patterns in response to photoperiod, suggesting that this species is an interesting new model to study the molecular control of insect circadian and photoperiodic clocks. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Expression of the Circadian Clock Gene Period2 in the Hippocampus: Possible Implications for Synaptic Plasticity and Learned Behaviour

    Directory of Open Access Journals (Sweden)

    Louisa M-C Wang

    2009-05-01

    Full Text Available Genes responsible for generating circadian oscillations are expressed in a variety of brain regions not typically associated with circadian timing. The functions of this clock gene expression are largely unknown, and in the present study we sought to explore the role of the Per2 (Period 2 gene in hippocampal physiology and learned behaviour. We found that PER2 protein is highly expressed in hippocampal pyramidal cell layers and that the expression of both protein and mRNA varies with a circadian rhythm. The peaks of these rhythms occur in the late night or early morning and are almost 180° out-of-phase with the expression rhythms measured from the suprachiasmatic nucleus of the same animals. The rhythms in Per2 expression are autonomous as they are present in isolated hippocampal slices maintained in culture. Physiologically, Per2-mutant mice exhibit abnormal long-term potentiation. The underlying mechanism is suggested by the finding that levels of phosphorylated cAMP-response-element-binding protein, but not phosphorylated extracellular-signal-regulated kinase, are reduced in hippocampal tissue from mutant mice. Finally, Per2-mutant mice exhibit deficits in the recall of trace, but not cued, fear conditioning. Taken together, these results provide evidence that hippocampal cells contain an autonomous circadian clock. Furthermore, the clock gene Per2 may play a role in the regulation of long-term potentiation and in the recall of some forms of learned behaviour.

  14. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ningyue Li

    2015-03-01

    Full Text Available Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice with sex-different circadian properties. In addition, male mice showed significantly less immobility during the night phase in comparison to female mice. Female Per1Brdm1 mice also showed significant rhythmicity. However, the timing of rhythmicity was very different from that observed in female wild type mice. Male Per1Brdm1 mice showed a pattern of rhythmicity similar to that of wild type mice. Furthermore, female Per1Brdm1 mice showed higher duration of immobility in comparison to male Per1Brdm1 mice in both daytime and early night phases. Neither Per2Brdm1 nor ClockΔ19 mice showed significant rhythmicity, but both female Per2Brdm1 and ClockΔ19 mice had lower levels of immobility, compared to males. Conclusions: This study highlights the differences in the circadian characteristics of immobility induced by FST in WT, ClockΔ19, Per1, and Per2 deficient mice.

  15. Temporal Gradient in the Clock Gene and Cell-Cycle Checkpoint Kinase Wee1 Expression along the Gut

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Soták, Matúš; Sládek, Martin; Pácha, Jiří; Sumová, Alena

    2009-01-01

    Roč. 26, č. 4 (2009), s. 607-620 ISSN 0742-0528 R&D Projects: GA AV ČR(CZ) IAA500110605; GA ČR(CZ) GA305/09/0321; GA MŠk(CZ) LC554 EU Projects: European Commission(XE) 18741 - EUCLOCK Institutional research plan: CEZ:AV0Z50110509 Keywords : intestine epithelium * circadian clock gene * cell cycle Subject RIV: ED - Physiology Impact factor: 3.987, year: 2009

  16. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy.

    Directory of Open Access Journals (Sweden)

    Aneesh Alex

    Full Text Available Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR and cardiac activity period (CAP of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays

  17. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy

    Science.gov (United States)

    Zeng, Xianxu; Tate, Rebecca E.; McKee, Mary L.; Capen, Diane E.; Zhang, Zhan; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential

  18. Association study between a polymorphism at the 3'-untranslated region of CLOCK gene and attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Xu Xiaohui

    2010-08-01

    Full Text Available Abstract Background The circadian locomotor output cycles kaput (CLOCK gene encodes protein regulation circadian rhythm and also plays some roles in neural transmitter systems including the dopamine system. Several lines of evidence implicate a relationship between attention-deficit hyperactivity disorder (ADHD, circadian rythmicity and sleeping disturbances. A recent study has reported that a polymorphism (rs1801260 at the 3'-untranslated region of the CLOCK gene is associated with adult ADHD. Methods To investigate the association between the polymorphism (rs1801260 in ADHD, two samples of ADHD probands from the United Kingdom (n = 180 and Taiwan (n = 212 were genotyped and analysed using within-family transmission disequilibrium test (TDT. Bonferroni correction procedures were used to just for multiple comparisons. Results We found evidence of increased transmission of the T allele of the rs1801260 polymorphism in Taiwanese samples (P = 0.010. There was also evidence of preferential transmission of the T allele of the rs1801260 polymorphism in combined samples from the Taiwan and UK (P = 0.008. Conclusion This study provides evidence for the possible involvement of CLOCK in susceptibility to ADHD.

  19. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

    Science.gov (United States)

    Mulder, C; Van Der Zee, E A; Hut, R A; Gerkema, M P

    2013-12-01

    With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.

  20. Loss of circadian rhythm of circulating insulin concentration induced by high-fat diet intake is associated with disrupted rhythmic expression of circadian clock genes in the liver.

    Science.gov (United States)

    Honma, Kazue; Hikosaka, Maki; Mochizuki, Kazuki; Goda, Toshinao

    2016-04-01

    Peripheral clock genes show a circadian rhythm is correlated with the timing of feeding in peripheral tissues. It was reported that these clock genes are strongly regulated by insulin action and that a high-fat diet (HFD) intake in C57BL/6J mice for 21days induced insulin secretion during the dark phase and reduced the circadian rhythm of clock genes. In this study, we examined the circadian expression patterns of these clock genes in insulin-resistant animal models with excess secretion of insulin during the day. We examined whether insulin resistance induced by a HFD intake for 80days altered blood parameters (glucose and insulin concentrations) and expression of mRNA and proteins encoded by clock and functional genes in the liver using male ICR mice. Serum insulin concentrations were continuously higher during the day in mice fed a HFD than control mice. Expression of lipogenesis-related genes (Fas and Accβ) and the transcription factor Chrebp peaked at zeitgeber time (ZT)24 in the liver of control mice. A HFD intake reduced the expression of these genes at ZT24 and disrupted the circadian rhythm. Expression of Bmal1 and Clock, transcription factors that compose the core feedback loop, showed circadian variation and were synchronously associated with Fas gene expression in control mice, but not in those fed a HFD. These results indicate that the disruption of the circadian rhythm of insulin secretion by HFD intake is closely associated with the disappearance of circadian expression of lipogenic and clock genes in the liver of mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep.

    Directory of Open Access Journals (Sweden)

    Hugues Dardente

    Full Text Available In mammals, changing daylength (photoperiod is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN, site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21 and neuropeptides (Vip, Grp and Avp in animals acclimated to a short photoperiod (SP; 8h of light and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light, achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.

  3. Differentiation of PC12 Cells Results in Enhanced VIP Expression and Prolonged Rhythmic Expression of Clock Genes

    DEFF Research Database (Denmark)

    Pretzmann, C.P.; Fahrenkrug, J.; Georg, B.

    2008-01-01

    To examine for circadian rhythmicity, the messenger RNA (mRNA) amount of the clock genes Per1 and Per2 was measured in undifferentiated and nerve-growth-factor-differentiated PC12 cells harvested every fourth hour. Serum shock was needed to induce circadian oscillations, which in undifferentiated...... PC12 cultures lasted only one 24-h period, while in differentiated cultures, the rhythms continued for at least 3 days. Thus, neuronal differentiation provided PC12 cells the ability to maintain rhythmicity for an extended period. Both vasoactive intestinal polypeptide (VIP) and its receptor VPAC(2...

  4. Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot.

    Science.gov (United States)

    Takeuchi, Yuki; Kabutomori, Ryo; Yamauchi, Chihiro; Miyagi, Hitomi; Takemura, Akihiro; Okano, Keiko; Okano, Toshiyuki

    2018-04-18

    Goldlined spinefoot, Siganus guttatus, inhabits tropical and subtropical waters and synchronizes its spawning around the first quarter moon likely using an hourglass-like lunar timer. In previous studies, we have found that clock genes (Cryptochrome3 and Period1) could play the role of state variable in the diencephalon when determining the lunar phase for spawning. Here, we identified three Cry, two Per, two Clock, and two Bmal genes in S. guttatus and investigated their expression patterns in the diencephalon and pituitary gland. We further evaluated the effect on their expression patterns by daily interruptions of moonlight stimuli for 1 lunar cycle beginning at the new moon. It significantly modified the expression patterns in many of the examined clock(-related) genes including Cry3 in the diencephalon and/or pituitary gland. Acute interruptions of moonlight around the waxing gibbous moon upregulated nocturnal expressions of Cry1b and Cry2 in the diencephalon and pituitary gland, respectively, but did not affect expression levels of the other clock genes. These results highlighted the importance of repetitive moonlight illumination for stable or lunar-phase-specific daily expression of clock genes in the next lunar cycle that may be important for the lunar-phase-synchronized spawning on the next first quarter moon.

  5. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Nakabayashi, Hiroko; Ohta, Yasuharu; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-01-01

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1 −/− A y /a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt

  6. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakabayashi, Hiroko; Ohta, Yasuharu, E-mail: yohta@yamaguchi-u.ac.jp; Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio, E-mail: tanizawa@yamaguchi-u.ac.jp

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  7. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    Science.gov (United States)

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  8. Expression patterns of a circadian clock gene are associated with age-related polyethism in harvester ants, Pogonomyrmex occidentalis

    Directory of Open Access Journals (Sweden)

    Ingram Krista K

    2009-04-01

    Full Text Available Abstract Background Recent advances in sociogenomics allow for comparative analyses of molecular mechanisms regulating the development of social behavior. In eusocial insects, one key aspect of their sociality, the division of labor, has received the most attention. Age-related polyethism, a derived form of division of labor in ants and bees where colony tasks are allocated among distinct behavioral phenotypes, has traditionally been assumed to be a product of convergent evolution. Previous work has shown that the circadian clock is associated with the development of behavior and division of labor in honeybee societies. We cloned the ortholog of the clock gene, period, from a harvester ant (Pogonomyrmex occidentalis and examined circadian rhythms and daily activity patterns in a species that represents an evolutionary origin of eusociality independent of the honeybee. Results Using real time qPCR analyses, we determined that harvester ants have a daily cyclic expression of period and this rhythm is endogenous (free-running under dark-dark conditions. Cyclic expression of period is task-specific; foragers have strong daily fluctuations but nest workers inside the nest do not. These patterns correspond to differences in behavior as activity levels of foragers show a diurnal pattern while nest workers tend to exhibit continuous locomotor activity at lower levels. In addition, we found that foragers collected in the early fall (relative warm, long days exhibit a delay in the nightly peak of period expression relative to foragers collected in the early spring (relative cold, short days. Conclusion The association of period mRNA expression levels with harvester ant task behaviors suggests that the development of circadian rhythms is associated with the behavioral development of ants. Thus, the circadian clock pathway may represent a conserved 'genetic toolkit' that has facilitated the parallel evolution of age-related polyethism and task allocation in

  9. Biclustering methods: biological relevance and application in gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Ali Oghabian

    Full Text Available DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also known as one-way clustering methods where genes (or respectively samples are grouped together based on the similarity of their expression profiles across the set of all samples (or respectively genes. An alternative approach is to develop biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13 biclustering and 2 clustering (k-means and hierarchical methods. We use several approaches to compare their performance on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1 we examine how well the considered (biclustering methods differentiate various sample types; (2 we evaluate how well the groups of genes discovered by the (biclustering methods are annotated with similar Gene Ontology categories; (3 we evaluate the capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and (4 we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.

  10. Relevance of Fusion Genes in Pediatric Cancers: Toward Precision Medicine

    Directory of Open Access Journals (Sweden)

    Célia Dupain

    2017-03-01

    Full Text Available Pediatric cancers differ from adult tumors, especially by their very low mutational rate. Therefore, their etiology could be explained in part by other oncogenic mechanisms such as chromosomal rearrangements, supporting the possible implication of fusion genes in the development of pediatric cancers. Fusion genes result from chromosomal rearrangements leading to the juxtaposition of two genes. Consequently, an abnormal activation of one or both genes is observed. The detection of fusion genes has generated great interest in basic cancer research and in the clinical setting, since these genes can lead to better comprehension of the biological mechanisms of tumorigenesis and they can also be used as therapeutic targets and diagnostic or prognostic biomarkers. In this review, we discuss the molecular mechanisms of fusion genes and their particularities in pediatric cancers, as well as their relevance in murine models and in the clinical setting. We also point out the difficulties encountered in the discovery of fusion genes. Finally, we discuss future perspectives and priorities for finding new innovative therapies in childhood cancer.

  11. Stress affects expression of the clock gene Bmal1 in the suprachiasmatic nucleus of neonatal rats via glucocorticoid‐dependent mechanism

    Czech Academy of Sciences Publication Activity Database

    Olejníková, Lucie; Polidarová, Lenka; Sumová, Alena

    2018-01-01

    Roč. 223, č. 1 (2018), č. článku e13020. ISSN 1748-1708 R&D Projects: GA ČR(CZ) GA16-03932S Institutional support: RVO:67985823 Keywords : clock genes * development * glucocorticoids * mifepristone * restricted feeding * stress * suprachiasmatic nuclei Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 4.867, year: 2016

  12. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy

    DEFF Research Database (Denmark)

    Gräs, Søren; Georg, Birgitte; Jørgensen, Henrik L

    2012-01-01

    rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that...

  13. Circadian regulation of myocardial sarcomeric Titin-cap (Tcap, telethonin: identification of cardiac clock-controlled genes using open access bioinformatics data.

    Directory of Open Access Journals (Sweden)

    Peter S Podobed

    Full Text Available Circadian rhythms are important for healthy cardiovascular physiology and are regulated at the molecular level by a circadian clock mechanism. We and others previously demonstrated that 9-13% of the cardiac transcriptome is rhythmic over 24 h daily cycles; the heart is genetically a different organ day versus night. However, which rhythmic mRNAs are regulated by the circadian mechanism is not known. Here, we used open access bioinformatics databases to identify 94 transcripts with expression profiles characteristic of CLOCK and BMAL1 targeted genes, using the CircaDB website and JTK_Cycle. Moreover, 22 were highly expressed in the heart as determined by the BioGPS website. Furthermore, 5 heart-enriched genes had human/mouse conserved CLOCK:BMAL1 promoter binding sites (E-boxes, as determined by UCSC table browser, circadian mammalian promoter/enhancer database PEDB, and the European Bioinformatics Institute alignment tool (EMBOSS. Lastly, we validated findings by demonstrating that Titin cap (Tcap, telethonin was targeted by transcriptional activators CLOCK and BMAL1 by showing 1 Tcap mRNA and TCAP protein had a diurnal rhythm in murine heart; 2 cardiac Tcap mRNA was rhythmic in animals kept in constant darkness; 3 Tcap and control Per2 mRNA expression and cyclic amplitude were blunted in Clock(Δ19/Δ19 hearts; 4 BMAL1 bound to the Tcap promoter by ChIP assay; 5 BMAL1 bound to Tcap promoter E-boxes by biotinylated oligonucleotide assay; and 6 CLOCK and BMAL1 induced tcap expression by luciferase reporter assay. Thus this study identifies circadian regulated genes in silico, with validation of Tcap, a critical regulator of cardiac Z-disc sarcomeric structure and function.

  14. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus.

    Science.gov (United States)

    O'Brien, C; Unruh, L; Zimmerman, C; Bradshaw, W E; Holzapfel, C M; Cresko, W A

    2013-03-01

    Controlled laboratory experiments were used to show that Oregon and Alaskan three-spined stickleback Gasterosteus aculeatus, collected from locations differing by 18° of latitude, exhibited no significant variation in length of the polyglutamine domain of the clock protein or in photoperiodic response within or between latitudes despite the fact that male and female G. aculeatus are photoperiodic at both latitudes. Hence, caution is urged when interpreting variation in the polyglutamine repeat (PolyQ) domain of the gene clock in the context of seasonal activities or in relationship to photoperiodism along geographical gradients. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  15. Human CLOCK gene-associated attention deficit hyperactivity disorder-related features in healthy adults: quantitative association study using Wender Utah Rating Scale.

    Science.gov (United States)

    Jeong, Seong Hoon; Yu, Je-Chun; Lee, Chang Hwa; Choi, Kyeong-Sook; Choi, Jung-Eun; Kim, Se Hyun; Joo, Eun-Jeong

    2014-02-01

    Circadian rhythm disturbance is highly prevalent in attention deficit hyperactivity disorder (ADHD). Recently, the association between the CLOCK gene and ADHD has been demonstrated in clinical samples, and the CLOCK gene's role was thought to be mediated by rhythm dysregulation. Meanwhile, ADHD has been suggested as the extreme end of a continuously distributed trait that can be found in the general population. Therefore, we examined two possibilities: (1) an ADHD-related continuous trait may be associated with the CLOCK gene, and (2) this association may be mediated by the degree of individuals' evening preference. To explore these possibilities, we performed a quantitative trait locus association study with a sample of 1,289 healthy adults. The Wender Utah Rating Scale (WURS) and the Composite Scale of Morningness (CSM) were utilized to measure the quantitative traits. Quantitative association analysis was performed using PLINK software. We found that rs1801260 (=T3111C) was associated with WURS scores in both allele-wise (p = 0.018) and haplotype-wise analyses (range of p values: 0.0155-0.0171) in male participants only. After controlling for the CSM total score as a covariate, the strength of the association did not change at all, suggesting that the association was not mediated by evening preference. Despite the very weak association signal, our results provide evidence that the CLOCK gene's association with ADHD in clinical samples may be generalizable to traits measured in the normal population. However, as our results failed to show a mediating role of evening preference, ongoing efforts are needed to identify the mechanisms by which the CLOCK gene determines ADHD-related traits.

  16. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    Science.gov (United States)

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  17. CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet

    Science.gov (United States)

    Introduction: The success of obesity therapy is dependent on the genetic background of the patient. Circadian Locomotor Output Cycles Kaput (CLOCK), one of the transcription factors from the positive limb of the molecular clock, is involved in metabolic alterations. Objective: To investigate whethe...

  18. A network of (autonomic) clock outputs

    NARCIS (Netherlands)

    Kalsbeek, A.; Perreau-Lenz, S.; Buijs, R. M.

    2006-01-01

    The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each of which is dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock

  19. A network of (autonomic) clock outputs

    NARCIS (Netherlands)

    Kalsbeek, A.; Perreau-Lenz, S.; Buijs, R. M.

    2006-01-01

    The circadian clock in the suprachiasmatic nuclei (SCN) is composed of thousands of oscillator neurons, each dependent on the cell-autonomous action of a defined set of circadian clock genes. A major question is still how these individual oscillators are organized into a biological clock that

  20. Effects of circadian clock genes and health-related behavior on metabolic syndrome in a Taiwanese population: Evidence from association and interaction analysis.

    Directory of Open Access Journals (Sweden)

    Eugene Lin

    Full Text Available Increased risk of developing metabolic syndrome (MetS has been associated with the circadian clock genes. In this study, we assessed whether 29 circadian clock-related genes (including ADCYAP1, ARNTL, ARNTL2, BHLHE40, CLOCK, CRY1, CRY2, CSNK1D, CSNK1E, GSK3B, HCRTR2, KLF10, NFIL3, NPAS2, NR1D1, NR1D2, PER1, PER2, PER3, REV1, RORA, RORB, RORC, SENP3, SERPINE1, TIMELESS, TIPIN, VIP, and VIPR2 are associated with MetS and its individual components independently and/or through complex interactions in a Taiwanese population. We also analyzed the interactions between environmental factors and these genes in influencing MetS and its individual components. A total of 3,000 Taiwanese subjects from the Taiwan Biobank were assessed in this study. Metabolic traits such as waist circumference, triglyceride, high-density lipoprotein cholesterol, systolic and diastolic blood pressure, and fasting glucose were measured. Our data showed a nominal association of MetS with several single nucleotide polymorphisms (SNPs in five key circadian clock genes including ARNTL, GSK3B, PER3, RORA, and RORB; but none of these SNPs persisted significantly after performing Bonferroni correction. Moreover, we identified the effect of GSK3B rs2199503 on high fasting glucose (P = 0.0002. Additionally, we found interactions among the ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, RORA rs8034880, and RORB rs972902 SNPs influenced MetS (P < 0.001 ~ P = 0.002. Finally, we investigated the influence of interactions between ARNTL rs10832020, GSK3B rs2199503, PER3 rs10746473, and RORB rs972902 with environmental factors such as alcohol consumption, smoking status, and physical activity on MetS and its individual components (P < 0.001 ~ P = 0.002. Our study indicates that circadian clock genes such as ARNTL, GSK3B, PER3, RORA, and RORB genes may contribute to the risk of MetS independently as well as through gene-gene and gene-environment interactions.

  1. Clinical Relevance of HLA Gene Variants in HBV Infection

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Host gene variants may influence the natural history of hepatitis B virus (HBV infection. The human leukocyte antigen (HLA system, the major histocompatibility complex (MHC in humans, is one of the most important host factors that are correlated with the clinical course of HBV infection. Genome-wide association studies (GWASs have shown that single nucleotide polymorphisms (SNPs near certain HLA gene loci are strongly associated with not only persistent HBV infection but also spontaneous HBV clearance and seroconversion, disease progression, and the development of liver cirrhosis and HBV-related hepatocellular carcinoma (HCC in chronic hepatitis B (CHB. These variations also influence the efficacy of interferon (IFN and nucleot(side analogue (NA treatment and response to HBV vaccines. Meanwhile, discrepant conclusions were reached with different patient cohorts. It is therefore essential to identify the associations of specific HLA allele variants with disease progression and viral clearance in chronic HBV infection among different ethnic populations. A better understanding of HLA polymorphism relevance in HBV infection outcome would enable us to elucidate the roles of HLA SNPs in the pathogenesis and clearance of HBV in different areas and ethnic groups, to improve strategies for the prevention and treatment of chronic HBV infection.

  2. [Circadian rhythm variation of the clock genes Per1 and cell cycle related genes in different stages of carcinogenesis of buccal mucosa in animal model].

    Science.gov (United States)

    Tan, Xuemei; Ye, Hua; Yang, Kai; Chen, Dan; Tang, Hong

    2015-07-01

    To investigate the expression and circadian rhythm variation of biological clock gene Per1 and cell cycle genes p53, CyclinD1, cyclin-dependent kinases (CDK1), CyclinB1 in different stages of carcinogenesis in buccal mucosa and its relationship with the development of buccal mucosa carcinoma. Ninety golden hamsters were housed under 12 hours light-12 hours dark cycles, and the model of buccal squamous cell carcinoma was established by using the dimethylbenzanthracene (DMBA) to smear the golden hamster buccal mucosa. Before the DMBA was used and after DMBA was used 6 weeks and 14 weeks respectively, the golden hamsters were sacrificed at 6 different time points (5 rats per time point) within 24 hour, including 4, 8, 12, 16, 20 and 24 hour after lights onset (HALO), and the normal buccal mucosa, precancerous lesions and cancer tissue were obtained, respectively. HE stained sections were prepared to observe the canceration of each tissue. Real time RT-PCR was used to detect the mRNA expression of Per1, p53, CyclinD1, CDK1 and CyclinB1, and a cosine analysis method was applied to determine the circadian rhythm variation of Per1, p53, CyclinD1, CDK1 and CyclinB1 mRNA expression, which were characterized by median, amplitude and acrophase. The expression of Per1, p53, CDK1 and CyclinD1 mRNA in 6 different time points within 24 hours in the tissues of three different stages of carcinogenesis had circadian rhythm, respectively. However, the CyclinB1 mRNA was expressed with circadian rhythm just in normal and cancer tissue (P circadian rhythm was in disorder (P > 0.05). As the development of carcinoma, the median of Per1 and p53 mRNA expression were significantly decreased (P circadian rhythm of clock gene Per1 and cell cycle genes p53, CyclinD1, CDK1, CyclinB1 expression remarkably varied with the occurrence and development of carcinoma. Further research into the interaction between circadian and cell cycle of two cycle activity and relationship with the carcinogenesis may

  3. Analysis of the genetic structure of allopatric populations of Lutzomyia umbratilis using the period clock gene.

    Science.gov (United States)

    de Souza Freitas, Moises Thiago; Ríos-Velasquez, Claudia Maria; da Silva, Lidiane Gomes; Costa, César Raimundo Lima; Marcelino, Abigail; Leal-Balbino, Tereza Cristina; Balbino, Valdir de Queiroz; Pessoa, Felipe Arley Costa

    2016-02-01

    In South America, Lutzomyia umbratilis is the main vector of Leishmania guyanensis, one of the species involved in the transmission of American tegumentary leishmaniasis. In Brazil, L. umbratilis has been recorded in the Amazon region, and an isolated population has been identified in the state of Pernambuco, Northeastern region. This study assessed the phylogeographic structure of three allopatric Brazilian populations of L. umbratilis. Samples of L. umbratilis were collected from Rio Preto da Eva (north of the Amazon River, Amazonas), from Manacapuru (south of the Amazon River), and from the isolated population in Recife, Pernambuco state. These samples were processed to obtain sequences of the period gene. Phylogenetic analysis revealed the presence of two distinct monophyletic clades: one clade comprised of the Recife and Rio Preto da Eva samples, and one clade comprised of the Manacapuru samples. Comparing the Manacapuru population with the Recife and Rio Preto da Eva populations revealed high indices of interpopulational divergence. Phylogenetic analysis indicated that geographical distance and environmental differences have not modified the ancestral relationship shared by the Recife and Rio Preto da Eva populations. Genetic similarities suggest that, in evolutionary terms, these populations are more closely related to each other than to the Manacapuru population. These results confirm the existence of an L. umbratilis species complex composed of at least two incipient species. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Genetic association of HCRTR2, ADH4 and CLOCK genes with cluster headache: a Chinese population-based case-control study.

    Science.gov (United States)

    Fan, Zhiliang; Hou, Lei; Wan, Dongjun; Ao, Ran; Zhao, Dengfa; Yu, Shengyuan

    2018-01-09

    Cluster headache (CH), a rare primary headache disorder, is currently thought to be a genetic susceptibility which play a role in CH susceptibility. A large numbers of genetic association studies have confirmed that the HCRTR2 (Hypocretin Receptor 2) SNP rs2653349, and the ADH4 (Alcohol Dehydrogenase 4) SNP rs1126671 and rs1800759 polymorphisms are linked to CH. In addition, the CLOCK (Circadian Locomotor Output Cycles Kaput) gene is becoming a research hotspot for CH due to encoding a transcription factor that serves as a basic driving force for circadian rhythm in humans. The purpose of this study was to evaluate the association between CH and the HCRTR2, ADH4 and CLOCK genes in a Chinese CH case-control sample. We genotyped polymorphisms of nine single nucleotide polymorphisms (SNPs) in the HCRTR2, ADH4 and CLOCK genes to perform an association study on a Chinese Han CH case-control sample (112 patients and 192 controls),using Sequenom MALDI-TOF mass spectrometry iPLEX platform. The frequencies and distributions of genotypes and haplotypes were statistically compared between the case and control groups to identify associations with CH. The effects of SNPs on CH were further investigated by multiple logistic regression. The frequency of the HCRTR2 SNP rs3800539 GA genotype was significantly higher in cases than in controls (48.2% vs.37.0%). The GA genotypes was associated with a higher CH risk (OR = 1.483, 95% CI: 0.564-3.387, p = 0.038), however, after Bonferroni correction, the association lost statistical significance. Haplotype analysis of the HCRTR2 SNPs showed that among eight haplotypes, only H1-GTGGGG was linked to a reduced CH risk (44.7% vs. 53.1%, OR = 0.689, 95% CI =0.491~0.966, p = 0.030). No significant association of ADH4, CLOCK SNPs with CH was statistically detected in the present study. Association between HCRTR2, ADH4,CLOCK gene polymorphisms and CH was not significant in the present study, however, haplotype analysis indicated

  5. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption.

    Directory of Open Access Journals (Sweden)

    Jana Husse

    Full Text Available Human and animal studies demonstrate that short sleep or poor sleep quality, e.g. in night shift workers, promote the development of obesity and diabetes. Effects of sleep disruption on glucose homeostasis and liver physiology are well documented. However, changes in adipokine levels after sleep disruption suggest that adipocytes might be another important peripheral target of sleep. Circadian clocks regulate metabolic homeostasis and clock disruption can result in obesity and the metabolic syndrome. The finding that sleep and clock disruption have very similar metabolic effects prompted us to ask whether the circadian clock machinery may mediate the metabolic consequences of sleep disruption. To test this we analyzed energy homeostasis and adipocyte transcriptome regulation in a mouse model of shift work, in which we prevented mice from sleeping during the first six hours of their normal inactive phase for five consecutive days (timed sleep restriction--TSR. We compared the effects of TSR between wild-type and Per1/2 double mutant mice with the prediction that the absence of a circadian clock in Per1/2 mutants would result in a blunted metabolic response to TSR. In wild-types, TSR induces significant transcriptional reprogramming of white adipose tissue, suggestive of increased lipogenesis, together with increased secretion of the adipokine leptin and increased food intake, hallmarks of obesity and associated leptin resistance. Some of these changes persist for at least one week after the end of TSR, indicating that even short episodes of sleep disruption can induce prolonged physiological impairments. In contrast, Per1/2 deficient mice show blunted effects of TSR on food intake, leptin levels and adipose transcription. We conclude that the absence of a functional clock in Per1/2 double mutants protects these mice from TSR-induced metabolic reprogramming, suggesting a role of the circadian timing system in regulating the physiological effects

  6. IGF-I Gene Therapy in Aging Rats Modulates Hippocampal Genes Relevant to Memory Function.

    Science.gov (United States)

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Ogundele, Olalekan M; Paiva, Isabel; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2018-03-14

    In rats, learning and memory performance decline during normal aging, which makes this rodent species a suitable model to evaluate therapeutic strategies. In aging rats, insulin-like growth factor-I (IGF-I), is known to significantly improve spatial memory accuracy as compared to control counterparts. A constellation of gene expression changes underlie the hippocampal phenotype of aging but no studies on the effects of IGF-I on the hippocampal transcriptome of old rodents have been documented. Here, we assessed the effects of IGF-I gene therapy on spatial memory performance in old female rats and compared them with changes in the hippocampal transcriptome. In the Barnes maze test, experimental rats showed a significantly higher exploratory frequency of the goal hole than controls. Hippocampal RNA-sequencing showed that 219 genes are differentially expressed in 28-month-old rats intracerebroventricularly injected with an adenovector expressing rat IGF-I as compared with placebo adenovector-injected counterparts. From the differentially expressed genes, 81 were down and 138 upregulated. From those genes, a list of functionally relevant genes, concerning hippocampal IGF-I expression, synaptic plasticity as well as neuronal function was identified. Our results provide an initial glimpse at the molecular mechanisms underlying the neuroprotective actions of IGF-I in the aging brain.

  7. Clock genes in depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie Laage; Bouzinova, Elena

    2017-01-01

    Data demonstrate that abnormal regulation of the circadian system can result in cardiovascular disease, metabolic syndrome, obesity, immune dysfunction, increased risk for cancer, reproductive complications, etc. It is highly individual among depressed patients and may be expressed as a phase...... in the brain and liver: expression of Per2 is sensitive to stress and changes in Bmal1 mostly associated with depressive behavior. The Per1 expression is sustainable in maintaining the circadian rhythm. A normalization of the expression patterns is likely to be essential for the recovery from the pathological...... state. Depression is a high prevalent disorder. The number of incidents is rising due to changes in lifestyle. The symptomatology is inconsistent and it is difficult to agree on one hypothesis. The disturbances of the 24 h circadian rhythm may be a factor in the development of major depressive disorder...

  8. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica.

    Science.gov (United States)

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-08-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  9. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core Clock Gene Expression in the Cactus Opuntia ficus-indica1[C][W

    Science.gov (United States)

    Mallona, Izaskun; Egea-Cortines, Marcos; Weiss, Julia

    2011-01-01

    The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional

  10. Intergeneric complementation of a circadian rhythmicity defect : phylogenetic conservation of structure and function of the clock gene frequency

    NARCIS (Netherlands)

    Merrow, Martha W.; Dunlap, Jay C.; Dover, G.

    1994-01-01

    The Neurospora crassa frequency locus encodes a 989 amino acid protein that is a central component, a state variable, of the circadian biological clock. We have determined the sequence of all or part of this protein and surrounding regulatory regions from additional fungi representing three genera

  11. The role of feeding rhythm, adrenal hormones and neuronal inputs in synchronizing daily clock gene rhythms in the liver

    NARCIS (Netherlands)

    Su, Yan; Cailotto, Cathy; Foppen, Ewout; Jansen, Remi; Zhang, Zhi; Buijs, Ruud; Fliers, Eric; Kalsbeek, Andries

    2016-01-01

    The master clock in the hypothalamic suprachiasmatic nucleus (SCN) is assumed to distribute rhythmic information to the periphery via neural, humoral and/or behavioral connections. Until now, feeding, corticosterone and neural inputs are considered important signals for synchronizing daily rhythms

  12. Expression of clock genes /period/ and /timeless /in the central nervous system of the mediterranean flour moth, Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Kobelková, Alena; Závodská, Radka; Šauman, Ivo; Bazalová, Olga; Doležel, David

    2015-01-01

    Roč. 30, č. 2 (2015), s. 104-116 ISSN 0748-7304 R&D Projects: GA ČR GC14-32654J Institutional support: RVO:60077344 Keywords : circadian clock * activity rhythms * eclosion rhythm Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.824, year: 2015

  13. Circadian clock, cell cycle and cancer

    Directory of Open Access Journals (Sweden)

    Cansu Özbayer

    2011-12-01

    Full Text Available There are a few rhythms of our daily lives that we are under the influence. One of them is characterized by predictable changes over a 24-hour timescale called circadian clock. This cellular clock is coordinated by the suprachiasmatic nucleus in the anterior hypothalamus. The clock consist of an autoregulatory transcription-translation feedback loop compose of four genes/proteins; BMAL1, Clock, Cyrptochrome, and Period. BMAL 1 and Clock are transcriptional factors and Period and Cyrptochrome are their targets. Period and Cyrptochrome dimerize in the cytoplasm to enter the nucleus where they inhibit Clock/BMAL activity.It has been demonstrate that circadian clock plays an important role cellular proliferation, DNA damage and repair mechanisms, checkpoints, apoptosis and cancer.

  14. Molecular cogs of the insect circadian clock.

    Science.gov (United States)

    Shirasu, Naoto; Shimohigashi, Yasuyuki; Tominaga, Yoshiya; Shimohigashi, Miki

    2003-08-01

    During the last five years, enormous progress has been made in understanding the molecular basis of circadian systems, mainly by molecular genetic studies using the mouse and fly. Extensive evidence has revealed that the core clock machinery involves "clock genes" and "clock proteins" functioning as molecular cogs. These participate in transcriptional/translational feedback loops and many homologous clock-components in the fruit fly Drosophila are also expressed in mammalian clock tissues with circadian rhythms. Thus, the mechanisms of the central clock seem to be conserved across animal kingdom. However, some recent studies imply that the present widely accepted molecular models of circadian clocks may not always be supported by the experimental evidence.

  15. Effects of chronotherapy of benazepril on the diurnal profile of RAAS and clock genes in the kidney of 5/6 nephrectomy rats.

    Science.gov (United States)

    Huang, Xiao-mei; Yuan, Jing-ping; Zeng, Xing-ruo; Peng, Cai-xia; Mei, Qi-hui; Chen, Wen-li

    2013-06-01

    This study investigated the effects of benazepril administered in the morning or evening on the diurnal variation of renin-angiotensin-aldosterone system (RAAS) and clock genes in the kidney. The male Wistar rat models of 5/6 subtotal nephrectomy (STNx) were established. Animals were randomly divided into 4 groups: sham STNx group (control), STNx group, morning benazepril group (MB) and evening benazepril group (EB). Benazepril was intragastrically administered at a dose of 10 mg/kg/day at 07:00 and 19:00 in the MB group and EB group respectively for 12 weeks. All the animals were synchronized to the light:dark cycle of 12:12 for 12 weeks. Systolic blood pressure (SBP), 24-h urinary protein excretion and renal function were measured at 11 weeks. Blood samples and kidneys were collected every 4 h throughout a day to detect the expression pattern of renin activity (RA), angiotensin II (AngII) and aldosterone (Ald) by radioimmunoassay (RIA) and the mRNA expression profile of clock genes (bmal1, dbp and per2) by real-time PCR at 12 weeks. Our results showed that no significant differences were noted in the SBP, 24-h urine protein excretion and renal function between the MB and EB groups. There were no significant differences in average Ald and RA content of a day between the MB group and EB group. The expression peak of bmal1 mRNA was phase-delayed by 4 to 8 h, and the diurnal variation of per2 and dbp mRNA diminished in the MB and EB groups compared with the control and STNx groups. It was concluded when the similar SBP reduction, RAAS inhibition and clock gene profile were achieved with optimal dose of benazepril, morning versus evening dosing of benazepril has the same renoprotection effects.

  16. Influence of night-shift and napping at work on urinary melatonin, 17-β-estradiol and clock gene expression in pre-menopausal nurses.

    Science.gov (United States)

    Bracci, M; Copertaro, A; Manzella, N; Staffolani, S; Strafella, E; Nocchi, L; Barbaresi, M; Copertaro, B; Rapisarda, V; Valentino, M; Santarelli, L

    2013-01-01

    Night-workers experience disruption of the sleep-wake cycle and light at night which may increase breast cancer risk by suppressing the nocturnal melatonin surge, resulting in higher levels of circulating estrogens. Night-work may also deregulate peripheral clock genes which have been found to be altered in breast cancer. This study investigated urinary 6-sulfatoxymelatonin (aMT6s), serum 17-beta-estradiol levels in premenopausal shift nurses at the end of the night-shift compared to a control group of daytime nurses. Peripheral clock gene expression in lymphocytes were also investigated. All participants were sampled in the follicular phase of the menstrual cycle. The effect of nurses’ ability to take a short nap during the night-shift was also explored. The shift-work group had significantly lower aMT6s levels than daytime nurses independently of a nap. Night-shift napping significantly influences 17-beta-estradiol levels resulting in higher outcomes in nurses who do not take a nap compared to napping group and daytime workers. Peripheral clock genes expression investigated was not significantly different among the groups. Our findings suggest that shift nurses experience changes in aMT6s levels after a night-shift. Napping habits influence 17-beta-estradiol levels at the end of a night-shift. These findings might be related to the increased cancer risk reported in night-shift workers and suggest that a short nap during night-shifts may exert a positive effect.

  17. Physiological links of circadian clock and biological clock of aging.

    Science.gov (United States)

    Liu, Fang; Chang, Hung-Chun

    2017-07-01

    Circadian rhythms orchestrate biochemical and physiological processes in living organisms to respond the day/night cycle. In mammals, nearly all cells hold self-sustained circadian clocks meanwhile couple the intrinsic rhythms to systemic changes in a hierarchical manner. The suprachiasmatic nucleus (SCN) of the hypothalamus functions as the master pacemaker to initiate daily synchronization according to the photoperiod, in turn determines the phase of peripheral cellular clocks through a variety of signaling relays, including endocrine rhythms and metabolic cycles. With aging, circadian desynchrony occurs at the expense of peripheral metabolic pathologies and central neurodegenerative disorders with sleep symptoms, and genetic ablation of circadian genes in model organisms resembled the aging-related features. Notably, a number of studies have linked longevity nutrient sensing pathways in modulating circadian clocks. Therapeutic strategies that bridge the nutrient sensing pathways and circadian clock might be rational designs to defy aging.

  18. Baltic salmon activates immune relevant genes in fin tissue when responding to Gyrodactylus salaris infection

    DEFF Research Database (Denmark)

    Kania, Per Walther; Larsen, Thomas Bjerre; Ingerslev, Hans C.

    2007-01-01

    A series of immune relevant genes are expressed when the Baltic salmon responds on infections with the ectoparasite Gyrodactylus salaris which leads to a decrease of the parasite infection......A series of immune relevant genes are expressed when the Baltic salmon responds on infections with the ectoparasite Gyrodactylus salaris which leads to a decrease of the parasite infection...

  19. STAT3 Target Genes Relevant to Human Cancers

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Lo, Hui-Wen

    2014-01-01

    Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers

  20. Study of the association between 3111T/C polymorphism of the CLOCK gene and the presence of overweight in schoolchildren

    Directory of Open Access Journals (Sweden)

    Nayara P. Giovaninni

    2014-09-01

    Full Text Available Objectives: To evaluate the association between 3111T/C polymorphism of the CLOCK gene and the presence of obesity and sleep duration in children aged 6‐13 years. In adults, this genetic variant has been associated with duration of sleep, ghrelin levels, weight, and eating habits. Although short sleep duration has been linked to obesity in children, no study has aimed to identify the possible molecular mechanisms of this association to date. Methods: Weight, height, and circumferences were transformed into Z‐scores for age and gender. Genotyping was performed using TaqMan methodology. A questionnaire regarding hours of sleep was provided to parents. The appropriate statistical tests were performed. Results: This study evaluated 370 children (45% males, 55% females, mean age 8.5 ± 1.5 years. The prevalence of overweight was 18%. The duration of sleep was, on average, 9.7 hours, and was inversely related to age (p < 0.001. Genotype distribution was: 4% CC, 31% CT, and 65% TT. There was a trend toward higher prevalence of overweight in children who slept less than nine hours (23% when compared to those who slept more than ten hours (16%, p = 0.06. Genotype was not significantly correlated to any of the assessed outcomes. Conclusions: The CLOCK 3111T/C polymorphism was not significantly associated with overweight or sleep duration in children in this city. Resumo: Objetivos: Avaliar a relação entre o polimorfismo 3111 T/C do gene CLOCK (rs1801260 e a presença de obesidade, bem como a duração do sono, em crianças de 6 a 13 anos. Em adultos, essa variante genética foi associada à duração do sono, níveis de grelina, peso e padrão alimentar. Embora, em crianças, a curta duração do sono tenha sido relacionada à obesidade, até o momento nenhum estudo foi direcionado no sentido de identificar possíveis mecanismos moleculares dessa associação. Métodos: Peso, altura e circunferências foram transformados em escores‐Z para

  1. Circadian clock components in the rat neocortex

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Fahrenkrug, Jan

    2013-01-01

    in the rat neocortex. Among these, Per1, Per2, Per3, Cry1, Bmal1, Nr1d1 and Dbp were found to exhibit daily rhythms. The amplitude of circadian oscillation in neocortical clock gene expression was damped and the peak delayed as compared with the SCN. Lesions of the SCN revealed that rhythmic clock gene...... expression in the neocortex is dependent on the SCN. In situ hybridization and immunohistochemistry showed that products of the canonical clock gene Per2 are located in perikarya throughout all areas of the neocortex. These findings show that local circadian oscillators driven by the SCN reside within...... neurons of the neocortex....

  2. Study of the association between 3111T/C polymorphism of the CLOCK gene and the presence of overweight in schoolchildren,

    Directory of Open Access Journals (Sweden)

    Nayara P. Giovaninni

    2014-09-01

    Full Text Available Objectives: To evaluate the association between 3111T/C polymorphism of the CLOCK gene and the presence of obesity and sleep duration in children aged 6-13 years. In adults, this genetic variant has been associated with duration of sleep, ghrelin levels, weight, and eating habits. Although short sleep duration has been linked to obesity in children, no study has aimed to identify the possible molecular mechanisms of this association to date. Methods: Weight, height, and circumferences were transformed into Z-scores for age and gender. Genotyping was performed using TaqMan methodology. A questionnaire regarding hours of sleep was provided to parents. The appropriate statistical tests were performed. Results: This study evaluated 370 children (45% males, 55% females, mean age 8.5 ± 1.5 years. The prevalence of overweight was 18%. The duration of sleep was, on average, 9.7 hours, and was inversely related to age (p < 0.001. Genotype distribution was: 4% CC, 31% CT, and 65% TT. There was a trend toward higher prevalence of overweight in children who slept less than nine hours (23% when compared to those who slept more than ten hours (16%, p = 0.06. Genotype was not significantly correlated to any of the assessed outcomes. Conclusions: The CLOCK 3111T/C polymorphism was not significantly associated with overweight or sleep duration in children in this city.

  3. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  4. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study.

    Science.gov (United States)

    Rajendran, Bhagya; Janakarajan, Veeramahali Natarajan

    2016-01-01

    Polymorphisms in aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, the key component of circadian clock manifests circadian rhythm abnormalities. As seasonal affective disorder (SAD) is associated with disrupted circadian rhythms, the main objective of this study was to screen an Indian family with SAD for ARNTL gene polymorphisms. In this study, 30 members of close-knit family with SAD, 30 age- and sex-matched controls of the same caste with no prior history of psychiatric illness and 30 age- and sex-matched controls belonging to 17 different castes with no prior history of psychiatric illness were genotyped for five different single nucleotide polymorphisms (SNPs) in ARNTL gene by TaqMan allele-specific genotyping assay. Statistical significance was assessed by more powerful quasi-likelihood score test-XM. Most of the family members carried the risk alleles and we observed a highly significant SNP rs2279287 (A/G) in ARNTL gene with an allelic frequency of 0.75. Polymorphisms in ARNTL gene disrupt circadian rhythms causing SAD and genetic predisposition becomes more deleterious in the presence of adverse environment.

  5. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons.

    Directory of Open Access Journals (Sweden)

    Johanneke E Oosterman

    Full Text Available Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1, agouti-related peptide (AgRP, carnitine palmitoyltransferase 1C (Cpt1c, and O-linked N-acetylglucosamine transferase (Ogt were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.

  6. Glucose Alters Per2 Rhythmicity Independent of AMPK, Whereas AMPK Inhibitor Compound C Causes Profound Repression of Clock Genes and AgRP in mHypoE-37 Hypothalamic Neurons.

    Science.gov (United States)

    Oosterman, Johanneke E; Belsham, Denise D

    2016-01-01

    Specific neurons in the hypothalamus are regulated by peripheral hormones and nutrients to maintain proper metabolic control. It is unclear if nutrients can directly control clock gene expression. We have therefore utilized the immortalized, hypothalamic cell line mHypoE-37, which exhibits robust circadian rhythms of core clock genes. mHypoE-37 neurons were exposed to 0.5 or 5.5 mM glucose, comparable to physiological levels in the brain. Per2 and Bmal1 mRNAs were assessed every 3 hours over 36 hours. Incubation with 5.5 mM glucose significantly shortened the period and delayed the phase of Per2 mRNA levels, but had no effect on Bmal1. Glucose had no significant effect on phospho-GSK3β, whereas AMPK phosphorylation was altered. Thus, the AMPK inhibitor Compound C was utilized, and mRNA levels of Per2, Bmal1, Cryptochrome1 (Cry1), agouti-related peptide (AgRP), carnitine palmitoyltransferase 1C (Cpt1c), and O-linked N-acetylglucosamine transferase (Ogt) were measured. Remarkably, Compound C dramatically reduced transcript levels of Per2, Bmal1, Cry1, and AgRP, but not Cpt1c or Ogt. Because AMPK was not inhibited at the same time or concentrations as the clock genes, we suggest that the effect of Compound C on gene expression occurs through an AMPK-independent mechanism. The consequences of inhibition of the rhythmic expression of clock genes, and in turn downstream metabolic mediators, such as AgRP, could have detrimental effects on overall metabolic processes. Importantly, the effects of the most commonly used AMPK inhibitor Compound C should be interpreted with caution, considering its role in AMPK-independent repression of specific genes, and especially clock gene rhythm dysregulation.

  7. Lego clocks: building a clock from parts.

    Science.gov (United States)

    Brunner, Michael; Simons, Mirre J P; Merrow, Martha

    2008-06-01

    A new finding opens up speculation that the molecular mechanism of circadian clocks in Synechococcus elongatus is composed of multiple oscillator systems (Kitayama and colleagues, this issue, pp. 1513-1521), as has been described in many eukaryotic clock model systems. However, an alternative intepretation is that the pacemaker mechanism-as previously suggested-lies primarily in the rate of ATP hydrolysis by the clock protein KaiC.

  8. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    Science.gov (United States)

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  9. Ramadan fasting in Saudi Arabia is associated with altered expression of CLOCK, DUSP and IL-1alpha genes, as well as changes in cardiometabolic risk factors.

    Directory of Open Access Journals (Sweden)

    Ghada M A Ajabnoor

    Full Text Available During the fasting month of Ramadan, practicing Saudis develop severe disturbances in sleeping and feeding patterns. Concomitantly, cortisol circadian rhythm is abolished, diurnal cortisol levels are elevated and circulating levels of several adipokines are altered favouring insulin resistance.To examine changes in the expression of CLOCK and glucocorticoid-controlled genes, such as DUSP1 and IL-1α in Saudi adults before and during Ramadan, and to investigate possible associations with selected cardiometabolic risk factors.Healthy young volunteers (5 females, 18 males; mean age +SEM = 23.2 +1.2 years were evaluated before Ramadan and two weeks into it. Blood samples were collected at 9 am (±1 hour and twelve hours later for determination of serum lipid profile, high sensitivity CRP (hsCRP, and adiponectin. The expression of CLOCK, DUSP1 and IL-1α was evaluated in circulating leukocytes.Mean levels of GGT and morning adiponectin decreased, while those of LDL-c/ HDL-c and atherogenic index (AI increased significantly in Ramadan compared to Shabaan. There was no significant difference between morning and evening adiponectin during Ramadan, while the diurnal rhythm of hsCRP was lost. CLOCK gene expression mean was significantly higher in morning than in evening during Shabaan. Mean morning and evening DUSP1 mRNA levels showed significant increase during Ramadan compared to Shabaan, however, its diurnal rhythm was maintained. Morning IL-1α mRNA expression remained significantly higher than in the evening during Ramadan, but was markedly decreased compared to Shabaan.Ramadan fasting in Saudi Arabia is associated with improvements in some cardiometabolic risk factors, such as circulating GGT and hsCRP and leukocyte expression of IL-1α mRNA, suggesting that intermittent fasting might have a beneficial component. These benefits may be offset by the previously reported dysregulation in the circadian rhythm, excess glucocorticoid levels and action

  10. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA.

    Science.gov (United States)

    Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E

    2017-08-01

    Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  11. Expression and light sensitivity of clock genes Per1 and Per2 and immediate-early gene c-fos within the retina of early postnatal Wistar rats

    Czech Academy of Sciences Publication Activity Database

    Matějů, Kristýna; Sumová, Alena; Bendová, Zdeňka

    2010-01-01

    Roč. 518, č. 17 (2010), s. 3630-3644 ISSN 0021-9967 R&D Projects: GA ČR(CZ) GA309/08/0503; GA MŠk(CZ) LC554 EU Projects: European Commission(XE) 18741 - EUCLOCK Grant - others:GA ČR(CZ) GD309/08/H079 Institutional research plan: CEZ:AV0Z50110509 Keywords : development * retina * circadian clock Subject RIV: FH - Neurology Impact factor: 3.774, year: 2010

  12. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    Science.gov (United States)

    Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  13. Variation in candidate genes CLOCK and ADCYAP1 does not consistently predict differences in migratory behavior in the songbird genus Junco [v1; ref status: indexed, http://f1000r.es/11p

    Directory of Open Access Journals (Sweden)

    Mark P Peterson

    2013-04-01

    Full Text Available Recent studies exploring the molecular genetic basis for migratory variation in animals have identified polymorphisms in two genes (CLOCK and ADCYAP1 that are linked to circadian rhythms and correlate with migratory propensity and phenology among individuals and populations. Results from these initial studies are mixed, however, and additional data are needed to assess the generality and diversity of the molecular mechanisms that regulate the biology of migration. We sequenced CLOCK and ADCYAP1 in 15 populations across the two species of the avian genus Junco, a North American lineage in which multiple recently diverged subspecies and populations range from sedentary to long-distance migrants. We found no consistent associations between allele length and migratory status across the genus for either CLOCK or ADCYAP1. However, within two subspecies groups, populations that migrate longer distances have longer CLOCK alleles on average. Additionally, there was a positive relationship between ADCYAP1 allele length and migratory restlessness (zugunruhe among individuals within one of two captive populations studied—a result similar to those reported previously within captive blackcaps (Sylvia atricapilla. We conclude that, while both ADCYAP1 and CLOCK may correlate with migratory propensity within or among certain populations or species, previously identified relationships between migratory behavior and sequence variants cannot be easily generalized across taxa.

  14. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma

    Directory of Open Access Journals (Sweden)

    Ye H

    2015-06-01

    Full Text Available Hua Ye, Kai Yang, Xue-Mei Tan, Xiao-Juan Fu, Han-Xue LiDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaBackground: Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm variation of PER1 and expression of tumor-related genes VEGF, KI67, C-MYC, and P53 in different stages of carcinogenesis.Materials and methods: Dimethylbenzanthracene was used to establish a golden hamster model of buccal mucosa carcinogenesis. Hamsters with normal buccal mucosa, precancerous lesion, and cancerous lesion were sacrificed at six different time points during a 24-hour period of a day. Pathological examination was conducted using routine hematoxylin and eosin staining. PER1, VEGF, KI67, C-MYC, and P53 mRNAs were detected by real-time reverse transcriptase polymerase chain reaction, and a cosinor analysis was applied to analyze the daily rhythm.Results: PER1, VEGF, C-MYC, and P53 mRNA exhibited daily rhythmic expression in three carcinogenesis stages, and KI67 mRNA exhibited daily rhythmic expression in the normal and precancerous stages. The daily rhythmic expression of KI67 was not observed in cancerous stages. The mesor and amplitude of PER1 and P53 mRNA expression decreased upon the development of cancer (P<0.05, whereas the mesor and amplitude of VEGF, KI67, and C-MYC mRNA increased upon the development of cancer (P<0.05. Compared with the normal tissues, the acrophases of PER1, VEGF, and C-MYC mRNA occurred earlier, whereas the acrophases of P53 and KI67 mRNA lagged remarkably in the precancerous lesions. In the cancer stage, the acrophases

  15. Do Caucasian and Asian clocks tick differently?

    Directory of Open Access Journals (Sweden)

    A.A. Barbosa

    Full Text Available The Period 3 and Clock genes are important components of the mammalian molecular circadian system. Studies have shown association between polymorphisms in these clock genes and circadian phenotypes in different populations. Nevertheless, differences in the pattern of allele frequency and genotyping distribution are systematically observed in studies with different ethnic groups. To investigate and compare the pattern of distribution in a sample of Asian and Caucasian populations living in Brazil, we evaluated two well-studied polymorphisms in the clock genes: a variable number of tandem repeats (VNTR in PER3 and a single nucleotide polymorphism (SNP in CLOCK. The aim of this investigation was to search for clues about human evolutionary processes related to circadian rhythms. We selected 109 Asian and 135 Caucasian descendants. The frequencies of the shorter allele (4 repeats in the PER3 gene and the T allele in the CLOCK gene among Asians (0.86 and 0.84, respectively were significantly higher than among Caucasians (0.69 and 0.71, respectively. Our results directly confirmed the different distribution of these polymorphisms between the Asian and Caucasian ethnic groups. Given the genetic differences found between groups, two points became evident: first, ethnic variations may have implications for the interpretation of results in circadian rhythm association studies, and second, the question may be raised about which evolutionary conditions shaped these genetic clock variations.

  16. “Zebrafishing” for Novel Genes Relevant to the Glomerular Filtration Barrier

    Directory of Open Access Journals (Sweden)

    Nils Hanke

    2013-01-01

    Full Text Available Data for genes relevant to glomerular filtration barrier function or proteinuria is continually increasing in an era of microarrays, genome-wide association studies, and quantitative trait locus analysis. Researchers are limited by published literature searches to select the most relevant genes to investigate. High-throughput cell cultures and other in vitro systems ultimately need to demonstrate proof in an in vivo model. Generating mammalian models for the genes of interest is costly and time intensive, and yields only a small number of test subjects. These models also have many pitfalls such as possible embryonic mortality and failure to generate phenotypes or generate nonkidney specific phenotypes. Here we describe an in vivo zebrafish model as a simple vertebrate screening system to identify genes relevant to glomerular filtration barrier function. Using our technology, we are able to screen entirely novel genes in 4–6 weeks in hundreds of live test subjects at a fraction of the cost of a mammalian model. Our system produces consistent and reliable evidence for gene relevance in glomerular kidney disease; the results then provide merit for further analysis in mammalian models.

  17. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    DEFF Research Database (Denmark)

    Yang, Yaoming; Duguay, David; Bédard, Nathalie

    2012-01-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock...

  18. Development of the light sensitivity of the clock genes Period1 and Period2, and immediate-early gene c-fos within the rat suprachiasmatic nucleus

    Czech Academy of Sciences Publication Activity Database

    Matějů, Kristýna; Bendová, Zdena; El-Hennamy, Rehab; Sládek, Martin; Sosniyenko, Serhiy; Sumová, Alena

    2009-01-01

    Roč. 29, č. 3 (2009), s. 490-501 ISSN 0953-816X R&D Projects: GA ČR(CZ) GA309/08/0503; GA MŠk(CZ) LC554 Grant - others:GA ČR(CZ) GD309/08/H079; EC(XE) LSH-2004-115-4-018741 Institutional research plan: CEZ:AV0Z50110509 Keywords : circadian clock * ontogenesis * photic entrainment Subject RIV: FH - Neuro logy Impact factor: 3.418, year: 2009

  19. Hypersensitivities for Acetaldehyde and Other Agents among Cancer Cells Null for Clinically Relevant Fanconi Anemia Genes

    OpenAIRE

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R.; Rago, Carlo; Bhunia, Anil K.; Hossain, M. Zulfiquer; Paun, Bogdan C.; Ren, Yunzhao R.; Iacobuzio-Donahue, Christine A.; Azad, Nilofer A.; Kern, Scott E.

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, inclu...

  20. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    Directory of Open Access Journals (Sweden)

    Roman Muff

    Full Text Available Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages.The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines.Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  1. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  2. Abundances of Clinically Relevant Antibiotic Resistance Genes and Bacterial Community Diversity in the Weihe River, China

    Directory of Open Access Journals (Sweden)

    Xiaojuan Wang

    2018-04-01

    Full Text Available The spread of antibiotic resistance genes in river systems is an emerging environmental issue due to their potential threat to aquatic ecosystems and public health. In this study, we used droplet digital polymerase chain reaction (ddPCR to evaluate pollution with clinically relevant antibiotic resistance genes (ARGs at 13 monitoring sites along the main stream of the Weihe River in China. Six clinically relevant ARGs and a class I integron-integrase (intI1 gene were analyzed using ddPCR, and the bacterial community was evaluated based on the bacterial 16S rRNA V3–V4 regions using MiSeq sequencing. The results indicated Proteobacteria, Actinobacteria, Cyanobacteria, and Bacteroidetes as the dominant phyla in the water samples from the Weihe River. Higher abundances of blaTEM, strB, aadA, and intI1 genes (103 to 105 copies/mL were detected in the surface water samples compared with the relatively low abundances of strA, mecA, and vanA genes (0–1.94 copies/mL. Eight bacterial genera were identified as possible hosts of the intI1 gene and three ARGs (strA, strB, and aadA based on network analysis. The results suggested that the bacterial community structure and horizontal gene transfer were associated with the variations in ARGs.

  3. Study of the association between 3111T/C polymorphism of the CLOCK gene and the presence of overweight in schoolchildren.

    Science.gov (United States)

    Giovaninni, Nayara P; Fuly, Jeanne T; Moraes, Leonardo I; Coutinho, Thais N; Trarbach, Ericka B; Jorge, Alexander A de L; Costalonga, Everlayny F

    2014-01-01

    To evaluate the association between 3111T/C polymorphism of the CLOCK gene and the presence of obesity and sleep duration in children aged 6-13 years. In adults, this genetic variant has been associated with duration of sleep, ghrelin levels, weight, and eating habits. Although short sleep duration has been linked to obesity in children, no study has aimed to identify the possible molecular mechanisms of this association to date. Weight, height, and circumferences were transformed into Z-scores for age and gender. Genotyping was performed using TaqMan methodology. A questionnaire regarding hours of sleep was provided to parents. The appropriate statistical tests were performed. This study evaluated 370 children (45% males, 55% females, mean age 8.5 ± 1.5 years). The prevalence of overweight was 18%. The duration of sleep was, on average, 9.7hours, and was inversely related to age (ppolymorphism was not significantly associated with overweight or sleep duration in children in this city. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Altered energy intake and the amplitude of the body temperature rhythm are associated with changes in phase, but not amplitude, of clock gene expression in the rat suprachiasmatic nucleus in vivo.

    Science.gov (United States)

    Goh, Grace H; Mark, Peter J; Maloney, Shane K

    2016-01-01

    Circadian rhythms in mammals are driven by a central clock in the suprachiasmatic nucleus (SCN). In vitro, temperature cycles within the physiological range can act as potent entraining cues for biological clocks. We altered the body temperature (Tc) rhythm in rats by manipulating energy intake (EI) to determine whether EI-induced changes in Tc oscillations are associated with changes in SCN clock gene rhythms in vivo. Male Wistar rats (n = 16 per diet) were maintained on either an ad libitum diet (CON), a high energy cafeteria diet (CAF), or a calorie restricted diet (CR), and Tc was recorded every 30 min for 6-7 weeks. SCN tissue was harvested from rats at zeitgeber time (ZT) 0, ZT6, ZT12, or ZT18. Expression of the clock genes Bmal1, Per2, Cry1, and Rev-erbα, the heat shock transcription factor Hsf1, and the heat shock protein Hsp90aa1, were determined using qPCR. The circadian profile of gene expression for each gene was characterized using cosinor analysis. Compared to the CON rats, the amplitude of Tc was decreased in CAF rats by 0.1 °C (p  0.25). Compared to CON, phase advances of the Tc, Bmal1, and Per2 rhythms were observed with CR feeding (p < 0.05), but CAF feeding elicited no significant changes in phase. The present results indicate that in vivo, the SCN is largely resistant to entrainment by EI-induced changes in the Tc rhythm, although some phase entrainment may occur.

  5. GPS Composite Clock Analysis

    OpenAIRE

    Wright, James R.

    2008-01-01

    The GPS composite clock defines GPS time, the timescale used today in GPS operations. GPS time is illuminated by examination of its role in the complete estimation and control problem relative to UTC/TAI. The phase of each GPS clock is unobservable from GPS pseudorange measurements, and the mean phase of the GPS clock ensemble (GPS time) is unobservable. A new and useful observability definition is presented, together with new observability theorems, to demonstrate explicitly that GPS time is...

  6. FUNCTIONAL IMPLICATIONS OF THE CLOCK 3111T/C SINGLE-NUCLEOTIDE POLYMORPHISM

    Directory of Open Access Journals (Sweden)

    Angela Renee Ozburn

    2016-04-01

    Full Text Available Circadian rhythm disruptions are prominently associated with Bipolar Disorder (BD. Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (Roybal et al., 2007. The Clock 3111T/C single-nucleotide polymorphism (SNP; rs1801260 is a genetic variation of the human Clock gene that is significantly associated with increased frequency of manic episodes in BD patients (Benedetti et al., 2003. The 3111T/C SNP is located in the 3’ untranslated region of the Clock gene. In this study, we sought to examine the functional implications of the human Clock 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock -/- knockout mice with pcDNA plasmids containing the human Clock gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24 hour time period. We found that the Clock3111C SNP resulted in higher mRNA levels than the Clock 3111T SNP. Further, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with Clock 3111C expression, indicating the 3’UTR SNP affects the expression, function and stability of Clock mRNA.

  7. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes.

    Science.gov (United States)

    Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie

    2010-07-01

    *Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.

  8. Precision Clock Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Tests and evaluates high-precision atomic clocks for spacecraft, ground, and mobile applications. Supports performance evaluation, environmental testing,...

  9. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.

    Directory of Open Access Journals (Sweden)

    Haisun Zhu

    2008-01-01

    Full Text Available The circadian clock plays a vital role in monarch butterfly (Danaus plexippus migration by providing the timing component of time-compensated sun compass orientation, a process that is important for successful navigation. We therefore evaluated the monarch clockwork by focusing on the functions of a Drosophila-like cryptochrome (cry, designated cry1, and a vertebrate-like cry, designated cry2, that are both expressed in the butterfly and by placing these genes in the context of other relevant clock genes in vivo. We found that similar temporal patterns of clock gene expression and protein levels occur in the heads, as occur in DpN1 cells, of a monarch cell line that contains a light-driven clock. CRY1 mediates TIMELESS degradation by light in DpN1 cells, and a light-induced TIMELESS decrease occurs in putative clock cells in the pars lateralis (PL in the brain. Moreover, monarch cry1 transgenes partially rescue both biochemical and behavioral light-input defects in cry(b mutant Drosophila. CRY2 is the major transcriptional repressor of CLOCK:CYCLE-mediated transcription in DpN1 cells, and endogenous CRY2 potently inhibits transcription without involvement of PERIOD. CRY2 is co-localized with clock proteins in the PL, and there it translocates to the nucleus at the appropriate time for transcriptional repression. We also discovered CRY2-positive neural projections that oscillate in the central complex. The results define a novel, CRY-centric clock mechanism in the monarch in which CRY1 likely functions as a blue-light photoreceptor for entrainment, whereas CRY2 functions within the clockwork as the transcriptional repressor of a negative transcriptional feedback loop. Our data further suggest that CRY2 may have a dual role in the monarch butterfly's brain-as a core clock element and as an output that regulates circadian activity in the central complex, the likely site of the sun compass.

  10. The rhythm of feeding : Effect of nutrients on metabolism and the molecular clock

    NARCIS (Netherlands)

    Oosterman, J.E.

    2017-01-01

    This thesis describes studies we performed to assess the relationship between nutrients and the circadian clock. We assessed the effects of sugar and fatty acids on the daily rhythmicity of hepatic clock genes and whole-body metabolism in vivo, and on circadian rhythmicity of clock genes in vitro.

  11. Egyptian "Star Clocks"

    Science.gov (United States)

    Symons, Sarah

    Diagonal, transit, and Ramesside star clocks are tables of astronomical information occasionally found in ancient Egyptian temples, tombs, and papyri. The tables represent the motions of selected stars (decans and hour stars) throughout the Egyptian civil year. Analysis of star clocks leads to greater understanding of ancient Egyptian constellations, ritual astronomical activities, observational practices, and pharaonic chronology.

  12. Biological Clocks & Circadian Rhythms

    Science.gov (United States)

    Robertson, Laura; Jones, M. Gail

    2009-01-01

    The study of biological clocks and circadian rhythms is an excellent way to address the inquiry strand in the National Science Education Standards (NSES) (NRC 1996). Students can study these everyday phenomena by designing experiments, gathering and analyzing data, and generating new experiments. As students explore biological clocks and circadian…

  13. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    Science.gov (United States)

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  14. Photoperiodic plasticity in circadian clock neurons in insects

    Directory of Open Access Journals (Sweden)

    Sakiko eShiga

    2013-08-01

    Full Text Available Since Bünning’s observation of circadian rhythms and photoperiodism in the runner bean Phaseolus multiflorus in 1936, many studies have shown that photoperiodism is based on the circadian clock system. In insects, involvement of circadian clock genes or neurons has been recently shown in the photoperiodic control of developmental arrests, diapause. Based on molecular and neuronal studies in Drosophila melanogaster, photoperiodic changes have been reported for expression patterns of the circadian clock genes, subcellular distribution of clock proteins, fiber distribution, or the number of plausible clock neurons in different species. Photoperiod sets peaks of per or tim mRNA abundance at lights-off in Sarcophaga crassipalpis, Chymomyza costata and Protophormia terraenovae. Abundance of per and Clock mRNA changes by photoperiod in Pyrrhocoris apterus. Subcellular Per distribution in circadian clock neurons changes with photoperiod in P. terraenovae. Although photoperiodism is not known in Leucophaea maderae, under longer day length, more stomata and longer commissural fibers of circadian clock neurons have been found. These plastic changes in the circadian clock neurons could be an important constituent for photoperiodic clock mechanisms to integrate repetitive photoperiodic information and produce different outputs based on day length.

  15. Clinically relevant known and candidate genes for obesity and their overlap with human infertility and reproduction.

    Science.gov (United States)

    Butler, Merlin G; McGuire, Austen; Manzardo, Ann M

    2015-04-01

    Obesity is a growing public health concern now reaching epidemic status worldwide for children and adults due to multiple problems impacting on energy intake and expenditure with influences on human reproduction and infertility. A positive family history and genetic factors are known to play a role in obesity by influencing eating behavior, weight and level of physical activity and also contributing to human reproduction and infertility. Recent advances in genetic technology have led to discoveries of new susceptibility genes for obesity and causation of infertility. The goal of our study was to provide an update of clinically relevant candidate and known genes for obesity and infertility using high resolution chromosome ideograms with gene symbols and tabular form. We used computer-based internet websites including PubMed to search for combinations of key words such as obesity, body mass index, infertility, reproduction, azoospermia, endometriosis, diminished ovarian reserve, estrogen along with genetics, gene mutations or variants to identify evidence for development of a master list of recognized obesity genes in humans and those involved with infertility and reproduction. Gene symbols for known and candidate genes for obesity were plotted on high resolution chromosome ideograms at the 850 band level. Both infertility and obesity genes were listed separately in alphabetical order in tabular form and those highlighted when involved with both conditions. By searching the medical literature and computer generated websites for key words, we found documented evidence for 370 genes playing a role in obesity and 153 genes for human reproduction or infertility. The obesity genes primarily affected common pathways in lipid metabolism, deposition or transport, eating behavior and food selection, physical activity or energy expenditure. Twenty-one of the obesity genes were also associated with human infertility and reproduction. Gene symbols were plotted on high resolution

  16. Gene expression profiling of mucolipidosis type IV fibroblasts reveals deregulation of genes with relevant functions in lysosome physiology.

    Science.gov (United States)

    Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe

    2008-04-01

    Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.

  17. Influence of simulated microgravity on clock genes expression rhythmicity and underlying blood circulating miRNAs-mRNA co-expression regulatory mechanism in C57BL/6J mice

    Science.gov (United States)

    Lv, Ke; Qu, Lina

    Purpose: It is vital for astronauts to maintain the optimal alertness and neurobehavioral function. Among various factors that exist in the space flight and long-duration mission environment, gravity changes may probably an essential environmental factor to interfere with internal circadian rhythms homeostasis and sleep quality, but the underlying mechanism is unclear. Mammals' biological clock is controlled by the suprachiasmatic nucleus (SCN), and peripheral organs adjust their own rhythmicity with the central signals. Nevertheless the mechanism underlying this synchronizition process is still unknown. microRNAs (miRNAs) are about 19˜22nt long regulatory RNAs that serve as critical modulators of post-transcriptional gene regulation. Recently, circulating miRNAs were found to have the regulatory role between cells and peripheral tissues, besides its function inside the cells. This study aims to investigate the regulatory signal transduction role of miRNAs between SCN and peripheral biological clock effecter tissues and to further decipher the mechanism of circadian disturbance under microgravity. Method: Firstly, based on the assumption that severe alterations in the expression of genes known to be involved in circadian rhythms may affect the expression of other genes, the labeled cDNA from liver and suprachiasmatic nucleus (SCN) of clock-knockout mice and control mice in different time points were cohybridized to microarrays. The fold change exceeding 2 (FC>2) was used to identify genes with altered expression levels in the knockout mice compared with control mice. Secondly, male C57BL/6J mice at 8 weeks of age were individually caged and acclimatized to the laboratory conditions (12h light/dark cycle) before being used for continuous core body temperature and activity monitoring. The mice were individually caged and tail suspended using a strip of adhesive surgical tape attached to a chain hanging from a pulley. Peripheral blood and liver tissues collection

  18. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  19. Neurospora crassa glucose - repressible gene -1(Grg-1) promoter controls the expression of neurospora tyrosinase gene in a clock-controlled manner

    International Nuclear Information System (INIS)

    Tarawneh, A. K

    1997-01-01

    In this study sphareroplastes of white Neurospora crassa mutant auxotroph for aromatic am no acids a rom 9 q a-2 inv, was transformed by the pKF-Tyr7-wt DNA construct. This construct contains the promoter of neurospora crassa glucose-repressible gene-1 (G rg-1) usp stream of Neurospora tyrosinase gene. The co transformation of this mutant with pKF-Tyr-7-wt cincture's and the pKAL-1, a plasmid which contains the Neurospora q a-2+ gene transform it to photophor. The transform ant contains the tyrosinase gene which catalyzes the unique step in the synthesis of the black pigment melanin. The activity of the tyrosinase in this transform ant was followed by measuring the absorbance of the dark coloured pigment at 332 nm. The maximum of the tyrosinase activity was shown at 16.36 and 56 hours after the shift of the transformed mycelia from constant light (L L) to constant dark (Dd). The rate of the enzyme activity was changed according to ci radian cycle of 20 hours. This G rg 1/tyrosinase construct provides a good system to study to study the temporal control of gene expression and the interaction between the different environmental c uses that affects gene expression. (author). 20 refs., 4 figs

  20. ICGE: an R package for detecting relevant clusters and atypical units in gene expression

    Directory of Open Access Journals (Sweden)

    Irigoien Itziar

    2012-02-01

    Full Text Available Abstract Background Gene expression technologies have opened up new ways to diagnose and treat cancer and other diseases. Clustering algorithms are a useful approach with which to analyze genome expression data. They attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. An important problem associated with gene classification is to discern whether the clustering process can find a relevant partition as well as the identification of new genes classes. There are two key aspects to classification: the estimation of the number of clusters, and the decision as to whether a new unit (gene, tumor sample... belongs to one of these previously identified clusters or to a new group. Results ICGE is a user-friendly R package which provides many functions related to this problem: identify the number of clusters using mixed variables, usually found by applied biomedical researchers; detect whether the data have a cluster structure; identify whether a new unit belongs to one of the pre-identified clusters or to a novel group, and classify new units into the corresponding cluster. The functions in the ICGE package are accompanied by help files and easy examples to facilitate its use. Conclusions We demonstrate the utility of ICGE by analyzing simulated and real data sets. The results show that ICGE could be very useful to a broad research community.

  1. Development and entrainment of the colonic circadian clock during ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Polidarová, Lenka; Olejníková, Lucie; Paušlyová, Lucia; Sládek, Martin; Soták, Matúš; Pácha, Jiří; Sumová, Alena

    2014-01-01

    Roč. 306, č. 4 (2014), G346-G356 ISSN 0193-1857 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : circadian clock * clock gene * ontogenesis * circadian entrainment Subject RIV: ED - Physiology Impact factor: 3.798, year: 2014

  2. Clinical Relevance of Gene Copy Number Variation in Metastatic Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Nouhaud, François-Xavier; Blanchard, France; Sesboue, Richard; Flaman, Jean-Michel; Sabourin, Jean-Christophe; Pfister, Christian; Di Fiore, Frédéric

    2018-02-23

    Gene copy number variations (CNVs) have been reported to be frequent in renal cell carcinoma (RCC), with potential prognostic value for some. However, their clinical utility, especially to guide treatment of metastatic disease remains to be established. Our objectives were to assess CNVs on a panel of selected genes and determine their clinical relevance in patients who underwent treatment of metastatic RCC. The genetic assessment was performed on frozen tissue samples of clear cell metastatic RCC using quantitative multiplex polymerase chain reaction of short fluorescent fragment method to detect CNVs on a panel of 14 genes of interest. The comparison of the electropherogram obtained from both tumor and normal renal adjacent tissue allowed for CNV identification. The clinical, biologic, and survival characteristics were assessed for their associations with the most frequent CNVs. Fifty patients with clear cell metastatic RCC were included. The CNV rate was 21.4%. The loss of CDKN2A and PLG was associated with a higher tumor stage (P relevance, especially those located on CDKN2A, PLG, and ALDOB, in a homogeneous cohort of patients with clear cell metastatic RCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Atomic and gravitational clocks

    International Nuclear Information System (INIS)

    Canuto, V.M.; City Coll., New York; Goldman, I.

    1982-01-01

    Atomic and gravitational clocks are governed by the laws of electrodynamics and gravity respectively. While the strong equivalence principle (SEP) assumes that the two clocks have been synchronous at all times, recent planetary data seem to suggest a possible violation of the SEP. Past analysis of the implications of an SEP violation on different physical phenomena revealed no disagreement. However, these studies assumed that the two different clocks can be consistently constructed within the framework. The concept of scale invariance, and the physical meaning of different systems of units, are now reviewed and the construction of two clocks that do not remain synchronous-whose rates are related by a non-constant function βsub(a)-is demonstrated. The cosmological character of βsub(a) is also discussed. (author)

  4. Clock synchronization and dispersion

    International Nuclear Information System (INIS)

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo; Wong, Franco N C

    2002-01-01

    We present a method to defeat effects of dispersion of timing signals when synchronizing clocks. It is based on the recently proposed 'conveyor belt synchronization' scheme and on the quantum dispersion cancellation effect

  5. Biological timing and the clock metaphor: oscillatory and hourglass mechanisms.

    Science.gov (United States)

    Rensing, L; Meyer-Grahle, U; Ruoff, P

    2001-05-01

    as relevant models, are briefly re viewed. Hourglass clocks are based on linear or exponential unidirectional processes that trigger events mainly in the course of development and aging. An important hourglass mechanism within the aging process is the limitation of cell division capacity by the length of telomeres. The mechanism of this clock is briefly reviewed. In all clock mechanisms, thresholds at which "dependent variables" are triggered play an important role.

  6. Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome

    Science.gov (United States)

    Genetic variation at the Circadian Locomotor Output Cycles Kaput (CLOCK) locus has been associated with lifestyle-related conditions such as obesity, metabolic syndrome (MetS) and cardiovascular diseases. In fact, it has been suggested that the disruption of the circadian system may play a causal ro...

  7. Evidence for widespread dysregulation of circadian clock progression in human cancer

    Directory of Open Access Journals (Sweden)

    Jarrod Shilts

    2018-01-01

    Full Text Available The ubiquitous daily rhythms in mammalian physiology are guided by progression of the circadian clock. In mice, systemic disruption of the clock can promote tumor growth. In vitro, multiple oncogenes can disrupt the clock. However, due to the difficulties of studying circadian rhythms in solid tissues in humans, whether the clock is disrupted within human tumors has remained unknown. We sought to determine the state of the circadian clock in human cancer using publicly available transcriptome data. We developed a method, called the clock correlation distance (CCD, to infer circadian clock progression in a group of samples based on the co-expression of 12 clock genes. Our method can be applied to modestly sized datasets in which samples are not labeled with time of day and coverage of the circadian cycle is incomplete. We used the method to define a signature of clock gene co-expression in healthy mouse organs, then validated the signature in healthy human tissues. By then comparing human tumor and non-tumor samples from twenty datasets of a range of cancer types, we discovered that clock gene co-expression in tumors is consistently perturbed. Subsequent analysis of data from clock gene knockouts in mice suggested that perturbed clock gene co-expression in human cancer is not caused solely by the inactivation of clock genes. Furthermore, focusing on lung cancer, we found that human lung tumors showed systematic changes in expression in a large set of genes previously inferred to be rhythmic in healthy lung. Our findings suggest that clock progression is dysregulated in many solid human cancers and that this dysregulation could have broad effects on circadian physiology within tumors. In addition, our approach opens the door to using publicly available data to infer circadian clock progression in a multitude of human phenotypes.

  8. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock

  9. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    Science.gov (United States)

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in

  10. [Research on the relevance between the virulent genes differential expression and pathogenecity of Leptospira with microarray].

    Science.gov (United States)

    Yu, De-li; Bao, Lang

    2015-01-01

    To find the change of virulent gene expression and to analyze the relevance between the virulent change and the gene expression. Grouped guinea pigs were inoculated with 1 mL Leptospira cultured in vivo, Leptospira cultured in vitro and the Leptospira culture medium through abdominal subcutaneous respectively. The survival rate, body mass and temperature change of guinea pigs in different groups were measured within 15 d after the inoculation, then the survived guinea pigs were scarified, and the organ coefficient was also measured to know the virulence of Leptospira cultured in different environment. The amplified gene segments from Leptospira were used as probes and wrote the microarray. The total RNA was extracted from Leptospira standard strain cultured in culture medium and guinea pigs. After reverse transcription to cDNA, they were labeled with Cy3 and Cy5 respectively. Labeled cDNA was mixed and hybridized with the microarray. The hybridized mircroarray was scanned and analysed. The survival rate of inoculated guinea pig was different from group to group (in vivo group: 0%; in vitro group: 88.9%; culture medium group: 100%). The guinea pigs in vivo group had a higher temperature (PLeptospira: LA1027, LA1029, LA4004, LA3050, LA3540, LA0327, LA0378, LA1650, LA3937, LA2089, LA2144, LA3576, LA0011 and gene of Loa22 were up regulation after continuously cultured in guinea pigs. The pathogenic ability of Leptospira cultured in different environment is different and the gene expression of Leptospira is different between in vivo and in vitro as well. The understanding of the meaning of this change might help to know the pathogenecity of Leptospira.

  11. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  12. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia.

    Science.gov (United States)

    Martin, David A; Marona-Lewicka, Danuta; Nichols, David E; Nichols, Charles D

    2014-08-01

    Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Regulation of behavioral circadian rhythms and clock protein PER1 by the deubiquitinating enzyme USP2

    Directory of Open Access Journals (Sweden)

    Yaoming Yang

    2012-06-01

    Endogenous 24-hour rhythms are generated by circadian clocks located in most tissues. The molecular clock mechanism is based on feedback loops involving clock genes and their protein products. Post-translational modifications, including ubiquitination, are important for regulating the clock feedback mechanism. Previous work has focused on the role of ubiquitin ligases in the clock mechanism. Here we show a role for the rhythmically-expressed deubiquitinating enzyme ubiquitin specific peptidase 2 (USP2 in clock function. Mice with a deletion of the Usp2 gene (Usp2 KO display a longer free-running period of locomotor activity rhythms and altered responses of the clock to light. This was associated with altered expression of clock genes in synchronized Usp2 KO mouse embryonic fibroblasts and increased levels of clock protein PERIOD1 (PER1. USP2 can be coimmunoprecipitated with several clock proteins but directly interacts specifically with PER1 and deubiquitinates it. Interestingly, this deubiquitination does not alter PER1 stability. Taken together, our results identify USP2 as a new core component of the clock machinery and demonstrate a role for deubiquitination in the regulation of the circadian clock, both at the level of the core pacemaker and its response to external cues.

  14. The Clock mutant mouse is a novel experimental model for nocturia and nocturnal polyuria.

    Science.gov (United States)

    Ihara, Tatsuya; Mitsui, Takahiko; Nakamura, Yuki; Kira, Satoru; Miyamoto, Tatsuya; Nakagomi, Hiroshi; Sawada, Norifumi; Hirayama, Yuri; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Yoichi; Yoshiyama, Mitsuharu; Andersson, Karl-Erik; Nakao, Atsuhito; Takeda, Masayuki; Koizumi, Schuichi

    2017-04-01

    The pathophysiologies of nocturia (NOC) and nocturnal polyuria (NP) are multifactorial and their etiologies remain unclear in a large number of patients. Clock genes exist in most cells and organs, and the products of Clock regulate circadian rhythms as representative clock genes. Clock genes regulate lower urinary tract function, and a newly suggested concept is that abnormalities in clock genes cause lower urinary tract symptoms. In the present study, we investigated the voiding behavior of Clock mutant (Clock Δ19/Δ19 ) mice in order to determine the effects of clock genes on NOC/NP. Male C57BL/6 mice aged 8-12 weeks (WT) and male C57BL/6 Clock Δ19/Δ19 mice aged 8 weeks were used. They were bred under 12 hr light/dark conditions for 2 weeks and voiding behavior was investigated by measuring water intake volume, urine volume, urine volume/void, and voiding frequency in metabolic cages in the dark and light periods. No significant differences were observed in behavior patterns between Clock Δ19/Δ19 and WT mice. Clock Δ19/Δ19 mice showed greater voiding frequencies and urine volumes during the sleep phase than WT mice. The diurnal change in urine volume/void between the dark and light periods in WT mice was absent in Clock Δ19/Δ19 mice. Additionally, functional bladder capacity was significantly lower in Clock Δ19/Δ19 mice than in WT mice. We demonstrated that Clock Δ19/Δ19 mice showed the phenotype of NOC/NP. The Clock Δ19/Δ19 mouse may be used as an animal model of NOC and NP. Neurourol. Urodynam. 36:1034-1038, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Hypersensitivities for acetaldehyde and other agents among cancer cells null for clinically relevant Fanconi anemia genes.

    Science.gov (United States)

    Ghosh, Soma; Sur, Surojit; Yerram, Sashidhar R; Rago, Carlo; Bhunia, Anil K; Hossain, M Zulfiquer; Paun, Bogdan C; Ren, Yunzhao R; Iacobuzio-Donahue, Christine A; Azad, Nilofer A; Kern, Scott E

    2014-01-01

    Large-magnitude numerical distinctions (>10-fold) among drug responses of genetically contrasting cancers were crucial for guiding the development of some targeted therapies. Similar strategies brought epidemiological clues and prevention goals for genetic diseases. Such numerical guides, however, were incomplete or low magnitude for Fanconi anemia pathway (FANC) gene mutations relevant to cancer in FANC-mutation carriers (heterozygotes). We generated a four-gene FANC-null cancer panel, including the engineering of new PALB2/FANCN-null cancer cells by homologous recombination. A characteristic matching of FANCC-null, FANCG-null, BRCA2/FANCD1-null, and PALB2/FANCN-null phenotypes was confirmed by uniform tumor regression on single-dose cross-linker therapy in mice and by shared chemical hypersensitivities to various inter-strand cross-linking agents and γ-radiation in vitro. Some compounds, however, had contrasting magnitudes of sensitivity; a strikingly high (19- to 22-fold) hypersensitivity was seen among PALB2-null and BRCA2-null cells for the ethanol metabolite, acetaldehyde, associated with widespread chromosomal breakage at a concentration not producing breaks in parental cells. Because FANC-defective cancer cells can share or differ in their chemical sensitivities, patterns of selective hypersensitivity hold implications for the evolutionary understanding of this pathway. Clinical decisions for cancer-relevant prevention and management of FANC-mutation carriers could be modified by expanded studies of high-magnitude sensitivities. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Analysis of the overdispersed clock in the short-term evolution of hepatitis C virus: Using the E1/E2 gene sequences to infer infection dates in a single source outbreak.

    Science.gov (United States)

    Wróbel, Borys; Torres-Puente, Manuela; Jiménez, Nuria; Bracho, María Alma; García-Robles, Inmaculada; Moya, Andrés; González-Candelas, Fernando

    2006-06-01

    The assumption of a molecular clock for dating events from sequence information is often frustrated by the presence of heterogeneity among evolutionary rates due, among other factors, to positively selected sites. In this work, our goal is to explore methods to estimate infection dates from sequence analysis. One such method, based on site stripping for clock detection, was proposed to unravel the clocklike molecular evolution in sequences showing high variability of evolutionary rates and in the presence of positive selection. Other alternatives imply accommodating heterogeneity in evolutionary rates at various levels, without eliminating any information from the data. Here we present the analysis of a data set of hepatitis C virus (HCV) sequences from 24 patients infected by a single individual with known dates of infection. We first used a simple criterion of relative substitution rate for site removal prior to a regression analysis. Time was regressed on maximum likelihood pairwise evolutionary distances between the sequences sampled from the source individual and infected patients. We show that it is indeed the fastest evolving sites that disturb the molecular clock and that these sites correspond to positively selected codons. The high computational efficiency of the regression analysis allowed us to compare the site-stripping scheme with random removal of sites. We demonstrate that removing the fast-evolving sites significantly increases the accuracy of estimation of infection times based on a single substitution rate. However, the time-of-infection estimations improved substantially when a more sophisticated and computationally demanding Bayesian method was used. This method was used with the same data set but keeping all the sequence positions in the analysis. Consequently, despite the distortion introduced by positive selection on evolutionary rates, it is possible to obtain quite accurate estimates of infection dates, a result of especial relevance for

  17. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...

  18. Characterization of a second physiologically relevant lactose permease gene (lacpB) in Aspergillus nidulans.

    Science.gov (United States)

    Fekete, Erzsébet; Orosz, Anita; Kulcsár, László; Kavalecz, Napsugár; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    In Aspergillus nidulans, uptake rather than hydrolysis is the rate-limiting step of lactose catabolism. Deletion of the lactose permease A-encoding gene (lacpA) reduces the growth rate on lactose, while its overexpression enables faster growth than wild-type strains are capable of. We have identified a second physiologically relevant lactose transporter, LacpB. Glycerol-grown mycelia from mutants deleted for lacpB appear to take up only minute amounts of lactose during the first 60 h after a medium transfer, while mycelia of double lacpA/lacpB-deletant strains are unable to produce new biomass from lactose. Although transcription of both lacp genes was strongly induced by lactose, their inducer profiles differ markedly. lacpA but not lacpB expression was high in d-galactose cultures. However, lacpB responded strongly also to β-linked glucopyranose dimers cellobiose and sophorose, while these inducers of the cellulolytic system did not provoke any lacpA response. Nevertheless, lacpB transcript was induced to higher levels on cellobiose in strains that lack the lacpA gene than in a wild-type background. Indeed, cellobiose uptake was faster and biomass formation accelerated in lacpA deletants. In contrast, in lacpB knockout strains, growth rate and cellobiose uptake were considerably reduced relative to wild-type, indicating that the cellulose and lactose catabolic systems employ common elements. Nevertheless, our permease mutants still grew on cellobiose, which suggests that its uptake in A. nidulans prominently involves hitherto unknown transport systems.

  19. Decamp Clock Board Firmware

    International Nuclear Information System (INIS)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-01-01

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs

  20. Decamp Clock Board Firmware

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.

    2007-09-27

    Decamp (Dark Energy Survey Camera) is a new instrument designed to explore the universe aiming to reveal the nature of Dark Energy. The camera consists of 72 CCDs and 520 Mpixels. The readout electronics of DECam is based on the Monsoon system. Monsoon is a new image acquisition system developed by the NOAO (National Optical Astronomical Observatory) for the new generation of astronomical cameras. The Monsoon system uses three types of boards inserted in a Eurocard format based crate: master control board, acquisition board and clock board. The direct use of the Monsoon system for DECam readout electronics requires nine crates mainly due to the high number of clock boards needed. Unfortunately, the available space for DECam electronics is constrained to four crates at maximum. The major drawback to achieve such desired compaction degree resides in the clock board signal density. This document describes the changes performed at CIEMAT on the programmable logic of the Monsoon clock board aiming to meet such restricted space constraints. (Author) 5 refs.

  1. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Sergi Portolés

    2010-11-01

    Full Text Available Circadian rhythms are daily biological oscillations driven by an endogenous mechanism known as circadian clock. The protein kinase CK2 is one of the few clock components that is evolutionary conserved among different taxonomic groups. CK2 regulates the stability and nuclear localization of essential clock proteins in mammals, fungi, and insects. Two CK2 regulatory subunits, CKB3 and CKB4, have been also linked with the Arabidopsis thaliana circadian system. However, the biological relevance and the precise mechanisms of CK2 function within the plant clockwork are not known. By using ChIP and Double-ChIP experiments together with in vivo luminescence assays at different temperatures, we were able to identify a temperature-dependent function for CK2 modulating circadian period length. Our study uncovers a previously unpredicted mechanism for CK2 antagonizing the key clock regulator CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1. CK2 activity does not alter protein accumulation or subcellular localization but interferes with CCA1 binding affinity to the promoters of the oscillator genes. High temperatures enhance the CCA1 binding activity, which is precisely counterbalanced by the CK2 opposing function. Altering this balance by over-expression, mutation, or pharmacological inhibition affects the temperature compensation profile, providing a mechanism by which plants regulate circadian period at changing temperatures. Therefore, our study establishes a new model demonstrating that two opposing and temperature-dependent activities (CCA1-CK2 are essential for clock temperature compensation in Arabidopsis.

  2. Redox rhythm reinforces the circadian clock to gate immune response.

    Science.gov (United States)

    Zhou, Mian; Wang, Wei; Karapetyan, Sargis; Mwimba, Musoki; Marqués, Jorge; Buchler, Nicolas E; Dong, Xinnian

    2015-07-23

    Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.

  3. The mammalian retina as a clock

    Science.gov (United States)

    Tosini, Gianluca; Fukuhara, Chiaki

    2002-01-01

    Many physiological, cellular, and biochemical parameters in the retina of vertebrates show daily rhythms that, in many cases, also persist under constant conditions. This demonstrates that they are driven by a circadian pacemaker. The presence of an autonomous circadian clock in the retina of vertebrates was first demonstrated in Xenopus laevis and then, several years later, in mammals. In X. laevis and in chicken, the retinal circadian pacemaker has been localized in the photoreceptor layer, whereas in mammals, such information is not yet available. Recent advances in molecular techniques have led to the identification of a group of genes that are believed to constitute the molecular core of the circadian clock. These genes are expressed in the retina, although with a slightly different 24-h profile from that observed in the central circadian pacemaker. This result suggests that some difference (at the molecular level) may exist between the retinal clock and the clock located in the suprachiasmatic nuclei of hypothalamus. The present review will focus on the current knowledge of the retinal rhythmicity and the mechanisms responsible for its control.

  4. The circadian oscillator of the cerebral cortex: molecular, biochemical and behavioral effects of deleting the Arntl clock gene in cortical neurons

    DEFF Research Database (Denmark)

    Bering, Tenna; Carstensen, Mikkel Bloss; Wörtwein, Gitta

    2018-01-01

    for normal function of the cortical circadian oscillator. Daily rhythms in running activity and temperature were not influenced, whereas the resynchronization response to experimental jet-lag exhibited minor though significant differences between genotypes. The tail-suspension test revealed significantly...... prolonged immobility periods in the knockout mouse indicative of a depressive-like behavioral state. This phenotype was accompanied by reduced norepinephrine levels in the cerebral cortex. Our data show that Arntl is required for normal cortical clock function and further give reason to suspect...... that the circadian oscillator of the cerebral cortex is involved in regulating both circadian biology and mood-related behavior and biochemistry....

  5. The promoter activities of sucrose phosphate synthase genes in rice, OsSPS1 and OsSPS11, are controlled by light and circadian clock, but not by sucrose

    Directory of Open Access Journals (Sweden)

    Madoka eYonekura

    2013-03-01

    Full Text Available Although sucrose plays a role in sugar sensing and its signaling pathway, little is known about the regulatory mechanisms of the expressions of plant sucrose-related genes. Our previous study on the expression of the sucrose phosphate synthase gene family in rice (OsSPSs suggested the involvement of sucrose sensing and/or circadian rhythm in the transcriptional regulation of OsSPS. To examine whether the promoters of OsSPSs can be controlled by sugars and circadian clock, we produced transgenic rice plants harboring a promoter–luciferase construct for OsSPS1 or OsSPS11 and analyzed the changes in the promoter activities by monitoring bioluminescence from intact transgenic plants in real time. Transgenic plants fed sucrose, glucose, or mannitol under continuous light conditions showed no changes in bioluminescence intensity; meanwhile, the addition of sucrose increased the concentration of sucrose in the plants, and the mRNA levels of OsSPS remained constant. These results suggest that these OsSPS promoters may not be regulated by sucrose levels in the tissues. Next, we investigated the changes in the promoter activities under 12-h light/12-h dark cycles and continuous light conditions. Under the light–dark cycle, both OsSPS1 and OsSPS11 promoter activities were low in the dark and increased rapidly after the beginning of the light period. When the transgenic rice plants were moved to the continuous light condition, both POsSPS1::LUC and POsSPS11::LUC reporter plants exhibited circadian bioluminescence rhythms; bioluminescence peaked during the subjective day with a 27-h period: in the early morning as for OsSPS1 promoter and midday for OsSPS11 promoter. These results indicate that these OsSPS promoters are controlled by both light illumination and circadian clock and that the regulatory mechanism of promoter activity differs between the 2 OsSPS genes.

  6. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  7. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  8. Comparisons of mental clocks.

    Science.gov (United States)

    Paivio, A

    1978-02-01

    Subjects in three experiments were presented with pairs of clock times and were required to choose the one in which the hour and minute hand formed the smaller angle. In Experiments 1 and 2, the times were presented digitally, necessitating a transformation into symbolic representations from which the angular size difference could be inferred. The results revealed orderly symbolic distance effects so that comparison reaction time increased as the angular size difference decreased. Moreover, subjects generally reported using imagery to make the judgment, and subjects scoring high on test of imagery ability were faster than those scoring low on such tests. Experiment 3 added a direct perceptual condition in which subjects compared angles between pairs of hands on two drawn (analog) clocks, as well as a mixed condition involving one digital and one analog clock time. The results showed comparable distance effects for all conditions. In addition, reaction time increased from the perceptual, to the mixed, to the pure-digital condition. These results are consistent with predictions from an image-based dual-coding theory.

  9. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  10. Prediction of GNSS satellite clocks

    International Nuclear Information System (INIS)

    Broederbauer, V.

    2010-01-01

    This thesis deals with the characterisation and prediction of GNSS-satellite-clocks. A prerequisite to develop powerful algorithms for the prediction of clock-corrections is the thorough study of the behaviour of the different clock-types of the satellites. In this context the predicted part of the IGU-clock-corrections provided by the Analysis Centers (ACs) of the IGS was compared to the IGS-Rapid-clock solutions to determine reasonable estimates of the quality of already existing well performing predictions. For the shortest investigated interval (three hours) all ACs obtain almost the same accuracy of 0,1 to 0,4 ns. For longer intervals the individual predictions results start to diverge. Thus, for a 12-hours- interval the differences range from nearly 10 ns (GFZ, CODE) until up to some 'tens of ns'. Based on the estimated clock corrections provided via the IGS Rapid products a simple quadratic polynomial turns out to be sufficient to describe the time series of Rubidium-clocks. On the other hand Cesium-clocks show a periodical behaviour (revolution period) with an amplitude of up to 6 ns. A clear correlation between these amplitudes and the Sun elevation angle above the orbital planes can be demonstrated. The variability of the amplitudes is supposed to be caused by temperature-variations affecting the oscillator. To account for this periodical behaviour a quadratic polynomial with an additional sinus-term was finally chosen as prediction model both for the Cesium as well as for the Rubidium clocks. The three polynomial-parameters as well as amplitude and phase shift of the periodic term are estimated within a least-square-adjustment by means of program GNSS-VC/static. Input-data are time series of the observed part of the IGU clock corrections. With the estimated parameters clock-corrections are predicted for various durations. The mean error of the prediction of Rubidium-clock-corrections for an interval of six hours reaches up to 1,5 ns. For the 12-hours

  11. Radioisotope clocks in archaeology

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, R E.M. [Oxford Univ. (UK). Research Lab. for Archaeology

    1979-09-06

    Methods of absolute dating which use the rate of disintegration of a radioactive nucleus as the clock, are reviewed. The use of the abundant radioisotopes (/sup 40/K, Th and U) and of the rare radioisotopes (/sup 14/C, /sup 10/Be, /sup 26/Al, /sup 32/Si, /sup 36/Cl, /sup 41/Ca, /sup 53/Mn) is discussed and radiation integration techniques (fission track dating, thermoluminescence and related techniques) are considered. Specific fields of use of the various methods and their accuracy are examined.

  12. Methodologies for steering clocks

    Science.gov (United States)

    Chadsey, Harold

    1995-01-01

    One of the concerns of the PTTI community is the coordination of one time scale with another. This is accomplished through steering one clock system to another, with a goal of a zero or constant offset in time and frequency. In order to attain this goal, rate differences are calculated and allowed for by the steering algorithm. This paper will present several of these different methods of determining rate differences. Ideally, any change in rate should not cause the offset to change sign (overshoot) by any amount, but certainly not by as much as its previous absolute value. The advantages and disadvantages of each depend on the user's situation.

  13. Clocks and special relativity

    International Nuclear Information System (INIS)

    MacRoberts, D.T.

    1980-01-01

    A kinematic theory without precise definitions of the 'space' and 'time' used is an uninterpreted calculus. The definition of 'time' in special relativity is based on light propagation and the 'constant velocity of light' is a tautological consequence of the definition. When this definition is reified in a 'clock' the phenomenon of 'time dilation' occurs, in terms of the defined time, but is not reciprocal between moving systems; the postulate of relativity is not observed. The new definition of time is compatible with an ether theory without the relativity principle. The derivation of the Lorentz transformations, which requires both postulates, is purely formalistic and is not ontologically sound. (Auth.)

  14. Gene-by-environment interactions of the CLOCK, PEMT, and GHRELIN loci with average sleep duration in relation to obesity traits using a cohort of 643 New Zealand European children.

    Science.gov (United States)

    Krishnan, Mohanraj; Shelling, Andrew N; Wall, Clare R; Mitchell, Edwin A; Murphy, Rinki; McCowan, Lesley M E; Thompson, John M D

    2017-09-01

    Modern technology may have desensitised the 'biological clock' to environmental cues, disrupting the appropriate co-ordination of metabolic processes. Susceptibility to misalignment of circadian rhythms may be partly genetically influenced and effects on sleep quality and duration could predispose to poorer health outcomes. Shorter sleep duration is associated with obesity traits, which are brought on by an increased opportunity to eat and/or a shift of hormonal profile promoting hunger. We hypothesised that increased sleep duration will offset susceptible genetic effects, resulting in reduced obesity risk. We recruited 643 (male: 338; female: 305) European children born to participants in the New Zealand centre of the International Screening for Pregnancy Endpoints sleep study. Ten genes directly involved in the circadian rhythm machinery and a further 20 genes hypothesised to be driven by cyclic oscillations were evaluated by Sequenom assay. Multivariable regression was performed to test the interaction between gene variants and average sleep length (derived from actigraphy), in relation to obesity traits (body mass index (BMI) z-scores and percentage body fat (PBF)). No association was found between average sleep length and BMI z-scores (p = 0.056) or PBF (p = 0.609). Uncorrected genotype associations were detected between STAT-rs8069645 (p = 0.0052) and ADIPOQ-rs266729 (p = 0.019) with differences in average sleep duration. Evidence for uncorrected gene-by-sleep interactions of the CLOCK-rs4864548 (p = 0.0039), PEMT-936108 (p = 0.016) and GHRELIN-rs696217 (p = 0.046) were found in relation to BMI z-scores but not for PBF. Our results indicate that children may have different genetic susceptibility to the effects of sleep duration on obesity. Further confirmatory studies are required in other population cohorts of different age groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular clock on a neutral network.

    Science.gov (United States)

    Raval, Alpan

    2007-09-28

    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating aspects of neutral network topology from empirical measurements of the substitution process.

  16. A Light Clock Satisfying the Clock Hypothesis of Special Relativity

    Science.gov (United States)

    West, Joseph

    2007-01-01

    The design of the FMEL, a floor-mirrored Einstein-Langevin "light clock", is introduced. The clock provides a physically intuitive manner to calculate and visualize the time dilation effects for a spatially extended set of observers (an accelerated "frame") undergoing unidirectional acceleration or observers on a rotating cylinder of constant…

  17. Molecular clock in neutral protein evolution

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2004-08-01

    Full Text Available Abstract Background A frequent observation in molecular evolution is that amino-acid substitution rates show an index of dispersion (that is, ratio of variance to mean substantially larger than one. This observation has been termed the overdispersed molecular clock. On the basis of in silico protein-evolution experiments, Bastolla and coworkers recently proposed an explanation for this observation: Proteins drift in neutral space, and can temporarily get trapped in regions of substantially reduced neutrality. In these regions, substitution rates are suppressed, which results in an overall substitution process that is not Poissonian. However, the simulation method of Bastolla et al. is representative only for cases in which the product of mutation rate μ and population size Ne is small. How the substitution process behaves when μNe is large is not known. Results Here, I study the behavior of the molecular clock in in silico protein evolution as a function of mutation rate and population size. I find that the index of dispersion decays with increasing μNe, and approaches 1 for large μNe . This observation can be explained with the selective pressure for mutational robustness, which is effective when μNe is large. This pressure keeps the population out of low-neutrality traps, and thus steadies the ticking of the molecular clock. Conclusions The molecular clock in neutral protein evolution can fall into two distinct regimes, a strongly overdispersed one for small μNe, and a mostly Poissonian one for large μNe. The former is relevant for the majority of organisms in the plant and animal kingdom, and the latter may be relevant for RNA viruses.

  18. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    Human longevity is determined to a certain extent by genetic factors. Several candidate genes have been studied for their association with human longevity, but the data collected so far are inconclusive. One of the reasons is the choice of the candidate genes in addition to the choice...... of an appropriate study design and methodology. Since aging is characterized by a progressive accumulation of molecular damage and an attenuation of the cellular defense mechanisms, the focus of studies on human longevity association with genes has now shifted to the pathways of cellular maintenance and repair...... mechanisms. One such pathway includes the battery of stress response genes, especially the heat shock protein HSP70 genes. Three such genes, HSPA1A, HSPA1B and HSPA1L, are present within the MHC-III region on the short arm of chromosome 6. We and others have found alleles, genotypes and haplotypes which have...

  19. Identifying clinically relevant drug resistance genes in drug-induced resistant cancer cell lines and post-chemotherapy tissues.

    Science.gov (United States)

    Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng

    2015-12-01

    Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.

  20. An optical clock to go

    Science.gov (United States)

    Ludlow, Andrew D.

    2018-05-01

    Bringing next-generation atomic clocks out of the lab is not an easy task, but doing so will unlock many new possibilities. As a crucial first step, a portable atomic clock has now been deployed for relativistic geodesy measurements in the Alps.

  1. A central role for ubiquitination within a circadian clock protein modification code

    Directory of Open Access Journals (Sweden)

    Katarina eStojkovic

    2014-08-01

    Full Text Available Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components, but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.

  2. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  3. An evolutionary-game model of tumour-cell interactions: possible relevance to gene therapy

    DEFF Research Database (Denmark)

    Bach, Lars Arve; Bentzen, Søren; Alsner, Jan

    2001-01-01

    interpretations of gene therapy. Two prototypical strategies for gene therapy are suggested, both of them leading to extinction of the malignant phenotype: one approach would be to reduce the relative proportion of the cooperating malignant cell type below a certain critical value. Another approach would...

  4. Genome-Wide Identification of Genes Probably Relevant to the Uniqueness of Tea Plant (Camellia sinensis and Its Cultivars

    Directory of Open Access Journals (Sweden)

    Yan Wei

    2015-01-01

    Full Text Available Tea (Camellia sinensis is a popular beverage all over the world and a number of studies have focused on the genetic uniqueness of tea and its cultivars. However, molecular mechanisms underlying these phenomena are largely undefined. In this report, based on expression data available from public databases, we performed a series of analyses to identify genes probably relevant to the uniqueness of C. sinensis and two of its cultivars (LJ43 and ZH2. Evolutionary analyses showed that the evolutionary rates of genes involved in the pathways were not significantly different among C. sinensis, C. oleifera, and C. azalea. Interestingly, a number of gene families, including genes involved in the pathways synthesizing iconic secondary metabolites of tea plant, were significantly upregulated, expressed in C. sinensis (LJ43 when compared to C. azalea, and this may partially explain its higher content of flavonoid, theanine, and caffeine. Further investigation showed that nonsynonymous mutations may partially contribute to the differences between the two cultivars of C. sinensis, such as the chlorina and higher contents of amino acids in ZH2. Genes identified as candidates are probably relevant to the uniqueness of C. sinensis and its cultivars should be good candidates for subsequent functional analyses and marker-assisted breeding.

  5. Speed control: cogs and gears that drive the circadian clock.

    Science.gov (United States)

    Zheng, Xiangzhong; Sehgal, Amita

    2012-09-01

    In most organisms, an intrinsic circadian (~24-h) timekeeping system drives rhythms of physiology and behavior. Within cells that contain a circadian clock, specific transcriptional activators and repressors reciprocally regulate each other to generate a basic molecular oscillator. A mismatch of the period generated by this oscillator with the external environment creates circadian disruption, which can have adverse effects on neural function. Although several clock genes have been extensively characterized, a fundamental question remains: how do these genes work together to generate a ~24-h period? Period-altering mutations in clock genes can affect any of multiple regulated steps in the molecular oscillator. In this review, we examine the regulatory mechanisms that contribute to setting the pace of the circadian oscillator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. clockwork orange encodes a transcriptional repressor important for circadian clock amplitude in Drosophila

    OpenAIRE

    Lim, Chunghun; Chung, Brian Y.; Pitman, Jena L.; McGill, Jermaine J.; Pradhan, Suraj; Lee, Jongbin; Keegan, Kevin P.; Choe, Joonho; Allada, Ravi

    2007-01-01

    Gene transcription is a central timekeeping process in animal clocks. In Drosophila, the basic helix-loop helix (bHLH)-PAS transcription factor heterodimer, CLOCK (CLK)/CYCLE(CYC) transcriptionally activates the clock components period (per), timeless (tim), Par domain protein 1 (Pdp1), and vrille (vri) that feedback and regulate distinct features of CLK/CYC function [1]. Microarray studies have identified numerous rhythmically expressed transcripts [2-7], some of which are potential direct C...

  7. High Precision Clock Bias Prediction Model in Clock Synchronization System

    Directory of Open Access Journals (Sweden)

    Zan Liu

    2016-01-01

    Full Text Available Time synchronization is a fundamental requirement for many services provided by a distributed system. Clock calibration through the time signal is the usual way to realize the synchronization among the clocks used in the distributed system. The interference to time signal transmission or equipment failures may bring about failure to synchronize the time. To solve this problem, a clock bias prediction module is paralleled in the clock calibration system. And for improving the precision of clock bias prediction, the first-order grey model with one variable (GM(1,1 model is proposed. In the traditional GM(1,1 model, the combination of parameters determined by least squares criterion is not optimal; therefore, the particle swarm optimization (PSO is used to optimize GM(1,1 model. At the same time, in order to avoid PSO getting stuck at local optimization and improve its efficiency, the mechanisms that double subgroups and nonlinear decreasing inertia weight are proposed. In order to test the precision of the improved model, we design clock calibration experiments, where time signal is transferred via radio and wired channel, respectively. The improved model is built on the basis of clock bias acquired in the experiments. The results show that the improved model is superior to other models both in precision and in stability. The precision of improved model increased by 66.4%~76.7%.

  8. Peripheral blood transcriptome sequencing reveals rejection-relevant genes in long-term heart transplantation.

    Science.gov (United States)

    Chen, Yan; Zhang, Haibo; Xiao, Xue; Jia, Yixin; Wu, Weili; Liu, Licheng; Jiang, Jun; Zhu, Baoli; Meng, Xu; Chen, Weijun

    2013-10-03

    Peripheral blood-based gene expression patterns have been investigated as biomarkers to monitor the immune system and rule out rejection after heart transplantation. Recent advances in the high-throughput deep sequencing (HTS) technologies provide new leads in transcriptome analysis. By performing Solexa/Illumina's digital gene expression (DGE) profiling, we analyzed gene expression profiles of PBMCs from 6 quiescent (grade 0) and 6 rejection (grade 2R&3R) heart transplant recipients at more than 6 months after transplantation. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) was carried out in an independent validation cohort of 47 individuals from three rejection groups (ISHLT, grade 0,1R, 2R&3R). Through DGE sequencing and qPCR validation, 10 genes were identified as informative genes for detection of cardiac transplant rejection. A further clustering analysis showed that the 10 genes were not only effective for distinguishing patients with acute cardiac allograft rejection, but also informative for discriminating patients with renal allograft rejection based on both blood and biopsy samples. Moreover, PPI network analysis revealed that the 10 genes were connected to each other within a short interaction distance. We proposed a 10-gene signature for heart transplant patients at high-risk of developing severe rejection, which was found to be effective as well in other organ transplant. Moreover, we supposed that these genes function systematically as biomarkers in long-time allograft rejection. Further validation in broad transplant population would be required before the non-invasive biomarkers can be generally utilized to predict the risk of transplant rejection. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Clocks around Sgr A*

    Science.gov (United States)

    Angélil, Raymond; Saha, Prasenjit

    2014-11-01

    The S stars near the Galactic Centre and any pulsars that may be on similar orbits can be modelled in a unified way as clocks orbiting a black hole, and hence are potential probes of relativistic effects, including black hole spin. The high eccentricities of many S stars mean that relativistic effects peak strongly around pericentre; for example, orbit precession is not a smooth effect but almost a kick at pericentre. We argue that concentration around pericentre will be an advantage when analysing redshift or pulse-arrival data to measure relativistic effects, because cumulative precession will be drowned out by Newtonian perturbations from other mass in the Galactic Centre region. Wavelet decomposition may be a way to disentangle relativistic effects from Newton perturbations. Assuming a plausible model for Newtonian perturbations on S2, relativity appears to be strongest in a two-year interval around pericentre, in wavelet modes of time-scale ≈6 months.

  10. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat.

    Directory of Open Access Journals (Sweden)

    Mitsunori Miyazaki

    Full Text Available It is well known that spontaneously hypertensive rats (SHR develop muscle pathologies with hypertension and heart failure, though the mechanism remains poorly understood. Woon et al. (2007 linked the circadian clock gene Bmal1 to hypertension and metabolic dysfunction in the SHR. Building on these findings, we compared the expression pattern of several core-clock genes in the gastrocnemius muscle of aged SHR (80 weeks; overt heart failure compared to aged-matched control WKY strain. Heart failure was associated with marked effects on the expression of Bmal1, Clock and Rora in addition to several non-circadian genes important in regulating skeletal muscle phenotype including Mck, Ttn and Mef2c. We next performed circadian time-course collections at a young age (8 weeks; pre-hypertensive and adult age (22 weeks; hypertensive to determine if clock gene expression was disrupted in gastrocnemius, heart and liver tissues prior to or after the rats became hypertensive. We found that hypertensive/hypertrophic SHR showed a dampening of peak Bmal1 and Rev-erb expression in the liver, and the clock-controlled gene Pgc1α in the gastrocnemius. In addition, the core-clock gene Clock and the muscle-specific, clock-controlled gene Myod1, no longer maintained a circadian pattern of expression in gastrocnemius from the hypertensive SHR. These findings provide a framework to suggest a mechanism whereby chronic heart failure leads to skeletal muscle pathologies; prolonged dysregulation of the molecular clock in skeletal muscle results in altered Clock, Pgc1α and Myod1 expression which in turn leads to the mis-regulation of target genes important for mechanical and metabolic function of skeletal muscle.

  11. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga

    OpenAIRE

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-01-01

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odor...

  12. Evolutionary changes of Hox genes and relevant regulatory factors provide novel insights into mammalian morphological modifications.

    Science.gov (United States)

    Li, Kui; Sun, Xiaohui; Chen, Meixiu; Sun, Yingying; Tian, Ran; Wang, Zhengfei; Xu, Shixia; Yang, Guang

    2018-01-01

    The diversity of body plans of mammals accelerates the innovation of lifestyles and the extensive adaptation to different habitats, including terrestrial, aerial and aquatic habitats. However, the genetic basis of those phenotypic modifications, which have occurred during mammalian evolution, remains poorly explored. In the present study, we synthetically surveyed the evolutionary pattern of Hox clusters that played a powerful role in the morphogenesis along the head-tail axis of animal embryos and the main regulatory factors (Mll, Bmi1 and E2f6) that control the expression of Hox genes. A deflected density of repetitive elements and lineage-specific radical mutations of Mll have been determined in marine mammals with morphological changes, suggesting that evolutionary changes may alter Hox gene expression in these lineages, leading to the morphological modification of these lineages. Although no positive selection was detected at certain ancestor nodes of lineages, the increased ω values of Hox genes implied the relaxation of functional constraints of these genes during the mammalian evolutionary process. More importantly, 49 positively-selected sites were identified in mammalian lineages with phenotypic modifications, indicating adaptive evolution acting on Hox genes and regulatory factors. In addition, 3 parallel amino acid substitutions in some Hox genes were examined in marine mammals, which might be responsible for their streamlined body. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. The Molecular Circadian Clock and Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Uduak S. Udoh

    2015-10-01

    Full Text Available Emerging evidence from both experimental animal studies and clinical human investigations demonstrates strong connections among circadian processes, alcohol use, and alcohol-induced tissue injury. Components of the circadian clock have been shown to influence the pathophysiological effects of alcohol. Conversely, alcohol may alter the expression of circadian clock genes and the rhythmic behavioral and metabolic processes they regulate. Therefore, we propose that alcohol-mediated disruption in circadian rhythms likely underpins many adverse health effects of alcohol that cut across multiple organ systems. In this review, we provide an overview of the circadian clock mechanism and showcase results from new studies in the alcohol field implicating the circadian clock as a key target of alcohol action and toxicity in the liver. We discuss various molecular events through which alcohol may work to negatively impact circadian clock-mediated processes in the liver, and contribute to tissue pathology. Illuminating the mechanistic connections between the circadian clock and alcohol will be critical to the development of new preventative and pharmacological treatments for alcohol use disorders and alcohol-mediated organ diseases.

  14. Non-circadian expression masking clock-driven weak transcription rhythms in U2OS cells.

    Directory of Open Access Journals (Sweden)

    Julia Hoffmann

    Full Text Available U2OS cells harbor a circadian clock but express only a few rhythmic genes in constant conditions. We identified 3040 binding sites of the circadian regulators BMAL1, CLOCK and CRY1 in the U2OS genome. Most binding sites even in promoters do not correlate with detectable rhythmic transcript levels. Luciferase fusions reveal that the circadian clock supports robust but low amplitude transcription rhythms of representative promoters. However, rhythmic transcription of these potentially clock-controlled genes is masked by non-circadian transcription that overwrites the weaker contribution of the clock in constant conditions. Our data suggest that U2OS cells harbor an intrinsically rather weak circadian oscillator. The oscillator has the potential to regulate a large number of genes. The contribution of circadian versus non-circadian transcription is dependent on the metabolic state of the cell and may determine the apparent complexity of the circadian transcriptome.

  15. Fluoxetine normalizes disrupted light-induced entrainment, fragmented ultradian rhythms and altered hippocampal clock gene expression in an animal model of high trait anxiety- and depression-related behavior.

    Science.gov (United States)

    Schaufler, Jörg; Ronovsky, Marianne; Savalli, Giorgia; Cabatic, Maureen; Sartori, Simone B; Singewald, Nicolas; Pollak, Daniela D

    2016-01-01

    Disturbances of circadian rhythms are a key symptom of mood and anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) - commonly used antidepressant drugs - also modulate aspects of circadian rhythmicity. However, their potential to restore circadian disturbances in depression remains to be investigated. The effects of the SSRI fluoxetine on genetically based, depression-related circadian disruptions at the behavioral and molecular level were examined using mice selectively bred for high anxiety-related and co-segregating depression-like behavior (HAB) and normal anxiety/depression behavior mice (NAB). The length of the circadian period was increased in fluoxetine-treated HAB as compared to NAB mice while the number of activity bouts and light-induced entrainment were comparable. No difference in hippocampal Cry2 expression, previously reported to be dysbalanced in untreated HAB mice, was observed, while Per2 and Per3 mRNA levels were higher in HAB mice under fluoxetine treatment. The present findings provide evidence that fluoxetine treatment normalizes disrupted circadian locomotor activity and clock gene expression in a genetic mouse model of high trait anxiety and depression. An interaction between the molecular mechanisms mediating the antidepressant response to fluoxetine and the endogenous regulation of circadian rhythms in genetically based mood and anxiety disorders is proposed.

  16. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock

    DEFF Research Database (Denmark)

    Dyar, Kenneth A.; Ciciliot, Stefano; Wright, Lauren E.

    2014-01-01

    Circadian rhythms control metabolism and energy homeostasis, but the role of the skeletal muscle clock has never been explored. We generated conditional and inducible mouse lines with muscle-specific ablation of the core clock gene Bmal1. Skeletal muscles from these mice showed impaired insulin-s...

  17. Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of Pseudo-Response Regulators

    Directory of Open Access Journals (Sweden)

    Saito Shigeru

    2010-05-01

    Full Text Available Abstract Background Plant circadian clocks regulate many photoperiodic and diurnal responses that are conserved among plant species. The plant circadian clock system has been uncovered in the model plant, Arabidopsis thaliana, using genetics and systems biology approaches. However, it is still not clear how the clock system had been organized in the evolutionary history of plants. We recently revealed the molecular phylogeny of LHY/CCA1 genes, one of the essential components of the clock system. The aims of this study are to reconstruct the phylogenetic relationships of angiosperm clock-associated PRR genes, the partner of the LHY/CCA1 genes, and to clarify the evolutionary history of the plant clock system in angiosperm lineages. Results In the present study, to investigate the molecular phylogeny of PRR genes, we performed two approaches: reconstruction of phylogenetic trees and examination of syntenic relationships. Phylogenetic analyses revealed that PRR genes had diverged into three clades prior to the speciation of monocots and eudicots. Furthermore, copy numbers of PRR genes have been independently increased in monocots and eudicots as a result of ancient chromosomal duplication events. Conclusions Based on the molecular phylogenies of both PRR genes and LHY/CCA1 genes, we inferred the evolutionary process of the plant clock system in angiosperms. This scenario provides evolutionary information that a common ancestor of monocots and eudicots had retained the basic components required for reconstructing a clock system and that the plant circadian clock may have become a more elaborate mechanism after the speciation of monocots and eudicots because of the gene expansion that resulted from polyploidy events.

  18. Giant Subependymoma Developed in a Patient with Aniridia: Analyses of PAX6 and Tumor-relevant Genes

    Science.gov (United States)

    Maekawa, Motoko; Fujisawa, Hironori; Iwayama, Yoshimi; Tamase, Akira; Toyota, Tomoko; Osumi, Noriko; Yoshikawa, Takeo

    2010-01-01

    We observed an unusually large subependymoma in a female patient with congenital aniridia. To analyze the genetic mechanisms of tumorigenesis, we first examined the paired box 6 (PAX6) gene using both tumor tissue and peripheral lymphocytes. Tumor suppressor activity has been proposed for PAX6 in gliomas, in addition to its well-known role in the eye development. Using genomic quantitative PCR and loss of heterozygosity analysis, we identified hemizygous deletions in the 5′-region of PAX6. In lymphocytes, the deletion within PAX6 spanned from between exons 6 and 7 to the 5′-upstream region of the gene, but did not reach the upstream gene, RNC1, which is reported to be associated with tumors. The subependymoma had an additional de novo deletion spanning from the intron 4 to intron 6 of PAX6, although we could not completely determine whether these two deletions are on the same chromosome or not. We also examined other potentially relevant tumor suppressor genes: PTEN, TP53 and SOX2. However, we detected no exonic mutations or deletions in these genes. Collectively, we speculate that the defect in PAX6 may have contributed to the extremely large size of the subependymoma, due to a loss of tumor suppressor activity in glial cell lineage. PMID:20500513

  19. Micro Mercury Ion Clock (MMIC)

    Data.gov (United States)

    National Aeronautics and Space Administration — Demonstrate micro clock based on trapped Hg ions with more than 10x size reduction and power; Fractional frequency stability at parts per 1014 level, adequate for...

  20. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  1. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peihua; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2011-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  2. Controllable clock circuit design in PEM system

    International Nuclear Information System (INIS)

    Sun Yunhua; Wang Peilin; Hu Tingting; Feng Baotong; Shuai Lei; Huang Huan; Wei Shujun; Li Ke; Zhao Jingwei; Wei Long

    2010-01-01

    A high-precision synchronized clock circuit design will be presented, which can supply steady, reliable and anti-jamming clock signal for the data acquirement (DAQ) system of Positron Emission Mammography (PEM). This circuit design is based on the Single-Chip Microcomputer and high-precision clock chip, and can achieve multiple controllable clock signals. The jamming between the clock signals can be reduced greatly with the differential transmission. Meanwhile, the adoption of CAN bus control in the clock circuit can prompt the clock signals to be transmitted or masked simultaneously when needed. (authors)

  3. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks.

    Science.gov (United States)

    de Assis, Leonardo Vinícius Monteiro; Moraes, Maria Nathália; Magalhães-Marques, Keila Karoline; Kinker, Gabriela Sarti; da Silveira Cruz-Machado, Sanseray; Castrucci, Ana Maria de Lauro

    2018-04-03

    The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.

  4. Non-Metastatic Cutaneous Melanoma Induces Chronodisruption in Central and Peripheral Circadian Clocks

    Directory of Open Access Journals (Sweden)

    Leonardo Vinícius Monteiro de Assis

    2018-04-01

    Full Text Available The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME and macro-environments (TMaE in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis, and the suprachiasmatic nucleus (SCN were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism’s biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.

  5. Time without clocks - an attempt

    International Nuclear Information System (INIS)

    Karpman, G.

    1978-01-01

    A definition of time intervals separating two states of systems of elementary particles and observers is attempted. The definition is founded on the notion of instant state of the system and uses no information connected with the use of a clock. Applying the definition to a classical clock and to a sample of unstable particles, results are obtained in agreement with experiment. However, if the system contains 'few' elementary particles, the properties of the time interval present some different features. (author)

  6. Physical Layer Ethernet Clock Synchronization

    Science.gov (United States)

    2010-11-01

    42 nd Annual Precise Time and Time Interval (PTTI) Meeting 77 PHYSICAL LAYER ETHERNET CLOCK SYNCHRONIZATION Reinhard Exel, Georg...oeaw.ac.at Nikolaus Kerö Oregano Systems, Mohsgasse 1, 1030 Wien, Austria E-mail: nikolaus.keroe@oregano.at Abstract Clock synchronization ...is a service widely used in distributed networks to coordinate data acquisition and actions. As the requirement to achieve tighter synchronization

  7. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs.

    Science.gov (United States)

    Mentzel, Caroline M Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen; Jacobsen, Mette Juul; Jørgensen, Claus Bøttcher; Cirera, Susanna; Fredholm, Merete

    2018-02-01

    The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase

  8. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall. Infected by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Saijie Gong

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE. Thousands of differentially expressed genes (DEGs were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO and Kyoto encyclopedia of genes and genomes (KEGG database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.

  9. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga.

    Science.gov (United States)

    Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu

    2018-02-07

    Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.

  10. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  11. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure.

    Science.gov (United States)

    Bourdon, Julie A; Williams, Andrew; Kuo, Byron; Moffat, Ivy; White, Paul A; Halappanavar, Sabina; Vogel, Ulla; Wallin, Håkan; Yauk, Carole L

    2013-01-07

    New approaches are urgently needed to evaluate potential hazards posed by exposure to nanomaterials. Gene expression profiling provides information on potential modes of action and human relevance, and tools have recently become available for pathway-based quantitative risk assessment. The objective of this study was to use toxicogenomics in the context of human health risk assessment. We explore the utility of toxicogenomics in risk assessment, using published gene expression data from C57BL/6 mice exposed to 18, 54 and 162 μg Printex 90 carbon black nanoparticles (CBNP). Analysis of CBNP-perturbed pathways, networks and transcription factors revealed concomitant changes in predicted phenotypes (e.g., pulmonary inflammation and genotoxicity), that correlated with dose and time. Benchmark doses (BMDs) for apical endpoints were comparable to minimum BMDs for relevant pathway-specific expression changes. Comparison to inflammatory lung disease models (i.e., allergic airway inflammation, bacterial infection and tissue injury and fibrosis) and human disease profiles revealed that induced gene expression changes in Printex 90 exposed mice were similar to those typical for pulmonary injury and fibrosis. Very similar fibrotic pathways were perturbed in CBNP-exposed mice and human fibrosis disease models. Our synthesis demonstrates how toxicogenomic profiles may be used in human health risk assessment of nanoparticles and constitutes an important step forward in the ultimate recognition of toxicogenomic endpoints in human health risk. As our knowledge of molecular pathways, dose-response characteristics and relevance to human disease continues to grow, we anticipate that toxicogenomics will become increasingly useful in assessing chemical toxicities and in human health risk assessment. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans.

    Science.gov (United States)

    Fan, Yan; He, Hong; Dong, Yan; Pan, Hengbiao

    2013-12-01

    Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.

  13. The Effect of the Human Peptide GHK on Gene Expression Relevant to Nervous System Function and Cognitive Decline

    Directory of Open Access Journals (Sweden)

    Loren Pickart

    2017-02-01

    Full Text Available Neurodegeneration, the progressive death of neurons, loss of brain function, and cognitive decline is an increasing problem for senior populations. Its causes are poorly understood and therapies are largely ineffective. Neurons, with high energy and oxygen requirements, are especially vulnerable to detrimental factors, including age-related dysregulation of biochemical pathways caused by altered expression of multiple genes. GHK (glycyl-l-histidyl-l-lysine is a human copper-binding peptide with biological actions that appear to counter aging-associated diseases and conditions. GHK, which declines with age, has health promoting effects on many tissues such as chondrocytes, liver cells and human fibroblasts, improves wound healing and tissue regeneration (skin, hair follicles, stomach and intestinal linings, boney tissue, increases collagen, decorin, angiogenesis, and nerve outgrowth, possesses anti-oxidant, anti-inflammatory, anti-pain and anti-anxiety effects, increases cellular stemness and the secretion of trophic factors by mesenchymal stem cells. Studies using the Broad Institute Connectivity Map show that GHK peptide modulates expression of multiple genes, resetting pathological gene expression patterns back to health. GHK has been recommended as a treatment for metastatic cancer, Chronic Obstructive Lung Disease, inflammation, acute lung injury, activating stem cells, pain, and anxiety. Here, we present GHK’s effects on gene expression relevant to the nervous system health and function.

  14. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    Science.gov (United States)

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  15. Reference clock parameters for digital communications systems applications

    Science.gov (United States)

    Kartaschoff, P.

    1981-01-01

    The basic parameters relevant to the design of network timing systems describe the random and systematic time departures of the system elements, i.e., master (or reference) clocks, transmission links, and other clocks controlled over the links. The quantitative relations between these parameters were established and illustrated by means of numerical examples based on available measured data. The examples were limited to a simple PLL control system but the analysis can eventually be applied to more sophisticated systems at the cost of increased computational effort.

  16. MET overexpression, gene amplification and relevant clinicopathological features in gastric adenocarcinoma.

    Science.gov (United States)

    Zhang, Jing; Guo, Lei; Liu, Xiuyun; Li, Wenbin; Ying, Jianming

    2017-02-07

    This study was conducted to investigate the expression of MET in Chinese gastric adenocarcinoma cohort, the correlation between MET overexpression and clinical pathological features, HER2 expression and MET gene amplification. A total of 816 gastric adenocarcinoma patients were included and MET and HER2 immunohistochemical (IHC) staining were performed. IHC and dual-color silver in situ hybridization analysis were performed in the tissue microarrays, constructed from the 240 patients who were randomly selected. MET overexpression (IHC 3+) was observed in 6.0% (49/816) of the cohort. MET overexpression rate was higher in patients with poor prognostic factors, such as clinical stages III/IV (p =0.012) and pathologic stages T3/T4 (p =0.027). The HER2 overexpression (IHC 3+) rate was 8.8% (72/816) and MET overexpression rate was higher in HER2 positive patients (9.7%, 7/72). A high concordance rate (94.6%) between MET overexpression and gene amplification was demonstrated. Therefore, MET overexpression could serve as a prognostic biomarker and a potential therapeutic target for gastric cancer.

  17. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant.

    Science.gov (United States)

    Davids, Keith; Baker, Joseph

    2007-01-01

    The historical debate on the relative influences of genes (i.e. nature) and environment (i.e. nurture) on human behaviour has been characterised by extreme positions leading to reductionist and polemic conclusions. Our analysis of research on sport and exercise behaviours shows that currently there is little support for either biologically or environmentally deterministic perspectives on elite athletic performance. In sports medicine, recent molecular biological advances in genomic studies have been over-interpreted, leading to a questionable 'single-gene-as-magic-bullet' philosophy adopted by some practitioners. Similarly, although extensive involvement in training and practice is needed at elite levels, it has become apparent that the acquisition of expertise is not merely about amassing a requisite number of practice hours. Although an interactionist perspective has been mooted over the years, a powerful explanatory framework has been lacking. In this article, we propose how the complementary nature of degenerate neurobiological systems might provide the theoretical basis for explaining the interactive influence of genetic and environmental constraints on elite athletic performance. We argue that, due to inherent human degeneracy, there are many different trajectories to achieving elite athletic performance. While the greatest training responses may be theoretically associated with the most favourable genotypes being exposed to highly specialised training environments, this is a rare and complex outcome. The concept of degeneracy provides us with a basis for understanding why each of the major interacting constraints might act in a compensatory manner on the acquisition of elite athletic performance.

  18. Divergence time estimates of mammals from molecular clocks and ...

    Indian Academy of Sciences (India)

    Prakash

    2009-10-30

    Oct 30, 2009 ... Keywords. Cretaceous; Eocene; Indian Plate; molecular clocks; placental mammals ... variation is known to occur among loci on a gene, between branches on a tree, ... been proposed to explain placental mammal diversification with respect .... Figure 1. Three models (a, explosive, b, long fuse, c, short fuse).

  19. New methods to assess circadian clocks in humans

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marta; Sumová, Alena

    2014-01-01

    Roč. 52, č. 5 (2014), s. 404-412 ISSN 0019-5189 R&D Projects: GA MZd(CZ) NT11474 Grant - others:Univerzita Karlova(CZ) 22810 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : circadian * clock gene * melatonin * human Subject RIV: ED - Physiology Impact factor: 0.835, year: 2014

  20. Characterization of Metagenomes in Urban Aquatic Compartments Reveals High Prevalence of Clinically Relevant Antibiotic Resistance Genes in Wastewaters

    Directory of Open Access Journals (Sweden)

    Charmaine Ng

    2017-11-01

    Full Text Available The dissemination of antimicrobial resistance (AMR is an escalating problem and a threat to public health. Comparative metagenomics was used to investigate the occurrence of antibiotic resistant genes (ARGs in wastewater and urban surface water environments in Singapore. Hospital and municipal wastewater (n = 6 were found to have higher diversity and average abundance of ARGs (303 ARG subtypes, 197,816 x/Gb compared to treated wastewater effluent (n = 2, 58 ARG subtypes, 2,692 x/Gb and surface water (n = 5, 35 subtypes, 7,985 x/Gb. A cluster analysis showed that the taxonomic composition of wastewaters was highly similar and had a bacterial community composition enriched in gut bacteria (Bacteroides, Faecalibacterium, Bifidobacterium, Blautia, Roseburia, Ruminococcus, the Enterobacteriaceae group (Klebsiella, Aeromonas, Enterobacter and opportunistic pathogens (Prevotella, Comamonas, Neisseria. Wastewater, treated effluents and surface waters had a shared resistome of 21 ARGs encoding multidrug resistant efflux pumps or resistance to aminoglycoside, macrolide-lincosamide-streptogramins (MLS, quinolones, sulfonamide, and tetracycline resistance which suggests that these genes are wide spread across different environments. Wastewater had a distinctively higher average abundance of clinically relevant, class A beta-lactamase resistant genes (i.e., blaKPC, blaCTX-M, blaSHV, blaTEM. The wastewaters from clinical isolation wards, in particular, had a exceedingly high levels of blaKPC-2 genes (142,200 x/Gb, encoding for carbapenem resistance. Assembled scaffolds (16 and 30 kbp from isolation ward wastewater samples indicated this gene was located on a Tn3-based transposon (Tn4401, a mobilization element found in Klebsiella pneumonia plasmids. In the longer scaffold, transposable elements were flanked by a toxin–antitoxin (TA system and other metal resistant genes that likely increase the persistence, fitness and propagation of the plasmid in the

  1. Evaluation of exome filtering techniques for the analysis of clinically relevant genes.

    Science.gov (United States)

    Kernohan, Kristin D; Hartley, Taila; Alirezaie, Najmeh; Robinson, Peter N; Dyment, David A; Boycott, Kym M

    2018-02-01

    A significant challenge facing clinical translation of exome sequencing is meaningful and efficient variant interpretation. Each exome contains ∼500 rare coding variants; laboratories must systematically and efficiently identify which variant(s) contribute to the patient's phenotype. In silico filtering is an approach that reduces analysis time while decreasing the chances of incidental findings. We retrospectively assessed 55 solved exomes using available datasets as in silico filters: Online Mendelian Inheritance in Man (OMIM), Orphanet, Human Phenotype Ontology (HPO), and Radboudumc University Medical Center curated panels. We found that personalized panels produced using HPO terms for each patient had the highest success rate (100%), while producing considerably less variants to assess. HPO panels also captured multiple diagnoses in the same individual. We conclude that custom HPO-derived panels are an efficient and effective way to identify clinically relevant exome variants. © 2017 Wiley Periodicals, Inc.

  2. Pitfalls of Insulin Pump Clocks

    Science.gov (United States)

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  3. How the FMR1 gene became relevant to female fertility and reproductive medicine

    Directory of Open Access Journals (Sweden)

    Norbert eGleicher

    2014-08-01

    Full Text Available This manuscript describes the 6-year evolution of our center’s research into ovarian functions of the FMR1 gene, which led to the identification of a new normal CGGn range of 26-34. This new normal range, in turn, led to definitions of different alleles (haplotypes based on whether no, one or both alleles are within range. Specific alleles then were demonstrated to represent distinct ovarian aging patterns, suggesting an important FMR1 function in follicle recruitment and ovarian depletion of follicles. So called low alleles, characterized by CGGn34 alleles. Because low FMR1 alleles present in approximately 25% of all females, FMR1 testing at young ages may offer an opportunity for earlier diagnosis of OPOI than current practice allows. Earlier diagnosis of OPOI, in turn, would give young women the options of reassessing their reproductive schedules and/or pursue fertility preservation via oocyte cryopreservation when most effective.

  4. The retinal clock in mammals: role in health and disease

    Directory of Open Access Journals (Sweden)

    Felder-Schmittbuhl MP

    2017-05-01

    fundamental processes, the coherence from cell to tissue is critical for circadian functions, and disruption of retinal clock organization or its response to light can potentially have a major impact on retinal pathophysiology and vision. Keywords: retina, clock gene, circadian, ipRGC, photoreceptor, light

  5. Minimal tool set for a prokaryotic circadian clock.

    Science.gov (United States)

    Schmelling, Nicolas M; Lehmann, Robert; Chaudhury, Paushali; Beck, Christian; Albers, Sonja-Verena; Axmann, Ilka M; Wiegard, Anika

    2017-07-21

    Circadian clocks are found in organisms of almost all domains including photosynthetic Cyanobacteria, whereby large diversity exists within the protein components involved. In the model cyanobacterium Synechococcus elongatus PCC 7942 circadian rhythms are driven by a unique KaiABC protein clock, which is embedded in a network of input and output factors. Homologous proteins to the KaiABC clock have been observed in Bacteria and Archaea, where evidence for circadian behavior in these domains is accumulating. However, interaction and function of non-cyanobacterial Kai-proteins as well as homologous input and output components remain mainly unclear. Using a universal BLAST analyses, we identified putative KaiC-based timing systems in organisms outside as well as variations within Cyanobacteria. A systematic analyses of publicly available microarray data elucidated interesting variations in circadian gene expression between different cyanobacterial strains, which might be correlated to the diversity of genome encoded clock components. Based on statistical analyses of co-occurrences of the clock components homologous to Synechococcus elongatus PCC 7942, we propose putative networks of reduced and fully functional clock systems. Further, we studied KaiC sequence conservation to determine functionally important regions of diverged KaiC homologs. Biochemical characterization of exemplary cyanobacterial KaiC proteins as well as homologs from two thermophilic Archaea demonstrated that kinase activity is always present. However, a KaiA-mediated phosphorylation is only detectable in KaiC1 orthologs. Our analysis of 11,264 genomes clearly demonstrates that components of the Synechococcus elongatus PCC 7942 circadian clock are present in Bacteria and Archaea. However, all components are less abundant in other organisms than Cyanobacteria and KaiA, Pex, LdpA, and CdpA are only present in the latter. Thus, only reduced KaiBC-based or even simpler, solely KaiC-based timing systems

  6. Comparative evolution of the recA gene of surface and deep subsurface microorganisms (an evolutionary clock of intermediate rate). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.V.

    1998-04-01

    Because of the ability of the recA protein product to maintain both DNA integrity and increase genetic diversity, this gene may be essential to the survival of microorganisms following the damaging effects of numerous environmental stresses such as exposure to solar UV radiation, exposure to gamma radiation, starvation, and changing environments. While the various activities and amino-acid sequence of recA have been highly conserved among the eubacteria and archaea, little is known as to whether a strict structure-function relationship has been conserved. In other words, are the same regions of this highly plastic, functionally heterogeneous protein involved in the same catalytic capacities throughout the bacterial kingdom? While it is reasonable to assume that this type of conservation has also occurred, we felt it necessary to test the assumption by demonstrating that mutations in different genera of bacteria which eliminate similar functions (i.e., lead to similar phenotypes) are caused by changes in the amino-acid sequence in the same regions of their recA proteins. Therefore, we located the changes in nucleotide sequence in two recA mutants of P. aeruginosa which displayed mutant phenotypes in recombination and UV resistance. Our assumption was that if structure-function relationships held, these mutations would be found in areas already identified as essential for the function of the E. coli recA protein.

  7. Sound Clocks and Sonic Relativity

    Science.gov (United States)

    Todd, Scott L.; Menicucci, Nicolas C.

    2017-10-01

    Sound propagation within certain non-relativistic condensed matter models obeys a relativistic wave equation despite such systems admitting entirely non-relativistic descriptions. A natural question that arises upon consideration of this is, "do devices exist that will experience the relativity in these systems?" We describe a thought experiment in which `acoustic observers' possess devices called sound clocks that can be connected to form chains. Careful investigation shows that appropriately constructed chains of stationary and moving sound clocks are perceived by observers on the other chain as undergoing the relativistic phenomena of length contraction and time dilation by the Lorentz factor, γ , with c the speed of sound. Sound clocks within moving chains actually tick less frequently than stationary ones and must be separated by a shorter distance than when stationary to satisfy simultaneity conditions. Stationary sound clocks appear to be length contracted and time dilated to moving observers due to their misunderstanding of their own state of motion with respect to the laboratory. Observers restricted to using sound clocks describe a universe kinematically consistent with the theory of special relativity, despite the preferred frame of their universe in the laboratory. Such devices show promise in further probing analogue relativity models, for example in investigating phenomena that require careful consideration of the proper time elapsed for observers.

  8. Circadian clocks, epigenetics, and cancer

    KAUST Repository

    Masri, Selma; Kinouchi, Kenichiro; Sassone-Corsi, Paolo

    2015-01-01

    The interplay between circadian rhythm and cancer has been suggested for more than a decade based on the observations that shift work and cancer incidence are linked. Accumulating evidence implicates the circadian clock in cancer survival and proliferation pathways. At the molecular level, multiple control mechanisms have been proposed to link circadian transcription and cell-cycle control to tumorigenesis.The circadian gating of the cell cycle and subsequent control of cell proliferation is an area of active investigation. Moreover, the circadian clock is a transcriptional system that is intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape at the level of histone modifications, DNA methylation, and small regulatory RNAs are differentially controlled in cancer cells. This concept raises the possibility that epigenetic control is a common thread linking the clock with cancer, though little scientific evidence is known to date.This review focuses on the link between circadian clock and cancer, and speculates on the possible connections at the epigenetic level that could further link the circadian clock to tumor initiation or progression.

  9. Titan's methane clock

    Science.gov (United States)

    Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-04-01

    Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various

  10. Phenobarbital blockade of the preovulatory luteinizing hormone surge: association with phase-advanced circadian clock and altered suprachiasmatic nucleus Period1 gene expression

    Science.gov (United States)

    Legan, Sandra J.; Donoghue, Kathleen M.; Franklin, Kathleen M.; Duncan, Marilyn J.

    2009-01-01

    The suprachiasmatic nucleus (SCN) controls the timing of the preovulatory luteinizing hormone (LH) surge in laboratory rodents. Barbiturate administration during a critical period on proestrus delays the surge and prolongs the estrous cycle 1 day. Because a nonphotic timing signal (zeitgeber) during the critical period that phase advances activity rhythms can also induce the latter effect, we hypothesized that barbiturates delay the LH surge by phase-advancing its circadian timing signal beyond the critical period. In experiment 1, locomotor rhythms and estrous cycles were monitored in hamsters for 2–3 wk preinjection and postinjection of vehicle or phenobarbital and after transfer to darkness at zeitgeber time (ZT) 6 on proestrus. Phenobarbital delayed estrous cycles in five of seven hamsters, which exhibited phase shifts that averaged twofold greater than those exhibited by vehicle controls or phenobarbital-injected hamsters with normal cycles. Experiment 2 used a similar protocol, but injections were at ZT 5, and blood samples for LH determination were collected from 1200 to 1800 on proestrus and the next day via jugular cannulae inserted the day before proestrus. Phenobarbital delayed the LH surge 1 day in all six hamsters, but it occurred at an earlier circadian time, supporting the above hypothesis. Experiment 3 investigated whether phenobarbital, like other nonphotic zeitgebers, suppresses SCN Period1 and Period2 transcription. Two hours postinjection, phenobarbital decreased SCN expression of only Period1 mRNA, as determined by in situ hybridization. These results suggest that phenobarbital advances the SCN pacemaker, governing activity rhythms and hormone release in part by decreasing its Period1 gene expression. PMID:19297538

  11. A metagenome for lacustrine Cladophora (Cladophorales) reveals remarkable diversity of eukaryotic epibionts and genes relevant to materials cycling.

    Science.gov (United States)

    Graham, Linda E; Knack, Jennifer J; Graham, Melissa E; Graham, James M; Zulkifly, Shahrizim

    2015-06-01

    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry. © 2015 Phycological Society of America.

  12. Neurogenetics of Drosophila circadian clock: expect the unexpected.

    Science.gov (United States)

    Jarabo, Patricia; Martin, Francisco A

    2017-12-01

    Daily biological rhythms (i.e. circadian) are a fundamental part of animal behavior. Numerous reports have shown disruptions of the biological clock in neurodegenerative disorders and cancer. In the latter case, only recently we have gained insight into the molecular mechanisms. After 45 years of intense study of the circadian rhtythms, we find surprising similarities among species on the molecular clock that governs biological rhythms. Indeed, Drosophila is one of the most widely used models in the study of chronobiology. Recent studies in the fruit fly have revealed unpredicted roles for the clock machinery in different aspects of behavior and physiology. Not only the central pacemaker cells do have non-classical circadian functions but also circadian genes work in other cells and tissues different from central clock neurons. In this review, we summarize these new evidences. We also recapitulate the most basic features of Drosophila circadian clock, including recent data about the inputs and outputs that connect the central pacemaker with other regions of the brain. Finally, we discuss the advantages and drawbacks of using natural versus laboratory conditions.

  13. Clocks do not tick in unison: isolation of Clock and vrille shed new light on the clockwork model of the sand fly Lutzomyia longipalpis.

    Science.gov (United States)

    Gesto, João Silveira Moledo; Rivas, Gustavo Bueno da Silva; Pavan, Marcio Galvão; Meireles-Filho, Antonio Carlos Alves; Amoretty, Paulo Roberto de; Souza, Nataly Araújo de; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio

    2015-10-06

    Behavior rhythms of insect vectors directly interfere with the dynamics of pathogen transmission to humans. The sand fly Lutzomyia longipalpis is the main vector of visceral leishmaniasis in America and concentrates its activity around dusk. Despite the accumulation of behavioral data, very little is known about the molecular bases of the clock mechanism in this species. This study aims to characterize, within an evolutionary perspective, two important circadian clock genes, Clock and vrille. We have cloned and isolated the coding sequence of L. longipalpis' genes Clock and vrille. The former is structured in eight exons and encodes a protein of 696 amino acids, and the latter comprises three exons and translates to a protein of 469 amino acids. When compared to other insects' orthologues, L. longipalpis CLOCK shows a high degree of conservation in the functional domains bHLH and PAS, but a much shorter glutamine-rich (poly-Q) C-terminal region. As for L. longipalpis VRILLE, a high degree of conservation was found in the bZIP domain. To support these observations and provide an elegant view of the evolution of both genes in insects, phylogenetic analyses based on maximum-likelihood and Bayesian inferences were performed, corroborating the previously known insect systematics. The isolation and phylogenetic analyses of Clock and vrille orthologues in L. longipalpis bring novel and important data to characterize this species' circadian clock. Interestingly, the poly-Q shortening observed in CLOCK suggests that its transcription activity might be impaired and we speculate if this effect could be compensated by other clock factors such as CYCLE.

  14. Localization and expression of putative circadian clock transcripts in the brain of the nudibranch Melibe leonina.

    Science.gov (United States)

    Duback, Victoria E; Sabrina Pankey, M; Thomas, Rachel I; Huyck, Taylor L; Mbarani, Izhar M; Bernier, Kyle R; Cook, Geoffrey M; O'Dowd, Colleen A; Newcomb, James M; Watson, Winsor H

    2018-09-01

    The nudibranch, Melibe leonina, expresses a circadian rhythm of locomotion, and we recently determined the sequences of multiple circadian clock transcripts that may play a role in controlling these daily patterns of behavior. In this study, we used these genomic data to help us: 1) identify putative clock neurons using fluorescent in situ hybridization (FISH); and 2) determine if there is a daily rhythm of expression of clock transcripts in the M. leonina brain, using quantitative PCR. FISH indicated the presence of the clock-related transcripts clock, period, and photoreceptive and non-photoreceptive cryptochrome (pcry and npcry, respectively) in two bilateral neurons in each cerebropleural ganglion and a group of <10 neurons in the anterolateral region of each pedal ganglion. Double-label experiments confirmed colocalization of all four clock transcripts with each other. Quantitative PCR demonstrated that the genes clock, period, pcry and npcry exhibited significant differences in expression levels over 24 h. These data suggest that the putative circadian clock network in M. leonina consists of a small number of identifiable neurons that express circadian genes with a daily rhythm. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Naming analog clocks conceptually facilitates naming digital clocks

    NARCIS (Netherlands)

    Meeuwissen, M.H.W.; Roelofs, A.P.A.; Levelt, W.J.M.

    2004-01-01

    Naming digital clocks (e.g., 2:45, say "quarter to three") requires conceptual operations on the minute and hour information displayed in the input for producing the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition priming paradigm.

  16. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  17. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  18. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  19. Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health

    Science.gov (United States)

    Ribas-Latre, Aleix; Eckel-Mahan, Kristin

    2016-01-01

    Background While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. Scope of review This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively

  20. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  1. Pattern of expression of immune-relevant genes in the gonad of a teleost, the gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Chaves-Pozo, E; Liarte, S; Fernández-Alacid, L; Abellán, E; Meseguer, J; Mulero, V; García-Ayala, A

    2008-05-01

    Immune responses in the testis are regulated in a way that provides protection for the developing male germ cells, while permitting qualitatively normal inflammatory responses and protection against infection. In addition, germ cells are potent targets for the growth factors and cytokines which regulate the reproductive process. Our study analyzes for the first time the pattern of expression of several immune-relevant genes in the gonad of a seasonal breeding teleost fish. The immune molecules analyzed include (i) inflammatory molecules, such as interleukin-1b (il1b), il6, tumor necrosis factor-a (tnfa), cyclooxygenase-2 (cox2) and the NADPH oxidase subunit p40(phox) (ncf4 gene); (ii) the anti-inflammatory cytokine transforming growth factor-b1 (tgfb1) and its type 2 receptor tgfbr2; (iii) innate immune receptors, including toll-like receptor 9 (tlr9), tlr5, tlr22 and macrophage-colony stimulating factor receptor (mcsfr); (iv) lymphocyte receptors, such as the beta subunit of T-cell receptor (Tcrb) and the heavy chain of immunoglobulin M (ighm); (v) the anti-bacterial molecules lysozyme (lyz), hepcidin (hamp) and complement component 3 (c3); (vi) the anti-viral molecule myxovirus (influenza) resistance protein (mx); and (vii) molecules related to leukocyte infiltration, including the CC chemokine ccl4, the CXC chemokine il8 and the leukocyte adhesion molecule E-selectin (Sele). Notably, all of them show a pattern of expression that depends on the reproductive stage of the first two reproductive cycles when the fish develop and function as males. Furthermore, we demonstrate that some of these immune-relevant molecules, such as Il1b and Mcsfr, are produced by germ cells (Il1b) and ovarian and testicular somatic cells (Mcsfr). These data suggest that, as occurs in mammals, there is a critical balance between immune molecules and that these may play an essential role in the orchestration of gametogenesis and the maintenance of gonad tissue homeostasis in fish.

  2. Biological clocks: riding the tides.

    Science.gov (United States)

    de la Iglesia, Horacio O; Johnson, Carl Hirschie

    2013-10-21

    Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Light and the human circadian clock

    NARCIS (Netherlands)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the

  4. Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

    Directory of Open Access Journals (Sweden)

    Wu Bailin

    2008-11-01

    Full Text Available Abstract Background The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results Twenty-six patients (19.26%, 26/135 were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43 of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135 of the patients with hearing loss. Together with GJB2 (23/135, SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the

  5. Molecular Etiology of Hearing Impairment in Inner Mongolia: mutations in SLC26A4 gene and relevant phenotype analysis

    Science.gov (United States)

    Dai, Pu; Yuan, Yongyi; Huang, Deliang; Zhu, Xiuhui; Yu, Fei; Kang, Dongyang; Yuan, Huijun; Wu, Bailin; Han, Dongyi; Wong, Lee-Jun C

    2008-01-01

    Background The molecular etiology of hearing impairment in Chinese has not been thoroughly investigated. Study of GJB2 gene revealed that 30.4% of the patients with hearing loss in Inner Mongolia carried GJB2 mutations. The SLC26A4 gene mutations and relevant phenotype are analyzed in this study. Methods One hundred and thirty-five deaf patients were included. The coding exons of SLC26A4 gene were sequence analyzed in 111 patients, not including 22 patients carrying bi-allelic GJB2 mutations or one patient carrying a known GJB2 dominant mutation as well as one patient with mtDNA 1555A>G mutation. All patients with SLC26A4 mutations or variants were subjected to high resolution temporal bone CT scan and those with confirmed enlarged vestibular aqueduct and/or other inner ear malformation were then given further ultrasound scan of thyroid and thyroid hormone assays. Results Twenty-six patients (19.26%, 26/135) were found carrying SLC26A4 mutation. Among them, 17 patients with bi-allelic SLC26A4 mutations were all confirmed to have EVA or other inner ear malformation by CT scan. Nine patients were heterozygous for one SLC26A4 mutation, including 3 confirmed to be EVA or EVA and Mondini dysplasia by CT scan. The most common mutation, IVS7-2A>G, accounted for 58.14% (25/43) of all SLC26A4 mutant alleles. The shape and function of thyroid were confirmed to be normal by thyroid ultrasound scan and thyroid hormone assays in 19 of the 20 patients with EVA or other inner ear malformation except one who had cystoid change in the right side of thyroid. No Pendred syndrome was diagnosed. Conclusion In Inner Mongolia, China, mutations in SLC26A4 gene account for about 12.6% (17/135) of the patients with hearing loss. Together with GJB2 (23/135), SLC26A4 are the two most commonly mutated genes causing deafness in this region. Pendred syndrome is not detected in this deaf population. We established a new strategy that detects SLC26A4 mutations prior to the temporal bone CT scan to

  6. Expression of the clock gene Rev-erbα in the brain controls the circadian organisation of food intake and locomotor activity, but not daily variations of energy metabolism

    NARCIS (Netherlands)

    Sen, Satish; Dumont, Stéphanie; Sage-Ciocca, Dominique; Reibel, Sophie; de Goede, Paul; Kalsbeek, Andries; Challet, Etienne

    2018-01-01

    The nuclear receptor REV-ERBα is part of the molecular clock mechanism and is considered to be involved in a variety of biological processes within metabolically active peripheral tissues as well. To investigate whether Rev-erbα (also known as Nr1d1) in the brain plays a role in the daily variations

  7. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle.

    Science.gov (United States)

    Terzibasi-Tozzini, Eva; Martinez-Nicolas, Antonio; Lucas-Sánchez, Alejandro

    2017-10-01

    The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Automatic control of clock duty cycle

    Science.gov (United States)

    Feng, Xiaoxin (Inventor); Roper, Weston (Inventor); Seefeldt, James D. (Inventor)

    2010-01-01

    In general, this disclosure is directed to a duty cycle correction (DCC) circuit that adjusts a falling edge of a clock signal to achieve a desired duty cycle. In some examples, the DCC circuit may generate a pulse in response to a falling edge of an input clock signal, delay the pulse based on a control voltage, adjust the falling edge of the input clock signal based on the delayed pulse to produce an output clock signal, and adjust the control voltage based on the difference between a duty cycle of the output clock signal and a desired duty cycle. Since the DCC circuit adjusts the falling edge of the clock cycle to achieve a desired duty cycle, the DCC may be incorporated into existing PLL control loops that adjust the rising edge of a clock signal without interfering with the operation of such PLL control loops.

  9. Hanle Detection for Optical Clocks

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhang

    2015-01-01

    Full Text Available Considering the strong inhomogeneous spatial polarization and intensity distribution of spontaneous decay fluorescence due to the Hanle effect, we propose and demonstrate a universe Hanle detection configuration of electron-shelving method for optical clocks. Experimental results from Ca atomic beam optical frequency standard with electron-shelving method show that a designed Hanle detection geometry with optimized magnetic field direction, detection laser beam propagation and polarization direction, and detector position can improve the fluorescence collection rate by more than one order of magnitude comparing with that of inefficient geometry. With the fixed 423 nm fluorescence, the improved 657 nm optical frequency standard signal intensity is presented. The potential application of the Hanle detection geometry designed for facilitating the fluorescence collection for optical lattice clock with a limited solid angle of the fluorescence collection has been discussed. The Hanle detection geometry is also effective for ion detection in ion optical clock and quantum information experiments. Besides, a cylinder fluorescence collection structure is designed to increase the solid angle of the fluorescence collection in Ca atomic beam optical frequency standard.

  10. Clocking In Time to Gate Memory Processes: The Circadian Clock Is Part of the Ins and Outs of Memory

    Directory of Open Access Journals (Sweden)

    Oliver Rawashdeh

    2018-01-01

    Full Text Available Learning, memory consolidation, and retrieval are processes known to be modulated by the circadian (circa: about; dies: day system. The circadian regulation of memory performance is evolutionarily conserved, independent of the type and complexity of the learning paradigm tested, and not specific to crepuscular, nocturnal, or diurnal organisms. In mammals, long-term memory (LTM formation is tightly coupled to de novo gene expression of plasticity-related proteins and posttranslational modifications and relies on intact cAMP/protein kinase A (PKA/protein kinase C (PKC/mitogen-activated protein kinase (MAPK/cyclic adenosine monophosphate response element-binding protein (CREB signaling. These memory-essential signaling components cycle rhythmically in the hippocampus across the day and night and are clearly molded by an intricate interplay between the circadian system and memory. Important components of the circadian timing mechanism and its plasticity are members of the Period clock gene family (Per1, Per2. Interestingly, Per1 is rhythmically expressed in mouse hippocampus. Observations suggest important and largely unexplored roles of the clock gene protein PER1 in synaptic plasticity and in the daytime-dependent modulation of learning and memory. Here, we review the latest findings on the role of the clock gene Period 1 (Per1 as a candidate molecular and mechanistic blueprint for gating the daytime dependency of memory processing.

  11. Entanglement of quantum clocks through gravity.

    Science.gov (United States)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  12. A VMEbus clock system for accelerator control

    International Nuclear Information System (INIS)

    Beechy, D.G.; McClure, C.R.

    1992-01-01

    Because an accelerator has many systems which must operate with a high degree of synchronization, a clock signal is typically generated which carries timing information to the various accelerator components. This paper discusses two VMEbus modules designed to generate and receive this clock signal. Together they implement a clock system which can generate timing markers with 200 nanosecond resolution and can generate timing delays of over one hour with one microsecond resolution. The Clock Generator module contains both a time line generator programmed to produce clock events at specific times and eight programmable input channels to produce clock events when externally triggered. Additional clock events are generated directly from the VMEbus. Generators can be cascaded for added capability. The Clock Timer module receives the signal from the generator. It can be programmed to recognize specific clock events which act as triggers to the eight timing channels on the module. Each timing channel is programmed with a 32-bit delay value. The channels are clocked at 1 MHz. At the end of the delay period, a timer channel produces an output pulse and optionally can generate a bus interrupt

  13. Coordination of the maize transcriptome by a conserved circadian clock

    Directory of Open Access Journals (Sweden)

    Harmon Frank G

    2010-06-01

    Full Text Available Abstract Background The plant circadian clock orchestrates 24-hour rhythms in internal physiological processes to coordinate these activities with daily and seasonal changes in the environment. The circadian clock has a profound impact on many aspects of plant growth and development, including biomass accumulation and flowering time. Despite recent advances in understanding the circadian system of the model plant Arabidopsis thaliana, the contribution of the circadian oscillator to important agronomic traits in Zea mays and other cereals remains poorly defined. To address this deficit, this study investigated the transcriptional landscape of the maize circadian system. Results Since transcriptional regulation is a fundamental aspect of circadian systems, genes exhibiting circadian expression were identified in the sequenced maize inbred B73. Of the over 13,000 transcripts examined, approximately 10 percent displayed circadian expression patterns. The majority of cycling genes had peak expression at subjective dawn and dusk, similar to other plant circadian systems. The maize circadian clock organized co-regulation of genes participating in fundamental physiological processes, including photosynthesis, carbohydrate metabolism, cell wall biogenesis, and phytohormone biosynthesis pathways. Conclusions Circadian regulation of the maize genome was widespread and key genes in several major metabolic pathways had circadian expression waveforms. The maize circadian clock coordinated transcription to be coincident with oncoming day or night, which was consistent with the circadian oscillator acting to prepare the plant for these major recurring environmental changes. These findings highlighted the multiple processes in maize plants under circadian regulation and, as a result, provided insight into the important contribution this regulatory system makes to agronomic traits in maize and potentially other C4 plant species.

  14. Alteration of the Circadian Clock in Children with Smith-Magenis Syndrome

    Czech Academy of Sciences Publication Activity Database

    Nováková, Marta; Nevšímalová, S.; Příhodová, I.; Sládek, Martin; Sumová, Alena

    2012-01-01

    Roč. 97, č. 2 (2012), E312-E318 ISSN 0021-972X R&D Projects: GA MZd(CZ) NT11474 Grant - others:GA ČR(CZ) GD309/08/H079 Institutional research plan: CEZ:AV0Z50110509 Keywords : melatonin * circadian clock * clock genes * Smith-Magenis syndrome Subject RIV: FH - Neurology Impact factor: 6.430, year: 2012

  15. Circadian Clock Dysfunction and Psychiatric Disease: Could Fruit Flies have a Say?

    Science.gov (United States)

    Zordan, Mauro Agostino; Sandrelli, Federica

    2015-01-01

    There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system leads to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here, we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e., a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia, and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes, which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions, and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.

  16. Circadian clock dysfunction and psychiatric disease: could fruit flies have a say?

    Directory of Open Access Journals (Sweden)

    Mauro Agostino Zordan

    2015-04-01

    Full Text Available There is evidence of a link between the circadian system and psychiatric diseases. Studies in humans and mammals suggest that environmental and/or genetic disruption of the circadian system lead to an increased liability to psychiatric disease. Disruption of clock genes and/or the clock network might be related to the etiology of these pathologies; also, some genes, known for their circadian clock functions, might be associated to mental illnesses through clock-independent pleiotropy. Here we examine the features which we believe make Drosophila melanogaster a model apt to study the role of the circadian clock in psychiatric disease. Despite differences in the organization of the clock system, the molecular architecture of the Drosophila and mammalian circadian oscillators are comparable and many components are evolutionarily related. In addition, Drosophila has a rather complex nervous system, which shares much at the cell and neurobiological level with humans, i.e. a tripartite brain, the main neurotransmitter systems, and behavioral traits: circadian behavior, learning and memory, motivation, addiction, social behavior. There is evidence that the Drosophila brain shares some homologies with the vertebrate cerebellum, basal ganglia and hypothalamus-pituitary-adrenal axis, the dysfunctions of which have been tied to mental illness. We discuss Drosophila in comparison to mammals with reference to the: organization of the brain and neurotransmitter systems; architecture of the circadian clock; clock-controlled behaviors. We sum up current knowledge on behavioral endophenotypes which are amenable to modeling in flies, such as defects involving sleep, cognition, or social interactions and discuss the relationship of the circadian system to these traits. Finally, we consider if Drosophila could be a valuable asset to understand the relationship between circadian clock malfunction and psychiatric disease.

  17. Evidence for an Overlapping Role of CLOCK and NPAS2 Transcription Factors in Liver Circadian Oscillators▿

    Science.gov (United States)

    Bertolucci, Cristiano; Cavallari, Nicola; Colognesi, Ilaria; Aguzzi, Jacopo; Chen, Zheng; Caruso, Pierpaolo; Foá, Augusto; Tosini, Gianluca; Bernardi, Francesco; Pinotti, Mirko

    2008-01-01

    The mechanisms underlying the circadian control of gene expression in peripheral tissues and influencing many biological pathways are poorly defined. Factor VII (FVII), the protease triggering blood coagulation, represents a valuable model to address this issue in liver since its plasma levels oscillate in a circadian manner and its promoter contains E-boxes, which are putative DNA-binding sites for CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers and hallmarks of circadian regulation. The peaks of FVII mRNA levels in livers of wild-type mice preceded those in plasma, indicating a transcriptional regulation, and were abolished in Clock−/−; Npas2−/− mice, thus demonstrating a role for CLOCK and NPAS2 circadian transcription factors. The investigation of Npas2−/− and ClockΔ19/Δ19 mice, which express functionally defective heterodimers, revealed robust rhythms of FVII expression in both animal models, suggesting a redundant role for NPAS2 and CLOCK. The molecular bases of these observations were established through reporter gene assays. FVII transactivation activities of the NPAS2-BMAL1 and CLOCK-BMAL1 heterodimers were (i) comparable (a fourfold increase), (ii) dampened by the negative circadian regulators PER2 and CRY1, and (iii) abolished upon E-box mutagenesis. Our data provide the first evidence in peripheral oscillators for an overlapping role of CLOCK and NPAS2 in the regulation of circadianly controlled genes. PMID:18316400

  18. The Implementation of E1 Clock Recovery

    Directory of Open Access Journals (Sweden)

    Wang Ziyu

    2016-01-01

    Full Text Available Clock transform and recovery is of significant importance in microwave TDM service, and it is always extracted from the E1 line data stream in most cases. However, intrinsically uncertain delay and jitter caused by packet transmission of E1 data information, may lead to the indexes of the data recovery clock exceed the clock performance template. Through analysis of the E1 clock indexes and measuring methods, this paper proposes a new clock recovery method. The method employs two buffers, the first RAM is used as a buffer to deduct excess information, and the second FIFO is used as a buffer to recovery the clock and data. The first buffer has a feedback from the second one, and is able to actively respond to changes in the data link and requests from the second one. The test results validate the effectiveness of the method, and the corresponding scheme is also valuable for the other communication systems.

  19. The Square Light Clock and Special Relativity

    Science.gov (United States)

    Galli, J. Ronald; Amiri, Farhang

    2012-01-01

    A thought experiment that includes a square light clock is similar to the traditional vertical light beam and mirror clock, except it is made up of four mirrors placed at a 45[degree] angle at each corner of a square of length L[subscript 0], shown in Fig. 1. Here we have shown the events as measured in the rest frame of the square light clock. By…

  20. Space experiments with high stability clocks

    International Nuclear Information System (INIS)

    Vessot, R.F.C.

    1993-01-01

    Modern metrology depends increasingly on the accuracy and frequency stability of atomic clocks. Applications of such high-stability oscillators (or clocks) to experiments performed in space are described and estimates of the precision of these experiments are made in terms of clock performance. Methods using time-correlation to cancel localized disturbances in very long signal paths and a proposed space borne four station VLBI system are described. (TEC). 30 refs., 14 figs., 1 tab

  1. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response

    KAUST Repository

    Mu, Yinnan

    2014-05-12

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. © 2014 Mu et al.

  2. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea and analysis of the immune relevant genes and pathways involved in the antiviral response.

    Directory of Open Access Journals (Sweden)

    Yinnan Mu

    Full Text Available The large yellow croaker (Pseudosciaena crocea is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT signaling pathway, and T-cell receptor (TCR signaling pathway were found to be changed after poly(I:C induction by real-time polymerase chain reaction (PCR analysis, suggesting that these signaling pathways may be regulated by poly(I:C, a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker.

  3. De novo characterization of the spleen transcriptome of the large yellow croaker (Pseudosciaena crocea) and analysis of the immune relevant genes and pathways involved in the antiviral response

    KAUST Repository

    Mu, Yinnan; Li, Mingyu; Ding, Feng; Ding, Yang; Ao, Jingqun; Hu, Songnian; Chen, Xinhua

    2014-01-01

    The large yellow croaker (Pseudosciaena crocea) is an economically important marine fish in China. To understand the molecular basis for antiviral defense in this species, we used Illumia paired-end sequencing to characterize the spleen transcriptome of polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced large yellow croakers. The library produced 56,355,728 reads and assembled into 108,237 contigs. As a result, 15,192 unigenes were found from this transcriptome. Gene ontology analysis showed that 4,759 genes were involved in three major functional categories: biological process, cellular component, and molecular function. We further ascertained that numerous consensus sequences were homologous to known immune-relevant genes. Kyoto Encyclopedia of Genes and Genomes orthology mapping annotated 5,389 unigenes and identified numerous immune-relevant pathways. These immune-relevant genes and pathways revealed major antiviral immunity effectors, including but not limited to: pattern recognition receptors, adaptors and signal transducers, the interferons and interferon-stimulated genes, inflammatory cytokines and receptors, complement components, and B-cell and T-cell antigen activation molecules. Moreover, the partial genes of Toll-like receptor signaling pathway, RIG-I-like receptors signaling pathway, Janus kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and T-cell receptor (TCR) signaling pathway were found to be changed after poly(I:C) induction by real-time polymerase chain reaction (PCR) analysis, suggesting that these signaling pathways may be regulated by poly(I:C), a viral mimic. Overall, the antivirus-related genes and signaling pathways that were identified in response to poly(I:C) challenge provide valuable leads for further investigation of the antiviral defense mechanism in the large yellow croaker. © 2014 Mu et al.

  4. High Performance Clocks and Gravity Field Determination

    Science.gov (United States)

    Müller, J.; Dirkx, D.; Kopeikin, S. M.; Lion, G.; Panet, I.; Petit, G.; Visser, P. N. A. M.

    2018-02-01

    Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of 10^{-18}. This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper. Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice. The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock's localization. According to general relativity the relative accuracy of clocks in 10^{-18} is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques. We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with

  5. Rapid resetting of human peripheral clocks by phototherapy during simulated night shift work.

    Science.gov (United States)

    Cuesta, Marc; Boudreau, Philippe; Cermakian, Nicolas; Boivin, Diane B

    2017-11-24

    A majority of night shift workers have their circadian rhythms misaligned to their atypical schedule. While bright light exposure at night is known to reset the human central circadian clock, the behavior of peripheral clocks under conditions of shift work is more elusive. The aim of the present study was to quantify the resetting effects of bright light exposure on both central (plasma cortisol and melatonin) and peripheral clocks markers (clock gene expression in peripheral blood mononuclear cells, PBMCs) in subjects living at night. Eighteen healthy subjects were enrolled to either a control (dim light) or a bright light group. Blood was sampled at baseline and on the 4 th day of simulated night shift. In response to a night-oriented schedule, the phase of PER1 and BMAL1 rhythms in PBMCs was delayed by ~2.5-3 h (P shift was observed for the other clock genes and the central markers. Three cycles of 8-h bright light induced significant phase delays (P night-oriented schedule and a rapid resetting effect of nocturnal bright light exposure on peripheral clocks.

  6. Long-Term Clock Behavior of GPS IIR Satellites

    National Research Council Canada - National Science Library

    Epstein, Marvin; Dass, Todd; Rajan, John; Gilmour, Paul

    2007-01-01

    .... Rubidium clocks, as opposed to cesium clocks, have significant long-term drift. The current literature describes an initial model of drift aging for rubidium atomic clocks followed by a long-term characteristic...

  7. A clock synchronization skeleton based on RTAI

    NARCIS (Netherlands)

    Huang, Y.; Visser, P.M.; Broenink, Johannes F.

    2006-01-01

    This paper presents a clock synchronization skeleton based on RTAI (Real Time Application Interface). The skeleton is a thin layer that provides unified but extendible interfaces to the underlying operating system, the synchronization algorithms and the upper level applications in need of clock

  8. The clock paradox as a cosmological problem

    International Nuclear Information System (INIS)

    Fu, K.Y.

    1975-01-01

    In this paper the clock paradox is discussed within the framework of the general theory of relativity. It is shown that in general the aging asymmetry exists. It is also argued that the clock paradox, according to Mach's principle, is essentially a cosmological problem. (author)

  9. Could Atomic clocks be affected by neutrinos?

    CERN Document Server

    Hanafi, Hanaa

    2016-01-01

    An atomic clock is a clock device that uses an electronic transition frequency of the electromagnetic spectrum of atoms as a frequency standard in order to derive a time standard since time is the reciprocal of frequency. If the electronic transition frequencies are in an "optical region", we are talking in this case about optical atomic clocks. If they are in an "microwave region" these atomic clocks are made of the metallic element cesium so they are called Cesium atomic clocks. Atomic clocks are the most accurate time and frequency standards known despite the different perturbations that can affect them, a lot of researches were made in this domain to show how the transitions can be different for different type of perturbations..Since atomic clocks are very sensitive devices, based on coherent states (A coherent state tends to loose coherence after interacting). One question can arise (from a lot of questions) which is why cosmic neutrinos are not affecting these clocks? The answer to this question requir...

  10. Fast Clock Recovery for Digital Communications

    Science.gov (United States)

    Tell, R. G.

    1985-01-01

    Circuit extracts clock signal from random non-return-to-zero data stream, locking onto clock within one bit period at 1-gigabitper-second data rate. Circuit used for synchronization in opticalfiber communications. Derives speed from very short response time of gallium arsenide metal/semiconductor field-effect transistors (MESFET's).

  11. Internal Clock Drift Estimation in Computer Clusters

    Directory of Open Access Journals (Sweden)

    Hicham Marouani

    2008-01-01

    Full Text Available Most computers have several high-resolution timing sources, from the programmable interrupt timer to the cycle counter. Yet, even at a precision of one cycle in ten millions, clocks may drift significantly in a single second at a clock frequency of several GHz. When tracing the low-level system events in computer clusters, such as packet sending or reception, each computer system records its own events using an internal clock. In order to properly understand the global system behavior and performance, as reported by the events recorded on each computer, it is important to estimate precisely the clock differences and drift between the different computers in the system. This article studies the clock precision and stability of several computer systems, with different architectures. It also studies the typical network delay characteristics, since time synchronization algorithms rely on the exchange of network packets and are dependent on the symmetry of the delays. A very precise clock, based on the atomic time provided by the GPS satellite network, was used as a reference to measure clock drifts and network delays. The results obtained are of immediate use to all applications which depend on computer clocks or network time synchronization accuracy.

  12. Processing of visually presented clock times.

    Science.gov (United States)

    Goolkasian, P; Park, D C

    1980-11-01

    The encoding and representation of visually presented clock times was investigated in three experiments utilizing a comparative judgment task. Experiment 1 explored the effects of comparing times presented in different formats (clock face, digit, or word), and Experiment 2 examined angular distance effects created by varying positions of the hands on clock faces. In Experiment 3, encoding and processing differences between clock faces and digitally presented times were directly measured. Same/different reactions to digitally presented times were faster than to times presented on a clock face, and this format effect was found to be a result of differences in processing that occurred after encoding. Angular separation also had a limited effect on processing. The findings are interpreted within the framework of theories that refer to the importance of representational codes. The applicability to the data of Bank's semantic-coding theory, Paivio's dual-coding theory, and the levels-of-processing view of memory are discussed.

  13. Global synchronization of parallel processors using clock pulse width modulation

    Science.gov (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  14. Constructing disease-specific gene networks using pair-wise relevance metric: Application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2008-08-01

    Full Text Available Abstract Background With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. Results The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8 (p ≈ 0, desmin (DES (p = 2.71 × 10-6 and enolase 1 (ENO1 (p = 4.19 × 10-5], while two novel hub genes [RNA binding motif protein 9 (RBM9 (p = 1.50 × 10-4 and ribosomal protein L30 (RPL30 (p = 1.50 × 10-4] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO based analysis of the colon cancer-specific gene network and

  15. Constructing disease-specific gene networks using pair-wise relevance metric: application to colon cancer identifies interleukin 8, desmin and enolase 1 as the central elements.

    Science.gov (United States)

    Jiang, Wei; Li, Xia; Rao, Shaoqi; Wang, Lihong; Du, Lei; Li, Chuanxing; Wu, Chao; Wang, Hongzhi; Wang, Yadong; Yang, Baofeng

    2008-08-10

    With the advance of large-scale omics technologies, it is now feasible to reversely engineer the underlying genetic networks that describe the complex interplays of molecular elements that lead to complex diseases. Current networking approaches are mainly focusing on building genetic networks at large without probing the interaction mechanisms specific to a physiological or disease condition. The aim of this study was thus to develop such a novel networking approach based on the relevance concept, which is ideal to reveal integrative effects of multiple genes in the underlying genetic circuit for complex diseases. The approach started with identification of multiple disease pathways, called a gene forest, in which the genes extracted from the decision forest constructed by supervised learning of the genome-wide transcriptional profiles for patients and normal samples. Based on the newly identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was used to define the degree of genetic relationship between two molecular determinants. We applied the proposed method to analyze a publicly available microarray dataset for colon cancer. The results demonstrated that the colon cancer-specific gene network captured the most important genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation, mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of the topological architecture of the network identified three known hub cancer genes [interleukin 8 (IL8) (p approximately 0), desmin (DES) (p = 2.71 x 10(-6)) and enolase 1 (ENO1) (p = 4.19 x 10(-5))], while two novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 x 10(-4)) and ribosomal protein L30 (RPL30) (p = 1.50 x 10(-4))] may define new central elements in the gene network specific to colon cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-network that

  16. The use of general and specific combining abilities in a context of gene expression relevant to plant breeding

    NARCIS (Netherlands)

    Vuylsteke, M.; Eeuwijk, van F.A.

    2008-01-01

    Many common traits are believed to be a composite reflection of multiple genetic and environmental factors. Recent advances suggest that subtle variations in the regulation of gene expression may contribute to quantitative traits. The nature of sequence variation affecting the regulation of gene

  17. Early passage bone marrow stromal cells express genes involved in nervous system development supporting their relevance for neural repair

    NARCIS (Netherlands)

    Nandoe Tewarie, R.D.S.; Bossers, K.; Ritfeld, G.J.; Blits, B.; Grotenhuis, J.A.; Verhaagen, J.; Oudega, M.

    2011-01-01

    PURPOSE: The assessment of the capacity of bone marrow stromal cells (BMSC) to repair the nervous system using gene expression profiling. The evaluation of effects of long-term culturing on the gene expression profile of BMSC. METHODS: Fourty four k whole genome rat microarrays were used to study

  18. Dilatation effect of ''quantum clocks''

    International Nuclear Information System (INIS)

    Chylinski, Z.

    1981-01-01

    The relativistic dilatation effect of the life-time of unstable microparticles combined with quantum symmetry of their description results in the ''quantum-dilatation'' dilemma. It is due to the classical character of the relativity theory which here reveals itself in the classical world-line of the clock necessary in order to deduce the dilatation effect from the Lorentz transformation. It is shown how to solve this dilemma, basing on the relation continuum C 4 . Two types of measurements of time intervals, the direct and indirect one, are analyzed. The former type corresponds to the external space-time continuum, where any direct measurement takes place, and the latter, to the internal relation continuum C 4 , where the internal structures of isolated micro-systems are sunk. (author)

  19. Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes.

    Science.gov (United States)

    Trauer-Kizilelma, Ute; Hilker, Monika

    2015-09-01

    Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins

  20. Feeding cycle-dependent circulating insulin fluctuation is not a dominant Zeitgeber for mouse peripheral clocks except in the liver: Differences between endogenous and exogenous insulin effects.

    Science.gov (United States)

    Oishi, Katsutaka; Yasumoto, Yuki; Higo-Yamamoto, Sayaka; Yamamoto, Saori; Ohkura, Naoki

    2017-01-29

    The master clock in the suprachiasmatic nucleus synchronizes peripheral clocks via humoral and neural signals in mammals. Insulin is thought to be a critical Zeitgeber (synchronizer) for peripheral clocks because it induces transient clock gene expression in cultured cells. However, the extent to which fluctuations in feeding-dependent endogenous insulin affect the temporal expression of clock genes remains unclear. We therefore investigated the temporal expression profiles of clock genes in the peripheral tissues of mice fed for 8 h during either the daytime (DF) or the nighttime (NF) for one week to determine the involvement of feeding cycle-dependent endogenous insulin rhythms in the circadian regulation of peripheral clocks. The phase of circulating insulin fluctuations was reversed in DF compared with NF mice, although those of circulating corticosterone fluctuations and nocturnal locomotor activity were identical between these mice. The reversed feeding cycle affected the circadian phases of Per1 and Per2 gene expression in the liver and not in heart, lung, white adipose and skeletal muscle tissues. On the other hand, injected exogenous insulin significantly induced Akt phosphorylation in the heart and skeletal muscle as well as the liver, and significantly induced Per1 and Per2 gene expression in all examined tissues. These findings suggest that feeding cycles and feeding cycle-dependent endogenous insulin fluctuations are not dominant entrainment signals for peripheral clocks other than the liver, although exogenous insulin might reset peripheral oscillators in mammals. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    Science.gov (United States)

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  2. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  3. Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs

    DEFF Research Database (Denmark)

    Mentzel, Caroline M. Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen

    2018-01-01

    The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3......) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is ‘unhealthy’, a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used...... multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle...

  4. Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Quentin Thommen

    Full Text Available The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However, most gene circuits in a cell are under control of external signals and thus, quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present the first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in the Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intriguing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks.

  5. Causes and consequences of hyperexcitation in central clock neurons.

    Directory of Open Access Journals (Sweden)

    Casey O Diekman

    Full Text Available Hyperexcited states, including depolarization block and depolarized low amplitude membrane oscillations (DLAMOs, have been observed in neurons of the suprachiasmatic nuclei (SCN, the site of the central mammalian circadian (~24-hour clock. The causes and consequences of this hyperexcitation have not yet been determined. Here, we explore how individual ionic currents contribute to these hyperexcited states, and how hyperexcitation can then influence molecular circadian timekeeping within SCN neurons. We developed a mathematical model of the electrical activity of SCN neurons, and experimentally verified its prediction that DLAMOs depend on post-synaptic L-type calcium current. The model predicts that hyperexcited states cause high intracellular calcium concentrations, which could trigger transcription of clock genes. The model also predicts that circadian control of certain ionic currents can induce hyperexcited states. Putting it all together into an integrative model, we show how membrane potential and calcium concentration provide a fast feedback that can enhance rhythmicity of the intracellular circadian clock. This work puts forward a novel role for electrical activity in circadian timekeeping, and suggests that hyperexcited states provide a general mechanism for linking membrane electrical dynamics to transcription activation in the nucleus.

  6. The Importance of the Circadian Clock in Regulating Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Jin A Kim

    2017-12-01

    Full Text Available Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle. The circadian clock mechanism and processes of metabolism controlled by the circadian rhythm were studied in the model plant Arabidopsis and in the crops potato and rice. However, the translation of molecular mechanisms obtained from studies of model plants to crop plants is still difficult. Crop plants have specific organs such as edible seed and tuber that increase the size or accumulate valuable metabolites by harvestable metabolic components. Human consumers are interested in the regulation and promotion of these agriculturally significant crops. Circadian clock manipulation may suggest various strategies for the increased productivity of food crops through using environmental signal or overcoming environmental stress.

  7. NONO couples the circadian clock to the cell cycle.

    Science.gov (United States)

    Kowalska, Elzbieta; Ripperger, Juergen A; Hoegger, Dominik C; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A

    2013-01-29

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.

  8. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  9. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  10. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition.

    Science.gov (United States)

    Liu, Xiao; Dang, Yunkun; Matsu-Ura, Toru; He, Yubo; He, Qun; Hong, Christian I; Liu, Yi

    2017-07-20

    Although the coupling between circadian and cell cycles allows circadian clocks to gate cell division and DNA replication in many organisms, circadian clocks were thought to function independently of cell cycle. Here, we show that DNA replication is required for circadian clock function in Neurospora. Genetic and pharmacological inhibition of DNA replication abolished both overt and molecular rhythmicities by repressing frequency (frq) gene transcription. DNA replication is essential for the rhythmic changes of nucleosome composition at the frq promoter. The FACT complex, known to be involved in histone disassembly/reassembly, is required for clock function and is recruited to the frq promoter in a replication-dependent manner to promote replacement of histone H2A.Z by H2A. Finally, deletion of H2A.Z uncoupled the dependence of the circadian clock on DNA replication. Together, these results establish circadian clock and cell cycle as interdependent coupled oscillators and identify DNA replication as a critical process in the circadian mechanism. Published by Elsevier Inc.

  11. Peripheral Skin Temperature and Circadian Biological Clock in Shift Nurses after a Day off

    Directory of Open Access Journals (Sweden)

    Massimo Bracci

    2016-04-01

    Full Text Available The circadian biological clock is essentially based on the light/dark cycle. Some people working with shift schedules cannot adjust their sleep/wake cycle to the light/dark cycle, and this may result in alterations of the circadian biological clock. This study explored the circadian biological clock of shift and daytime nurses using non-invasive methods. Peripheral skin temperature, cortisol and melatonin levels in saliva, and Per2 expression in pubic hair follicle cells were investigated for 24 h after a day off. Significant differences were observed in peripheral skin temperature and cortisol levels between shift and daytime nurses. No differences in melatonin levels were obtained. Per2 maximum values were significantly different between the two groups. Shift nurses exhibited lower circadian variations compared to daytime nurses, and this may indicate an adjustment of the circadian biological clock to continuous shift schedules. Non-invasive procedures, such as peripheral skin temperature measurement, determination of cortisol and melatonin in saliva, and analysis of clock genes in hair follicle cells, may be effective approaches to extensively study the circadian clock in shift workers.

  12. Explaining the imperfection of the molecular clock of hominid mitochondria.

    Directory of Open Access Journals (Sweden)

    Eva-Liis Loogväli

    Full Text Available The molecular clock of mitochondrial DNA has been extensively used to date various genetic events. However, its substitution rate among humans appears to be higher than rates inferred from human-chimpanzee comparisons, limiting the potential of interspecies clock calibrations for intraspecific dating. It is not well understood how and why the substitution rate accelerates. We have analyzed a phylogenetic tree of 3057 publicly available human mitochondrial DNA coding region sequences for changes in the ratios of mutations belonging to different functional classes. The proportion of non-synonymous and RNA genes substitutions has reduced over hundreds of thousands of years. The highest mutation ratios corresponding to fast acceleration in the apparent substitution rate of the coding sequence have occurred after the end of the Last Ice Age. We recalibrate the molecular clock of human mtDNA as 7990 years per synonymous mutation over the mitochondrial genome. However, the distribution of substitutions at synonymous sites in human data significantly departs from a model assuming a single rate parameter and implies at least 3 different subclasses of sites. Neutral model with 3 synonymous substitution rates can explain most, if not all, of the apparent molecular clock difference between the intra- and interspecies levels. Our findings imply the sluggishness of purifying selection in removing the slightly deleterious mutations from the human as well as the Neandertal and chimpanzee populations. However, for humans, the weakness of purifying selection has been further exacerbated by the population expansions associated with the out-of Africa migration and the end of the Last Ice Age.

  13. Identification of Genes Relevant to Pesticides and Biology from Global Transcriptome Data of Monochamus alternatus Hope (Coleoptera: Cerambycidae Larvae.

    Directory of Open Access Journals (Sweden)

    Songqing Wu

    Full Text Available Monochamus alternatus Hope is the main vector in China of the Pine Wilt Disease caused by the pine wood nematode Bursaphelenchus xylophilus. Although chemical control is traditionally used to prevent pine wilt disease, new strategies based in biological control are promising ways for the management of the disease. However, there is no deep sequence analysis of Monochamus alternatus Hope that describes the transcriptome and no information is available about gene function of this insect vector. We used next generation sequencing technology to sequence the whole fourth instar larva transcriptome of Monochamus alternatus Hope and successfully built a Monochamus alternatus Hope transcriptome database. In total, 105,612 unigenes were assigned for Gene Ontology (GO terms, information for 16,730 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs database, and 13,024 unigenes matched with 224 predicted pathways in the Kyoto Encyclopedia of Genes and Genome (KEGG. In addition, genes related to putative insecticide resistance-related genes, RNAi, the Bt receptor, intestinal digestive enzymes, possible future insect control targets and immune-related molecules are described. This study provides valuable basic information that can be used as a gateway to develop new molecular tools for Monochamus alternatus Hope control strategies.

  14. Clock Drawing in Spatial Neglect: A Comprehensive Analysis of Clock Perimeter, Placement, and Accuracy

    Science.gov (United States)

    Chen, Peii; Goedert, Kelly M.

    2012-01-01

    Clock drawings produced by right-brain-damaged (RBD) individuals with spatial neglect often contain an abundance of empty space on the left while numbers and hands are placed on the right. However, the clock perimeter is rarely compromised in neglect patients’ drawings. By analyzing clock drawings produced by 71 RBD and 40 healthy adults, this study investigated whether the geometric characteristics of the clock perimeter reveal novel insights to understanding spatial neglect. Neglect participants drew smaller clocks than either healthy or non-neglect RBD participants. While healthy participants’ clock perimeter was close to circular, RBD participants drew radially extended ellipses. The mechanisms for these phenomena were investigated by examining the relation between clock-drawing characteristics and performance on six subtests of the Behavioral Inattention Test (BIT). The findings indicated that the clock shape was independent of any BIT subtest or the drawing placement on the test sheet and that the clock size was significantly predicted by one BIT subtest: the poorer the figure and shape copying, the smaller the clock perimeter. Further analyses revealed that in all participants, clocks decreased in size as they were placed farther from the center of the paper. However, even when neglect participants placed their clocks towards the center of the page, they were smaller than those produced by healthy or non-neglect RBD participants. These results suggest a neglect-specific reduction in the subjectively available workspace for graphic production from memory, consistent with the hypothesis that neglect patients are impaired in the ability to enlarge the attentional aperture. PMID:22390278

  15. Transcripts from the Circadian Clock: Telling Time and Season

    NARCIS (Netherlands)

    K. Brand (Karl)

    2011-01-01

    textabstractWe all know it when we wake mere moments before an alarm clock is scheduled to wake us: our body clock made the alarm clock redundant. This phenomenon is driven by an endogenous timer known as the biological, or circadian clock. Each revolution of the Earth about its own axis produces

  16. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat

    DEFF Research Database (Denmark)

    Rath, Martin Fredensborg; Rohde, Kristian; Møller, Morten

    2012-01-01

    these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1......The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However...... in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum....

  17. Pittendrigh: The Darwinian Clock-Watcher

    Indian Academy of Sciences (India)

    to our current understanding of how timing systems work in living organisms. .... to periodic factors in the geophysical environment. He postulated .... clocks against temperature, nutrition and light, while the latter needs maintenance of a stable.

  18. Cell-permeable Circadian Clock Proteins

    National Research Council Canada - National Science Library

    Johnson, Carl

    2002-01-01

    .... These 'biological clocks' are important to human physiology. For example, psychiatric and medical studies have shown that circadian rhythmicity is involved in some forms of depressive illness, 'jet lag', drug tolerance/efficacy, memory, and insomnia...

  19. Programmable Clock Waveform Generation for CCD Readout

    Energy Technology Data Exchange (ETDEWEB)

    Vicente, J. de; Castilla, J.; Martinez, G.; Marin, J.

    2006-07-01

    Charge transfer efficiency in CCDs is closely related to the clock waveform. In this paper, an experimental framework to explore different FPGA based clock waveform generator designs is described. Two alternative design approaches for controlling the rise/fall edge times and pulse width of the CCD clock signal have been implemented: level-control and time-control. Both approaches provide similar characteristics regarding the edge linearity and noise. Nevertheless, dissimilarities have been found with respect to the area and frequency range of application. Thus, while the time-control approach consumes less area, the level control approach provides a wider range of clock frequencies since it does not suffer capacitor discharge effect. (Author) 8 refs.

  20. The Mechanics of Mechanical Watches and Clocks

    CERN Document Server

    Du, Ruxu

    2013-01-01

    "The Mechanics of Mechanical Watches and Clocks" presents historical views and mathematical models of mechanical watches and clocks. Although now over six hundred years old, mechanical watches and clocks are still popular luxury items that fascinate many people around the world. However few have examined the theory of how they work as presented in this book. The illustrations and computer animations are unique and have never been published before. It will be of significant interest to researchers in mechanical engineering, watchmakers and clockmakers, as well as people who have an engineering background and are interested in mechanical watches and clocks. It will also inspire people in other fields of science and technology, such as mechanical engineering and electronics engineering, to advance their designs. Professor Ruxu Du works at the Chinese University of Hong Kong, China. Assistant Professor Longhan Xie works at the South China University of Technology, China.

  1. Cellular Reprogramming–Turning the Clock Back

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 6. Cellular Reprogramming - Turning the Clock Back - Nobel Prize in Physiology or Medicine, 2012. Deepa Subramanyam. General Article Volume 18 Issue 6 June 2013 pp 514-521 ...

  2. A GPS Satellite Clock Offset Prediction Method Based on Fitting Clock Offset Rates Data

    Directory of Open Access Journals (Sweden)

    WANG Fuhong

    2016-12-01

    Full Text Available It is proposed that a satellite atomic clock offset prediction method based on fitting and modeling clock offset rates data. This method builds quadratic model or linear model combined with periodic terms to fit the time series of clock offset rates, and computes the model coefficients of trend with the best estimation. The clock offset precisely estimated at the initial prediction epoch is directly adopted to calculate the model coefficient of constant. The clock offsets in the rapid ephemeris (IGR provided by IGS are used as modeling data sets to perform certain experiments for different types of GPS satellite clocks. The results show that the clock prediction accuracies of the proposed method for 3, 6, 12 and 24 h achieve 0.43, 0.58, 0.90 and 1.47 ns respectively, which outperform the traditional prediction method based on fitting original clock offsets by 69.3%, 61.8%, 50.5% and 37.2%. Compared with the IGU real-time clock products provided by IGS, the prediction accuracies of the new method have improved about 15.7%, 23.7%, 27.4% and 34.4% respectively.

  3. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling.

    Science.gov (United States)

    Wang, Feng; Liang, Yuting; Jiang, Yuji; Yang, Yunfeng; Xue, Kai; Xiong, Jinbo; Zhou, Jizhong; Sun, Bo

    2015-09-23

    Plants have an important impact on soil microbial communities and their functions. However, how plants determine the microbial composition and network interactions is still poorly understood. During a four-year field experiment, we investigated the functional gene composition of three types of soils (Phaeozem, Cambisols and Acrisol) under maize planting and bare fallow regimes located in cold temperate, warm temperate and subtropical regions, respectively. The core genes were identified using high-throughput functional gene microarray (GeoChip 3.0), and functional molecular ecological networks (fMENs) were subsequently developed with the random matrix theory (RMT)-based conceptual framework. Our results demonstrated that planting significantly (P soils and 83.5% of microbial alpha-diversity can be explained by the plant factor. Moreover, planting had significant impacts on the microbial community structure and the network interactions of the microbial communities. The calculated network complexity was higher under maize planting than under bare fallow regimes. The increase of the functional genes led to an increase in both soil respiration and nitrification potential with maize planting, indicating that changes in the soil microbial communities and network interactions influenced ecological functioning.

  4. Effects of different per translational kinetics on the dynamics of a core circadian clock model.

    Science.gov (United States)

    Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A

    2015-01-01

    Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.

  5. Reduced Kalman Filters for Clock Ensembles

    Science.gov (United States)

    Greenhall, Charles A.

    2011-01-01

    This paper summarizes the author's work ontimescales based on Kalman filters that act upon the clock comparisons. The natural Kalman timescale algorithm tends to optimize long-term timescale stability at the expense of short-term stability. By subjecting each post-measurement error covariance matrix to a non-transparent reduction operation, one obtains corrected clocks with improved short-term stability and little sacrifice of long-term stability.

  6. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus.

    Science.gov (United States)

    Kang, Duk-Young; Kim, Hyo-Chan

    2015-01-01

    To determine whether proopiomelanocortin (POMC) genes are involved in darkening color camouflage, blind-side hypermelanosis, and appetite in flatfish, we isolated and cloned three POMC genes from the pituitary of the olive flounder (Paralichthys olivaceus) and compared their amino acid (aa) structures to those of POMC genes from other animals. Next, we examined the relationship of these pituitary POMC genes to camouflage color change, blind-side hypermelanosis, and appetite by quantifying mRNA expression. Olive flounder (of)-POMC1, 2, and 3 cDNAs consisted of 648-bp, 582-bp, and 693-bp open reading frames (ORF) encoding 216 aa, 194 aa, and 231 aa residues, respectively. Structurally, the three of-POMC cDNAs consisted of seven peptides (signal peptide, N-POMC, α-MSH, CLIP, N-β-LPH, β-MSH and β-END [or END-like peptide]) that are similar to those of other fish POMC cDNAs. α-MSH encoded a protein composed of 13 aa and β-MSH encoded a protein composed of 17 aa. The three POMC genes were predominantly expressed in the pituitary gland, but they were also expressed in a variety of tissues, including brain, eye, kidney, heart, testis, and skin. of-POMC2 exhibited the highest expression, while of-POMC3 displayed the lowest expression. The relative levels of of-POMC1 and 3 mRNAs were not influenced by background color and feeding (or fasting), but the relative level of of-POMC2 mRNA significantly increased in response to a dark background and fasting. The relative levels of of-POMC1 and 2 mRNAs were significantly higher in hypermelanic fish; however, we did not determine a direct anorexigenic or orexigenic relationship for the three POMC genes. These results indicate that pituitary POMC genes are related to darkening color change and the differentiation of pigment cells, but they are not directly related to appetite. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism.

    Science.gov (United States)

    Patel, Sejal; Roncaglia, Paola; Lovering, Ruth C

    2015-06-06

    People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.

  8. Optical lattice clock with Strontium atoms

    International Nuclear Information System (INIS)

    Baillard, X.

    2008-01-01

    This thesis presents the latest achievements regarding the optical lattice clock with Strontium atoms developed at LNE-SYRTE. After a review of the different types of optical clocks that are currently under development, we stress on the concept of optical lattice clock which was first imagined for Sr 87 using the 1 S 0 → 3 P 0 transition. We exhibit the features of this atom, in particular the concept of magic wavelength for the trap, and the achievable performances for this kind of clock. The second part presents the experimental aspects, insisting particularly on the ultra-stable laser used for the interrogation of the atoms which is a central part of the experiment. Among the latest improvements, an optical pumping phase and an interrogation phase using a magnetic field have been added in order to refine the evaluation of the Zeeman effect. Finally, the last part presents the experimental results. The last evaluation of the clock using Sr 87 atoms allowed us to reach a frequency accuracy of 2.6*10 -15 and a measurement in agreement with the one made at JILA (Tokyo university) at the 10 -15 level. On another hand, thanks to recent theoretical proposals, we made a measurement using the bosonic isotope Sr 88 by adapting the experimental setup. This measurement represents the first evaluation for this type of clock, with a frequency accuracy of 7*10 -14 . (author)

  9. Towards Self-Clocked Gated OCDMA Receiver

    Science.gov (United States)

    Idris, S.; Osadola, T.; Glesk, I.

    2013-02-01

    A novel incoherent OCDMA receiver with incorporated all-optical clock recovery for self-synchronization of a time gate for the multi access interferences (MAI) suppression and minimizing the effect of data time jitter in incoherent OCDMA system was successfully developed and demonstrated. The solution was implemented and tested in a multiuser environment in an out of the laboratory OCDMA testbed with two-dimensional wavelength-hopping time-spreading coding scheme and OC-48 (2.5 Gbp/s) data rate. The self-clocked all-optical time gate uses SOA-based fibre ring laser optical clock, recovered all-optically from the received OCDMA traffic to control its switching window for cleaning the autocorrelation peak from the surrounding MAI. A wider eye opening was achieved when the all-optically recovered clock from received data was used for synchronization if compared to a static approach with the RF clock being generated by a RF synthesizer. Clean eye diagram was also achieved when recovered clock is used to drive time gating.

  10. Defence responses of arabidopsis thaliana to infection by pseudomonas syringae are regulated by the circadian clock

    KAUST Repository

    Bhardwaj, Vaibhav

    2011-10-31

    The circadian clock allows plants to anticipate predictable daily changes in abiotic stimuli, such as light; however, whether the clock similarly allows plants to anticipate interactions with other organisms is unknown. Here we show that Arabidopsis thaliana (Arabidopsis) has circadian clock-mediated variation in resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), with plants being least susceptible to infection in the subjective morning. We suggest that the increased resistance to Pst DC3000 observed in the morning in Col-0 plants results from clock-mediated modulation of pathogen associated molecular pattern (PAMP)-triggered immunity. Analysis of publicly available microarray data revealed that a large number of Arabidopsis defence-related genes showed both diurnal- and circadian-regulation, including genes involved in the perception of the PAMP flagellin which exhibit a peak in expression in the morning. Accordingly, we observed that PAMP-triggered callose deposition was significantly higher in wild-type plants inoculated with Pst DC3000 hrpA in the subjective morning than in the evening, while no such temporal difference was evident in arrhythmic plants. Our results suggest that PAMP-triggered immune responses are modulated by the circadian clock and that temporal regulation allows plants to anticipate and respond more effectively to pathogen challenges in the daytime. © 2011 Bhardwaj et al.

  11. Activity, polypeptide and gene identification of thylakoid Ndh complex in trees: potential physiological relevance of fluorescence assays.

    Science.gov (United States)

    Serrot, Patricia H; Sabater, Bartolomé; Martín, Mercedes

    2012-09-01

    Three evergreen (Laurus nobilis, Viburnum tinus and Thuja plicata) and two autumnal abscission deciduous trees (Cydonia oblonga and Prunus domestica) have been investigated for the presence (zymogram and immunodetection) and functionality (post-illumination chlorophyll fluorescence) of the thylakoid Ndh complex. The presence of encoding ndh genes has also been investigated in T. plicata. Western assays allowed tentative identification of zymogram NADH dehydrogenase bands corresponding to the Ndh complex after native electrophoresis of solubilized fractions from L. nobilis, V. tinus, C. oblonga and P. domestica leaves, but not in those of T. plicata. However, Ndh subunits were detected after SDS-PAGE of thylakoid solubilized proteins of T. plicata. The leaves of the five plants showed the post-illumination chlorophyll fluorescence increase dependent on the presence of active Ndh complex. The fluorescence increase was higher in autumn in deciduous, but not in evergreen trees, which suggests that the thylakoid Ndh complex could be involved in autumnal leaf senescence. Two ndhB genes were sequenced from T. plicata that differ at the 350 bp 3' end sequence. Comparison with the mRNA revealed that ndhB genes have a 707-bp type II intron between exons 1 (723 bp) and 2 (729 bp) and that the UCA 259th codon is edited to UUA in mRNA. Phylogenetically, the ndhB genes of T. plicata group close to those of Metasequoia, Cryptomeria, Taxodium, Juniperus and Widdringtonia in the cupresaceae branch and are 5' end shortened by 18 codons with respect to that of angiosperms. Copyright © Physiologia Plantarum 2012.

  12. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    OpenAIRE

    Long, Dani M.; Giebultowicz, Jadwiga M.

    2018-01-01

    Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demo...

  13. Combined mutation and rearrangement screening by quantitative PCR high-resolution melting: is it relevant for hereditary recurrent Fever genes?

    Directory of Open Access Journals (Sweden)

    Nathalie Pallares-Ruiz

    2010-11-01

    Full Text Available The recent identification of genes implicated in hereditary recurrent fevers has allowed their specific diagnosis. So far however, only punctual mutations have been identified and a significant number of patients remain with no genetic confirmation of their disease after routine molecular approaches such as sequencing. The possible involvement of sequence rearrangements in these patients has only been examined in familial Mediterranean fever and was found to be unlikely. To assess the existence of larger genetic alterations in 3 other concerned genes, MVK (Mevalonate kinase, NLRP3 (Nod like receptor family, pyrin domain containing 3 and TNFRSF1A (TNF receptor superfamily 1A, we adapted the qPCR-HRM method to study possible intragenic deletions and duplications. This single-tube approach, combining both qualitative (mutations and quantitative (rearrangement screening, has proven effective in Lynch syndrome diagnosis. Using this approach, we studied 113 unselected (prospective group and 88 selected (retrospective group patients and identified no intragenic rearrangements in the 3 genes. Only qualitative alterations were found with a sensitivity similar to that obtained using classical molecular techniques for screening punctual mutations. Our results support that deleterious copy number alterations in MVK, NLRP3 and TNFRSF1A are rare or absent from the mutational spectrum of hereditary recurrent fevers, and demonstrate that a routine combined method such as qPCR-HRM provides no further help in genetic diagnosis. However, quantitative approaches such as qPCR or SQF-PCR did prove to be quick and effective and could still be useful after non contributory punctual mutation screening in the presence of clinically evocative signs.

  14. A tale with a Twist: a developmental gene with potential relevance for metabolic dysfunction and inflammation in adipose tissue

    Directory of Open Access Journals (Sweden)

    Anca Dana Dobrian

    2012-08-01

    Full Text Available The Twist proteins (Twist-1 and -2 are highly conserved developmental proteins with key roles for the transcriptional regulation in mesenchymal cell lineages. They belong to the super-family of bHLH proteins and exhibit bi-functional roles as both activators and repressors of gene transcription. The Twist proteins are expressed at low levels in adult tissues but may become abundantly re-expressed in cells undergoing malignant transformation. This observation prompted extensive research on the roles of Twist proteins in cancer progression and metastasis. Very recent studies indicate a novel role for Twist-1 as a potential regulator of adipose tissue remodeling and inflammation. Several studies suggested that developmental genes are important determinants of obesity, fat distribution and remodeling capacity of different adipose depots. Twist-1 is abundantly and selectively expressed in the adult adipose tissue and its constitutive expression is significantly higher in subcutaneous vs. visceral fat in both mice and humans. Moreover, Twist1 expression is strongly correlated with BMI and insulin resistance in humans. However, the functional roles and transcriptional downstream targets of Twist1 in adipose tissue are largely unexplored. The purpose of this review is to highlight the major findings related to Twist1 expression in different fat depots and cellular components of adipose tissue and to discuss the potential mechanisms suggesting a role for Twist1 in adipose tissue metabolism, inflammation and remodeling.

  15. Toward a detailed computational model for the mammalian circadian clock

    Science.gov (United States)

    Leloup, Jean-Christophe; Goldbeter, Albert

    2003-06-01

    We present a computational model for the mammalian circadian clock based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, Clock, and Rev-Erb genes. In agreement with experimental observations, the model can give rise to sustained circadian oscillations in continuous darkness, characterized by an antiphase relationship between Per/Cry/Rev-Erb and Bmal1 mRNAs. Sustained oscillations correspond to the rhythms autonomously generated by suprachiasmatic nuclei. For other parameter values, damped oscillations can also be obtained in the model. These oscillations, which transform into sustained oscillations when coupled to a periodic signal, correspond to rhythms produced by peripheral tissues. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark cycles. Simulations show that the phase of the oscillations can then vary by several hours with relatively minor changes in parameter values. Such a lability of the phase could account for physiological disorders related to circadian rhythms in humans, such as advanced or delayed sleep phase syndrome, whereas the lack of entrainment by light-dark cycles can be related to the non-24h sleep-wake syndrome. The model uncovers the possible existence of multiple sources of oscillatory behavior. Thus, in conditions where the indirect negative autoregulation of Per and Cry expression is inoperative, the model indicates the possibility that sustained oscillations might still arise from the negative autoregulation of Bmal1 expression.

  16. General anesthesia alters time perception by phase shifting the circadian clock.

    Science.gov (United States)

    Cheeseman, James F; Winnebeck, Eva C; Millar, Craig D; Kirkland, Lisa S; Sleigh, James; Goodwin, Mark; Pawley, Matt D M; Bloch, Guy; Lehmann, Konstantin; Menzel, Randolf; Warman, Guy R

    2012-05-01

    Following general anesthesia, people are often confused about the time of day and experience sleep disruption and fatigue. It has been hypothesized that these symptoms may be caused by general anesthesia affecting the circadian clock. The circadian clock is fundamental to our well-being because it regulates almost all aspects of our daily biochemistry, physiology, and behavior. Here, we investigated the effects of the most common general anesthetic, isoflurane, on time perception and the circadian clock using the honeybee (Apis mellifera) as a model. A 6-h daytime anesthetic systematically altered the time-compensated sun compass orientation of the bees, with a mean anticlockwise shift in vanishing bearing of 87° in the Southern Hemisphere and a clockwise shift in flight direction of 58° in the Northern Hemisphere. Using the same 6-h anesthetic treatment, time-trained bees showed a delay in the start of foraging of 3.3 h, and whole-hive locomotor-activity rhythms were delayed by an average of 4.3 h. We show that these effects are all attributable to a phase delay in the core molecular clockwork. mRNA oscillations of the central clock genes cryptochrome-m and period were delayed by 4.9 and 4.3 h, respectively. However, this effect is dependent on the time of day of administration, as is common for clock effects, and nighttime anesthesia did not shift the clock. Taken together, our results suggest that general anesthesia during the day causes a persistent and marked shift of the clock effectively inducing "jet lag" and causing impaired time perception. Managing this effect in humans is likely to help expedite postoperative recovery.

  17. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants

    DEFF Research Database (Denmark)

    van den Eede, G.; Aarts, H. J.; Buhk, H. J.

    2004-01-01

    In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost...... action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established....... This working group was linked to the GMOBILITY project (GMOBILITY, 2003) and the results of the deliberations are laid down in this review paper. HGT is reviewed in relation to the potential risks of consuming food or feed derived from transgenic crops. First, the mechanisms for obtaining transgenic crops...

  18. PAMP induced expression of immune relevant genes in head kidney leukocytes of rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Raida, Martin Kristian; Holten-Andersen, Lars

    2011-01-01

    ) on the surface of the invader. Phagocytic cells are known to initiate a respiratory burst following an exposure to the pathogen, but the underlying and associated specific elements are poorly elucidated in fish. The present study describes the differential response of head kidney leukocytes from rainbow trout...... (Oncorhynchus mykiss) to different PAMPs mimicking viral (poly I:C), bacterial (flagellin and LPS) and fungal infections (zymosan and ß-glucan). Transcript of cytokines related to inflammation (IL-1ß, IL-6, IL-10 and TNF-a) was highly up-regulated following LPS exposure whereas flagellin or poly I:C induced...... merely moderate reactions. In contrast, IFN-¿ expression was significantly higher in the poly I:C stimulated group compared to the LPS group. When head kidney cells were exposed to zymosan or ß-glucan, genes encoding IL-1ß, TNF-a, IL-6 and IL-10 became up-regulated. Their level of up...

  19. Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology

    Directory of Open Access Journals (Sweden)

    Matthew A. Timberlake

    2016-01-01

    Full Text Available The unfolded protein response (UPR is an evolutionarily conserved defensive mechanism that is used by cells to correct misfolded proteins that accumulate in the endoplasmic reticulum. These proteins are misfolded as a result of physical stress on a cell and initiate a host of downstream effects that govern processes ranging from inflammation to apoptosis. To examine whether UPR system plays a role in depression, we examined the expression of genes that are part of the three different pathways for UPR activation, namely GRP78, GRP94, ATF6, XBP-1, ATF4 and CHOP using an animal model system that distinguishes vulnerability (learned helpless, LH from resistance (non-learned helpless, NLH to develop depression. Rats were exposed to inescapable shock on day 1 and day 7 and were tested for escape latency on day 14. Rats not given shock but tested for escape latency were used as tested control (TC. Plasma corticosterone levels were measured. Expression levels of various UPR associated genes were determined in hippocampus using qPCR. We found that the corticosterone level was higher in LH rats compared with TC and NLH rats. Expression of GRP78, GRP94, ATF6 and XBP-1 were significantly upregulated in LH rats compared with TC or NLH rats, whereas NLH rats did not show such changes. Expression levels of ATF4 and CHOP showed trends towards upregulation but were not significantly altered in LH or NLH group. Our data show strong evidence of altered UPR system in depressed rats, which could be associated with development of depressive behavior.

  20. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Feng, Dan; Everett, Logan J

    2012-01-01

    of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast......-autonomous clock as well as hepatic lipid metabolism. Mouse embryonic fibroblasts were rendered arrhythmic by depletion of both Rev-erbs. In mouse livers, Rev-erbβ mRNA and protein levels oscillate with a diurnal pattern similar to that of Rev-erbα, and both Rev-erbs are recruited to a remarkably similar set...

  1. Peripheral CLOCK regulates target-tissue glucocorticoid receptor transcriptional activity in a circadian fashion in man.

    Directory of Open Access Journals (Sweden)

    Evangelia Charmandari

    Full Text Available Circulating cortisol fluctuates diurnally under the control of the "master" circadian CLOCK, while the peripheral "slave" counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans.We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs as non-synchronized controls.GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo.Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night.

  2. Peripheral CLOCK Regulates Target-Tissue Glucocorticoid Receptor Transcriptional Activity in a Circadian Fashion in Man

    Science.gov (United States)

    Charmandari, Evangelia; Chrousos, George P.; Lambrou, George I.; Pavlaki, Aikaterini; Koide, Hisashi; Ng, Sinnie Sin Man; Kino, Tomoshige

    2011-01-01

    Context and Objective Circulating cortisol fluctuates diurnally under the control of the “master” circadian CLOCK, while the peripheral “slave” counterpart of the latter regulates the transcriptional activity of the glucocorticoid receptor (GR) at local glucocorticoid target tissues through acetylation. In this manuscript, we studied the effect of CLOCK-mediated GR acetylation on the sensitivity of peripheral tissues to glucocorticoids in humans. Design and Participants We examined GR acetylation and mRNA expression of GR, CLOCK-related and glucocorticoid-responsive genes in peripheral blood mononuclear cells (PBMCs) obtained at 8 am and 8 pm from 10 healthy subjects, as well as in PBMCs obtained in the morning and cultured for 24 hours with exposure to 3-hour hydrocortisone pulses every 6 hours. We used EBV-transformed lymphocytes (EBVLs) as non-synchronized controls. Results GR acetylation was higher in the morning than in the evening in PBMCs, mirroring the fluctuations of circulating cortisol in reverse phase. All known glucocorticoid-responsive genes tested responded as expected to hydrocortisone in non-synchronized EBVLs, however, some of these genes did not show the expected diurnal mRNA fluctuations in PBMCs in vivo. Instead, their mRNA oscillated in a Clock- and a GR acetylation-dependent fashion in naturally synchronized PBMCs cultured ex vivo in the absence of the endogenous glucocorticoid, suggesting that circulating cortisol might prevent circadian GR acetylation-dependent effects in some glucocorticoid-responsive genes in vivo. Conclusions Peripheral CLOCK-mediated circadian acetylation of the human GR may function as a target-tissue, gene-specific counter regulatory mechanism to the actions of diurnally fluctuating cortisol, effectively decreasing tissue sensitivity to glucocorticoids in the morning and increasing it at night. PMID:21980503

  3. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager.

    Science.gov (United States)

    Sanchez, Sabrina E; Kay, Steve A

    2016-12-01

    The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Robustness from flexibility in the fungal circadian clock

    Directory of Open Access Journals (Sweden)

    Akman Ozgur E

    2010-06-01

    Full Text Available Abstract Background Robustness is a central property of living systems, enabling function to be maintained against environmental perturbations. A key challenge is to identify the structures in biological circuits that confer system-level properties such as robustness. Circadian clocks allow organisms to adapt to the predictable changes of the 24-hour day/night cycle by generating endogenous rhythms that can be entrained to the external cycle. In all organisms, the clock circuits typically comprise multiple interlocked feedback loops controlling the rhythmic expression of key genes. Previously, we showed that such architectures increase the flexibility of the clock's rhythmic behaviour. We now test the relationship between flexibility and robustness, using a mathematical model of the circuit controlling conidiation in the fungus Neurospora crassa. Results The circuit modelled in this work consists of a central negative feedback loop, in which the frequency (frq gene inhibits its transcriptional activator white collar-1 (wc-1, interlocked with a positive feedback loop in which FRQ protein upregulates WC-1 production. Importantly, our model reproduces the observed entrainment of this circuit under light/dark cycles with varying photoperiod and cycle duration. Our simulations show that whilst the level of frq mRNA is driven directly by the light input, the falling phase of FRQ protein, a molecular correlate of conidiation, maintains a constant phase that is uncoupled from the times of dawn and dusk. The model predicts the behaviour of mutants that uncouple WC-1 production from FRQ's positive feedback, and shows that the positive loop enhances the buffering of conidiation phase against seasonal photoperiod changes. This property is quantified using Kitano's measure for the overall robustness of a regulated system output. Further analysis demonstrates that this functional robustness is a consequence of the greater evolutionary flexibility conferred on

  5. A model of guarded recursion with clock synchronisation

    DEFF Research Database (Denmark)

    Bizjak, Aleš; Møgelberg, Rasmus Ejlers

    2015-01-01

    productivity to be captured in types. The calculus uses clocks representing time streams and clock quantifiers which allow limited and controlled elimination of modalities. The calculus has since been extended to dependent types by Møgelberg. Both works give denotational semantics but no rewrite semantics....... In previous versions of this calculus, different clocks represented separate time streams and clock synchronisation was prohibited. In this paper we show that allowing clock synchronisation is safe by constructing a new model of guarded recursion and clocks. This result will greatly simplify the type theory...... by removing freshness restrictions from typing rules, and is a necessary step towards defining rewrite semantics, and ultimately implementing the calculus....

  6. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    Directory of Open Access Journals (Sweden)

    Xiang Li-xin

    2010-08-01

    Full Text Available Abstract Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host

  7. Dynamics of the Drosophila circadian clock: theoretical anti-jitter network and controlled chaos.

    Directory of Open Access Journals (Sweden)

    Hassan M Fathallah-Shaykh

    Full Text Available BACKGROUND: Electronic clocks exhibit undesirable jitter or time variations in periodic signals. The circadian clocks of humans, some animals, and plants consist of oscillating molecular networks with peak-to-peak time of approximately 24 hours. Clockwork orange (CWO is a transcriptional repressor of Drosophila direct target genes. METHODOLOGY/PRINCIPAL FINDINGS: Theory and data from a model of the Drosophila circadian clock support the idea that CWO controls anti-jitter negative circuits that stabilize peak-to-peak time in light-dark cycles (LD. The orbit is confined to chaotic attractors in both LD and dark cycles and is almost periodic in LD; furthermore, CWO diminishes the Euclidean dimension of the chaotic attractor in LD. Light resets the clock each day by restricting each molecular peak to the proximity of a prescribed time. CONCLUSIONS/SIGNIFICANCE: The theoretical results suggest that chaos plays a central role in the dynamics of the Drosophila circadian clock and that a single molecule, CWO, may sense jitter and repress it by its negative loops.

  8. Crystal Structure of the CLOCK Transactivation Domain Exon19 in Complex with a Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhiqiang; Su, Lijing; Pei, Jimin; Grishin, Nick V.; Zhang, Hong (UTSMC)

    2017-08-01

    In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.

  9. Sugars, the clock and transition to flowering

    Directory of Open Access Journals (Sweden)

    Mohammad Reza eBolouri Moghaddam

    2013-02-01

    Full Text Available Sugars do not only act as source of energy, but they also act as signals in plants. This mini review summarizes the emerging links between sucrose-mediated signaling and the cellular networks involved in flowering time control and defense. Cross-talks with gibberellin (GA and jasmonate (JA signaling pathways are highlighted. The circadian clock fulfills a crucial role at the heart of cellular networks and the bilateral relation between sugar signaling and the clock is discussed. It is proposed that important factors controlling plant growth (DELLAs, PIFs, invertases and trehalose- 6-phosphate or T6P might fulfill central roles in the transition to flowering as well. The emerging concept of ‘sweet immunity’, modulated by the clock, might at least partly rely on a sucrose-specific signaling pathway that needs further exploration.

  10. Intact interval timing in circadian CLOCK mutants.

    Science.gov (United States)

    Cordes, Sara; Gallistel, C R

    2008-08-28

    While progress has been made in determining the molecular basis for the circadian clock, the mechanism by which mammalian brains time intervals measured in seconds to minutes remains a mystery. An obvious question is whether the interval-timing mechanism shares molecular machinery with the circadian timing mechanism. In the current study, we trained circadian CLOCK +/- and -/- mutant male mice in a peak-interval procedure with 10 and 20-s criteria. The mutant mice were more active than their wild-type littermates, but there were no reliable deficits in the accuracy or precision of their timing as compared with wild-type littermates. This suggests that expression of the CLOCK protein is not necessary for normal interval timing.

  11. Variant at serotonin transporter gene predicts increased imitation in toddlers: relevance to the human capacity for cumulative culture.

    Science.gov (United States)

    Schroeder, Kari Britt; Asherson, Philip; Blake, Peter R; Fenstermacher, Susan K; Saudino, Kimberly J

    2016-04-01

    Cumulative culture ostensibly arises from a set of sociocognitive processes which includes high-fidelity production imitation, prosociality and group identification. The latter processes are facilitated by unconscious imitation or social mimicry. The proximate mechanisms of individual variation in imitation may thus shed light on the evolutionary history of the human capacity for cumulative culture. In humans, a genetic component to variation in the propensity for imitation is likely. A functional length polymorphism in the serotonin transporter gene, the short allele at 5HTTLPR, is associated with heightened responsiveness to the social environment as well as anatomical and activational differences in the brain's imitation circuity. Here, we evaluate whether this polymorphism contributes to variation in production imitation and social mimicry. Toddlers with the short allele at 5HTTLPR exhibit increased social mimicry and increased fidelity of demonstrated novel object manipulations. Thus, the short allele is associated with two forms of imitation that may underlie the human capacity for cumulative culture. The short allele spread relatively recently, possibly due to selection, and its frequency varies dramatically on a global scale. Diverse observations can be unified via conceptualization of 5HTTLPR as influencing the propensity to experience others' emotions, actions and sensations, potentially through the mirror mechanism. © 2016 The Author(s).

  12. PDF and cAMP enhance PER stability in Drosophila clock neurons

    Science.gov (United States)

    Li, Yue; Guo, Fang; Shen, James; Rosbash, Michael

    2014-01-01

    The neuropeptide PDF is important for Drosophila circadian rhythms: pdf01 (pdf-null) animals are mostly arrhythmic or short period in constant darkness and have an advanced activity peak in light–dark conditions. PDF contributes to the amplitude, synchrony, as well as the pace of circadian rhythms within clock neurons. PDF is known to increase cAMP levels in PDR receptor (PDFR)-containing neurons. However, there is no known connection of PDF or of cAMP with the Drosophila molecular clockworks. We discovered that the mutant period gene perS ameliorates the phenotypes of pdf-null flies. The period protein (PER) is a well-studied repressor of clock gene transcription, and the perS protein (PERS) has a markedly short half-life. The result therefore suggests that the PDF-mediated increase in cAMP might lengthen circadian period by directly enhancing PER stability. Indeed, increasing cAMP levels and cAMP-mediated protein kinase A (PKA) activity stabilizes PER, in S2 tissue culture cells and in fly circadian neurons. Adding PDF to fly brains in vitro has a similar effect. Consistent with these relationships, a light pulse causes more prominent PER degradation in pdf01 circadian neurons than in wild-type neurons. The results indicate that PDF contributes to clock neuron synchrony by increasing cAMP and PKA, which enhance PER stability and decrease clock speed in intrinsically fast-paced PDFR-containing clock neurons. We further suggest that the more rapid degradation of PERS bypasses PKA regulation and makes the pace of clock neurons more uniform, allowing them to avoid much of the asynchrony caused by the absence of PDF. PMID:24707054

  13. Rhythms of mammalian body temperature can sustain peripheral circadian clocks.

    Science.gov (United States)

    Brown, Steven A; Zumbrunn, Gottlieb; Fleury-Olela, Fabienne; Preitner, Nicolas; Schibler, Ueli

    2002-09-17

    Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.

  14. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf.

    Science.gov (United States)

    Morimoto, Kinuyo; Satake, Honoo

    2013-01-01

    Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.

  15. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  16. Crime clocks and target performance maps

    CSIR Research Space (South Africa)

    Cooper, Antony K

    1999-12-01

    Full Text Available the period of analysis. Each segment of a pie chart represents a selected part of the day (eg: a two- or three-hour period) or a day of the week. The first and last segments in the day or week are then adjacent, ensuring that there is no artificial break... clocks We have also used crime clocks to map the proportion of crimes that occur during normal police working hours (07:00 to 16:00, Monday to Friday, in the case of the Johannesburg Area), against those that occur outside these hours. 3. Target...

  17. The Fermilab D0 Master Clock System

    International Nuclear Information System (INIS)

    Rotolo, C.; Fachin, M.; Chappa, S.; Rauch, M.; Needles, C.; Dyer, A.

    1991-11-01

    The Clock System provides bunch crossing related timing signals to various detector subsystems. Accelerator synchronization and monitoring as well as timing signal generation and distribution are discussed. The system is built using three module types implemented in Eurostandard hardware with a VME communications interface. The first two types of modules are used to facilitate synchronization with the accelerator and to generate 23 timing signals that are programmable with one RF bucket (18.8 ns) resolution and 1 ns accuracy. Fifty-four of the third module type are used to distribute the timing signals and two synchronous 53 MHz and 106 MHz clocks to various detector subsystems. 6 refs., 5 figs

  18. Clocking Scheme for Switched-Capacitor Circuits

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    1998-01-01

    A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed.......A novel clocking scheme for switched-capacitor (SC) circuits is presented. It can enhance the understanding of SC circuits and the errors caused by MOSFET (MOS) switches. Charge errors, and techniques to make SC circuits less sensitive to them are discussed....

  19. [The diagnostic value of microsatellite LOH analysis and the prognostic relevance of angiogenic gene expression in urinary bladder cancer].

    Science.gov (United States)

    Szarvas, Tibor

    2009-12-01

    Bladder cancer is the second most common malignancy affecting the urinary system. Currently, histology is the only tool that determines therapy and patients' prognosis. As the treatment of non-invasive (Ta/T1) and muscle invasive (T2-T4) bladder tumors are completely different, correct staging is important, although it is often hampered by disturbing factors. Molecular methods offer new prospects for early disease detection, confirmation of unclear histological findings and prognostication. Applying molecular biological methods, the present study is searching for answers to current diagnostic and prognostic problems in bladder carcinoma. We analyzed tumor, blood and/or urine samples of 334 bladder cancer patients and 117 control individuals. Genetic alterations were analyzed in urine samples of patients and controls, both by PCR-based microsatellite loss of heterozigosity (LOH) analysis using 12 fluorescently labeled primers and by DNA hybridization based UroVysion FISH technique using 4 probes, to assess the diagnostic values of these methods. Whole genome microsatellite analysis (with 400 markers) was performed in tumor and blood specimens of bladder cancer patients to find chromosomal regions, the loss of which may be associated with tumor stage. Furthermore, we assessed the prognostic value of Tie2, VEGF, Angiopoietin-1 and -2. We concluded that DNA analysis of voided urine samples by microsatellite analysis and FISH are sensitive and non-invasive methods to detect bladder cancer. Furthermore, we established a panel of microsatellite markers that could differentiate between non-invasive and invasive bladder cancer. However, further analyses in a larger cohort of patients are needed to assess their specificity and sensitivity. Finally, we identified high Ang-2 and low Tie2 gene expression as significant and independent risk factors of tumor recurrence and cancer related survival.

  20. Gene expression in aminergic and peptidergic cells during aggression and defeat: relevance to violence, depression and drug abuse.

    Science.gov (United States)

    Miczek, Klaus A; Nikulina, Ella M; Takahashi, Aki; Covington, Herbert E; Yap, Jasmine J; Boyson, Christopher O; Shimamoto, Akiko; de Almeida, Rosa M M

    2011-11-01

    In this review, we examine how experiences in social confrontations alter gene expression in mesocorticolimbic cells. The focus is on the target of attack and threat due to the prominent role of social defeat stress in the study of coping mechanisms and victimization. The initial operational definition of the socially defeated mouse by Ginsburg and Allee (1942) enabled the characterization of key endocrine, cardiovascular, and metabolic events during the initial response to an aggressive opponent and during the ensuing adaptations. Brief episodes of social defeat stress induce an augmented response to stimulant challenge as reflected by increased locomotion and increased extracellular dopamine (DA) in the nucleus accumbens (NAC). Cells in the ventral tegmental area (VTA) that project to the NAC were more active as indicated by increased expression of c-fos and Fos-immunoreactivity and BDNF. Intermittent episodes of social defeat stress result in increased mRNA for MOR in brainstem and limbic structures. These behavioral and neurobiological indices of sensitization persist for several months after the stress experience. The episodically defeated rats also self-administered intravenous cocaine during continuous access for 24 h ("binge"). By contrast, continuous social stress, particularly in the form of social subordination stress, leads to reduced appetite, compromised endocrine activities, and cardiovascular and metabolic abnormalities, and prefer sweets less as index of anhedonia. Cocaine challenges in subordinate rats result in a blunted psychomotor stimulant response and a reduced DA release in NAC. Subordinate rats self-administer cocaine less during continuous access conditions. These contrasting patterns of social stress result from continuous vs. intermittent exposure to social stress, suggesting divergent neuroadaptations for increased vulnerability to cocaine self-administration vs. deteriorated reward mechanisms characteristic of depressive-like profiles.

  1. Clinical Relevance of Cytokines Gene Polymorphisms and Protein Levels in Gingival Cervical Fluid from Chronic Periodontitis Patients.

    Science.gov (United States)

    Lavu, Vamsi; Venkatesan, Vettriselvi; Venugopal, Priyanka; Lakkakula, Bhaskar Venkata Kameswara Subrahmanya; Paul, Solomon Franklin Durairaj; Peria, Kumarasamy; Rao, Suresh Ranga

    2017-03-01

    Cytokines are suggested to play a role in periodontitis. To determine and compare the levels of Interleukin-1 beta (IL-1β) and Tumor necrosis factor alpha (TNF-α) in gingival crevicular fluid (GCF) samples amongst healthy individuals and those with chronic periodontitis. Further to compare the GCF cytokine levels in three genotype classes defined by the respective gene polymorphisms. The study was conducted on 41 chronic periodontitis patients and 40 healthy volunteers. IL-1β and TNF-α were quantified in GCF by cytometric bead array. DNA was extracted from peripheral blood samples and genotyping of IL1B +3954C/T (rs1143634) IL1B -511G/A (rs16944), TNFA -1031T/C (rs1799964) and TNFA -863C/A (rs1800630) polymorphisms were performed using Sanger sequencing and Taqman SNP genotyping assays methods. Both IL-1β and TNF-α levels were significantly higher in chronic periodontitis group compared to the controls. IL-1β and TNF-α levels did not significantly differ in genotype classes of the respective polymorphism (IL1B -511G/A, TNFA -1031T/C and TNFA -863C/A). However, individuals with CT genotype of IL1B +3954C/T showed higher levels of IL-1β in the gingival crevicular fluid (ANOVA p<0.05). The results of this study revealed the presence of higher levels of IL-1β and TNF-α in subjects with periodontitis and genetic control of IL-1β levels in our samples of Indians.

  2. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    Background Escherichia coli exists in commensal and pathogenic forms. By measuring the variation of individual genes across more than a hundred sequenced genomes, gene variation can be studied in detail, including the number of mutations found for any given gene. This knowledge will be useful...... for creating better phylogenies, for determination of molecular clocks and for improved typing techniques. Results We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps...... more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...

  3. Identification of haplotype tag single nucleotide polymorphisms within the nuclear factor-κB family genes and their clinical relevance in patients with major trauma.

    Science.gov (United States)

    Pan, Wei; Zhang, An Qiang; Gu, Wei; Gao, Jun Wei; Du, Ding Yuan; Zhang, Lian Yang; Zeng, Ling; Du, Juan; Wang, Hai Yan; Jiang, Jian Xin

    2015-03-20

    Nuclear factor-κB (NF-κB) family plays an important role in the development of sepsis in critically ill patients. Although several single nucleotide polymorphisms (SNPs) have been identified in the NF-κB family genes, only a few SNPs have been studied. A total of 753 patients with major blunt trauma were included in this study. Tag SNPs (tSNPs) were selected from the NF-κB family genes (NFKB1, NFKB2, RELA, RELB and REL) through construction of haplotype blocks. The SNPs selected from genes within the canonical NF-κB pathway (including NFKB1, RELA and REL), which played a critical role in innate immune responses were genotyped using pyrosequencing method and analyzed in relation to the risk of development of sepsis and multiple organ dysfunction (MOD) syndrome. Moreover, the rs842647 polymorphism was analyzed in relation to tumor necrosis factor α (TNF-α) production by peripheral blood leukocytes in response to bacterial lipoprotein stimulation. Eight SNPs (rs28362491, rs3774932, rs4648068, rs7119750, rs4803789, rs12609547, rs1560725 and rs842647) were selected from the NF-κB family genes. All of them were shown to be high-frequency SNPs in this study cohort. Four SNPs (rs28362491, rs4648068, rs7119750 and rs842647) within the canonical NF-κB pathway were genotyped, and rs842647 was associated with sepsis morbidity rate and MOD scores. An association was also observed between the rs842647 A allele and lower TNF-α production. rs842647 polymorphism might be used as relevant risk estimate for the development of sepsis and MOD syndrome in patients with major trauma.

  4. Susceptibility of Redundant Versus Singular Clock Domains Implemented in SRAM-Based FPGA TMR Designs

    Science.gov (United States)

    Berg, Melanie D.; LaBel, Kenneth A.; Pellish, Jonathan

    2016-01-01

    We present the challenges that arise when using redundant clock domains due to their clock-skew. Radiation data show that a singular clock domain (DTMR) provides an improved TMR methodology for SRAM-based FPGAs over redundant clocks.

  5. Clock Synchronization for Multihop Wireless Sensor Networks

    Science.gov (United States)

    Solis Robles, Roberto

    2009-01-01

    In wireless sensor networks, more so generally than in other types of distributed systems, clock synchronization is crucial since by having this service available, several applications such as media access protocols, object tracking, or data fusion, would improve their performance. In this dissertation, we propose a set of algorithms to achieve…

  6. Food at work around the clock

    DEFF Research Database (Denmark)

    Dahl Lassen, Anne; Beck, Anne Marie; Thorsen, Anne Vibeke

    This report brings together 12 invited presentations and outcomes of a workshop on food and meals for employees working irregular hours “around the clock”. The workshop, “Food at work around the clock – The Nordic Model”, was hosted by the National Food Institute at the Technical University...

  7. Hands Together! An Analog Clock Problem

    Science.gov (United States)

    Earnest, Darrell; Radtke, Susan; Scott, Siri

    2017-01-01

    In this article, the authors first present the Hands Together! task. The mathematics in this problem concerns the relationship of hour and minute durations as reflected in the oft-overlooked proportional movements of the two hands of an analog clock. The authors go on to discuss the importance of problem solving in general. They then consider…

  8. Analytic clock frequency selection for global DVFS

    NARCIS (Netherlands)

    Gerards, Marco Egbertus Theodorus; Hurink, Johann L.; Holzenspies, P.K.F.; Kuper, Jan; Smit, Gerardus Johannes Maria

    2014-01-01

    Computers can reduce their power consumption by decreasing their speed using Dynamic Voltage and Frequency Scaling (DVFS). A form of DVFS for multicore processors is global DVFS, where the voltage and clock frequency is shared among all processor cores. Because global DVFS is efficient and cheap to

  9. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks

    Directory of Open Access Journals (Sweden)

    Paul de Goede

    2018-01-01

    Full Text Available The effects of feeding behavior and diet composition, as well as their possible interactions, on daily (clock gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue (WAT, but hardly in other metabolic tissues such as skeletal muscle (SM and brown adipose tissues (BAT. We therefore subjected male Wistar rats to a regular chow or free choice high-fat-high sugar (fcHFHS diet in combination with time restricted feeding (TRF to either the light or dark phase. In SM, all tested clock genes lost their rhythmic expression in the chow light fed group. In the fcHFHS light fed group rhythmic expression for some, but not all, clock genes was maintained, but shifted by several hours. In BAT the daily rhythmicity of clock genes was maintained for the light fed groups, but expression patterns were shifted as compared with ad libitum and dark fed groups, whilst the fcHFHS diet made the rhythmicity of clock genes become more pronounced. Most of the metabolic genes in BAT tissue tested did not show any rhythmic expression in either the chow or fcHFHS groups. In SM Pdk4 and Ucp3 were phase-shifted, but remained rhythmically expressed in the chow light fed groups. Rhythmic expression was lost for Ucp3 whilst on the fcHFHS diet during the light phase. In summary, both feeding at the wrong time of day and diet composition disturb the peripheral clocks in SM and BAT, but to different degrees and thereby result in a further desynchronization between metabolically active tissues such as SM, BAT, WAT and liver.

  10. NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis.

    Science.gov (United States)

    Le Morvan, Marine; Zinovyev, Andrei; Vert, Jean-Philippe

    2017-06-01

    Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations.

  11. Changes in Histopathology, Enzyme Activities, and the Expression of Relevant Genes in Zebrafish (Danio rerio) Following Long-Term Exposure to Environmental Levels of Thallium.

    Science.gov (United States)

    Hou, Li-Ping; Yang, Yang; Shu, Hu; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Yi-Bing; Chen, Yong-Heng; Fang, Gui-Zhen; Li, Xin; Liu, Ji-Sheng

    2017-11-01

    Thallium is a rare-earth element, but widely distributed in water environments, posing a potential risk to our health. This study was designed to investigate the chronic effects of thallium based on physiological responses, gene expression, and changes in the activity of relevant enzymes in adult zebra fish exposed to thallium at low doses. The endpoints assessed include mRNA expression of metallothionein (MT)2 and heat shock protein HSP70; enzymatic activities of superoxide dismutase (SOD) and Na + /K + -ATPase; and the histopathology of gill, gonad, and liver tissues. The results showed significant increases in HSP70 mRNA expression following exposure to 100 ng/L thallium and in MT2 expression following exposure to 500 ng/L thallium. Significantly higher activities were observed for SOD in liver and Na + /K + -ATPase activity in gill in zebra fish exposed to thallium (20 and 100 ng/L, respectively) in comparison to control fish. Gill, liver, and gonad tissues displayed different degrees of damage. The overall results imply that thallium may cause toxicity to zebra fish at environmentally relevant aqueous concentrations.

  12. Epigenetic and Posttranslational Modifications in Light Signal Transduction and the Circadian Clock in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Marco Proietto

    2015-07-01

    Full Text Available Blue light, a key abiotic signal, regulates a wide variety of physiological processes in many organisms. One of these phenomena is the circadian rhythm presents in organisms sensitive to the phase-setting effects of blue light and under control of the daily alternation of light and dark. Circadian clocks consist of autoregulatory alternating negative and positive feedback loops intimately connected with the cellular metabolism and biochemical processes. Neurospora crassa provides an excellent model for studying the molecular mechanisms involved in these phenomena. The White Collar Complex (WCC, a blue-light receptor and transcription factor of the circadian oscillator, and Frequency (FRQ, the circadian clock pacemaker, are at the core of the Neurospora circadian system. The eukaryotic circadian clock relies on transcriptional/translational feedback loops: some proteins rhythmically repress their own synthesis by inhibiting the activity of their transcriptional factors, generating self-sustained oscillations over a period of about 24 h. One of the basic mechanisms that perpetuate self-sustained oscillations is post translation modification (PTM. The acronym PTM generically indicates the addition of acetyl, methyl, sumoyl, or phosphoric groups to various types of proteins. The protein can be regulatory or enzymatic or a component of the chromatin. PTMs influence protein stability, interaction, localization, activity, and chromatin packaging. Chromatin modification and PTMs have been implicated in regulating circadian clock function in Neurospora. Research into the epigenetic control of transcription factors such as WCC has yielded new insights into the temporal modulation of light-dependent gene transcription. Here we report on epigenetic and protein PTMs in the regulation of the Neurospora crassa circadian clock. We also present a model that illustrates the molecular mechanisms at the basis of the blue light control of the circadian clock.

  13. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    Science.gov (United States)

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Comments On Clock Models In Hybrid Automata And Hybrid Control Systems

    Directory of Open Access Journals (Sweden)

    Virginia Ecaterina OLTEAN

    2001-12-01

    Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.

  15. Supporting Family Awareness with the Whereabouts Clock

    Science.gov (United States)

    Sellen, Abigail; Taylor, Alex S.; Kaye, Joseph ‘Jofish'; Brown, Barry; Izadi, Shahram

    We report the results of a field trial of a situated awareness device for families called the “Whereabouts Clock”. The Clock displays the location of family members using cellphone data as one of four privacy-preserving, deliberately coarse-grained categories ( HOME, WORK, SCHOOL or ELSEWHERE). The results show that awareness of others through the Clock supports not only family communication and coordination but also more emotive aspects of family life such as reassurance, connectedness, identity and social touch. We discuss how the term “awareness” means many things in practice and highlight the importance of designing not just for family activities, but in order to support the emotional, social and even moral aspects of family life.

  16. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants[OPEN

    Science.gov (United States)

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas

    2016-01-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555

  17. Effects of mass defect in atomic clocks

    Science.gov (United States)

    Taichenachev, A. V.; Yudin, V. I.

    2018-01-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (such as gravitational and quadratic Doppler shifts) can be interpreted as consequences of the mass defect, i.e., without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions..

  18. Clock error models for simulation and estimation

    International Nuclear Information System (INIS)

    Meditch, J.S.

    1981-10-01

    Mathematical models for the simulation and estimation of errors in precision oscillators used as time references in satellite navigation systems are developed. The results, based on all currently known oscillator error sources, are directly implementable on a digital computer. The simulation formulation is sufficiently flexible to allow for the inclusion or exclusion of individual error sources as desired. The estimation algorithms, following from Kalman filter theory, provide directly for the error analysis of clock errors in both filtering and prediction

  19. Light and the human circadian clock.

    Science.gov (United States)

    Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V

    2013-01-01

    The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.

  20. Analytic clock frequency selection for global DVFS

    OpenAIRE

    Gerards, Marco Egbertus Theodorus; Hurink, Johann L.; Holzenspies, P.K.F.; Kuper, Jan; Smit, Gerardus Johannes Maria

    2014-01-01

    Computers can reduce their power consumption by decreasing their speed using Dynamic Voltage and Frequency Scaling (DVFS). A form of DVFS for multicore processors is global DVFS, where the voltage and clock frequency is shared among all processor cores. Because global DVFS is efficient and cheap to implement, it is used in modern multicore processors like the IBM Power 7, ARM Cortex A9 and NVIDIA Tegra 2. This theory oriented paper discusses energy optimal DVFS algorithms for such processors....

  1. The circadian clock, reward and memory

    Directory of Open Access Journals (Sweden)

    Urs eAlbrecht

    2011-11-01

    Full Text Available During our daily activities, we experience variations in our cognitive performance, which is often accompanied by cravings for small rewards, such as consuming coffee or chocolate. This indicates that the time of day, cognitive performance and reward may be related to one another. This review will summarize data that describes the influence of the circadian clock on addiction and mood-related behavior and put the data into perspective in relation to memory processes.

  2. GLONASS orbit/clock combination in VNIIFTRI

    Science.gov (United States)

    Bezmenov, I.; Pasynok, S.

    2015-08-01

    An algorithm and a program for GLONASS satellites orbit/clock combination based on daily precise orbits submitted by several Analytic Centers were developed. Some theoretical estimates for combine orbit positions RMS were derived. It was shown that under condition that RMS of satellite orbits provided by the Analytic Centers during a long time interval are commensurable the RMS of combine orbit positions is no greater than RMS of other satellite positions estimated by any of the Analytic Centers.

  3. Clock distribution system for digital computers

    International Nuclear Information System (INIS)

    Loomis, H.H.; Wyman, R.H.

    1981-01-01

    An apparatus is disclosed for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse ''overtaking'' a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component v'01(T); an array of N signal characteristic detector means, with detector means no. 1 receiving the timing means signal and producing a change-of-state signal v1(T) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal vn(T) and producing a modified change-of-state signal v'n(T) (N 1, . . . , n) having a fundamental frequency component that is substantially proportional to v'01(T- theta n(T) with a cumulative phase shift theta n(T) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1 < or = n< n) receiving a modified change-of-state signal vn(T) from filter means no. N and, in response to receipt of such a signal above a predetermined threshold, producing a change-of-state signal vn+1

  4. Detection of gene copy number aberrations in mantle cell lymphoma by a single quantitative multiplex PCR assay: clinicopathological relevance and prognosis value.

    Science.gov (United States)

    Jardin, Fabrice; Picquenot, Jean-Michel; Parmentier, Françoise; Ruminy, Philippe; Cornic, Marie; Penther, Dominique; Bertrand, Philippe; Lanic, Hélène; Cassuto, Ophélie; Humbrecht, Catherine; Lemasle, Emilie; Wautier, Agathe; Bastard, Christian; Tilly, Hervé

    2009-09-01

    The t(11;14)(q13;q32) is the hallmark of mantle cell lymphoma (MCL). Additional genetic alterations occur in the majority of cases. This study aimed to design a polymerase chain reaction (PCR) assay to determine the incidence and relevance of recurrent gene copy number aberrations in this disease. Forty-two MCL cases with frozen- or paraffin-embedded (FFPE) tissues were selected. Three different quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) assays were designed to simultaneously analyse eight genes (CDKN2A, RB1, ATM, CDK2, TP53, MYC, CDKN1B, MDM2), to analyse the 9p21 locus (CDKN2A/CDKN2B) and FFPE tissues. Gains of MYC, CDK2, CDKN1B, and MDM2 were observed in 10% of cases. Losses of RB1, CDKN2A, ATM or TP53 were observed in 38%, 31%, 24% and 10% of cases, respectively. Analysis of the 9p21 locus indicated that, in most cases, tumours displayed a complete inactivation of p14(ARF)/p15I(NK4B)/p16I(NK4A). CDKN2A and MYC aberrations were associated with a high MCL international prognostic index (MIPI). CDK2/MDM2 gains and CDKN2A/TP53 losses correlated with an unfavourable outcome. PCR experiments with frozen and FFPE-tissues indicated that our approach is valid in a routine diagnostic setting, providing a powerful tool that could be used for patient stratification in combination with MIPI in future clinical trials.

  5. Melatonin improves the quality of in vitro produced (IVP bovine embryos: implications for blastocyst development, cryotolerance, and modifications of relevant gene expression.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available To evaluate the potential effects of melatonin on the kinetics of embryo development and quality of blastocyst during the process of in vitro bovine embryo culture. Bovine cumulus-oocyte complexes (COCs were fertilized after in vitro maturation. The presumed zygotes were cultured in in vitro culture medium supplemented with or without 10(-7 M melatonin. The cleavage rate, 8-cell rate and blastocyst rate were examined to identify the kinetics of embryo development. The hatched blastocyst rate, mortality rate after thawing and the relevant transcript abundance were measured to evaluate the quality of blastocyst. The results showed that melatonin significantly promoted the cleavage rate and 8-cell embryo yield of in vitro produced bovine embryo. In addition, significantly more blastocysts were observed by Day 7 of embryo culture at the presence of melatonin. These results indicated that melatonin accelerated the development of in vitro produced bovine embryos. Following vitrification at Day 7 of embryo culture, melatonin (10(-7 M significantly increased the hatched blastocyst rate from 24 h to 72 h and decreased the mortality rate from 48 h to 72 h after thawing. The presence of melatonin during the embryo culture resulted in a significant increase in the gene expressions of DNMT3A, OCC, CDH1 and decrease in that of AQP3 after thawing. In conclusion, melatonin not only promoted blastocyst yield and accelerated in vitro bovine embryo development, but also improved the quality of blastocysts which was indexed by an elevated cryotolerance and the up-regulated expressions of developmentally important genes.

  6. Epigenetic control and the circadian clock: linking metabolism to neuronal responses.

    Science.gov (United States)

    Orozco-Solis, R; Sassone-Corsi, P

    2014-04-04

    Experimental and epidemiological evidence reveal the profound influence that industrialized modern society has imposed on human social habits and physiology during the past 50 years. This drastic change in life-style is thought to be one of the main causes of modern diseases including obesity, type 2 diabetes, mental illness such as depression, sleep disorders, and certain types of cancer. These disorders have been associated to disruption of the circadian clock, an intrinsic time-keeper molecular system present in virtually all cells and tissues. The circadian clock is a key element in homeostatic regulation by controlling a large array of genes implicated in cellular metabolism. Importantly, intimate links between epigenetic regulation and the circadian clock exist and are likely to prominently contribute to the plasticity of the response to the environment. In this review, we summarize some experimental and epidemiological evidence showing how environmental factors such as stress, drugs of abuse and changes in circadian habits, interact through different brain areas to modulate the endogenous clock. Furthermore we point out the pivotal role of the deacetylase silent mating-type information regulation 2 homolog 1 (SIRT1) as a molecular effector of the environment in shaping the circadian epigenetic landscape. Published by Elsevier Ltd.

  7. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.

    Science.gov (United States)

    Leliavski, Alexei; Dumbell, Rebecca; Ott, Volker; Oster, Henrik

    2015-02-01

    The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders. © 2014 The Author(s).

  8. Mini Screening of Kinase Inhibitors Affecting Period-length of Mammalian Cellular Circadian Clock

    International Nuclear Information System (INIS)

    Yagita, Kazuhiro; Yamanaka, Iori; Koinuma, Satoshi; Shigeyoshi, Yasufumi; Uchiyama, Yasuo

    2009-01-01

    In mammalian circadian rhythms, the transcriptional-translational feedback loop (TTFL) consisting of a set of clock genes is believed to elicit the circadian clock oscillation. The TTFL model explains that the accumulation and degradation of mPER and mCRY proteins control the period-length (tau) of the circadian clock. Although recent studies revealed that the Casein Kinase Iεδ (CKIεδ) regurates the phosphorylation of mPER proteins and the circadian period-length, other kinases are also likely to contribute the phosphorylation of mPER. Here, we performed small scale screening using 84 chemical compounds known as kinase inhibitors to identify candidates possibly affecting the circadian period-length in mammalian cells. Screening by this high-throughput real-time bioluminescence monitoring system revealed that the several chemical compounds apparently lengthened the cellular circadian clock oscillation. These compounds are known as inhibitors against kinases such as Casein Kinase II (CKII), PI3-kinase (PI3K) and c-Jun N-terminal Kinase (JNK) in addition to CKIεδ. Although these kinase inhibitors may have some non-specific effects on other factors, our mini screening identified new candidates contributing to period-length control in mammalian cells

  9. Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats

    Czech Academy of Sciences Publication Activity Database

    Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2012-01-01

    Roč. 7, č. 10 (2012), e46951 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/11/0668; GA ČR(CZ) GPP305/10/P244 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : SHR * circadian system * clock gene * metabolism * colon * liver * suprachiasmatic nucleus Subject RIV: ED - Physiology Impact factor: 3.730, year: 2012

  10. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria

    Directory of Open Access Journals (Sweden)

    Ochman Howard

    2009-09-01

    Full Text Available Abstract Background Because bacteria do not have a robust fossil record, attempts to infer the timing of events in their evolutionary history requires comparisons of molecular sequences. This use of molecular clocks is based on the assumptions that substitution rates for homologous genes or sites are fairly constant through time and across taxa. Violation of these conditions can lead to erroneous inferences and result in estimates that are off by orders of magnitude. In this study, we examine the consistency of substitution rates among a set of conserved genes in diverse bacterial lineages, and address the questions regarding the validity of molecular dating. Results By examining the evolution of 16S rRNA gene in obligate endosymbionts, which can be calibrated by the fossil record of their hosts, we found that the rates are consistent within a clade but varied widely across different bacterial lineages. Genome-wide estimates of nonsynonymous and synonymous substitutions suggest that these two measures are highly variable in their rates across bacterial taxa. Genetic drift plays a fundamental role in determining the accumulation of substitutions in 16S rRNA genes and at nonsynonymous sites. Moreover, divergence estimates based on a set of universally conserved protein-coding genes also exhibit low correspondence to those based on 16S rRNA genes. Conclusion Our results document a wide range of substitution rates across genes and bacterial taxa. This high level of variation cautions against the assumption of a universal molecular clock for inferring divergence times in bacteria. However, by applying relative-rate tests to homologous genes, it is possible to derive reliable local clocks that can be used to calibrate bacterial evolution. Reviewers This article was reviewed by Adam Eyre-Walker, Simonetta Gribaldo and Tal Pupko (nominated by Dan Graur.

  11. Diverse development and higher sensitivity of the circadian clocks to changes in maternal-feeding regime in a rat model of cardio-metabolic disease

    Czech Academy of Sciences Publication Activity Database

    Olejníková, Lucie; Polidarová, Lenka; Paušlyová, Lucia; Sládek, Martin; Sumová, Alena

    2015-01-01

    Roč. 32, č. 4 (2015), s. 531-547 ISSN 0742-0528 R&D Projects: GA ČR(CZ) GAP303/12/1108 Grant - others:Program interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111202 Institutional support: RVO:67985823 Keywords : circadian clock * clock gene * colon * liver * SHR * supraciasmatic nucleus Subject RIV: ED - Physiology Impact factor: 3.540, year: 2015

  12. The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading[OPEN

    Science.gov (United States)

    Missra, Anamika; Ernest, Ben; Jia, Qidong; Ke, Kenneth

    2015-01-01

    Circadian control of gene expression is well characterized at the transcriptional level, but little is known about diel or circadian control of translation. Genome-wide translation state profiling of mRNAs in Arabidopsis thaliana seedlings grown in long day was performed to estimate ribosome loading per mRNA. The experiments revealed extensive translational regulation of key biological processes. Notably, translation of mRNAs for ribosomal proteins and mitochondrial respiration peaked at night. Central clock mRNAs are among those subject to fluctuations in ribosome loading. There was no consistent phase relationship between peak translation states and peak transcript levels. The overlay of distinct transcriptional and translational cycles can be expected to alter the waveform of the protein synthesis rate. Plants that constitutively overexpress the clock gene CCA1 showed phase shifts in peak translation, with a 6-h delay from midnight to dawn or from noon to evening being particularly common. Moreover, cycles of ribosome loading that were detected under continuous light in the wild type collapsed in the CCA1 overexpressor. Finally, at the transcript level, the CCA1-ox strain adopted a global pattern of transcript abundance that was broadly correlated with the light-dark environment. Altogether, these data demonstrate that gene-specific diel cycles of ribosome loading are controlled in part by the circadian clock. PMID:26392078

  13. Differential effects of diet composition and timing of feeding behavior on rat brown adipose tissue and skeletal muscle peripheral clocks.

    NARCIS (Netherlands)

    De Goede, P.; Sen, Satish; Oosterman, Johanneke E; Kalsbeek, A.

    2018-01-01

    The effects of feeding behavior and diet composition,as well as their possible interactions,on daily (clock) gene expression rhythms have mainly been studied in the liver, and to a lesser degree in white adipose tissue(WAT), but hardly in other metabolic tissues such as skeletal muscle (SM) and

  14. Melatonin administered during the fetal stage affects circadian clock in the suprachiasmatic nucleus but not in the liver

    Czech Academy of Sciences Publication Activity Database

    Houdek, Pavel; Polidarová, Lenka; Nováková, Marta; Matějů, Kristýna; Kubík, Štěpán; Sumová, Alena

    2015-01-01

    Roč. 75, č. 2 (2015), s. 131-144 ISSN 1932-8451 R&D Projects: GA ČR(CZ) GAP303/12/1108 Institutional support: RVO:67985823 Keywords : ontogenesis * circadian system * suprachiasmatic nuclei * clock gene * melatonin Subject RIV: FH - Neurology Impact factor: 2.529, year: 2015

  15. Relativity theory and time perception: single or multiple clocks?

    Science.gov (United States)

    Buhusi, Catalin V; Meck, Warren H

    2009-07-22

    Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset) independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock. Rats were trained to time three durations (e.g., 10, 30, and 90 s). When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results. These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  16. Relativity theory and time perception: single or multiple clocks?

    Directory of Open Access Journals (Sweden)

    Catalin V Buhusi

    2009-07-01

    Full Text Available Current theories of interval timing assume that humans and other animals time as if using a single, absolute stopwatch that can be stopped or reset on command. Here we evaluate the alternative view that psychological time is represented by multiple clocks, and that these clocks create separate temporal contexts by which duration is judged in a relative manner. Two predictions of the multiple-clock hypothesis were tested. First, that the multiple clocks can be manipulated (stopped and/or reset independently. Second, that an event of a given physical duration would be perceived as having different durations in different temporal contexts, i.e., would be judged differently by each clock.Rats were trained to time three durations (e.g., 10, 30, and 90 s. When timing was interrupted by an unexpected gap in the signal, rats reset the clock used to time the "short" duration, stopped the "medium" duration clock, and continued to run the "long" duration clock. When the duration of the gap was manipulated, the rats reset these clocks in a hierarchical order, first the "short", then the "medium", and finally the "long" clock. Quantitative modeling assuming re-allocation of cognitive resources in proportion to the relative duration of the gap to the multiple, simultaneously timed event durations was used to account for the results.These results indicate that the three event durations were effectively timed by separate clocks operated independently, and that the same gap duration was judged relative to these three temporal contexts. Results suggest that the brain processes the duration of an event in a manner similar to Einstein's special relativity theory: A given time interval is registered differently by independent clocks dependent upon the context.

  17. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    OpenAIRE

    David M. Virshup; Rajesh Narasimamurthy

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entr...

  18. System-wide power management control via clock distribution network

    Science.gov (United States)

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  19. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    Science.gov (United States)

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology. © 2013 British Society for Neuroendocrinology.

  20. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA.

    Directory of Open Access Journals (Sweden)

    Guo-Xiang Ruan

    2008-10-01

    Full Text Available The influence of the mammalian retinal circadian clock on retinal physiology and function is widely recognized, yet the cellular elements and neural regulation of retinal circadian pacemaking remain unclear due to the challenge of long-term culture of adult mammalian retina and the lack of an ideal experimental measure of the retinal circadian clock. In the current study, we developed a protocol for long-term culture of intact mouse retinas, which allows retinal circadian rhythms to be monitored in real time as luminescence rhythms from a PERIOD2::LUCIFERASE (PER2::LUC clock gene reporter. With this in vitro assay, we studied the characteristics and location within the retina of circadian PER2::LUC rhythms, the influence of major retinal neurotransmitters, and the resetting of the retinal circadian clock by light. Retinal PER2::LUC rhythms were routinely measured from whole-mount retinal explants for 10 d and for up to 30 d. Imaging of vertical retinal slices demonstrated that the rhythmic luminescence signals were concentrated in the inner nuclear layer. Interruption of cell communication via the major neurotransmitter systems of photoreceptors and ganglion cells (melatonin and glutamate and the inner nuclear layer (dopamine, acetylcholine, GABA, glycine, and glutamate did not disrupt generation of retinal circadian PER2::LUC rhythms, nor did interruption of intercellular communication through sodium-dependent action potentials or connexin 36 (cx36-containing gap junctions, indicating that PER2::LUC rhythms generation in the inner nuclear layer is likely cell autonomous. However, dopamine, acting through D1 receptors, and GABA, acting through membrane hyperpolarization and casein kinase, set the phase and amplitude of retinal PER2::LUC rhythms, respectively. Light pulses reset the phase of the in vitro retinal oscillator and dopamine D1 receptor antagonists attenuated these phase shifts. Thus, dopamine and GABA act at the molecular level of PER

  1. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  2. Diamond Electron-Spin Clocks For Space Navigation and Communication

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision clocks are needed in a broad range of applications, including satellite communication, high-bandwidth wireless communication, computing systems, and...

  3. The role of the mechanical clock in medieval science.

    Science.gov (United States)

    Álvarez, Víctor Pérez

    2015-03-01

    The invention and spread of the mechanical clock is a complex and multifaceted historical phenomenon. Some of these facets, such as its social impact, have been widely studied, but their scientific dimensions have often been dismissed. The mechanical clock was probably born as a scientific instrument for driving a model of the universe, and not only natural philosophers but also kings, nobles and other members of the social elites showed an interest in clocks as scientific instruments. Public clocks later spread a new way of telling time based on equal hours, laying the foundations for changes in time consciousness that would accelerate scientific thinking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Synthesizing genetic sequential logic circuit with clock pulse generator.

    Science.gov (United States)

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-05-28

    Rhythmic clock widely occurs in biological systems which controls several aspects of cell physiology. For the different cell types, it is supplied with various rhythmic frequencies. How to synthesize a specific clock signal is a preliminary but a necessary step to further development of a biological computer in the future. This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse integer multiple to that of the genetic oscillator. An analogous electronic waveform-shaping circuit is constructed by a series of genetic buffers to shape logic high/low levels of an oscillation input in a basic sinusoidal cycle and generate a pulse-width-modulated (PWM) output with various duty cycles. By controlling the threshold level of the genetic buffer, a genetic clock pulse signal with its frequency consistent to the genetic oscillator is synthesized. A synchronous genetic counter circuit based on the topology of the digital sequential logic circuit is triggered by the clock pulse to synthesize the clock signal with an inverse multiple frequency to the genetic oscillator. The function acts like a frequency divider in electronic circuits which plays a key role in the sequential logic circuit with specific operational frequency. A cascaded genetic logic circuit generating clock pulse signals is proposed. Based on analogous implement of digital sequential logic circuits, genetic sequential logic circuits can be constructed by the proposed approach to generate various clock signals from an oscillation signal.

  5. Improvement of an Atomic Clock using Squeezed Vacuum

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K; Peise, Jan

    2016-01-01

    , the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.......75 atoms to improve the clock sensitivity of 10000 atoms by 2.05+0.34−0.37  dB. The SQL poses a significant limitation for today’s microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks...

  6. Electromagnetic synchronisation of clocks with finite separation in a rotating system

    International Nuclear Information System (INIS)

    Cohen, J.M.; Moses, H.E.; Rosenblum, A.; Temple Univ., Philadelphia, PA

    1984-01-01

    For clocks on the vertices of a triangle, it is shown that clock synchronisation using electromagnetic signals between finitely spaced clocks in a rotating frame leads to the same synchronisation error as a closely spaced band of clocks along the same light path. In addition, the above result is generalised to n equally spaced clocks. (author)

  7. Age-Related Changes in the Expression of the Circadian Clock Protein PERIOD in Drosophila Glial Cells

    Directory of Open Access Journals (Sweden)

    Dani M. Long

    2018-01-01

    Full Text Available Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into “circa” 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.

  8. Mass defect effects in atomic clocks

    Science.gov (United States)

    Yudin, Valeriy; Taichenachev, Alexey

    2018-03-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (the gravitational shift and motion-induced shifts such as quadratic Doppler and micromotion shifts) can be interpreted as consequences of the mass defect in quantum atomic physics, i.e. without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions.

  9. Topical application of bFGF on acid-conditioned and non-conditioned dentin: effect on cell proliferation and gene expression in cells relevant for periodontal regeneration

    Directory of Open Access Journals (Sweden)

    Fernanda Regina Godoy Rocha

    Full Text Available Abstract Periodontal regeneration is still a challenge in terms of predictability and magnitude of effect. In this study we assess the biological effects of combining chemical root conditioning and biological mediators on three relevant cell types for periodontal regeneration. Material and Methods: Bovine dentin slices were conditioned with 25% citric acid followed by topical application of basic fibroblast growth factor (bFGF, 10 and 50 ng. We used ELISA to assess the dynamics of bFGF release from the dentin surface and RT-qPCR to study the expression of Runx2, Col1a1, Bglap and fibronectin by periodontal ligament (PDL fibroblasts, cementoblasts and bone marrow stromal cells (BMSC grown onto these dentin slices. We also assessed the effects of topical application of bFGF on cell proliferation by quantification of genomic DNA. Results: Acid conditioning significantly increased the release of bFGF from dentin slices. Overall, bFGF application significantly (p<0.05 increased cell proliferation, except for BMSC grown on non-conditioned dentin slices. Dentin substrate discretely increased expression of Col1a1 in all cell types. Expression of Runx2, Col1a1 and Fn was either unaffected or inhibited by bFGF application in all cell types. We could not detect expression of the target genes on BMSC grown onto conditioned dentin. Conclusion: Acid conditioning of dentin improves the release of topically-applied bFGF. Topical application of bFGF had a stimulatory effect on proliferation of PDL fibroblasts, cementoblasts and BMSC, but did not affect expression of Runx2, Col1a1, Bglap and fibronectin by these cells.

  10. Interrelationship between 3,5,3´-triiodothyronine and the circadian clock in the rodent heart.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo Antonio; Prévide, Rafael Maso; Nunes, Maria Tereza; Young, Martin Elliot

    2016-01-01

    Triiodothyronine (T3) is an important modulator of cardiac metabolism and function, often through modulation of gene expression. The cardiomyocyte circadian clock is a transcriptionally based molecular mechanism capable of regulating cardiac processes, in part by modulating responsiveness of the heart to extra-cardiac stimuli/stresses in a time-of-day (TOD)-dependent manner. Although TOD-dependent oscillations in circulating levels of T3 (and its intermediates) have been established, oscillations in T3 sensitivity in the heart is unknown. To investigate the latter possibility, euthyroid male Wistar rats were treated with vehicle or T3 at distinct times of the day, after which induction of known T3 target genes were assessed in the heart (4-h later). The expression of mRNA was assessed by real-time quantitative polymerase chain reaction (qPCR). Here, we report greater T3 induction of transcript levels at the end of the dark phase. Surprisingly, use of cardiomyocyte-specific clock mutant (CCM) mice revealed that TOD-dependent oscillations in T3 sensitivity were independent of this cell autonomous mechanism. Investigation of genes encoding for proteins that affect T3 sensitivity revealed that Dio1, Dio2 and Thrb1 exhibited TOD-dependent variations in the heart, while Thra1 and Thra2 did not. Of these, Dio1 and Thrb1 were increased in the heart at the end of the dark phase. Interestingly, we observed that T3 acutely altered the expression of core clock components (e.g. Bmal1) in the rat heart. To investigate this further, rats were injected with a single dose of T3, after which expression of clock genes was interrogated at 3-h intervals over the subsequent 24-h period. These studies revealed robust effects of T3 on oscillations of both core clock components and clock-controlled genes. In summary, the current study exposed TOD-dependent sensitivity to T3 in the heart and its effects in the circadian clock genes expression.

  11. Identification of a Glycogen Synthase Kinase-3[beta] Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice

    Energy Technology Data Exchange (ETDEWEB)

    Kozikowski, Alan P.; Gunosewoyo, Hendra; Guo, Songpo; Gaisina, Irina N.; Walter, Richard L.; Ketcherside, Ariel; McClung, Colleen A.; Mesecar, Andrew D.; Caldarone, Barbara (Psychogenics); (Purdue); (UIC); (UTSMC)

    2012-05-02

    Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called 'mood-stabilizing drugs', such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3{beta} (GSK-3{beta}) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3{beta}. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC{sub 50} values in the range of 4 to 680 nM against human GSK-3{beta}. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mg kg{sup -1} resulted in the attenuation of hyperactivity in amphetamine/chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mg kg{sup -1}) and the antipsychotic haloperidol (1 mg kg{sup -1}). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3{beta} in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3{beta} as a relevant therapeutic target in the identification of new therapies for bipolar patients.

  12. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  13. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  14. A precise clock distribution network for MRPC-based experiments

    International Nuclear Information System (INIS)

    Wang, S.; Cao, P.; Shang, L.; An, Q.

    2016-01-01

    In high energy physics experiments, the MRPC (Multi-Gap Resistive Plate Chamber) detectors are widely used recently which can provide higher-resolution measurement for particle identification. However, the application of MRPC detectors leads to a series of challenges in electronics design with large number of front-end electronic channels, especially for distributing clock precisely. To deal with these challenges, this paper presents a universal scheme of clock transmission network for MRPC-based experiments with advantages of both precise clock distribution and global command synchronization. For precise clock distributing, the clock network is designed into a tree architecture with two stages: the first one has a point-to-multipoint long range bidirectional distribution with optical channels and the second one has a fan-out structure with copper link inside readout crates. To guarantee the precision of clock frequency or phase, the r-PTP (reduced Precision Time Protocol) and the DDMTD (digital Dual Mixer Time Difference) methods are used for frequency synthesis, phase measurement and adjustment, which is implemented by FPGA (Field Programmable Gate Array) in real-time. In addition, to synchronize global command execution, based upon this clock distribution network, synchronous signals are coded with clock for transmission. With technique of encoding/decoding and clock data recovery, signals such as global triggers or system control commands, can be distributed to all front-end channels synchronously, which greatly simplifies the system design. The experimental results show that both the clock jitter (RMS) and the clock skew can be less than 100 ps.

  15. Animal clocks: when science meets nature.

    Science.gov (United States)

    Kronfeld-Schor, Noga; Bloch, Guy; Schwartz, William J

    2013-08-22

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'), with the alternation of environmental light and darkness synchronizing (entraining) these rhythms to the natural day-night cycle. Our knowledge of the circadian system of animals at the molecular, cellular, tissue and organismal levels is remarkable, and we are beginning to understand how each of these levels contributes to the emergent properties and increased complexity of the system as a whole. For the most part, these analyses have been carried out using model organisms in standard laboratory housing, but to begin to understand the adaptive significance of the clock, we must expand our scope to study diverse animal species from different taxonomic groups, showing diverse activity patterns, in their natural environments. The seven papers in this Special Feature of Proceedings of the Royal Society B take on this challenge, reviewing the influences of moonlight, latitudinal clines, evolutionary history, social interactions, specialized temporal niches, annual variation and recently appreciated post-transcriptional molecular mechanisms. The papers emphasize that the complexity and diversity of the natural world represent a powerful experimental resource.

  16. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain

    NARCIS (Netherlands)

    Sen, Satish; Raingard, Hélène; Dumont, Stéphanie; Kalsbeek, A.; Vuillez, Patrick; Challet, Etienne

    2017-01-01

    Restricted feeding during the resting period causes pronounced shifts in a number of peripheral clocks, but not the central clock in the suprachiasmatic nucleus (SCN). By contrast, daily caloric restriction impacts also the light-entrained SCN clock, as indicated by shifted oscillations of clock

  17. Genome-Wide Characterization of bHLH Genes in Grape and Analysis of their Potential Relevance to Abiotic Stress Tolerance and Secondary Metabolite Biosynthesis

    Science.gov (United States)

    Wang, Pengfei; Su, Ling; Gao, Huanhuan; Jiang, Xilong; Wu, Xinying; Li, Yi; Zhang, Qianqian; Wang, Yongmei; Ren, Fengshan

    2018-01-01

    Basic helix-loop-helix (bHLH) transcription factors are involved in many abiotic stress responses as well as flavonol and anthocyanin biosynthesis. In grapes (Vitis vinifera L.), flavonols including anthocyanins and condensed tannins are most abundant in the skins of the berries. Flavonols are important phytochemicals for viticulture and enology, but grape bHLH genes have rarely been examined. We identified 94 grape bHLH genes in a genome-wide analysis and performed Nr and GO function analyses for these genes. Phylogenetic analyses placed the genes into 15 clades, with some remaining orphans. 41 duplicate gene pairs were found in the grape bHLH gene family, and all of these duplicate gene pairs underwent purifying selection. Nine triplicate gene groups were found in the grape bHLH gene family and all of these triplicate gene groups underwent purifying selection. Twenty-two grape bHLH genes could be induced by PEG treatment and 17 grape bHLH genes could be induced by cold stress treatment including a homologous form of MYC2, VvbHLH007. Based on the GO or Nr function annotations, we found three other genes that are potentially related to anthocyanin or flavonol biosynthesis: VvbHLH003, VvbHLH007, and VvbHLH010. We also performed a cis-acting regulatory element analysis on some genes involved in flavonoid or anthocyanin biosynthesis and our results showed that most of these gene promoters contained G-box or E-box elements that could be recognized by bHLH family members. PMID:29449854

  18. USP2-45 Is a Circadian Clock Output Effector Regulating Calcium Absorption at the Post-Translational Level.

    Directory of Open Access Journals (Sweden)

    Daniel Pouly

    Full Text Available The mammalian circadian clock influences most aspects of physiology and behavior through the transcriptional control of a wide variety of genes, mostly in a tissue-specific manner. About 20 clock-controlled genes (CCGs oscillate in virtually all mammalian tissues and are generally considered as core clock components. One of them is Ubiquitin-Specific Protease 2 (Usp2, whose status remains controversial, as it may be a cogwheel regulating the stability or activity of core cogwheels or an output effector. We report here that Usp2 is a clock output effector related to bodily Ca2+ homeostasis, a feature that is conserved across evolution. Drosophila with a whole-body knockdown of the orthologue of Usp2, CG14619 (dUsp2-kd, predominantly die during pupation but are rescued by dietary Ca2+ supplementation. Usp2-KO mice show hyperabsorption of dietary Ca2+ in small intestine, likely due to strong overexpression of the membrane scaffold protein NHERF4, a regulator of the Ca2+ channel TRPV6 mediating dietary Ca2+ uptake. In this tissue, USP2-45 is found in membrane fractions and negatively regulates NHERF4 protein abundance in a rhythmic manner at the protein level. In clock mutant animals (Cry1/Cry2-dKO, rhythmic USP2-45 expression is lost, as well as the one of NHERF4, confirming the inverse relationship between USP2-45 and NHERF4 protein levels. Finally, USP2-45 interacts in vitro with NHERF4 and endogenous Clathrin Heavy Chain. Taken together these data prompt us to define USP2-45 as the first clock output effector acting at the post-translational level at cell membranes and possibly regulating membrane permeability of Ca2+.

  19. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  20. A Novel Method of Clock Synchronization in Distributed Systems

    Science.gov (United States)

    Li, Gun; Niu, Meng-jie; Chai, Yang-shun; Chen, Xin; Ren, Yan-qiu

    2017-04-01

    Time synchronization plays an important role in the spacecraft formation flight and constellation autonomous navigation, etc. For the application of clock synchronization in a network system, it is not always true that all the observed nodes in the network are interconnected, therefore, it is difficult to achieve the high-precision time synchronization of a network system in the condition that a certain node can only obtain the measurement information of clock from a single neighboring node, but cannot obtain it from other nodes. Aiming at this problem, a novel method of high-precision time synchronization in a network system is proposed. In this paper, each clock is regarded as a node in the network system, and based on the definition of different topological structures of a distributed system, the three control algorithms of time synchronization under the following three cases are designed: without a master clock (reference clock), with a master clock (reference clock), and with a fixed communication delay in the network system. And the validity of the designed clock synchronization protocol is proved by both stability analysis and numerical simulation.

  1. Verge and Foliot Clock Escapement: A Simple Dynamical System

    Science.gov (United States)

    Denny, Mark

    2010-01-01

    The earliest mechanical clocks appeared in Europe in the 13th century. From about 1250 CE to 1670 CE, these simple clocks consisted of a weight suspended from a rope or chain that was wrapped around a horizontal axle. To tell time, the weight must fall with a slow uniform speed, but, under the action of gravity alone, such a suspended weight would…

  2. The Chip-Scale Atomic Clock - Recent Development Progress

    Science.gov (United States)

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  3. ClockWork: a Real-Time Feasibility Analysis Tool

    NARCIS (Netherlands)

    Jansen, P.G.; Hanssen, F.T.Y.; Mullender, Sape J.

    ClockWork shows that we can improve the flexibility and efficiency of real-time kernels. We do this by proposing methods for scheduling based on so-called Real-Time Transactions. ClockWork uses Real-Time Transactions which allow scheduling decisions to be taken by the system. A programmer does not

  4. Clock synchronisation experiment in India using symphonie satellite

    Science.gov (United States)

    Somayajulu, Y. V.; Mathur, B. S.; Banerjee, P.; Garg, S. C.; Singh, L.; Sood, P. C.; Tyagi, T. R.; Jain, C. L.; Kumar, K.

    1979-01-01

    A recent clock synchronization experiment between the National Physical Laboratory (NPL), New Delhi and Space Applications Center (SAC), Ahemedabad, in India via geostationary satellite symphonie 2, stationed at 49 E longitude, is reported. A two-way transmission using a microwave transponder considered to provide the greatest precision in synchronization of two remote clocks is described.

  5. Clock transport synchronisation and the dragging of inertial frames

    International Nuclear Information System (INIS)

    Rosenblum, Arnold

    1987-01-01

    It is shown that it is possible, by using the lack of synchronisation of clocks by clock transport synchronisation in circular orbits, to test for the dragging of inertial frames in Einstein's theory of general relativity. Possible experiments are discussed. (author)

  6. The missing dimension: the relevance of people's conception of time.

    Science.gov (United States)

    Norgate, Sarah H; Davies, Nigel; Speed, Chris; Cherrett, Tom; Dickinson, Janet

    2014-02-01

    While a timely conceptual innovation for the digital age, the "map" proposed by Bentley et al. would benefit from strengthening through the inclusion of a non-clock-time perspective. In this way, there could be new hypotheses developed which could be applied and tested relevant to more diverse societies, cultures, and individuals.

  7. Iterative Calibration: A Novel Approach for Calibrating the Molecular Clock Using Complex Geological Events.

    Science.gov (United States)

    Loeza-Quintana, Tzitziki; Adamowicz, Sarah J

    2018-02-01

    During the past 50 years, the molecular clock has become one of the main tools for providing a time scale for the history of life. In the era of robust molecular evolutionary analysis, clock calibration is still one of the most basic steps needing attention. When fossil records are limited, well-dated geological events are the main resource for calibration. However, biogeographic calibrations have often been used in a simplistic manner, for example assuming simultaneous vicariant divergence of multiple sister lineages. Here, we propose a novel iterative calibration approach to define the most appropriate calibration date by seeking congruence between the dates assigned to multiple allopatric divergences and the geological history. Exploring patterns of molecular divergence in 16 trans-Bering sister clades of echinoderms, we demonstrate that the iterative calibration is predominantly advantageous when using complex geological or climatological events-such as the opening/reclosure of the Bering Strait-providing a powerful tool for clock dating that can be applied to other biogeographic calibration systems and further taxa. Using Bayesian analysis, we observed that evolutionary rate variability in the COI-5P gene is generally distributed in a clock-like fashion for Northern echinoderms. The results reveal a large range of genetic divergences, consistent with multiple pulses of trans-Bering migrations. A resulting rate of 2.8% pairwise Kimura-2-parameter sequence divergence per million years is suggested for the COI-5P gene in Northern echinoderms. Given that molecular rates may vary across latitudes and taxa, this study provides a new context for dating the evolutionary history of Arctic marine life.

  8. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    Science.gov (United States)

    Toda, Riko; Okano, Keiko; Takeuchi, Yuki; Yamauchi, Chihiro; Fukushiro, Masato; Takemura, Akihiro; Okano, Toshiyuki

    2014-01-01

    Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  9. Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot.

    Directory of Open Access Journals (Sweden)

    Riko Toda

    Full Text Available Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3 in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus. Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related genes, Period (Per2 and Per4, in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.

  10. A self-interfering clock as a "which path" witness.

    Science.gov (United States)

    Margalit, Yair; Zhou, Zhifan; Machluf, Shimon; Rohrlich, Daniel; Japha, Yonathan; Folman, Ron

    2015-09-11

    In Einstein's general theory of relativity, time depends locally on gravity; in standard quantum theory, time is global-all clocks "tick" uniformly. We demonstrate a new tool for investigating time in the overlap of these two theories: a self-interfering clock, comprising two atomic spin states. We prepare the clock in a spatial superposition of quantum wave packets, which evolve coherently along two paths into a stable interference pattern. If we make the clock wave packets "tick" at different rates, to simulate a gravitational time lag, the clock time along each path yields "which path" information, degrading the pattern's visibility. In contrast, in standard interferometry, time cannot yield "which path" information. This proof-of-principle experiment may have implications for the study of time and general relativity and their impact on fundamental effects such as decoherence and the emergence of a classical world. Copyright © 2015, American Association for the Advancement of Science.

  11. A New Trapped Ion Clock Based on Hg-201(+)

    Science.gov (United States)

    Taghavi-Larigani, S.; Burt, E. A.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-01-01

    There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave clock: Hg-199(+) and Hg-201(+). Virtually all trapped mercury ion clocks to date have used the 199 isotope. We have begun to investigate the viability of a trapped ion clock based on Hg-201(+). We have measured the unperturbed frequency of the (S-2)(sub 1/2) F = 1, m(sub F) = 0 to (S-2)(sub 1/2) F = 2, m(sub F) = 0 clock transition to be 29.9543658211(2) GHz. In this paper we describe initial measurements with Hg-201(+) and new applications to clocks and fundamental physics.

  12. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.

    Science.gov (United States)

    Narasimamurthy, Rajesh; Virshup, David M

    2017-01-01

    An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  13. Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock

    Directory of Open Access Journals (Sweden)

    David M. Virshup

    2017-04-01

    Full Text Available An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep–wake cycle, feeding–fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.

  14. Lattice-induced nonadiabatic frequency shifts in optical lattice clocks

    International Nuclear Information System (INIS)

    Beloy, K.

    2010-01-01

    We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.

  15. Standard Clock in primordial density perturbations and cosmic microwave background

    International Nuclear Information System (INIS)

    Chen, Xingang; Namjoo, Mohammad Hossein

    2014-01-01

    Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, which can be used to directly measure the scale factor of the primordial universe as a function of time a(t), thus discriminating between inflation and alternatives. We have started to search for such signals in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 data. Motivated by this candidate, we construct and compute full Standard Clock models and use the more complete prediction to make more extensive comparison with data. Although this candidate is not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave Background (CMB) and how they can be further tested by future data. We also use it to motivate more detailed theoretical model building

  16. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    Science.gov (United States)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  17. Math Clock: Perangkat Penunjuk Waktu Kreatif untuk Olahraga Otak

    Directory of Open Access Journals (Sweden)

    Galuh Boy Hertantyo

    2014-11-01

    Full Text Available Brain is one of the most vital parts for humans, with the number of brain function that is needed for the body, the brain becomes a very important part of the human body. If there is damage to the brain will certainly cause the performance of the human body will not run properly. Because of that, it’s very important to maintain brain health. There is a way to maintain brain health, for example is by doing brain exercise. Examples of brain exercise is to do simple math calculations or doing brain games like sudoku. Because of that, created a tool that can help the brain to maintain brain exercise. The tool is called math clock. Making math clock tool consists of hardware and software. The hardware consists of RTC as real time data input, ATmega328 as microcontroller and dot matrix 32x16 as a tool to display the output that has been processed by the microcontroller. The software is built using C with Arduino IDE. Math clock will process the data from RTC then processed it, in microcontroller so when output displayed on dot matrix, output will be simple mathematical operation with real time clock data on it. Test results show that, math clock is capable of displaying a simple mathematical calculation operations such as addition, subtraction, multiplication and division. The mathematical operation that display on math clock, appears to be random, so it’s not triggered by same mathematical operation. In math clock the display will change every 20 second, so in 1 minute there are 3 different kinds of mathematical operations. The results of questionnaires of 10 different students, showed 9 out of 10 students said math clock is a tool that easy to use as a clock. Math clock will be alternative for doing brain exercise every day.

  18. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    Science.gov (United States)

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  19. Cosmic time dilation: The clock paradox revisited

    International Nuclear Information System (INIS)

    Tomaschitz, Roman

    2004-01-01

    The relativistic time dilation is reviewed in a cosmological context. We show that a clock or twin paradox does not arise if cosmic time is properly taken into account. The receding galaxy background provides a unique frame of reference, and the proper times of geodesic as well as accelerated observers can be linked to the universal cosmic time parameter. This suggests to compare the proper time differentials of the respective observers by determining their state of motion in the galaxy grid. In this way, each observer can figure out whether his proper time is dilated or contracted relative to any other. In particular one can come to unambiguous conclusions on the aging of uniformly moving observers, without reference to asymmetries in measurement procedures or accelerations they may have undergone

  20. Polarizabilities of the beryllium clock transition

    International Nuclear Information System (INIS)

    Mitroy, J.

    2010-01-01

    The polarizabilities of the three lowest states of the beryllium atom are determined from a large basis configuration interaction calculation. The polarizabilities of the 2s 2 1 S e ground state (37.73a 0 3 ) and the 2s2p 3 P 0 o metastable state (39.04a 0 3 ) are found to be very similar in size and magnitude. This leads to an anomalously small blackbody radiation shift at 300 K of -0.018(4) Hz for the 2s 2 1 S e -2s2p 3 P 0 o clock transition. Magic wavelengths for simultaneous trapping of the ground and metastable states are also computed.

  1. Nuclear Iran: the race against the clock

    International Nuclear Information System (INIS)

    Delpech, Therese; )

    2005-01-01

    The recent election of an ultra-conservative during the Iranian presidential race seems to further distance the idea of a positive conclusion to negotiations with Tehran. Confronted with a dangerous Iranian agenda, the Europeans have been leading negotiations that have had some positive effect so far, but which also pose the risk of a useless prolongation of discussion. A race against the clock has started in August 2005 when Iran resumed a suspended uranium conversion activity in Isfahan. Time has come for the Security Council to take over - what it should have already done in 2003 - in a way that will make Moscow and, even more Beijing, step out of their somewhat ambiguous stances

  2. A molecular clock for autoionization decay

    International Nuclear Information System (INIS)

    Medišauskas, Lukas; Bello, Roger Y; Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando; Morales, Felipe; Plimak, Lev; Smirnova, Olga; Ivanov, Misha Yu

    2017-01-01

    The ultrafast decay of highly excited electronic states is resolved with a molecular clock technique, using the vibrational motion associated to the ionic bound states as a time-reference. We demonstrate the validity of the method in the context of autoionization of the hydrogen molecule, where nearly exact full dimensional ab-initio calculations are available. The vibrationally resolved photoionization spectrum provides a time–energy mapping of the autoionization process into the bound states that is used to fully reconstruct the decay in time. A resolution of a fraction of the vibrational period is achieved. Since no assumptions are made on the underlying coupled electron–nuclear dynamics, the reconstruction procedure can be applied to describe the general problem of the decay of highly excited states in other molecular targets. (paper)

  3. Time-of-Day Effects on Metabolic and Clock-Related Adjustments to Cold

    Directory of Open Access Journals (Sweden)

    Frederico Sander Mansur Machado

    2018-04-01

    Full Text Available BackgroundDaily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle.MethodsMale Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA, feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR.ResultsDuring the light phase (i.e., inactive phase, cold exposure resulted in a slight hyperthermia (p < 0.001. Light phase cold exposure also increased metabolic rate and LA (p < 0.001. In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase (p < 0.001. These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP (p < 0.0001 and REV-ERBα (p < 0.01 in the BAT and CLOCK (p < 0.05, PER2 (p < 0.05, CRY1 (p < 0.05, CRY2 (p < 0.01, and REV-ERBα (p < 0.05 in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure.ConclusionThe time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological

  4. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.

    Directory of Open Access Journals (Sweden)

    Taishi Yoshii

    2009-04-01

    Full Text Available Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 muT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cry(b and cry(OUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system

  5. Optical lattice clock with strontium atoms: a second generation of cold atom clocks

    International Nuclear Information System (INIS)

    Le Targat, R.

    2007-07-01

    Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10 -16 . It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 → J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S 0 → 3P 0 transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 μK. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope 87 Sr, at a level of a few 10 -15 . (author)

  6. Analysis of precision in chemical oscillators: implications for circadian clocks

    International Nuclear Information System (INIS)

    D'Eysmond, Thomas; De Simone, Alessandro; Naef, Felix

    2013-01-01

    Biochemical reaction networks often exhibit spontaneous self-sustained oscillations. An example is the circadian oscillator that lies at the heart of daily rhythms in behavior and physiology in most organisms including humans. While the period of these oscillators evolved so that it resonates with the 24 h daily environmental cycles, the precision of the oscillator (quantified via the Q factor) is another relevant property of these cell-autonomous oscillators. Since this quantity can be measured in individual cells, it is of interest to better understand how this property behaves across mathematical models of these oscillators. Current theoretical schemes for computing the Q factors show limitations for both high-dimensional models and in the vicinity of Hopf bifurcations. Here, we derive low-noise approximations that lead to numerically stable schemes also in high-dimensional models. In addition, we generalize normal form reductions that are appropriate near Hopf bifurcations. Applying our approximations to two models of circadian clocks, we show that while the low-noise regime is faithfully recapitulated, increasing the level of noise leads to species-dependent precision. We emphasize that subcomponents of the oscillator gradually decouple from the core oscillator as noise increases, which allows us to identify the subnetworks responsible for robust rhythms. (paper)

  7. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning

    Science.gov (United States)

    Guo, Jiang; Geng, Jianghui

    2017-12-01

    Significant time-varying inter-frequency clock biases (IFCBs) within GPS observations prevent the application of the legacy L1/L2 ionosphere-free clock products on L5 signals. Conventional approaches overcoming this problem are to estimate L1/L5 ionosphere-free clocks in addition to their L1/L2 counterparts or to compute IFCBs between the L1/L2 and L1/L5 clocks which are later modeled through a harmonic analysis. In contrast, we start from the undifferenced uncombined GNSS model and propose an alternative approach where a second satellite clock parameter dedicated to the L5 signals is estimated along with the legacy L1/L2 clock. In this manner, we do not need to rely on the correlated L1/L2 and L1/L5 ionosphere-free observables which complicates triple-frequency GPS stochastic models, or account for the unfavorable time-varying hardware biases in undifferenced GPS functional models since they can be absorbed by the L5 clocks. An extra advantage over the ionosphere-free model is that external ionosphere constraints can potentially be introduced to improve PPP. With 27 days of triple-frequency GPS data from globally distributed stations, we find that the RMS of the positioning differences between our GPS model and all conventional models is below 1 mm for all east, north and up components, demonstrating the effectiveness of our model in addressing triple-frequency observations and time-varying IFCBs. Moreover, we can combine the L1/L2 and L5 clocks derived from our model to calculate precisely the L1/L5 clocks which in practice only depart from their legacy counterparts by less than 0.006 ns in RMS. Our triple-frequency GPS model proves convenient and efficient in combating time-varying IFCBs and can be generalized to more than three frequency signals for satellite clock determination.

  8. Toward a High-Stability Coherent Population Trapping Cs Vapor-Cell Atomic Clock Using Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Abdel Hafiz, Moustafa; Coget, Grégoire; Petersen, Michael; Rocher, Cyrus; Guérandel, Stéphane; Zanon-Willette, Thomas; de Clercq, Emeric; Boudot, Rodolphe

    2018-06-01

    Vapor-cell atomic clocks are widely appreciated for their excellent short-term fractional frequency stability and their compactness. However, they are known to suffer on medium and long time scales from significant frequency instabilities, generally attributed to light-induced frequency-shift effects. In order to tackle this limitation, we investigate the application of the recently proposed autobalanced Ramsey (ABR) interrogation protocol onto a pulsed hot-vapor Cs vapor-cell clock based on coherent population trapping (CPT). We demonstrate that the ABR protocol, developed initially to probe the one-photon resonance of quantum optical clocks, can be successfully applied to a two-photon CPT resonance. The applied method, based on the alternation of two successive Ramsey-CPT sequences with unequal free-evolution times and the subsequent management of two interconnected phase and frequency servo loops, is found to allow a relevant reduction of the clock-frequency sensitivity to laser-power variations. This original ABR-CPT approach, combined with the implementation of advanced electronics laser-power stabilization systems, yields the demonstration of a CPT-based Cs vapor-cell clock with a short-term fractional frequency stability at the level of 3.1×10 -13τ-1 /2 , averaging down to the level of 6 ×10-15 at 2000-s integration time. These encouraging performances demonstrate that the use of the ABR interrogation protocol is a promising option towards the development of high-stability CPT-based frequency standards. Such clocks could be attractive candidates in numerous applications including next-generation satellite-based navigation systems, secure communications, instrumentation, or defense systems.

  9. Sleep quality and diurnal preference in a sample of young adults: associations with 5HTTLPR, PER3, and CLOCK 3111.

    Science.gov (United States)

    Barclay, Nicola L; Eley, Thalia C; Mill, Jonathan; Wong, Chloe C Y; Zavos, Helena M S; Archer, Simon N; Gregory, Alice M

    2011-09-01

    Research investigating associations between specific genes and individual differences with regards to the quality and timing of sleep has primarily focussed on serotonin-related and clock genes. However, there are only a few studies of this type and most of those to date have not considered the possibility of gene-environment interaction. Here, we describe associations between sleep quality and diurnal preference and three functional polymorphisms: 5HTTLPR, PERIOD3, and CLOCK 3111. Furthermore, we assessed whether associations between genotypes and sleep phenotypes were moderated by negative life events-a test of gene-environment interaction. DNA from buccal swabs was collected from 947 individuals [mean age = 20.3 years (SD = 1.77), age range = 18-27 years; 61.8% female] and genotyped for the three polymorphisms. Participants completed the Pittsburgh Sleep Quality Index and the Morningness-Eveningness Questionnaire. There was a significant main effect of 5HTTLPR on sleep quality, indicating that "long-long" homozygotes experienced significantly poorer sleep quality (mean = 6.35, SD = 3.36) than carriers of at least one "short" allele (mean = 5.67, SD = 2.96; β = -0.34, P = 0.005). There were no main effects of 5HTTLPR on diurnal preference; no main effects of PERIOD3 or CLOCK on sleep quality or diurnal preference; and no significant interactions with negative life events. The main effect of the "long" 5HTTLPR allele contradicts previous research, suggesting that perhaps the effects of this gene are heterogeneous in different populations. Failure to replicate previous research in relation to PERIOD3 and CLOCK concurs with previous research suggesting that the effects of these genes are small and may be related to population composition. Copyright © 2011 Wiley-Liss, Inc.

  10. A strontium lattice clock with reduced blackbody radiation shift

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masoudi, Ali Khalas Anfoos

    2016-09-30

    Optical clocks have been quickly moving to the forefront of the frequency standards field due to their high spectral resolution, and therefore the potential high stability and accuracy. The accuracy and stability of the optical clocks are nowadays two orders of magnitude better than microwave Cs clocks, which realize the SI second. Envisioned applications of highly accurate optical clocks are to perform tests of fundamental physics, for example, searching for temporal drifts of the fine structure constant α, violations of the Local Position Invariance (LPI), dark matter and dark energy, or to performance relativistic geodesy. In this work, the uncertainty of a strontium lattice clock, based on the {sup 1}S{sub 0}-{sup 3}P{sub 0} transition in {sup 87}Sr, due to the blackbody radiation (BBR) shift has been reduced to less than 1 x 10{sup -18} by more than one order of magnitude compared to the previous evaluation of the BBR shift uncertainty in this clock. The BBR shift has been reduced by interrogating the atoms in a cryogenic environment. The systematic uncertainty of the cryogenic lattice clock is evaluated to be 1.3 x 10{sup -17} which is dominated by the uncertainty of the AC Stark shift of the lattice laser and the uncertainty contribution of the BBR shift is negligible. Concerning the instability of the clock, the detection noise of the clock has been measured, and a model linking noise and clock instability has been developed. This noise model shows that, in our lattice clock, quantum projection noise is reached if more than 130 atoms are interrogated. By combining the noise model with the degradation due to the Dick effect reflecting the frequency noise of the interrogation laser, the instability of the clock is estimated to be 1.6 x 10{sup -16}/√(τ/s) in regular operation. During this work, several high-accuracy comparisons to other atomic clocks have been performed, including several absolute frequency measurements. The Sr clock transition frequency

  11. Geodesy and metrology with a transportable optical clock

    Science.gov (United States)

    Grotti, Jacopo; Koller, Silvio; Vogt, Stefan; Häfner, Sebastian; Sterr, Uwe; Lisdat, Christian; Denker, Heiner; Voigt, Christian; Timmen, Ludger; Rolland, Antoine; Baynes, Fred N.; Margolis, Helen S.; Zampaolo, Michel; Thoumany, Pierre; Pizzocaro, Marco; Rauf, Benjamin; Bregolin, Filippo; Tampellini, Anna; Barbieri, Piero; Zucco, Massimo; Costanzo, Giovanni A.; Clivati, Cecilia; Levi, Filippo; Calonico, Davide

    2018-05-01

    Optical atomic clocks, due to their unprecedented stability1-3 and uncertainty3-6, are already being used to test physical theories7,8 and herald a revision of the International System of Units9,10. However, to unlock their potential for cross-disciplinary applications such as relativistic geodesy11, a major challenge remains: their transformation from highly specialized instruments restricted to national metrology laboratories into flexible devices deployable in different locations12-14. Here, we report the first field measurement campaign with a transportable 87Sr optical lattice clock12. We use it to determine the gravity potential difference between the middle of a mountain and a location 90 km away, exploiting both local and remote clock comparisons to eliminate potential clock errors. A local comparison with a 171Yb lattice clock15 also serves as an important check on the international consistency of independently developed optical clocks. This campaign demonstrates the exciting prospects for transportable optical clocks.

  12. Isolation and identification of the immune-relevant ribosomal protein L10 (RPL10/QM-like gene) from the large yellow croaker Pseudosciaena crocea (Pisces: Sciaenidae).

    Science.gov (United States)

    Chen, X; Su, Y Q; Wang, J; Liu, M; Niu, S F; Zhong, S P; Qiu, F

    2012-10-15

    In order to investigate the immune role of ribosomal protein L10 (RPL10/QM-like gene) in marine fish, we challenged the large yellow croaker Pseudosciaena (= Larimichthys) crocea, the most important marine fish culture species in China, by injection with a mixture of the bacteria Vibrio harveyi and V. parahaemolyticus (3:1 in volume). Microarray analysis and real-time PCR were performed 24 and 48 h post-challenge to isolate and identify the QM-like gene from the gill P. crocea (designated PcQM). The expression level of the PcQM gene did not changed significantly at 24 h post-challenge, but was significantly downregulated at 48 h post-challenge, suggesting that the gene had an immune-modulatory effect in P. crocea. Full-length PcQM cDNA and genomic sequences were obtained by rapid amplification of cDNA ends (RACE)-PCR. The sequence of the PcQM gene clustered together with those of other QM-like genes from other aquatic organisms, indicating that the QM-like gene is highly conserved in teleosts.

  13. Post-transcriptional control of the mammalian circadian clock: implications for health and disease.

    Science.gov (United States)

    Preußner, Marco; Heyd, Florian

    2016-06-01

    Many aspects of human physiology and behavior display rhythmicity with a period of approximately 24 h. Rhythmic changes are controlled by an endogenous time keeper, the circadian clock, and include sleep-wake cycles, physical and mental performance capability, blood pressure, and body temperature. Consequently, many diseases, such as metabolic, sleep, autoimmune and mental disorders and cancer, are connected to the circadian rhythm. The development of therapies that take circadian biology into account is thus a promising strategy to improve treatments of diverse disorders, ranging from allergic syndromes to cancer. Circadian alteration of body functions and behavior are, at the molecular level, controlled and mediated by widespread changes in gene expression that happen in anticipation of predictably changing requirements during the day. At the core of the molecular clockwork is a well-studied transcription-translation negative feedback loop. However, evidence is emerging that additional post-transcriptional, RNA-based mechanisms are required to maintain proper clock function. Here, we will discuss recent work implicating regulated mRNA stability, translation and alternative splicing in the control of the mammalian circadian clock, and its role in health and disease.

  14. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Foulkes, Nicholas S; Gothilf, Yoav; Appelbaum, Lior

    2013-01-01

    The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  15. Circadian clocks, rhythmic synaptic plasticity and the sleep-wake cycle in zebrafish

    Directory of Open Access Journals (Sweden)

    Idan eElbaz

    2013-02-01

    Full Text Available The circadian clock and homeostatic processes are fundamental mechanisms that regulate sleep. Surprisingly, despite decades of research, we still do not know why we sleep. Intriguing hypotheses suggest that sleep regulates synaptic plasticity and consequently has a beneficial role in learning and memory. However, direct evidence is still limited and the molecular regulatory mechanisms remain unclear. The zebrafish provides a powerful vertebrate model system that enables simple genetic manipulation, imaging of neuronal circuits and synapses in living animals, and the monitoring of behavioral performance during day and night. Thus, the zebrafish has become an attractive model to study circadian and homeostatic processes that regulate sleep. Zebrafish clock- and sleep-related genes have been cloned, neuronal circuits that exhibit circadian rhythms of activity and synaptic plasticity have been studied, and rhythmic behavioral outputs have been characterized. Integration of this data could lead to a better understanding of sleep regulation. Here, we review the progress of circadian clock and sleep studies in zebrafish with special emphasis on the genetic and neuroendocrine mechanisms that regulate rhythms of melatonin secretion, structural synaptic plasticity, locomotor activity and sleep.

  16. Cell cloning-based transcriptome analysis in Rett patients: relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes.

    Science.gov (United States)

    Nectoux, J; Fichou, Y; Rosas-Vargas, H; Cagnard, N; Bahi-Buisson, N; Nusbaum, P; Letourneur, F; Chelly, J; Bienvenu, T

    2010-07-01

    More than 90% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene that encodes the methyl-CpG-binding protein 2, a transcriptional modulator. Because MECP2 is subjected to X chromosome inactivation (XCI), girls with RTT either express the wild-type or mutant allele in each individual cell. To test the consequences of MECP2 mutations resulting from a genome-wide transcriptional dysregulation and to identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we carried out gene expression profiling of clonal populations derived from fibroblast primary cultures expressing exclusively either the wild-type or the mutant MECP2 allele. Clonal cultures were obtained from skin biopsy of three RTT patients carrying either a non-sense or a frameshift MECP2 mutation. For each patient, gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. Firstly, clustering analysis classified the RTT patients according to their genetic background and MECP2 mutation. Secondly, expression profiling by microarray analysis and quantitative RT-PCR indicated four up-regulated genes and five down-regulated genes significantly dysregulated in all our statistical analysis, including excellent potential candidate genes for the understanding of the pathophysiology of this neurodevelopmental disease. Thirdly, chromatin immunoprecipitation analysis confirmed MeCP2 binding to respective CpG islands in three out of four up-regulated candidate genes and sequencing of bisulphite-converted DNA indicated that MeCP2 preferentially binds to methylated-DNA sequences. Most importantly, the finding that at least two of these genes (BMCC1 and RNF182) were shown to be involved in cell survival and/or apoptosis may suggest that impaired MeCP2 function could alter the survival of neurons thus compromising brain function without inducing cell death.

  17. A quantum analogy to the classical gravitomagnetic clock effect

    Science.gov (United States)

    Faruque, S. B.

    2018-06-01

    We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.

  18. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage.

    Science.gov (United States)

    Dodd, Antony N; Salathia, Neeraj; Hall, Anthony; Kévei, Eva; Tóth, Réka; Nagy, Ferenc; Hibberd, Julian M; Millar, Andrew J; Webb, Alex A R

    2005-07-22

    Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

  19. High-precision multi-node clock network distribution.

    Science.gov (United States)

    Chen, Xing; Cui, Yifan; Lu, Xing; Ci, Cheng; Zhang, Xuesong; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang

    2017-10-01

    A high precision multi-node clock network for multiple users was built following the precise frequency transmission and time synchronization of 120 km fiber. The network topology adopts a simple star-shaped network structure. The clock signal of a hydrogen maser (synchronized with UTC) was recovered from a 120 km telecommunication fiber link and then was distributed to 4 sub-stations. The fractional frequency instability of all substations is in the level of 10 -15 in a second and the clock offset instability is in sub-ps in root-mean-square average.

  20. Clock synchronization by remote detection of correlated photon pairs

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Caleb; Lamas-Linares, AntIa; Kurtsiefer, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 (Singapore)], E-mail: christian.kurtsiefer@gmail.com

    2009-04-15

    In this study, we present an algorithm to detect the time and frequency differences of independent clocks based on observation of time-correlated photon pairs. This enables remote coincidence identification in entanglement-based quantum key distribution schemes without dedicated coincidence hardware, pulsed sources with a timing structure or very stable reference clocks. We discuss the method for typical operating conditions and show that the requirement for reference clock accuracy can be relaxed by about five orders of magnitude in comparison with previous schemes.