WorldWideScience

Sample records for relevant brain areas

  1. Acetylcholinesterase inhibition in cognition-relevant brain areas of mice treated with a nootropic Amazonian herbal (Marapuama).

    Science.gov (United States)

    Figueiró, M; Ilha, J; Pochmann, D; Porciúncula, L O; Xavier, L L; Achaval, M; Nunes, D S; Elisabetsky, E

    2010-10-01

    The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted. 2010 Elsevier GmbH. All rights reserved.

  2. Natural brain-information interfaces: Recommending information by relevance inferred from human brain signals

    Science.gov (United States)

    Eugster, Manuel J. A.; Ruotsalo, Tuukka; Spapé, Michiel M.; Barral, Oswald; Ravaja, Niklas; Jacucci, Giulio; Kaski, Samuel

    2016-01-01

    Finding relevant information from large document collections such as the World Wide Web is a common task in our daily lives. Estimation of a user’s interest or search intention is necessary to recommend and retrieve relevant information from these collections. We introduce a brain-information interface used for recommending information by relevance inferred directly from brain signals. In experiments, participants were asked to read Wikipedia documents about a selection of topics while their EEG was recorded. Based on the prediction of word relevance, the individual’s search intent was modeled and successfully used for retrieving new relevant documents from the whole English Wikipedia corpus. The results show that the users’ interests toward digital content can be modeled from the brain signals evoked by reading. The introduced brain-relevance paradigm enables the recommendation of information without any explicit user interaction and may be applied across diverse information-intensive applications. PMID:27929077

  3. Relevance of brain lesion location to cognition in relapsing multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Francesca Rossi

    Full Text Available OBJECTIVE: To assess the relationship between cognition and brain white matter (WM lesion distribution and frequency in patients with relapsing-remitting multiple sclerosis (RR MS. METHODS: MRI-based T2 lesion probability map (LPM was used to assess the relevance of brain lesion location for cognitive impairment in a group of 142 consecutive patients with RRMS. Significance of voxelwise analyses was p<0.05, cluster-corrected for multiple comparisons. The Rao Brief Repeatable Battery was administered at the time of brain MRI to categorize the MS population into cognitively preserved (CP and cognitively impaired (CI. RESULTS: Out of 142 RRMS, 106 were classified as CP and 36 as CI. Although the CI group had greater WM lesion volume than the CP group (p = 0.001, T2 lesions tended to be less widespread across the WM. The peak of lesion frequency was almost twice higher in CI (61% in the forceps major than in CP patients (37% in the posterior corona radiata. The voxelwise analysis confirmed that lesion frequency was higher in CI than in CP patients with significant bilateral clusters in the forceps major and in the splenium of the corpus callosum (p<0.05, corrected. Low scores of the Symbol Digit Modalities Test correlated with higher lesion frequency in these WM regions. CONCLUSIONS: Overall these results suggest that in MS patients, areas relevant for cognition lie mostly in the commissural fiber tracts. This supports the notion of a functional (multiple disconnection between grey matter structures, secondary to damage located in specific WM areas, as one of the most important mechanisms leading to cognitive impairment in MS.

  4. Brodmann area 12: an historical puzzle relevant to FTLD.

    Science.gov (United States)

    Kawamura, M; Miller, M W; Ichikawa, H; Ishihara, K; Sugimoto, A

    2011-05-03

    Brodmann brain maps, assembled in 1909, are still in use, but understanding of their animal-human homology is uncertain. Furthermore, in 1909, Brodmann did not identify human area 12 (BA12), a location now important to understanding of frontotemporal lobar degeneration (FTLD). We re-examined Brodmann's areas, both animal and human, in his 1909 monograph and other literature, both historical and contemporary, and projected BA12 onto the medial surface of a fixed human brain to show its location. We found Brodmann did identify human BA12 in later maps (1910 and 1914), but that his brain areas, contrary to his own aims as a comparative anatomist, are now used as physiologic loci in human brain. Because of its current link with frontotemporal dementia, BA12's transition from animal (1909) to human (1910 and 1914) is not only an historical puzzle. It impacts how Brodmann's areas, based on comparative animal-human cytoarchitecture, are widely used in current research as functional loci in human brain.

  5. Towards brain-activity-controlled information retrieval: Decoding image relevance from MEG signals.

    Science.gov (United States)

    Kauppi, Jukka-Pekka; Kandemir, Melih; Saarinen, Veli-Matti; Hirvenkari, Lotta; Parkkonen, Lauri; Klami, Arto; Hari, Riitta; Kaski, Samuel

    2015-05-15

    We hypothesize that brain activity can be used to control future information retrieval systems. To this end, we conducted a feasibility study on predicting the relevance of visual objects from brain activity. We analyze both magnetoencephalographic (MEG) and gaze signals from nine subjects who were viewing image collages, a subset of which was relevant to a predetermined task. We report three findings: i) the relevance of an image a subject looks at can be decoded from MEG signals with performance significantly better than chance, ii) fusion of gaze-based and MEG-based classifiers significantly improves the prediction performance compared to using either signal alone, and iii) non-linear classification of the MEG signals using Gaussian process classifiers outperforms linear classification. These findings break new ground for building brain-activity-based interactive image retrieval systems, as well as for systems utilizing feedback both from brain activity and eye movements. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Inducing task-relevant responses to speech in the sleeping brain.

    Science.gov (United States)

    Kouider, Sid; Andrillon, Thomas; Barbosa, Leonardo S; Goupil, Louise; Bekinschtein, Tristan A

    2014-09-22

    Falling asleep leads to a loss of sensory awareness and to the inability to interact with the environment [1]. While this was traditionally thought as a consequence of the brain shutting down to external inputs, it is now acknowledged that incoming stimuli can still be processed, at least to some extent, during sleep [2]. For instance, sleeping participants can create novel sensory associations between tones and odors [3] or reactivate existing semantic associations, as evidenced by event-related potentials [4-7]. Yet, the extent to which the brain continues to process external stimuli remains largely unknown. In particular, it remains unclear whether sensory information can be processed in a flexible and task-dependent manner by the sleeping brain, all the way up to the preparation of relevant actions. Here, using semantic categorization and lexical decision tasks, we studied task-relevant responses triggered by spoken stimuli in the sleeping brain. Awake participants classified words as either animals or objects (experiment 1) or as either words or pseudowords (experiment 2) by pressing a button with their right or left hand, while transitioning toward sleep. The lateralized readiness potential (LRP), an electrophysiological index of response preparation, revealed that task-specific preparatory responses are preserved during sleep. These findings demonstrate that despite the absence of awareness and behavioral responsiveness, sleepers can still extract task-relevant information from external stimuli and covertly prepare for appropriate motor responses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    Directory of Open Access Journals (Sweden)

    Andres M. Alvarez-Meza

    2017-10-01

    Full Text Available We introduce Enhanced Kernel-based Relevance Analysis (EKRA that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand.

  8. Uni- and Multisensory Brain Areas are Synchronised across Spectators When Watching Unedited Dance Recordings

    Directory of Open Access Journals (Sweden)

    Corinne Jola

    2013-06-01

    Full Text Available The superior temporal sulcus (STS and gyrus (STG are commonly identified to be functionally relevant for multisensory integration of audiovisual (AV stimuli. However, most neuroimaging studies on AV integration used stimuli of short duration in explicit evaluative tasks. Importantly though, many of our AV experiences are of a long duration and ambiguous. It is unclear if the enhanced activity in audio, visual, and AV brain areas would also be synchronised over time across subjects when they are exposed to such multisensory stimuli. We used intersubject correlation to investigate which brain areas are synchronised across novices for uni- and multisensory versions of a 6-min 26-s recording of an unfamiliar, unedited Indian dance recording (Bharatanatyam. In Bharatanatyam, music and dance are choreographed together in a highly intermodal-dependent manner. Activity in the middle and posterior STG was significantly correlated between subjects and showed also significant enhancement for AV integration when the functional magnetic resonance signals were contrasted against each other using a general linear model conjunction analysis. These results extend previous studies by showing an intermediate step of synchronisation for novices: while there was a consensus across subjects' brain activity in areas relevant for unisensory processing and AV integration of related audio and visual stimuli, we found no evidence for synchronisation of higher level cognitive processes, suggesting these were idiosyncratic.

  9. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    Science.gov (United States)

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in

  10. The brain's default network: anatomy, function, and relevance to disease.

    Science.gov (United States)

    Buckner, Randy L; Andrews-Hanna, Jessica R; Schacter, Daniel L

    2008-03-01

    Thirty years of brain imaging research has converged to define the brain's default network-a novel and only recently appreciated brain system that participates in internal modes of cognition. Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment. Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system. Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others. Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems. The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation. The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations. These two subsystems converge on important nodes of integration including the posterior cingulate cortex. The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world. We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.

  11. Alterations of whole-brain cortical area and thickness in mild cognitive impairment and Alzheimer's disease.

    Science.gov (United States)

    Li, Chuanming; Wang, Jian; Gui, Li; Zheng, Jian; Liu, Chen; Du, Hanjian

    2011-01-01

    Gray matter volume and density of several brain regions, determined by magnetic resonance imaging (MRI), are decreased in Alzheimer's disease (AD). Animal studies have indicated that changes in cortical area size is relevant to thinking and behavior, but alterations of cortical area and thickness in the brains of individuals with AD or its likely precursor, mild cognitive impairment (MCI), have not been reported. In this study, 25 MCI subjects, 30 AD subjects, and 30 age-matched normal controls were recruited for brain MRI scans and Functional Activities Questionnaire (FAQ) assessments. Based on the model using FreeSurfer software, two brain lobes were divided into various regions according to the Desikan-Killiany atlas and the cortical area and thickness of every region was compared and analyzed. We found a significant increase in cortical area of several regions in the frontal and temporal cortices, which correlated negatively with MMSE scores, and a significant decrease in cortical area of several regions in the parietal cortex and the cingulate gyrus in AD subjects. Increased cortical area was also seen in some regions of the frontal and temporal cortices in MCI subjects, whereas the cortical thickness of the same regions was decreased. Our observations suggest characteristic differences of the cortical area and thickness in MCI, AD, and normal control subjects, and these changes may help diagnose both MCI and AD.

  12. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  13. Clinical Relevance of Discourse Characteristics after Right Hemisphere Brain Damage

    Science.gov (United States)

    Blake, Margaret Lehman

    2006-01-01

    Purpose: Discourse characteristics of adults with right hemisphere brain damage are similar to those reported for healthy older adults, prompting the question of whether changes are due to neurological lesions or normal aging processes. The clinical relevance of potential differences across groups was examined through ratings by speech-language…

  14. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  15. Dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

    Science.gov (United States)

    Kujala, Miiamaaria V; Kujala, Jan; Carlson, Synnöve; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facing toward each other from humans facing away, and in dog experts, a distinction also occurred for dogs facing toward vs. away in a bilateral area extending from the pSTS to the inferior temporo-occipital cortex: the dissociation of dog behavior was significantly stronger in expert than control group. Furthermore, the control group had stronger pSTS responses to humans than dogs facing toward a conspecific, whereas in dog experts, the responses were of similar magnitude. These findings suggest that dog experts' brains distinguish socially relevant body postures similarly in dogs and humans.

  16. Brain volumetry and self-regulation of brain activity relevant for neurofeedback.

    Science.gov (United States)

    Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G

    2015-09-01

    Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dynamic functional brain connectivity for face perception

    NARCIS (Netherlands)

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive

  18. Reality = relevance? Insights from spontaneous modulations of the brain's default network when telling apart reality from fiction.

    Directory of Open Access Journals (Sweden)

    Anna Abraham

    Full Text Available BACKGROUND: Although human beings regularly experience fictional worlds through activities such as reading novels and watching movies, little is known about what mechanisms underlie our implicit knowledge of the distinction between reality and fiction. The first neuroimaging study to address this issue revealed that the mere exposure to contexts involving real entities compared to fictional characters led to engagement of regions in the anterior medial prefrontal and posterior cingulate cortices (amPFC, PCC. As these core regions of the brain's default network are involved during self-referential processing and autobiographical memory retrieval, it was hypothesized that real entities may be conceptually coded as being more personally relevant to us than fictional characters. METHODOLOGY/PRINCIPAL FINDINGS: In the present functional magnetic resonance imaging (fMRI study, we directly test the hypothesis that entity-associated personal relevance is the critical factor underlying the differential engagement of these brain regions by comparing the brain's response when processing contexts involving family or friends (high relevance, famous people (medium relevance, or fictional characters (low relevance. In line with predictions, a gradient pattern of activation was observed such that higher entity-associated personal relevance was associated with stronger activation in the amPFC and the PCC. CONCLUSIONS/SIGNIFICANCE: The results of the study have several important implications. Firstly, they provide informed grounds for characterizing the dynamics of reality-fiction distinction. Secondly, they provide further insights into the functions of the amPFC and the PCC. Thirdly, in view of the current debate related to the functional relevance and specificity of brain's default network, they reveal a novel approach by which the functions of this network can be further explored.

  19. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation.

    Science.gov (United States)

    Mavridis, Ioannis N

    2017-12-11

    The concept of stereotactically standard areas (SSAs) within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  20. Stereotactically Standard Areas: Applied Mathematics in the Service of Brain Targeting in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Ioannis N. Mavridis

    2017-12-01

    Full Text Available The concept of stereotactically standard areas (SSAs within human brain nuclei belongs to the knowledge of the modern field of stereotactic brain microanatomy. These are areas resisting the individual variability of the nuclear location in stereotactic space. This paper summarizes the current knowledge regarding SSAs. A mathematical formula of SSAs was recently invented, allowing for their robust, reproducible, and accurate application to laboratory studies and clinical practice. Thus, SSAs open new doors for the application of stereotactic microanatomy to highly accurate brain targeting, which is mainly useful for minimally invasive neurosurgical procedures, such as deep brain stimulation.

  1. Self-identification with another person's face: the time relevant role of multimodal brain areas in the enfacement illusion.

    Science.gov (United States)

    Bufalari, Ilaria; Porciello, Giuseppina; Sperduti, Marco; Minio-Paluello, Ilaria

    2015-04-01

    The illusory subjective experience of looking at one's own face while in fact looking at another person's face can surprisingly be induced by simple synchronized visuotactile stimulation of the two faces. A recent study (Apps MA, Tajadura-Jiménez A, Sereno M, Blanke O, Tsakiris M. Cereb Cortex. First published August 20, 2013; doi:10.1093/cercor/bht199) investigated for the first time the role of visual unimodal and temporoparietal multimodal brain areas in the enfacement illusion and suggested a model in which multisensory mechanisms are crucial to construct and update self-face representation. Copyright © 2015 the American Physiological Society.

  2. Reality = Relevance? Insights from Spontaneous Modulations of the Brain's Default Network when Telling Apart Reality from Fiction

    Science.gov (United States)

    Abraham, Anna; von Cramon, D. Yves

    2009-01-01

    Background Although human beings regularly experience fictional worlds through activities such as reading novels and watching movies, little is known about what mechanisms underlie our implicit knowledge of the distinction between reality and fiction. The first neuroimaging study to address this issue revealed that the mere exposure to contexts involving real entities compared to fictional characters led to engagement of regions in the anterior medial prefrontal and posterior cingulate cortices (amPFC, PCC). As these core regions of the brain's default network are involved during self-referential processing and autobiographical memory retrieval, it was hypothesized that real entities may be conceptually coded as being more personally relevant to us than fictional characters. Methodology/Principal Findings In the present functional magnetic resonance imaging (fMRI) study, we directly test the hypothesis that entity-associated personal relevance is the critical factor underlying the differential engagement of these brain regions by comparing the brain's response when processing contexts involving family or friends (high relevance), famous people (medium relevance), or fictional characters (low relevance). In line with predictions, a gradient pattern of activation was observed such that higher entity-associated personal relevance was associated with stronger activation in the amPFC and the PCC. Conclusions/Significance The results of the study have several important implications. Firstly, they provide informed grounds for characterizing the dynamics of reality-fiction distinction. Secondly, they provide further insights into the functions of the amPFC and the PCC. Thirdly, in view of the current debate related to the functional relevance and specificity of brain's default network, they reveal a novel approach by which the functions of this network can be further explored. PMID:19277108

  3. Food-Related Odors Activate Dopaminergic Brain Areas

    Directory of Open Access Journals (Sweden)

    Agnieszka Sorokowska

    2017-12-01

    Full Text Available Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving carefully preselected odors of edible and non-edible substances. We compared activations generated by three food and three non-food odorants matching in terms of intensity, pleasantness and trigeminal qualities. We observed that for our mixed sample of 30 hungry and satiated participants, food odors generated significantly higher activation in the anterior cingulate cortex (right and left, insula (right, and putamen (right than non-food odors. Among hungry subjects, regardless of the odor type, we found significant activation in the ventral tegmental area in response to olfactory stimulation. As our stimuli were matched in terms of various perceptual qualities, this result suggests that edibility of an odor source indeed generates specific activation in dopaminergic brain areas.

  4. Food-Related Odors Activate Dopaminergic Brain Areas

    OpenAIRE

    Agnieszka Sorokowska; Agnieszka Sorokowska; Katherina Schoen; Cornelia Hummel; Pengfei Han; Jonathan Warr; Thomas Hummel

    2017-01-01

    Food-associated cues of different sensory categories have often been shown to be a potent elicitor of cerebral activity in brain reward circuits. Smells influence and modify the hedonic qualities of eating experience, and in contrast to smells not associated with food, perception of food-associated odors may activate dopaminergic brain areas. In this study, we aimed to verify previous findings related to the rewarding value of food-associated odors by means of an fMRI design involving careful...

  5. Brain volume reduction after whole-brain radiotherapy: quantification and prognostic relevance.

    Science.gov (United States)

    Hoffmann, Christian; Distel, Luitpold; Knippen, Stefan; Gryc, Thomas; Schmidt, Manuel Alexander; Fietkau, Rainer; Putz, Florian

    2018-01-22

    Recent studies have questioned the value of adding whole-brain radiotherapy (WBRT) to stereotactic radiosurgery (SRS) for brain metastasis treatment. Neurotoxicity, including radiation-induced brain volume reduction, could be one reason why not all patients benefit from the addition of WBRT. In this study, we quantified brain volume reduction after WBRT and assessed its prognostic significance. Brain volumes of 91 patients with cerebral metastases were measured during a 150-day period after commencing WBRT and were compared with their pretreatment volumes. The average daily relative change in brain volume of each patient, referred to as the "brain volume reduction rate," was calculated. Univariate and multivariate Cox regression analyses were performed to assess the prognostic significance of the brain volume reduction rate, as well as of 3 treatment-related and 9 pretreatment factors. A one-way analysis of variance was used to compare the brain volume reduction rate across recursive partitioning analysis (RPA) classes. On multivariate Cox regression analysis, the brain volume reduction rate was a significant predictor of overall survival after WBRT (P < 0.001), as well as the number of brain metastases (P = 0.002) and age (P = 0.008). Patients with a relatively favorable prognosis (RPA classes 1 and 2) experienced significantly less brain volume decrease after WBRT than patients with a poor prognosis (RPA class 3) (P = 0.001). There was no significant correlation between delivered radiation dose and brain volume reduction rate (P = 0.147). In this retrospective study, a smaller decrease in brain volume after WBRT was an independent predictor of longer overall survival. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. How Localized are Language Brain Areas? A Review of Brodmann Areas Involvement in Oral Language.

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2016-02-01

    The interest in understanding how language is "localized" in the brain has existed for centuries. Departing from seven meta-analytic studies of functional magnetic resonance imaging activity during the performance of different language activities, it is proposed here that there are two different language networks in the brain: first, a language reception/understanding system, including a "core Wernicke's area" involved in word recognition (BA21, BA22, BA41, and BA42), and a fringe or peripheral area ("extended Wernicke's area:" BA20, BA37, BA38, BA39, and BA40) involved in language associations (associating words with other information); second, a language production system ("Broca's complex:" BA44, BA45, and also BA46, BA47, partially BA6-mainly its mesial supplementary motor area-and extending toward the basal ganglia and the thalamus). This paper additionally proposes that the insula (BA13) plays a certain coordinating role in interconnecting these two brain language systems. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Imaging of brain function based on the analysis of functional ...

    African Journals Online (AJOL)

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 ...

  8. Automatic extraction analysis of the anatomical functional area for normal brain 18F-FDG PET imaging

    International Nuclear Information System (INIS)

    Guo Wanhua; Jiang Xufeng; Zhang Liying; Lu Zhongwei; Li Peiyong; Zhu Chengmo; Zhang Jiange; Pan Jiapu

    2003-01-01

    Using self-designed automatic extraction software of brain functional area, the grey scale distribution of 18 F-FDG imaging and the relationship between the 18 F-FDG accumulation of brain anatomic function area and the 18 F-FDG injected dose, the level of glucose, the age, etc., were studied. According to the Talairach coordinate system, after rotation, drift and plastic deformation, the 18 F-FDG PET imaging was registered into the Talairach coordinate atlas, and then the average gray value scale ratios between individual brain anatomic functional area and whole brain area was calculated. Further more the statistics of the relationship between the 18 F-FDG accumulation of every brain anatomic function area and the 18 F-FDG injected dose, the level of glucose and the age were tested by using multiple stepwise regression model. After images' registration, smoothing and extraction, main cerebral cortex of the 18 F-FDG PET brain imaging can be successfully localized and extracted, such as frontal lobe, parietal lobe, occipital lobe, temporal lobe, cerebellum, brain ventricle, thalamus and hippocampus. The average ratios to the inner reference of every brain anatomic functional area were 1.01 ± 0.15. By multiple stepwise regression with the exception of thalamus and hippocampus, the grey scale of all the brain functional area was negatively correlated to the ages, but with no correlation to blood sugar and dose in all areas. To the 18 F-FDG PET imaging, the brain functional area extraction program could automatically delineate most of the cerebral cortical area, and also successfully reflect the brain blood and metabolic study, but extraction of the more detailed area needs further investigation

  9. Determination of hyperactive areas of Cortex Cerebri with using brain SPECT study

    International Nuclear Information System (INIS)

    Stepien, A.; Pawlus, J.; Wasilewska-Radwanska, M.

    2004-01-01

    The aim of this study was the assessment of the ability to apply of SPECT technique to determination of hyperactive areas of cortex cerebri. Analysis included 50 patients (mean aged 44 - 58). Brain SPECT scanning was performed after 1 hour after the intravenous injection of 740 MBq of ethylcisteinate dimmer labeled 99m Technetium (99mTc-ECD) with the use one-head gamma camera with a low-energy, ultra-high resolution collimator. Qualitative and quantitative analysis was performed using specialised software. In 20 cases normal biodistribution of the radiotracer was observed (hyperactive areas in cerebellum and occiput). In patients with psychiatric and neurological disturbances hyperactive areas were visualized in 25 cases in temporal lobes, in 4 cases in parietal lobes and in 1 patient in frontal area and basal ganglia. It is concluded that a number of factors limit the wide-scale use of SPECT, including the sophistication of imaging equipment (single-head cameras are inferior to the newer multihead units) and the experience of the physicians interpreting the scans and utilizing the data. In many diseases physicians do not know which areas of the patient's brain according disorders. Brain SPECT study can be a very useful tool to evaluation of hyperactive areas of cortex cerebri. This technique visualization of cortex cerebri completes standard analysis of disorders of brain activity

  10. Low-grade astrocytoma: surgical outcomes in eloquent versus non-eloquent brain areas

    Directory of Open Access Journals (Sweden)

    André de Macedo Bianco

    2013-01-01

    Full Text Available A retrospective study of 81 patients with low-grade astrocytoma (LGA comparing the efficacy of aggressive versus less aggressive surgery in eloquent and non-eloquent brain areas was conducted. Extent of surgical resection was analyzed to assess overall survival (OS and progression- free survival (PFS. Degree of tumor resection was classified as gross total resection (GTR, subtotal resection (STR or biopsy. GTR, STR and biopsy in patients with tumors in non-eloquent areas were performed in 31, 48 and 21% subjects, whereas in patients with tumors in eloquent areas resections were 22.5, 35 and 42.5%. Overall survival was 4.7 and 1.9 years in patients with tumors in non-eloquent brain areas submitted to GTR/STR and biopsy (p=0.013, whereas overall survival among patients with tumors in eloquent area was 4.5 and 2.1 years (p=0.33. Improved outcome for adult patients with LGA is predicted by more aggressive surgery in both eloquent and non-eloquent brain areas.

  11. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    International Nuclear Information System (INIS)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon; Seo, Hyung Suk

    2009-01-01

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p 2 , 715.4 ± 107 cm3) were significantly smaller than in MCI patients (595.9 ± 108, 844.1 ± 85) and the HCs (563.2 ± 75, 818.9 ± 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  12. Loud Noise Exposure Produces DNA, Neurotransmitter and Morphological Damage within Specific Brain Areas

    Directory of Open Access Journals (Sweden)

    Giada Frenzilli

    2017-06-01

    Full Text Available Exposure to loud noise is a major environmental threat to public health. Loud noise exposure, apart from affecting the inner ear, is deleterious for cardiovascular, endocrine and nervous systems and it is associated with neuropsychiatric disorders. In this study we investigated DNA, neurotransmitters and immune-histochemical alterations induced by exposure to loud noise in three major brain areas (cerebellum, hippocampus, striatum of Wistar rats. Rats were exposed to loud noise (100 dBA for 12 h. The effects of noise on DNA integrity in all three brain areas were evaluated by using Comet assay. In parallel studies, brain monoamine levels and morphology of nigrostriatal pathways, hippocampus and cerebellum were analyzed at different time intervals (24 h and 7 days after noise exposure. Loud noise produced a sudden increase in DNA damage in all the brain areas under investigation. Monoamine levels detected at 7 days following exposure were differently affected depending on the specific brain area. Namely, striatal but not hippocampal dopamine (DA significantly decreased, whereas hippocampal and cerebellar noradrenaline (NA was significantly reduced. This is in line with pathological findings within striatum and hippocampus consisting of a decrease in striatal tyrosine hydroxylase (TH combined with increased Bax and glial fibrillary acidic protein (GFAP. Loud noise exposure lasting 12 h causes immediate DNA, and long-lasting neurotransmitter and immune-histochemical alterations within specific brain areas of the rat. These alterations may suggest an anatomical and functional link to explain the neurobiology of diseases which prevail in human subjects exposed to environmental noise.

  13. The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.

    Science.gov (United States)

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Study of perifocal low-density area in metastatic brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, R; Okada, K; Hiratsuka, H; Inaba, Y [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Tsuyumu, M

    1980-04-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF.

  15. The Corpus Callosum Area and Brain Volume in Alzheimer's Disease, Mild Cognitive Impairment and Healthy Controls

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee Seok; Kim, Kwang Ki; Yoon, Yup Yoon [Dongguk University Medical Center, Goyang (Korea, Republic of); Seo, Hyung Suk [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2009-07-15

    To compare the corpus callosum (CC) area and brain volume among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI) and healthy controls (HC). To evaluate the relationship of CC area and brain volume in 111 subjects (M:F = 48:63; mean age, 56.9 years) without memory disturbance and 28 subjects (11:17; 66.7years) with memory disturbance. The 11 AD (3:8; 75.7 years), 17 MCI (8:9; 60.9 years) and 28 selected HC (11:17; 66.4 years) patients were investigated for comparison of their CC area and brain volume. A good positive linear correlation was found between CC area and brain volume in subjects without and with memory disturbance (r = 0.64 and 0.66, respectively, p < 0.01). The CC area and brain volume in AD patients (498.7 +- 72 mm{sup 2}, 715.4 +- 107 cm3) were significantly smaller than in MCI patients (595.9 +- 108, 844.1 +- 85) and the HCs (563.2 +- 75, 818.9 +- 109) (p < 0.05). The CC area and brain volume were not significantly different between MCI patients and the HCs. The CC area was significantly correlated with brain volume. Both CC area and brain volume were significantly smaller in the AD patients

  16. [Study on corresponding areas the liver and lung channels in brain with fMRI].

    Science.gov (United States)

    Xu, Fang-Ming; Xie, Peng; Lü, Fa-Jin; Mou, Jun; Li, Yong-Mei; Zhao, Jian-Nong; Chen, Wei-Juan; Gong, Qi-Yong; Zhao, Li-Bo; Liu, Qing-Jun; Shen, Lin; Zhai, Hong; Yang, De-Yu

    2007-10-01

    To explore distribution of the Liver and Lung Channels in the brain so as to provide imaging basis for construction of channel theory in the brain. Sixty healthy student volunteers were randomly divided into a Liver Channel group (I) and a Lung Channel group (II), and the each group was further divided into five subgroups with 6 volunteers in each subgroup, based on five-shu-point principles which, were Dadun (LR 1, I 1), Xingjian (LR 2, I 2), Taichong (LR 3, I 3), Zhongfeng (LR 4, I 4), Ququan (LR 8, I 5), Shaoshang (LU 11, II 1), Yuji (LU 10, II 2), Taiyuan (LU 9, II 3), Jingqu (LU 8, II 4), and Chize (LU 5, II 5), respectively. In order to observe the brain activating patterns during acupuncture at the different acupoints, functional magnetic resonance imaging (fMRI) technique was adopted. All image data were then analyzed with SPM 2 software. The statistical parameter gram was composed of the pixel P areas, and the commonly activated area of five-shu-point of each channel was considered as the brain distribution of the Liver and Lung Channels. The common areas activated by the five-shu-points of the Liver Channel were homolateral Brodmann area (BA) 34, BA 47, red nucleus, contralateral BA 19, BA 30, BA 39, the superior parietal lobule, cerebellum decline, and bilateral BA 3 and culmen. The common areas activated by the five-shu-points of the Lung Channels included homolateral BA 2, BA 18, BA 35, and contralateral BA 9 and substania nigra. There are relatively specific corresponding brain areas for the Liver and Lung Channels, indicating that there is possible relatively specific connection between channels and the brain.

  17. Eloquent area in the gamma knife treatment of arteriovenous malformations of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuya; Kida, Yoshihisa; Tanaka, Takayuki; Yoshida, Kazuo; Mori, Yoshimasa; Ohsuga, Koji; Hasegawa, Toshinori; Kondo, Toshiki [Komaki City Hospital, Aichi (Japan)

    1999-06-01

    It has been long since cerebral arteriovenous malformation (AVM) could be cured by gamma radiosurgery. In this study, it has been found that the complete obliteration of AVM by radiosurgery is depended on the factors such as the size of the nidus, the marginal dose, the location and the age of patients. It is also true that higher the marginal dose, higher the obliteration rate and also higher the risk of radiation injury. Therefore the marginal dose has to be limited by the radiosensitivity (tolerance) of surrounding brain, which means the obliteration rate is largely depended on the location of AVM. The definition of the eloquent area of AVM by microsurgery is based upon the anatomical and functional importance of the brain. However, the eloquency in radiosurgery is different in that it depends upon radiosensitivity of the surrounding brain around AVM. From this definition, the most eloquent area by radiosurgery is brain around the optic pathway, followed by cochlear nerve, other cranial nerves, brain stem and basal ganglia-thalamus. (author)

  18. Brain-Based Education: Its Pedagogical Implications and Research Relevance

    Science.gov (United States)

    Laxman, Kumar; Chin, Yap Kueh

    2010-01-01

    The brain, being the organ of learning, must be understood if classrooms are to be places of meaningful learning. Understanding the brain has the potential to alter the foundation of education, transform traditional classrooms to interactive learning environments and promote better instructional approaches amongst teachers. Brain-based education…

  19. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS

    OpenAIRE

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, a...

  20. A study of perifocal low-density area in metastatic brain tumor

    International Nuclear Information System (INIS)

    Suzuki, Ryuta; Okada, Kodai; Hiratsuka, Hideo; Inaba, Yutaka; Tsuyumu, Matsutaira.

    1980-01-01

    It is well known that vasogenic brain edema often develops in brain tumors, head injuries, and inflammatory brain lesions. In order to investigate the development and resolution of vasogenic brain edema, some CT findings of metastatic brain tumors were studied in detail. 20 cases of metastatic brain tumors of the past three years were examined by means of a CT scan. In almost all the cases there was a perifocal low-density area (PFL) in the CT findings. In the tumors which were cystic and/or located in the infratentorial space, PFL was not present or, if present, only slightly so. On the contrary, in the tumors which were nodular and/or in the supratentorial space, PFL was present extensively. In the supratentorial metastasis, PFL seemed to be restricted within the white matter and not to involve the gray matter nor such midline structures as basal ganglia and corpus callosum. Besides, PFL was always in contact with the lateral ventricular wall. These results show that PFL in the metastatic tumors resembles in shape the experimental cold-induced brain edema in cats. PFL is presumed to represent vasogenic brain edema; these findings support the hypothesis that the main mechanism of the resolution of vasogenic brain edema is the drainage of the edema fluid into the ventricular CSF. (author)

  1. The relationship between reproductive state and "sexually" dimorphic brain areas in sexually reproducing and parthenogenetic whiptail lizards.

    Science.gov (United States)

    Wade, J; Crews, D

    1991-07-22

    The anterior hypothalamus-preoptic area and ventromedial hypothalamus are sexually dimorphic in the reproductively active whiptail lizard Cnemidophorus inornatus. The anterior hypothalamus-preoptic area, which is involved in the control of male-typical copulatory behaviors, is larger in males, whereas the ventromedial hypothalamus, which is involved in the control of female-typical receptivity, is larger in females. In the parthenogenetic whiptail lizard C. uniparens, which is a direct descendant of C. inornatus and exhibits both male-like and female-like pseudosexual behaviors, both brain areas are comparable in size to those of female C. inornatus. This study was conducted to determine whether these brain areas change in size in either species or sex during a time of year when these animals are reproductively inactive, or after removal of the gonads. In male C. inornatus both brain areas changed during reproductive inactivity (either seasonally or surgically induced) and became equivalent to the size characteristic of reproductively active female C. inornatus. When corrected for brain size, the anterior hypothalamus-preoptic area was significantly smaller in intact hibernating and castrated males than in intact males from the summer breeding season. Conversely, the ventromedial hypothalamus was significantly larger in intact hibernating and castrated males than in intact males from the summer breeding season. The two brain areas were not significantly different among the groups of female C. inornatus or parthenogenetic C. uniparens. These results suggest that 1) the brain of whiptail lizards may differentiate seasonally and 2) the female state may be a neutral one to which the male brain reverts during reproductive inactivity.

  2. Imaging blood-brain barrier dysfunction as a biomarker for epileptogenesis.

    Science.gov (United States)

    Bar-Klein, Guy; Lublinsky, Svetlana; Kamintsky, Lyn; Noyman, Iris; Veksler, Ronel; Dalipaj, Hotjensa; Senatorov, Vladimir V; Swissa, Evyatar; Rosenbach, Dror; Elazary, Netta; Milikovsky, Dan Z; Milk, Nadav; Kassirer, Michael; Rosman, Yossi; Serlin, Yonatan; Eisenkraft, Arik; Chassidim, Yoash; Parmet, Yisrael; Kaufer, Daniela; Friedman, Alon

    2017-06-01

    A biomarker that will enable the identification of patients at high-risk for developing post-injury epilepsy is critically required. Microvascular pathology and related blood-brain barrier dysfunction and neuroinflammation were shown to be associated with epileptogenesis after injury. Here we used prospective, longitudinal magnetic resonance imaging to quantitatively follow blood-brain barrier pathology in rats following status epilepticus, late electrocorticography to identify epileptic animals and post-mortem immunohistochemistry to confirm blood-brain barrier dysfunction and neuroinflammation. Finally, to test the pharmacodynamic relevance of the proposed biomarker, two anti-epileptogenic interventions were used; isoflurane anaesthesia and losartan. Our results show that early blood-brain barrier pathology in the piriform network is a sensitive and specific predictor (area under the curve of 0.96, P brain barrier pathology as a clinically relevant predictive, diagnostic and pharmaco!dynamics biomarker for acquired epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  4. Area-specific migration and recruitment of new neurons in the adult songbird brain

    DEFF Research Database (Denmark)

    Vellema, Michiel; Van der Linden, Annemie; Gahr, Manfred

    2010-01-01

    sensitive to plastic changes, such as nucleus higher vocal center (HVC) and area X, recruited similar numbers of new neurons as their surrounding brain tissues, employing no specific directional mechanisms. The distribution pattern in and around HVC could best be described by a random displacement model......Neuron recruitment has been implicated in morphological and functional plasticity in the adult brain. Whereas mammals restrict neuron recruitment specifically to two regions of known plasticity, the hippocampus and olfactory bulb, newborn neurons are found throughout the forebrain of adult...... songbirds. In order to study the area-specificity of the widespread proliferation and recruitment in the songbird brain, six adult male canaries received repetitive intraperitoneal injections of the mitotic marker BrdU (5-bromo-2-deoxyuridine) and were sacrificed after 24 hours to study proliferation...

  5. Insulin action in the human brain: evidence from neuroimaging studies.

    Science.gov (United States)

    Kullmann, S; Heni, M; Fritsche, A; Preissl, H

    2015-06-01

    Thus far, little is known about the action of insulin in the human brain. Nonetheless, recent advances in modern neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) or magnetoencephalography (MEG), have made it possible to investigate the action of insulin in the brain in humans, providing new insights into the pathogenesis of brain insulin resistance and obesity. Using MEG, the clinical relevance of the action of insulin in the brain was first identified, linking cerebral insulin resistance with peripheral insulin resistance, genetic predisposition and weight loss success in obese adults. Although MEG is a suitable tool for measuring brain activity mainly in cortical areas, fMRI provides high spatial resolution for cortical as well as subcortical regions. Thus, the action of insulin can be detected within all eating behaviour relevant regions, which include regions deeply located within the brain, such as the hypothalamus, midbrain and brainstem, as well as regions within the striatum. In this review, we outline recent advances in the field of neuroimaging aiming to investigate the action of insulin in the human brain using different routes of insulin administration. fMRI studies have shown a significant insulin-induced attenuation predominantly in the occipital and prefrontal cortical regions and the hypothalamus, successfully localising insulin-sensitive brain regions in healthy, mostly normal-weight individuals. However, further studies are needed to localise brain areas affected by insulin resistance in obese individuals, which is an important prerequisite for selectively targeting brain insulin resistance in obesity. © 2015 British Society for Neuroendocrinology.

  6. Nonspatial intermodal selective attention is mediated by sensory brain brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  7. The Safe Area in the Parieto-Occipital Lobe in the Human Brain: Diffusion Tensor Tractography.

    Science.gov (United States)

    Jang, Sung Ho; Kim, Seong Ho; Kwon, Hyeok Gyu

    2015-06-01

    A recent study reported on the relatively safe area in the frontal lobe for performance of neurological interventions; however, no study on the posterior safe area has been reported. In this study, using diffusion tensor tractography, we attempted to identify the safe area in the parieto-occipital lobe in healthy subjects. A total of 47 healthy subjects were recruited for this study. Eleven neural tracts were reconstructed in and around the parieto-occipital area of the brain using diffusion tensor tractography. The safe area, which is free from any trajectory of 10 neural tracts, was measured anteriorly and medially from the line of the most posterior and lateral margin of the brain at 5 axial levels (from the cerebral cortex to the corona radiata). The anterior boundaries of the safe area in the upper cerebral cortex, lower cerebral cortex, centrum semiovale, upper corona radiata, and lower corona radiata levels were located at 31.0, 32.6, 32.7, 35.1, and 35.2 mm anteriorly from the line of the most posterior margin of the brain, respectively, and the medial boundaries were located at an average of 34.7, 38.1, 39.2, 36.1, and 33.6 mm medially from the line of the most lateral margin of the brain, respectively. According to our findings, the safe area was located in the posterolateral portion of the parieto-occipital lobe in the shape of a triangle. However, we found no safe area in the deep white matter around the lateral ventricle. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults

    Directory of Open Access Journals (Sweden)

    Sven C. Mueller

    2017-08-01

    Full Text Available In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12–16 and 28 adults (25–35 completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition or judged the gender (task-irrelevant condition. Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back. By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions.

  9. Comparison of Two Old Phytochemicals versus Two Newly Researched Plant-Derived Compounds: Potential for Brain and Other Relevant Ailments

    Directory of Open Access Journals (Sweden)

    Chun-Mei Wang

    2014-01-01

    Full Text Available Among hundreds of formulae of Chinese herbal prescriptions and recently extracted active components from the herbs, some of which had demonstrated their functions on nervous system. For the last decade or more, Gingko biloba and Polygala tenuifolia were widely studied for their beneficial effects against damage to the brain. Two compounds extracted from Apium graveolens and Rhizoma coptidis, butylphthalide and berberine, respectively, received much attention recently as potential neuroprotective agents. In this review, the two traditionally used herbs and the two relatively new compounds will be discussed with regard to their potential advantages in alleviating brain and other relevant ailments.

  10. [Brodmann Areas 17, 18, and 19 in the Human Brain: An Overview].

    Science.gov (United States)

    Kawachi, Juro

    2017-04-01

    Brodmann areas 17, 18, and 19 in the human brain are visual cortices of the occipital lobe. Each area has its own retinotopic representations, particulary area 19, which has many small retinotopic areas representing half or all of the contralateral visual field, several functional areas, and nine cytoarchitectonic areas. Several fasciculi are known as occipital fiber connections, but their precise endpoints are not clear. Lesions in the visual cortices cause several visual disorders including visual field defect, visual hallucinations, metamorphopsia, and different kinds of visual agnosia.

  11. A split microdrive for simultaneous multi-electrode recordings from two brain areas in awake small animals.

    NARCIS (Netherlands)

    Lansink, C.S.; Bakker, M.; Buster, W.; Lankelma, J.; van der Blom, R.; Westdorp, R.; Joosten, R.N.J.M.A.; Mc.Naughton, B.L.; Pennartz, C.M.A.

    2007-01-01

    Complex cognitive operations such as memory formation and decision-making are thought to be mediated not by single, isolated brain structures but by multiple, connected brain areas. To facilitate studies on the neural communication between connected brain structures, we developed a multi-electrode

  12. Transport and metabolism at blood-brain interfaces and in neural cells: relevance to bilirubin-induced encephalopathy

    Directory of Open Access Journals (Sweden)

    Silvia eGazzin

    2012-05-01

    Full Text Available Bilirubin, the end-product of heme catabolism, circulates in non pathological plasma mostly as a protein-bound species. When bilirubin concentration builds up, the free fraction of the molecule increases. Unbound bilirubin then diffuses across blood-brain interfaces into the brain, where it accumulates and exerts neurotoxic effects. In this classical view of bilirubin neurotoxicity, blood-brain interfaces act merely as structural barriers impeding the penetration of the pigment-bound carrier protein, and neural cells are considered as passive targets of its toxicity. Yet, the role of blood-brain interfaces in the occurrence of bilirubin encephalopathy appears more complex than being simple barriers to the diffusion of bilirubin, and neural cells such as astrocytes and neurons can play an active role in controlling the balance between the neuroprotective and neurotoxic effects of bilirubin. This article reviews the emerging in vivo and in vitro data showing that transport and metabolic detoxification mechanisms at the blood-brain and blood-CSF barriers may modulate bilirubin flux across both cellular interfaces, and that these protective functions can be affected in chronic hyperbilirubinemia. Then the in vivo and in vitro arguments in favor of the physiological antioxidant function of intracerebral bilirubin are presented, as well as with the potential role of transporters such as ABCC-1 and metabolizing enzymes such as cytochromes P-450 in setting the cerebral cell- and structure-specific toxicity of bilirubin following hyperbilirubinemia. The relevance of these data to the pathophysiology of bilirubin-induced neurological diseases is discussed.

  13. Optimal staining methods for delineation of cortical areas and neuron counts in human brains.

    Science.gov (United States)

    Uylings, H B; Zilles, K; Rajkowska, G

    1999-04-01

    For cytoarchitectonic delineation of cortical areas in human brain, the Gallyas staining for somata with its sharp contrast between cell bodies and neuropil is preferable to the classical Nissl staining, the more so when an image analysis system is used. This Gallyas staining, however, does not appear to be appropriate for counting neuron numbers in pertinent brain areas, due to the lack of distinct cytological features between small neurons and glial cells. For cell counting Nissl is preferable. In an optimal design for cell counting at least both the Gallyas and the Nissl staining must be applied, the former staining for cytoarchitectural delineaton of cortical areas and the latter for counting the number of neurons in the pertinent cortical areas. Copyright 1999 Academic Press.

  14. Not single brain areas but a network is involved in language: Applications in presurgical planning.

    Science.gov (United States)

    Alemi, Razieh; Batouli, Seyed Amir Hossein; Behzad, Ebrahim; Ebrahimpoor, Mitra; Oghabian, Mohammad Ali

    2018-02-01

    Language is an important human function, and is a determinant of the quality of life. In conditions such as brain lesions, disruption of the language function may occur, and lesion resection is a solution for that. Presurgical planning to determine the language-related brain areas would enhance the chances of language preservation after the operation; however, availability of a normative language template is essential. In this study, using data from 60 young individuals who were meticulously checked for mental and physical health, and using fMRI and robust imaging and data analysis methods, functional brain maps for the language production, perception and semantic were produced. The obtained templates showed that the language function should be considered as the product of the collaboration of a network of brain regions, instead of considering only few brain areas to be involved in that. This study has important clinical applications, and extends our knowledge on the neuroanatomy of the language function. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  16. The effects of musical training on structural brain development: a longitudinal study.

    Science.gov (United States)

    Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried

    2009-07-01

    Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.

  17. Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults.

    Science.gov (United States)

    Mueller, Sven C; Cromheeke, Sofie; Siugzdaite, Roma; Nicolas Boehler, C

    2017-08-01

    In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC) when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12-16) and 28 adults (25-35) completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition) or judged the gender (task-irrelevant condition). Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back). By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance) in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A Novel Human Body Area Network for Brain Diseases Analysis.

    Science.gov (United States)

    Lin, Kai; Xu, Tianlang

    2016-10-01

    Development of wireless sensor and mobile communication technology provide an unprecedented opportunity for realizing smart and interactive healthcare systems. Designing such systems aims to remotely monitor the health and diagnose the diseases for users. In this paper, we design a novel human body area network for brain diseases analysis, which is named BABDA. Considering the brain is one of the most complex organs in the human body, the BABDA system provides four function modules to ensure the high quality of the analysis result, which includes initial data collection, data correction, data transmission and comprehensive data analysis. The performance evaluation conducted in a realistic environment with several criteria shows the availability and practicability of the BABDA system.

  19. PROFOUND AND SEXUALLY DIMORPHIC EFFECTS OF CLINICALLY-RELEVANT LOW DOSE SCATTER IRRADIATION ON THE BRAIN AND BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Anna eKovalchuk

    2016-06-01

    Full Text Available Irradiated cells can signal damage and distress to both close and distant neighbors that have not been directly exposed to the radiation (naïve bystanders. While studies have shown that such bystander effects occur in the shielded brain of animals upon body irradiation, their mechanism remains unexplored. Observed effects may be caused by some blood-borne factors; however they may also be explained, at least in part, by very small direct doses received by the brain that result from scatter or leakage. In order to establish the roles of low doses of scatter irradiation in the brain response, we developed a new model for scatter irradiation analysis whereby one rat was irradiated directly at the liver and the second rat was placed adjacent to the first and received a scatter dose to its body and brain. This work focuses specifically on the response of the latter rat brain to the low scatter irradiation dose. Here, we provide the first experimental evidence that very low, clinically relevant doses of scatter irradiation alter gene expression, induce changes in dendritic morphology, and lead to behavioral deficits in exposed animals. The results showed that exposure to radiation doses as low as 0.115 cGy caused changes in gene expression and reduced spine density, dendritic complexity, and dendritic length in the prefrontal cortex tissues of females, but not males. In the hippocampus, radiation altered neuroanatomical organization in males, but not in females. Moreover, low dose radiation caused behavioral deficits in the exposed animals. This is the first study to show that low dose scatter irradiation influences the brain and behavior in a sex-specific way.

  20. Inter-species activity correlations reveal functional correspondences between monkey and human brain areas

    Science.gov (United States)

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G.; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A.; Vanduffel, Wim

    2012-01-01

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. In cases where functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assess similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by means of temporal correlation. Using natural vision data, we reveal regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This novel framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models. PMID:22306809

  1. How to interpret an unenhanced CT Brain scan. Part 1: Basic principles of Computed Tomography and relevant neuroanatomy

    Directory of Open Access Journals (Sweden)

    Thomas Osborne

    2016-08-01

    Full Text Available The aim of this article is to: Cover the basics of Computed Tomography (CT Brain imaging. Review relevant CT neuroanatomy. A CT image is produced by firing x-rays at a moving object which is then detected by an array of rotating detectors (Figure 1. The detected x-rays are then converted into a computerised signal which is used to produce a series of cross sectional images.

  2. Brain pattern of histone H3 phosphorylation after acute amphetamine administration: its relationship to brain c-fos induction is strongly dependent on the particular brain area.

    Science.gov (United States)

    Rotllant, David; Armario, Antonio

    2012-02-01

    Recent evidence strongly suggests a critical role of chromatin remodelling in the acute and chronic effects of addictive drugs. We reasoned that Immunohistochemical detection of certain histone modifications may be a more specific tool than induction of immediate early genes (i.e. c-fos) to detect brain areas and neurons that are critical for the action of addictive drugs. Thus, in the present work we studied in adult male rats the effects of a high dose of amphetamine on brain pattern of histone H3 phosphorylation in serine 10 (pH3S(10)) and c-fos expression. We firstly observed that amphetamine-induced an increase in the number of pH3S(10) positive neurons in a restricted number of brain areas, with maximum levels at 30 min after the drug administration that declined at 90 min in most areas. In a second experiment we studied colocalization of pH3S(10) immunoreactivity (pH3S(10)-IR) and c-fos expression. Amphetamine increased c-fos expression in medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens (Acb), major Island of Calleja (ICjM), central amygdala (CeA), bed nucleus of stria terminalis lateral dorsal (BSTld) and paraventricular nucleus of the hypothalamus (PVN). Whereas no evidence for increase in pH3S(10) positive neurons was found in the mPFC and the PVN, in the striatum and the Acb basically all pH3S(10) positive neurons showed colocalization with c-fos. In ICjM, CeA and BSTld a notable degree of colocalization was found, but an important number of neurons expressing c-fos were negative for pH3S(10). The present results give support to the hypothesis that amphetamine-induced pH3S(10)-IR showed a more restricted pattern than brain c-fos induction, being this difference strongly dependent on the particular brain area studied. It is likely that those nuclei and neurons showing pH3S(10)-IR are more specifically associated to important effects of the drug, including neural plasticity. This article is part of a Special Issue entitled 'Post

  3. Exercise and plasticize the brain

    DEFF Research Database (Denmark)

    Mala, Hana; Wilms, Inge

    Neuroscientific studies continue to shed light on brain’s plasticity and its innate mechanisms to recover. The recovery process includes re-wiring of the existing circuitry, establishment of new connections, and recruitment of peri-lesional and homologous areas in the opposite hemisphere....... The plasticity of the brain can be stimulated and enhanced through training, which serves as a fundamental element of neurorehabilitative strategies. For instance, intensive cognitive and physical training promote the activation of processes that may help the brain to adapt to new conditions and needs. However...... neurorehabilitation is to understand and define how to stimulate the injured brain to elicit the desired adaptation. Research focuses on uncovering specific elements relevant for training planning and execution in order to create an environment that stimulates and maximizes the exploitation of the brain’s plastic...

  4. Brain Activation During Singing: "Clef de Sol Activation" Is the "Concert" of the Human Brain.

    Science.gov (United States)

    Mavridis, Ioannis N; Pyrgelis, Efstratios-Stylianos

    2016-03-01

    Humans are the most complex singers in nature, and the human voice is thought by many to be the most beautiful musical instrument. Aside from spoken language, singing represents a second mode of acoustic communication in humans. The purpose of this review article is to explore the functional anatomy of the "singing" brain. Methodologically, the existing literature regarding activation of the human brain during singing was carefully reviewed, with emphasis on the anatomic localization of such activation. Relevant human studies are mainly neuroimaging studies, namely functional magnetic resonance imaging and positron emission tomography studies. Singing necessitates activation of several cortical, subcortical, cerebellar, and brainstem areas, served and coordinated by multiple neural networks. Functionally vital cortical areas of the frontal, parietal, and temporal lobes bilaterally participate in the brain's activation process during singing, confirming the latter's role in human communication. Perisylvian cortical activity of the right hemisphere seems to be the most crucial component of this activation. This also explains why aphasic patients due to left hemispheric lesions are able to sing but not speak the same words. The term clef de sol activation is proposed for this crucial perisylvian cortical activation due to the clef de sol shape of the topographical distribution of these cortical areas around the sylvian fissure. Further research is needed to explore the connectivity and sequence of how the human brain activates to sing.

  5. Prolonged Repeated Acupuncture Stimulation Induces Habituation Effects in Pain-Related Brain Areas: An fMRI Study

    Science.gov (United States)

    Li, Chuanfu; Yang, Jun; Park, Kyungmo; Wu, Hongli; Hu, Sheng; Zhang, Wei; Bu, Junjie; Xu, Chunsheng; Qiu, Bensheng; Zhang, Xiaochu

    2014-01-01

    Most previous studies of brain responses to acupuncture were designed to investigate the acupuncture instant effect while the cumulative effect that should be more important in clinical practice has seldom been discussed. In this study, the neural basis of the acupuncture cumulative effect was analyzed. For this experiment, forty healthy volunteers were recruited, in which more than 40 minutes of repeated acupuncture stimulation was implemented at acupoint Zhusanli (ST36). Three runs of acupuncture fMRI datasets were acquired, with each run consisting of two blocks of acupuncture stimulation. Besides general linear model (GLM) analysis, the cumulative effects of acupuncture were analyzed with analysis of covariance (ANCOVA) to find the association between the brain response and the cumulative duration of acupuncture stimulation in each stimulation block. The experimental results showed that the brain response in the initial stage was the strongest although the brain response to acupuncture was time-variant. In particular, the brain areas that were activated in the first block and the brain areas that demonstrated cumulative effects in the course of repeated acupuncture stimulation overlapped in the pain-related areas, including the bilateral middle cingulate cortex, the bilateral paracentral lobule, the SII, and the right thalamus. Furthermore, the cumulative effects demonstrated bimodal characteristics, i.e. the brain response was positive at the beginning, and became negative at the end. It was suggested that the cumulative effect of repeated acupuncture stimulation was consistent with the characteristic of habituation effects. This finding may explain the neurophysiologic mechanism underlying acupuncture analgesia. PMID:24821143

  6. Neural processing of calories in brain reward areas can be modulated by reward sensitivity

    Directory of Open Access Journals (Sweden)

    Inge eVan Rijn

    2016-01-01

    Full Text Available A food’s reward value is dependent on its caloric content. Furthermore, a food’s acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity, however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015, in which participants (n=30 tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n=18 (Griffioen-Roose et al., 2013. First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS questionnaire.When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate, right amygdala and anterior cingulate cortex (bilaterally correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per

  7. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity.

    Science.gov (United States)

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A M

    2015-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  8. Area, age and gender dependence of the nucleoside system in the brain: a review of current literature.

    Science.gov (United States)

    Kovács, Zsolt; Juhász, Gábor; Palkovits, Miklós; Dobolyi, Arpád; Kékesi, Katalin A

    2011-01-01

    Nucleosides, such as uridine, inosine, guanosine and adenosine, may participate in the regulation of sleep, cognition, memory and nociception, the suppression of seizures, and have also been suggested to play a role in the pathophysiology of some neurodegenerative and neuropsychiatric diseases. Under pathological conditions, levels of nucleosides change extremely in the brain, indicating their participation in the pathophysiology of disorders like Alzheimer's disease, Parkinson's disease and schizophrenia. These findings have resulted in an increasing attention to the roles of nucleosides in the central nervous system. The specific effects of nucleosides depend on the expression of their receptors and transporters in neuronal and glial cells, as well as their extracellular concentrations in the brain. A complex interlinked metabolic network and transporters of nucleosides may balance nucleoside levels in the brain tissue under normal conditions and enable the fine modulation of neuronal and glial processes via nucleoside receptor signaling mechanisms. Brain levels of nucleosides were found to vary when measured in a variety of different brain regions. In addition, nucleoside levels also depend on age and gender. Furthermore, distributions of nucleoside transporters and receptors as well as nucleoside metabolic enzyme activities demonstrate the area, age and gender dependence of the nucleoside system, suggesting different roles of nucleosides in functionally different brain areas. The aim of this review article is to summarize our present knowledge of the area-, age- and gender-dependent distribution of nucleoside levels, nucleoside metabolic enzyme activity, nucleoside receptors and nucleoside transporters in the brain.

  9. On the calculation of brain area shifts due to cerebral tumors

    International Nuclear Information System (INIS)

    Labudde, D.; Hartmann, S.; Synowitz, M.

    2002-01-01

    A precise knowledge of the localization of an intracerebral mass is a basic requirement for the planning of neurosurgical operations. Stereotactic atlases offer the possibility to adapt pre-operative imaging data onto normal anatomical conditions in the CNS. These atlases, however, reflect the standard variants of the CNS and do not allow to draw conclusions on local and secondary changes of the anatomy caused by the presence of pathological processes. The physical model proposed in this paper provides an estimate of the displacement of brain areas by an intracerebral mass. The modeling of brain parenchyma deformation is based on the mechanics of deformed media. The implementation of the model is successful in the group of primary brain tumors and meningiomas, and uses empirically-obtained data of a prospectively-selected patient population. The aim of the proposed model is, as further step, the integration and adaptation in apposite software solutions for the stereotactic orientation in the CNS. (orig.) [de

  10. Changes of brain and cerebrospinal fluid area with development in childhood on CT

    International Nuclear Information System (INIS)

    Nonaka, Chizuru; Hiraiwa, Mikio; Abe, Toshiaki; Fujii, Ryochi; Ohmi, Kazuhiko

    1980-01-01

    There have been reported about changes of the brain CT (Computed Tomography) findings with development in childhood. These reports have been applied with one dimensional measurement, and we previously reported that one dimensional measurement was insufficient for objective judgement of CT findings, compared with our two dimensional measurement. Brain CT were performed in sixty-six children (thirty-four males and thirty-two females, aged from ten-day-old to twelve-year-old). Two dimensional measurement were played on the slice through foramen of Monro. We measured intracranial area (IC), brain area (BA), ventricular area (VA), and bifrontal fluid collection area (BFC). IC and BA were increased with development, but VA had no obvious change. Increase of IC and BA were disclosed significantly in infancy and toddling period. BFC was decreased with development on the average, and invisible in many cases over three-year-old. Thus, in the cases under three-year-old there lay massive variation of BFC in size. About the relationship between large BFC and central coordination difficulty in infancy, we reported in the last number of this journal. Variation of BFC in the cases under three-year-old might be due to selection of our subjects, those including eighteen infants with central coordination difficulty. Index of BA (BA x 100/IC), VA (VA x 100/IC), and BFC (BFC x 100/IC) were well matched to changes of BA, VA, and BFC with development. This is the first report for application of two dimensional measurement in CT findings of children with development. (author)

  11. Dissociated Crossed Speech Areas in a Tumour Patient

    Directory of Open Access Journals (Sweden)

    Jörg Mauler

    2017-05-01

    Full Text Available In the past, the eloquent areas could be deliberately localised by the invasive Wada test. The very rare cases of dissociated crossed speech areas were accidentally found based on the clinical symptomatology. Today functional magnetic resonance imaging (fMRI-based imaging can be employed to non-invasively localise the eloquent areas in brain tumour patients for therapy planning. A 41-year-old, left-handed man with a low-grade glioma in the left frontal operculum extending to the insular cortex, tension headaches, and anomic aphasia over 5 months underwent a pre-operative speech area localisation fMRI measurement, which revealed the evidence of the transhemispheric disposition, where the dominant Wernicke speech area is located on the left and the Broca’s area is strongly lateralised to the right hemisphere. The outcome of the Wada test and the intraoperative cortico-subcortical stimulation mapping were congruent with this finding. After tumour removal, language area function was fully preserved. Upon the occurrence of brain tumours with a risk of impaired speech function, the rare dissociate crossed speech areas disposition may gain a clinically relevant meaning by allowing for more extended tumour removal. Hence, for its identification, diagnostics which take into account both brain hemispheres, such as fMRI, are recommended.

  12. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates.

    Science.gov (United States)

    Braun, Clemens; Sakamoto, Atsushi; Fuchs, Holger; Ishiguro, Naoki; Suzuki, Shinobu; Cui, Yunhai; Klinder, Klaus; Watanabe, Michitoshi; Terasaki, Tetsuya; Sauer, Achim

    2017-10-02

    Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. K p,uu,brain and K p,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, K p,uu,brain for the BCRP substrates was low. In contrast, K p,uu,CSF for both BCRP substrates was close to unity, resulting in K p,uu,CSF /K p,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences

  13. CRMP5 regulates generation and survival of newborn neurons in olfactory and hippocampal neurogenic areas of the adult mouse brain.

    Directory of Open Access Journals (Sweden)

    Alexandra Veyrac

    Full Text Available The Collapsin Response Mediator Proteins (CRMPS are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB and the dentate gyrus (DG. During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5(-/- mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity.

  14. Common brain areas engaged in false belief reasoning and visual perspective taking: A meta-analysis of functional brain imaging studies.

    Directory of Open Access Journals (Sweden)

    Matthias eSchurz

    2013-11-01

    Full Text Available We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation found for visual-perspective taking to activation for false belief reasoning, a task which requires awareness of perspective to understand someone’s mistaken belief about the world which contrasts with reality. In support of a previous account by Perner & Leekam (2008, a meta-analytic conjunction analysis found activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction. This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, the conjunction found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area. The precuneus is linked to mental-imagery processes, which may aid in the construction of a different perspective. The Extrastriate Body Area may be engaged due to imagined body-transformations when another’s viewpoint is adopted.

  15. Clinical Relevance of Brain Volume Measures in Multiple Sclerosis

    DEFF Research Database (Denmark)

    De Stefano, Nicola; Airas, Laura; Grigoriadis, Nikolaos

    2014-01-01

    Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS...... therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy...

  16. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement.

    Science.gov (United States)

    Wei, Pengxu; Zhang, Zuting; Lv, Zeping; Jing, Bin

    2017-01-01

    The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI) study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR) scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top-down and bottom-up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  17. Neuroanatomical prerequisites for language functions in the maturing brain.

    Science.gov (United States)

    Brauer, Jens; Anwander, Alfred; Friederici, Angela D

    2011-02-01

    The 2 major language-relevant cortical regions in the human brain, Broca's area and Wernicke's area, are connected via the fibers of the arcuate fasciculus/superior longitudinal fasciculus (AF/SLF). Here, we compared this pathway in adults and children and its relation to language processing during development. Comparison of fiber properties demonstrated lower anisotropy in children's AF/SLF, arguing for an immature status of this particular pathway with conceivably a lower degree of myelination. Combined diffusion tensor imaging (DTI) data and functional magnetic resonance imaging (fMRI) data indicated that in adults the termination of the AF/SLF fiber projection is compatible with functional activation in Broca's area, that is pars opercularis. In children, activation in Broca's area extended from the pars opercularis into the pars triangularis revealing an alternative connection to the temporal lobe (Wernicke's area) via the ventrally projecting extreme capsule fiber system. fMRI and DTI data converge to indicate that adults make use of a more confined language network than children based on ongoing maturation of the structural network. Our data suggest relations between language development and brain maturation and, moreover, indicate the brain's plasticity to adjust its function to available structural prerequisites.

  18. Altered intraoperative cerebrovascular reactivity in brain areas of high-grade glioma recurrence.

    Science.gov (United States)

    Fierstra, Jorn; van Niftrik, Bas; Piccirelli, Marco; Burkhardt, Jan Karl; Pangalu, Athina; Kocian, Roman; Valavanis, Antonios; Weller, Michael; Regli, Luca; Bozinov, Oliver

    2016-07-01

    Current MRI sequences are limited in identifying brain areas at risk for high grade glioma recurrence. We employed intraoperative 3-Tesla functional MRI to assess cerebrovascular reactivity (CVR) after high-grade glioma resection and analyzed regional CVR responses in areas of tumor recurrence on clinical follow-up imaging. Five subjects with high-grade glioma that underwent an intraoperative Blood Oxygen-Level Dependent (BOLD) MRI CVR examination and had a clinical follow-up of at least 18months were selected from a prospective database. For this study, location of tumor recurrence was spatially matched to the intraoperative imaging to assess CVR response in that particular area. CVR is defined as the percent BOLD signal change during repeated cycles of apnea. Of the 5 subjects (mean age 44, 2 females), 4 were diagnosed with a WHO grade III and 1 subject with a WHO grade IV glioma. Three subjects exhibited a tumor recurrence on clinical follow-up MRI (mean: 15months). BOLD CVR measured in the spatially matched area of tumor recurrence was on average 94% increased (range-32% to 183%) as compared to contralateral hemisphere CVR response, 1.50±0.81 versus 1.03±0.46 respectively (p=0.31). For this first analysis in a small cohort, we found altered intraoperative CVR in brain areas exhibiting high grade glioma recurrence on clinical follow-up imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Brain size and white matter content of cerebrospinal tracts determine the upper cervical cord area: evidence from structural brain MRI

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Christina; Arsic, Milan; Boucard, Christine C.; Biberacher, Viola; Nunnemann, Sabine; Muehlau, Mark [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Technische Universitaet Muenchen, TUM-Neuroimaging Center, Klinikum rechts der Isar, Munich (Germany); Schmidt, Paul [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Ludwig-Maximilians-University Muenchen, Department of Statistics, Munich (Germany); Roettinger, Michael [Technische Universitaet Muenchen, Department of Radiology, Klinikum rechts der Isar, Munich (Germany); Muenchner Institut fuer Neuroradiologie, Munich (Germany); Etgen, Thorleif [Technische Universitaet Muenchen, Department of Neurology, Klinikum rechts der Isar, Munich (Germany); Klinikum Traunstein, Department of Neurology, Traunstein (Germany); Koutsouleris, Nikolaos; Meisenzahl, Eva M. [Ludwig-Maximilians-Universitaet Muenchen, Department of Psychiatry and Psychotherapy, Munich (Germany); Reiser, Maximilian [Ludwig-Maximilians-Universitaet, Department of Radiology, Munich (Germany)

    2013-08-15

    Measurement of the upper cervical cord area (UCCA) from brain MRI may be an effective way to quantify spinal cord involvement in neurological disorders such as multiple sclerosis. However, knowledge on the determinants of UCCA in healthy controls (HCs) is limited. In two cohorts of 133 and 285 HCs, we studied the influence of different demographic, body-related, and brain-related parameters on UCCA by simple and partial correlation analyses as well as by voxel-based morphometry (VBM) across both cerebral gray matter (GM) and white matter (WM). First, we confirmed the known but moderate effect of age on UCCA in the older cohort. Second, we studied the correlation of UCCA with sex, body height, and total intracranial volume (TIV). TIV was the only variable that correlated significantly with UCCA after correction for the other variables. Third, we studied the correlation of UCCA with brain-related parameters. Brain volume correlated stronger with UCCA than TIV. Both volumes of the brain tissue compartments GM and WM correlated with UCCA significantly. WM volume explained variance of UCCA after correction for GM volume, whilst the opposite was not observed. Correspondingly, VBM did not yield any brain region, whose GM content correlated significantly with UCCA, whilst cerebral WM content of cerebrospinal tracts strongly correlated with UCCA. This latter effect increased along a craniocaudal gradient. UCCA is mainly determined by brain volume as well as by WM content of cerebrospinal tracts. (orig.)

  20. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    Science.gov (United States)

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  1. Perspectives on creating clinically relevant blast models for mild traumatic brain injury and post traumatic stress disorder symptoms

    Directory of Open Access Journals (Sweden)

    Lisa eBrenner

    2012-03-01

    Full Text Available Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic, behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI and/or post traumatic stress disorder (PTSD. Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast TBI can be used to facilitate the development of clinically relevant blast models.

  2. Daily Dose effect of Valerian root extract on some Neurotransmitter contents in different Brain areas of male Albino Rats

    International Nuclear Information System (INIS)

    Waggas, Abeer M

    2007-01-01

    The aim of the present study was to investigate the daily effect of valerian (Valeriana officinalis L .) root extract on epinephrine (E), norepinephrine (NE), dopamine (DA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) , and gamma-aminobutyric acid (GABA) contents in different brain areas (cerebellum , pons plus medulla oblongata , striatum , cerebral cortex, hypothalamus, midbrain and hippocampus) of male albino rats .The daily intraperitoneal ( i.p.) injection of 300 mg/kg body wt valerian for 30 days caused a significant increase in epinephrine ( E ) content in pons plus medulla oblongata, cerebral cortex , hypothalamus and in midbrain . Norepinephrine (NE ) content was significantly increased in all brain areas tested except in cerebellum and cerebral cortex . Dopamine (DA) content was significantly increased in all tested brain areas except in cerebral cortex and hippocampus . moreover , there was also a significant increase in serotonin (5-HT ) and 5-hydroxyindol acetic acid (5-HIAA) contents in all tested brain areas . However, gamma-aminobutyric acid (GABA) content was significantly decreased in all tested brain areas . After the extract withdrawal, the increase in ( E, NE, DA , 5-HT ) contents and the decrease in GABA content persisted in pons plus medulla oblongata , striatum , midbrain and hippocampus , and this might be due to regional differences toward the effect. The increase in E, NE, DA , 5-HT and 5-HIAA contents, at the same time the decrease in GABA content in the different brain areas of albino rats may be due to the presence of both valepotriates and valerenic acid in the extract which mediated the GABA ergic mechanisms including the inhibition of GABA metabolism and the increase in GABA synthesis and release , although agonized the GABAA receptors which led to the inhibit of the neurotransmitter release. Valerian root extract may be useful as a herbal medicine having sedative effect and it is safe. (author)

  3. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia.

    Science.gov (United States)

    Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu

    2017-01-01

    Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.

  4. Strong Functional Connectivity among Homotopic Brain Areas Is Vital for Motor Control in Unilateral Limb Movement

    Directory of Open Access Journals (Sweden)

    Pengxu Wei

    2017-07-01

    Full Text Available The mechanism underlying brain region organization for motor control in humans remains poorly understood. In this functional magnetic resonance imaging (fMRI study, right-handed volunteers were tasked to maintain unilateral foot movements on the right and left sides as consistently as possible. We aimed to identify the similarities and differences between brain motor networks of the two conditions. We recruited 18 right-handed healthy volunteers aged 25 ± 2.3 years and used a whole-body 3T system for magnetic resonance (MR scanning. Image analysis was performed using SPM8, Conn toolbox and Brain Connectivity Toolbox. We determined a craniocaudally distributed, mirror-symmetrical modular structure. The functional connectivity between homotopic brain areas was generally stronger than the intrahemispheric connections, and such strong connectivity led to the abovementioned modular structure. Our findings indicated that the interhemispheric functional interaction between homotopic brain areas is more intensive than the interaction along the conventional top–down and bottom–up pathways within the brain during unilateral limb movement. The detected strong interhemispheric horizontal functional interaction is an important aspect of motor control but often neglected or underestimated. The strong interhemispheric connectivity may explain the physiological phenomena and effects of promising therapeutic approaches. Further accurate and effective therapeutic methods may be developed on the basis of our findings.

  5. Biogenic amines in brain areas of rats and response to varying dose levels of whole body gamma irradiation

    International Nuclear Information System (INIS)

    Abdelhamid, F.M.; Elmossalamy, N.; Othman, S.A.; Roushdy, H.M.; Abdelraheem, K.

    1994-01-01

    The levels of norepinephrine (NE), dopamine (DA), 5-hydroxy-tryptamine (5-HT) and 5-hydroxy-indole acetic acid (5-HIAA) were examined in the brain areas:cortex,: cerebellum, striatum and pons in rats exposed to whole body gamma-irradiation at the dose levels 6.5 and 10 Gy. The data obtained indicated that: 6.5 Gy induced in all brain areas, a slight increase in 5-HT concomitant with significant decrease in NE, DA levels, besides a significant increase in 5-HTAA in cerebellum and pons. After the dose 10 Gy the maximum excitation of 5-HT level was in striatum whereas declines in NE, DA were recorded in all brain areas. 5-HIAA displayed significant increase in cerebellum and pons and maximum decline in the cortex. 4 tab

  6. Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin From Opuntia Ficus Indica Administered at Nutritionally-Relevant Amounts

    Directory of Open Access Journals (Sweden)

    Giuditta Gambino

    2018-05-01

    Full Text Available Several studies have recently investigated the role of nutraceuticals in complex pathophysiological processes such as oxidative damages, inflammatory conditions and excitotoxicity. In this regard, the effects of nutraceuticals on basic functions of neuronal cells, such as excitability, are still poorly investigated. For this reason, the possible modulation of neuronal excitability by phytochemicals (PhC could represent an interesting field of research given that excitotoxicity phenomena are involved in neurodegenerative alterations leading, for example, to Alzheimer’s disease. The present study was focused on indicaxanthin from Opuntia ficus indica, a bioactive betalain pigment, with a proven antioxidant and anti-inflammatory potential, previously found to cross blood-brain barrier (BBB and to modulate the bioelectric activity of hippocampal neurons. On this basis, we aimed at detecting the specific brain areas where indicaxanthin localizes after oral administration at dietary-achievable amounts and highlighting eventual local effects on the excitability of single neuronal units. HPLC analysis of brain tissue 1 h after ingestion of 2 μmol/kg indicaxanthin indicated that the phytochemical accumulates in cortex, hippocampus, diencephalon, brainstem and cerebellum, but not in the striato-pallidal complex. Then, electrophysiological recordings, applying the microiontophoretic technique, were carried out with different amounts of indicaxanthin (0.34, 0.17, 0.085 ng/neuron to assess whether indicaxanthin influenced the neuronal firing rate. The data showed that the bioelectric activity of neurons belonging to different brain areas was modulated after local injection of indicaxanthin, mainly with dose-related responses. A predominating inhibitory effect was observed, suggesting a possible novel beneficial effect of indicaxanthin in reducing cell excitability. These findings can constitute a new rationale for exploring biological mechanisms through

  7. Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin From Opuntia Ficus Indica Administered at Nutritionally-Relevant Amounts

    Science.gov (United States)

    Gambino, Giuditta; Allegra, Mario; Sardo, Pierangelo; Attanzio, Alessandro; Tesoriere, Luisa; Livrea, Maria A.; Ferraro, Giuseppe; Carletti, Fabio

    2018-01-01

    Several studies have recently investigated the role of nutraceuticals in complex pathophysiological processes such as oxidative damages, inflammatory conditions and excitotoxicity. In this regard, the effects of nutraceuticals on basic functions of neuronal cells, such as excitability, are still poorly investigated. For this reason, the possible modulation of neuronal excitability by phytochemicals (PhC) could represent an interesting field of research given that excitotoxicity phenomena are involved in neurodegenerative alterations leading, for example, to Alzheimer’s disease. The present study was focused on indicaxanthin from Opuntia ficus indica, a bioactive betalain pigment, with a proven antioxidant and anti-inflammatory potential, previously found to cross blood-brain barrier (BBB) and to modulate the bioelectric activity of hippocampal neurons. On this basis, we aimed at detecting the specific brain areas where indicaxanthin localizes after oral administration at dietary-achievable amounts and highlighting eventual local effects on the excitability of single neuronal units. HPLC analysis of brain tissue 1 h after ingestion of 2 μmol/kg indicaxanthin indicated that the phytochemical accumulates in cortex, hippocampus, diencephalon, brainstem and cerebellum, but not in the striato-pallidal complex. Then, electrophysiological recordings, applying the microiontophoretic technique, were carried out with different amounts of indicaxanthin (0.34, 0.17, 0.085 ng/neuron) to assess whether indicaxanthin influenced the neuronal firing rate. The data showed that the bioelectric activity of neurons belonging to different brain areas was modulated after local injection of indicaxanthin, mainly with dose-related responses. A predominating inhibitory effect was observed, suggesting a possible novel beneficial effect of indicaxanthin in reducing cell excitability. These findings can constitute a new rationale for exploring biological mechanisms through which PhC could

  8. Disrupted modular organization of primary sensory brain areas in schizophrenia

    Directory of Open Access Journals (Sweden)

    Cécile Bordier

    Full Text Available Abnormal brain resting-state functional connectivity has been consistently observed in patients affected by schizophrenia (SCZ using functional MRI and other neuroimaging techniques. Graph theoretical methods provide a framework to investigate these defective functional interactions and their effects on the organization of brain connectivity networks. A few studies have shown altered distribution of connectivity within and between functional modules in SCZ patients, an indication of imbalanced functional segregation ad integration. However, no major alterations of modular organization have been reported in patients, and unambiguous identification of the neural substrates affected remains elusive. Recently, it has been demonstrated that current modularity analysis methods suffer from a fundamental and severe resolution limit, as they fail to detect features that are smaller than a scale determined by the size of the entire connectivity network. This resolution limit is likely to have hampered the ability to resolve differences between patients and controls in previous studies. Here, we apply Surprise, a novel resolution limit-free approach, to study the modular organization of resting state functional connectivity networks in a large cohort of SCZ patients and in matched healthy controls. Leveraging these important methodological advances we find new evidence of substantial fragmentation and reorganization involving primary sensory, auditory and visual areas in SCZ patients. Conversely, frontal and prefrontal areas, typically associated with higher cognitive functions, appear to be largely unaffected, with changes selectively involving language and speech processing areas. Our findings support the hypothesis that cognitive dysfunction in SCZ may involve deficits occurring already at early stages of sensory processing. Keywords: Schizophrenia, Surprise, Asymptotical surprise, Functional connectivity, Community detection, Modularity, Graph theory

  9. Activated and deactivated functional brain areas in the Deqi state

    OpenAIRE

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-01-01

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, th...

  10. Predicting the presence and cover of management relevant invasive plant species on protected areas.

    Science.gov (United States)

    Iacona, Gwenllian; Price, Franklin D; Armsworth, Paul R

    2016-01-15

    Invasive species are a management concern on protected areas worldwide. Conservation managers need to predict infestations of invasive plants they aim to treat if they want to plan for long term management. Many studies predict the presence of invasive species, but predictions of cover are more relevant for management. Here we examined how predictors of invasive plant presence and cover differ across species that vary in their management priority. To do so, we used data on management effort and cover of invasive plant species on central Florida protected areas. Using a zero-inflated multiple regression framework, we showed that protected area features can predict the presence and cover of the focal species but the same features rarely explain both. There were several predictors of either presence or cover that were important across multiple species. Protected areas with three days of frost per year or fewer were more likely to have occurrences of four of the six focal species. When invasive plants were present, their proportional cover was greater on small preserves for all species, and varied with surrounding household density for three species. None of the predictive features were clearly related to whether species were prioritized for management or not. Our results suggest that predictors of cover and presence can differ both within and across species but do not covary with management priority. We conclude that conservation managers need to select predictors of invasion with care as species identity can determine the relationship between predictors of presence and the more management relevant predictors of cover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Marijuana and cannabinoid regulation of brain reward circuits.

    Science.gov (United States)

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-09-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.

  12. Brain/MINDS: brain-mapping project in Japan

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  13. Brain/MINDS: brain-mapping project in Japan.

    Science.gov (United States)

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-05-19

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas.

  14. Combining Functional Neuroimaging with Off-Line Brain Stimulation: Modulation of Task-Related Activity in Language Areas

    Science.gov (United States)

    Andoh, Jamila; Paus, Tomas

    2011-01-01

    Repetitive TMS (rTMS) provides a noninvasive tool for modulating neural activity in the human brain. In healthy participants, rTMS applied over the language-related areas in the left hemisphere, including the left posterior temporal area of Wernicke (LTMP) and inferior frontal area of Broca, have been shown to affect performance on word…

  15. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies

    Directory of Open Access Journals (Sweden)

    Marie Arsalidou

    2018-04-01

    Full Text Available Children use numbers every day and typically receive formal mathematical training from an early age, as it is a main subject in school curricula. Despite an increase in children neuroimaging studies, a comprehensive neuropsychological model of mathematical functions in children is lacking. Using quantitative meta-analyses of functional magnetic resonance imaging (fMRI studies, we identify concordant brain areas across articles that adhere to a set of selection criteria (e.g., whole-brain analysis, coordinate reports and report brain activity to tasks that involve processing symbolic and non-symbolic numbers with and without formal mathematical operations, which we called respectively number tasks and calculation tasks. We present data on children 14 years and younger, who solved these tasks. Results show activity in parietal (e.g., inferior parietal lobule and precuneus and frontal (e.g., superior and medial frontal gyri cortices, core areas related to mental-arithmetic, as well as brain regions such as the insula and claustrum, which are not typically discussed as part of mathematical problem solving models. We propose a topographical atlas of mathematical processes in children, discuss findings within a developmental constructivist theoretical model, and suggest practical methodological considerations for future studies. Keywords: Mathematical cognition, Meta-analyses, fMRI, Children, Development, Insula

  16. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.

    Science.gov (United States)

    Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate

    2018-05-15

    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information

  17. Longitudinal connectome-based predictive modeling for REM sleep behavior disorder from structural brain connectivity

    Science.gov (United States)

    Giancardo, Luca; Ellmore, Timothy M.; Suescun, Jessika; Ocasio, Laura; Kamali, Arash; Riascos-Castaneda, Roy; Schiess, Mya C.

    2018-02-01

    Methods to identify neuroplasticity patterns in human brains are of the utmost importance in understanding and potentially treating neurodegenerative diseases. Parkinson disease (PD) research will greatly benefit and advance from the discovery of biomarkers to quantify brain changes in the early stages of the disease, a prodromal period when subjects show no obvious clinical symptoms. Diffusion tensor imaging (DTI) allows for an in-vivo estimation of the structural connectome inside the brain and may serve to quantify the degenerative process before the appearance of clinical symptoms. In this work, we introduce a novel strategy to compute longitudinal structural connectomes in the context of a whole-brain data-driven pipeline. In these initial tests, we show that our predictive models are able to distinguish controls from asymptomatic subjects at high risk of developing PD (REM sleep behavior disorder, RBD) with an area under the receiving operating characteristic curve of 0.90 (pParkinson's Progression Markers Initiative. By analyzing the brain connections most relevant for the predictive ability of the best performing model, we find connections that are biologically relevant to the disease.

  18. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  19. Defining Face Perception Areas in the Human Brain: A Large-Scale Factorial fMRI Face Localizer Analysis

    Science.gov (United States)

    Rossion, Bruno; Hanseeuw, Bernard; Dricot, Laurence

    2012-01-01

    A number of human brain areas showing a larger response to faces than to objects from different categories, or to scrambled faces, have been identified in neuroimaging studies. Depending on the statistical criteria used, the set of areas can be overextended or minimized, both at the local (size of areas) and global (number of areas) levels. Here…

  20. Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine

    NARCIS (Netherlands)

    Fagen, Z.M.; Mansvelder, H.D.; Keath, R.; McGehee, D.S.

    2003-01-01

    Dopamine signaling in brain reward areas is a key element in the development of drug abuse and dependence. Recent anatomical and electrophysiological research has begun to elucidate both complexity and specificity In synaptic connections between ventral tegmental neurons and their inputs.

  1. An HPLC tracing of the enhancer regulation in selected discrete brain areas of food-deprived rats.

    Science.gov (United States)

    Miklya, I; Knoll, B; Knoll, J

    2003-05-09

    The recent discovery of the enhancer regulation in the mammalian brain brought a different perspective to the brain-organized realization of goal-oriented behavior, which is the quintessence of plastic behavioral descriptions such as drive or motivation. According to this new approach, 'drive' means that special endogenous enhancer substances enhance the impulse-propagation-mediated release of transmitters in a proper population of enhancer-sensitive neurons, and keep these neurons in the state of enhanced excitability until the goal is reached. However, to reach any goal needs the participation of the catecholaminergic machinery, the engine of the brain. We developed a method to detect the specific enhancer effect of synthetic enhancer substances [(-)-deprenyl, (-)-PPAP, (-)-BPAP] by measuring the release of transmitters from freshly isolated selected discrete brain areas (striatum, substantia nigra, tuberculum olfactorium, locus coeruleus, raphe) by the aid of HPLC with electrochemical detection. To test the validity of the working hypothesis that in any form of goal-seeking behavior the catecholaminergic and serotonergic neurons work on a higher activity level, we compared the amount of norepinephrine, dopamine, and serotonin released from selected discrete brain areas isolated from the brain of sated and food-deprived rats. Rats were deprived of food for 48 and 72 hours, respectively, and the state of excitability of their catecholaminergic and serotonergic neurons in comparison to that of sated rats was measured. We tested the orienting-searching reflex activity of the rats in a special open field, isolated thereafter selected discrete brain areas and measured the release of norepinephrine, dopamine, and serotonin from the proper tissue samples into the organ bath. The orienting-searching reflex activity of the rats increased proportionally to the time elapsed from the last feed and the amount of dopamine released from the striatum, substantia nigra and

  2. Inferring relevance in a changing world

    Directory of Open Access Journals (Sweden)

    Robert C Wilson

    2012-01-01

    Full Text Available Reinforcement learning models of human and animal learning usually concentrate on how we learn the relationship between different stimuli or actions and rewards. However, in real world situations stimuli are ill-defined. On the one hand, our immediate environment is extremely multi-dimensional. On the other hand, in every decision-making scenario only a few aspects of the environment are relevant for obtaining reward, while most are irrelevant. Thus a key question is how do we learn these relevant dimensions, that is, how do we learn what to learn about? We investigated this process of representation learning experimentally, using a task in which one stimulus dimension was relevant for determining reward at each point in time. As in real life situations, in our task the relevant dimension can change without warning, adding ever-present uncertainty engendered by a constantly changing environment. We show that human performance on this task is better described by a suboptimal strategy based on selective attention and serial hypothesis testing rather than a normative strategy based on probabilistic inference. From this, we conjecture that the problem of inferring relevance in general scenarios is too computationally demanding for the brain to solve optimally. As a result the brain utilizes approximations, employing these even in simplified scenarios in which optimal representation learning is tractable, such as the one in our experiment.

  3. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    Science.gov (United States)

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  4. Healthy full-term infants' brain responses to emotionally and linguistically relevant sounds using a multi-feature mismatch negativity (MMN) paradigm.

    Science.gov (United States)

    Kostilainen, Kaisamari; Wikström, Valtteri; Pakarinen, Satu; Videman, Mari; Karlsson, Linnea; Keskinen, Maria; Scheinin, Noora M; Karlsson, Hasse; Huotilainen, Minna

    2018-03-23

    We evaluated the feasibility of a multi-feature mismatch negativity (MMN) paradigm in studying auditory processing of healthy newborns. The aim was to examine the automatic change-detection and processing of semantic and emotional information in speech in newborns. Brain responses of 202 healthy newborns were recorded with a multi-feature paradigm including a Finnish bi-syllabic pseudo-word/ta-ta/as a standard stimulus, six linguistically relevant deviant stimuli and three emotionally relevant stimuli (happy, sad, angry). Clear responses to emotional sounds were found already at the early latency window 100-200 ms, whereas responses to linguistically relevant minor changes and emotional stimuli at the later latency window 300-500 ms did not reach significance. Moreover, significant interaction between gender and emotional stimuli was found in the early latency window. Further studies on using multi-feature paradigms with linguistic and emotional stimuli in newborns are needed, especially those containing of follow-ups, enabling the assessment of the predictive value of early variations between subjects. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Social modulation of cognition: Lessons from rhesus macaques relevant to education.

    Science.gov (United States)

    Monfardini, Elisabetta; Reynaud, Amélie J; Prado, Jérôme; Meunier, Martine

    2017-11-01

    Any animal, human or non-human, lives in a world where there are others like itself. Individuals' behaviors are thus inevitably influenced by others, and cognition is no exception. Long acknowledged in psychology, social modulations of cognition have been neglected in cognitive neuroscience. Yet, infusing this classic topic in psychology with brain science methodologies could yield valuable educational insights. In recent studies, we used a non-human primate model, the rhesus macaque, to identify social influences representing ancient biases rooted in evolution, and neuroimaging to shed light on underlying mechanisms. The behavioral and neural data garnered in humans and macaques are summarized, with a focus on two findings relevant to human education. First, peers' mistakes stand out as exceptional professors and seem to have devoted areas and neurons in the primates' brain. Second, peers' mere presence suffices to enhance performance in well-learned tasks, possibly by boosting activity in the brain network involved in the task at hand. These findings could be translated into concrete pedagogical interventions in the classroom. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  7. Circulating and brain BDNF levels in stroke rats. Relevance to clinical studies.

    Directory of Open Access Journals (Sweden)

    Yannick Béjot

    Full Text Available BACKGROUND: Whereas brain-derived neurotrophic factor (BDNF levels are measured in the brain in animal models of stroke, neurotrophin levels in stroke patients are measured in plasma or serum samples. The present study was designed to investigate the meaning of circulating BDNF levels in stroke patients. METHODS AND RESULTS: Unilateral ischemic stroke was induced in rats by the injection of various numbers of microspheres into the carotid circulation in order to mimic the different degrees of stroke severity observed in stroke patients. Blood was serially collected from the jugular vein before and after (4 h, 24 h and 8 d embolization and the whole brains were collected at 4, 24 h and 8 d post-embolization. Rats were then selected from their degree of embolization, so that the distribution of stroke severity in the rats at the different time points was large but similar. Using ELISA tests, BDNF levels were measured in plasma, serum and brain of selected rats. Whereas plasma and serum BDNF levels were not changed by stroke, stroke induced an increase in brain BDNF levels at 4 h and 24 h post-embolization, which was not correlated with stroke severity. Individual plasma BDNF levels did not correlate with brain levels at any time point after stroke but a positive correlation (r = 0.67 was observed between individual plasma BDNF levels and stroke severity at 4 h post-embolization. CONCLUSION: Circulating BDNF levels do not mirror brain BDNF levels after stroke, and severe stroke is associated with high plasma BDNF in the very acute stage.

  8. Diagnostic work up for language testing in patients undergoing awake craniotomy for brain lesions in language areas.

    Science.gov (United States)

    Bilotta, Federico; Stazi, Elisabetta; Titi, Luca; Lalli, Diana; Delfini, Roberto; Santoro, Antonio; Rosa, Giovanni

    2014-06-01

    Awake craniotomy is the technique of choice in patients with brain tumours adjacent to primary and accessory language areas (Broca's and Wernicke's areas). Language testing should be aimed to detect preoperative deficits, to promptly identify the occurrence of new intraoperative impairments and to establish the course of postoperative language status. Aim of this case series is to describe our experience with a dedicated language testing work up to evaluate patients with or at risk for language disturbances undergoing awake craniotomy for brain tumour resection. Pre- and intra operative testing was accomplished with 8 tests. Intraoperative evaluation was accomplished when patients were fully cooperative (Ramsey awake craniotomy for brain tumour resection with preoperative language disturbances or at risk for postoperative language deficits. This approach allows a systematic evaluation and recording of language function status and can be accomplished even when a neuropsychologist or speech therapist are not involved in the operation crew.

  9. Different distributions of the 5-HT reuptake complex and the postsynaptic 5-HT(2A) receptors in Brodmann areas and brain hemispheres.

    Science.gov (United States)

    Rosel, Pilar; Arranz, Belén; Urretavizcaya, Mikel; Oros, Miguel; San, Luis; Vallejo, Julio; Navarro, Miguel Angel

    2002-08-30

    The aim of the present study was to determine the distribution of the presynaptic 5-HT reuptake complex and the 5-HT(2A) receptors through Brodmann areas from two control subjects, together with the possible existence of laterality between both brain hemispheres. A left laterality was observed in the postsynaptic 5-HT(2A) binding sites, with significantly higher B(max) values in the left frontal and cingulate cortex. In frontal cortex, [3H]imipramine and [3H]paroxetine binding showed the highest B(max) values in areas 25, 10 and 11. In cingulate cortex, the highest [3H]imipramine and [3H]paroxetine B(max) values were noted in Brodmann area 33 followed by area 24, while postsynaptic 5-HT(2A) receptors were mainly distributed through Brodmann areas 23 and 29. In temporal cortex, the highest [3H]imipramine and [3H]paroxetine B(max) was noted in Brodmann areas 28 and 34, followed by areas 35 and 38. All Brodmann areas from parietal cortex (1, 2, 3, 4, 5, 6, 7, 39, 40 and 43) showed similar presynaptic and postsynaptic binding values. In occipital cortex no differences were observed with regard to the brain hemisphere or to the Brodmann area (17, 18 and 19). These results suggest the need to carefully define the brain hemisphere and the Brodmann areas studied, as well to avoid comparisons between studies including different Brodmann areas or brain hemispheres.

  10. Brain perfusion SPECT with Brodmann areas analysis in differentiating frontotemporal dementia subtypes.

    Science.gov (United States)

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Kapsalaki, Eftychia; Fezoulidis, Ioannis; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2014-01-01

    Despite the known validity of clinical diagnostic criteria, significant overlap of clinical symptoms between Frontotemporal dementia (FTD) subtypes exists in several cases, resulting in great uncertainty of the diagnostic boundaries. We evaluated the perfusion between FTD subtypes using brain perfusion (99m)Tc-HMPAO SPECT with Brodmann areas (BA) mapping. NeuroGam software was applied on single photon emission computed tomographic (SPECT) studies for the semi-quantitative evaluation of perfusion in BA and the comparison with the software's normal database. We studied 91 consecutive FTD patients: 21 with behavioural variants (bvFTD), 39 with language variants (lvFTD) [12 with progressive non-fluent aphasia (PNFA), 27 with semantic dementia (SD)], and 31 patients with progressive supranuclear palsy (PSP)/corticobasal degeneration (CBD). Stepwise logistic regression analyses showed that the BA 28L and 32R could independently differentiate bvFTD from lvFTD, while the BA 8R and 25R could discriminate bvFTD from SD and PNFA, respectively. Additionally, BA 7R and 32R were found to discriminate bvFTD from CBD/PSP. The only BA that could differentiate SD from PNFA was 6L. BA 6R and 20L were found to independently differentiate CBD/PSP from lvFTD. Moreover, BA 20L and 22R could discriminate CBD/PSP from PNFA, while BA 6R, 20L and 45R were found to independently discriminate CBD/PSP from SD. Brain perfusion SPECT with BA mapping can be a useful additional tool in differentiating FTD variants by improving the definition of brain areas that are specifically implicated, resulting in a more accurate differential diagnosis in atypical or uncertain forms of FTD.

  11. Mapping the areas sensitive to long-term endotoxin tolerance in the rat brain: a c-fos mRNA study.

    Science.gov (United States)

    Vallès, Astrid; Martí, Octavi; Armario, Antonio

    2005-06-01

    We have recently found that a single endotoxin administration to rats reduced the hypothalamic-pituitary-adrenal response to another endotoxin administration 4 weeks later, which may be an example of the well-known phenomenon of endotoxin tolerance. However, the time elapsed between the two doses of endotoxin was long enough to consider the above results as an example of late tolerance, whose mechanisms are poorly characterized. To know if the brain plays a role in this phenomenon and to characterize the putative areas involved, we compared the c-fos mRNA response after a final dose of endotoxin in animals given vehicle or endotoxin 4 weeks before. Endotoxin caused a widespread induction of c-fos mRNA in the brain, similar to that previously reported by other laboratories. Whereas most of the brain areas were not sensitive to the previous experience with endotoxin, a few showed a reduced response in endotoxin-pretreated rats: the parvocellular and magnocellular regions of the paraventricular hypothalamic nucleus, the central amygdala, the lateral division of the bed nucleus and the locus coeruleus. We hypothesize that late tolerance to endotoxin may involve plastic changes in the brain, likely to be located in the central amygdala. The reduced activation of the central amygdala in rats previously treated with endotoxin may, in turn, reduce the activation of other brain areas, including the hypothalamic paraventicular nucleus.

  12. Brain Basics: Know Your Brain

    Science.gov (United States)

    ... however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in ... through the activity of these lobes. At the top of each temporal lobe is an area responsible ...

  13. Impaired insulin action in the human brain: causes and metabolic consequences.

    Science.gov (United States)

    Heni, Martin; Kullmann, Stephanie; Preissl, Hubert; Fritsche, Andreas; Häring, Hans-Ulrich

    2015-12-01

    Over the past few years, evidence has accumulated that the human brain is an insulin-sensitive organ. Insulin regulates activity in a limited number of specific brain areas that are important for memory, reward, eating behaviour and the regulation of whole-body metabolism. Accordingly, insulin in the brain modulates cognition, food intake and body weight as well as whole-body glucose, energy and lipid metabolism. However, brain imaging studies have revealed that not everybody responds equally to insulin and that a substantial number of people are brain insulin resistant. In this Review, we provide an overview of the effects of insulin in the brain in humans and the relevance of the effects for physiology. We present emerging evidence for insulin resistance of the human brain. Factors associated with brain insulin resistance such as obesity and increasing age, as well as possible pathogenic factors such as visceral fat, saturated fatty acids, alterations at the blood-brain barrier and certain genetic polymorphisms, are reviewed. In particular, the metabolic consequences of brain insulin resistance are discussed and possible future approaches to overcome brain insulin resistance and thereby prevent or treat obesity and type 2 diabetes mellitus are outlined.

  14. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    Directory of Open Access Journals (Sweden)

    Michael J Kane

    Full Text Available Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2 for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/- showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  15. Modulation of the mirror system by social relevance.

    Science.gov (United States)

    Kilner, James M; Marchant, Jennifer L; Frith, Chris D

    2006-09-01

    When we observe the actions of others, certain areas of the brain are activated in a similar manner as to when we perform the same actions ourselves. This 'mirror system' includes areas in the ventral premotor cortex and the inferior parietal lobule. Experimental studies suggest that action observation automatically elicits activity in the observer, which precisely mirrors the activity observed. In this case we would expect this activity to be independent of observer's viewpoint. Here we use whole-head magnetoencephalography (MEG) to record cortical activity of human subjects whilst they watched a series of videos of an actor making a movement recorded from different viewpoints. We show that one cortical response to action observation (oscillatory activity in the 7-12 Hz frequency range) is modulated by the relationship between the observer and the actor. We suggest that this modulation reflects a mechanism that filters information into the 'mirror system', allowing only socially relevant information to pass.

  16. Brain areas involved in acupuncture needling sensation of de qi: a single-photon emission computed tomography (SPECT) study.

    Science.gov (United States)

    Chen, Jia-Rong; Li, Gan-Long; Zhang, Gui-Feng; Huang, Yong; Wang, Shu-Xia; Lu, Na

    2012-12-01

    De qi is a sensory response elicited by acupuncture stimulation. According to traditional Chinese medicine (TCM), de qi is essential for clinical efficacy. However, the understanding of the neurobiological basis of de qi is still limited. To investigate the relationship between brain activation and de qi by taking a single-photon emission computed tomography (SPECT) scan while applying acupuncture at TE5. A total of 24 volunteers were randomly divided into 4 groups, and received verum or sham acupuncture at true acupuncture point TE5 or a nearby sham point according to grouping. All subjects then received a (99m)Tc-ethylcysteinate dimer (ECD) SPECT scan. All six subjects in the verum acupuncture at true acupuncture point group experienced de qi sensation; in contrast, all six subjects in the sham acupuncture at the sham point group responded with nothing other than non-sensation. Compared to the scan results from subjects who experienced non-sensation, SPECT scans from subjects with de qi sensation demonstrated significant activated points mainly located in brodmann areas 6, 8, 19, 21, 28, 33, 35, 37, 47, the parahippocampal gyrus, lentiform nucleus, claustrum and red nucleus; deactivated points were seen in brodmann areas 9 and 25. Verum acupuncture at true acupuncture points is more likely to elicit de qi sensation. De qi sensations mainly resulted in brain area activations, but not deactivations. These brain areas are related to the curative effect of Te5. The acupuncture needle sensations of de qi and sharp pain are associated with different patterns of activations and deactivations in the brain.

  17. Metabolic rate in different rat brain areas during seizures induced by a specific delta opiate receptor agonist.

    Science.gov (United States)

    Haffmans, J; De Kloet, R; Dzoljic, M R

    1984-06-04

    The glucose utilization during specific delta opiate agonist-induced epileptiform phenomena, determined by the [14C]2-deoxyglucose technique (2-DG), was examined in various rat brain areas at different time intervals. The peak in EEG spiking response and the most intensive 2-DG uptake occurred 5 min after intraventricular (i.v.t.) administration of the delta opiate receptor agonist. The most pronounced 2-DG uptake at this time interval can be observed in the subiculum, including the CA1 hippocampal area, frontal cortex and central amygdala. A general decrease of glucose consumption, compared to control values, is observed after 10 min, in all regions, with exception of the subiculum. Since functional activity and 2-DG uptake are correlated, we suggest that the subiculum and/or CA1 area, are probably the brain regions most involved in the enkephalin-induced epileptic phenomena.

  18. Preoperative mapping of cortical language areas in adult brain tumour patients using PET and individual non-normalised SPM analyses

    International Nuclear Information System (INIS)

    Meyer, Philipp T.; Sturz, Laszlo; Schreckenberger, Mathias; Setani, Keyvan S.; Buell, Udalrich; Spetzger, Uwe; Meyer, Georg F.; Sabri, Osama

    2003-01-01

    In patients scheduled for the resection of perisylvian brain tumours, knowledge of the cortical topography of language functions is crucial in order to avoid neurological deficits. We investigated the applicability of statistical parametric mapping (SPM) without stereotactic normalisation for individual preoperative language function brain mapping using positron emission tomography (PET). Seven right-handed adult patients with left-sided brain tumours (six frontal and one temporal) underwent 12 oxygen-15 labelled water PET scans during overt verb generation and rest. Individual activation maps were calculated for P<0.005 and P<0.001 without anatomical normalisation and overlaid onto the individuals' magnetic resonance images for preoperative planning. Activations corresponding to Broca's and Wernicke's areas were found in five and six cases, respectively, for P<0.005 and in three and six cases, respectively, for P<0.001. One patient with a glioma located in the classical Broca's area without aphasic symptoms presented an activation of the adjacent inferior frontal cortex and of a right-sided area homologous to Broca's area. Four additional patients with left frontal tumours also presented activations of the right-sided Broca's homologue; two of these showed aphasic symptoms and two only a weak or no activation of Broca's area. Other frequently observed activations included bilaterally the superior temporal gyri, prefrontal cortices, anterior insulae, motor areas and the cerebellum. The middle and inferior temporal gyri were activated predominantly on the left. An SPM group analysis (P<0.05, corrected) in patients with left frontal tumours confirmed the activation pattern shown by the individual analyses. We conclude that SPM analyses without stereotactic normalisation offer a promising alternative for analysing individual preoperative language function brain mapping studies. The observed right frontal activations agree with proposed reorganisation processes, but

  19. Embedding filtering criteria into a wrapper marker selection method for brain tumor classification: an application on metabolic peak area ratios

    International Nuclear Information System (INIS)

    Kounelakis, M G; Zervakis, M E; Giakos, G C; Postma, G J; Buydens, L M C; Kotsiakis, X

    2011-01-01

    The purpose of this study is to identify reliable sets of metabolic markers that provide accurate classification of complex brain tumors and facilitate the process of clinical diagnosis. Several ratios of metabolites are tested alone or in combination with imaging markers. A wrapper feature selection and classification methodology is studied, employing Fisher's criterion for ranking the markers. The set of extracted markers that express statistical significance is further studied in terms of biological behavior with respect to the brain tumor type and grade. The outcome of this study indicates that the proposed method by exploiting the intrinsic properties of data can actually reveal reliable and biologically relevant sets of metabolic markers, which form an important adjunct toward a more accurate type and grade discrimination of complex brain tumors

  20. Proteomic Analysis of Parkin Isoforms Expression in Different Rat Brain Areas.

    Science.gov (United States)

    D'Amico, Agata Grazia; Maugeri, Grazia; Reitano, Rita; Cavallaro, Sebastiano; D'Agata, Velia

    2016-10-01

    PARK2 gene's mutations are related to the familial form of juvenile Parkinsonism, also known as the autosomic recessive juvenile Parkinsonism. This gene encodes for parkin, a 465-amino acid protein. To date, a large number of parkin isoforms, generated by an alternative splicing mechanism, have been described. Currently, Gene Bank lists 27 rat PARK2 transcripts, which matches to 20 exclusive parkin alternative splice variants. Despite the existence of these isoforms, most of the studies carried out so far, have been focused only on the originally cloned parkin. In this work we have analyzed the expression profile of parkin isoforms in some rat brain areas including prefrontal cortex, hippocampus, substantia nigra and cerebellum. To discriminate among these isoforms, we detected their localization through the use of two antibodies that are able to identify different domains of the parkin canonical sequence. Our analysis has revealed that at least fourteen parkin isoforms are expressed in rat brain with a various distribution in the regions analyzed. Our study might help to elucidate the pathophysiological role of these proteins in the central nervous system.

  1. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    Science.gov (United States)

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Pathological Area Detection in MR Images of Brain

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Kropatsch, W.G.; Bartušek, Karel

    2013-01-01

    Roč. 4, č. 1 (2013), s. 17-21 ISSN 1213-1539 R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Brain * Brain tumor detection * MR * Symmetry analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  3. Brain tumor - children

    Science.gov (United States)

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  4. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potentials

    NARCIS (Netherlands)

    Talsma, D.; Kok, Albert

    2001-01-01

    The present study focuses on the question of whether inter- and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while subjects were presented a random sequence of visual and auditory stimuli. They were instructed to attend to

  5. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  6. Molecular mechanisms of aluminium ions neurotoxicity in brain cells of fish from various pelagic areas

    Directory of Open Access Journals (Sweden)

    E. V. Sukharenko

    2017-07-01

    Full Text Available Neurotoxic effects of aluminum chloride in higher than usual environment concentration (10 mg/L were studied in brains of fishes from various pelagic areas, especially in sunfish (Lepomis macrochirus Rafinesque, 1819, roach (Rutilus rutilus Linnaeus, 1758, crucian carp (Carasius carasius Linnaeus, 1758, goby (Neogobius fluviatilis Pallas, 1811. The intensity of oxidative stress and the content of both cytoskeleton protein GFAP and cytosol Ca-binding protein S100β were determined. The differences in oxidative stress data were observed in the liver and brain of fish during 45 days of treatment with aluminum chloride. The data indicated that in the modeling of aluminum intoxication in mature adult fishes the level of oxidative stress was noticeably higher in the brain than in the liver. This index was lower by1.5–2.0 times on average in the liver cells than in the brain. The obtained data evidently demonstrate high sensitivity to aluminum ions in neural tissue cells of fish from various pelagic areas. Chronic intoxication with aluminum ions induced intense astrogliosis in the fish brain. Astrogliosis was determined as result of overexpression of both cytoskeleton and cytosole markers of astrocytes – GFAP and protein S100β (on 75–112% and 67–105% accordingly. Moreover, it was shown that the neurotixic effect of aluminum ions is closely related to metabolism of astroglial intermediate filaments. The results of western blotting showed a considerable increase in the content of the lysis protein products of GFAP with a range of molecular weight from 40–49 kDa. A similar metabolic disturbance was determined for the upregulation protein S100β expression and particularly in the increase in the content of polypeptide fragments of this protein with molecular weight 24–37 kDa. Thus, the obtained results allow one to presume that aluminum ions activate in the fish brain intracellular proteases which have a capacity to destroy the proteins of

  7. Molecules of various pharmacologically-relevant sizes can cross the ultrasound-induced blood-brain barrier opening in vivo.

    Science.gov (United States)

    Choi, James J; Wang, Shougang; Tung, Yao-Sheng; Morrison, Barclay; Konofagou, Elisa E

    2010-01-01

    Focused ultrasound (FUS) is hereby shown to noninvasively and selectively deliver compounds at pharmacologically relevant molecular weights through the opened blood-brain barrier (BBB). A complete examination on the size of the FUS-induced BBB opening, the spatial distribution of the delivered agents and its dependence on the agent's molecular weight were imaged and quantified using fluorescence microscopy. BBB opening in mice (n=13) was achieved in vivo after systemic administration of microbubbles and subsequent application of pulsed FUS (frequency: 1.525MHz, peak-rarefactional pressure in situ: 570 kPa) to the left murine hippocampus through the intact skin and skull. BBB-impermeant, fluorescent-tagged dextrans at three distinct molecular weights spanning over several orders of magnitude were systemically administered and acted as model therapeutic compounds. First, dextrans of 3 and 70 kDa were delivered trans-BBB while 2000 kDa dextran was not. Second, compared with 70 kDa dextran, a higher concentration of 3 kDa dextran was delivered through the opened BBB. Third, the 3 and 70 kDa dextrans were both diffusely distributed throughout the targeted brain region. However, high concentrations of 70 kDa dextran appeared more punctated throughout the targeted region. In conclusion, FUS combined with microbubbles opened the BBB sufficiently to allow passage of compounds of at least 70 kDa, but not greater than 2000 kDa into the brain parenchyma. This noninvasive and localized BBB opening technique could, thus, provide a unique means for the delivery of compounds of several magnitudes of kDa that include agents with shown therapeutic promise in vitro but whose in vivo translation has been hampered by their associated BBB impermeability. (E-mail: ek2191@columbia.edu).

  8. Neurological basis of AMP-dependent thermoregulation and its relevance to central and peripheral hyperthermia

    Science.gov (United States)

    Muzzi, Mirko; Blasi, Francesco; Masi, Alessio; Coppi, Elisabetta; Traini, Chiara; Felici, Roberta; Pittelli, Maria; Cavone, Leonardo; Pugliese, Anna Maria; Moroni, Flavio; Chiarugi, Alberto

    2013-01-01

    Therapeutic hypothermia is of relevance to treatment of increased body temperature and brain injury, but drugs inducing selective, rapid, and safe cooling in humans are not available. Here, we show that injections of adenosine 5′-monophosphate (AMP), an endogenous nucleotide, promptly triggers hypothermia in mice by directly activating adenosine A1 receptors (A1R) within the preoptic area (POA) of the hypothalamus. Inhibition of constitutive degradation of brain extracellular AMP by targeting ecto 5′-nucleotidase, also suffices to prompt hypothermia in rodents. Accordingly, sensitivity of mice and rats to the hypothermic effect of AMP is inversely related to their hypothalamic 5′-nucleotidase activity. Single-cell electrophysiological recording indicates that AMP reduces spontaneous firing activity of temperature-insensitive neurons of the mouse POA, thereby retuning the hypothalamic thermoregulatory set point towards lower temperatures. Adenosine 5′-monophosphate also suppresses prostaglandin E2-induced fever in mice, having no effects on peripheral hyperthermia triggered by dioxymetamphetamine (ecstasy) overdose. Together, data disclose the role of AMP, 5′-nucleotidase, and A1R in hypothalamic thermoregulation, as well and their therapeutic relevance to treatment of febrile illness. PMID:23093068

  9. Nonspatial intermodal selective attention is mediated by sensory brain areas: Evidence from event-related potential.

    NARCIS (Netherlands)

    Talsma, D.; Kok, A.

    2001-01-01

    Focuses on the question of whether inter-and intramodal forms of attention are reflected in activation of the same or different brain areas. ERPs were recorded while Ss (aged 18-41 yrs) were presented a random sequence of visual and auditory stimuli. They were instructed to attend to nonspatial

  10. Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.

    Science.gov (United States)

    Nash, Kevin R; Gordon, Marcia N

    2016-01-01

    Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.

  11. Quantitative pharmacological analysis of 2-125I-iodomelatonin binding sites in discrete areas of the chicken brain

    International Nuclear Information System (INIS)

    Siuciak, J.A.; Krause, D.N.; Dubocovich, M.L.

    1991-01-01

    The authors have localized and characterized 2-125I-iodomelatonin binding sites in the chicken brain using in vitro quantitative autoradiography. Binding sites were widely distributed throughout the chicken brain, predominantly in regions associated with the visual system. The specific binding of 2-125I-iodomelatonin to discrete chicken brain areas was found to be saturable, reversible, and of high affinity. The specific binding of 2-125I-iodomelatonin (75 pm) was quantitated for 40 identifiable brain regions. Eight brain regions were chosen for binding characterization and pharmacological analysis: optic tectum, Edinger-Westphal nucleus, oculomotor nucleus, nucleus rotundus, ventral supraoptic decussation, ventrolateral geniculate nucleus, neostriatum, and ectostriatum. These regions showed no rostral-caudal gradient in 2-125I-iodomelatonin specific binding, and saturation analysis revealed a single class of high-affinity sites with KD values in the range of 33-48 pM and receptor site density (Bmax) ranging from 31 to 58 fmol/mg protein. Competition experiments carried out with various indoles revealed a similar order of pharmacological affinities in these areas: melatonin greater than 6-chloromelatonin greater than methoxyluzindole greater than N-acetylserotonin greater than luzindole much greater than 5-HT greater than 5-methoxytryptamine. The affinity constants determined by quantitative autoradiography for these compounds to compete for 2-125I-iodomelatonin binding in the optic tectum correlated well with the affinities in chicken brain membranes at 25 degrees C (r = 0.966; slope = 0.845; n = 7) and 0 degree C (r = 0.946; slope = 0.379; n = 7), chicken retinal membranes (r = 0.973; slope = 0.759; n = 7), and the potency or affinity of these compounds to affect the calcium-dependent release of 3H-dopamine from the rabbit retina (r = 0.902; slope = 0.506; n = 6)

  12. Ventral medullary neurones excited from the hypothalamic and mid-brain defence areas.

    Science.gov (United States)

    Hilton, S M; Smith, P R

    1984-07-01

    In cats anaesthetised with chloralose, the ventral medulla was explored in and around the strip previously identified as the location of the efferent pathway from the hypothalamic and mid-brain defence areas to the spinal cord, in a search for neurones excited by electrical stimulation of the defence areas. Such units were found mostly in the caudal part of this strip, at a depth of not more than 500 microns from the surface. Nearly all were located in the ventral part of nucleus paragigantocellularis lateralis (PGL) at the level of the rostral pole of the inferior olive. There was evidence of temporal and spatial facilitation, indicating a convergent excitatory input from the defence areas onto neurones in PGL. This is consistent with earlier evidence of a synaptic relay in the efferent pathway at this site. When the pathway is blocked at this site, arterial blood pressure falls profoundly, so activity in these neurones may be essential for the normal level of sympathetic nerve activity.

  13. MRI of the foetal brain

    International Nuclear Information System (INIS)

    Rich, P.; Jones, R.; Britton, J.; Foote, S.; Thilaganathan, B.

    2007-01-01

    Ultrasound examinations for foetal brain abnormalities have been a part of the routine antenatal screening programme in the UK for many years. In utero brain magnetic resonance imaging (MRI) is now being used increasingly successfully to clarify abnormal ultrasound findings, often resulting in a change of diagnosis or treatment plan. Interpretation requires an understanding of foetal brain development, malformations and acquired diseases. In this paper we will outline the technique of foetal MRI, relevant aspects of brain development and provide illustrated examples of foetal brain pathology

  14. HTLV-I associated myelopathy with multiple spotty areas in cerebral white matter and brain stem by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hara, Yasuo; Takahashi, Mitsuo; Yoshikawa, Hiroo; Yorifuji, Shirou; Tarui, Seiichiro

    1988-01-01

    A 48-year-old woman was admitted with complaints of urinary incontinence and gait disturbance, both of which had progressed slowly without any sign of remission. Family history was not contributory. Neurologically, extreme spasticity was recoginized in the lower limbs. Babinski sign was positive bilaterally. Flower-like atypical lymphocytes were seen in blood. Positive anti-HTLV-I antibody was confirmed in serum and spinal fluid by western blot. She was diagnosed as having HTLV-I associated myelopathy (HAM). CT reveald calcification in bilateral globus pallidus, and MRI revealed multiple spotty areas in cerebral white matter and brain stem, but no spinal cord lesion was detectable. Electrophysiologically, brain stem auditory evoked potential (BAEP) suggested the presence of bilateral brain stem lesions. Neither median nor posterior tibial nerve somatosensory evoked potentials were evoked, a finding suggesting the existence of spinal cord lesion. In this case, the lesion was not confined to spinal cord, it was also observed in brain stem and cerebral white matter. Such distinct lesions in cerebral white matter and brain stem have not been reported in patients with HAM. It is suggested that HTLV-I is probably associated with cerebral white matter and brain stem.

  15. Laterality of Brain Activation for Risk Factors of Addiction.

    Science.gov (United States)

    Gordon, Harold W

    2016-01-01

    Laterality of brain activation is reported for tests of risk factors of addiction- impulsivity and craving-but authors rarely address the potential significance of those asymmetries. The purpose of this study is to demonstrate this laterality and discuss its relevance to cognitive and neurophysiological asymmetries associated with drug abuse vulnerability in order to provide new insights for future research in drug abuse. From published reports, brain areas of activation for two tests of response inhibition or craving for drugs of abuse were compiled from fMRI activation peaks and were tabulated for eight sections (octants) in each hemisphere. Percent asymmetries were calculated (R-L/R+L) across studies for each area. For impulsivity, most activation peaks favored the right hemisphere. Overall, the percent difference was 32% (Χ2 = 16.026; p laterality into consideration is a missed opportunity in designing studies and gaining insight into the etiology of drug abuse and pathways for treatment.

  16. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions.

    Science.gov (United States)

    Opitz, Alexander; Zafar, Noman; Bockermann, Volker; Rohde, Veit; Paulus, Walter

    2014-01-01

    The spatial extent of transcranial magnetic stimulation (TMS) is of paramount interest for all studies employing this method. It is generally assumed that the induced electric field is the crucial parameter to determine which cortical regions are excited. While it is difficult to directly measure the electric field, one usually relies on computational models to estimate the electric field distribution. Direct electrical stimulation (DES) is a local brain stimulation method generally considered the gold standard to map structure-function relationships in the brain. Its application is typically limited to patients undergoing brain surgery. In this study we compare the computationally predicted stimulation area in TMS with the DES area in six patients with tumors near precentral regions. We combine a motor evoked potential (MEP) mapping experiment for both TMS and DES with realistic individual finite element method (FEM) simulations of the electric field distribution during TMS and DES. On average, stimulation areas in TMS and DES show an overlap of up to 80%, thus validating our computational physiology approach to estimate TMS excitation volumes. Our results can help in understanding the spatial spread of TMS effects and in optimizing stimulation protocols to more specifically target certain cortical regions based on computational modeling.

  17. Accuracy and reproducibility of simple cross-sectional linear and area measurements of brain structures and their comparison with volume measurements

    International Nuclear Information System (INIS)

    Whalley, H.C.; Wardlaw, J.M.

    2001-01-01

    Volumetric measurement of brain structure on brain images is regarded as a gold standard, yet is very time consuming. We wondered whether simple linear and area measurements might be as accurate and reproducible. Two observers independently measured the cross-sectional area of the corpus callosum, lentiform and caudate nuclei, thalamus, amygdalas, hippocampi, lateral and third ventricles, and the width of the sylvian and frontal interhemispheric fissures and brain stem on brain MRI of 55 patients using a program written in-house; one observer also measured the volumes of the basal ganglia, amygdalo-hippocampal complex and ventricular system using Analyze, and performed qualitative assessment of four regions (lateral and third ventricles, cortex, and medial temporal lobe) using the Lieberman score. All measures were performed blinded to all other information. Test objects of known size were also imaged with MRI and measured by the two observers using the in-house program. The true sizes of the test objects were measured using engineering calipers by two observers blind to the MRI results. Differences between the two observers using the same measurement method, and one observer using different methods, were calculated. The simple linear and cross-sectional area measurements were rapid (20 min versus 5 h for volumetric); were highly accurate for test-object measurement versus true size; had excellent intraobserver reliability; and, for most brain structures, the simple measures correlated highly significantly with volumetric measures. The simple measures were in general highly reproducible, the difference (as a percentage of the area or width of a region) between the two raters being around 10 %, range 0.1 %- 14.1 %, (similar to inter-rater variability in previous studies of volume measurements). The simple linear and area measures are reproducible and correlate well with the measured volumes, and there is a considerable time saving with the former. In circumstances

  18. Brain Research: Implications to Diverse Learners

    Science.gov (United States)

    Madrazo, Gerry M., Jr.; Motz, LaMoine L.

    2005-01-01

    This article deals with brain research. It discusses how a growing understanding of the way the brain functions offers new insights into the minds of students at all stages of development. Brain-based research deals with classroom-relevant concerns, such as sensory perception, attention, memory, and how emotions affect learning. The goals for…

  19. Synopsis of recent moisture flux analyses relevant to the unsaturated zone at Area G

    International Nuclear Information System (INIS)

    Vold, E.

    1998-03-01

    This report summarizes selected recent analyses relevant to the assessment of the site performance for disposal facilities at Los Alamos (Area G) regarding unsaturated zone transport of moisture in liquid and vapor phases and the surface water balance. Much of the analyses methods have been reported previously but in several separate and detailed reports. These do not always reflect the overview possible with hindsight. The present report is an attempt to integrate the author's previous results into a cohesive whole. Due to project time constraints, this report is incomplete in some area. This report first reviews the basis for the Darcy flux analyses and its inherent uncertainties, as detailed in previous reports. Results from the previous works are then reviewed and discussed and in some cases, elaborated in an attempt for clarification. New results of the Darcy Flux Analyses are presented and discussed for Area G mesa top locations, nearby canyon locations and a second mesa top location (TA46 west of Area G). Select evapotranspiration and precipitation data from TA6 are presented and discussed. The conclusions section draws a picture of the hydrology which unifies the study results reported here and in previous reports for the undisturbed and disturbed site locations

  20. SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence.

    Science.gov (United States)

    Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J

    2010-01-01

    Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrus-anterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward.

  1. Role of brain orexin in the pathophysiology of functional gastrointestinal disorders.

    Science.gov (United States)

    Okumura, Toshikatsu; Nozu, Tsukasa

    2011-04-01

    Orexins are neuropeptides that are localized in neurons within the lateral hypothalamic area and regulate feeding behavior. The lateral hypothalamic area plays an important role in not only feeding but the central regulation of other functions including gut physiology. Accumulating evidence have shown that orexins acts in the brain to regulate a wide variety of body functions including gastrointestinal functions. The purpose of this review is to summarize relevant findings on brain orexins and a digestive system, and discuss the pathophysiological roles of the peptides with special reference to functional gastrointestinal disorders. Exogenously administered orexin or endogenously released orexin in the brain potently stimulates gastric acid secretion in pylorus-ligated conscious rats. The vagal cholinergic pathway is involved in the orexin-induced stimulation of acid secretion, suggesting that orexin-containing neurons in lateral hypothalamic area activates neurons in the dorsal motor nucleus in medulla oblongata, followed by increasing vagal outflow, thereby stimulating gastric acid secretion. In addition, brain orexin stimulates gastric motility, pancreatic secretion and induce gastroprotective action. On the other hand, brain orexin is involved in a number of physiological functions other than gut physiology, such as control of sleep/awake cycle and anti-depressive action in addition to increase in appetite. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with functional gastrointestinal disorders who are frequently accompanied with appetite loss, sleep disturbance, depressive state and the inhibition of gut function. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  2. Impact of glucocorticoids on brain function: Relevance for mood disorders

    NARCIS (Netherlands)

    Joëls, M.

    2011-01-01

    Exposure to stressful situations activates two hormonal systems that help the organism to adapt. On the one hand stress hormones achieve adaptation by affecting peripheral organs, on the other hand by altering brain function such that appropriate behavioral strategies are selected for optimal

  3. Microsurgical anatomy of the ventral callosal radiations: new destination, correlations with diffusion tensor imaging fiber-tracking, and clinical relevance.

    Science.gov (United States)

    Peltier, Johann; Verclytte, Sébastien; Delmaire, Christine; Deramond, Hervé; Pruvo, Jean-Pierre; Le Gars, Daniel; Godefroy, Olivier

    2010-03-01

    In the current literature, there is a lack of a detailed map of the origin, course, and connections of the ventral callosal radiations of the human brain. The authors used an older dissection technique based on a freezing process as well as diffusion tensor imaging to investigate this area of the human brain. The authors demonstrated interconnections between areas 11, 12, and 25 for the callosal radiations of the trunk and rostrum of the corpus callosum; between areas 9, 10, and 32 for the genu; and between areas 6, 8, and 9 for the ventral third of the body. The authors identified new ventral callosal connections crossing the rostrum between both temporal poles and coursing within the temporal stem, and they named these connections the "callosal radiations of Peltier." They found that the breadth of the callosal radiations slightly increases along their course from the rostrum to the first third of the body of the corpus callosum. The fiber dissection and diffusion tensor imaging techniques are complementary not only in their application to the study of the commissural system in the human brain, but also in their practical use for diagnosis and surgical planning. Further investigations, neurocognitive tests, and other contributions will permit elucidation of the functional relevance of the newly identified callosal radiations in patients with disease involving the ventral corpus callosum.

  4. A brain network processing the age of faces.

    Directory of Open Access Journals (Sweden)

    György A Homola

    Full Text Available Age is one of the most salient aspects in faces and of fundamental cognitive and social relevance. Although face processing has been studied extensively, brain regions responsive to age have yet to be localized. Using evocative face morphs and fMRI, we segregate two areas extending beyond the previously established face-sensitive core network, centered on the inferior temporal sulci and angular gyri bilaterally, both of which process changes of facial age. By means of probabilistic tractography, we compare their patterns of functional activation and structural connectivity. The ventral portion of Wernicke's understudied perpendicular association fasciculus is shown to interconnect the two areas, and activation within these clusters is related to the probability of fiber connectivity between them. In addition, post-hoc age-rating competence is found to be associated with high response magnitudes in the left angular gyrus. Our results provide the first evidence that facial age has a distinct representation pattern in the posterior human brain. We propose that particular face-sensitive nodes interact with additional object-unselective quantification modules to obtain individual estimates of facial age. This brain network processing the age of faces differs from the cortical areas that have previously been linked to less developmental but instantly changeable face aspects. Our probabilistic method of associating activations with connectivity patterns reveals an exemplary link that can be used to further study, assess and quantify structure-function relationships.

  5. The Credentials of Brain-Based Learning

    Science.gov (United States)

    Davis, Andrew

    2004-01-01

    This paper discusses the current fashion for brain-based learning, in which value-laden claims about learning are grounded in neurophysiology. It argues that brain science cannot have the authority about learning that some seek to give it. It goes on to discuss whether the claim that brain science is relevant to learning involves a category…

  6. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children

    Directory of Open Access Journals (Sweden)

    Vernon Furtado da Silva

    2016-08-01

    Full Text Available ABSTRACT This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA, 10 with intellectual impairments (GDI, and 10 non-autistics (GCN had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  7. Brain stimulation used as biofeedback in neuronal activation of the temporal lobe area in autistic children.

    Science.gov (United States)

    Silva, Vernon Furtado da; Calomeni, Mauricio Rocha; Nunes, Rodolfo Alkmim Moreira; Pimentel, Carlos Elias; Martins, Gabriela Paes; Oliveira, Patrícia da Cruz Araruna; Silva, Patrícia Bagno; Silva, Alair Pedro Ribeiro de Souza E

    2016-08-01

    This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA), 10 with intellectual impairments (GDI), and 10 non-autistics (GCN) had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.

  8. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  9. Semantic brain areas are involved in gesture comprehension: An electrical neuroimaging study.

    Science.gov (United States)

    Proverbio, Alice Mado; Gabaro, Veronica; Orlandi, Andrea; Zani, Alberto

    2015-08-01

    While the mechanism of sign language comprehension in deaf people has been widely investigated, little is known about the neural underpinnings of spontaneous gesture comprehension in healthy speakers. Bioelectrical responses to 800 pictures of actors showing common Italian gestures (e.g., emblems, deictic or iconic gestures) were recorded in 14 persons. Stimuli were selected from a wider corpus of 1122 gestures. Half of the pictures were preceded by an incongruent description. ERPs were recorded from 128 sites while participants decided whether the stimulus was congruent. Congruent pictures elicited a posterior P300 followed by late positivity, while incongruent gestures elicited an anterior N400 response. N400 generators were investigated with swLORETA reconstruction. Processing of congruent gestures activated face- and body-related visual areas (e.g., BA19, BA37, BA22), the left angular gyrus, mirror fronto/parietal areas. The incongruent-congruent contrast particularly stimulated linguistic and semantic brain areas, such as the left medial and the superior temporal lobe. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Synaesthetic Colour in the Brain: Beyond Colour Areas. A Functional Magnetic Resonance Imaging Study of Synaesthetes and Matched Controls

    OpenAIRE

    van Leeuwen, Tessa M.; Petersson, Karl Magnus; Hagoort, Peter

    2010-01-01

    Background In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our q...

  11. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  12. Hypometabolism in Posterior and Temporal Areas of the Brain is Associated with Cognitive Decline in Parkinson's Disease.

    Science.gov (United States)

    Tard, Céline; Demailly, Franck; Delval, Arnaud; Semah, Franck; Defebvre, Luc; Dujardin, Kathy; Moreau, Caroline

    2015-01-01

    Brain metabolic profiles of patients with Parkinson's disease (PD) and cognitive impairment or dementia are now available. It would be useful if data on brain metabolism were also predictive of the risk of a pejorative cognitive evolution - especially in the multidisciplinary management of advanced PD patients. The primary objective was to determine whether a specific brain metabolic pattern is associated with cognitive decline in PD. Sixteen advanced PD patients were screened for the absence of cognitive impairment (according to the Mattis dementia rating scale, MDRS) and underwent [18F]-fluorodeoxyglucose positron emission tomography brain imaging in the "off drug" state. The MDRS was scored again about two years later, categorizing patients as having significant cognitive decline (decliners) or not (stables). The two groups were then compared in terms of their brain metabolism at inclusion. There were six decliners and ten stables. Significant hypometabolism in the two precunei (Brodmann area (BA) 31), the left middle temporal gyrus (BA21) and the left fusiform gyrus (BA37) was found in the decliner group compared withthe stables. In advanced PD, a particular metabolic pattern may be associated with the onset of significant cognitive decline.

  13. PCP-induced alterations in cerebral glucose utilization in rat brain: blockade by metaphit, a PCP-receptor-acylating agent

    International Nuclear Information System (INIS)

    Tamminga, C.A.; Tanimoto, K.; Kuo, S.; Chase, T.N.; Contreras, P.C.; Rice, K.C.; Jackson, A.E.; O'Donohue, T.L.

    1987-01-01

    The effects of phencyclidine (PCP) on regional cerebral glucose utilization was determined by using quantitative autoradiography with [ 14 C]-2-deoxyglucose. PCP increased brain metabolism in selected areas of cortex, particularly limbic, and in the basal ganglia and thalamus, whereas the drug decreased metabolism in areas related to audition. These results are consistent with the known physiology of central PCP neurons and may help to suggest brain areas involved in PCP-mediated actions. Moreover, based on the behavioral similarities between PCP psychosis and an acute schizophrenic episode, these data may be relevant to the understanding of schizophrenia. The PCP-receptor-acylating agent, metaphit, blocked most of these PCP actions. In addition, metaphit by itself was found to diminish glucose utilization rather uniformly throughout brain. These results indicate an antagonist effect of metaphit on the PCP system and suggest a widespread action of metaphit, putatively at a PCP-related site, possibly in connection with the N-methyl-D-aspartate (NMDA) receptor

  14. Acute iron overload and oxidative stress in brain

    International Nuclear Information System (INIS)

    Piloni, Natacha E.; Fermandez, Virginia; Videla, Luis A.; Puntarulo, Susana

    2013-01-01

    An in vivo model in rat was developed by intraperitoneally administration of Fe-dextran to study oxidative stress triggered by Fe-overload in rat brain. Total Fe levels, as well as the labile iron pool (LIP) concentration, in brain from rats subjected to Fe-overload were markedly increased over control values, 6 h after Fe administration. In this in vivo Fe overload model, the ascorbyl (A·)/ascorbate (AH − ) ratio, taken as oxidative stress index, was assessed. The A·/AH − ratio in brain was significantly higher in Fe-dextran group, in relation to values in control rats. Brain lipid peroxidation indexes, thiobarbituric acid reactive substances (TBARS) generation rate and lipid radical (LR·) content detected by Electron Paramagnetic Resonance (EPR), in Fe-dextran supplemented rats were similar to control values. However, values of nuclear factor-kappaB deoxyribonucleic acid (NFκB DNA) binding activity were significantly increased (30%) after 8 h of Fe administration, and catalase (CAT) activity was significantly enhanced (62%) 21 h after Fe administration. Significant enhancements in Fe content in cortex (2.4 fold), hippocampus (1.6 fold) and striatum (2.9 fold), were found at 6 h after Fe administration. CAT activity was significantly increased after 8 h of Fe administration in cortex, hippocampus and striatum (1.4 fold, 86, and 47%, respectively). Fe response in the whole brain seems to lead to enhanced NF-κB DNA binding activity, which may contribute to limit oxygen reactive species-dependent damage by effects on the antioxidant enzyme CAT activity. Moreover, data shown here clearly indicate that even though Fe increased in several isolated brain areas, this parameter was more drastically enhanced in striatum than in cortex and hippocampus. However, comparison among the net increase in LR· generation rate, in different brain areas, showed enhancements in cortex lipid peroxidation, without changes in striatum and hippocampus LR· generation rate after 6

  15. Brain-Based Teaching/Learning and Implications for Religious Education.

    Science.gov (United States)

    Weber, Jean Marie

    2002-01-01

    Argues that physical activity and water can increase brain activity, and hence, learning. Findings of neuroscientists regarding the brain can inform educators. Brain-based teaching emphasizes teamwork, cooperative learning, and global responsibility. Argues against gathering information without relevance. Connects brain-based learning concepts to…

  16. Identifying diagnostically-relevant resting state brain functional connectivity in the ventral posterior complex via genetic data mining in autism spectrum disorder.

    Science.gov (United States)

    Baldwin, Philip R; Curtis, Kaylah N; Patriquin, Michelle A; Wolf, Varina; Viswanath, Humsini; Shaw, Chad; Sakai, Yasunari; Salas, Ramiro

    2016-05-01

    Exome sequencing and copy number variation analyses continue to provide novel insight to the biological bases of autism spectrum disorder (ASD). The growing speed at which massive genetic data are produced causes serious lags in analysis and interpretation of the data. Thus, there is a need to develop systematic genetic data mining processes that facilitate efficient analysis of large datasets. We report a new genetic data mining system, ProcessGeneLists and integrated a list of ASD-related genes with currently available resources in gene expression and functional connectivity of the human brain. Our data-mining program successfully identified three primary regions of interest (ROIs) in the mouse brain: inferior colliculus, ventral posterior complex of the thalamus (VPC), and parafascicular nucleus (PFn). To understand its pathogenic relevance in ASD, we examined the resting state functional connectivity (RSFC) of the homologous ROIs in human brain with other brain regions that were previously implicated in the neuro-psychiatric features of ASD. Among them, the RSFC of the VPC with the medial frontal gyrus (MFG) was significantly more anticorrelated, whereas the RSFC of the PN with the globus pallidus was significantly increased in children with ASD compared with healthy children. Moreover, greater values of RSFC between VPC and MFG were correlated with severity index and repetitive behaviors in children with ASD. No significant RSFC differences were detected in adults with ASD. Together, these data demonstrate the utility of our data-mining program through identifying the aberrant connectivity of thalamo-cortical circuits in children with ASD. Autism Res 2016, 9: 553-562. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Brain-machine and brain-computer interfaces.

    Science.gov (United States)

    Friehs, Gerhard M; Zerris, Vasilios A; Ojakangas, Catherine L; Fellows, Mathew R; Donoghue, John P

    2004-11-01

    The idea of connecting the human brain to a computer or machine directly is not novel and its potential has been explored in science fiction. With the rapid advances in the areas of information technology, miniaturization and neurosciences there has been a surge of interest in turning fiction into reality. In this paper the authors review the current state-of-the-art of brain-computer and brain-machine interfaces including neuroprostheses. The general principles and requirements to produce a successful connection between human and artificial intelligence are outlined and the authors' preliminary experience with a prototype brain-computer interface is reported.

  18. FROM BRAIN DRAIN TO BRAIN NETWORKING

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-06-01

    Full Text Available Scientific networking is the most accessible way a country can turn the brain drain into brain gain. Diaspora’s members offer valuable information, advice or financial support from the destination country, without being necessary to return. This article aims to investigate Romania’s potential of turning brain drain into brain networking, using evidence from the medical sector. The main factors influencing the collaboration with the country of origin are investigated. The conclusions suggest that Romania could benefit from the diaspora option, through an active implication at institutional level and the implementation of a strategy in this area.

  19. Clinical impact of anatomo-functional evaluation of brain function during brain tumor surgery

    International Nuclear Information System (INIS)

    Mikuni, Nobuhiro; Kikuchi, Takayuki; Matsumoto, Atsushi; Yokoyama, Yohei; Takahashi, Jun; Hashimoto, Nobuo

    2009-01-01

    To attempt to improve surgical outcome of brain surgery, clinical significance of anatomo-functional evaluation of brain function during resection of brain tumors was assessed. Seventy four patients with glioma located near eloquent areas underwent surgery while awake. Intraoperative tractography-integrated functional neuronavigation and cortical/subcortical electrical stimulation were correlated with clinical symptoms during and after resection of tumors. Cortical functional areas were safely removed with negative electric stimulation and eloquent cortices could be removed in some circumstances. Subcortical functional mapping was difficult except for motor function. Studying cortical functional compensation allows more extensive removal of brain tumors located in the eloquent areas. (author)

  20. The Measurement of Relevance Amount of Documents That By Using of Google cross-language retrieval About Agriculture Subject Area are Retrieved

    Directory of Open Access Journals (Sweden)

    Fatemeh Jamshidi Ghahfarokhi

    2014-02-01

    Full Text Available In this study, the relevance amount of documents has been investigated by using google cross-language retrieval tools about a agriculture subject area in cross-language retrieval form, are retrieved. For this purpose, by using Persian journals articles that have had English abstracts, Persian phrases and subject terms with their English equivalent were extracted. In three class us, thirty number of phrases and subject terms of agriculture area were extracted: First class, subject phrases that only in agriculture are used; Secondary, agriculture subject terms that in other fields are used too; Third class, agriculture subject terms that out of this field are considered as public term. Then by these phrases and terms, documents were searched, and relevance amount of search results are investigated. Results of study showed that google cross-language retrieval tools for two classes of phrases and terms, in cross-language retrieval of relevance document about agriculture subject area, aren`t succeed: one class, agriculture subject terms that in other fields are used too. other class, agriculture subject terms that out of agriculture field are considered as public term. Google cross-language retrieval tools about subject phrase and terms that only in agriculture field are used, are performance rather desirable than other two class of phrase and terms

  1. Genomic and Epigenomic Insights into Nutrition and Brain Disorders

    Directory of Open Access Journals (Sweden)

    Margaret Joy Dauncey

    2013-03-01

    Full Text Available Considerable evidence links many neuropsychiatric, neurodevelopmental and neurodegenerative disorders with multiple complex interactions between genetics and environmental factors such as nutrition. Mental health problems, autism, eating disorders, Alzheimer’s disease, schizophrenia, Parkinson’s disease and brain tumours are related to individual variability in numerous protein-coding and non-coding regions of the genome. However, genotype does not necessarily determine neurological phenotype because the epigenome modulates gene expression in response to endogenous and exogenous regulators, throughout the life-cycle. Studies using both genome-wide analysis of multiple genes and comprehensive analysis of specific genes are providing new insights into genetic and epigenetic mechanisms underlying nutrition and neuroscience. This review provides a critical evaluation of the following related areas: (1 recent advances in genomic and epigenomic technologies, and their relevance to brain disorders; (2 the emerging role of non-coding RNAs as key regulators of transcription, epigenetic processes and gene silencing; (3 novel approaches to nutrition, epigenetics and neuroscience; (4 gene-environment interactions, especially in the serotonergic system, as a paradigm of the multiple signalling pathways affected in neuropsychiatric and neurological disorders. Current and future advances in these four areas should contribute significantly to the prevention, amelioration and treatment of multiple devastating brain disorders.

  2. [Surgical treatment of eloquent brain area tumors using neurophysiological mapping of the speech and motor areas and conduction tracts].

    Science.gov (United States)

    Zuev, A A; Korotchenko, E N; Ivanova, D S; Pedyash, N V; Teplykh, B A

    To evaluate the efficacy of intraoperative neurophysiological mapping in removing eloquent brain area tumors (EBATs). Sixty five EBAT patients underwent surgical treatment using intraoperative neurophysiological mapping at the Pirogov National Medical and Surgical Center in the period from 2014 to 2015. On primary neurological examination, 46 (71%) patients were detected with motor deficits of varying severity. Speech disorders were diagnosed in 17 (26%) patients. Sixteen patients with concomitant or isolated lesions of the speech centers underwent awake surgery using the asleep-awake-asleep protocol. Standard neurophysiological monitoring included transcranial stimulation as well as motor and, if necessary, speech mapping. The motor and speech areas were mapped with allowance for the preoperative planning data (obtained with a navigation station) synchronized with functional MRI. In this case, a broader representation of the motor and speech centers was revealed in 12 (19%) patients. During speech mapping, no speech disorders were detected in 7 patients; in 9 patients, stimulation of the cerebral cortex in the intended surgical area induced motor (3 patients), sensory (4), and amnesic (2) aphasia. In the total group, we identified 11 patients in whom the tumor was located near the internal capsule. Upon mapping of the conduction tracts in the internal capsule area, the stimulus strength during tumor resection was gradually decreased from 10 mA to 5 mA. Tumor resection was stopped when responses retained at a stimulus strength of 5 mA, which, when compared to the navigation data, corresponded to a distance of about 5 mm to the internal capsule. Completeness of tumor resection was evaluated (contrast-enhanced MRI) in all patients on the first postoperative day. According to the control MRI data, the tumor was resected totally in 60% of patients, subtotally in 24% of patients, and partially in 16% of patients. In the early postoperative period, the development or

  3. Intra-operative neurophysiological mapping and monitoring during brain tumour surgery in children: an update.

    Science.gov (United States)

    Coppola, Angela; Tramontano, Vincenzo; Basaldella, Federica; Arcaro, Chiara; Squintani, Giovanna; Sala, Francesco

    2016-10-01

    Over the past decade, the reluctance to operate in eloquent brain areas has been reconsidered in the light of the advent of new peri-operative functional neuroimaging techniques and new evidence from neuro-oncology. To maximise tumour resection while minimising morbidity should be the goal of brain surgery in children as much as it is in adults, and preservation of brain functions is critical in the light of the increased survival and the expectations in terms of quality of life. Intra-operative neurophysiology is the gold standard to localise and preserve brain functions during surgery and is increasingly used in paediatric neurosurgery. Yet, the developing nervous system has peculiar characteristics in terms of anatomical and physiological maturation, and some technical aspects need to be tailored for its use in children, especially in infants. This paper will review the most recent advances in the field of intra-operative neurophysiology (ION) techniques during brain surgery, focussing on those aspects that are relevant to the paediatric neurosurgery practice.

  4. Sensory competition in the face processing areas of the human brain.

    Directory of Open Access Journals (Sweden)

    Krisztina Nagy

    Full Text Available The concurrent presentation of multiple stimuli in the visual field may trigger mutually suppressive interactions throughout the ventral visual stream. While several studies have been performed on sensory competition effects among non-face stimuli relatively little is known about the interactions in the human brain for multiple face stimuli. In the present study we analyzed the neuronal basis of sensory competition in an event-related functional magnetic resonance imaging (fMRI study using multiple face stimuli. We varied the ratio of faces and phase-noise images within a composite display with a constant number of peripheral stimuli, thereby manipulating the competitive interactions between faces. For contralaterally presented stimuli we observed strong competition effects in the fusiform face area (FFA bilaterally and in the right lateral occipital area (LOC, but not in the occipital face area (OFA, suggesting their different roles in sensory competition. When we increased the spatial distance among pairs of faces the magnitude of suppressive interactions was reduced in the FFA. Surprisingly, the magnitude of competition depended on the visual hemifield of the stimuli: ipsilateral stimulation reduced the competition effects somewhat in the right LOC while it increased them in the left LOC. This suggests a left hemifield dominance of sensory competition. Our results support the sensory competition theory in the processing of multiple faces and suggests that sensory competition occurs in several cortical areas in both cerebral hemispheres.

  5. Central coordination difficulty and brain CT in infancy

    International Nuclear Information System (INIS)

    Hiraiwa, Mikio; Nonaka, Chizuru; Abe, Toshiaki; Ohmi, Kazuhiko; Togo, Tomoko

    1980-01-01

    Brain CT (Computed Tomography) was performed in eighteen infants, eight males and ten females, one-month-old to twelve-month-old with central coordination difficulty (CCD) in General Electrics (U.S.A.) model CT/T-8800. Analyses of CT findings were enforced with two dimensional measurement which we previously reported. We measured intracranial area, brain area, ventricular area, and bifrontal fluid collection (low density area between skull and anterior side of the frontal lobe). Each slices we measured were through foramen of Monro by fifteen-degree declined from cantho-meatal line. Patients with CCD had higher amount of accumulated bifrontal fluid collection on the CT compared with those without CCD. Brain area index (brain area x100/intracranial area) also showed diagnostic value for CCD. Patients with CCD had lower brain area index than those without CCD. Ventricular area index (ventricular area x100/intracranial area) was less appropriate index for CCD than accumulated bifrontal fluid collection and brain area index. We thought that CT findings of the patients with CCD in infancy were characteristic in accumulated bifrontal fluid collection and reduced brain area index. (author)

  6. Brain stem type neuro-Behcet's syndrome

    International Nuclear Information System (INIS)

    Kataoka, Satoshi; Hirose, Genjiro; Kosoegawa, Hiroshi; Oda, Rokuhei; Yoshioka, Akira

    1987-01-01

    Two cases of brain stem type Neuro-Behcet's syndrome were evaluated by brain CT and Magnetic Resonance Imaging (Super-conducting type, 0.5 tesla) to correlate with the neurological findings. In the acute phase, low density area with peripheral enhancement effect and mass effect were seen at the brain stem in brain CT. MRI revealed a extensive high intensity signal area mainly involving the corticospinal tract in the meso-diencephalon as well as pons by T 2 weighted images (spin echo, TR = 1, 600 msec, TE = 90 msec) and the value of T 1 , T 2 , at the brain stem lesion were prolonged moderately. After high dose steroid treatment, the low density area in brain CT and high signal area in MRI were gradually reduced in its size. Peripheral enhancement effect in brain CT disappeared within 10 months in case 1, one month in the other case. In the chronic stage, the reduction of low density area and atrophy of brain stem were noted in brain CT. The lesion in chronic stage had low intensity in T 1 , T 2 weighted images and the T 1 , T 2 values at the lesion were mildly prolonged in MRI. Sequentially CT with enhancement and MRI examinations with T 1 , T 2 weighted images were useful to detect the lesion and to evaluate the activity, evolution of brain stem type Neuro-Behcet's syndrome. (author)

  7. Screening of Toll-like receptors expression in multiple system atrophy brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Agander, Tina Klitmøller

    2013-01-01

    The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. It was recently suggested that TLRs have an important role in the crosstalk between neurons and glial cells in the central nervous system, thus...... inclusions in oligodendrocytes. α-Synuclein can act as a danger-associated molecular pattern and alter TLR expression thereby activating inflammatory responses in the brain. In this study, using real-time PCR, we assessed the expression of TLRs (TLR1-10) in selected areas of MSA brains (substantia nigra......TLR-1 mRNA were elevated in substantia nigra and striatum whereas levels of hTLR-8 and hTLR-9 mRNAs were significantly higher in cerebella from MSA patients. The concerted alteration of expression of multiple TLRs in MSA brains can be of relevance for understanding the pathogenesis of the disease....

  8. Patterns of neonatal hypoxic-ischaemic brain injury

    International Nuclear Information System (INIS)

    Vries, Linda S. de; Groenendaal, Floris

    2010-01-01

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  9. Patterns of neonatal hypoxic-ischaemic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Linda S. de [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands); Wilhelmina Children' s Hospital, University Medical Centre, Department of Neonatology, KE 04.123.1, P.O. Box 85090, Utrecht (Netherlands); Groenendaal, Floris [University Medical Centre, Department of Neonatology, Wilhelmina Children' s Hospital, Utrecht (Netherlands)

    2010-06-15

    Enormous progress has been made in assessing the neonatal brain, using magnetic resonance imaging (MRI). In this review, we will describe the use of MRI and proton magnetic resonance spectroscopy in detecting different patterns of brain injury in (full-term) human neonates following hypoxic-ischaemic brain injury and indicate the relevance of these findings in predicting neurodevelopmental outcome. (orig.)

  10. Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study.

    Science.gov (United States)

    Farbota, Kimberly D M; Sodhi, Aparna; Bendlin, Barbara B; McLaren, Donald G; Xu, Guofan; Rowley, Howard A; Johnson, Sterling C

    2012-11-01

    After traumatic injury, the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor-based morphometry and neuropsychological testing to examine brain volume loss in 17 traumatic brain injury (TBI) patients and 13 controls over a 4-year period. Patients were scanned at 2 months, 1 year, and 4 years post-injury. High-dimensional warping procedures were used to create change maps of each subject's brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements.

  11. Structural asymmetry of cortical visual areas is related to ocular dominance

    DEFF Research Database (Denmark)

    Jensen, Bettina H; Hougaard, Anders; Amin, Faisal M

    2015-01-01

    lateralized visual areas were identified, both right>left and left>right. When correlating the asymmetries to the functional parameters, we found a significant correlation to ocular dominance (P...The grey matter of the human brain is asymmetrically distributed between the cerebral hemispheres. This asymmetry includes visual areas, but its relevance to visual function is not understood. Voxel-based morphometry is a well-established technique for localization and quantification of cerebral...... was identified to be significantly larger in the left hemisphere for right-eyed participants and vice versa. These results suggest a cerebral basis for ocular dominance....

  12. Changes in brain CT with aging

    International Nuclear Information System (INIS)

    Hiraiwa, Mikio; Abe, Toshiaki; Nonaka, Chizuru

    1983-01-01

    We have devised a new method for the objective evaluation of brain CT, a two-dimensional measurement: Two-dimensional measurement is based not on the developed films, but on treating raw data from magnetic tape. On the basis of our application of this method, we have discussed the changes in brain CT with aging. 135 patients, 72 males and 63 females, aged from 10 days to 78 years old, were subjected. The intracranial area showed a significant increase under 2 years old, but no marked changes after 3 years of age. The brain area increased under 2 years of age, and decreased after one's forties. The ventricular area showed no significant changes until the forties, but gradually increased thereafter. The bifrontal fluid-collection area was prominent in infancy, was almost invisible between 3 and 50 years of age and thereafter grew larger. For a relative comparison of brain CT scans with different intracranial areas, we devised three indices; BAI (brain-area index; brain area x 100/intracranial area), VAI (ventricular-area index; ventricular area x 100/intracranial area), and BFCI (bifrontal fluid-collection-area index; bifrontal fluid-collection area x 100/intracranial area). The BAI was low in infancy (under 95), was 96-97 between 3 and 50 years of age, and slowly decreased thereafter (88 in seventies). The VAI was under 2 until 50 years of age and gradually increased thereafter. The BFCI was high (over 3) in infancy and 0.2-0.4 between 3 and 50 years of age, and slowly increased thereafter. (J.P.N.)

  13. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    Science.gov (United States)

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the

  14. Evaluating Changes to Blood-Brain Barrier Integrity in Brain Metastasis over Time and after Radiation Treatment

    Directory of Open Access Journals (Sweden)

    Donna H. Murrell

    2016-06-01

    Full Text Available INTRODUCTION: The incidence of brain metastasis due to breast cancer is increasing, and prognosis is poor. Treatment is challenging because the blood-brain barrier (BBB limits efficacy of systemic therapies. In this work, we develop a clinically relevant whole brain radiotherapy (WBRT plan to investigate the impact of radiation on brain metastasis development and BBB permeability in a murine model. We hypothesize that radiotherapy will decrease tumor burden and increase tumor permeability, which could offer a mechanism to increase drug uptake in brain metastases. METHODS: Contrast-enhanced magnetic resonance imaging (MRI and high-resolution anatomical MRI were used to evaluate BBB integrity associated with brain metastases due to breast cancer in the MDA-MB-231-BR-HER2 model during their natural development. Novel image-guided microirradiation technology was employed to develop WBRT treatment plans and to investigate if this altered brain metastatic growth or permeability. Histology and immunohistochemistry were performed on whole brain slices corresponding with MRI to validate and further investigate radiological findings. RESULTS: Herein, we show successful implementation of microirradiation technology that can deliver WBRT to small animals. We further report that WBRT following diagnosis of brain metastasis can mitigate, but not eliminate, tumor growth in the MDA-MB-231-BR-HER2 model. Moreover, radiotherapy did not impact BBB permeability associated with metastases. CONCLUSIONS: Clinically relevant WBRT is not curative when delivered after MRI-detectable tumors have developed in this model. A dose of 20 Gy in 2 fractions was not sufficient to increase tumor permeability such that it could be used as a method to increase systemic drug uptake in brain metastasis.

  15. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Energy Technology Data Exchange (ETDEWEB)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P [Nuclear Medicine Dpt, University Hospital of Larissa, Larissa (Greece); Papatriantafyllou, J; Karageorgiou, C [Neurology Dpt, General Hospital ' G. Gennimatas' , Athens (Greece); Sifakis, N; Zerva, C [Nuclear Medicine Dpt, ' Alexandra' University Hospital, Athens (Greece)], E-mail: vanvalot@yahoo.gr

    2009-05-15

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76{+-}6.51 years, education 11.81{+-}4.25 years, MMSE 16.69{+-}9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25{+-}10.48 years, education 10{+-}4.6 years, MMSE 12.5{+-}3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  16. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    International Nuclear Information System (INIS)

    Valotassiou, V; Tsougos, I; Tzavara, C; Georgoulias, P; Papatriantafyllou, J; Karageorgiou, C; Sifakis, N; Zerva, C

    2009-01-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  17. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    Science.gov (United States)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  18. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    Science.gov (United States)

    van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter

    2010-08-10

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of

  19. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    Directory of Open Access Journals (Sweden)

    Tessa M van Leeuwen

    Full Text Available BACKGROUND: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour. Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. METHODOLOGY/PRINCIPAL FINDINGS: First, in a free viewing functional magnetic resonance imaging (fMRI experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. CONCLUSIONS/SIGNIFICANCE: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal

  20. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    Science.gov (United States)

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [Brain function recovery after prolonged posttraumatic coma].

    Science.gov (United States)

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  2. Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing.

    Science.gov (United States)

    Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan

    2013-02-15

    Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model.

    Directory of Open Access Journals (Sweden)

    Qi Li

    Full Text Available OBJECTIVES: Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. METHOD: We used an established mouse model of maternal immune activation (MIA by the viral mimic PolyI:C administered in early (day 9 or late (day 17 gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. RESULTS: PolyI:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4(th ventricle volume but did not disrupt sensorimotor gating. CONCLUSIONS: Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life.

  4. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas

    NARCIS (Netherlands)

    van Dijk, A.; Klanker, M.; van Oorschot, N.; Post, R.; Hamelink, R.; Feenstra, M. G. P.; Denys, D.

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of

  5. Touch-based Brain Computer Interfaces: State of the art

    NARCIS (Netherlands)

    Erp, J.B.F. van; Brouwer, A.M.

    2014-01-01

    Brain Computer Interfaces (BCIs) rely on the user's brain activity to control equipment or computer devices. Many BCIs are based on imagined movement (called active BCIs) or the fact that brain patterns differ in reaction to relevant or attended stimuli in comparison to irrelevant or unattended

  6. On how high performers keep cool brains in situations of cognitive overload.

    Science.gov (United States)

    Jaeggi, Susanne M; Buschkuehl, Martin; Etienne, Alex; Ozdoba, Christoph; Perrig, Walter J; Nirkko, Arto C

    2007-06-01

    What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.

  7. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Aβ and insulin degradation

    Directory of Open Access Journals (Sweden)

    Castaño Eduardo M

    2008-12-01

    Full Text Available Abstract Background Insulin degrading enzyme (IDE is implicated in the regulation of amyloid β (Aβ steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD. Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Results Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD, endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Conclusion Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for

  8. Cyto- and receptor architecture of area 32 in human and macaque brains.

    Science.gov (United States)

    Palomero-Gallagher, Nicola; Zilles, Karl; Schleicher, Axel; Vogt, Brent A

    2013-10-01

    Human area 32 plays crucial roles in emotion and memory consolidation. It has subgenual (s32), pregenual (p32), dorsal, and midcingulate components. We seek to determine whether macaque area 32 has subgenual and pregenual subdivisions and the extent to which they are comparable to those in humans by means of NeuN immunohistochemistry and multireceptor analysis of laminar profiles. The macaque has areas s32 and p32. In s32, layer IIIa/b neurons are larger than those of layer IIIc. This relationship is reversed in p32. Layer Va is thicker and Vb thinner in s32. Area p32 contains higher kainate, benzodiazepine (BZ), and serotonin (5-HT)1A but lower N-methyl-D-aspartate (NMDA) and α2 receptor densities. Most differences were found in layers I, II, and VI. Together, these differences support the dual nature of macaque area 32. Comparative analysis of human and macaque s32 and p32 supports equivalences in cyto- and receptor architecture. Although there are differences in mean areal receptor densities, there are considerable similarities at the layer level. Laminar receptor distribution patterns in each area are comparable in the two species in layers III-Va for kainate, NMDA, γ-aminobutyric acid (GABA)B , BZ, and 5-HT1A receptors. Multivariate statistical analysis of laminar receptor densities revealed that human s32 is more similar to macaque s32 and p32 than to human p32. Thus, macaque 32 is more complex than hitherto known. Our data suggest a homologous neural architecture in anterior cingulate s32 and p32 in human and macaque brains. © 2013 Wiley Periodicals, Inc.

  9. Changes in the peritumoral hypoperfusion area immediately after radiosurgery for metastatic brain tumor. Analysis using 3D-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Masaaki [Toho Univ., Tokyo (Japan). School of Medicine

    2001-09-01

    Sixteen patients with single metastatic brain tumor underwent SPECT using N-isopropyl-p-({sup 123}I) iodoamphetamine ({sup 123}I-IMP) before and after radiosurgery. Influence of treatment was evaluated using three-dimensional SPECT images, threshold-voxel graphs and changes in the volume of the peritumoral hypoperfusion area. A three-detector type scanner, the PRISM3000, was also used. SPECT scanning was performed for 30 minutes after intravenous administration of {sup 123}I-IMP with sequential scans every 1 minutes. The data obtained 16-30 minutes after administration were processed using a low-pass ramp filter, and three-dimensional SPECT images were constructed from these data using the Application Visualization System (AVS). Furthermore, a threshold-voxel graph was plotted and the volume of the peritumoral hypoperfusion area was calculated. SPECT was performed before radiosurgery, and 1 day, 1 week, and 1 month after, and these data were compared. Three-dimensional SPECT presented the area of peritumoral hypoperfusion as a deficit image and changes were evaluated visually. Threshold-voxel graphs were evaluated as follows: changes in voxels with a threshold of 40-50% indicated a hypoperfusion area, and changes in voxels with a threshold of 70-95% indicated a hyperperfusion area in the tumor side hemisphere. The volume of the peritumoral hypoperfusion area was calculated using the voxel difference between the tumor side and normal hemispheres. Our results showed that the peritumoral hypoperfusion area gradually decreased after an initial first-day increase following radiosurgery. Visual three-dimensional SPECT allowed us to monitor both the volume of the peritumoral hypoperfusion area of metastatic brain tumors after radiosurgery by means of a threshold-voxel graph and changes in the peritumoral hypoperfusion area. (author)

  10. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders

    DEFF Research Database (Denmark)

    Mansur, Rodrigo B; Zugman, Andre; Ahmed, Juhie

    2017-01-01

    regions (e.g. RR: 1.011, p=0.049 in the left rostral middle frontal area). Changes in regional volumes were associated with improvement in executive function (e.g. r=0.698, p=0.003 for the right superior frontal area). Adjunctive liraglutide results in clinically significant weight loss......, with corresponding improvement in cognitive function; changes in cognitive function were partially moderated by changes in brain morphometry, underscoring the interrelationship between weight and brain structure/function.......Cognitive deficits are a core feature across psychiatric disorders. Emerging evidence indicates that metabolic pathways are highly relevant for the substrates and phenomenology of the cognitive domain. Herein, we aimed to determine the effects of liraglutide, a GLP-1R agonist, on brain structural...

  11. Preliminary notes on brain weight variation across labrid fish species with different levels of cooperative behaviour

    Institute of Scientific and Technical Information of China (English)

    Marta C.SOARES; Gon(c)alo I.ANDR(E); José R.PAULA

    2015-01-01

    Brain size and weight vary tremendously in the animal kingdom.It has been suggested that brain structural development must evolve balanced between the advantages of dealing with greater social challenges and the energetic costs of maintaining and developing larger brains.Here we ask if interspecific differences in cooperative behaviour (i.e.cleaning behaviour) are related to brain weight variations in four close-related species of Labrid fish:two are obligatory cleanerfish throughout their entire life (Labroides dimidiatus and L.bicolor),one facultative cleaner fish Labropsis australis and one last species that never engage in cleaning Labrichthys unilineatus.We first search for the link between the rate of species' cooperation and its relative brain weight,and finally,if the degree of social complexity and cooperation are reflected in the weight of its major brain substructures.Overall,no differences were found in relative brain weight (in relation to body weight) across species.Fine-scale differences were solely demonstrated for the facultative cleaner L.australis,at the brainstem level.Furthermore,data visual examination indicates that the average cerebellum and brainstem weights appear to be larger for L.dimidiatus.Because variation was solely found at specific brain areas (such as cerebellum and brainstem) and not for the whole brain weight values,it suggests that species social-ecological and cognitive demands may be directly contributing to a selective investment in relevant brain areas.This study provides first preliminary evidence that links potential differences in cognitive ability in cooperative behaviour to how these may mediate the evolution of brain structural development in non-mammal vertebrate groups [Current Zoology 61 (2):274-280,2015].

  12. Cortical thinning in cognitively normal elderly cohort of 60 to 89 year old from AIBL database and vulnerable brain areas

    Science.gov (United States)

    Lin, Zhongmin S.; Avinash, Gopal; Yan, Litao; McMillan, Kathryn

    2014-03-01

    Age-related cortical thinning has been studied by many researchers using quantitative MR images for the past three decades and vastly differing results have been reported. Although results have shown age-related cortical thickening in elderly cohort statistically in some brain regions under certain conditions, cortical thinning in elderly cohort requires further systematic investigation. This paper leverages our previously reported brain surface intensity model (BSIM)1 based technique to measure cortical thickness to study cortical changes due to normal aging. We measured cortical thickness of cognitively normal persons from 60 to 89 years old using Australian Imaging Biomarkers and Lifestyle Study (AIBL) data. MRI brains of 56 healthy people including 29 women and 27 men were selected. We measured average cortical thickness of each individual in eight brain regions: parietal, frontal, temporal, occipital, visual, sensory motor, medial frontal and medial parietal. Unlike the previous published studies, our results showed consistent age-related thinning of cerebral cortex in all brain regions. The parietal, medial frontal and medial parietal showed fastest thinning rates of 0.14, 0.12 and 0.10 mm/decade respectively while the visual region showed the slowest thinning rate of 0.05 mm/decade. In sensorimotor and parietal areas, women showed higher thinning (0.09 and 0.16 mm/decade) than men while in all other regions men showed higher thinning than women. We also created high resolution cortical thinning rate maps of the cohort and compared them to typical patterns of PET metabolic reduction of moderate AD and frontotemporal dementia (FTD). The results seemed to indicate vulnerable areas of cortical deterioration that may lead to brain dementia. These results validate our cortical thickness measurement technique by demonstrating the consistency of the cortical thinning and prediction of cortical deterioration trend with AIBL database.

  13. Baby brain atlases.

    Science.gov (United States)

    Oishi, Kenichi; Chang, Linda; Huang, Hao

    2018-04-03

    The baby brain is constantly changing due to its active neurodevelopment, and research into the baby brain is one of the frontiers in neuroscience. To help guide neuroscientists and clinicians in their investigation of this frontier, maps of the baby brain, which contain a priori knowledge about neurodevelopment and anatomy, are essential. "Brain atlas" in this review refers to a 3D-brain image with a set of reference labels, such as a parcellation map, as the anatomical reference that guides the mapping of the brain. Recent advancements in scanners, sequences, and motion control methodologies enable the creation of various types of high-resolution baby brain atlases. What is becoming clear is that one atlas is not sufficient to characterize the existing knowledge about the anatomical variations, disease-related anatomical alterations, and the variations in time-dependent changes. In this review, the types and roles of the human baby brain MRI atlases that are currently available are described and discussed, and future directions in the field of developmental neuroscience and its clinical applications are proposed. The potential use of disease-based atlases to characterize clinically relevant information, such as clinical labels, in addition to conventional anatomical labels, is also discussed. Copyright © 2018. Published by Elsevier Inc.

  14. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    Science.gov (United States)

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  15. State of the Art: Novel Applications for Deep Brain Stimulation.

    Science.gov (United States)

    Roy, Holly A; Green, Alexander L; Aziz, Tipu Z

    2018-02-01

    Deep brain stimulation (DBS) is a rapidly developing field of neurosurgery with potential therapeutic applications that are relevant to conditions traditionally viewed as beyond the limits of neurosurgery. Our objective, in this review, is to highlight some of the emerging applications of DBS within three distinct but overlapping spheres, namely trauma, neuropsychiatry, and autonomic physiology. An extensive literature review was carried out in MEDLINE, to identify relevant studies and review articles describing applications of DBS in the areas of trauma, neuropsychiatry and autonomic neuroscience. A wide range of applications of DBS in these spheres was identified, some having only been tested in one or two cases, others much better studied. We have identified various avenues for DBS to be applied for patient benefit in cases relevant to trauma, neuropsychiatry and autonomic neuroscience. Further developments in DBS technology and clinical trial design will enable these novel applications to be effectively and rigorously assessed and utilized most effectively. © 2017 International Neuromodulation Society.

  16. Attention Increases Spike Count Correlations between Visual Cortical Areas

    Science.gov (United States)

    Cohen, Marlene R.

    2016-01-01

    from neurons in primary visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. PMID:27413161

  17. Attention Increases Spike Count Correlations between Visual Cortical Areas.

    Science.gov (United States)

    Ruff, Douglas A; Cohen, Marlene R

    2016-07-13

    visual cortex and the middle temporal area while rhesus monkeys performed an attention task. We found that attention increased shared variability between neurons in the two areas and that attention increased the effect of microstimulation in V1 on the firing rates of MT neurons. Our results provide support for the hypothesis that attention increases communication between neurons in different brain areas on behaviorally relevant timescales. Copyright © 2016 the authors 0270-6474/16/367523-12$15.00/0.

  18. Radioimmunoassay of met-enkephalin in microdissected areas of paraformaldehyde-fixed rat brain

    International Nuclear Information System (INIS)

    Correa, F.M.A.; Saavedra, J.M.

    1984-01-01

    The effects were studied of various sample preparation procedures on rat brain met-enkephalin content, measured by radioimmunoassay. Whole brain met-enkephalin content of rats killed by decapitation followed by immediate tissue freezing was similar to that of rats killed by microwave irradiation and to those of rats anesthetized with pentobarbital or halothane before killing, whether previously perfused with paraformaldehyde or not. In contrast, a decrease (up to 80%) in met-enkephalin concentrations was observed when brain samples were frozen and thawed to mimic the procedure utilized in the ''punch'' technique for analysis of discrete brain nuclei. This decrease was totally prevented by paraformaldehyde perfusion of the brain prior to sacrifice. Brain perfusion did not alter the amount of immunoassayable met-enkephalin extracted from tissue or its profile after Sephadex chromatography. Paraformaldehyde perfusion results in better morphological tissue preservation and facilitates the ''punch'' dissecting technique. Paraformaldehyde perfusion may be the procedure of choice for the measurement of neuropeptides in specific brain nuclei dissected by the ''punch'' technique

  19. Bilingualism as a contributor to cognitive reserve: evidence from brain atrophy in Alzheimer's disease.

    Science.gov (United States)

    Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen

    2012-09-01

    Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest. Copyright © 2011 Elsevier Srl. All rights reserved.

  20. Social cognition and the brain: a meta-analysis.

    Science.gov (United States)

    Van Overwalle, Frank

    2009-03-01

    This meta-analysis explores the location and function of brain areas involved in social cognition, or the capacity to understand people's behavioral intentions, social beliefs, and personality traits. On the basis of over 200 fMRI studies, it tests alternative theoretical proposals that attempt to explain how several brain areas process information relevant for social cognition. The results suggest that inferring temporary states such as goals, intentions, and desires of other people-even when they are false and unjust from our own perspective--strongly engages the temporo-parietal junction (TPJ). Inferring more enduring dispositions of others and the self, or interpersonal norms and scripts, engages the medial prefrontal cortex (mPFC), although temporal states can also activate the mPFC. Other candidate tasks reflecting general-purpose brain processes that may potentially subserve social cognition are briefly reviewed, such as sequence learning, causality detection, emotion processing, and executive functioning (action monitoring, attention, dual task monitoring, episodic memory retrieval), but none of them overlaps uniquely with the regions activated during social cognition. Hence, it appears that social cognition particularly engages the TPJ and mPFC regions. The available evidence is consistent with the role of a TPJ-related mirror system for inferring temporary goals and intentions at a relatively perceptual level of representation, and the mPFC as a module that integrates social information across time and allows reflection and representation of traits and norms, and presumably also of intentionality, at a more abstract cognitive level.

  1. Educating the Human Brain. Human Brain Development Series

    Science.gov (United States)

    Posner, Michael I.; Rothbart, Mary K.

    2006-01-01

    "Educating the Human Brain" is the product of a quarter century of research. This book provides an empirical account of the early development of attention and self regulation in infants and young children. It examines the brain areas involved in regulatory networks, their connectivity, and how their development is influenced by genes and…

  2. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  3. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors

    Science.gov (United States)

    Papale, Alessandro; Morella, Ilaria Maria; Indrigo, Marzia Tina; Bernardi, Rick Eugene; Marrone, Livia; Marchisella, Francesca; Brancale, Andrea; Spanagel, Rainer; Brambilla, Riccardo; Fasano, Stefania

    2016-01-01

    Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI: http://dx.doi.org/10.7554/eLife.17111.001 PMID:27557444

  4. Specificities of Awake Craniotomy and Brain Mapping in Children for Resection of Supratentorial Tumors in the Language Area.

    Science.gov (United States)

    Delion, Matthieu; Terminassian, Aram; Lehousse, Thierry; Aubin, Ghislaine; Malka, Jean; N'Guyen, Sylvie; Mercier, Philippe; Menei, Philippe

    2015-12-01

    In the pediatric population, awake craniotomy began to be used for the resection of brain tumor located close to eloquent areas. Some specificities must be taken into account to adapt this method to children. The aim of this clinical study is to not only confirm the feasibility of awake craniotomy and language brain mapping in the pediatric population but also identify the specificities and necessary adaptations of the procedure. Six children aged 11 to 16 were operated on while awake under local anesthesia with language brain mapping for supratentorial brain lesions (tumor and cavernoma). The preoperative planning comprised functional magnetic resonance imaging (MRI) and neuropsychologic and psychologic assessment. The specific preoperative preparation is clearly explained including hypnosis conditioning and psychiatric evaluation. The success of the procedure was based on the ability to perform the language brain mapping and the tumor removal without putting the patient to sleep. We investigated the pediatric specificities, psychological experience, and neuropsychologic follow-up. The children experienced little anxiety, probably in large part due to the use of hypnosis. We succeeded in doing the cortical-subcortical mapping and removing the tumor without putting the patient to sleep in all cases. The psychological experience was good, and the neuropsychologic follow-up showed a favorable evolution. Preoperative preparation and hypnosis in children seemed important for performing awake craniotomy and contributing language brain mapping with the best possible psychological experience. The pediatrics specificities are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Mouras, Harold; Stoléru, Serge; Bittoun, Jacques; Glutron, Dominique; Pélégrini-Issac, Mélanie; Paradis, Anne-Lise; Burnod, Yves

    2003-10-01

    The brain plays a central role in sexual motivation. To identify cerebral areas whose activation was correlated with sexual desire, eight healthy male volunteers were studied with functional magnetic resonance imaging (fMRI). Visual stimuli were sexually stimulating photographs (S condition) and emotionally neutral photographs (N condition). Subjective responses pertaining to sexual desire were recorded after each condition. To image the entire brain, separate runs focused on the upper and the lower parts of the brain. Statistical Parametric Mapping was used for data analysis. Subjective ratings confirmed that sexual pictures effectively induced sexual arousal. In the S condition compared to the N condition, a group analysis conducted on the upper part of the brain demonstrated an increased signal in the parietal lobes (superior parietal lobules, left intraparietal sulcus, left inferior parietal lobule, and right postcentral gyrus), the right parietooccipital sulcus, the left superior occipital gyrus, and the precentral gyri. In addition, a decreased signal was recorded in the right posterior cingulate gyrus and the left precuneus. In individual analyses conducted on the lower part of the brain, an increased signal was found in the right and/or left middle occipital gyrus in seven subjects, and in the right and/or left fusiform gyrus in six subjects. In conclusion, fMRI allows to identify brain responses to visual sexual stimuli. Among activated regions in the S condition, parietal areas are known to be involved in attentional processes directed toward motivationally relevant stimuli, while frontal premotor areas have been implicated in motor preparation and motor imagery. Further work is needed to identify those specific features of the neural responses that distinguish sexual desire from other emotional and motivational states.

  6. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain.

    Science.gov (United States)

    Losi, Gabriele; Mariotti, Letizia; Carmignoto, Giorgio

    2014-10-19

    GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. An Improved Optimization Method for the Relevance Voxel Machine

    DEFF Research Database (Denmark)

    Ganz, Melanie; Sabuncu, M. R.; Van Leemput, Koen

    2013-01-01

    In this paper, we will re-visit the Relevance Voxel Machine (RVoxM), a recently developed sparse Bayesian framework used for predicting biological markers, e.g., presence of disease, from high-dimensional image data, e.g., brain MRI volumes. The proposed improvement, called IRVoxM, mitigates the ...

  8. Relevance Feedback in Content Based Image Retrieval: A Review

    Directory of Open Access Journals (Sweden)

    Manesh B. Kokare

    2011-01-01

    Full Text Available This paper provides an overview of the technical achievements in the research area of relevance feedback (RF in content-based image retrieval (CBIR. Relevance feedback is a powerful technique in CBIR systems, in order to improve the performance of CBIR effectively. It is an open research area to the researcher to reduce the semantic gap between low-level features and high level concepts. The paper covers the current state of art of the research in relevance feedback in CBIR, various relevance feedback techniques and issues in relevance feedback are discussed in detail.

  9. A brain worth keeping? Waste, value and time in contemporary brain banking.

    Science.gov (United States)

    Erslev, Thomas

    2018-02-01

    If a temporal rather than spatial concept of waste is adopted, novel categories emerge which are useful for identifying and understanding logics of temporality at play in determining what is kept in contemporary brain banks, and reveal that brain banks are constituted by more than stored materials. First, I apply the categories analytically on a recent UK brain banking discussion among professionals. This analysis highlights the importance of data in brain banks, as well as the centrality of ideas about pasts and futures in the discussions. Secondly, I investigate the case of a seven decades old, Danish brain bank which had been reduced to its physically stored material for 24 years, before being reinstituted in 2006. This case demonstrates the importance of material and conceptual infrastructures that co-constitute a collection, as they make up an experimental system that is crucial to maintaining the collection's continued relevance and usefulness as a scientific institution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Comparison of brain activation to purposefully activate a tool in healthy subjects and brain tumor patients using fMRI

    International Nuclear Information System (INIS)

    Nishimura, Masahiko; Yoshii, Yoshihiko; Hyodo, Akio; Sugimoto, Koichi; Tsuchida, Yukihiro; Yonaha, Hirokatsu; Ito, Koichi

    2007-01-01

    The purpose of this study was to determine the functional organization of the human brain involved in tool-manipulation. Blood Oxygen Level Dependent was measured by functional magnetic resonance imaging in seventeen right-handed healthy volunteers and two brain tumor patients during two tool-manipulation tasks: simulated tightening a bolt with a screwdriver (Simulation), and tightening a bolt with a screwdriver (Real). Subjects performed the experiment without watching the tasks. Bilateral pre-supplementary motor areas, bilateral cerebellar posterior lobes, right ventral premotor area, right calcarine sulcus, and cerebellar vermis were activated during Real but not during Simulation tasks in healthy volunteers. In addition, brain tumor patients activated the prefrontal areas. Our results suggest that the human brain mechanisms for tool-manipulation have a neural-network comprised of presupplementary motor area, ventral premotor area, and bilateral cerebellar posterior lobes. In the patients with brain dusfurction diee to tumors, activation at the prefrontal area provided function compensation without motor paralysis. (author)

  11. Distribution of the insecticide 14 C-fen valerate and its effect on protein and amino acid content in different brain areas of the rat

    International Nuclear Information System (INIS)

    Aly, M.A.S.

    1998-01-01

    Intragastric administration of fenvalerate (45 mg/kg) to male rats induced symptoms associated with gamma-cyano pyrethroids (type II syndrome). Fenvalerate crossed blood brain barrier and reached different brain areas. The highest concentration of fenvalerate was found in striatum (18.7+2.5 Mou/g) followed by pons + medulla oblongata (10.4+ 0.91Moug/g) after 24 h of the insecticide administration. A decrease in the protein content in different brain areas was recorded at 24 h. However, it was observed that there was a tendency for the protein level to recover at 48 h although it was still lower than corresponding controlgroup. Excitatory neurotransmitter amino acids, glutamic and aspartic, in the pons + medulla oblongata showed a prominent decrease (-9.9 and 7.0%, respectively). Inhibitory neurotransmitter amino acids, glycine and alanine, showed a slight decrease. On the other hand, the amino acids in the striatum revealed fluctuating changes. Amino acids acting as a precursor of neurotransmitter were also affected in the selected brain areas. The data obtained revealed that fenvalerate caused subtle disruption in the integrity of the CNS and there is a possibility that such disruption might result in physiological and behavioural alteration which may affect the organism ability to interact with environment

  12. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  13. Age of second language acquisition in multilinguals has an impact on grey matter volume in language-associated brain areas

    Directory of Open Access Journals (Sweden)

    Anelis eKaiser

    2015-06-01

    Full Text Available Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to 2 languages simultaneously from birth (SiM were contrasted with multinguals who acquired their first two languages successively (SuM. Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower grey matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior frontal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and influence experience-dependent plasticity well into adulthood.

  14. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    Science.gov (United States)

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  15. Task relevant variables are encoded in OFC neurons

    Directory of Open Access Journals (Sweden)

    Ramon Nogueira

    2015-04-01

    Our results demonstrate that OFC in rats might not only be involved in reward processing but it also conveys a wide variety of task relevant variables. Our hypothesis is that OFC acts as a hub for complex decision-making tasks where all possible information is processed and conveyed to other brain regions responsible for decision execution.

  16. Retractor-induced brain shift compensation in image-guided neurosurgery

    Science.gov (United States)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  17. 123I-iomazenil brain receptor SPECT in focal epilepsy. In comparison with 99mTc-HMPAO brain SPECT, MRI and Video/EEG monitoring

    International Nuclear Information System (INIS)

    Xu Hao; Wang Tongge; Huang Li; Michael Cordes

    1998-01-01

    Purpose: To evaluate the clinical value of 123 I-Iomazenil brain receptor SPECT in diagnosis of focal epilepsy in comparison with 99m Tc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Methods 123 I-Iomazenil brain receptor SPECT was performed on 40 patients with focal epilepsy. The results were compared with those obtained by 99m Tc-HMPAO brain SPECT, MRI and Video/EEG monitoring. Results: In 40 patients, the sensitivity of Video/EEG monitoring for localization of epileptogenic area was 95% (38/40). The sensitivity of 123 I-iomazenil brain receptor SPECT, 99m Tc-HMPAO brain SPECT and MRI for localization of epileptogenic area compared with Video/EEG monitoring ('gold standard') was 65.8%(25/38), 55.3%(21/38) and 47.4%(18/38), respectively. The localization of epileptogenic area with 123 I-Iomazenil brain receptor SPECT was in concordance with Video/EEG monitoring in 20 patients, 99m Tc-HMPAO brain SPECT in 15 patients and MRI in 16 patients, respectively. The sensitivity of 123 I-Iomazenil brain receptor SPECT combined with MRI for localization of epileptogenic area was 84.2%(32/38). Conclusions: 123 I-Iomazenil brain receptor SPECT is a useful method in detecting and localizing epileptogenic area. The combination of 123 I-Iomazenil brain receptor SPECT and MRI has a high sensitivity for detecting epileptogenic area

  18. Deep-brain-stimulation does not impair deglutition in Parkinson's disease.

    Science.gov (United States)

    Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias

    2012-08-01

    A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Whole brain radiotherapy with radiosensitizer for brain metastases

    Directory of Open Access Journals (Sweden)

    Viani Gustavo

    2009-01-01

    Full Text Available Abstract Purpose To study the efficacy of whole brain radiotherapy (WBRT with radiosensitizer in comparison with WBRT alone for patients with brain metastases in terms of overall survival, disease progression, response to treatment and adverse effects of treatment. Methods A meta-analysis of randomized controlled trials (RCT was performed in order to compare WBRT with radiosensitizer for brain metastases and WBRT alone. The MEDLINE, EMBASE, LILACS, and Cochrane Library databases, in addition to Trial registers, bibliographic databases, and recent issues of relevant journals were researched. Significant reports were reviewed by two reviewers independently. Results A total of 8 RCTs, yielding 2317 patients were analyzed. Pooled results from this 8 RCTs of WBRT with radiosensitizer have not shown a meaningful improvement on overall survival compared to WBRT alone OR = 1.03 (95% CI0.84–1.25, p = 0.77. Also, there was no difference in local brain tumor response OR = 0.8(95% CI 0.5 – 1.03 and brain tumor progression (OR = 1.11, 95% CI 0.9 – 1.3 when the two arms were compared. Conclusion Our data show that WBRT with the following radiosentizers (ionidamine, metronidazole, misonodazole, motexafin gadolinium, BUdr, efaproxiral, thalidomide, have not improved significatively the overall survival, local control and tumor response compared to WBRT alone for brain metastases. However, 2 of them, motexafin- gadolinium and efaproxiral have been shown in recent publications (lung and breast to have positive action in lung and breast carcinoma brain metastases in association with WBRT.

  20. The Personal Relevance of the Social Studies.

    Science.gov (United States)

    VanSickle, Ronald L.

    1990-01-01

    Conceptualizes a personal-relevance framework derived from Ronald L. VanSickle's five areas of life integrated with four general motivating goals from Abraham Maslow's hierarchy of needs and Richard and Patricia Schmuck's social motivation theory. Illustrates ways to apply the personal relevance framework to make social studies more relevant to…

  1. Molecular biology of the mammalian brain

    International Nuclear Information System (INIS)

    Morrison, M.R.; Griffin, W.S.T.

    1985-01-01

    The authors' characterization of abundant mRNAs by analysis of their in vitro translation products has provided detailed information on the changes in steady-state mRNA levels taking place during brain and neuroblastoma differentiation as well as on more general aspects of mRNA structure and utilization in the nervous system. Quantitation of specific mRNAs using radiolabelled recombinant DNA probes has confirmed that the measurements of translationally active tubulin and actin mRNAs by this method are indeed an accurate indication of their steady-state levels. The technology is now available to characterize neuropathology at the cellular level. Analysis of mRNA changes in diseased brain are of obvious relevance in documenting gross pathological changes in transcription patterns. In situ hybridization and immunohistochemistry can now be used, perhaps even in combination with computer reconstruction to investigate more critically the specific cell losses so characteristic of diseases such as Huntington's, Parkinson's, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's. In situ hybridization of probes to mRNAs encoding specific neurotransmitter enzymes and abundant ''housekeeping'' proteins can now be used to determine whether the remaining cells in affected brain areas are transcriptionally normal. Furthermore, this technique can also be used to document the transcriptional changes in cell types not presently identified as compromised and thus will pinpoint more precisely the initial cell targets of disease

  2. Morphological brain differences between adult stutterers and non-stutterers

    Directory of Open Access Journals (Sweden)

    Hänggi Jürgen

    2004-12-01

    Full Text Available Abstract Background The neurophysiological and neuroanatomical foundations of persistent developmental stuttering (PDS are still a matter of dispute. A main argument is that stutterers show atypical anatomical asymmetries of speech-relevant brain areas, which possibly affect speech fluency. The major aim of this study was to determine whether adults with PDS have anomalous anatomy in cortical speech-language areas. Methods Adults with PDS (n = 10 and controls (n = 10 matched for age, sex, hand preference, and education were studied using high-resolution MRI scans. Using a new variant of the voxel-based morphometry technique (augmented VBM the brains of stutterers and non-stutterers were compared with respect to white matter (WM and grey matter (GM differences. Results We found increased WM volumes in a right-hemispheric network comprising the superior temporal gyrus (including the planum temporale, the inferior frontal gyrus (including the pars triangularis, the precentral gyrus in the vicinity of the face and mouth representation, and the anterior middle frontal gyrus. In addition, we detected a leftward WM asymmetry in the auditory cortex in non-stutterers, while stutterers showed symmetric WM volumes. Conclusions These results provide strong evidence that adults with PDS have anomalous anatomy not only in perisylvian speech and language areas but also in prefrontal and sensorimotor areas. Whether this atypical asymmetry of WM is the cause or the consequence of stuttering is still an unanswered question.

  3. Anesthesia and the Developing Brain: Relevance to the Pediatric Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Lisa Wise-Faberowski

    2014-04-01

    Full Text Available Anesthetic neurotoxicity has been a hot topic in anesthesia for the past decade. It is of special interest to pediatric anesthesiologists. A subgroup of children potentially at greater risk for anesthetic neurotoxicity, based on a prolonged anesthetic exposure early in development, are those children receiving anesthesia for surgical repair of congenital heart disease. These children have a known risk of neurologic deficit after cardiopulmonary bypass for surgical repair of congenital heart disease. Yet, the type of anesthesia used has not been considered as a potential etiology for their neurologic deficits. These children not only receive prolonged anesthetic exposure during surgical repair, but also receive repeated anesthetic exposures during a critical period of brain development. Their propensity to abnormal brain development, as a result of congenital heart disease, may modify their risk of anesthetic neurotoxicity. This review article provides an overview of anesthetic neurotoxicity from the perspective of a pediatric cardiac anesthesiologist and provides insight into basic science and clinical investigations as it relates to this unique group of children who have been studied over several decades for their risk of neurologic injury.

  4. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  5. The Amygdala and the Relevance Detection Theory of Autism: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Tiziana eZalla

    2013-12-01

    Full Text Available In the last few decades, there has been increasing interest in the role of the amygdala in psychiatric disorders and in particular its contribution to the socio-emotional impairments in autism spectrum disorders (ASDs. Given that the amygdala is a component structure of the social brain, several theoretical explanations compatible with amygdala dysfunction have been proposed to account for socio-emotional impairments in ASDs, including abnormal eye contact, gaze monitoring, face processing, mental state understanding and empathy. Nevertheless, many theoretical accounts, based on the Amygdala Theory of Autism, fail to elucidate the complex pattern of impairments observed in this population, which extends beyond the social domain. As posited by the Relevance Detector theory (Sander, Grafman and Zalla, 2003, the human amygdala is a critical component of a brain circuit involved in the appraisal of self-relevant events that include, but are not restricted to, social stimuli. Here, we propose that the behavioral and social-emotional features of ASDs may be better understood in terms of a disruption in a ‘Relevance Detector Network’ affecting the processing of stimuli that are relevant for the organism’s self-regulating functions. In the present review, we will first summarize the main literature supporting the involvement of the amygdala in socio-emotional disturbances in ASDs. Next, we will present a revised version of the amygdala Relevance Detector hypothesis and we will show that this theoretical framework can provide a better understanding of the heterogeneity of the impairments and symptomatology of ASDs. Finally, we will discuss some predictions of our model, and suggest new directions in the investigation of the role of the amygdala within the more generally disrupted cortical connectivity framework as a model of neural organization of the autistic brain.

  6. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  7. Clinically Relevant Pharmacological Strategies That Reverse MDMA-Induced Brain Hyperthermia Potentiated by Social Interaction.

    Science.gov (United States)

    Kiyatkin, Eugene A; Ren, Suelynn; Wakabayashi, Ken T; Baumann, Michael H; Shaham, Yavin

    2016-01-01

    MDMA-induced hyperthermia is highly variable, unpredictable, and greatly potentiated by the social and environmental conditions of recreational drug use. Current strategies to treat pathological MDMA-induced hyperthermia in humans are palliative and marginally effective, and there are no specific pharmacological treatments to counteract this potentially life-threatening condition. Here, we tested the efficacy of mixed adrenoceptor blockers carvedilol and labetalol, and the atypical antipsychotic clozapine, in reversing MDMA-induced brain and body hyperthermia. We injected rats with a moderate non-toxic dose of MDMA (9 mg/kg) during social interaction, and we administered potential treatment drugs after the development of robust hyperthermia (>2.5 °C), thus mimicking the clinical situation of acute MDMA intoxication. Brain temperature was our primary focus, but we also simultaneously recorded temperatures from the deep temporal muscle and skin, allowing us to determine the basic physiological mechanisms of the treatment drug action. Carvedilol was modestly effective in attenuating MDMA-induced hyperthermia by moderately inhibiting skin vasoconstriction, and labetalol was ineffective. In contrast, clozapine induced a marked and immediate reversal of MDMA-induced hyperthermia via inhibition of brain metabolic activation and blockade of skin vasoconstriction. Our findings suggest that clozapine, and related centrally acting drugs, might be highly effective for reversing MDMA-induced brain and body hyperthermia in emergency clinical situations, with possible life-saving results.

  8. Imaging brain microstructure with diffusion MRI: practicality and applications.

    Science.gov (United States)

    Alexander, Daniel C; Dyrby, Tim B; Nilsson, Markus; Zhang, Hui

    2017-11-29

    This article gives an overview of microstructure imaging of the brain with diffusion MRI and reviews the state of the art. The microstructure-imaging paradigm aims to estimate and map microscopic properties of tissue using a model that links these properties to the voxel scale MR signal. Imaging techniques of this type are just starting to make the transition from the technical research domain to wide application in biomedical studies. We focus here on the practicalities of both implementing such techniques and using them in applications. Specifically, the article summarizes the relevant aspects of brain microanatomy and the range of diffusion-weighted MR measurements that provide sensitivity to them. It then reviews the evolution of mathematical and computational models that relate the diffusion MR signal to brain tissue microstructure, as well as the expanding areas of application. Next we focus on practicalities of designing a working microstructure imaging technique: model selection, experiment design, parameter estimation, validation, and the pipeline of development of this class of technique. The article concludes with some future perspectives on opportunities in this topic and expectations on how the field will evolve in the short-to-medium term. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Assessment of the brain areas perfused by superselective intra-arterial chemotherapy using single photon emission computed tomography with technetium-99m-hexamethyl-propyleneamine oxime. Technical note

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Hiroki; Iwadate, Yasuo; Saegusa, Takashi; Sueyoshi, Kanji [Chiba Cancer Center Hospital (Japan); Kobayashi, Shigeki; Sato, Akira; Watanabe, Yoshiro

    1994-12-01

    The brain areas perfused by superselective intra-arterial (i.a.) chemotherapy were assessed using single photon emission computed tomography (SPECT) with technetium-99m-hexamethyl-propyleneamine oxime ({sup 99m}Tc-HMPAO). A superselective catheter was introduced into the anterior, middle, or posterior cerebral artery of patients with malignant glioma for i.a. chemotherapy. {sup 99m}Tc-HMPAO was subsequently injected via the same catheter used for chemotherapy, and a higher dose of {sup 99m}Tc-HMPAO was injected intravenously to obtain adequate background brain images. Comparison of the SPECT images with magnetic resonance images could confirm complete perfusion of the tumor tissue. In two patients with malignant glioma, regions of interest were selected in the peritumoral brain area and a reference brain area, and the radioactivity was measured. The concentration of {sup 99m}Tc-HMPAO was about 50 times higher in tissue perfused by superselective injection into anterior or middle cerebral artery compared to intravenous injection. {sup 99m}Tc-HMPAO SPECT is readily available in many institutions and the information provided is useful for planning more effective and safe i.a. chemotherapy. (author).

  10. Psychotherapy, consciousness, and brain plasticity

    Directory of Open Access Journals (Sweden)

    Daniel eCollerton

    2013-09-01

    Full Text Available Purely psychological treatments for emotional distress produce lasting, measureable, and reproducible changes in cognitive and emotional consciousness and brain function. How these changes come about illustrates the interplay between brain and consciousness. Studies of the effects of psychotherapy highlight the holistic nature of consciousness. Pre and post treatment functional Magnetic Resonance Imaging localises the brain changes following psychotherapy to frontal, cingulate, and limbic circuits, but emphasise that these areas support a wide range of conscious experiences. Multivoxel Pattern Analysis of distributed changes in function across these brain areas may be able to provide the ability to distinguish between different states of consciousness.

  11. Slice cultures of the imprinting-relevant forebrain area MNH of the domestic chick: quantitative characterization of neuronal morphology.

    Science.gov (United States)

    Hofmann, H; Braun, K

    1995-05-26

    The persistence of morphological features of neurons in slice cultures of the imprinting-relevant forebrain area MNH (mediorostral neostriatum and hyperstriatum ventrale) of the domestic chick was analysed at 7, 14, 21 and 28 days in vitro. After having been explanted and kept in culture the neurons in vitro have larger soma areas, longer and more extensively branched dendritic trees and lower spine frequencies compared to the neurons in vivo. During the analyzed culturing period, the parameters soma area, total and mean dendritic length, number of dendrites, number of dendritic nodes per dendrite and per neuron as well as the spine densities in different dendritic segments showed no significant differences between early and late periods. Highly correlated in every age group were the total dendritic length and the number of dendritic nodes per neuron, indicating regular ramification during dendritic growth. Since these morphological parameters remain stable during the first 4 weeks in vitro, this culture system may provide a suitable model to investigate experimentally induced morphological changes.

  12. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    Science.gov (United States)

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [The blood-brain barrier in ageing persons].

    Science.gov (United States)

    Haaning, Nina; Damsgaard, Else Marie; Moos, Torben

    2018-03-26

    Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.

  14. Developmental trajectories of brain maturation and behavior: Relevance to major mental illnesses

    Directory of Open Access Journals (Sweden)

    Sedona Lockhart

    2018-05-01

    Full Text Available Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to lead to behavioral changes in young adulthood. This is particularly true for the subset of people who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for such developmental trajectory from early life insult to aberrant adult behavior remains elusive. Adolescence is a period of dynamic physiological, psychological, and behavioral changes, encompassing a distinct neurodevelopmental stage called the ‘critical period’. During adolescence, the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological processes that can cause permanent alterations in the adult stage, even as severe as the onset of mental illness when paired with genetic risk and environmental factors. Understanding the molecular factors governing the critical period and how stress can disturb the maturation processes will allow for better treatment and prevention of late adolescent/young adult onset psychiatric disorders. Keywords: Adolescence, Critical period, Developmental trajectory, Brain maturation, Adult behavior

  15. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    Science.gov (United States)

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  16. Oxytocin receptor ligand binding in embryonic tissue and postnatal brain development of the C57BL/6J mouse

    Directory of Open Access Journals (Sweden)

    Elizabeth eHammock

    2013-12-01

    Full Text Available Oxytocin (OXT has drawn increasing attention as a developmentally relevant neuropeptide given its role in the brain regulation of social behavior. It has been suggested that OXT plays an important role in the infant brain during caregiver attachment in nurturing familial contexts, but there is incomplete experimental evidence. Mouse models of OXT system genes have been particularly informative for the role of the OXT system in social behavior, however, the developing brain areas that could respond to ligand activation of the OXT receptor (OXTR have yet to be identified in this species. Here we report new data revealing dynamic ligand-binding distribution of OXTR in the developing mouse brain. Using male and female C57BL/6J mice at postnatal days (P 0, 7, 14, 21, 35, and 60 we quantified OXTR ligand binding in several brain areas which changed across development. Further, we describe OXTR ligand binding in select tissues of the near-term whole embryo at E18.5. Together, these data aid in the interpretation of findings in mouse models of the OXT system and generate new testable hypotheses for developmental roles for OXT in mammalian systems. We discuss our findings in the context of developmental disorders (including autism, attachment biology, and infant physiological regulation.

  17. Response of lactate metabolism in brain glucosensing areas of rainbow trout (Oncorhynchus mykiss) to changes in glucose levels.

    Science.gov (United States)

    Otero-Rodiño, Cristina; Librán-Pérez, Marta; Velasco, Cristina; Álvarez-Otero, Rosa; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2015-12-01

    There is no evidence in fish brain demonstrating the existence of changes in lactate metabolism in response to alterations in glucose levels. We induced in rainbow trout through intraperitoneal (IP) treatments, hypoglycaemic or hyperglycaemic changes to assess the response of parameters involved in lactate metabolism in glucosensing areas like hypothalamus and hindbrain. To distinguish those effects from those induced by peripheral changes in the levels of metabolites or hormones, we also carried out intracerebroventricular (ICV) treatments with 2-deoxy-D-glucose (2-DG, a non-metabolizable glucose analogue thus inducing local glucopenia) or glucose. Finally, we also incubated hypothalamus and hindbrain in vitro in the presence of increased glucose concentrations. The changes in glucose availability were in general correlated to changes in the amount of lactate in both areas. However, when we assessed in these areas the response of parameters related to lactate metabolism, the results obtained were contradictory. The increase in glucose levels did not produce in general the expected changes in those pathways with only a minor increase in their capacity of lactate production. The decrease in glucose levels was, however, more clearly related to a decreased capacity of the pathways involved in the production and use of lactate, and this was especially evident after ICV treatment with 2-DG in both areas. In conclusion, the present results while addressing the existence of changes in lactate metabolism after inducing changes in glucose levels in brain glucosensing areas only partially support the possible existence of an astrocyte-neuron lactate shuttle in hypothalamus and hindbrain of rainbow trout relating glucose availability to lactate production and use.

  18. Brain responses to language-relevant musical features in adolescent cochlear implant users before and after an intensive music training program

    DEFF Research Database (Denmark)

    Petersen, Bjørn; Weed, Ethan; Hansen, Mads

    Brain responses to language-relevant musical features in adolescent cochlear implant users before and after an intensive music training program Petersen B.1,2, Weed E.1,3, Hansen M.1,4, Sørensen S.D.3 , Sandmann P.5 , Vuust P.1,2 1Center of Functionally Integrative Neuroscience, Aarhus University......, rhythm and intensity). Difference waves for the rhythm deviant were analyzed in the time window between 300 and 320 ms. Separate mixed-model ANOVAs were performed for left and right fronto-central electrodes. Paired t-tests were used to analyze the behavioral data. Here we present preliminary analyses...... of ERP responses to the rhythm deviant stimuli and results from a behavioral rhythm discrimination test. For both left and right electrode sites we found a main effect of group, driven by higher mean amplitude in the NH group. There was no main effect of training. Left hemisphere sites showed...

  19. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  20. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  1. Premutation female carriers of fragile X syndrome: a pilot study on brain anatomy and metabolism.

    Science.gov (United States)

    Murphy, D G; Mentis, M J; Pietrini, P; Grady, C L; Moore, C J; Horwitz, B; Hinton, V; Dobkin, C S; Schapiro, M B; Rapoport, S I

    1999-10-01

    It was thought that premutation carriers of fragile X syndrome (FraX) have no neurobiological abnormalities, but there have been no quantitative studies of brain morphometry and metabolism. Thus the authors investigated brain structure and metabolism in premutation carriers of FraX. Eight normal IQ, healthy female permutation FraX carriers aged 39 +/- 9 years (mean +/- SD) and 32 age-sex-handedness-matched controls (39 +/- 10 years) were studied; in vivo brain morphometry was measured using volumetric magnetic resonances imaging, and regional cerebral metabolic rates for glucose were measured using positron emission tomography and (18F)-2-fluoro-2-deoxy-D-glucose. Compared with controls, FraX premutation carriers had a significant (1) decrease in volume of whole brain, and caudate and thalamic nuclei bilaterally; (2) increase in volume of hippocampus and peripheral CSF bilaterally, and third ventricle; (3) relative hypometabolism of right parietal, temporal, and occipital association areas; (4) bilateral relative hypermetabolism of hippocampus; (5) relative hypermetabolism of left cerebellum; and (6) difference in right-left asymmetry of the Wernicke and Broca language areas. Premutation carriers of FraX, as defined by analysis of peripheral lymphocytes, have abnormalities in brain anatomy and metabolism. The biological basis for this is unknown, but most likely it includes tissue heterogeneity for mutation status. The findings may be of relevance to people counseling families with FraX and to understanding other neuropsychiatric disorders which are associated with expansion of triplet repeats and genetic anticipation.

  2. Creating the brain and interacting with the brain: an integrated approach to understanding the brain

    Science.gov (United States)

    Morimoto, Jun; Kawato, Mitsuo

    2015-01-01

    In the past two decades, brain science and robotics have made gigantic advances in their own fields, and their interactions have generated several interdisciplinary research fields. First, in the ‘understanding the brain by creating the brain’ approach, computational neuroscience models have been applied to many robotics problems. Second, such brain-motivated fields as cognitive robotics and developmental robotics have emerged as interdisciplinary areas among robotics, neuroscience and cognitive science with special emphasis on humanoid robots. Third, in brain–machine interface research, a brain and a robot are mutually connected within a closed loop. In this paper, we review the theoretical backgrounds of these three interdisciplinary fields and their recent progress. Then, we introduce recent efforts to reintegrate these research fields into a coherent perspective and propose a new direction that integrates brain science and robotics where the decoding of information from the brain, robot control based on the decoded information and multimodal feedback to the brain from the robot are carried out in real time and in a closed loop. PMID:25589568

  3. Data integration through brain atlasing: Human Brain Project tools and strategies.

    Science.gov (United States)

    Bjerke, Ingvild E; Øvsthus, Martin; Papp, Eszter A; Yates, Sharon C; Silvestri, Ludovico; Fiorilli, Julien; Pennartz, Cyriel M A; Pavone, Francesco S; Puchades, Maja A; Leergaard, Trygve B; Bjaalie, Jan G

    2018-04-01

    The Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  4. Musical creativity and the brain.

    Science.gov (United States)

    López-González, Mónica; Limb, Charles J

    2012-01-01

    On the spot, as great jazz performers expertly improvise solo passages, they make immediate decisions about which musical phrases to invent and to play. Researchers, like authors Mónica López-González and Dana Foundation grantee Charles J. Limb, are now using brain imaging to study the neural underpinnings of spontaneous artistic creativity, from jazz riffs to freestyle rap. So far, they have found that brain areas deactivated during improvisation are also at rest during dreaming and meditation, while activated areas include those controlling language and sensorimotor skills. Even with relatively few completed studies, researchers have concluded that musical creativity clearly cannot be tied to just one brain area or process.

  5. Evaluating ambivalence: social-cognitive and affective brain regions associated with ambivalent decision-making.

    Science.gov (United States)

    Nohlen, Hannah U; van Harreveld, Frenk; Rotteveel, Mark; Lelieveld, Gert-Jan; Crone, Eveline A

    2014-07-01

    Ambivalence is a state of inconsistency that is often experienced as affectively aversive. In this functional magnetic resonance imaging study, we investigated the role of cognitive and social-affective processes in the experience of ambivalence and coping with its negative consequences. We examined participants' brain activity during the dichotomous evaluation (pro vs contra) of pretested ambivalent (e.g. alcohol), positive (e.g. happiness) and negative (e.g. genocide) word stimuli. We manipulated evaluation relevance by varying the probability of evaluation consequences, under the hypothesis that ambivalence is experienced as more negative when outcomes are relevant. When making ambivalent evaluations, more activity was found in the anterior cingulate cortex, the insula, the temporal parietal junction (TPJ) and the posterior cingulate cortex (PCC)/precuneus, for both high and low evaluation relevance. After statistically conservative corrections, activity in the TPJ and PCC/precuneus was negatively correlated with experienced ambivalence after scanning, as measured by Priester and Petty's felt ambivalence scale (1996). The findings show that cognitive and social-affective brain areas are involved in the experience of ambivalence. However, these networks are differently associated with subsequent reduction of ambivalence, thus highlighting the importance of understanding both cognitive and affective processes involved in ambivalent decision-making. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Brain indices of nicotine's effects on attentional bias to smoking and emotional pictures and to task-relevant targets.

    Science.gov (United States)

    Gilbert, David G; Sugai, Chihiro; Zuo, Yantao; Rabinovich, Norka E; McClernon, F Joseph; Froeliger, Brett

    2007-03-01

    Aversive and smoking-related stimuli are related to smoking urges and relapse and can be potent distractors of selective attention. It has been suggested that the beneficial effect of nicotine replacement therapy may be mediated partly by the ability of nicotine to reduce distraction by such stimuli and thereby to facilitate attention to task-relevant stimuli. The present study tested the hypothesis that nicotine reduces distraction by aversive and smoking-related stimuli as indexed by the parietal P3b brain response to a task-relevant target digit. We assessed the effect of nicotine on distraction by emotionally negative, positive, neutral, and smoking-related pictures immediately preceding target digits during a rapid visual information processing task in 16 smokers in a double-blind, counterbalanced, within-subjects design. The study included two experimental sessions. After overnight smoking deprivation (12+ hr), active nicotine patches were applied to participants during one of the sessions and placebo patches were applied during the other session. Nicotine enhanced P3b responses associated with target digits immediately subsequent to negative emotional pictures bilaterally and subsequent to smoking-related pictures only in the right hemisphere. No effects of nicotine were observed for P3bs subsequent to positive and neutral distractor pictures. Another measure of attention, contingent negative variation amplitude in anticipation of the target digits also was increased by nicotine, especially in the left hemisphere and at posterior sites. Together, these findings suggest that nicotine reduces the distraction by emotionally negative and smoking-related stimuli and promotes attention to task-related stimuli by modulating somewhat lateralized and task-specific neural networks.

  7. (+)- and (-)-N-allylnormetazocine binding sites in mouse brain: in vitro and in vivo characterization and regional distribution

    International Nuclear Information System (INIS)

    Compton, D.R.; Bagley, R.B.; Katzen, J.S.; Martin, B.R.

    1987-01-01

    In vivo and in vitro binding studies, both in whole brain and in selected areas, indicate that non-identical (+)- and (-)-NANM sites exist in the mouse brain, and each exhibits a different regional distribution. The in vivo binding of (+)- 3 H-NANM was found to be saturable at pharmacologically relevant doses, and represents a relatively small (10 - 22%) portion of total brain (+)- 3 H-NANM concentrations. The in vivo binding of (+)- 3 H-NANM was selectively displaced by (+)-NANM and PCP, and more sensitive to haloperidol and (+)-ketocyclazocine than the (-)- 3 H-NANM site. The in vivo binding of (-)- 3 H-NANM was selectively displaced by (-)-NANM, and more sensitive to naloxone and (-) ketocyclazocine than the (+)- 3 H-NANM site, and insensitive to PCP. This study indicates that the investigation of NANM binding sites is possible using in vivo binding techniques, and that each isomer apparently binds, in the mouse brain, to a single class of distinct sites. 32 references, 4 figures, 2 tables

  8. In vivo fate of a behaviorally potent ACTH 4-9 analog; evidence for its specific uptake in the brain septal area

    International Nuclear Information System (INIS)

    Verhoef, J.

    1977-01-01

    The effects of ACTH-like neuropeptides on conditioned avoidance behavior and their tentative central sites of action are reviewed. The in vivo fate of the [ 3 H]-ACTH 4-9 analog after various routes of peripheral administration in mice and rats are described, in particular, the uptake of intact peptide in the brain is emphasized, since ACTH-like neuropeptides elicit their behavioral activities by directly affecting the central nervous system. Subsequently, the metabolic profiles of the ACTH 4-9 analog in plasma and brain tissue are reported. The distribution of the [ 3 H]-ACTH 4-9 analog throughout the rat brain is studied after intraventricular injection to allow detection in small brain areas and nuclei and to limit (peripheral) proteolysis. Finally, the effects of increased and decreased circulating levels of both ACTH-like peptides and structurally non-related but behaviorally active neuropeptides on the central distribution profile of intraventricularly injected [ 3 H]-ACTH 4-9 analog are reviewed

  9. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  10. Brain imaging and schizophrenia

    International Nuclear Information System (INIS)

    Martinot, J.L.; Dao-Castellana, M.H.

    1991-01-01

    Brain structures and brain function have been investigated by the new brain imaging techniques for more than ten years. In Psychiatry, these techniques could afford a new understanding of mental diseases. In schizophrenic patients, CAT scanner and RMI pointed out statistically significant ventricular enlargments which are presently considered as evidence for abnormalities in brain maturation. Functional imaging techniques reported metabolic dysfunctions in the cortical associative areas which are probably linked to the cognitive features of schizophrenics [fr

  11. Differentiation of Brain Tumor Recurrence from Post-Radiotherapy Necrosis with 11C-Methionine PET: Visual Assessment versus Quantitative Assessment.

    Directory of Open Access Journals (Sweden)

    Ryogo Minamimoto

    Full Text Available The aim of this multi-center study was to assess the diagnostic capability of visual assessment in L-methyl-11C-methionine positron emission tomography (MET-PET for differentiating a recurrent brain tumor from radiation-induced necrosis after radiotherapy, and to compare it to the accuracy of quantitative analysis.A total of 73 brain lesions (glioma: 31, brain metastasis: 42 in 70 patients who underwent MET-PET were included in this study. Visual analysis was performed by comparison of MET uptake in the brain lesion with MET uptake in one of four regions (around the lesion, contralateral frontal lobe, contralateral area, and contralateral cerebellar cortex. The concordance rate and logistic regression analysis were used to evaluate the diagnostic ability of visual assessment. Receiver-operating characteristic curve analysis was used to compare visual assessment with quantitative assessment based on the lesion-to-normal (L/N ratio of MET uptake.Interobserver and intraobserver κ-values were highest at 0.657 and 0.714, respectively, when assessing MET uptake in the lesion compared to that in the contralateral cerebellar cortex. Logistic regression analysis showed that assessing MET uptake in the contralateral cerebellar cortex with brain metastasis was significantly related to the final result. The highest area under the receiver-operating characteristic curve (AUC with visual assessment for brain metastasis was 0.85, showing no statistically significant difference with L/Nmax of the contralateral brain (AUC = 0.89 or with L/Nmean of the contralateral cerebellar cortex (AUC = 0.89, which were the areas that were the highest in the quantitative assessment. For evaluation of gliomas, no specific candidate was confirmed among the four areas used in visual assessment, and no significant difference was seen between visual assessment and quantitative assessment.The visual assessment showed no significant difference from quantitative assessment of MET

  12. Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference.

    Directory of Open Access Journals (Sweden)

    Moritz Lehne

    Full Text Available Stories can elicit powerful emotions. A key emotional response to narrative plots (e.g., novels, movies, etc. is suspense. Suspense appears to build on basic aspects of human cognition such as processes of expectation, anticipation, and prediction. However, the neural processes underlying emotional experiences of suspense have not been previously investigated. We acquired functional magnetic resonance imaging (fMRI data while participants read a suspenseful literary text (E.T.A. Hoffmann's "The Sandman" subdivided into short text passages. Individual ratings of experienced suspense obtained after each text passage were found to be related to activation in the medial frontal cortex, bilateral frontal regions (along the inferior frontal sulcus, lateral premotor cortex, as well as posterior temporal and temporo-parietal areas. The results indicate that the emotional experience of suspense depends on brain areas associated with social cognition and predictive inference.

  13. Brain classification reveals the right cerebellum as the best biomarker of dyslexia

    Directory of Open Access Journals (Sweden)

    Demonet Jean

    2009-06-01

    Full Text Available Abstract Background Developmental dyslexia is a specific cognitive disorder in reading acquisition that has genetic and neurological origins. Despite histological evidence for brain differences in dyslexia, we recently demonstrated that in large cohort of subjects, no differences between control and dyslexic readers can be found at the macroscopic level (MRI voxel, because of large variances in brain local volumes. In the present study, we aimed at finding brain areas that most discriminate dyslexic from control normal readers despite the large variance across subjects. After segmenting brain grey matter, normalizing brain size and shape and modulating the voxels' content, normal readers' brains were used to build a 'typical' brain via bootstrapped confidence intervals. Each dyslexic reader's brain was then classified independently at each voxel as being within or outside the normal range. We used this simple strategy to build a brain map showing regional percentages of differences between groups. The significance of this map was then assessed using a randomization technique. Results The right cerebellar declive and the right lentiform nucleus were the two areas that significantly differed the most between groups with 100% of the dyslexic subjects (N = 38 falling outside of the control group (N = 39 95% confidence interval boundaries. The clinical relevance of this result was assessed by inquiring cognitive brain-based differences among dyslexic brain subgroups in comparison to normal readers' performances. The strongest difference between dyslexic subgroups was observed between subjects with lower cerebellar declive (LCD grey matter volumes than controls and subjects with higher cerebellar declive (HCD grey matter volumes than controls. Dyslexic subjects with LCD volumes performed worse than subjects with HCD volumes in phonologically and lexicon related tasks. Furthermore, cerebellar and lentiform grey matter volumes interacted in dyslexic

  14. Disruption of behavior and brain metabolism in artificially reared rats.

    Science.gov (United States)

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  15. Altered aquaporins in the brains of mice submitted to intermittent hypoxia model of sleep apnea.

    Science.gov (United States)

    Baronio, Diego; Martinez, Denis; Fiori, Cintia Zappe; Bambini-Junior, Victorio; Forgiarini, Luiz Felipe; Pase da Rosa, Darlan; Kim, Lenise Jihe; Cerski, Marcelle Reesink

    2013-01-15

    Rostral fluid displacement has been proposed as a pathophysiologic mechanism of both central and obstructive sleep apnea. Aquaporins are membrane proteins that regulate water transport across the cell membrane and are involved in brain edema formation and resolution. The present study investigated the effect of intermittent hypoxia (IH), a model of sleep apnea, on brain aquaporins. Mice were exposed to intermittent hypoxia to a nadir of 7% oxygen fraction. Brain water content, Aquaporin-1 and Aquaporin-3 were measured in the cerebellum and hippocampus. Hematoxylin-eosin and immunohistochemistry stainings were performed to evaluate cell damage. Compared to the sham group, the hypoxia group presented higher brain water content, lower levels of Aquaporin-1 and similar levels of Aquaporin-3. Immunoreactivity to GFAP and S100B was stronger in the hypoxia group in areas of extensive gliosis, compatible with cytotoxic edema. These findings, although preliminary, indicate an effect of IH on aquaporins levels. Further investigation about the relevance of these data on the pathophysiology of OSA is warranted. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. ‘Your Brain on Art’: Emergent cortical dynamics during aesthetic experiences

    Directory of Open Access Journals (Sweden)

    Kimberly eKontson

    2015-11-01

    Full Text Available The brain response to conceptual art was studied with mobile electroencephalography (EEG to examine the neural basis of aesthetic experiences. In contrast to most studies of perceptual phenomena, participants were moving and thinking freely as they viewed the exhibit The Boundary of Life is Quietly Crossed by Dario Robleto at the Menil Collection-Houston. The brain activity of over 400 subjects was recorded using dry-electrode and one reference gel-based EEG systems over a period of 3 months. Here, we report initial findings based on the reference system. EEG segments corresponding to each art piece were grouped into one of three classes (complex, moderate, and baseline based on analysis of a digital image of each piece. Time, frequency, and wavelet features extracted from EEG were used to classify patterns associated with viewing art, and ranked based on their relevance for classification. The maximum classification accuracy was 55% (chance = 33% with delta and gamma features the most relevant for classification. Functional analysis revealed a significant increase in connection strength in localized brain networks while subjects viewed the most aesthetically pleasing art compared to viewing a blank wall. The direction of signal flow showed early recruitment of broad posterior areas followed by focal anterior activation. Significant differences in the strength of connections were also observed across age and gender. This work provides evidence that EEG, deployed on freely behaving subjects, can detect selective signal flow in neural networks, identify significant differences between subject groups, and report with greater-than-chance accuracy the complexity of a subject’s visual percept of aesthetically pleasing art. Our approach, which allows acquisition of neural activity ‘in action and context’, could lead to understanding of how the brain integrates sensory input and its ongoing internal state to produce the phenomenon which we term

  17. Cortical areas involved in Arabic number reading.

    Science.gov (United States)

    Roux, F-E; Lubrano, V; Lauwers-Cances, V; Giussani, C; Démonet, J-F

    2008-01-15

    Distinct functional pathways for processing words and numbers have been hypothesized from the observation of dissociated impairments of these categories in brain-damaged patients. We aimed to identify the cortical areas involved in Arabic number reading process in patients operated on for various brain lesions. Direct cortical electrostimulation was prospectively used in 60 brain mappings. We used object naming and two reading tasks: alphabetic script (sentences and number words) and Arabic number reading. Cortical areas involved in Arabic number reading were identified according to location, type of interference, and distinctness from areas associated with other language tasks. Arabic number reading was sustained by small cortical areas, often extremely well localized (area (Brodmann area 45), the anterior part of the dominant supramarginal gyrus (Brodmann area 40; p area (Brodmann area 37; p areas.

  18. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  19. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  20. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  1. Brain Abscess Presenting as Postpartum Diabetes Insipidus

    Directory of Open Access Journals (Sweden)

    Silvia So-Haei Liu

    2004-03-01

    Conclusion: The diagnosis of brain abscess in this patient was masked by postpartum diabetes insipidus, which is an unusual manifestation. Symptoms and signs of brain abscess are nonspecific in the early stage and missed diagnosis is not uncommon. In conclusion, we reaffirm the importance of remarking on any past relevant information, and one should always be aware of any unresolved symptoms even though they may be nonspecific.

  2. Hyper-attenuating brain lesions on CT after ischemic stroke and thrombectomy are associated with final brain infarction.

    Science.gov (United States)

    Cabral, F B; Castro-Afonso, L H; Nakiri, G S; Monsignore, L M; Fábio, Src; Dos Santos, A C; Pontes-Neto, O M; Abud, D G

    2017-12-01

    Purpose Hyper-attenuating lesions, or contrast staining, on a non-contrast brain computed tomography (NCCT) scan have been investigated as a predictor for hemorrhagic transformation after endovascular treatment of acute ischemic stroke (AIS). However, the association of hyper-attenuating lesions and final ischemic areas are poorly investigated in this setting. The aim of the present study was to assess correlations between hyper-attenuating lesions and final brain infarcted areas after thrombectomy for AIS. Methods Data from patients with AIS of the anterior circulation who underwent endovascular treatment were retrospectively assessed. Images of the brain NCCT scans were analyzed in the first hours and late after treatment. The hyper-attenuating areas were compared to the final ischemic areas using the Alberta Stroke Program Early CT Score (ASPECTS). Results Seventy-one of the 123 patients (65.13%) treated were included. The association between the hyper-attenuating region in the post-thrombectomy CT scan and final brain ischemic area were sensitivity (58.3% to 96.9%), specificity (42.9% to 95.6%), positive predictive values (71.4% to 97.7%), negative predictive values (53.8% to 79.5%), and accuracy values (68% to 91%). The highest sensitivity values were found for the lentiform (96.9%) and caudate nuclei (80.4%) and for the internal capsule (87.5%), and the lowest values were found for the M1 (58.3%) and M6 (66.7%) cortices. Conclusions Hyper-attenuating lesions on head NCCT scans performed after endovascular treatment of AIS may predict final brain infarcted areas. The prediction appears to be higher in the deep brain regions compared with the cortical regions.

  3. The Embodied Brain: Towards a Radical Embodied Cognitive Neuroscience

    Directory of Open Access Journals (Sweden)

    Julian eKiverstein

    2015-05-01

    Full Text Available In this programmatic paper we explain why a radical embodied cognitive neuroscience is needed. We argue for such a claim based on problems that have arisen in cognitive neuroscience for the project of localizing function to specific brain structures. The problems come from research concerned with functional and structural connectivity that strongly suggests that the function a brain region serves is dynamic, and changes over time. We argue that in order to determine the function of a specific brain area, neuroscientists need to zoom out and look at the larger organism-environment system. We therefore argue that instead of looking to cognitive psychology for an analysis of psychological functions, cognitive neuroscience should look to an ecological dynamical psychology. A second aim of our paper is to develop an account of embodied cognition based on the inseparability of cognitive and emotional processing in the brain. We argue that emotions are best understood in terms of action readiness (Frijda 1986, 2007 in the context of the organism’s ongoing skillful engagement with the environment (Rietveld 2008; Bruineberg & Rietveld 2014; Kiverstein & Rietveld 2015. States of action readiness involve the whole living body of the organism, and are elicited by possibilities for action in the environment that matter to the organism. Since emotion and cognition are inseparable processes in the brain it follows that what is true of emotion is also true of cognition. Cognitive processes are likewise processes taking place in the whole living body of an organism as it engages with relevant possibilities for action.

  4. Brain transcriptome atlases : A computational perspective

    NARCIS (Netherlands)

    Mahfouz, A.M.E.T.A.; Huisman, S.M.H.; Lelieveldt, B.P.F.; Reinders, M.J.T.

    2017-01-01

    The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases

  5. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Brain response to masked and unmasked facial emotions as a function of implicit and explicit personality self-concept of extraversion.

    Science.gov (United States)

    Suslow, Thomas; Kugel, Harald; Lindner, Christian; Dannlowski, Udo; Egloff, Boris

    2017-01-06

    Extraversion-introversion is a personality dimension referring to individual differences in social behavior. In the past, neurobiological research on extraversion was almost entirely based upon questionnaires which inform about the explicit self-concept. Today, indirect measures are available that tap into the implicit self-concept of extraversion which is assumed to result from automatic processing functions. In our study, brain activation while viewing facial expression of affiliation relevant (i.e., happiness, and disgust) and irrelevant (i.e., fear) emotions was examined as a function of the implicit and explicit self-concept of extraversion and processing mode (automatic vs. controlled). 40 healthy volunteers watched blocks of masked and unmasked emotional faces while undergoing functional magnetic resonance imaging. The Implicit Association Test and the NEO Five-Factor Inventory were applied as implicit and explicit measures of extraversion which were uncorrelated in our sample. Implicit extraversion was found to be positively associated with neural response to masked happy faces in the thalamus and temporo-parietal regions and to masked disgust faces in cerebellar areas. Moreover, it was positively correlated with brain response to unmasked disgust faces in the amygdala and cortical areas. Explicit extraversion was not related to brain response to facial emotions when controlling trait anxiety. The implicit compared to the explicit self-concept of extraversion seems to be more strongly associated with brain activation not only during automatic but also during controlled processing of affiliation relevant facial emotions. Enhanced neural response to facial disgust could reflect high sensitivity to signals of interpersonal rejection in extraverts (i.e., individuals with affiliative tendencies). Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Parallel workflow tools to facilitate human brain MRI post-processing

    Directory of Open Access Journals (Sweden)

    Zaixu eCui

    2015-05-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues.

  8. Development and Implementation of a Corriedale Ovine Brain Atlas for Use in Atlas-Based Segmentation.

    Directory of Open Access Journals (Sweden)

    Kishan Andre Liyanage

    Full Text Available Segmentation is the process of partitioning an image into subdivisions and can be applied to medical images to isolate anatomical or pathological areas for further analysis. This process can be done manually or automated by the use of image processing computer packages. Atlas-based segmentation automates this process by the use of a pre-labelled template and a registration algorithm. We developed an ovine brain atlas that can be used as a model for neurological conditions such as Parkinson's disease and focal epilepsy. 17 female Corriedale ovine brains were imaged in-vivo in a 1.5T (low-resolution MRI scanner. 13 of the low-resolution images were combined using a template construction algorithm to form a low-resolution template. The template was labelled to form an atlas and tested by comparing manual with atlas-based segmentations against the remaining four low-resolution images. The comparisons were in the form of similarity metrics used in previous segmentation research. Dice Similarity Coefficients were utilised to determine the degree of overlap between eight independent, manual and atlas-based segmentations, with values ranging from 0 (no overlap to 1 (complete overlap. For 7 of these 8 segmented areas, we achieved a Dice Similarity Coefficient of 0.5-0.8. The amygdala was difficult to segment due to its variable location and similar intensity to surrounding tissues resulting in Dice Coefficients of 0.0-0.2. We developed a low resolution ovine brain atlas with eight clinically relevant areas labelled. This brain atlas performed comparably to prior human atlases described in the literature and to intra-observer error providing an atlas that can be used to guide further research using ovine brains as a model and is hosted online for public access.

  9. Should Broca's area include Brodmann area 47?

    Science.gov (United States)

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2017-02-01

    Understanding brain organization of speech production has been a principal goal of neuroscience. Historically, brain speech production has been associated with so-called Broca’s area (Brodmann area –BA- 44 and 45), however, modern neuroimaging developments suggest speech production is associated with networks rather than with areas. The purpose of this paper was to analyze the connectivity of BA47 ( pars orbitalis) in relation to language . A meta-analysis was conducted to assess the language network in which BA47 is involved. The Brainmap database was used. Twenty papers corresponding to 29 experimental conditions with a total of 373 subjects were included. Our results suggest that BA47 participates in a “frontal language production system” (or extended Broca’s system). The BA47  connectivity found is also concordant with a minor role in language semantics. BA47 plays a central role in the language production system.

  10. Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport

    Directory of Open Access Journals (Sweden)

    Nadine Ruderisch

    2017-10-01

    Full Text Available Therapeutic approaches to fight Alzheimer's disease include anti-Amyloidβ (Aβ antibodies and secretase inhibitors. However, the blood-brain barrier (BBB limits the brain exposure of biologics and the chemical space for small molecules to be BBB permeable. The Brain Shuttle (BS technology is capable of shuttling large molecules into the brain. This allows for new types of therapeutic modalities engineered for optimal efficacy on the molecular target in the brain independent of brain penetrating properties. To this end, we designed BACE1 peptide inhibitors with varying lipid modifications with single-digit picomolar cellular potency. Secondly, we generated active-exosite peptides with structurally confirmed dual binding mode and improved potency. When fused to the BS via sortase coupling, these BACE1 inhibitors significantly reduced brain Aβ levels in mice after intravenous administration. In plasma, both BS and non-BS BACE1 inhibitor peptides induced a significant time- and dose-dependent decrease of Aβ. Our results demonstrate that the BS is essential for BACE1 peptide inhibitors to be efficacious in the brain and active-exosite design of BACE1 peptide inhibitors together with lipid modification may be of therapeutic relevance.

  11. Associations between Family Adversity and Brain Volume in Adolescence: Manual vs. Automated Brain Segmentation Yields Different Results

    OpenAIRE

    Lyden, Hannah; Gimbel, Sarah I.; Del Piero, Larissa; Tsai, A. Bryna; Sachs, Matthew E.; Kaplan, Jonas T.; Margolin, Gayla; Saxbe, Darby

    2016-01-01

    Associations between brain structure and early adversity have been inconsistent in the literature. These inconsistencies may be partially due to methodological differences. Different methods of brain segmentation may produce different results, obscuring the relationship between early adversity and brain volume. Moreover, adolescence is a time of significant brain growth and certain brain areas have distinct rates of development, which may compromise the accuracy of automated segmentation appr...

  12. Inconsistent approaches of the G-BA regarding acceptance of primary study endpoints as being relevant to patients - an analysis of three disease areas: oncological, metabolic, and infectious diseases

    Directory of Open Access Journals (Sweden)

    Thomas Staab

    2016-11-01

    Full Text Available Abstract Background Previous evaluations of oncological medicines in the German early benefit assessment (EBA procedure have demonstrated inconsistent acceptance of endpoints by regulatory authorities and the Federal Joint Committee (G-BA. Accepted standard endpoints for regulatory purposes are frequently not considered as patient-relevant in the German EBA system. In this study the acceptance of clinically acknowledged primary endpoints (PEPs from regulatory trials in EBAs conducted by the G-BA was evaluated across three therapeutic areas. Methods Medicines for oncological, metabolic and infectious diseases with EBAs finalised before 25 January 2016 were evaluated. Respective manufacturer’s dossiers, regulatory assessments, G-BA appraisals and oral hearing minutes were reviewed, and PEPs were examined to determine whether they were considered relevant to patients by the G-BA. Furthermore, the acceptance of symptomatic vs asymptomatic PEPs was also analysed. Results A total of 65 EBAs were evaluated. Mortality PEPs were widely accepted as patient-relevant but were only used in a minority of EBAs and exclusively in oncological diseases. Morbidity PEPs constituted around 72 % of assessed PEPs, but were excluded from the EBA in over half of the corresponding assessments as they were not considered patient-relevant. Symptomatic endpoints were largely deemed patient-relevant, whereas acceptance of asymptomatic endpoints varied between therapeutic areas. Conclusions This evaluation identified inconsistencies in patient relevance of morbidity-related PEPs as well as in acceptance of asymptomatic endpoints by the G-BA in all three disease areas examined. Better harmonisation between the regulatory authorities and the G-BA is still required after 5 years of AMNOG health technology assessment in Germany.

  13. Deafferentation in thalamic and pontine areas in severe traumatic brain injury.

    Science.gov (United States)

    Laouchedi, M; Galanaud, D; Delmaire, C; Fernandez-Vidal, S; Messé, A; Mesmoudi, S; Oulebsir Boumghar, F; Pélégrini-Issac, M; Puybasset, L; Benali, H; Perlbarg, V

    2015-07-01

    Severe traumatic brain injury (TBI) is characterized mainly by diffuse axonal injuries (DAI). The cortico-subcortical disconnections induced by such fiber disruption play a central role in consciousness recovery. We hypothesized that these cortico-subcortical deafferentations inferred from diffusion MRI data could differentiate between TBI patients with favorable or unfavorable (death, vegetative state, or minimally conscious state) outcome one year after injury. Cortico-subcortical fiber density maps were derived by using probabilistic tractography from diffusion tensor imaging data acquired in 24 severe TBI patients and 9 healthy controls. These maps were compared between patients and controls as well as between patients with favorable (FO) and unfavorable (UFO) 1-year outcome to identify the thalamo-cortical and ponto-thalamo-cortical pathways involved in the maintenance of consciousness. Thalamo-cortical and ponto-thalamo-cortical fiber density was significantly lower in TBI patients than in healthy controls. Comparing FO and UFO TBI patients showed thalamo-cortical deafferentation associated with unfavorable outcome for projections from ventral posterior and intermediate thalamic nuclei to the associative frontal, sensorimotor and associative temporal cortices. Specific ponto-thalamic deafferentation in projections from the upper dorsal pons (including the reticular formation) was also associated with unfavorable outcome. Fiber density of cortico-subcortical pathways as measured from diffusion MRI tractography is a relevant candidate biomarker for early prediction of one-year favorable outcome in severe TBI. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Age differences in default and reward networks during processing of personally relevant information.

    Science.gov (United States)

    Grady, Cheryl L; Grigg, Omer; Ng, Charisa

    2012-06-01

    We recently found activity in default mode and reward-related regions during self-relevant tasks in young adults. Here we examine the effect of aging on engagement of the default network (DN) and reward network (RN) during these tasks. Previous studies have shown reduced engagement of the DN and reward areas in older adults, but the influence of age on these circuits during self-relevant tasks has not been examined. The tasks involved judging personality traits about one's self or a well known other person. There were no age differences in reaction time on the tasks but older adults had more positive Self and Other judgments, whereas younger adults had more negative judgments. Both groups had increased DN and RN activity during the self-relevant tasks, relative to non-self tasks, but this increase was reduced in older compared to young adults. Functional connectivity of both networks during the tasks was weaker in the older relative to younger adults. Intrinsic functional connectivity, measured at rest, also was weaker in the older adults in the DN, but not in the RN. These results suggest that, in younger adults, the processing of personally relevant information involves robust activation of and functional connectivity within these two networks, in line with current models that emphasize strong links between the self and reward. The finding that older adults had more positive judgments, but weaker engagement and less consistent functional connectivity in these networks, suggests potential brain mechanisms for the "positivity bias" with aging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The relation between persistent coma and brain ischemia after severe brain injury.

    Science.gov (United States)

    Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu

    2013-12-01

    To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.

  16. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study.

    Science.gov (United States)

    Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang

    2018-01-01

    Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

  17. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    Science.gov (United States)

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  18. Energy landscape and dynamics of brain activity during human bistable perception.

    Science.gov (United States)

    Watanabe, Takamitsu; Masuda, Naoki; Megumi, Fukuda; Kanai, Ryota; Rees, Geraint

    2014-08-28

    Individual differences in the structure of parietal and prefrontal cortex predict the stability of bistable visual perception. However, the mechanisms linking such individual differences in brain structures to behaviour remain elusive. Here we demonstrate a systematic relationship between the dynamics of brain activity, cortical structure and behaviour underpinning bistable perception. Using fMRI in humans, we find that the activity dynamics during bistable perception are well described as fluctuating between three spatially distributed energy minimums: visual-area-dominant, frontal-area-dominant and intermediate states. Transitions between these energy minimums predicted behaviour, with participants whose brain activity tend to reflect the visual-area-dominant state exhibiting more stable perception and those whose activity transits to frontal-area-dominant states reporting more frequent perceptual switches. Critically, these brain activity dynamics are correlated with individual differences in grey matter volume of the corresponding brain areas. Thus, individual differences in the large-scale dynamics of brain activity link focal brain structure with bistable perception.

  19. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma

    DEFF Research Database (Denmark)

    Johnsen, Kasper B.; Burkhart, Annette; Melander, Fredrik

    2017-01-01

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibi...... cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain....... investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does...... not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased...

  20. Diagnosing dementia and normal aging: clinical relevance of brain ratios and cognitive performance in a Brazilian sample

    Directory of Open Access Journals (Sweden)

    Chaves M.L.F.

    1999-01-01

    Full Text Available The main objective of the present study was to evaluate the diagnostic value (clinical application of brain measures and cognitive function. Alzheimer and multiinfarct patients (N = 30 and normal subjects over the age of 50 (N = 40 were submitted to a medical, neurological and cognitive investigation. The cognitive tests applied were Mini-Mental, word span, digit span, logical memory, spatial recognition span, Boston naming test, praxis, and calculation tests. The brain ratios calculated were the ventricle-brain, bifrontal, bicaudate, third ventricle, and suprasellar cistern measures. These data were obtained from a brain computer tomography scan, and the cutoff values from receiver operating characteristic curves. We analyzed the diagnostic parameters provided by these ratios and compared them to those obtained by cognitive evaluation. The sensitivity and specificity of cognitive tests were higher than brain measures, although dementia patients presented higher ratios, showing poorer cognitive performances than normal individuals. Normal controls over the age of 70 presented higher measures than younger groups, but similar cognitive performance. We found diffuse losses of tissue from the central nervous system related to distribution of cerebrospinal fluid in dementia patients. The likelihood of case identification by functional impairment was higher than when changes of the structure of the central nervous system were used. Cognitive evaluation still seems to be the best method to screen individuals from the community, especially for developing countries, where the cost of brain imaging precludes its use for screening and initial assessment of dementia.

  1. Exenatide Regulates Cerebral Glucose Metabolism in Brain Areas Associated With Glucose Homeostasis and Reward System.

    Science.gov (United States)

    Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia

    2015-10-01

    Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    International Nuclear Information System (INIS)

    Li Enzhong; Tian Jie; Dai Ruwei

    2002-01-01

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  3. Complex brain networks: From topological communities to clustered ...

    Indian Academy of Sciences (India)

    functional connectivity of the human brain has shown that both types of brain networks share .... the areas and also of the whole network, the Pearson correlation coefficient r and ..... Several areas important for intercommunity communication.

  4. Perceptual and categorical decision making: goal-relevant representation of two domains at different levels of abstraction.

    Science.gov (United States)

    Shankar, Swetha; Kayser, Andrew S

    2017-06-01

    To date it has been unclear whether perceptual decision making and rule-based categorization reflect activation of similar cognitive processes and brain regions. On one hand, both map potentially ambiguous stimuli to a smaller set of motor responses. On the other hand, decisions about perceptual salience typically concern concrete sensory representations derived from a noisy stimulus, while categorization is typically conceptualized as an abstract decision about membership in a potentially arbitrary set. Previous work has primarily examined these types of decisions in isolation. Here we independently varied salience in both the perceptual and categorical domains in a random dot-motion framework by manipulating dot-motion coherence and motion direction relative to a category boundary, respectively. Behavioral and modeling results suggest that categorical (more abstract) information, which is more relevant to subjects' decisions, is weighted more strongly than perceptual (more concrete) information, although they also have significant interactive effects on choice. Within the brain, BOLD activity within frontal regions strongly differentiated categorical salience and weakly differentiated perceptual salience; however, the interaction between these two factors activated similar frontoparietal brain networks. Notably, explicitly evaluating feature interactions revealed a frontal-parietal dissociation: parietal activity varied strongly with both features, but frontal activity varied with the combined strength of the information that defined the motor response. Together, these data demonstrate that frontal regions are driven by decision-relevant features and argue that perceptual decisions and rule-based categorization reflect similar cognitive processes and activate similar brain networks to the extent that they define decision-relevant stimulus-response mappings. NEW & NOTEWORTHY Here we study the behavioral and neural dynamics of perceptual categorization when

  5. Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates.

    Science.gov (United States)

    Acker, Leah C; Pino, Erica N; Boyden, Edward S; Desimone, Robert

    2017-10-03

    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.

  6. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    Science.gov (United States)

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  7. Common Sense Beliefs about the Central Self, Moral Character, and the Brain

    Directory of Open Access Journals (Sweden)

    Diego eFernandez-Duque

    2016-01-01

    Full Text Available To assess lay beliefs about self and brain, we probed people’s opinions about the central self, in relation to morality, willful control, and brain relevance. In study 1, 172 participants compared the central self to the peripheral self. The central self, construed at this abstract level, was seen as more brain-based than the peripheral self, less changeable through willful control, and yet more indicative of moral character. In study 2, 210 participants described 18 specific personality traits on 6 dimensions: centrality to self, moral relevance, willful control, brain dependence, temporal stability, and desirability. Consistent with Study 1, centrality to the self, construed at this more concrete level, was positively correlated to brain dependence. Centrality to the self was also correlated to desirability and temporal stability, but not to morality or willful control. We discuss differences and similarities between abstract (Study 1 and concrete (Study 2 levels of construal of the central self, and conclude that in contemporary American society people readily embrace the brain as the underlying substrate of who they truly are.

  8. Common Sense Beliefs about the Central Self, Moral Character, and the Brain.

    Science.gov (United States)

    Fernandez-Duque, Diego; Schwartz, Barry

    2015-01-01

    To assess lay beliefs about self and brain, we probed people's opinions about the central self, in relation to morality, willful control, and brain relevance. In study 1, 172 participants compared the central self to the peripheral self. The central self, construed at this abstract level, was seen as more brain-based than the peripheral self, less changeable through willful control, and yet more indicative of moral character. In study 2, 210 participants described 18 specific personality traits on 6 dimensions: centrality to self, moral relevance, willful control, brain dependence, temporal stability, and desirability. Consistent with Study 1, centrality to the self, construed at this more concrete level, was positively correlated to brain dependence. Centrality to the self was also correlated to desirability and temporal stability, but not to morality or willful control. We discuss differences and similarities between abstract (Study 1) and concrete (Study 2) levels of construal of the central self, and conclude that in contemporary American society people readily embrace the brain as the underlying substrate of who they truly are.

  9. Proxy assessment of patients before and after radiotherapy for brain metastases. Results of a prospective study using the DEGRO brain module

    International Nuclear Information System (INIS)

    Steinmann, D.; Vordermark, D.; Geinitz, H.; Aschoff, R.; Bayerl, A.; Gerstein, J.; Hipp, M.; Schaefer, C.; Oorschot, B. van; Wypior, H.J.

    2013-01-01

    Purpose: Proxies of patients with poor performance status could give useful information about the patients' quality of life (QoL). We applied a newly developed questionnaire in a prospective QoL study of patients undergoing radiotherapy for brain metastases in order to make the first move to validate this instrument, and we compared the results with scores obtained using validated patient-completed instruments. Materials and methods: From January 2007 to June 2010, 166 patients with previously untreated brain metastases were recruited at 14 centers in Germany and Austria. The EORTC-QLQ-C15-PAL and the brain module BN20 were used to assess QoL in patients at the start of treatment and 3 months later. At the same time points, 141 of their proxies estimated the QoL with the new DEGRO brain module (DBM), a ten-item questionnaire rating the general condition as well as functions and impairment by symptoms in areas relevant to patients with brain metastases. Results: At 3 months, 85 of 141 patients (60%) with initial response by a proxy were alive. Sixty-seven of these patients (79% of 3-month survivors) and 65 proxies completed the second set of questionnaires. After 3 months, QoL significantly deteriorated in all items of proxy-assessed QoL except headache. Correlations between self-assessed and proxy-assessed QoL were high in single items such as nausea, headache, and fatigue. Conclusions: The high correlation between self-assessment and proxy ratings as well as a similar change over time for both approaches suggest that in patients with brain metastases, proxy assessment using the DBM questionnaire can be an alternative approach to obtaining QoL data when patients are unable to complete questionnaires themselves. Our self-constructed and first applied DBM is the only highly specific instrument for patients with brain metastases, but further tests are needed for its final validation. (orig.)

  10. Role of ghrelin in drug abuse and reward-relevant behaviors: a burgeoning field and gaps in the literature.

    Science.gov (United States)

    Revitsky, A R; Klein, L C

    2013-09-01

    Ghrelin is a gut-brain hormone that regulates energy balance through food consumption. While ghrelin is well known for its role in hypothalamic activation and homeostatic feeding, more recent evidence suggests that ghrelin also is involved in hedonic feeding through the dopaminergic reward pathway. This paper investigated how ghrelin administration (intraperitoneal, intracerebroventricular, or directly into dopaminergic reward-relevant brain regions) activates the dopaminergic reward pathway and associated reward-relevant behavioral responses in rodents. A total of 19 empirical publications that examined one or more of these variables were included in this review. Overall, ghrelin administration increases dopamine levels in the nucleus accumbens, as well as reward-relevant behaviors such as food (both standard chow and palatable foods) and alcohol consumption. Ghrelin administration also increases operant responding for sucrose, and conditioned place preference. Following a review of the small body of literature examining the effects of ghrelin administration on the dopamine reward pathway, we present a model of the relationship between ghrelin and dopaminergic reward activation. Specifically, ghrelin acts on ghrelin receptors (GHS-R1A) in the ventral tegmental area (VTA) and lateral dorsal tegmental nucleus (LDTg) to stimulate the mesolimbic dopamine reward pathway, which results in increased rewarding behaviors in rodents. Results from this review suggest that selective antagonism of the ghrelin system may serve as potential treatment for addictive drug use. This review highlights gaps in the literature, including a lack of examination of sex- or age-related differences in the effects of ghrelin on dopamine reward processes. In light of vulnerability to drug abuse among female and adolescent populations, future studies should target these individual difference factors.

  11. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson's disease.

    Science.gov (United States)

    Costa, Alberto; Carlesimo, Giovanni Augusto; Caltagirone, Carlo; Mazzone, Paolo; Pierantozzi, Mariangela; Stefani, Alessandro; Peppe, Antonella

    2010-01-01

    The present paper was aimed at investigating the effect of low-frequency electrical stimulation (25 Hz) of the peduncolopontine (PPN) area on working memory (WM) functioning in patients with Parkinson's disease (PD). Five PD patients who underwent simultaneous PPN area- and subthalamic nucleus-deep brain stimulation (DBS) implantation participated in the study. PD patients were evaluated in the morning at least 12 h after antiparkinsonian therapy withdrawal in two conditions: i) after continuous PPN area stimulation (Off Therapy/On PPN: "On" condition); ii) at least 120 min after PPN area had been switched "Off" (Off Ther/Off PPN: "Off" condition). The experimental WM task consisted of an n-back paradigm with verbal and visual-object stimuli. PD patients showed a consistent response time decrease on both the verbal and the visual-object tasks passing from the "Off" to the "On" condition (p processing of information in the content of WM, possibly through the modulation of the attentional resources.

  12. [Brain imaging in autism spectrum disorders. A review].

    Science.gov (United States)

    Dziobek, I; Köhne, S

    2011-05-01

    In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.

  13. Brain Perfusion Changes in Intracerebral Hemorrhage

    International Nuclear Information System (INIS)

    Mititelu, R.; Mazilu, C.; Ghita, S.; Rimbu, A.; Marinescu, G.; Codorean, I.; Bajenaru, O.

    2006-01-01

    Full text: Purpose: Despite the latest advances in medical treatment and neuro critical care, patients suffering spontaneous intracerebral hemorrhage (SICH) still have a very poor prognosis, with a greater mortality and larger neurological deficits at the survivors than for ischemic stroke. Many authors have shown that there are many mechanisms involved in the pathology of SICH: edema, ischemia, inflammation, apoptosis. All of these factors are affecting brain tissue surrounding hematoma and are responsible of the progressive neurological deterioration; most of these damages are not revealed by anatomical imaging techniques. The aim of our study was to asses the role of brain perfusion SPECT in demonstrating perfusion changes in SICH patients. Method: 17 SICH pts were studied. All pts underwent same day CT and brain SPECT with 99mTcHMPAO, 24h-5d from onset of stroke. Results: 14/17 pts showed a larger perfusion defect than expected after CT. In 2 pts hematoma diameter was comparable on CT and SPECT; 1pt had quasinormal aspect of SPECT study. In pts with larger defects, SPECT revealed a large cold spot with similar size compared with CT, and a surrounding hypo perfused area. 6/17 pts revealed cortical hyper perfusion adjacent to hypo perfused area and corresponding to a normal-appearing brain tissue on CT. In 3 pts we found crossed cerebellar diaskisis.In 2 pts we found cortical hypo perfused area in the contralateral cortex, with normal appearing brain tissue on CT. Conclusions: Brain perfusion SPECT revealed different types of perfusion changes in the brain tissue surrounding hematoma. These areas contain viable brain tissue that may be a target for future ne uroprotective strategies. Further studies are definitely required to demonstrate prognostic significance of these changes, but we can conclude that brain perfusion SPECT can play an important role in SICH, by early demonstrating functional changes responsible of clinical deterioration, thus allowing prompt

  14. Automated Multi-Contrast Brain Pathological Area Extraction from 2D MR Images

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Pavel; Bartušek, Karel; Kropatsch, W.G.; Smékal, Z.

    2015-01-01

    Roč. 13, č. 1 (2015), s. 58-69 ISSN 1665-6423 R&D Projects: GA ČR GAP102/12/1104 Institutional support: RVO:68081731 Keywords : Brain Pathology * Brain Tumor * MRI * Multi-contrast MRI * Symmetry Analysis Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.447, year: 2013

  15. The role of crossmodal interaction in psychological and brain organization of mathematical abilities

    Directory of Open Access Journals (Sweden)

    Nikita A. Khokhlov

    2016-12-01

    Full Text Available The paper analyzes the work of Russian and foreign scholars devoted to the role of cross analyzer cooperation in developing and implementing mathematical abilities.Crossmodal interaction is considered as an additional category of neuropsychological analysis that allows to extend the existing ideas about the psychological structure and brain providing the mathematical ability. There are data that confirm the relevance of studying the interaction of the senses. Many of the research on this issue are carried out using the synesthesia which is considered a rare phenomenon. However, both Russian and foreign works suggest that the interaction of analyzers is not characteristic only to those whose brain is synesthetic. The joint work of the senses is characteristic of every person since his/her childhood, and is an obligatory condition for cognitive processes. Cross analyzer synthesis is assumed to play an important role in producing spatial representations and the ability to intuitively perceive the notion of quantity (evolutionary foundations of mathematical ability. On the brain level, these processes are provided primarily by functioning of parietal and tertiary cortical areas located at the junctionof cortical analyzer areas and also temporal areas that border on the parahippocampal brain area. When dealing with school mathematics the structure of mathematical abilities is changing due to verbal and symbolic representations of numerical coding. Dealing with symbols opens up new opportunities, but it also narrows the spectrum of modalities involved in doing mathematical sums. Thus, the ability to re-encode information from one modality to another after school mathematics is perceived has an impact on the efficacy of mathematical activity. Doing mathematical sums is accompanied by crossmodal interaction that occurs on the unconscious level. Some problem conditions may be efficiently processed in one modality, others may be solved in other modality

  16. Disrupting the brain to validate hypotheses on the neurobiology of language

    Directory of Open Access Journals (Sweden)

    Liuba ePapeo

    2013-04-01

    Full Text Available Comprehension of words is an important part of the language faculty, involving the joint activity of frontal and temporo-parietal brain regions. Transcranial Magnetic Stimulation (TMS enables the controlled perturbation of brain activity, and thus offers a unique tool to test specific predictions about the causal relationship between brain regions and language understanding. This potential has been exploited to better define the role of regions that are classically accepted as part of the language-semantic network. For instance, TMS has contributed to establish the semantic relevance of the left anterior temporal lobe, or to solve the ambiguity between the semantic versus phonological function assigned to the left inferior frontal gyrus. We consider, more closely, the results from studies where the same technique, similar paradigms (lexical-semantic tasks and materials (words have been used to assess the relevance of regions outside the classically-defined language-semantic network – i.e., precentral motor regions – for the semantic analysis of words. This research shows that different aspects of the left precentral gyrus (primary motor and premotor sites are sensitive to the action-non action distinction of words’ meanings. However, the behavioral changes due to TMS over these sites are incongruent with what is expected after perturbation of a task-relevant brain region. Thus, the relationship between motor activity and language-semantic behavior remains far from clear. A better understanding of this issue could be guaranteed by investigating functional interactions between motor sites and semantically-relevant regions.

  17. Using sex differences in the developing brain to identify nodes of influence for seizure susceptibility and epileptogenesis.

    Science.gov (United States)

    Kight, Katherine E; McCarthy, Margaret M

    2014-12-01

    Sexual differentiation of the developing brain organizes the neural architecture differently between males and females, and the main influence on this process is exposure to gonadal steroids during sensitive periods of prenatal and early postnatal development. Many molecular and cellular processes are influenced by steroid hormones in the developing brain, including gene expression, cell birth and death, neurite outgrowth and synaptogenesis, and synaptic activity. Perturbations in these processes can alter neuronal excitability and circuit activity, leading to increased seizure susceptibility and the promotion of pathological processes that constitute epileptogenesis. In this review, we will provide a general overview of sex differences in the early developing brain that may be relevant for altered seizure susceptibility in early life, focusing on limbic areas of the brain. Sex differences that have the potential to alter the progress of epileptogenesis are evident at molecular and cellular levels in the developing brain, and include differences in neuronal excitability, response to environmental insult, and epigenetic control of gene expression. Knowing how these processes differ between the sexes can help us understand fundamental mechanisms underlying gender differences in seizure susceptibility and epileptogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. What are lipoproteins doing in the brain?

    Science.gov (United States)

    Wang, Hong; Eckel, Robert H

    2014-01-01

    Lipoproteins in plasma transport lipids between tissues, however, only high-density lipoproteins (HDL) appear to traverse the blood-brain barrier (BBB); thus, lipoproteins found in the brain must be produced within the central nervous system. Apolipoproteins E (ApoE) and ApoJ are the most abundant apolipoproteins in the brain, are mostly synthesized by astrocytes, and are found on HDL. In the hippocampus and other brain regions, lipoproteins help to regulate neurobehavioral functions by processes that are lipoprotein receptor-mediated. Moreover, lipoproteins and their receptors also have roles in the regulation of body weight and energy balance, acting through lipoprotein lipase (LPL) and the low-density lipoprotein (LDL) receptor-related protein (LRP). Thus, understanding lipoproteins and their metabolism in the brain provides a new opportunity with potential therapeutic relevance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    International Nuclear Information System (INIS)

    Ebersole, B.L.J.

    1985-01-01

    The localization of [ 3 H]-d-lysergic acid diethylamide ([ 3 H]LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with [ 3 H]LSD in vitro revealed substantial specific [ 3 H]LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received [ 3 H]LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies of brain areas from mice that received injections of [ 3 H]LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free [ 3 H]LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of [ 3 H]LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of [ 3 H]LSD binding in hippocampus was attributable to a lower density of sites labeled by [ 3 H]LSD. The pharmacological identify of [ 3 H]LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens

  20. Holistic face categorization in higher-level cortical visual areas of the normal and prosopagnosic brain: towards a non-hierarchical view of face perception

    Directory of Open Access Journals (Sweden)

    Bruno Rossion

    2011-01-01

    Full Text Available How a visual stimulus is initially categorized as a face in a network of human brain areas remains largely unclear. Hierarchical neuro-computational models of face perception assume that the visual stimulus is first decomposed in local parts in lower order visual areas. These parts would then be combined into a global representation in higher order face-sensitive areas of the occipito-temporal cortex. Here we tested this view in fMRI with visual stimuli that are categorized as faces based on their global configuration rather than their local parts (2-tones Mooney figures and Arcimboldo’s facelike paintings. Compared to the same inverted visual stimuli that are not categorized as faces, these stimuli activated the right middle fusiform gyrus (Fusiform face area, FFA and superior temporal sulcus (pSTS, with no significant activation in the posteriorly located inferior occipital gyrus (i.e., no occipital face area, OFA. This observation is strengthened by behavioral and neural evidence for normal face categorization of these stimuli in a brain-damaged prosopagnosic patient (PS whose intact right middle fusiform gyrus and superior temporal sulcus are devoid of any potential face-sensitive inputs from the lesioned right inferior occipital cortex. Together, these observations indicate that face-preferential activation may emerge in higher order visual areas of the right hemisphere without any face-preferential inputs from lower order visual areas, supporting a non-hierarchical view of face perception in the visual cortex.

  1. Cerebral autoregulation control of blood flow in the brain

    CERN Document Server

    Payne, Stephen

    2016-01-01

    This Brief provides a comprehensive introduction to the control of blood flow in the brain. Beginning with the basic physiology of autoregulation, the author goes on to discuss measurement techniques, mathematical models, methods of analysis, and relevant clinical conditions, all within this single volume. The author draws together this disparate field, and lays the groundwork for future research directions. The text gives an up-to-date review of the state of the art in cerebral autoregulation, which is particularly relevant as cerebral autoregulation moves from the laboratory to the bedside. Cerebral Autoregulation will be useful to researchers in the physical sciences such as mathematical biology, medical physics, and biomedical engineering whose work is concerned with the brain. Researchers in the medical sciences and clinicians dealing with the brain and blood flow, as well as industry professionals developing techniques such as ultrasound, MRI, and CT will also find this Brief of interest.

  2. Decade of the Brain 1990--2000: Maximizing human potential

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The US Decade of the Brain offers scientists throughout the Federal Government a unique opportunity to advance and apply scientific knowledge about the brain and nervous system. During the next 10 years, scientists hope to maximize human potential through studies of human behavior, senses and communication, learning and memory, genetic/chemical alterations, and environmental interactions. Progress in these areas should lead to reductions in mortality from brain and nervous system disorders and to improvements in the quality of life. This report identifies nine research areas that could form the basis of an integrated program in the brain and behavioral sciences. A chart summarizing the Federal activities in these nine areas may be found at the back of the report. In addition, three areas that span the nine research areas -- basic research, technology and international activities -- are considered.

  3. Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2013-02-16

    We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Diminished Dentate Gyrus Filtering of Cortical Input Leads to Enhanced Area Ca3 Excitability after Mild Traumatic Brain Injury.

    Science.gov (United States)

    Folweiler, Kaitlin A; Samuel, Sandy; Metheny, Hannah E; Cohen, Akiva S

    2018-04-06

    Mild traumatic brain injury (mTBI) disrupts hippocampal function and can lead to long-lasting episodic memory impairments. The encoding of episodic memories relies on spatial information processing within the hippocampus. As the primary entry point for spatial information into the hippocampus, the dentate gyrus is thought to function as a physiological gate, or filter, of afferent excitation before reaching downstream area Cornu Ammonis (CA3). Although injury has previously been shown to alter dentate gyrus network excitability, it is unknown whether mTBI affects dentate gyrus output to area CA3. In this study, we assessed hippocampal function, specifically the interaction between the dentate gyrus and CA3, using behavioral and electrophysiological techniques in ex vivo brain slices 1 week following mild lateral fluid percussion injury (LFPI). Behaviorally, LFPI mice were found to be impaired in an object-place recognition task, indicating that spatial information processing in the hippocampus is disrupted. Extracellular recordings and voltage-sensitive dye imaging demonstrated that perforant path activation leads to the aberrant spread of excitation from the dentate gyrus into area CA3 along the mossy fiber pathway. These results suggest that after mTBI, the dentate gyrus has a diminished capacity to regulate cortical input into the hippocampus, leading to increased CA3 network excitability. The loss of the dentate filtering efficacy reveals a potential mechanism by which hippocampal-dependent spatial information processing is disrupted, and may contribute to memory dysfunction after mTBI.

  5. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  6. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  7. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  8. Toward FRP-Based Brain-Machine Interfaces-Single-Trial Classification of Fixation-Related Potentials.

    Directory of Open Access Journals (Sweden)

    Andrea Finke

    Full Text Available The co-registration of eye tracking and electroencephalography provides a holistic measure of ongoing cognitive processes. Recently, fixation-related potentials have been introduced to quantify the neural activity in such bi-modal recordings. Fixation-related potentials are time-locked to fixation onsets, just like event-related potentials are locked to stimulus onsets. Compared to existing electroencephalography-based brain-machine interfaces that depend on visual stimuli, fixation-related potentials have the advantages that they can be used in free, unconstrained viewing conditions and can also be classified on a single-trial level. Thus, fixation-related potentials have the potential to allow for conceptually different brain-machine interfaces that directly interpret cortical activity related to the visual processing of specific objects. However, existing research has investigated fixation-related potentials only with very restricted and highly unnatural stimuli in simple search tasks while participant's body movements were restricted. We present a study where we relieved many of these restrictions while retaining some control by using a gaze-contingent visual search task. In our study, participants had to find a target object out of 12 complex and everyday objects presented on a screen while the electrical activity of the brain and eye movements were recorded simultaneously. Our results show that our proposed method for the classification of fixation-related potentials can clearly discriminate between fixations on relevant, non-relevant and background areas. Furthermore, we show that our classification approach generalizes not only to different test sets from the same participant, but also across participants. These results promise to open novel avenues for exploiting fixation-related potentials in electroencephalography-based brain-machine interfaces and thus providing a novel means for intuitive human-machine interaction.

  9. ROMANIA’S MEDICAL SECTOR: BETWEEN BRAIN DRAIN AND BRAIN WASTE

    Directory of Open Access Journals (Sweden)

    Irina BONCEA

    2015-04-01

    Full Text Available The aim of this article is to identify whether Romania is facing the brain waste in the medical sector. Romania is producing the highest number of medical graduates compared to the main destination countries for Romanian physicians.However, it faces critical shortages in terms of health professionals. What happens with these medical graduates? Two options are possible: either they exit the medical system or they emigrate. Medical doctors accepting locum doctors positions in United Kingdom or general practitioner positions in the rural areas in France although they have a specialty in the origin country are examples of brain waste. In most of the cases, these positions are refused by natives. If the brain drain has negative consequences on the origin country, brain waste affects both the country and the individual.

  10. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression.

    Science.gov (United States)

    Mello, Bruna Stefânia Ferreira; Chaves Filho, Adriano José Maia; Custódio, Charllyany Sabino; Cordeiro, Rafaela Carneiro; Miyajima, Fabio; de Sousa, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Macedo, Danielle

    2018-07-15

    Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1β levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1β increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Musical structure is processed in "language" areas of the brain: a possible role for Brodmann Area 47 in temporal coherence.

    Science.gov (United States)

    Levitin, Daniel J; Menon, Vinod

    2003-12-01

    The neuroanatomical correlates of musical structure were investigated using functional magnetic neuroimaging (fMRI) and a unique stimulus manipulation involving scrambled music. The experiment compared brain responses while participants listened to classical music and scrambled versions of that same music. Specifically, the scrambled versions disrupted musical structure while holding low-level musical attributes constant, including the psychoacoustic features of the music such as pitch, loudness, and timbre. Comparing music to its scrambled counterpart, we found focal activation in the pars orbitalis region (Brodmann Area 47) of the left inferior frontal cortex, a region that has been previously closely associated with the processing of linguistic structure in spoken and signed language, and its right hemisphere homologue. We speculate that this particular region of inferior frontal cortex may be more generally responsible for processing fine-structured stimuli that evolve over time, not merely those that are linguistic.

  12. [The Changes in the Hemodynamic Activity of the Brain during Moroe Imagery Training with the Use of Brain-Computer Interface].

    Science.gov (United States)

    Frolov, A A; Husek, D; Silchenko, A V; Tintera, Y; Rydlo, J

    2016-01-01

    With the use of functional MRI (fMRI), we studied the changes in brain hemodynamic activity of healthy subjects during motor imagery training with the use brain-computer interface (BCI), which is based on the recognition of EEG patterns of imagined movements. ANOVA dispersion analysis showed there are 14 areas of the brain where statistically sgnificant changes were registered. Detailed analysis of the activity in these areas before and after training (Student's and Mann-Whitney tests) reduced the amount of areas with significantly changed activity to five; these are Brodmann areas 44 and 45, insula, middle frontal gyrus, and anterior cingulate gyrus. We suggest that these changes are caused by the formation of memory traces of those brain activity patterns which are most accurately recognized by BCI classifiers as correspondent with limb movements. We also observed a tendency of increase in the activity of motor imagery after training. The hemodynamic activity in all these 14 areas during real movements was either approximatly the same or significantly higher than during motor imagery; activity during imagined leg movements was higher that that during imagined arm movements, except for the areas of representation of arms.

  13. Sex differences in brain organization: implications for human communication.

    Science.gov (United States)

    Hanske-Petitpierre, V; Chen, A C

    1985-12-01

    This article reviews current knowledge in two major research domains: sex differences in neuropsychophysiology, and in human communication. An attempt was made to integrate knowledge from several areas of brain research with human communication and to clarify how such a cooperative effort may be beneficial to both fields of study. By combining findings from the area of brain research, a communication paradigm was developed which contends that brain-related sex differences may reside largely in the area of communication of emotion.

  14. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback.

    Science.gov (United States)

    Ramot, Michal; Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-09-16

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants' awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns.

  15. Direct modulation of aberrant brain network connectivity through real-time NeuroFeedback

    Science.gov (United States)

    Kimmich, Sara; Gonzalez-Castillo, Javier; Roopchansingh, Vinai; Popal, Haroon; White, Emily; Gotts, Stephen J; Martin, Alex

    2017-01-01

    The existence of abnormal connectivity patterns between resting state networks in neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established. Traditional treatment methods in ASD are limited, and do not address the aberrant network structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity. Desired network connectivity patterns were reinforced in real-time, without participants’ awareness of the training taking place. This training regimen produced large, significant long-term changes in correlations at the network level, and whole brain analysis revealed that the greatest changes were focused on the areas being trained. These changes were not found in the control group. Moreover, changes in ASD resting state connectivity following the training were correlated to changes in behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant network connectivity patterns. PMID:28917059

  16. Evaluation of factors influencing 18F-FET uptake in the brain

    Directory of Open Access Journals (Sweden)

    Antoine Verger

    2018-01-01

    Full Text Available PET using the amino-acid O-(2-18F-fluoroethyl-l-tyrosine (18F-FET is gaining increasing interest for brain tumour management. Semi-quantitative analysis of tracer uptake in brain tumours is based on the standardized uptake value (SUV and the tumour-to-brain ratio (TBR. The aim of this study was to explore physiological factors that might influence the relationship of SUV of 18F-FET uptake in various brain areas, and thus affect quantification of 18F-FET uptake in brain tumours. Negative 18F-FET PET scans of 107 subjects, showing an inconspicuous brain distribution of 18F-FET, were evaluated retrospectively. Whole-brain quantitative analysis with Statistical Parametric Mapping (SPM using parametric SUV PET images, and volumes of interest (VOIs analysis with fronto-parietal, temporal, occipital, and cerebellar SUV background areas were performed to study the effect of age, gender, height, weight, injected activity, body mass index (BMI, and body surface area (BSA. After multivariate analysis, female gender and high BMI were found to be two independent factors associated with increased SUV of 18F-FET uptake in the brain. In women, SUVmean of 18F-FET uptake in the brain was 23% higher than in men (p < 0.01. SUVmean of 18F-FET uptake in the brain was positively correlated with BMI (r = 0.29; p < 0.01. The influence of these factors on SUV of 18F-FET was similar in all brain areas. In conclusion, SUV of 18F-FET in the normal brain is influenced by gender and weakly by BMI, but changes are similar in all brain areas.

  17. Non-invasive Brain Stimulation: A Paradigm Shift in Understanding Brain Oscillations

    Directory of Open Access Journals (Sweden)

    Johannes Vosskuhl

    2018-05-01

    Full Text Available Cognitive neuroscience set out to understand the neural mechanisms underlying cognition. One central question is how oscillatory brain activity relates to cognitive processes. Up to now, most of the evidence supporting this relationship was correlative in nature. This situation changed dramatically with the recent development of non-invasive brain stimulation (NIBS techniques, which open up new vistas for neuroscience by allowing researchers for the first time to validate their correlational theories by manipulating brain functioning directly. In this review, we focus on transcranial alternating current stimulation (tACS, an electrical brain stimulation method that applies sinusoidal currents to the intact scalp of human individuals to directly interfere with ongoing brain oscillations. We outline how tACS can impact human brain oscillations by employing different levels of observation from non-invasive tACS application in healthy volunteers and intracranial recordings in patients to animal studies demonstrating the effectiveness of alternating electric fields on neurons in vitro and in vivo. These findings likely translate to humans as comparable effects can be observed in human and animal studies. Neural entrainment and plasticity are suggested to mediate the behavioral effects of tACS. Furthermore, we focus on mechanistic theories about the relationship between certain cognitive functions and specific parameters of brain oscillaitons such as its amplitude, frequency, phase and phase coherence. For each of these parameters we present the current state of testing its functional relevance by means of tACS. Recent developments in the field of tACS are outlined which include the stimulation with physiologically inspired non-sinusoidal waveforms, stimulation protocols which allow for the observation of online-effects, and closed loop applications of tACS.

  18. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  19. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain

    Directory of Open Access Journals (Sweden)

    Mingrui eXia

    2016-04-01

    Full Text Available White matter (WM tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption and topological contributions to the brain’s network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain’s hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.

  20. Neurosurgical targets for compulsivity: what can we learn from acquired brain lesions?

    NARCIS (Netherlands)

    Figee, Martijn; Wielaard, Ilse; Mazaheri, Ali; Denys, Damiaan

    2013-01-01

    Treatment efficacy of deep brain stimulation (DBS) and other neurosurgical techniques in refractory obsessive-compulsive disorder (OCD) is greatly dependent on the targeting of relevant brain regions. Over the years, several case reports have been published on either the emergence or resolution of

  1. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders

    Directory of Open Access Journals (Sweden)

    Tachikawa Masanori

    2011-02-01

    Full Text Available Abstract Guanidino compounds (GCs, such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCSFB have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC 6A8 expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6 and organic cation transporter (OCT3/SLC22A3 expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen

  2. Third International Congress on Epilepsy, Brain and Mind: Part 1

    Science.gov (United States)

    Korczyn, Amos D.; Schachter, Steven C.; Amlerova, Jana; Bialer, Meir; van Emde Boas, Walter; Brázdil, Milan; Brodtkorb, Eylert; Engel, Jerome; Gotman, Jean; Komárek, Vladmir; Leppik, Ilo E.; Marusic, Petr; Meletti, Stefano; Metternich, Birgitta; Moulin, Chris J.A.; Muhlert, Nils; Mula, Marco; Nakken, Karl O.; Picard, Fabienne; Schulze-Bonhage, Andreas; Theodore, William; Wolf, Peter; Zeman, Adam; Rektor, Ivan

    2017-01-01

    Epilepsyis both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3–5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks. PMID:26276417

  3. Technology for Children With Brain Injury and Motor Disability: Executive Summary From Research Summit IV.

    Science.gov (United States)

    Christy, Jennifer B; Lobo, Michele A; Bjornson, Kristie; Dusing, Stacey C; Field-Fote, Edelle; Gannotti, Mary; Heathcock, Jill C; OʼNeil, Margaret E; Rimmer, James H

    Advances in technology show promise as tools to optimize functional mobility, independence, and participation in infants and children with motor disability due to brain injury. Although technologies are often used in adult rehabilitation, these have not been widely applied to rehabilitation of infants and children. In October 2015, the Academy of Pediatric Physical Therapy sponsored Research Summit IV, "Innovations in Technology for Children With Brain Insults: Maximizing Outcomes." The summit included pediatric physical therapist researchers, experts from other scientific fields, funding agencies, and consumers. Participants identified challenges in implementing technology in pediatric rehabilitation including accessibility, affordability, managing large data sets, and identifying relevant data elements. Participants identified 4 key areas for technology development: to determine (1) thresholds for learning, (2) appropriate transfer to independence, (3) optimal measurement of subtle changes, and (4) how to adapt to growth and changing abilities.

  4. Fatigue in adults with traumatic brain injury

    DEFF Research Database (Denmark)

    Mollayeva, Tatyana; Kendzerska, Tetyana; Mollayeva, Shirin

    2013-01-01

    BACKGROUND: Despite strong indications that fatigue is the most common and debilitating symptom after traumatic brain injury, little is known about its frequency, natural history, or relation to other factors. The current protocol outlines a strategy for a systematic review that will identify......, assess, and critically appraise studies that assessed predictors for fatigue and the consequences of fatigue on at least two separate time points following traumatic brain injury. METHODS/DESIGN: MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews, CINAHL, and PsycINFO will be systematically...... searched for relevant peer-reviewed studies. Reference lists of eligible papers will also be searched. All English language studies with a longitudinal design that focus on fatigue in adults with primary-impact traumatic brain injury will be included. Studies on fatigue following brain injury due...

  5. Exercise therapy in multiple sclerosis and its effects on function and the brain

    DEFF Research Database (Denmark)

    Dalgas, Ulrik

    2017-01-01

    to clinically relevant improvements in physical function, but should be considered an adjunct to specific task-based training. Exercise has also shown positive effects on the brain, including improvements in brain volume and cognition. In summary, exercise therapy is a safe and potent nonpharmacological...... intervention in MS, with beneficial effects on both functional capacity and the brain....

  6. What is a representative brain? Neuroscience meets population science.

    Science.gov (United States)

    Falk, Emily B; Hyde, Luke W; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M; Keating, Daniel P; Langa, Kenneth M; Martz, Meghan E; Maslowsky, Julie; Morrison, Frederick J; Noll, Douglas C; Patrick, Megan E; Pfeffer, Fabian T; Reuter-Lorenz, Patricia A; Thomason, Moriah E; Davis-Kean, Pamela; Monk, Christopher S; Schulenberg, John

    2013-10-29

    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain-behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective--population neuroscience--that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.

  7. Profiles of VGF Peptides in the Rat Brain and Their Modulations after Phencyclidine Treatment

    Directory of Open Access Journals (Sweden)

    Barbara Noli

    2017-06-01

    Full Text Available From the VGF precursor protein originate several low molecular weight peptides, whose distribution in the brain and blood circulation is not entirely known. Among the VGF peptides, those containing the N-terminus portion were altered in the cerebro-spinal fluid (CSF and hypothalamus of schizophrenia patients. “Hence, we aimed to better investigate the involvement of the VGF peptides in schizophrenia by studying their localization in the brain regions relevant for the disease, and revealing their possible modulations in response to certain neuronal alterations occurring in schizophrenia”. We produced antibodies against different VGF peptides encompassing the N-terminus, but also C-terminus-, TLQP-, GGGE- peptide sequences, and the so named NERP-3 and -4. These antibodies were used to carry out specific ELISA and immunolocalization studies while mass spectrometry (MS analysis was also performed to recognize the intact brain VGF fragments. We used a schizophrenia rat model, in which alterations in the prepulse inhibition (PPI of the acoustic startle response occurred after PCP treatment. In normal rats, all the VGF peptides studied were distributed in the brain areas examined including hypothalamus, prefrontal cortex, hippocampus, accumbens and amygdaloid nuclei and also in the plasma. By liquid chromatography-high resolution mass, we identified different intact VGF peptide fragments, including those encompassing the N-terminus and the NERPs. PCP treatment caused behavioral changes that closely mimic schizophrenia, estimated by us as a disruption of PPI of the acoustic startle response. The PCP treatment also induced selective changes in the VGF peptide levels within certain brain areas. Indeed, an increase in VGF C-terminus and TLQP peptides was revealed in the prefrontal cortex (p < 0.01 where they were localized within parvoalbumin and tyrosine hydroxylase (TH containing neurons, respectively. Conversely, in the nucleus accumbens, PCP

  8. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2015-06-01

    Impaired brain insulin action has been linked to obesity, type 2 diabetes, and neurodegenerative diseases. To date, the central nervous effects of insulin in obese humans still remain ill defined, and no study thus far has evaluated the specific brain areas affected by insulin resistance. In 25 healthy lean and 23 overweight/obese participants, we performed magnetic resonance imaging to measure cerebral blood flow (CBF) before and 15 and 30 min after application of intranasal insulin or placebo. Additionally, participants explicitly rated pictures of high-caloric savory and sweet food 60 min after the spray for wanting and liking. In response to insulin compared with placebo, we found a significant CBF decrease in the hypothalamus in both lean and overweight/obese participants. The magnitude of this response correlated with visceral adipose tissue independent of other fat compartments. Furthermore, we observed a differential response in the lean compared with the overweight/obese group in the prefrontal cortex, resulting in an insulin-induced CBF reduction in lean participants only. This prefrontal cortex response significantly correlated with peripheral insulin sensitivity and eating behavior measures such as disinhibition and food craving. Behaviorally, we were able to observe a significant reduction for the wanting of sweet foods after insulin application in lean men only. Brain insulin action was selectively impaired in the prefrontal cortex in overweight and obese adults and in the hypothalamus in participants with high visceral adipose tissue, potentially promoting an altered homeostatic set point and reduced inhibitory control contributing to overeating behavior. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Behavioral and Brain Functions. A new journal

    Directory of Open Access Journals (Sweden)

    Sagvolden Terje

    2005-04-01

    Full Text Available Abstract Behavioral and Brain Functions (BBF is an Open Access, peer-reviewed, online journal considering original research, review, and modeling articles in all aspects of neurobiology or behavior, favoring research that relates to both domains. Behavioral and Brain Functions is published by BioMed Central. The greatest challenge for empirical science is to understand human behavior; how human behavior arises from the myriad functions such as attention, language, memory and emotion; how these functions are reflected in brain structures and functions; and how the brain and behavior are altered in disease. Behavioral and Brain Functions covers the entire area of behavioral and cognitive neuroscience – an area where animal studies traditionally play a prominent role. Behavioral and Brain Functions is published online, allowing unlimited space for figures, extensive datasets to allow readers to study the data for themselves, and moving pictures, which are important qualities assisting communication in modern science.

  10. FLAIR images of brain diseases

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    The present study was designed to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) images in diagnosing brain diseases. The subjects were 20 patients with multiple cerebral infarction, multiple sclerosis, temporal epilepsy, or brain trauma, and 20 other healthy adults. FLAIR images, with a long repetitive time of 6000 msec and a long inversion time of 1400-1600 msec, showed low signal intensity in the cerebrospinal fluid in the lateral ventricles and the cerebral sulci, and high signal intensity in brain tissues. Signal intensity on FLAIR images correlated well with T2 relaxation times under 100 msec. For multiple sclerosis and cerebral infarction, cystic lesions, which were shown on T2-weighted images with long relaxation times over 100 msec, appeared as low-signal areas; and the lesions surrounding the cystic lesions appeared as high-signal areas. For temporal lobe epilepsy, the hippocampus was visualized as a high-signal area. Hippocampal lesions were demonstrated better with FLAIR images than with conventional T2-weighted and proton-density images. In a patient with cerebral trauma, FLAIR images revealed the lobulated structure with the residual cortex shown as a high signal area. The lesions surrounding the cystic change were imaged as high signal areas. These structural changes were demonstrated better with FLAIR images than with conventional T2-weighted sequences. FLAIR images were useful in detecting white matter lesions surrounding the lateral ventricles and cortical and subcortical lesions near the brain surface, which were unclear on conventional T2-weighted and proton-density images. (N.K.)

  11. The relevance of segments reports – measurement methodology

    Directory of Open Access Journals (Sweden)

    Tomasz Zimnicki

    2017-09-01

    Full Text Available The segment report is one of the areas of financial statements, and it obliges a company to provide infor-mation about the economic situation in each of its activity areas. The article evaluates the change of segment reporting standards from IAS14R to IFRS8 in the context of feature relevance. It presents the construction of a measure which allows the relevance of segment disclosures to be determined. The created measure was used to study periodical reports published by companies listed on the main market of the Warsaw Stock Exchange from three reporting periods – 2008, 2009 and 2013. Based on the re-search results, it was found that the change of segment reporting standards from IAS14R to IFRS8 in the context of relevance was legitimate.

  12. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials

    Directory of Open Access Journals (Sweden)

    Andrey R Nikolaev

    2013-06-01

    Full Text Available In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short scrutinizing but not for long explorative saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades moving up in temperature were preceded by presaccadic activity of higher amplitude than those moving down. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene.

  13. Marijuana and cannabinoid regulation of brain reward circuits

    OpenAIRE

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-01-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Δ9-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation o...

  14. Linking brain, mind and behavior.

    Science.gov (United States)

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  15. Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Federal Interagency Traumatic Brain Injury Research (FITBIR) informatics system is an extensible, scalable informatics platform for TBI relevant imaging,...

  16. When "altering brain function" becomes "mind control".

    Science.gov (United States)

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  17. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Dreier, Jens Peter; Fabricius, Martin

    2011-01-01

    Cortical spreading depression (CSD) and depolarization waves are associated with dramatic failure of brain ion homeostasis, efflux of excitatory amino acids from nerve cells, increased energy metabolism and changes in cerebral blood flow (CBF). There is strong clinical and experimental evidence....... The consequences of these intrinsic mechanisms are intimately linked to the composition of the brain extracellular microenvironment and to the level of brain perfusion and in consequence brain energy supply. This paper summarizes the evidence provided by novel invasive techniques, which implicates CSD...... treatment strategies, which may be used to prevent or attenuate secondary neuronal damage in acutely injured human brain cortex caused by depolarization waves....

  18. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction.

    Science.gov (United States)

    Sparing, Roland; Mottaghy, Felix M

    2008-04-01

    Noninvasive stimulation of the brain by means of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) has driven important discoveries in the field of human memory functions. Stand-alone or in combination with other brain mapping techniques noninvasive brain stimulation can assess issues such as location and timing of brain activity, connectivity and plasticity of neural circuits and functional relevance of a circumscribed brain area to a given cognitive task. In this emerging field, major advances in technology have been made in a relatively short period. New stimulation protocols and, especially, the progress in the application of tDCS have made it possible to obtain longer and much clearer inhibitory or facilitatory effects even after the stimulation has ceased. In this introductory review, we outline the basic principles, discuss technical limitations and describe how noninvasive brain stimulation can be used to study human memory functions in vivo. Though improvement of cognitive functions through noninvasive brain stimulation is promising, it still remains an exciting challenge to extend the use of TMS and tDCS from research tools in neuroscience to the treatment of neurological and psychiatric patients.

  19. Infants' brain responses to speech suggest analysis by synthesis.

    Science.gov (United States)

    Kuhl, Patricia K; Ramírez, Rey R; Bosseler, Alexis; Lin, Jo-Fu Lotus; Imada, Toshiaki

    2014-08-05

    Historic theories of speech perception (Motor Theory and Analysis by Synthesis) invoked listeners' knowledge of speech production to explain speech perception. Neuroimaging data show that adult listeners activate motor brain areas during speech perception. In two experiments using magnetoencephalography (MEG), we investigated motor brain activation, as well as auditory brain activation, during discrimination of native and nonnative syllables in infants at two ages that straddle the developmental transition from language-universal to language-specific speech perception. Adults are also tested in Exp. 1. MEG data revealed that 7-mo-old infants activate auditory (superior temporal) as well as motor brain areas (Broca's area, cerebellum) in response to speech, and equivalently for native and nonnative syllables. However, in 11- and 12-mo-old infants, native speech activates auditory brain areas to a greater degree than nonnative, whereas nonnative speech activates motor brain areas to a greater degree than native speech. This double dissociation in 11- to 12-mo-old infants matches the pattern of results obtained in adult listeners. Our infant data are consistent with Analysis by Synthesis: auditory analysis of speech is coupled with synthesis of the motor plans necessary to produce the speech signal. The findings have implications for: (i) perception-action theories of speech perception, (ii) the impact of "motherese" on early language learning, and (iii) the "social-gating" hypothesis and humans' development of social understanding.

  20. Brain Research: Implications for Learning.

    Science.gov (United States)

    Soares, Louise M.; Soares, Anthony T.

    Brain research has illuminated several areas of the learning process: (1) learning as association; (2) learning as reinforcement; (3) learning as perception; (4) learning as imitation; (5) learning as organization; (6) learning as individual style; and (7) learning as brain activity. The classic conditioning model developed by Pavlov advanced…

  1. Adult brain abscess associated with patent foramen ovale: a case report

    Directory of Open Access Journals (Sweden)

    Stathopoulos Georgios T

    2007-08-01

    Full Text Available Abstract Brain abscess results from local or metastatic septic spread to the brain. The primary infectious site is often undetected, more commonly so when it is distant. Unlike pediatric congenital heart disease, minor intracardiac right-to-left shunting due to patent foramen ovale has not been appreciated as a cause of brain abscess in adults. Here we present a case of brain abscess associated with a patent foramen ovale in a 53-year old man with dental-gingival sepsis treated in the intensive care unit. Based on this case and the relevant literature we suggest a link between a silent patent foramen ovale, paradoxic pathogen dissemination to the brain, and development of brain abscess.

  2. Sexual differentiation of the human brain: relevance for gender identity, transsexualism and sexual orientation

    NARCIS (Netherlands)

    Swaab, D. F.

    2004-01-01

    Male sexual differentiation of the brain and behavior are thought, on the basis of experiments in rodents, to be caused by androgens, following conversion to estrogens. However, observations in human subjects with genetic and other disorders show that direct effects of testosterone on the developing

  3. Sexual differentiation of the human brain: relevance for gender identity, transsexualism and sexual orientation.

    NARCIS (Netherlands)

    Swaab, D.F.

    2004-01-01

    Male sexual differentiation of the brain and behavior are thought, on the basis of experiments in rodents, to be caused by androgens, following conversion to estrogens. However, observations in human subjects with genetic and other disorders show that direct effects of testosterone on the developing

  4. Sleep, Memory & Brain Rhythms.

    Science.gov (United States)

    Watson, Brendon O; Buzsáki, György

    2015-01-01

    Sleep occupies roughly one-third of our lives, yet the scientific community is still not entirely clear on its purpose or function. Existing data point most strongly to its role in memory and homeostasis: that sleep helps maintain basic brain functioning via a homeostatic mechanism that loosens connections between overworked synapses, and that sleep helps consolidate and re-form important memories. In this review, we will summarize these theories, but also focus on substantial new information regarding the relation of electrical brain rhythms to sleep. In particular, while REM sleep may contribute to the homeostatic weakening of overactive synapses, a prominent and transient oscillatory rhythm called "sharp-wave ripple" seems to allow for consolidation of behaviorally relevant memories across many structures of the brain. We propose that a theory of sleep involving the division of labor between two states of sleep-REM and non-REM, the latter of which has an abundance of ripple electrical activity-might allow for a fusion of the two main sleep theories. This theory then postulates that sleep performs a combination of consolidation and homeostasis that promotes optimal knowledge retention as well as optimal waking brain function.

  5. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    Science.gov (United States)

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  6. Three-dimensional brain mapping using fMRI

    International Nuclear Information System (INIS)

    Fukunaga, Masaki; Tanaka, Chuzo; Umeda, Masahiro; Ebisu, Toshihiko; Aoki, Ichio; Higuchi, Toshihiro; Naruse, Shoji.

    1997-01-01

    Functional mapping of the activated brain, the location and extent of the activated area were determined, during motor tasks and sensory stimulation using fMRI superimposed on 3D anatomical MRI. Twelve volunteers were studied. The fMR images were acquired using a 2D gradient echo echo planar imaging sequence. The 3D anatomical MR images of the whole brain were acquired using a conventional 3D gradient echo sequence. Motor tasks were sequential opposition of fingers, clenching a hand and elbow flexion. Somatosensory stimulation were administered by scrubbing the palm and sole with a washing sponge. Visual stimulation consisted of full visual field stimulation. Data were analyzed by the cross-correlation method. Transversal fMR images and anatomical images were reconstructed using both volume-, surface-rendering methods, and reconstructed for coronal and sagittal sections. Activated areas were expressed using the three primary colors. Motor tasks activated the contralateral primary motor area (M1), the primary somatosensory area (S1) and the supplementary motor area (SMA). Somatosensory tasks activated the contralateral S1, M1 and secondary sensory area (S2). Activated areas during full visual field stimulation was observed in the bilateral occipital lobe, including both the primary cortex. Three-dimensional brain mapping allowed visualization of the anatomical location and extent of the activated brain during both motor task and sensory stimulation. Using this method we could obtain a functional map similar to the Penfield's schema. (author)

  7. From Vivaldi to Beatles and back: predicting lateralized brain responses to music.

    Science.gov (United States)

    Alluri, Vinoo; Toiviainen, Petri; Lund, Torben E; Wallentin, Mikkel; Vuust, Peter; Nandi, Asoke K; Ristaniemi, Tapani; Brattico, Elvira

    2013-12-01

    We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised continuous fMRI responses of musically trained participants to an Argentinean tango. Individual models for the two musical medleys revealed that activations in several areas in the brain belonging to the auditory, limbic, and motor regions could be predicted. Notably, activations in the medial orbitofrontal region and the anterior cingulate cortex, relevant for self-referential appraisal and aesthetic judgments, could be predicted successfully. Cross-validation across musical stimuli and participant pools helped identify a region of the right superior temporal gyrus, encompassing the planum polare and the Heschl's gyrus, as the core structure that processed complex acoustic features of musical pieces from various genres, with or without lyrics. Models based on purely instrumental music were able to predict activation in the bilateral auditory cortices, parietal, somatosensory, and left hemispheric primary and supplementary motor areas. The presence of lyrics on the other hand weakened the prediction of activations in the left superior temporal gyrus. Our results suggest spontaneous emotion-related processing during naturalistic listening to music and provide supportive evidence for the hemispheric specialization for categorical sounds with realistic stimuli. We herewith introduce

  8. A systematic review of methodology applied during preclinical anesthetic neurotoxicity studies: important issues and lessons relevant to the design of future clinical research.

    Science.gov (United States)

    Disma, Nicola; Mondardini, Maria C; Terrando, Niccolò; Absalom, Anthony R; Bilotta, Federico

    2016-01-01

    Preclinical evidence suggests that anesthetic agents harm the developing brain thereby causing long-term neurocognitive impairments. It is not clear if these findings apply to humans, and retrospective epidemiological studies thus far have failed to show definitive evidence that anesthetic agents are harmful to the developing human brain. The aim of this systematic review was to summarize the preclinical studies published over the past decade, with a focus on methodological issues, to facilitate the comparison between different preclinical studies and inform better design of future trials. The literature search identified 941 articles related to the topic of neurotoxicity. As the primary aim of this systematic review was to compare methodologies applied in animal studies to inform future trials, we excluded a priori all articles focused on putative mechanism of neurotoxicity and the neuroprotective agents. Forty-seven preclinical studies were finally included in this review. Methods used in these studies were highly heterogeneous-animals were exposed to anesthetic agents at different developmental stages, in various doses and in various combinations with other drugs, and overall showed diverse toxicity profiles. Physiological monitoring and maintenance of physiological homeostasis was variable and the use of cognitive tests was generally limited to assessment of specific brain areas, with restricted translational relevance to humans. Comparison between studies is thus complicated by this heterogeneous methodology and the relevance of the combined body of literature to humans remains uncertain. Future preclinical studies should use better standardized methodologies to facilitate transferability of findings from preclinical into clinical science. © 2015 John Wiley & Sons Ltd.

  9. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice.

    Science.gov (United States)

    Pirnik, Z; Bundziková, J; Holubová, M; Pýchová, M; Fehrentz, J A; Martinez, J; Zelezná, B; Maletínská, L; Kiss, A

    2011-11-01

    Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr(3)ghr ([Dpr(N-octanoyl)(3)] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH(2)), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in

  10. Cortical and subcortical brain alterations in Juvenile Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Manuela Tondelli

    2016-01-01

    Full Text Available Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (JAE in order to investigate micro-structural brain changes using different brain measures. We examined grey matter volumes, cortical thickness, surface areas, and subcortical volumes in 24 patients with JAE compared to 24 healthy controls; whole-brain voxel-based morphometry (VBM and Freesurfer analyses were used. When compared to healthy controls, patients revealed both grey matter volume and surface area reduction in bilateral frontal regions, anterior cingulate, and right mesial-temporal lobe. Correlation analysis with disease duration showed that longer disease was correlated with reduced surface area in right pre- and post-central gyrus. A possible effect of valproate treatment on brain structures was excluded. Our results indicate that subtle structural brain changes are detectable in JAE and are mainly located in anterior nodes of regions known to be crucial for awareness, attention and memory.

  11. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma.

    Science.gov (United States)

    Johnsen, Kasper Bendix; Burkhart, Annette; Melander, Fredrik; Kempen, Paul Joseph; Vejlebo, Jonas Bruun; Siupka, Piotr; Nielsen, Morten Schallburg; Andresen, Thomas Lars; Moos, Torben

    2017-09-04

    Drug delivery to the brain is hampered by the presence of the blood-brain barrier, which excludes most molecules from freely diffusing into the brain, and tightly regulates the active transport mechanisms that ensure sufficient delivery of nutrients to the brain parenchyma. Harnessing the possibility of delivering neuroactive drugs by way of receptors already present on the brain endothelium has been of interest for many years. The transferrin receptor is of special interest since its expression is limited to the endothelium of the brain as opposed to peripheral endothelium. Here, we investigate the possibility of delivering immunoliposomes and their encapsulated cargo to the brain via targeting of the transferrin receptor. We find that transferrin receptor-targeting increases the association between the immunoliposomes and primary endothelial cells in vitro, but that this does not correlate with increased cargo transcytosis. Furthermore, we show that the transferrin receptor-targeted immunoliposomes accumulate along the microvessels of the brains of rats, but find no evidence for transcytosis of the immunoliposome. Conversely, the increased accumulation correlated both with increased cargo uptake in the brain endothelium and subsequent cargo transport into the brain. These findings suggest that transferrin receptor-targeting is a relevant strategy of increasing drug exposure to the brain.

  12. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    Science.gov (United States)

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  13. Third International Congress on Epilepsy, Brain and Mind: Part 1.

    Science.gov (United States)

    Korczyn, Amos D; Schachter, Steven C; Amlerova, Jana; Bialer, Meir; van Emde Boas, Walter; Brázdil, Milan; Brodtkorb, Eylert; Engel, Jerome; Gotman, Jean; Komárek, Vladmir; Leppik, Ilo E; Marusic, Petr; Meletti, Stefano; Metternich, Birgitta; Moulin, Chris J A; Muhlert, Nils; Mula, Marco; Nakken, Karl O; Picard, Fabienne; Schulze-Bonhage, Andreas; Theodore, William; Wolf, Peter; Zeman, Adam; Rektor, Ivan

    2015-09-01

    Epilepsy is both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Brain cortical characteristics of lifetime cognitive ageing.

    Science.gov (United States)

    Cox, Simon R; Bastin, Mark E; Ritchie, Stuart J; Dickie, David Alexander; Liewald, Dave C; Muñoz Maniega, Susana; Redmond, Paul; Royle, Natalie A; Pattie, Alison; Valdés Hernández, Maria; Corley, Janie; Aribisala, Benjamin S; McIntosh, Andrew M; Wardlaw, Joanna M; Deary, Ian J

    2018-01-01

    Regional cortical brain volume is the product of surface area and thickness. These measures exhibit partially distinct trajectories of change across the brain's cortex in older age, but it is unclear which cortical characteristics at which loci are sensitive to cognitive ageing differences. We examine associations between change in intelligence from age 11 to 73 years and regional cortical volume, surface area, and thickness measured at age 73 years in 568 community-dwelling older adults, all born in 1936. A relative positive change in intelligence from 11 to 73 was associated with larger volume and surface area in selective frontal, temporal, parietal, and occipital regions (r cognitive ageing and a thinner cortex for any region. Interestingly, thickness and surface area were phenotypically independent across bilateral lateral temporal loci, whose surface area was significantly related to change in intelligence. These findings suggest that associations between regional cortical volume and cognitive ageing differences are predominantly driven by surface area rather than thickness among healthy older adults. Regional brain surface area has been relatively underexplored, and is a potentially informative biomarker for identifying determinants of cognitive ageing differences.

  15. Functional brain imaging study on brain processes involved in visual awareness

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo; Futakawa, Hiroyuki; Tokita, Shohko; Jung, Jiuk

    2003-01-01

    Recently, there has been great interest in visual awareness because it is thought that it may provide valuable information in understanding aspects of consciousness. An important but still controversial issue is what region in the brain is involved in visual awareness. When viewing ambiguous figures, observers can be aware of only one of multiple competing percepts at any given moment, but experience spontaneous alternations among the percepts over time. This phenomenon is known as multistable perceptions and thought to be essential in understanding the brain processes involved in visual awareness. We used functional magnetic resonance imaging to investigate the brain activities associated with multistable perceptions. Two separate experiments were performed based on two different multistable phenomena known as binocular rivalry and perceptions of ambiguous figures. Significant differential activations in the parietal and prefrontal areas were commonly observed under multistable conditions compared to monostable control conditions in the two separate experiments. These findings suggest that neural processes in the parietal and prefrontal areas may be involved in perceptual alternations in situations involving multistable phenomena. (author)

  16. Insulin, Aging, and the Brain: Mechanisms and Implications

    OpenAIRE

    Akintola, Abimbola A.; van Heemst, Diana

    2015-01-01

    There is now an impressive body of literature implicating insulin and insulin signaling in successful aging and longevity. New information from in vivo and in vitro studies concerning insulin and insulin receptors has extended our understanding of the physiological role of insulin in the brain. However, the relevance of these to aging and longevity remains to be elucidated. Here, we review advances in our understanding of the physiological role of insulin in the brain, how insulin gets into t...

  17. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  18. [Relevant public health enteropathogens].

    Science.gov (United States)

    Riveros, Maribel; Ochoa, Theresa J

    2015-01-01

    Diarrhea remains the third leading cause of death in children under five years, despite recent advances in the management and prevention of this disease. It is caused by multiple pathogens, however, the prevalence of each varies by age group, geographical area and the scenario where cases (community vs hospital) are recorded. The most relevant pathogens in public health are those associated with the highest burden of disease, severity, complications and mortality. In our country, norovirus, Campylobacter and diarrheagenic E. coli are the most prevalent pathogens at the community level in children. In this paper we review the local epidemiology and potential areas of development in five selected pathogens: rotavirus, norovirus, Shiga toxin-producing E. coli (STEC), Shigella and Salmonella. Of these, rotavirus is the most important in the pediatric population and the main agent responsible for child mortality from diarrhea. The introduction of rotavirus vaccination in Peru will have a significant impact on disease burden and mortality from diarrhea. However, surveillance studies are needed to determine the impact of vaccination and changes in the epidemiology of diarrhea in Peru following the introduction of new vaccines, as well as antibiotic resistance surveillance of clinical relevant bacteria.

  19. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  20. microRNA and mRNA profiles in ventral tegmental area relevant to stress-induced depression and resilience.

    Science.gov (United States)

    Sun, Xiaoyan; Song, Zhenhua; Si, Yawei; Wang, Jin-Hui

    2018-06-01

    Chronic stress with lack of reward presumably may impair brain reward circuit, leading to major depressive disorder (MDD). Most individuals experiencing chronic stress do not suffer from MDD, i.e., resilience, implying the presence of endogenous anti-depression in the brain. Molecular mechanisms underlying stress-induced depression versus resilience were investigated. Mice were treated by chronic unpredictable mild stress (CUMS) for four weeks. Their mood state was assessed by behavioral tasks, such as sucrose preference, Y-maze and forced swimming testes. To reveal comprehensive molecular profiles of major depression versus resilience, mRNA and microRNA profiles were analyzed by high-throughput sequencing in the ventral tegmental area (VTA) harvested from control, CUMS-susceptible and CUMS-resilience mice. In data analyses of control versus CUMS-susceptible mice as well as control versus CUMS-resilience mice, 1.5 fold ratio in reads per kilo-base per million reads was set as the threshold to judge the involvement of mRNAs and microRNAs in the CUMS, depression or resilience. The downregulation of synaptic vesicle cycle, neurotrophin, GABAergic synapse and morphine addiction as well as the upregulation of transmitter release, calcium signal and cAMP-dependent response element binding are associated to CUMS-susceptibility. The downregulation of tyrosine metabolism and protein process in endoplasmic reticulum as well as the upregulation of amino acid biosynthesis, neuroactive ligand-receptor interaction and dopaminergic synapse are associated to CUMS-resilience. Therefore, the impairment of neurons and GABA/dopaminergic synapses in the VTA is associated with major depression. The upregulation of these entities is associated with resilience. Consistent results obtained from analyzing mRNAs and microRNAs as well as using different approaches strengthen our finding and conclusion. Copyright © 2018. Published by Elsevier Inc.

  1. Nicotine increases brain functional network efficiency.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R

    2012-10-15

    Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.

  2. Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA.

    Science.gov (United States)

    Ons, Sheila; Martí, Octavi; Armario, Antonio

    2004-06-01

    Arc is an effector immediate early gene whose expression is induced in situations of increased neuronal activity. However, there is no report on the influence of stress on Arc expression. Here, we compared the induction of both c-fos and Arc mRNAs in the brain of rats exposed to one of three different stressful situations: novel environment, forced swimming and immobilization. An absent or weak c-fos mRNA signal was observed in control rats, whereas those exposed to one of three stressors showed enhanced c-fos expression in a wide range of brain areas. Constitutive Arc expression was observed in some areas such as cortex, striatum, hippocampus, reticular thalamic nucleus and cerebellar cortex. In response to stressors, a strong induction of Arc was observed, but the pattern was different from that of c-fos. For instance, activation of Arc but not c-fos was observed in the nucleus accumbens after immobilization and in the hippocampus after novel environment. No Arc induction was observed in diencephalic and brainstem areas. The present data show that Arc has a neuroanatomically restricted pattern of induction in the brain after emotional stress. Telencephalic activation suggests that a more intense induction of synaptic plasticity is occurring in this area after exposure to emotional stressors.

  3. A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology.

    Science.gov (United States)

    Bogdan, R; Hyde, L W; Hariri, A R

    2013-03-01

    Neurogenetics research has begun to advance our understanding of how genetic variation gives rise to individual differences in brain function, which, in turn, shapes behavior and risk for psychopathology. Despite these advancements, neurogenetics research is currently confronted by three major challenges: (1) conducting research on individual variables with small effects, (2) absence of detailed mechanisms, and (3) a need to translate findings toward greater clinical relevance. In this review, we showcase techniques and developments that address these challenges and highlight the benefits of a neurogenetics approach to understanding brain, behavior and psychopathology. To address the challenge of small effects, we explore approaches including incorporating the environment, modeling epistatic relationships and using multilocus profiles. To address the challenge of mechanism, we explore how non-human animal research, epigenetics research and genome-wide association studies can inform our mechanistic understanding of behaviorally relevant brain function. Finally, to address the challenge of clinical relevance, we examine how neurogenetics research can identify novel therapeutic targets and for whom treatments work best. By addressing these challenges, neurogenetics research is poised to exponentially increase our understanding of how genetic variation interacts with the environment to shape the brain, behavior and risk for psychopathology.

  4. Overweight adolescents' brain response to sweetened beverages mirrors addiction pathways.

    Science.gov (United States)

    Feldstein Ewing, Sarah W; Claus, Eric D; Hudson, Karen A; Filbey, Francesca M; Yakes Jimenez, Elizabeth; Lisdahl, Krista M; Kong, Alberta S

    2017-08-01

    Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents' high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.

  5. Brain deactivation in the outperformance in bimodal tasks: an FMRI study.

    Directory of Open Access Journals (Sweden)

    Tzu-Ching Chiang

    Full Text Available While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF, lateral parietal lobe (BA7, and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43 were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.

  6. Brain activity elicited by viewing pictures of the own virtually amputated body predicts xenomelia.

    Science.gov (United States)

    Oddo-Sommerfeld, Silvia; Hänggi, Jürgen; Coletta, Ludovico; Skoruppa, Silke; Thiel, Aylin; Stirn, Aglaja V

    2018-01-08

    Xenomelia is a rare condition characterized by the persistent desire for the amputation of physically healthy limbs. Prior studies highlighted the importance of superior and inferior parietal lobuli (SPL/IPL) and other sensorimotor regions as key brain structures associated with xenomelia. We expected activity differences in these areas in response to pictures showing the desired body state, i.e. that of an amputee in xenomelia. Functional magnetic resonance images were acquired in 12 xenomelia individuals and 11 controls while they viewed pictures of their own real and virtually amputated body. Pictures were rated on several dimensions. Multivariate statistics using machine learning was performed on imaging data. Brain activity when viewing pictures of one's own virtually amputated body predicted group membership accurately with a balanced accuracy of 82.58% (p = 0.002), sensitivity of 83.33% (p = 0.018), specificity of 81.82% (p = 0.015) and an area under the ROC curve of 0.77. Among the highest predictive brain regions were bilateral SPL, IPL, and caudate nucleus, other limb representing areas, but also occipital regions. Pleasantness and attractiveness ratings were higher for amputated bodies in xenomelia. Findings show that neuronal processing in response to pictures of one's own desired body state is different in xenomelia compared with controls and might represent a neuronal substrate of the xenomelia complaints that become behaviourally relevant, at least when rating the pleasantness and attractiveness of one's own body. Our findings converge with structural peculiarities reported in xenomelia and partially overlap in task and results with that of anorexia and transgender research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Brain fat embolism

    International Nuclear Information System (INIS)

    Sugiura, Yoshihiro; Kawamura, Yasutaka; Suzuki, Hisato; Yanagimoto, Masahiro; Goto, Yukio

    1994-01-01

    Recently CT and MR imaging have demonstrated that cerebral edema is present in cases of fat embolism syndrome. To simulate this we have made a model of brain-fat embolism in rats under MR imaging. In 20 rats, we did intravenous injection of heparinized blood, 1.5 ml·kg -1 taken from femoral bone marrow cavity. Twenty four hours after the injection, we examined the MR images (1.5 tesla, spin-echo method) of brains and histologic findings of brains and lungs were obtained. In 5 of 20 rats, high signal intensity on T2-weighted images and low signal intensity on T1-weighted images were observed in the area of the unilateral cerebral cortex or hippocampus. These findings showed edema of the brains. They disappeared, however, one week later. Histologic examinations showed massive micro-fat emboli in capillaries of the deep cerebral cortex and substantia nigra, but no edematous findings of the brain were revealed in HE staining. In pulmonary arteries, we also found large fat emboli. We conclude that our model is a useful one for the study of brain fat embolism. (author)

  8. [Emotion and Brodmann's areas: special reference on area 12].

    Science.gov (United States)

    Kawamura, Mitsuru

    2010-11-01

    Brodmann's brain maps, assembled in 1909, are still in use, but understanding of their animal-human homology is uncertain. Furthermore, in 1909, Brodmann did not identify human Area 12 (BA12); a location now important to understanding of frontotemporal lobar degeneration (FTLD) and emotional function. We found Brodmann did identify human BA12 in later maps (1910 and 1914), not in the 1909 monograph. Because of its current link with FTLD, BA 12's translation from animal (1909) to human (1910 and 1914) is not only an historical puzzle. It impacts how Brodmann's areas, based on comparative animal-human cyto-architecture, are widely used in current research as functional loci in human brain. If Brodmann's maps are of current value, then an accurate rather than a generic Brodmann number is in order.

  9. The two-brain approach: how can mutually interacting brains teach us something about social interaction?

    Directory of Open Access Journals (Sweden)

    Ivana eKonvalinka

    2012-07-01

    Full Text Available Measuring brain activity simultaneously from two people interacting is intuitively appealing if one is interested in putative neural markers of social interaction. However, given the complex nature of two-person interactions, it has proven difficult to carry out two-person brain imaging experiments in a methodologically feasible and conceptually relevant way. Only a small number of recent studies have put this into practice, using fMRI, EEG, or NIRS. Here, we review two main two-brain methodological approaches, each with two conceptual strategies. The first group has employed simultaneous fMRI recordings, studying a turn-based interactions on the order of seconds, or b pseudo-interactive scenarios, where only one person is scanned at a time, investigating the flow of information between brains. The second group of studies has recorded dual EEG/NIRS from two people interacting, in a face-to-face turn-based interactions, investigating functional connectivity between theory-of-mind regions of interacting partners, or in b continuous mutual interactions on millisecond timescales, to measure coupling between the activity in one person’s brain and the activity in the other’s brain. We discuss the questions these approaches have addressed, and consider scenarios when simultaneous two-brain recordings are needed. Furthermore, we suggest that a quantification of inter-personal neural effects via measures of emergence, and b multivariate decoding models that generalize source-specific features of interaction, may provide novel tools to study brains in interaction. This may allow for a better understanding of social cognition as both representation and participation.

  10. Alexithymia is associated with attenuated automatic brain response to facial emotion in clinical depression.

    Science.gov (United States)

    Suslow, Thomas; Kugel, Harald; Rufer, Michael; Redlich, Ronny; Dohm, Katharina; Grotegerd, Dominik; Zaremba, Dario; Dannlowski, Udo

    2016-02-04

    Alexithymia is a clinically relevant personality trait related to difficulties in recognizing and describing emotions. Previous studies examining the neural correlates of alexithymia have shown mainly decreased response of several brain areas during emotion processing in healthy samples and patients suffering from autism or post-traumatic stress disorder. In the present study, we examined the effect of alexithymia on automatic brain reactivity to negative and positive facial expressions in clinical depression. Brain activation in response to sad, happy, neutral, and no facial expression (presented for 33 ms and masked by neutral faces) was measured by functional magnetic resonance imaging at 3 T in 26 alexithymic and 26 non-alexithymic patients with major depression. Alexithymic patients manifested less activation in response to masked sad and happy (compared to neutral) faces in right frontal regions and right caudate nuclei than non-alexithymic patients. Our neuroimaging study provides evidence that the personality trait alexithymia has a modulating effect on automatic emotion processing in clinical depression. Our findings support the idea that alexithymia could be associated with functional deficits of the right hemisphere. Future research on the neural substrates of emotion processing in depression should assess and control alexithymia in their analyses.

  11. Brain-lung crosstalk in critical care: how protective mechanical ventilation can affect the brain homeostasis.

    Science.gov (United States)

    Mazzeo, A T; Fanelli, V; Mascia, L

    2013-03-01

    The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.

  12. Network Theory and Effects of Transcranial Brain Stimulation Methods on the Brain Networks

    Directory of Open Access Journals (Sweden)

    Sema Demirci

    2014-12-01

    Full Text Available In recent years, there has been a shift from classic localizational approaches to new approaches where the brain is considered as a complex system. Therefore, there has been an increase in the number of studies involving collaborations with other areas of neurology in order to develop methods to understand the complex systems. One of the new approaches is graphic theory that has principles based on mathematics and physics. According to this theory, the functional-anatomical connections of the brain are defined as a network. Moreover, transcranial brain stimulation techniques are amongst the recent research and treatment methods that have been commonly used in recent years. Changes that occur as a result of applying brain stimulation techniques on physiological and pathological networks help better understand the normal and abnormal functions of the brain, especially when combined with techniques such as neuroimaging and electroencephalography. This review aims to provide an overview of the applications of graphic theory and related parameters, studies conducted on brain functions in neurology and neuroscience, and applications of brain stimulation systems in the changing treatment of brain network models and treatment of pathological networks defined on the basis of this theory.

  13. Brain areas and pathways in the regulation of glucose metabolism

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Serlie, Mireille J.; Fliers, Eric; Kalsbeek, Andries; la Fleur, Susanne E.

    2013-01-01

    Glucose is the most important source of fuel for the brain and its concentration must be kept within strict boundaries to ensure the organism's optimal fitness. To maintain glucose homeostasis, an optimal balance between glucose uptake and glucose output is required. Besides managing acute changes

  14. Migraine and structural abnormalities in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud

    2014-01-01

    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances...... in neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association...

  15. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    Mager, T.; Moeller, H.J.

    1997-01-01

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.) [de

  16. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood.

    Science.gov (United States)

    Branger, Pierre; Arenaza-Urquijo, Eider M; Tomadesso, Clémence; Mézenge, Florence; André, Claire; de Flores, Robin; Mutlu, Justine; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël; Rauchs, Géraldine

    2016-05-01

    Recent studies in mouse models of Alzheimer's disease (AD) and in humans suggest that sleep disruption and amyloid-beta (Aβ) accumulation are interrelated, and may, thus, exacerbate each other. We investigated the association between self-reported sleep variables and neuroimaging data in 51 healthy older adults. Participants completed a questionnaire assessing sleep quality and quantity and underwent positron emission tomography scans using [18F]florbetapir and [18F]fluorodeoxyglucose and an magnetic resonance imaging scan to measure Aβ burden, hypometabolism, and atrophy, respectively. Longer sleep latency was associated with greater Aβ burden in prefrontal areas. Moreover, the number of nocturnal awakenings was negatively correlated with gray matter volume in the insular region. In asymptomatic middle-aged and older adults, lower self-reported sleep quality was associated with greater Aβ burden and lower volume in brain areas relevant in aging and AD, but not with glucose metabolism. These results highlight the potential relevance of preserving sleep quality in older adults and suggest that sleep may be a factor to screen for in individuals at risk for AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  19. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  20. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  1. Brain-Gut-Microbe Communication in Health and Disease

    Directory of Open Access Journals (Sweden)

    Sue eGrenham

    2011-12-01

    Full Text Available Bidirectional signalling between the gastrointestinal tract and the brain is regulated at neural, hormonal and immunological levels. This construct is known as the brain-gut axis and is vital for maintaining homeostasis. Bacterial colonisation of the intestine plays a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS signalling. Recent research advances have seen a tremendous improvement in our understanding of the scale, diversity and importance of the gut microbiome. This has been reflected in the form of a revised nomenclature to the more inclusive brain-gut-enteric microbiota axis and a sustained research effort to establish how communication along this axis contributes to both normal and pathological conditions. In this review, we will briefly discuss the critical components of this axis and the methodological challenges that have been presented in attempts to define what constitutes a normal microbiota and chart its temporal development. Emphasis is placed on the new research narrative that confirms the critical influence of the microbiota on mood and behaviour. Mechanistic insights are provided with examples of both neural and humoral routes through which these effects can be mediated. The evidence supporting a role for the enteric flora in brain-gut axis disorders is explored with the spotlight on the clinical relevance for irritable bowel syndrome (IBS, a stress-related functional gastrointestinal disorder. We also critically evaluate the therapeutic opportunities arising from this research and consider in particular whether targeting the microbiome might represent a valid strategy for the management of CNS disorders and ponder the pitfalls inherent in such an approach. Despite the considerable challenges that lie ahead, this is an exciting area of research and one that is destined to remain the centre of focus for some

  2. Exposition concerning small windmills. List of relevant publications

    International Nuclear Information System (INIS)

    Aurvig, D.

    1992-09-01

    In connection with the publication of the report entitled ''Exposition Concerning Small Windmills'', it was decided that searching in databases should also be used in relation to the collection of relevant information, and that the results of these searches should be published in the form of a reading list. This is presented here. The subject areas covered are technology, research and development, marketing, developing countries and agricultural areas - all relevant to small windmills. Risoe Library, Roskilde, Denmark (Telephone no. (45) 42371212) will be helpful in acquiring any publication(s) referenced in the reading list. The report number J.No. 51171/92-0019 should also be quoted. (AB)

  3. Dog Experts' Brains Distinguish Socially Relevant Body Postures Similarly in Dogs and Humans

    OpenAIRE

    Kujala, Miiamaaria; Kujala, Jan; Carlson, Synnove; Hari, Riitta

    2012-01-01

    We read conspecifics' social cues effortlessly, but little is known about our abilities to understand social gestures of other species. To investigate the neural underpinnings of such skills, we used functional magnetic resonance imaging to study the brain activity of experts and non-experts of dog behavior while they observed humans or dogs either interacting with, or facing away from a conspecific. The posterior superior temporal sulcus (pSTS) of both subject groups dissociated humans facin...

  4. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    Science.gov (United States)

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  5. Spontaneous brain activity predicts learning ability of foreign sounds.

    Science.gov (United States)

    Ventura-Campos, Noelia; Sanjuán, Ana; González, Julio; Palomar-García, María-Ángeles; Rodríguez-Pujadas, Aina; Sebastián-Gallés, Núria; Deco, Gustavo; Ávila, César

    2013-05-29

    Can learning capacity of the human brain be predicted from initial spontaneous functional connectivity (FC) between brain areas involved in a task? We combined task-related functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) before and after training with a Hindi dental-retroflex nonnative contrast. Previous fMRI results were replicated, demonstrating that this learning recruited the left insula/frontal operculum and the left superior parietal lobe, among other areas of the brain. Crucially, resting-state FC (rs-FC) between these two areas at pretraining predicted individual differences in learning outcomes after distributed (Experiment 1) and intensive training (Experiment 2). Furthermore, this rs-FC was reduced at posttraining, a change that may also account for learning. Finally, resting-state network analyses showed that the mechanism underlying this reduction of rs-FC was mainly a transfer in intrinsic activity of the left frontal operculum/anterior insula from the left frontoparietal network to the salience network. Thus, rs-FC may contribute to predict learning ability and to understand how learning modifies the functioning of the brain. The discovery of this correspondence between initial spontaneous brain activity in task-related areas and posttraining performance opens new avenues to find predictors of learning capacities in the brain using task-related fMRI and rs-fMRI combined.

  6. Activation changes in zebra finch (Taeniopygia guttata) brain areas evoked by alterations of the earth magnetic field.

    Science.gov (United States)

    Keary, Nina; Bischof, Hans-Joachim

    2012-01-01

    Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds.

  7. Fear across the senses: brain responses to music, vocalizations and facial expressions.

    Science.gov (United States)

    Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L

    2015-03-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing 'biologically relevant' emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Early auditory processing in area V5/MT+ of the congenitally blind brain.

    Science.gov (United States)

    Watkins, Kate E; Shakespeare, Timothy J; O'Donoghue, M Clare; Alexander, Iona; Ragge, Nicola; Cowey, Alan; Bridge, Holly

    2013-11-13

    Previous imaging studies of congenital blindness have studied individuals with heterogeneous causes of blindness, which may influence the nature and extent of cross-modal plasticity. Here, we scanned a homogeneous group of blind people with bilateral congenital anophthalmia, a condition in which both eyes fail to develop, and, as a result, the visual pathway is not stimulated by either light or retinal waves. This model of congenital blindness presents an opportunity to investigate the effects of very early visual deafferentation on the functional organization of the brain. In anophthalmic animals, the occipital cortex receives direct subcortical auditory input. We hypothesized that this pattern of subcortical reorganization ought to result in a topographic mapping of auditory frequency information in the occipital cortex of anophthalmic people. Using functional MRI, we examined auditory-evoked activity to pure tones of high, medium, and low frequencies. Activity in the superior temporal cortex was significantly reduced in anophthalmic compared with sighted participants. In the occipital cortex, a region corresponding to the cytoarchitectural area V5/MT+ was activated in the anophthalmic participants but not in sighted controls. Whereas previous studies in the blind indicate that this cortical area is activated to auditory motion, our data show it is also active for trains of pure tone stimuli and in some anophthalmic participants shows a topographic mapping (tonotopy). Therefore, this region appears to be performing early sensory processing, possibly served by direct subcortical input from the pulvinar to V5/MT+.

  9. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  10. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats.

    Science.gov (United States)

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

  11. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    This article starts by providing a brief summary of relevance theory in information science in relation to the function theory of lexicography, explaining the different types of relevance, viz. objective system relevance and the subjective types of relevance, i.e. topical, cognitive, situational...... that is very important for lexicography as well as for information science, viz. functional relevance. Since all lexicographic work is ultimately aimed at satisfying users’ information needs, the article then discusses why the lexicographer should take note of all these types of relevance when planning a new...... dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article contributes to new...

  12. Brains on video games.

    Science.gov (United States)

    Bavelier, Daphne; Green, C Shawn; Han, Doug Hyun; Renshaw, Perry F; Merzenich, Michael M; Gentile, Douglas A

    2011-11-18

    The popular press is replete with stories about the effects of video and computer games on the brain. Sensationalist headlines claiming that video games 'damage the brain' or 'boost brain power' do not do justice to the complexities and limitations of the studies involved, and create a confusing overall picture about the effects of gaming on the brain. Here, six experts in the field shed light on our current understanding of the positive and negative ways in which playing video games can affect cognition and behaviour, and explain how this knowledge can be harnessed for educational and rehabilitation purposes. As research in this area is still in its early days, the contributors of this Viewpoint also discuss several issues and challenges that should be addressed to move the field forward.

  13. Probabilistic fiber tracking of the language and motor white matter pathways of the supplementary motor area (SMA) in patients with brain tumors.

    Science.gov (United States)

    Jenabi, Mehrnaz; Peck, Kyung K; Young, Robert J; Brennan, Nicole; Holodny, Andrei I

    2014-12-01

    Accurate localization of anatomically and functionally separate SMA tracts is important to improve planning prior to neurosurgery. Using fMRI and probabilistic DTI techniques, we assessed the connectivity between the frontal language area (Broca's area) and the rostral pre-SMA (language SMA) and caudal SMA proper (motor SMA). Twenty brain tumor patients completed motor and language fMRI paradigms and DTI. Peaks of functional activity in the language SMA, motor SMA and Broca's area were used to define seed regions for probabilistic tractography. fMRI and probabilistic tractography identified separate and unique pathways connecting the SMA to Broca's area - the language SMA pathway and the motor SMA pathway. For all subjects, the language SMA pathway had a larger number of voxels (PProbabilistic tractography can identify unique white matter tracts that connect language SMA and motor SMA to Broca's area. The language SMA is more significantly connected to Broca's area than is the motor subdivision of the SMA proper. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. Autonomia e relevância dos regimes The autonomy and relevance of regimes

    Directory of Open Access Journals (Sweden)

    Gustavo Seignemartin de Carvalho

    2005-12-01

    of norms and rules that create patterns of behavior and allow the convergence of the expectations of their participants in specific issue areas, in order to solve coordination problems that could lead to non-pareto-efficient outcomes. Considering that such definitions based merely on the "efficiency" of regimes do not seem to be sufficient to explain their effectiveness, the present article proposes a different definition for regimes: political arrangements that allow a redistribution of the gains of cooperation among the participants in certain issue areas, within an interdependence context. Regimes would thus be effective due to their autonomy and relevance - that is, due to their objective existence autonomously from their participants and their influence on the participants' behavior and expectations in ways that cannot be reduced to the individual action of any of them. This article begins with a brief discussion about terminological problems related to regime studies and with a definition of the concepts of autonomy and relevance. Then it classifies the authors that take part in this debate according to two distinct perspectives, one that denies (non-autonomists and the other that attributes (autonomists autonomy and relevance to regimes, briefly analyzing the authors and traditions that are more significant for this debate, focusing on autonomist authors and on arguments that back the hypothesis here presented. Finally, the article proposes an analytic decomposition of regimes into four main elements that give them autonomy and relevance: normativity, actors, specificity of the issue area and complex interdependence as context.

  15. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    Directory of Open Access Journals (Sweden)

    Ji Ryang Chung

    2011-11-01

    Full Text Available Connectomics is the study of the full connection matrix of the brain.Recent advances in high-throughput, high-resolution 3D microscopy methodshave enabled the imaging of whole small animal brains at a sub-micrometerresolution, potentially opening the road to full-blown connectomicsresearch. One of the first such instruments to achieve whole-brain-scaleimaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope(KESM. KESM whole-brain data sets now include Golgi (neuronal circuits,Nissl (soma distribution, and India ink (vascular networks. KESM data cancontribute greatly to connectomics research, since they fill the gap betweenlower resolution, large volume imaging methods (such as diffusion MRI andhigher resolution, small volume methods (e.g., serial sectioning electronmicroscopy. Furthermore, KESM data are by their nature multiscale, ranging fromthe subcellular to the whole organ scale. Due to this, visualization alone is ahuge challenge, before we even start worrying about connectivity analysis. Tosolve this issue, we developed a web-based neuroinformatics framework for efficientvisualization and analysis of the multiscale KESM data sets. In this paper,we will first provide an overview of KESM, then discuss in detail the KESMdata sets and the web-based neuroinformatics framework, which is called theKESM Brain Atlas (KESMBA. Finally, we will discuss the relevance of the KESMBAto connectomics research, and identify challenges and future directions.

  16. Cognitive functions in drivers with brain injury : Anticipation and adaption

    OpenAIRE

    Lundqvist, Anna

    2001-01-01

    The purpose of this thesis was to improve the understanding of what cognitive functions are important for driving performance, investigate the impact of impaired cognitive functions on drivers with brain injury, and study adaptation strategies relevant for driving performance after brain injury. Finally, the predictive value of a neuropsychological test battery was evaluated for driving performance. Main results can be summarized in the following conclusions: (a) Cognitive functions in terms ...

  17. [Measurement of the blood flow in various areas of the rat brain by means of microspheres].

    Science.gov (United States)

    Deroo, J; Gerber, G B

    1976-01-01

    A method is described to measure regional blood flow in different structures of the rat brain. Microspheres (15 micron) are injected, the brain is sectioned, stained for myeline, radioautographs are prepared and the microspheres in the different structures are counted. The values obtained for different brain structures are counted. The values obtained for different brain regions (cortex, corpus callosum, thalamus hipocampus, hypothalamic region, colliculi, cerebellum, pons, medulla) compare well with those published by others on larger animals. In rats fed 1% of lead from birth, higher blood flow is found in the cortex and a lower one in the interior part of the brain compared to controls.

  18. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    Science.gov (United States)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  19. Brain-Based Learning and Standards-Based Elementary Science.

    Science.gov (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  20. Transfection of rat brain endothelium in a primary culture model of the blood-brain barrier at different states of barrier maturity

    DEFF Research Database (Denmark)

    Larsen, Annette Burkhart; Thomsen, Louiza Bohn; Lichota, Jacek

    Central nervous system diseases are becoming more prevalent. Unfortunately, the treatment of CNS diseases is often rendered complicated by the inability of many drugs of therapeutic relevance to cross the blood-brain barrier (BBB). In order to enhance drug delivery to the brain, different...... approaches have been developed. Gene therapy could be a promising and novel approach to overcome the restricting properties of the BBB to polypeptides and proteins. Gene therapy is based on the delivery of genetic material into brain capillary endothelial cells (BCECs), which, theoretically, will result...... in expression and secretion of the recombinant protein from the BCECs and into the brain, thus turning BCECs into small recombinant protein factories. In this study, the possibility of using BCECs as small factories for recombinant protein production was investigated. To mimic the in-vivo situation as closely...

  1. Real-time inference of word relevance from electroencephalogram and eye gaze

    Science.gov (United States)

    Wenzel, M. A.; Bogojeski, M.; Blankertz, B.

    2017-10-01

    Objective. Brain-computer interfaces can potentially map the subjective relevance of the visual surroundings, based on neural activity and eye movements, in order to infer the interest of a person in real-time. Approach. Readers looked for words belonging to one out of five semantic categories, while a stream of words passed at different locations on the screen. It was estimated in real-time which words and thus which semantic category interested each reader based on the electroencephalogram (EEG) and the eye gaze. Main results. Words that were subjectively relevant could be decoded online from the signals. The estimation resulted in an average rank of 1.62 for the category of interest among the five categories after a hundred words had been read. Significance. It was demonstrated that the interest of a reader can be inferred online from EEG and eye tracking signals, which can potentially be used in novel types of adaptive software, which enrich the interaction by adding implicit information about the interest of the user to the explicit interaction. The study is characterised by the following novelties. Interpretation with respect to the word meaning was necessary in contrast to the usual practice in brain-computer interfacing where stimulus recognition is sufficient. The typical counting task was avoided because it would not be sensible for implicit relevance detection. Several words were displayed at the same time, in contrast to the typical sequences of single stimuli. Neural activity was related with eye tracking to the words, which were scanned without restrictions on the eye movements.

  2. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression.

    Directory of Open Access Journals (Sweden)

    Kosuke Yoshida

    Full Text Available In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS regression to resting-state functional magnetic resonance imaging (rs-fMRI data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area.

  4. Toward a brain-based theory of beauty.

    Science.gov (United States)

    Ishizu, Tomohiro; Zeki, Semir

    2011-01-01

    We wanted to learn whether activity in the same area(s) of the brain correlate with the experience of beauty derived from different sources. 21 subjects took part in a brain-scanning experiment using functional magnetic resonance imaging. Prior to the experiment, they viewed pictures of paintings and listened to musical excerpts, both of which they rated on a scale of 1-9, with 9 being the most beautiful. This allowed us to select three sets of stimuli--beautiful, indifferent and ugly--which subjects viewed and heard in the scanner, and rated at the end of each presentation. The results of a conjunction analysis of brain activity showed that, of the several areas that were active with each type of stimulus, only one cortical area, located in the medial orbito-frontal cortex (mOFC), was active during the experience of musical and visual beauty, with the activity produced by the experience of beauty derived from either source overlapping almost completely within it. The strength of activation in this part of the mOFC was proportional to the strength of the declared intensity of the experience of beauty. We conclude that, as far as activity in the brain is concerned, there is a faculty of beauty that is not dependent on the modality through which it is conveyed but which can be activated by at least two sources--musical and visual--and probably by other sources as well. This has led us to formulate a brain-based theory of beauty.

  5. The social brain network and autism.

    Science.gov (United States)

    Misra, Vivek

    2014-04-01

    Available research data in Autism suggests the role of a network of brain areas, often known as the 'social brain'. Recent studies highlight the role of genetic mutations as underlying patho-mechanism in Autism. This mini review, discusses the basic concepts behind social brain networks, theory of mind and genetic factors associated with Autism. It critically evaluates and explores the relationship between the behavioral outcomes and genetic factors providing a conceptual framework for understanding of autism.

  6. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  7. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  8. Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37

    OpenAIRE

    Ardila, Alfredo; Bernal, Byron; Rosselli, Monica

    2015-01-01

    Background. Understanding the functions of different brain areas has represented a major endeavor of neurosciences. Historically, brain functions have been associated with specific cortical brain areas; however, modern neuroimaging developments suggest cognitive functions are associated to networks rather than to areas. Objectives. The purpose of this paper was to analyze the connectivity of Brodmann area (BA) 37 (posterior, inferior, and temporal/fusiform gyrus) in relation to (1) language a...

  9. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  10. Functional dyspepsia: Are psychosocial factors of relevance?

    Institute of Scientific and Technical Information of China (English)

    Sandra Barry; Timothy G Dinan

    2006-01-01

    The pathogenesis of Functional Dyspepsia (FD) remains unclear, appears diverse and is thus inadequately understood. Akin to other functional gastrointestinal disorders, research has demonstrated an association between this common diagnosis and psychosocial factors and psychiatric morbidity. Conceptualising the relevance of these factors within the syndrome of FD requires application of the biopsychosocial model of disease.Using this paradigm, dysregulation of the reciprocal communication between the brain and the gut is central to symptom generation, interpretation and exacerbation.Appreciation and understanding of the neurobiological correlates of various psychological states is also relevant.The view that psychosocial factors exert their influence in FD predominantly through motivation of health care seeking also persists. This appears too one-dimensional an assertion in light of the evidence available supporting a more intrinsic aetiological link. Evolving understanding of pathogenic mechanisms and the heterogeneous nature of the syndrome will facilitate effective management.Co-morbid psychiatric illness warrants treatment with conventional therapies. Acknowledging the relevance of psychosocial variables in FD, the degree of which is subject to variation, has implications for assessment and management. Available evidence suggests psychological therapies may benefit FD patients particularly those with chronic symptoms. The rationale for use of psychotropic medications in FD is apparent but the evidence base to support the use of antidepressant pharmacotherapy is to date limited.

  11. Effects of insulin and leptin in the ventral tegmental area and arcuate hypothalamic nucleus on food intake and brain reward function in female rats.

    Science.gov (United States)

    Bruijnzeel, Adrie W; Corrie, Lu W; Rogers, Jessica A; Yamada, Hidetaka

    2011-06-01

    There is evidence for a role of insulin and leptin in food intake, but the effects of these adiposity signals on the brain reward system are not well understood. Furthermore, the effects of insulin and leptin on food intake in females are underinvestigated. These studies investigated the role of insulin and leptin in the ventral tegmental area (VTA) and the arcuate hypothalamic nucleus (Arc) on food intake and brain reward function in female rats. The intracranial self-stimulation procedure was used to assess the effects of insulin and leptin on the reward system. Elevations in brain reward thresholds are indicative of a decrease in brain reward function. The bilateral administration of leptin into the VTA (15-500 ng/side) or Arc (15-150 ng/side) decreased food intake for 72 h. The infusion of leptin into the VTA or Arc resulted in weight loss during the first 48 (VTA) or 24 h (Arc) after the infusions. The administration of insulin (0.005-5 mU/side) into the VTA or Arc decreased food intake for 24 h but did not affect body weights. The bilateral administration of low, but not high, doses of leptin (15 ng/side) or insulin (0.005 mU/side) into the VTA elevated brain reward thresholds. Neither insulin nor leptin in the Arc affected brain reward thresholds. These studies suggest that a small increase in leptin or insulin levels in the VTA leads to a decrease in brain reward function. A relatively large increase in insulin or leptin levels in the VTA or Arc decreases food intake. Published by Elsevier B.V.

  12. Ensuring safety of people in case of severe floods: feasibility and relevance of vertical evacuation strategies in high population density areas

    Directory of Open Access Journals (Sweden)

    Pannier Rodolphe

    2016-01-01

    Full Text Available When a major flooding event is expected the authorities in charge of the crisis management often consider bringing people to safety by making them leaving temporarily the threatened area before the onset of the flood. This strategy is called “horizontal evacuation”. It has to be distinguished from “vertical evacuation”, which means that people reach a shelter above the wtaer level within the flood area. Vertical evacuation is often the spontaneousbehaviourof people who are surprised by the flood and are trying to reach a tree, a floor upstairs, a roof of a building etc. in order to get away from the rising water. But vertical evacuation could also be consideredas an alternative strategy to horizontal evacuation when moving outside the flood area is neither a faisible nor a relevant option, for example in high-population density areas. In order to be a credible alternative to horizontal evacuation, vertical evacuation has to be carefully planned. This paper aims to explain why horizontal evacuation is not always a suitable option in case of major flood and to explore under what conditions vertical evacuation can be a relevantalternative solution to horizontal evacuation. It also adresses some general recommendations about how to prepare a vertical evacuation strategy..

  13. Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception.

    Science.gov (United States)

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Liu, Yongjian; Liang, Changhong; Sun, Pei

    2015-02-01

    Previous studies have shown that audiovisual integration improves identification performance and enhances neural activity in heteromodal brain areas, for example, the posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG). Furthermore, it has also been demonstrated that attention plays an important role in crossmodal integration. In this study, we considered crossmodal integration in audiovisual facial perception and explored its effect on the neural representation of features. The audiovisual stimuli in the experiment consisted of facial movie clips that could be classified into 2 gender categories (male vs. female) or 2 emotion categories (crying vs. laughing). The visual/auditory-only stimuli were created from these movie clips by removing the auditory/visual contents. The subjects needed to make a judgment about the gender/emotion category for each movie clip in the audiovisual, visual-only, or auditory-only stimulus condition as functional magnetic resonance imaging (fMRI) signals were recorded. The neural representation of the gender/emotion feature was assessed using the decoding accuracy and the brain pattern-related reproducibility indices, obtained by a multivariate pattern analysis method from the fMRI data. In comparison to the visual-only and auditory-only stimulus conditions, we found that audiovisual integration enhanced the neural representation of task-relevant features and that feature-selective attention might play a role of modulation in the audiovisual integration. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Standardized Uptake Value Ratio-Independent Evaluation of Brain Amyloidosis.

    Science.gov (United States)

    Chincarini, Andrea; Sensi, Francesco; Rei, Luca; Bossert, Irene; Morbelli, Silvia; Guerra, Ugo Paolo; Frisoni, Giovanni; Padovani, Alessandro; Nobili, Flavio

    2016-10-18

    The assessment of in vivo18F images targeting amyloid deposition is currently carried on by visual rating with an optional quantification based on standardized uptake value ratio (SUVr) measurements. We target the difficulties of image reading and possible shortcomings of the SUVr methods by validating a new semi-quantitative approach named ELBA. ELBA involves a minimal image preprocessing and does not rely on small, specific regions of interest (ROIs). It evaluates the whole brain and delivers a geometrical/intensity score to be used for ranking and dichotomic assessment. The method was applied to adniimages 18F-florbetapir images from the ADNI database. Five expert readers provided visual assessment in blind and open sessions. The longitudinal trend and the comparison to SUVr measurements were also evaluated. ELBA performed with area under the roc curve (AUC) = 0.997 versus the visual assessment. The score was significantly correlated to the SUVr values (r = 0.86, p analysis estimated a test/retest error of ≃2.3%. Cohort and longitudinal analysis suggests that the ELBA method accurately ranks the brain amyloid burden. The expert readers confirmed its relevance in aiding the visual assessment in a significant number (85) of difficult cases. Despite the good performance, poor and uneven image quality constitutes the major limitation.

  15. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  16. The rights and wrongs of blood-brain barrier permeability studies

    DEFF Research Database (Denmark)

    Saunders, Norman R; Dreifuss, Jean-Jacques; Dziegielewska, Katarzyna M

    2014-01-01

    Careful examination of relevant literature shows that many of the most cherished concepts of the blood-brain barrier are incorrect. These include an almost mythological belief in its immaturity that is unfortunately often equated with absence or at least leakiness in the embryo and fetus....... The original concept of a blood-brain barrier is often attributed to Ehrlich; however, he did not accept that permeability of cerebral vessels was different from other organs. Goldmann is often credited with the first experiments showing dye (trypan blue) exclusion from the brain when injected systemically......, but not when injected directly into it. Rarely cited are earlier experiments of Bouffard and of Franke who showed methylene blue and trypan red stained all tissues except the brain. The term "blood-brain barrier" "Blut-Hirnschranke" is often attributed to Lewandowsky, but it does not appear in his papers...

  17. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    Science.gov (United States)

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Development of Spatial and Verbal Working Memory Capacity in the Human Brain

    Science.gov (United States)

    Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.

    2009-01-01

    A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…

  19. Categorization for Faces and Tools-Two Classes of Objects Shaped by Different Experience-Differs in Processing Timing, Brain Areas Involved, and Repetition Effects.

    Science.gov (United States)

    Kozunov, Vladimir; Nikolaeva, Anastasia; Stroganova, Tatiana A

    2017-01-01

    The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization per se , or later-stage mentalizing-related processes. We have extracted three stages of cortical activity corresponding to low-level processing, category-specific feature binding, and supra-categorical processing. All face-specific spatiotemporal patterns were associated with bilateral activation of ventral occipito-temporal areas during the feature binding stage at 140-170 ms. The tool-specific activity was found both within the categorization stage and in a later period not thought to be associated with binding processes. The tool-specific binding-related activity was detected within a 210-220 ms window and was located to the intraparietal sulcus of the left hemisphere. Brain activity common for both meaningful categories started at 250 ms and included widely distributed assemblies within parietal, temporal, and prefrontal regions

  20. Categorization for Faces and Tools—Two Classes of Objects Shaped by Different Experience—Differs in Processing Timing, Brain Areas Involved, and Repetition Effects

    Science.gov (United States)

    Kozunov, Vladimir; Nikolaeva, Anastasia; Stroganova, Tatiana A.

    2018-01-01

    The brain mechanisms that integrate the separate features of sensory input into a meaningful percept depend upon the prior experience of interaction with the object and differ between categories of objects. Recent studies using representational similarity analysis (RSA) have characterized either the spatial patterns of brain activity for different categories of objects or described how category structure in neuronal representations emerges in time, but never simultaneously. Here we applied a novel, region-based, multivariate pattern classification approach in combination with RSA to magnetoencephalography data to extract activity associated with qualitatively distinct processing stages of visual perception. We asked participants to name what they see whilst viewing bitonal visual stimuli of two categories predominantly shaped by either value-dependent or sensorimotor experience, namely faces and tools, and meaningless images. We aimed to disambiguate the spatiotemporal patterns of brain activity between the meaningful categories and determine which differences in their processing were attributable to either perceptual categorization per se, or later-stage mentalizing-related processes. We have extracted three stages of cortical activity corresponding to low-level processing, category-specific feature binding, and supra-categorical processing. All face-specific spatiotemporal patterns were associated with bilateral activation of ventral occipito-temporal areas during the feature binding stage at 140–170 ms. The tool-specific activity was found both within the categorization stage and in a later period not thought to be associated with binding processes. The tool-specific binding-related activity was detected within a 210–220 ms window and was located to the intraparietal sulcus of the left hemisphere. Brain activity common for both meaningful categories started at 250 ms and included widely distributed assemblies within parietal, temporal, and prefrontal regions

  1. Two hands, one brain, and aging.

    Science.gov (United States)

    Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P

    2017-04-01

    Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. fMRI activation in the middle frontal gyrus as an indicator of hemispheric dominance for language in brain tumor patients: a comparison with Broca's area.

    Science.gov (United States)

    Dong, Jian W; Brennan, Nicole M Petrovich; Izzo, Giana; Peck, Kyung K; Holodny, Andrei I

    2016-05-01

    Functional MRI (fMRI) can assess language lateralization in brain tumor patients; however, this can be limited if the primary language area-Broca's area (BA)-is affected by the tumor. We hypothesized that the middle frontal gyrus (MFG) can be used as a clinical indicator of hemispheric dominance for language during presurgical workup. Fifty-two right-handed subjects with solitary left-hemispheric primary brain tumors were retrospectively studied. Subjects performed a verbal fluency task during fMRI. The MFG was compared to BA for fMRI voxel activation, language laterality index (LI), and the effect of tumor grade on the LI. Language fMRI (verbal fluency) activated more voxels in MFG than in BA (MFG = 315, BA = 216, p hemispheric MFG and BA were positively correlated (r = 0.69, p hemispheric dominance for language using a measure of verbal fluency and may be an adjunct measure in the clinical determination of language laterality for presurgical planning.

  3. Brain abscess: Current management

    Directory of Open Access Journals (Sweden)

    Hernando Alvis-Miranda

    2013-01-01

    Full Text Available Brain abscess (BA is defined as a focal infection within the brain parenchyma, which starts as a localized area of cerebritis, which is subsequently converted into a collection of pus within a well-vascularized capsule. BA must be differentiated from parameningeal infections, including epidural abscess and subdural empyema. The BA is a challenge for the neurosurgeon because it is needed good clinical, pharmacological, and surgical skills for providing good clinical outcomes and prognosis to BA patients. Considered an infrequent brain infection, BA could be a devastator entity that easily left the patient into dead. The aim of this work is to review the current concepts regarding epidemiology, pathophysiology, etiology, clinical presentation, diagnosis, and management of BA.

  4. A pilot study into the effects of music therapy on different areas of the brain of individuals with unresponsive wakefulness syndrome

    Science.gov (United States)

    Steinhoff, Nikolaus; Heine, Astrid M.; Vogl, Julia; Weiss, Konrad; Aschraf, Asita; Hajek, Paul; Schnider, Peter; Tucek, Gerhard

    2015-01-01

    The global cerebral network allows music “ to do to us what it does.” While the same music can cause different emotions, the basic emotion of happy and sad songs can, nevertheless, be understood by most people. Consequently, the individual experience of music and its common effect on the human brain is a challenging subject for research. Various activities such as hearing, processing, and performing music provide us with different pictures of cerebral centers in PET. In comparison to these simple acts of experiencing music, the interaction and the therapeutic relationship between the patient and the therapist in Music Therapy (MT) provide us with an additional element in need of investigation. In the course of a pilot study, these problems were approached and reduced to the simple observation of pattern alteration in the brains of four individuals with Unresponsive Wakefulness Syndrome (UWS) during MT. Each patient had three PET investigations: (i) during a resting state, (ii) during the first exposure to MT, and (iii) during the last exposure to MT. Two patients in the MT group received MT for 5 weeks between the 2nd and the 3rd PET (three times a week), while two other patients in the control group had no MT in between. Tracer uptake was measured in the frontal, hippocampal, and cerebellar region of the brain. With certain differences in these three observed brain areas, the tracer uptake in the MT group was higher (34%) than in the control group after 5 weeks. The preliminary results suggest that MT activates the three brain regions described above. In this article, we present our approach to the neuroscience of MT and discuss the impact of our hypothesis on music therapy practice, neurological rehabilitation of individuals in UWS and additional neuroscientific research. PMID:26347603

  5. Social intelligence, innovation, and enhanced brain size in primates

    NARCIS (Netherlands)

    Reader, S.M.; Laland, K.N.

    2002-01-01

    Despite considerable current interest in the evolution of intelligence, the intuitively appealing notion that brain volume and ‘‘intelligence’’ are linked remains untested. Here, we use ecologically relevant measures of cognitive ability, the reported incidence of behavioral innovation, social

  6. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  7. HZE particle effects in the mammalian brain: relevance to manned space flight

    International Nuclear Information System (INIS)

    Kraft, L.M.; D'Amelio, F.E.; Benton, E.V.

    1980-01-01

    The brain of rodents has been studied following high LET neon particle irradiation with doses ranging from 10 to 1000 rad. The changes observed by light microscopy after 1000 rad irradiation, for example, include acute necrosis of interstitial cells within 36 h of exposure, necrotic neurons, hyperchromatic neuroglia, and axonal degeneration beginning at 3 months postexposure. These changes are compared with those reported following exposure to other radiation modalities. Neuronal necrosis following high LET argon particle irradiation was comparable to that with neon. Low doses (25 rad and below) of iron nuclei resulted in no visible necrotic nerve cells. Acute neuroglial cell loss or damage is discussed as to its possible role in chronic neuronal necrosis and in loss of axonal integrity

  8. An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue.

    Science.gov (United States)

    Pizzichelli, G; Di Michele, F; Sinibaldi, E

    2016-02-01

    We consider the infusion of a diluted suspension of nanoparticles (NPs) into poroelastic brain tissue, in view of relevant biomedical applications such as intratumoral thermotherapy. Indeed, the high impact of the related pathologies motivates the development of advanced therapeutic approaches, whose design also benefits from theoretical models. This study provides an analytical expression for the time-dependent NPs concentration during the infusion into poroelastic brain tissue, which also accounts for particle binding onto cells (by recalling relevant results from the colloid filtration theory). Our model is computationally inexpensive and, compared to fully numerical approaches, permits to explicitly elucidate the role of the involved physical aspects (tissue poroelasticity, infusion parameters, NPs physico-chemical properties, NP-tissue interactions underlying binding). We also present illustrative results based on parameters taken from the literature, by considering clinically relevant ranges for the infusion parameters. Moreover, we thoroughly assess the model working assumptions besides discussing its limitations. While not laying any claims of generality, our model can be used to support the development of more ambitious numerical approaches, towards the preliminary design of novel therapies based on NPs infusion into brain tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Gender similarities and differences in brain activation strategies: Voxel-based meta-analysis on fMRI studies.

    Science.gov (United States)

    AlRyalat, Saif Aldeen

    2017-01-01

    Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.

  10. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  11. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinase – Mapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  12. Neurogenesis and brain injury: managing a renewable resource for repair

    OpenAIRE

    Hallbergson, Anna F.; Gnatenco, Carmen; Peterson, Daniel A.

    2003-01-01

    The brain shows limited ability to repair itself, but neurogenesis in certain areas of the adult brain suggests that neural stem cells may be used for structural brain repair. It will be necessary to understand how neurogenesis in the adult brain is regulated to develop strategies that harness neural stem cells for therapeutic use.

  13. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  14. Training of verbal creativity modulates brain activity in regions associated with language‐ and memory‐related demands

    Science.gov (United States)

    Benedek, Mathias; Koschutnig, Karl; Pirker, Eva; Berger, Elisabeth; Meister, Sabrina; Neubauer, Aljoscha C.; Papousek, Ilona; Weiss, Elisabeth M.

    2015-01-01

    Abstract This functional magnetic resonance (fMRI) study was designed to investigate changes in functional patterns of brain activity during creative ideation as a result of a computerized, 3‐week verbal creativity training. The training was composed of various verbal divergent thinking exercises requiring participants to train approximately 20 min per day. Fifty‐three participants were tested three times (psychometric tests and fMRI assessment) with an intertest‐interval of 4 weeks each. Participants were randomly assigned to two different training groups, which received the training time‐delayed: The first training group was trained between the first and the second test, while the second group accomplished the training between the second and the third test session. At the behavioral level, only one training group showed improvements in different facets of verbal creativity right after the training. Yet, functional patterns of brain activity during creative ideation were strikingly similar across both training groups. Whole‐brain voxel‐wise analyses (along with supplementary region of interest analyses) revealed that the training was associated with activity changes in well‐known creativity‐related brain regions such as the left inferior parietal cortex and the left middle temporal gyrus, which have been shown as being particularly sensitive to the originality facet of creativity in previous research. Taken together, this study demonstrates that continuous engagement in a specific complex cognitive task like divergent thinking is associated with reliable changes of activity patterns in relevant brain areas, suggesting more effective search, retrieval, and integration from internal memory representations as a result of the training. Hum Brain Mapp 36:4104–4115, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26178653

  15. How does the brain affect cardiovascular health?

    Directory of Open Access Journals (Sweden)

    Vitaliy Bezsheiko

    2017-08-01

    Full Text Available In the article the mechanisms of stress response regulation by the brain are reviewed, as well as the data from a new study in this area, which was focused on a detailed analysis of brain activity changes in people with excessive cardiovascular stress response.

  16. Visual image reconstruction from human brain activity: A modular decoding approach

    International Nuclear Information System (INIS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Kamitani, Yukiyasu; Morito, Yusuke; Tanabe, Hiroki C; Sadato, Norihiro

    2009-01-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2 100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  17. Visual Restoration after Cataract Surgery Promotes Functional and Structural Brain Recovery

    Directory of Open Access Journals (Sweden)

    Haotian Lin

    2018-04-01

    Full Text Available Background: Visual function and brain function decline concurrently with aging. Notably, cataract patients often present with accelerated age-related decreases in brain function, but the underlying mechanisms are still unclear. Optical structures of the anterior segment of the eyes, such as the lens and cornea, can be readily reconstructed to improve refraction and vision quality. However, the effects of visual restoration on human brain function and structure remain largely unexplored. Methods: A prospective, controlled clinical trial was conducted. Twenty-six patients with bilateral age-related cataracts (ARCs who underwent phacoemulsification and intraocular lens implantation and 26 healthy controls without ARC, matched for age, sex, and education, were recruited. Visual functions (including visual acuity, visual evoke potential, and contrast sensitivity, the Mini-Mental State Examination and functional magnetic resonance imaging (including the fractional amplitude of low-frequency fluctuations and grey matter volume variation were assessed for all the participants and reexamined for ARC patients after cataract surgery. This trial was registered with ClinicalTrials.gov (NCT02644720. Findings: Compared with the healthy controls, the ARC patients presented decreased brain functionality as well as structural alterations in visual and cognitive-related brain areas preoperatively. Three months postoperatively, significant functional improvements were observed in the visual and cognitive-related brain areas of the patients. Six months postoperatively, the patients' grey matter volumes in these areas were significantly increased. Notably, both the function and structure in the visual and cognitive-related brain areas of the patients improved significantly and became comparable to those of the healthy controls 6 months postoperatively. Interpretation: We demonstrated that ocular reconstruction can functionally and structurally reverse cataract

  18. Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.

    Science.gov (United States)

    Torello, Michael, W.; Duffy, Frank H.

    1985-01-01

    Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)

  19. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    Science.gov (United States)

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  20. Distribution of corticotropin-releasing factor receptors in primate brain

    International Nuclear Information System (INIS)

    Millan, M.A.; Jacobowitz, D.M.; Hauger, R.L.; Catt, K.J.; Aguilera, G.

    1986-01-01

    The distribution and properties of receptors for corticotropin-releasing factor (CRF) were analyzed in the brain of cynomolgus monkeys. Binding of [ 125 I]tyrosine-labeled ovine CRF to frontal cortex and amygdala membrane-rich fractions was saturable, specific, and time- and temperature-dependent, reaching equilibrium in 30 min at 23 0 C. Scatchard analysis of the binding data indicated one class of high-affinity sites with a K/sub d/ of 1 nM and a concentration of 125 fmol/mg. As in the rat pituitary and brain, CRF receptors in monkey cerebral cortex and amygdala were coupled to adenylate cyclase. Autoradiographic analysis of specific CRF binding in brain sections revealed that the receptors were widely distributed in the cerebral cortex and limbic system. Receptor density was highest in the pars tuberalis of the pituitary and throughout the cerebral cortex, specifically in the prefrontal, frontal, orbital, cingulate, insular, and temporal areas, and in the cerebellar cortex. A low binding density was present in the superior colliculus, locus coeruleus, substantia gelatinosa, preoptic area, septal area, and bed nucleus of the stria terminalis. These data demonstrate that receptors for CRF are present within the primate brain at areas related to the central control of visceral function and behavior, suggesting that brain CRF may serve as a neurotransmitter in the coordination of endocrine and neural mechanisms involved in the response to stress

  1. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention

    Directory of Open Access Journals (Sweden)

    Kamila U. Szulc-Lerch

    Full Text Available There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation.We conducted a controlled clinical trial with crossover of exercise training (vs. no training in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs. The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline.Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline.Overall, our results

  2. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  3. mRNA Transcriptomics of Galectins Unveils Heterogeneous Organization in Mouse and Human Brain

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2016-12-01

    Full Text Available Background: Galectins, a family of non-classically secreted, β-galactoside binding proteins is involved in several brain disorders; however no systematic knowledge on the normal neuroanatomical distribution and functions of galectins exits. Hence, the major purpose of this study was to understand spatial distribution and predict functions of galectins in brain and also compare the degree of conservation vs. divergence between mouse and human species. The latter objective was required to determine the relevance and appropriateness of studying galectins in mouse brain which may ultimately enable us to extrapolate the findings to human brain physiology and pathologies.Results: In order to fill this crucial gap in our understanding of brain galectins, we analyzed the in situ hybridization (ISH and microarray data of adult mouse and human brain respectively, from the Allen Brain Atlas, to resolve each galectin-subtype’s spatial distribution across brain distinct cytoarchitecture. Next, transcription factors (TFs that may regulate galectins were identified using TRANSFAC software and the list obtained was further curated to sort TFs on their confirmed transcript expression in the adult brain. Galectin-TF cluster analysis, gene-ontology annotations and co-expression networks were then extrapolated to predict distinct functional relevance of each galectin in the neuronal processes. Data shows that galectins have highly heterogeneous expression within and across brain sub-structures and are predicted to be the crucial targets of brain enriched TFs. Lgals9 had maximal spatial distribution across mouse brain with inferred predominant roles in neurogenesis while LGALS1 was ubiquitously expressed in human. Limbic region associated with learning, memory and emotions and substantia nigra associated with motor movements showed strikingly high expression of LGALS1 and LGALS8 in human vs. mouse brain. The overall expression profile of galectin-8 was most

  4. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI

    Science.gov (United States)

    2014-09-29

    objective of this project is to determine the conditions conducive for cavitation in cerebrospinal fluid (CSF) and corresponding tissue injury in 2-D brain...the radius of an isolated spherical bubble in an infinite, incompressible liquid is given by Where, R is the instantaneous bubble radius, which can...by the pressure transducer placed in the test chamber, and PR is the pressure in the liquid at the boundary of the bubble. The measurable bubble

  5. Melanoma brain metastases presenting as delirium: a case report

    Directory of Open Access Journals (Sweden)

    Sofia Morais

    Full Text Available Abstract Background Metastatic tumours sometimes present with neuropsychiatric symptoms, however psychiatric symptoms as rarely the first clinical manifestation. Cutaneous melanoma is the third most common cause of brain metastasis, with known risk factors increasing the chance of such central nervous system metastization. Objectives We present a clinical report of delirium as the first clinical manifestation of melanoma brain metastases, illustrating the relevance of an adequate and early differential diagnosis. Methods In addition to describing the clinical case, searches were undertaken in PubMed and other databases using keywords such as “brain metastasis”, “melanoma”, “agitation”, “psychiatric” and “delirium”. Results We here report the case of a 52-year-old female patient evaluated by Liaison Psychiatry after sudden onset of delirium while admitted at the Gastroenterology Department to study a hypothesis of pancreatitis. A head CT scan identified brain metastases, and after further examination, including brain biopsy, melanoma brain metastization was confirmed. Discussion Some of the diagnostic challenges of psychiatric symptoms associated with secondary brain tumours are discussed, underlining the importance of an adequate differential diagnosis when working in Psychiatry Liaison.

  6. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study

    International Nuclear Information System (INIS)

    Bendel, Paula; Koskenkorva, Paeivi; Vanninen, Ritva; Koivisto, Timo; Aeikiae, Marja; Niskanen, Eini; Koenoenen, Mervi; Haenninen, Tuomo

    2009-01-01

    Cognitive impairment after aneurysmal subarachnoid hemorrhage (aSAH) is frequently detected. Here, we describe the pattern of cerebral (gray matter) atrophy and its clinical relevance after treatment of aSAH caused by a ruptured anterior cerebral artery (ACA) aneurysm. Thirty-seven aSAH patients with ACA aneurysm (17 surgical, 20 endovascular treatment) and a good or moderate clinical outcome (Glasgow Outcome Scale V or IV) and 30 controls underwent brain MRI. Voxel-based morphometric analysis was applied to compare the patients and controls. Patients also underwent a detailed neuropsychological assessment. The comparisons between controls and either all patients (n=37) or the subgroup of surgically treated patients (n=17) revealed bilateral cortical atrophy in the frontal lobes, mainly in the basal areas. The brainstem, bilateral thalamic and hypothalamic areas, and ipsilateral caudate nucleus were also involved. Small areas of atrophy were detected in temporal lobes. The hippocampus and parahippocampal gyrus showed atrophy ipsilateral to the surgical approach. In the subgroup of endovascularly treated patients (n = 15), small areas of atrophy were detected in the bilateral orbitofrontal cortex and in the thalamic region. Twenty patients (54%) showed cognitive deficits in neuropsychological assessment. Group analysis after aSAH and treatment of the ruptured ACA aneurysm revealed gray matter atrophy, principally involving the frontobasal cortical areas and hippocampus ipsilateral to the surgical approach. Areas of reduced gray matter were more pronounced after surgical than endovascular treatment. Together with possible focal cortical infarctions and brain retraction deficits in individual patients, this finding may explain the neuropsychological disturbances commonly detected after treatment of ruptured ACA aneurysms. (orig.)

  7. Brain atrophy and neuropsychological outcome after treatment of ruptured anterior cerebral artery aneurysms: a voxel-based morphometric study

    Energy Technology Data Exchange (ETDEWEB)

    Bendel, Paula; Koskenkorva, Paeivi; Vanninen, Ritva [Kuopio University Hospital and University of Kuopio, Department of Clinical Radiology, Kuopio (Finland); Koivisto, Timo; Aeikiae, Marja [Kuopio University Hospital and University of Kuopio, Department of Neurosurgery, Kuopio (Finland); Niskanen, Eini [Kuopio University Hospital and University of Kuopio, Department of Neurology, Kuopio (Finland); Kuopio University Hospital and University of Kuopio, Department of Physics, Kuopio (Finland); Koenoenen, Mervi [Kuopio University Hospital and University of Kuopio, Department of Clinical Radiology, Kuopio (Finland); Kuopio University Hospital and University of Kuopio, Department of Clinical Neurophysiology, Kuopio (Finland); Haenninen, Tuomo [Kuopio University Hospital and University of Kuopio, Department of Neurology, Kuopio (Finland)

    2009-11-15

    Cognitive impairment after aneurysmal subarachnoid hemorrhage (aSAH) is frequently detected. Here, we describe the pattern of cerebral (gray matter) atrophy and its clinical relevance after treatment of aSAH caused by a ruptured anterior cerebral artery (ACA) aneurysm. Thirty-seven aSAH patients with ACA aneurysm (17 surgical, 20 endovascular treatment) and a good or moderate clinical outcome (Glasgow Outcome Scale V or IV) and 30 controls underwent brain MRI. Voxel-based morphometric analysis was applied to compare the patients and controls. Patients also underwent a detailed neuropsychological assessment. The comparisons between controls and either all patients (n=37) or the subgroup of surgically treated patients (n=17) revealed bilateral cortical atrophy in the frontal lobes, mainly in the basal areas. The brainstem, bilateral thalamic and hypothalamic areas, and ipsilateral caudate nucleus were also involved. Small areas of atrophy were detected in temporal lobes. The hippocampus and parahippocampal gyrus showed atrophy ipsilateral to the surgical approach. In the subgroup of endovascularly treated patients (n = 15), small areas of atrophy were detected in the bilateral orbitofrontal cortex and in the thalamic region. Twenty patients (54%) showed cognitive deficits in neuropsychological assessment. Group analysis after aSAH and treatment of the ruptured ACA aneurysm revealed gray matter atrophy, principally involving the frontobasal cortical areas and hippocampus ipsilateral to the surgical approach. Areas of reduced gray matter were more pronounced after surgical than endovascular treatment. Together with possible focal cortical infarctions and brain retraction deficits in individual patients, this finding may explain the neuropsychological disturbances commonly detected after treatment of ruptured ACA aneurysms. (orig.)

  8. Estrogen, stress and the brain: progress toward unraveling gender discrepancies in major depressive disorder.

    Science.gov (United States)

    Shansky, Rebecca M

    2009-07-01

    Women are twice as likely as men to develop major depressive disorder (MDD) and, while the neurobiological factors underlying this discrepancy are yet to be identified, estrogen almost certainly plays a role. MDD can be precipitated or exacerbated by exposure to stress and there is substantial evidence to suggest that estrogen can interact with stress systems to produce unique stress effects in females. This review integrates current research in animal models regarding estrogen-stress interactions in three areas of the brain known to be relevant to MDD: the hippocampus, the amygdala and the prefrontal cortex. The results from these studies are discussed in the context of MDD, and their implications for future treatment of MDD in women are explored.

  9. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    Science.gov (United States)

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Autoradiographic analysis of iodoamphetamine redistribution in experimental brain ischemia

    International Nuclear Information System (INIS)

    Matsuda, H.; Tsuji, S.; Oba, H.; Shiba, K.; Terada, H.; Kinuya, K.; Mori, H.; Sumiya, H.; Hisada, K.

    1990-01-01

    The pathophysiologic significance of iodoamphetamine (IMP) redistribution was analyzed using a double radionuclide autoradiography technique in experimental brain ischemia in the rat. Within 4 hr after unilateral arterial occlusion, IMP almost completely redistributed at 150 min postinjection in the affected areas. At 2 min postinjection, both a remarkable decrease of IMP accumulation and histopathologic change of diminished staining were observed in these areas. The redistribution amplitude was higher in the affected hemisphere, especially in the regions surrounding the ischemic core than in the unaffected hemisphere. These findings were consistent with computer simulation studies of the time course of brain activity based on the standard diffusible tracer model. The results suggest that IMP redistribution in the ischemic area is due to differences of the temporal changes of the brain activity between the unaffected and affected areas and that it is a physical phenomenon (only flow related) rather than a biologic one

  11. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    Amen, Daniel G; Wu, Joseph C; Carmichael, Blake

    2003-01-01

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  12. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity.

    Science.gov (United States)

    Hammer, C; Stepniak, B; Schneider, A; Papiol, S; Tantra, M; Begemann, M; Sirén, A-L; Pardo, L A; Sperling, S; Mohd Jofrry, S; Gurvich, A; Jensen, N; Ostmeier, K; Lühder, F; Probst, C; Martens, H; Gillis, M; Saher, G; Assogna, F; Spalletta, G; Stöcker, W; Schulz, T F; Nave, K-A; Ehrenreich, H

    2014-10-01

    In 2007, a multifaceted syndrome, associated with anti-NMDA receptor autoantibodies (NMDAR-AB) of immunoglobulin-G isotype, has been described, which variably consists of psychosis, epilepsy, cognitive decline and extrapyramidal symptoms. Prevalence and significance of NMDAR-AB in complex neuropsychiatric disease versus health, however, have remained unclear. We tested sera of 2817 subjects (1325 healthy, 1081 schizophrenic, 263 Parkinson and 148 affective-disorder subjects) for presence of NMDAR-AB, conducted a genome-wide genetic association study, comparing AB carriers versus non-carriers, and assessed their influenza AB status. For mechanistic insight and documentation of AB functionality, in vivo experiments involving mice with deficient blood-brain barrier (ApoE(-/-)) and in vitro endocytosis assays in primary cortical neurons were performed. In 10.5% of subjects, NMDAR-AB (NR1 subunit) of any immunoglobulin isotype were detected, with no difference in seroprevalence, titer or in vitro functionality between patients and healthy controls. Administration of extracted human serum to mice influenced basal and MK-801-induced activity in the open field only in ApoE(-/-) mice injected with NMDAR-AB-positive serum but not in respective controls. Seropositive schizophrenic patients with a history of neurotrauma or birth complications, indicating an at least temporarily compromised blood-brain barrier, had more neurological abnormalities than seronegative patients with comparable history. A common genetic variant (rs524991, P=6.15E-08) as well as past influenza A (P=0.024) or B (P=0.006) infection were identified as predisposing factors for NMDAR-AB seropositivity. The >10% overall seroprevalence of NMDAR-AB of both healthy individuals and patients is unexpectedly high. Clinical significance, however, apparently depends on association with past or present perturbations of blood-brain barrier function.

  13. Functional connections between activated and deactivated brain regions mediate emotional interference during externally directed cognition.

    Science.gov (United States)

    Di Plinio, Simone; Ferri, Francesca; Marzetti, Laura; Romani, Gian Luca; Northoff, Georg; Pizzella, Vittorio

    2018-04-24

    Recent evidence shows that task-deactivations are functionally relevant for cognitive performance. Indeed, higher cognitive engagement has been associated with higher suppression of activity in task-deactivated brain regions - usually ascribed to the Default Mode Network (DMN). Moreover, a negative correlation between these regions and areas actively engaged by the task is associated with better performance. DMN regions show positive modulation during autobiographical, social, and emotional tasks. However, it is not clear how processing of emotional stimuli affects the interplay between the DMN and executive brain regions. We studied this interplay in an fMRI experiment using emotional negative stimuli as distractors. Activity modulations induced by the emotional interference of negative stimuli were found in frontal, parietal, and visual areas, and were associated with modulations of functional connectivity between these task-activated areas and DMN regions. A worse performance was predicted both by lower activity in the superior parietal cortex and higher connectivity between visual areas and frontal DMN regions. Connectivity between right inferior frontal gyrus and several DMN regions in the left hemisphere was related to the behavioral performance. This relation was weaker in the negative than in the neutral condition, likely suggesting less functional inhibitions of DMN regions during emotional processing. These results show that both executive and DMN regions are crucial for the emotional interference process and suggest that DMN connections are related to the interplay between externally-directed and internally-focused processes. Among DMN regions, superior frontal gyrus may be a key node in regulating the interference triggered by emotional stimuli. © 2018 Wiley Periodicals, Inc.

  14. White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset.

    Science.gov (United States)

    De Witte, Nele A J; Mueller, Sven C

    2017-12-01

    Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.

  15. Brain structural plasticity with spaceflight.

    Science.gov (United States)

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.

  16. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    International Nuclear Information System (INIS)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-01-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  17. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China); Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Cao, Ding [Chongqing Medical University, Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing (China); Liang, Xiumei [Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Zhao, Jiannong [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China)

    2017-07-15

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  18. 'Spreading depression of Leão' and its emerging relevance to acute brain injury in humans

    DEFF Research Database (Denmark)

    Lauritzen, Martin; Strong, Anthony J

    2016-01-01

    experiencing the visual (or sensorimotor) aura of migraine. In this review, we trace from their first description in rabbits through to their detection and study in migraine and the injured human brain, and from our personal perspectives, the evolution of understanding of the importance of spread of mass......A new research field in translational neuroscience has opened as a result of the recognition since 2002 that "spreading depression of Leão" can be detected in many patients with acute brain injury, whether vascular and spontaneous, or traumatic in origin, as well as in those many individuals...... depolarisations in cerebral grey matter. Detection of spontaneous depolarisations occurring and spreading in the periphery or penumbra of experimental focal cortical ischemic lesions and of their adverse effects on the cerebral cortical microcirculation and on the tissue glucose and oxygen pools has led...

  19. An easy to produce and economical three-dimensional brain phantom for stereotactic computed tomographic-guided brain biopsy training in the dog.

    Science.gov (United States)

    Sidhu, Deepinder S; Ruth, Jeffrey D; Lambert, Gregory; Rossmeisl, John H

    2017-07-01

    To develop and validate a three-dimensional (3D) brain phantom that can be incorporated into existing stereotactic headframes to simulate stereotactic brain biopsy (SBB) and train veterinary surgeons. Experimental study. Canine brain phantoms were fabricated from osteological skull specimens, agarose brain parenchyma, and cheddar and mozzarella cheese molds (simulating meningiomas and gliomas). The neuroradiologic and viscoelastic properties of phantoms were quantified with computed tomography (CT) and oscillatory compression tests, respectively. Phantoms were validated by experienced and novice operators performing SBB on phantoms containing randomly placed, focal targets. Target yield and needle placement error (NPE) were compared between operators. Phantoms were produced in brain parenchyma, and contrast-enhancing tumors of meningeal and glial origin, respectively. The complex moduli of the agarose and cheeses were comparable to the viscoelastic properties of in vivo brain tissues and brain tumors. The overall diagnostic yield of SBB was 88%. Although NPE did not differ between novice (median 3.68 mm; range, 1.46-14.54 mm) and experienced surgeons (median 1.17 mm, range, 0.78-1.58 mm), our results support the relevance of the learning curve associated with the SBB procedure. This 3D phantom replicates anatomical, CT, and tactile features of brain tissues and tumors and can be used to develop the technical skills required to perform SBB. © 2017 The American College of Veterinary Surgeons.

  20. The endocannabinoid system in brain reward processes.

    Science.gov (United States)

    Solinas, M; Goldberg, S R; Piomelli, D

    2008-05-01

    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

  1. Listening to humans walking together activates the social brain circuitry.

    Science.gov (United States)

    Saarela, Miiamaaria V; Hari, Riitta

    2008-01-01

    Human footsteps carry a vast amount of social information, which is often unconsciously noted. Using functional magnetic resonance imaging, we analyzed brain networks activated by footstep sounds of one or two persons walking. Listening to two persons walking together activated brain areas previously associated with affective states and social interaction, such as the subcallosal gyrus bilaterally, the right temporal pole, and the right amygdala. These areas seem to be involved in the analysis of persons' identity and complex social stimuli on the basis of auditory cues. Single footsteps activated only the biological motion area in the posterior STS region. Thus, hearing two persons walking together involved a more widespread brain network than did hearing footsteps from a single person.

  2. Brain neuropeptides in central ventilatory and cardiovascular regulation in trout.

    Directory of Open Access Journals (Sweden)

    Jean-Claude eLe Mével

    2012-10-01

    Full Text Available Many neuropeptides and their G-protein coupled receptors (GPCRs are present within the brain area involved in ventilatory and cardiovascular regulation but only a few mammalian studies have focused on the integrative physiological actions of neuropeptides on these vital cardio-respiratory regulations. Because both the central neuroanatomical substrates that govern motor ventilatory and cardiovascular output and the primary sequence of regulatory peptides and their receptors have been mostly conserved through evolution, we have developed a trout model to study the central action of native neuropeptides on cardio-ventilatory regulation. In the present review, we summarize the most recent results obtained using this non-mammalian model with a focus on PACAP, VIP, tachykinins, CRF, urotensin-1, CGRP, angiotensin-related peptides, urotensin-II, NPY, and PYY. We propose hypotheses regarding the physiological relevance of the results obtained.

  3. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression.

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-01

    Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  4. Chernobyl birds have smaller brains.

    Directory of Open Access Journals (Sweden)

    Anders Pape Møller

    2011-02-01

    Full Text Available Animals living in areas contaminated by radioactive material from Chernobyl suffer from increased oxidative stress and low levels of antioxidants. Therefore, normal development of the nervous system is jeopardized as reflected by high frequencies of developmental errors, reduced brain size and impaired cognitive abilities in humans. Alternatively, associations between psychological effects and radiation have been attributed to post-traumatic stress in humans.Here we used an extensive sample of 550 birds belonging to 48 species to test the prediction that even in the absence of post-traumatic stress, there is a negative association between relative brain size and level of background radiation. We found a negative association between brain size as reflected by external head volume and level of background radiation, independent of structural body size and body mass. The observed reduction in brain size in relation to background radiation amounted to 5% across the range of almost a factor 5,000 in radiation level. Species differed significantly in reduction in brain size with increasing background radiation, and brain size was the only morphological character that showed a negative relationship with radiation. Brain size was significantly smaller in yearlings than in older individuals.Low dose radiation can have significant effects on normal brain development as reflected by brain size and therefore potentially cognitive ability. The fact that brain size was smaller in yearlings than in older individuals implies that there was significant directional selection on brain size with individuals with larger brains experiencing a viability advantage.

  5. Tasting calories differentially affects brain activation during hunger and satiety.

    Science.gov (United States)

    van Rijn, Inge; de Graaf, Cees; Smeets, Paul A M

    2015-02-15

    An important function of eating is ingesting energy. Our objectives were to assess whether oral exposure to caloric and non-caloric stimuli elicits discriminable responses in the brain and to determine in how far these responses are modulated by hunger state and sweetness. Thirty women tasted three stimuli in two motivational states (hunger and satiety) while their brain responses were measured using functional magnetic resonance imaging in a randomized crossover design. Stimuli were solutions of sucralose (sweet, no energy), maltodextrin (non-sweet, energy) and sucralose+maltodextrin (sweet, energy). We found no main effect of energy content and no interaction between energy content and sweetness. However, there was an interaction between hunger state and energy content in the median cingulate (bilaterally), ventrolateral prefrontal cortex, anterior insula and thalamus. This indicates that the anterior insula and thalamus, areas in which hunger state and taste of a stimulus are integrated, also integrate hunger state with caloric content of a taste stimulus. Furthermore, in the median cingulate and ventrolateral prefrontal cortex, tasting energy resulted in more activation during satiety compared to hunger. This finding indicates that these areas, which are known to be involved in processes that require approach and avoidance, are also involved in guiding ingestive behavior. In conclusion, our results suggest that energy sensing is a hunger state dependent process, in which the median cingulate, ventrolateral prefrontal cortex, anterior insula and thalamus play a central role by integrating hunger state with stimulus relevance. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Neuropeptide Y receptors in rat brain: autoradiographic localization

    International Nuclear Information System (INIS)

    Martel, J.C.; St-Pierre, S.; Quirion, R.

    1986-01-01

    Neuropeptide Y (NPY) receptor binding sites have been characterized in rat brain using both membrane preparations and receptor autoradiography. Radiolabelled NPY binds with high affinity and specificity to an apparent single class of sites in rat brain membrane preparations. The ligand selectivity pattern reveals strong similarities between central and peripheral NPY receptors. NPY receptors are discretely distributed in rat brain with high densities found in the olfactory bulb, superficial layers of the cortex, ventral hippocampus, lateral septum, various thalamic nuclei and area postrema. The presence of high densities of NPY and NPY receptors in such areas suggests that NPY could serve important functions as a major neurotransmitter/neuromodulator in the central nervous system

  7. Altered whole-brain connectivity in albinism.

    Science.gov (United States)

    Welton, Thomas; Ather, Sarim; Proudlock, Frank A; Gottlob, Irene; Dineen, Robert A

    2017-02-01

    Albinism is a group of congenital disorders of the melanin synthesis pathway. Multiple ocular, white matter and cortical abnormalities occur in albinism, including a greater decussation of nerve fibres at the optic chiasm, foveal hypoplasia and nystagmus. Despite this, visual perception is largely preserved. It was proposed that this may be attributable to reorganisation among cerebral networks, including an increased interhemispheric connectivity of the primary visual areas. A graph-theoretic model was applied to explore brain connectivity networks derived from resting-state functional and diffusion-tensor magnetic resonance imaging data in 23 people with albinism and 20 controls. They tested for group differences in connectivity between primary visual areas and in summary network organisation descriptors. Main findings were supplemented with analyses of control regions, brain volumes and white matter microstructure. Significant functional interhemispheric hyperconnectivity of the primary visual areas in the albinism group were found (P = 0.012). Tests of interhemispheric connectivity based on the diffusion-tensor data showed no significant group difference (P = 0.713). Second, it was found that a range of functional whole-brain network metrics were abnormal in people with albinism, including the clustering coefficient (P = 0.005), although this may have been driven partly by overall differences in connectivity, rather than reorganisation. Based on the results, it was suggested that changes occur in albinism at the whole-brain level, and not just within the visual processing pathways. It was proposed that their findings may reflect compensatory adaptations to increased chiasmic decussation, foveal hypoplasia and nystagmus. Hum Brain Mapp 38:740-752, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Transcranial magnetic stimulation and the human brain

    Science.gov (United States)

    Hallett, Mark

    2000-07-01

    Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

  9. Self-esteem modulates automatic attentional responses to self-relevant stimuli: evidence from event-related brain potentials

    OpenAIRE

    Chen, Jie; Shui, Qing; Zhong, Yiping

    2015-01-01

    Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials (ERP) were recorded for subjects’ own names and close others’ names (the names of their friends) while...

  10. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    International Nuclear Information System (INIS)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-01-01

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife

  11. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  12. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  13. Relevant Scatterers Characterization in SAR Images

    Science.gov (United States)

    Chaabouni, Houda; Datcu, Mihai

    2006-11-01

    Recognizing scenes in a single look meter resolution Synthetic Aperture Radar (SAR) images, requires the capability to identify relevant signal signatures in condition of variable image acquisition geometry, arbitrary objects poses and configurations. Among the methods to detect relevant scatterers in SAR images, we can mention the internal coherence. The SAR spectrum splitted in azimuth generates a series of images which preserve high coherence only for particular object scattering. The detection of relevant scatterers can be done by correlation study or Independent Component Analysis (ICA) methods. The present article deals with the state of the art for SAR internal correlation analysis and proposes further extensions using elements of inference based on information theory applied to complex valued signals. The set of azimuth looks images is analyzed using mutual information measures and an equivalent channel capacity is derived. The localization of the "target" requires analysis in a small image window, thus resulting in imprecise estimation of the second order statistics of the signal. For a better precision, a Hausdorff measure is introduced. The method is applied to detect and characterize relevant objects in urban areas.

  14. Resting-state brain activity in adult males who stutter.

    Directory of Open Access Journals (Sweden)

    Yun Xuan

    Full Text Available Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI, few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF, region of interest (ROI-based functional connectivity (FC and independent component analysis (ICA-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN and in the connections between them.

  15. Resting-State Brain Activity in Adult Males Who Stutter

    Science.gov (United States)

    Zhu, Chaozhe; Wang, Liang; Yan, Qian; Lin, Chunlan; Yu, Chunshui

    2012-01-01

    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them. PMID:22276215

  16. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  17. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  18. Predicting aphasia type from brain damage measured with structural MRI.

    Science.gov (United States)

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  20. Comparison of ADC map with trace map in the normal and infarct areas of the brains of stroke patients

    International Nuclear Information System (INIS)

    Kim, Seung Hyung; Yoon, Pyeong Ho; Jeong, Eun Kee; Oh, Young Taick; Kim, Dong Ik

    1999-01-01

    To compare ADC mapping with trace mapping in normal and infarct areas of the brains of stroke patients. Eighteen patients diagnosed on the basis of clinical and brain MRI examinations as suffering from brain infarction were included in this study (hyperacute-1, acute-4, subacute-12, chronic-1). Diffusion weighted images of three orthogonal directions of a patient's brain were obtained by means of a single shot EPI pulse sequence, using a diffusion gradient with four serial b-factors. Three ADC maps were then reconstructed by post-image processing and were summed pixel by pixel to yield a trace map. ROIs were selected in the normal areas of white matter, gray matter and CSF of one hemisphere, and other ROIs of the same size were selected at the same site of the contralateral hemisphere. ADC and trace values were measured and right/left ratios of ADC and trace values were calculated. Using these values, we then compared the ADC map with the trace map, and compared the degree of anisotropic diffusion between white matter, gray matter and CSF. Except for three, whose infarct lesions were small and lay over white and gray matter, patients were divided into two groups. Those with infarct in the white matter (n=10) were assigned to one group, and those with infarct in the gray matter (n=5) to the other. ROIs were selected in the infarct area and other ROIs of the same size were selected at the same site of the contralateral hemisphere. ADC and trace values were measured and infarct/contralateral ratios were calculated. We then compared ADC ratio with trace ratio in white matter and gray matter infarct. In normal white matter, the Dxx ratio was 0.980±0.098, the Dyy ratio 1.019±0.086, the Dzz ratio 0.999±0.111, and the trace ratio 0.995±0.031. In normal gray matter, the Dxx ratio was 1.001±0.058, the Dyy ratio 0.996±0.063, Dzz ratio 1.005±0.070, and the trace ratio 1.001±0.028. In CSF, the Dxx ratio was 1.002±0.064, the Dyy ratio 1.023±0.055, the Dzz ratio 0.999

  1. Nano-Modeling and Computation in Bio and Brain Dynamics

    Directory of Open Access Journals (Sweden)

    Paolo Di Sia

    2016-04-01

    Full Text Available The study of brain dynamics currently utilizes the new features of nanobiotechnology and bioengineering. New geometric and analytical approaches appear very promising in all scientific areas, particularly in the study of brain processes. Efforts to engage in deep comprehension lead to a change in the inner brain parameters, in order to mimic the external transformation by the proper use of sensors and effectors. This paper highlights some crossing research areas of natural computing, nanotechnology, and brain modeling and considers two interesting theoretical approaches related to brain dynamics: (a the memory in neural network, not as a passive element for storing information, but integrated in the neural parameters as synaptic conductances; and (b a new transport model based on analytical expressions of the most important transport parameters, which works from sub-pico-level to macro-level, able both to understand existing data and to give new predictions. Complex biological systems are highly dependent on the context, which suggests a “more nature-oriented” computational philosophy.

  2. Brain signature characterizing the body-brain-mind axis of transsexuals.

    Directory of Open Access Journals (Sweden)

    Hsiao-Lun Ku

    Full Text Available Individuals with gender identity disorder (GID, who are commonly referred to as transsexuals (TXs, are afflicted by negative psychosocial stressors. Central to the psychological complex of TXs is the conviction of belonging to the opposite sex. Neuroanatomical and functional brain imaging studies have demonstrated that the GID is associated with brain alterations. In this study, we found that TXs identify, when viewing male-female couples in erotic or non-erotic ("neutral" interactions, with the couple member of the desired gender in both situations. By means of functional magnetic resonance imaging, we found that the TXs, as opposed to controls (CONs, displayed an increased functional connectivity between the ventral tegmental area, which is associated with dimorphic genital representation, and anterior cingulate cortex subregions, which play a key role in social exclusion, conflict monitoring and punishment adjustment. The neural connectivity pattern suggests a brain signature of the psychosocial distress for the gender-sex incongruity of TXs.

  3. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  4. Brain Activity and Human Unilateral Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.

    2012-01-01

    Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631

  5. Brain Death in Islamic Jurisprudence

    Directory of Open Access Journals (Sweden)

    A Nikzad

    2016-07-01

    Full Text Available BACKGROUND AND OBJECTIVE: In today's world, Islamic jurisprudence encounters  new issues. One of the areas where jurisprudence gets involved is the issues concerned with brain death, whether brain death in jurisprudence and Islamic law is considered the end of life. In this study, brain death was discussed from the Shiite jurisprudence perspective and also the opinions of the specialists are taken into account. METHODS: This study is designed based on library collection and review of the literature in the field of brain death. Also, Quranic verses, hadiths and fatwas (religious opinions of the scholars are used. Some of the articles which were centered around Islamic jurisprudence, particularly Shiite jurisprudence that explain and deal with brain death were given special consideration. FINDINGS: Brain death from religious and jurisprudence perspective is considered the termination of life and removing the vital organs from the body is not viewed as committing manslaughter. A person with brain death is not a normally known injured man who is still alive. The brain death patinets have no life and getting rid of the body does not constitute a case of manslaughter. Amputation of the organs of brain death patients for donation and transplantation amounts to the amputation of a dead body. If the life of a Muslim is subject to transplant of organs from the body of a brain death patient, it will be permissible. CONCLUSION: In principle, if the life of a Muslim entails transplant of organs of brain death patients, it will be permissible 

  6. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  7. Brain cancer associated with environmental lead exposure: evidence from implementation of a National Petrol-Lead Phase-Out Program (PLPOP) in Taiwan between 1979 and 2007.

    Science.gov (United States)

    Wu, Wei-Te; Lin, Yu-Jen; Liou, Saou-Hsing; Yang, Chun-Yuh; Cheng, Kuang-Fu; Tsai, Perng-Jy; Wu, Trong-Neng

    2012-04-01

    In 1981, a Petrol-Lead Phase-Out Program (PLPOP) was launched in Taiwan for the abatement of environmental lead emissions. The present study was intended to examine whether the high Petrol-Lead Emission Areas (PLEA) would result in an increase in the incidence rate of brain cancer based on a national data bank. The national brain cancer incidence data was obtained from the Taiwan National Cancer Registry. Age standardized incidence rates were calculated based on the 2000 WHO world standard population, and gasoline consumption data was obtained from the Bureau of Energy. The differences in the trend tests for age-standardized incidence rates of brain cancer between high, median, low, and small PLEA were analyzed. A significant increase was found from small to high PLEA in age-standardized incidence rates of brain cancer. By taking six possible confounders into account, the age-standardized incidence rates for brain cancer were highly correlated with the median and high PLEA by reference to the small PLEA. After being adjusted for a number of relevant confounders, it could be concluded that high PLEA might result in an increase in the incidence rate of brain cancer resulting from high lead exposures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. The use of magnetic resonance imaging to study the brain size of young children with autism

    Directory of Open Access Journals (Sweden)

    Farah Ashrafzadeh

    2016-07-01

    Full Text Available Introduction: Autism spectrum disorder (ASD is a syndrome of social communication deficits and repetitive behaviors or restricted interests. While the impairments associated with ASD tend to deteriorate from childhood into adulthood, it is of critical importance that the syndrome is diagnosed at an early age. One means of facilitating this is through understanding how the brain of people with ASD develops from early childhood. Magnetic resonance imaging (MRI is the method of choice for in vivo and non-invasive investigations of the morphology of the human brain, especially when the subjects are children. In this study, we conducted a systematic review of existing structural MRI studies that have investigated brain size in ASD children of up to 5 years old. Methods: In this study, we systematically reviewed published papers that describe research studies in which the brain size of ASD children has been examined. PubMed and Scopus databases were searched for all relevant original articles that described the use of MRI techniques to study ASD patients who were between 1 and 5 years old. To be included in the review, all studies needed to be cohort and case series that involved at least 10 patients. No time limitations were placed on the searched articles within the inclusion criteria. The exclusion criteria were non-English articles, case reports, and articles that described research involving subjects that were not within the qualifying age range of 1-5 years old.Result: After an initial screening process through which the title, abstracts, and full text of the articles were reviewed to confirm they met the inclusion criteria, a total of 10 relevant articles were studied in depth. All studies found that children with ASD who were within the selected age range had a larger brain size than children without ASD.Discussion: The findings of recent studies indicate that the vast majority of ASD patients exhibit an enlarged brain; however, the extent of

  9. Application of PET in brain tumor

    International Nuclear Information System (INIS)

    Chung, June Key

    2002-01-01

    The annual incidence of primary brain tumors is 7-19 cases per 100,000 people. The unique capacity of visualizing biochemical processes allows PET to determine functional metabolic activities of the brain tumors. Like other malignant tumors, F-18 FDG has been used commonly in the imaging of brain tumors. FDG PET is valuable in grading malignancy, predicting prognosis, monitoring treatment, differentiating tumor recurrence from radiation nucrosis, and detecting primary lesion in metastatric brain tumors. Among amino acids labeled with positron emitters, C-11 methionine is used clinically.Tumor delineation is much better with methionine PET than with FDG PET. Low grade gliomas, in particular, are better evaluated with methionine than with FDG. PET opens another dimension in brain tumor imaging. PET imaging has clearly entered the clinical area with a profound impact on patient care in many indications

  10. Habit strength is predicted by activity dynamics in goal-directed brain systems during training.

    Science.gov (United States)

    Zwosta, Katharina; Ruge, Hannes; Goschke, Thomas; Wolfensteller, Uta

    2018-01-15

    Previous neuroscientific research revealed insights into the brain networks supporting goal-directed and habitual behavior, respectively. However, it remains unclear how these contribute to inter-individual differences in habit strength which is relevant for understanding not only normal behavior but also more severe dysregulations between these types of action control, such as in addiction. In the present fMRI study, we trained subjects on approach and avoidance behavior for an extended period of time before testing the habit strength of the acquired stimulus-response associations. We found that stronger habits were associated with a stronger decrease in inferior parietal lobule activity for approach and avoidance behavior and weaker vmPFC activity at the end of training for avoidance behavior, areas associated with the anticipation of outcome identity and value. VmPFC in particular showed markedly different activity dynamics during the training of approach and avoidance behavior. Furthermore, while ongoing training was accompanied by increasing functional connectivity between posterior putamen and premotor cortex, consistent with previous assumptions about the neural basis of increasing habitualization, this was not predictive of later habit strength. Together, our findings suggest that inter-individual differences in habitual behavior are driven by differences in the persistent involvement of brain areas supporting goal-directed behavior during training. Copyright © 2017. Published by Elsevier Inc.

  11. Self-esteem modulates automatic attentional responses to self-relevant stimuli: Evidence from event-related brain potentials

    Directory of Open Access Journals (Sweden)

    Jie eChen

    2015-06-01

    Full Text Available Previous studies have widely shown that self-esteem modulates the attention bias towards social rejection or emotion-related information. However, little is known about the influences of self-esteem on attention bias towards self-relevant stimuli. We aimed to investigate neural correlates that underlie the modulation effect of self-esteem on self-relevant processing. Event-related potentials were recorded for subjects’ own names and close others’ names (the names of their friends while subjects performed a three-stimulus oddball task. The results showed larger P2 amplitudes for one’s own name than for close-other’s name in the low self-esteem group, whereas this P2 effect were not observed in the high self-esteem group. In addition, one’s own name elicited equivalent N250 amplitudes and larger P3 amplitudes compared with close-other’s name in both high and low self-esteem groups. However, no interaction effects were observed between self-esteem and self-relevant processing in the N250 and P3 components. Thus, we found that the modulation effects of self-esteem on self-relevant processing occurred at the early P2 stage, but not at the later N250 and P3 stages. These findings reflect that individuals with low self-esteem demonstrate automatic attention towards their own names.

  12. Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex

    Science.gov (United States)

    Park, Chang-Yong; Choi, Hyun-Yong; Lee, Sang-Ryul; Roh, Tae Hoon; Seo, Mi-Ra

    2016-01-01

    Background Although Gamma Knife radiosurgery (GKRS) can provide beneficial therapeutic effects for patients with brain metastases, lesions involving the eloquent areas carry a higher risk of neurologic deterioration after treatment, compared to those located in the non-eloquent areas. We aimed to investigate neurological change of the patients with brain metastases involving the motor cortex (MC) and the relevant factors related to neurological deterioration after GKRS. Methods We retrospectively reviewed clinical, radiological and dosimetry data of 51 patients who underwent GKRS for 60 brain metastases involving the MC. Prior to GKRS, motor deficits existed in 26 patients (50.9%). The mean target volume was 3.2 cc (range 0.001–14.1) at the time of GKRS, and the mean prescription dose was 18.6 Gy (range 12–24 Gy). Results The actuarial median survival time from GKRS was 19.2±5.0 months. The calculated local tumor control rates at 6 and 12 months after GKRS were 89.7% and 77.4%, respectively. During the median clinical follow-up duration of 12.3±2.6 months (range 1–54 months), 18 patients (35.3%) experienced new or worsened neurologic deficits with a median onset time of 2.5±0.5 months (range 0.3–9.7 months) after GKRS. Among various factors, prescription dose (>20 Gy) was a significant factor for the new or worsened neurologic deficits in univariate (p=0.027) and multivariate (p=0.034) analysis. The managements of 18 patients were steroid medication (n=10), boost radiation therapy (n=5), and surgery (n=3), and neurological improvement was achieved in 9 (50.0%). Conclusion In our series, prescription dose (>20 Gy) was significantly related to neurological deterioration after GKRS for brain metastases involving the MC. Therefore, we suggest that careful dose adjustment would be required for lesions involving the MC to avoid neurological deterioration requiring additional treatment in the patients with limited life expectancy. PMID:27867921

  13. Neural reactivity to visual food stimuli is reduced in some areas of the brain during evening hours compared to morning hours: an fMRI study in women.

    Science.gov (United States)

    Masterson, Travis D; Kirwan, C Brock; Davidson, Lance E; LeCheminant, James D

    2016-03-01

    The extent that neural responsiveness to visual food stimuli is influenced by time of day is not well examined. Using a crossover design, 15 healthy women were scanned using fMRI while presented with low- and high-energy pictures of food, once in the morning (6:30-8:30 am) and once in the evening (5:00-7:00 pm). Diets were identical on both days of the fMRI scans and were verified using weighed food records. Visual analog scales were used to record subjective perception of hunger and preoccupation with food prior to each fMRI scan. Six areas of the brain showed lower activation in the evening to both high- and low-energy foods, including structures in reward pathways (P foods compared to low-energy foods (P food stimuli tended to produce greater fMRI responses than low-energy food stimuli in specific areas of the brain, regardless of time of day. However, evening scans showed a lower response to both low- and high-energy food pictures in some areas of the brain. Subjectively, participants reported no difference in hunger by time of day (F = 1.84, P = 0.19), but reported they could eat more (F = 4.83, P = 0.04) and were more preoccupied with thoughts of food (F = 5.51, P = 0.03) in the evening compared to the morning. These data underscore the role that time of day may have on neural responses to food stimuli. These results may also have clinical implications for fMRI measurement in order to prevent a time of day bias.

  14. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    Science.gov (United States)

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  16. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  17. Cultural differences in human brain activity: a quantitative meta-analysis.

    Science.gov (United States)

    Han, Shihui; Ma, Yina

    2014-10-01

    Psychologists have been trying to understand differences in cognition and behavior between East Asian and Western cultures within a single cognitive framework such as holistic versus analytic or interdependent versus independent processes. However, it remains unclear whether cultural differences in multiple psychological processes correspond to the same or different neural networks. We conducted a quantitative meta-analysis of 35 functional MRI studies to examine cultural differences in brain activity engaged in social and non-social processes. We showed that social cognitive processes are characterized by stronger activity in the dorsal medial prefrontal cortex, lateral frontal cortex and temporoparietal junction in East Asians but stronger activity in the anterior cingulate, ventral medial prefrontal cortex and bilateral insula in Westerners. Social affective processes are associated with stronger activity in the right dorsal lateral frontal cortex in East Asians but greater activity in the left insula and right temporal pole in Westerners. Non-social processes induce stronger activity in the left inferior parietal cortex, left middle occipital and left superior parietal cortex in East Asians but greater activations in the right lingual gyrus, right inferior parietal cortex and precuneus in Westerners. The results suggest that cultural differences in social and non-social processes are mediated by distinct neural networks. Moreover, East Asian cultures are associated with increased neural activity in the brain regions related to inference of others' mind and emotion regulation whereas Western cultures are associated with enhanced neural activity in the brain areas related to self-relevance encoding and emotional responses during social cognitive/affective processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Neonate brain disorders

    International Nuclear Information System (INIS)

    Xydis, V.

    2012-01-01

    Full text: Hypoxic-Ischemic insults in the brain of neonates constitute major cause of morbidity and mortality. A wide range of motor, sensory, and cognitive disabilities are observed in this population spanning from slight motor deficits, school difficulties and behavioral problems up to cerebral palsy and mental retardation. Pathologically involved areas characterized by high metabolic demands and therefore with enhanced vulnerability to any reduction or cessation of energy and oxygen supply. Watershed areas of the brain (vascular end zones and vascular border zones) are predominately affected in any adverse event. Radiologic and pathologic appearance of these lesions depends both on the severity of the insult and the maturity of the brain. The dominant pathology observed in preterm neonates is white matter lesions. There are three basic patterns of brain destruction in this population. Periventricular leukomalacia (PVL focal fPVL, diffuse dPVL), germinal matrix haemorrhage (GMH) associated with intraventricular haemorrhage (IVH), and parenchymal haemorrhage (PH). fPVL is characterized by focal necrosis of all cellular elements in the periventricular white matter, resulting in the formation of cysts, and dPVL is characterized by diffuse destruction of the premyelinating oligodendrocytes (pre-OLs) the precursors of mature oligodendroglia cells responsible for the formation of myelin in a later stage. GMH is located beneath germinal matrix layer surrounding the lateral ventricles and can extend into the ventricular system resulting thus to IVH. Finally, PH is located within the parenchyma adjacent to the ventricles and is believed to represent haemorrhagic infarcts following venous drainage compromise. In term or near-term neonates, the top-ographic pattern of injuries involves mainly gray matter structures. Most frequent predilection sites include the cerebral cortex (paracentral lobule, Rolandic area, visual cortex and hippocampus), basal ganglia, thalamus, and

  19. Brain-computer interfaces for EEG neurofeedback: peculiarities and solutions.

    Science.gov (United States)

    Huster, René J; Mokom, Zacharais N; Enriquez-Geppert, Stefanie; Herrmann, Christoph S

    2014-01-01

    Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical contexts, exploring its potential as treatment for psychopathological syndromes. This clinical focus significantly affects the technology behind neurofeedback BCIs. For example, in contrast to other BCI applications, neurofeedback BCIs usually rely on EEG-derived features with only a minimum of additional processing steps being employed. Here, we highlight the peculiarities of EEG-based neurofeedback BCIs and consider their relevance for software implementations. Having reviewed already existing packages for the implementation of BCIs, we introduce our own solution which specifically considers the relevance of multi-subject handling for experimental and clinical trials, for example by implementing ready-to-use solutions for pseudo-/sham-neurofeedback. © 2013.

  20. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind