WorldWideScience

Sample records for releases principles equations

  1. Subordination principle for fractional evolution equations

    NARCIS (Netherlands)

    Bazhlekova, E.G.

    2000-01-01

    The abstract Cauchy problem for the fractional evolution equation Daa = Au, a > 0, (1) where A is a closed densely de??ned operator in a Banach space, is investigated. The subordination principle, presented earlier in [J. P r ??u s s, Evolutionary In- tegral Equations and Applications. Birkh??auser,

  2. Action principles for the Vlasov equation

    International Nuclear Information System (INIS)

    Ye, H.; Morrison, P.J.

    1992-01-01

    Five action principles for the Vlasov--Poisson and Vlasov--Maxwell equations, which differ by the variables incorporated to describe the distribution of particles in phase space, are presented. Three action principles previously known for the Vlasov--Maxwell equations are altered so as to produce the Vlasov--Poisson equation upon variation with respect to only the particle variables, and one action principle previously known for the Vlasov--Poisson equation is altered to produce the Vlasov--Maxwell equations upon variations with respect to particle and field variables independently. Also, a new action principle for both systems, which is called the leaf action, is presented. This new action has the desirable features of using only a single generating function as the dynamical variable for describing the particle distribution, and manifestly preserving invariants of the system known as Casimir invariants. The relationships between the various actions are described, and it is shown that the leaf action is a link between actions written in terms of Lagrangian and Eulerian variables

  3. Ordinary differential equations principles and applications

    CERN Document Server

    Nandakumaran, A K; George, Raju K

    2017-01-01

    Written in a clear, logical and concise manner, this comprehensive resource allows students to quickly understand the key principles, techniques and applications of ordinary differential equations. Important topics including first and second order linear equations, initial value problems and qualitative theory are presented in separate chapters. The concepts of two point boundary value problems, physical models and first order partial differential equations are discussed in detail. The text uses tools of calculus and real analysis to get solutions in explicit form. While discussing first order linear systems, linear algebra techniques are used. The real-life applications are interspersed throughout the book to invoke reader's interest. The methods and tricks to solve numerous mathematical problems with sufficient derivations and explanation are provided. The proofs of theorems are explained for the benefit of the readers.

  4. Banking on the equator. Are banks that adopted the equator principles different from non-adopters?

    NARCIS (Netherlands)

    Scholtens, B.; Dam, L.

    We analyze the performance of banks that adopted the Equator Principles. The Equator Principles are designed to assure sustainable development in project finance. The social, ethical, and environmental policies of the adopters differ significantly from those of banks that did not adopt the Equator

  5. Variational principle for nonlinear gyrokinetic Vlasov--Maxwell equations

    International Nuclear Information System (INIS)

    Brizard, Alain J.

    2000-01-01

    A new variational principle for the nonlinear gyrokinetic Vlasov--Maxwell equations is presented. This Eulerian variational principle uses constrained variations for the gyrocenter Vlasov distribution in eight-dimensional extended phase space and turns out to be simpler than the Lagrangian variational principle recently presented by H. Sugama [Phys. Plasmas 7, 466 (2000)]. A local energy conservation law is then derived explicitly by the Noether method. In future work, this new variational principle will be used to derive self-consistent, nonlinear, low-frequency Vlasov--Maxwell bounce-gyrokinetic equations, in which the fast gyromotion and bounce-motion time scales have been eliminated

  6. A New Comparison Principle for Impulsive Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Gang Li

    2015-01-01

    Full Text Available We establish a new comparison principle for impulsive differential systems with time delay. Then, using this comparison principle, we obtain some sufficient conditions for several stabilities of impulsive delay differential equations. Finally, we present an example to show the effectiveness of our results.

  7. Action principles for the Vlasov equation: Four old, one new

    International Nuclear Information System (INIS)

    Ye, Huanchun; Morrison, P.J.

    1991-01-01

    Action principles for the Vlasov equation are presented. Four previously known action principles, which differ by the choice of dynamical variables, are described and the interrelationship between them discussed. A new action principle called the leaf action, which manifestly preserves the Casimir invariants and possess a single function as the dynamical variable, is presented. The relationship to the noncanonical Hamiltonian formalism is also explored. 21 refs

  8. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    Science.gov (United States)

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  9. Principles and practice of structural equation modeling

    CERN Document Server

    Kline, Rex B

    2015-01-01

    Emphasizing concepts and rationale over mathematical minutiae, this is the most widely used, complete, and accessible structural equation modeling (SEM) text. Continuing the tradition of using real data examples from a variety of disciplines, the significantly revised fourth edition incorporates recent developments such as Pearl's graphing theory and the structural causal model (SCM), measurement invariance, and more. Readers gain a comprehensive understanding of all phases of SEM, from data collection and screening to the interpretation and reporting of the results. Learning is enhanced by ex

  10. Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Petr Stehlík

    2015-01-01

    Full Text Available We study reaction-diffusion equations with a general reaction function f on one-dimensional lattices with continuous or discrete time ux′  (or  Δtux=k(ux-1-2ux+ux+1+f(ux, x∈Z. We prove weak and strong maximum and minimum principles for corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation with the bistable nonlinearity.

  11. The action principle for a system of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D M [Instituto de FIsica, Universidade de Sao Paulo (Brazil); Kupriyanov, V G [Instituto de FIsica, Universidade de Sao Paulo (Brazil)

    2007-08-17

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples.

  12. The action principle for a system of differential equations

    International Nuclear Information System (INIS)

    Gitman, D M; Kupriyanov, V G

    2007-01-01

    We consider the problem of constructing an action functional for physical systems whose classical equations of motion cannot be directly identified with Euler-Lagrange equations for an action principle. Two ways of constructing the action principle are presented. From simple consideration, we derive the necessary and sufficient conditions for the existence of a multiplier matrix which can endow a prescribed set of second-order differential equations with the structure of the Euler-Lagrange equations. An explicit form of the action is constructed if such a multiplier exists. If a given set of differential equations cannot be derived from an action principle, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The general procedure is illustrated by several examples

  13. Variational principles for collective motion: Relation between invariance principle of the Schroedinger equation and the trace variational principle

    International Nuclear Information System (INIS)

    Klein, A.; Tanabe, K.

    1984-01-01

    The invariance principle of the Schroedinger equation provides a basis for theories of collective motion with the help of the time-dependent variational principle. It is formulated here with maximum generality, requiring only the motion of intrinsic state in the collective space. Special cases arise when the trial vector is a generalized coherent state and when it is a uniform superposition of collective eigenstates. The latter example yields variational principles uncovered previously only within the framework of the equations of motion method. (orig.)

  14. Principles for limiting releases of radioactive effluents into the environment

    International Nuclear Information System (INIS)

    1986-01-01

    This publication is concerned with the subject of limiting releases of radioactive effluents during normal, controlled operation of nuclear installations. It does not deal with releases from accidents where it is only possible to limit exposures by intervention. In 1978 the IAEA published guidance on the concepts and principles for use by the competent authorities in setting limits for planned releases of radioactive material into the environment (Safety Series No. 45). This publication is a complete revision of Safety Series No. 45 and its Annex

  15. Viscous Regularization of the Euler Equations and Entropy Principles

    KAUST Repository

    Guermond, Jean-Luc

    2014-03-11

    This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, à la [Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.

  16. Can the Tafel equation be derived from first principles?

    International Nuclear Information System (INIS)

    Gutman, E.M.

    2005-01-01

    A century ago, Tafel disapproved the attempts to derive the empirical equation named after him by thermodynamic methods. He noted that his observations referred to irreversible electrochemical reactions, where thermodynamics is inapplicable. This statement seems to remain valid until today. Indeed, it is impossible as yet to predict the kinetic parameters for chemical processes by determining rate constants and reaction orders from 'first principles', unless strictly specialized and, to a great extent, artificial models are developed. Nevertheless, in this paper an attempt to derive the kinetic law of mass action from 'first principles' is made in macroscopic formulation. It has turned out to be possible owing to the methods of thermodynamics of irreversible processes that were unknown in Tafel's time

  17. Variational principles for Ginzburg-Landau equation by He's semi-inverse method

    International Nuclear Information System (INIS)

    Liu, W.Y.; Yu, Y.J.; Chen, L.D.

    2007-01-01

    Via the semi-inverse method of establishing variational principles proposed by He, a generalized variational principle is established for Ginzburg-Landau equation. The present theory provides a quite straightforward tool to the search for various variational principles for physical problems. This paper aims at providing a more complete theoretical basis for applications using finite element and other direct variational methods

  18. New variational principles for locating periodic orbits of differential equations.

    Science.gov (United States)

    Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V

    2011-06-13

    We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.

  19. Viscous Regularization of the Euler Equations and Entropy Principles

    KAUST Repository

    Guermond, Jean-Luc; Popov, Bojan

    2014-01-01

    ), pp. 2117-2127], and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by [H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made. © 2014 Society for Industrial and Applied Mathematics.

  20. A maximum principle for the first-order Boltzmann equation, incorporating a potential treatment of voids

    International Nuclear Information System (INIS)

    Schofield, S.L.

    1988-01-01

    Ackroyd's generalized least-squares method for solving the first-order Boltzmann equation is adapted to incorporate a potential treatment of voids. The adaptation comprises a direct least-squares minimization allied with a suitably-defined bilinear functional. The resulting formulation gives rise to a maximum principle whose functional does not contain terms of the type that have previously led to difficulties in treating void regions. The maximum principle is derived without requiring continuity of the flux at interfaces. The functional of the maximum principle is concluded to have an Euler-Lagrange equation given directly by the first-order Boltzmann equation. (author)

  1. Social accountability and the finance sector: the case of Equator Principles (EP) institutionalisation

    NARCIS (Netherlands)

    O'Sullivan, N.A.

    2010-01-01

    In June 2003, the Equator Principles (EP) were launched by ten international commercial banks. The EP were designed as a set of voluntary environmental and social risk management guidelines for project finance. Whilst lauded as a revolutionary initiative by the financial sector, the Principles were

  2. Detailed balance principle and finite-difference stochastic equation in a field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation

  3. Principle of detailed balance and the finite-difference stochastic equation in field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation

  4. The Equator Principles, Project Finance and the Challenge of Social and Environmental Responsibility

    Directory of Open Access Journals (Sweden)

    Jane Andrew

    2007-06-01

    Full Text Available The Equator Principles, launched in 2003 and revamped in 2006, are a set of voluntary principles designed to help private lenders make socially and environmentally responsible project financing decisions. This paper explores the impact of these principles on the disclosures of two signatory banks, focusing on type of information disclosures that have resulted and the substance of these disclosures. The work considers whether it is  possible to ascertain from publicly available information how the practices of the banks may have changed in order to focus on their stated social and environmental responsibilities. It is concluded that although the Equator Principles have marked the beginning of the banking sectors acknowledgement of their role in social and environmental responsibility, at this stage insufficient information is being disclosed to determine the impact these principles are having on actual banking practices.

  5. Nuclear power: Accidental releases - principles of public health action

    International Nuclear Information System (INIS)

    1984-01-01

    This report is based on the collective knowledge and experience of the members of a Working Group, convened by WHO in collaboration with the Government of Belgium in Brussels on 23-27 November 1981, to discuss and appraise the different actions that might be taken following accidental radioactive releases from nuclear plants. It does not provide detailed technical data, but broadly surveys the rational basis for decision-making, indicating the present position as assessed by members of the Working Group. Four major disciplines (radiological protection, health physics, environmental science and technology, and human biology) and three main professional categories (physicians, engineers and physicists) were represented, providing a comprehensive multidisciplinary approach to the topic. The purpose of this report is to give guidance to national authorities on how to develop the capacity to take action in a nuclear emergency

  6. Maximum Principles and Boundary Value Problems for First-Order Neutral Functional Differential Equations

    Directory of Open Access Journals (Sweden)

    Domoshnitsky Alexander

    2009-01-01

    Full Text Available We obtain the maximum principles for the first-order neutral functional differential equation where , and are linear continuous operators, and are positive operators, is the space of continuous functions, and is the space of essentially bounded functions defined on . New tests on positivity of the Cauchy function and its derivative are proposed. Results on existence and uniqueness of solutions for various boundary value problems are obtained on the basis of the maximum principles.

  7. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    Energy Technology Data Exchange (ETDEWEB)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  8. Equations for estimating stand establishment, release, and thinning costs in the Lake States.

    Science.gov (United States)

    Jeffrey T. Olson; Allen L. Lundgren; Dietmar Rose

    1978-01-01

    Equations for estimating project costs for certain silvicultural treatments in the Lake States have been developed from project records of public forests. Treatments include machine site preparation, hand planting, aerial spraying, prescribed burning, manual release, and thinning.

  9. Reflection principle for classical solutions of the homogeneous real Monge–Ampère equation

    Directory of Open Access Journals (Sweden)

    Mika Koskenoja

    2015-12-01

    Full Text Available We consider reflection principle for classical solutions of the homogeneous real Monge–Ampère equation. We show that both the odd and the even reflected functions satisfy the Monge–Ampère equation if the second-order partial derivatives have continuous limits on the reflection boundary. In addition to sufficient conditions, we give some necessary conditions. Before stating the main results, we present elementary formulas for the reflected functions and study their differentiability properties across the reflection boundary. As an important special case, we finally consider extension of polynomials satisfying the homogeneous Monge–Ampère equation.

  10. Balance equations for a viscous fluid from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The partial differential field equations for any viscous fluid are obtained from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. With an appropriate Lagrangian density of the T-V type, the equation of motion for any viscous fluid is reproduced. A theorem referring to the invariance of the action under time variations lead to the generalized energy balance equation for the viscous fluid and to the energy balance equation proper. The same theoretical approach can be used to solve the problem of potential flow. (Author)

  11. Construction of Interval Wavelet Based on Restricted Variational Principle and Its Application for Solving Differential Equations

    OpenAIRE

    Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin

    2008-01-01

    Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.

  12. From Fermat principle to wave equation - quantization of 'particle mechanics of light'

    International Nuclear Information System (INIS)

    Ogawa, Naohisa

    2004-01-01

    The Fermat principle states that light chooses the temporally shortest path. The action for this 'motion' is the observed time, and it has no Lorentz invariance. In this Letter we show how this action can be obtained from a relativistic action of massive particle, and how the classical wave equation of light can be obtained from this action

  13. Field differential equations for a potential flow from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The same theoretical frame that was used to solve the problem of the field equations for a viscous fluid is utilized in this work. The purpose is to obtain the differential field equations for a potential flow from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density as a function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. A particular Lagrangian density of the T-V type leads to the wave equation for the velocity potential. (Author)

  14. Integral equations for composite-particle scattering taking the Pauli principle into account

    International Nuclear Information System (INIS)

    Kukulin, V.I.; Neudatchin, V.G.; Pomerantsev, V.N.

    1978-01-01

    An approximate description of a system of three composite particles in terms of the Saito (Prog. Theor. Phys.; 41:705 (1969)) orthogonality condition model is proposed. The orthogonalising pseudopotential technique is used to derive a modified set of Fadde'ev equations where the two- and three-body exchanges due to the Pauli principle are included by orthogonalising to two-and three-body forbidden states. The scope of applicability of and the method for solving the derived equations are discussed briefly. (author)

  15. Discrete maximum principle for Poisson equation with mixed boundary conditions solved by hp-FEM

    Czech Academy of Sciences Publication Activity Database

    Vejchodský, Tomáš; Šolín, P.

    2009-01-01

    Roč. 1, č. 2 (2009), s. 201-214 ISSN 2070-0733 R&D Projects: GA AV ČR IAA100760702; GA ČR(CZ) GA102/07/0496; GA ČR GA102/05/0629 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete maximum principle * hp-FEM * Poisson equation * mixed boundary conditions Subject RIV: BA - General Mathematics

  16. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    2017-05-15

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension of a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.

  17. The c equivalence principle and the correct form of writing Maxwell's equations

    International Nuclear Information System (INIS)

    Heras, Jose A

    2010-01-01

    It is well known that the speed c u =1/√(ε 0 μ 0 ) is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c u is then physically different from the observed speed of propagation c associated with electromagnetic waves in vacuum. However, repeated experiments have led to the numerical equality c u = c, which we have called the c equivalence principle. In this paper we point out that ∇xE=-[1/(ε 0 μ 0 c 2 )]∂B/∂t is the correct form of writing Faraday's law when the c equivalence principle is not assumed. We also discuss the covariant form of Maxwell's equations without assuming the c equivalence principle.

  18. EQUATIONS FOR GAS RELEASING PROCESS FROM PRESSURIZED VESSELS IN ODH EVALUATION

    International Nuclear Information System (INIS)

    JIA, L.X.; WANG, L.

    2001-01-01

    IN THE EVALUATION OF ODH, THE CALCULATION OF THE SPILL RATE FROM THE PRESSURIZED VESSEL IS THE CENTRAL TASK. THE ACCURACY OF THE ENGINEERING ESTIMATION BECOMES ONE OF THE SAFETY DESIGN ISSUES. THIS PAPER SUMMARIZES THE EQUATIONS FOR THE OXYGEN CONCENTRATION CALCULATION IN DIFFERENT CASES, AND DISCUSSES THE EQUATIONS FOR THE GAS RELEASE PROCESS CALCULATION BOTH FOR THE HIGH-PRESSURE GAS TANK AND THE LOW-TEMPERATURE LIQUID CONTAINER

  19. The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations

    DEFF Research Database (Denmark)

    Benedikter, Niels; Sok, Jérémy; Solovej, Jan Philip

    2018-01-01

    The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle...... in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within...... the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities....

  20. Exact Solutions of Five Complex Nonlinear Schrödinger Equations by Semi-Inverse Variational Principle

    International Nuclear Information System (INIS)

    Najafi Mohammad; Arbabi Somayeh

    2014-01-01

    In this paper, we establish exact solutions for five complex nonlinear Schrödinger equations. The semi-inverse variational principle (SVP) is used to construct exact soliton solutions of five complex nonlinear Schrödinger equations. Many new families of exact soliton solutions of five complex nonlinear Schrödinger equations are successfully obtained. (general)

  1. The Principle of Energetic Consistency: Application to the Shallow-Water Equations

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    If the complete state of the earth's atmosphere (e.g., pressure, temperature, winds and humidity, everywhere throughout the atmosphere) were known at any particular initial time, then solving the equations that govern the dynamical behavior of the atmosphere would give the complete state at all subsequent times. Part of the difficulty of weather prediction is that the governing equations can only be solved approximately, which is what weather prediction models do. But weather forecasts would still be far from perfect even if the equations could be solved exactly, because the atmospheric state is not and cannot be known completely at any initial forecast time. Rather, the initial state for a weather forecast can only be estimated from incomplete observations taken near the initial time, through a process known as data assimilation. Weather prediction models carry out their computations on a grid of points covering the earth's atmosphere. The formulation of these models is guided by a mathematical convergence theory which guarantees that, given the exact initial state, the model solution approaches the exact solution of the governing equations as the computational grid is made more fine. For the data assimilation process, however, there does not yet exist a convergence theory. This book chapter represents an effort to begin establishing a convergence theory for data assimilation methods. The main result, which is called the principle of energetic consistency, provides a necessary condition that a convergent method must satisfy. Current methods violate this principle, as shown in earlier work of the author, and therefore are not convergent. The principle is illustrated by showing how to apply it as a simple test of convergence for proposed methods.

  2. Principles for establishing limits for the release of radioactive materials into the environment

    International Nuclear Information System (INIS)

    1978-01-01

    The document provides a basic consideration of concepts and principles for use by national authorities in setting limits for planned releases of radioactive material. The following topics are discussed general concepts, assessment of dose to the critical group, assessment of collective dose commitments, application of optimization techniques to the determination of discharge limits, explanation and application of the concept of collective dose commitment, discharge limitations based on concentration indices

  3. The Quark-Gluon Plasma Equation of State and the Generalized Uncertainty Principle

    Directory of Open Access Journals (Sweden)

    L. I. Abou-Salem

    2015-01-01

    Full Text Available The quark-gluon plasma (QGP equation of state within a minimal length scenario or Generalized Uncertainty Principle (GUP is studied. The Generalized Uncertainty Principle is implemented on deriving the thermodynamics of ideal QGP at a vanishing chemical potential. We find a significant effect for the GUP term. The main features of QCD lattice results were quantitatively achieved in case of nf=0, nf=2, and nf=2+1 flavors for the energy density, the pressure, and the interaction measure. The exciting point is the large value of bag pressure especially in case of nf=2+1 flavor which reflects the strong correlation between quarks in this bag which is already expected. One can notice that the asymptotic behavior which is characterized by Stephan-Boltzmann limit would be satisfied.

  4. A New Monotone Iteration Principle in the Theory of Nonlinear Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-08-01

    Full Text Available In this paper the author proves the algorithms for the existence as well as approximations of the solutions for the initial value problems of nonlinear fractional differential equations using the operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration principle embodied in the recent hybrid fixed point theorems of Dhage (2014 in a partially ordered normed linear space and the existence and approximations of the solutions of the considered nonlinear fractional differential equations are obtained under weak mixed partial continuity and partial Lipschitz conditions. Our hypotheses and existence and approximation results are also well illustrated by some numerical examples.

  5. Towards a mulitphase equation of state of Carbon from first principles

    Science.gov (United States)

    Correa, Alfredo; Benedict, Lorin; Schwegler, Eric

    2007-03-01

    Ab initio molecular dynamics and electronic structure calculation had become one of the most useful tools to investigate properties of materials. Unfortunately these atomistic detailed results are rarely reused in calculations at a higher level of description, such as fluid dynamics and finite elements calculations. In this talk we present a concrete example showing the way that first principles results can be expressed in a way that is useful for hydrodynamics calculations, in particular we show how to build a analytic equation of state for Carbon that involves solid (diamond and BC8) and liquid phases. Applications of this newly obtained equation of state will be presented. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48.

  6. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc

    2014-04-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  7. A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo; Popov, Bojan; Yang, Yong

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. This paper proposes an explicit, (at least) second-order, maximum principle satisfying, Lagrange finite element method for solving nonlinear scalar conservation equations. The technique is based on a new viscous bilinear form introduced in Guermond and Nazarov [Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213], a high-order entropy viscosity method, and the Boris-Book-Zalesak flux correction technique. The algorithm works for arbitrary meshes in any space dimension and for all Lipschitz fluxes. The formal second-order accuracy of the method and its convergence properties are tested on a series of linear and nonlinear benchmark problems.

  8. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo

    2014-01-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  9. Comment on ''Modified photon equation of motion as a test for the principle of equivalence''

    International Nuclear Information System (INIS)

    Nityananda, R.

    1992-01-01

    In a recent paper, a modification of the geodesic equation was proposed for spinning photons containing a spin-curvature coupling term. The difference in arrival times of opposite circular polarizations starting simultaneously from a source was computed, obtaining a result linear in the coupling parameter. It is pointed out here that this linear term violates causality and, more generally, Fermat's principle, implying calculational errors. Even if these are corrected, there is a violation of covariance in the way the photon spin was introduced. Rectifying this makes the effect computed vanish entirely

  10. Principles for the limitation of releases of radionuclides from nuclear power plants to the atmosphere. A model of food chain system

    International Nuclear Information System (INIS)

    Pensko, J.; Stpiczynska, Z.

    1976-01-01

    On the basis of reference data the principles are set up for the limitation of releases of radioactive substances from nuclear power plants to the environment to maintain the radiation exposure of population to the level of accepted dose limits. The main attention is paid to the transfer of radionuclides released through food chain to man. For that purpose the mathematical model of population exposure by food chain which relates the radiation doses to the activity of radionuclides released is presented. The Laplace transformation is used to simplify the solution of the differential equations. It is shown that the estimation of the population exposure with the aid of a food chain mathematical model not only gives the permissible limits of release but also indicates the ways of proper radiological control program in the environment of nuclear installations. (author)

  11. Strong Maximum Principle for Multi-Term Time-Fractional Diffusion Equations and its Application to an Inverse Source Problem

    OpenAIRE

    Liu, Yikan

    2015-01-01

    In this paper, we establish a strong maximum principle for fractional diffusion equations with multiple Caputo derivatives in time, and investigate a related inverse problem of practical importance. Exploiting the solution properties and the involved multinomial Mittag-Leffler functions, we improve the weak maximum principle for the multi-term time-fractional diffusion equation to a stronger one, which is parallel to that for its single-term counterpart as expected. As a direct application, w...

  12. Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan B [Los Alamos National Laboratory; Larsen, Edward W [Los Alamos National Laboratory; Densmore, Jeffery D [Los Alamos National Laboratory

    2010-12-15

    It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle.' Previous attempts at prescribing a maximum value of the time-step size {Delta}{sub t} that is sufficient to eliminate these violations have recommended a {Delta}{sub t} that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size {Delta}{sub x}. This explicitly demonstrates that the effect of coarsening {Delta}{sub x} is to reduce the limitation on {Delta}{sub t}, which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent timestep restriction can impact IMC solution algorithms.

  13. Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations

    International Nuclear Information System (INIS)

    Wollaber, Allan B.; Larsen, Edward W.; Densmore, Jeffery D.

    2011-01-01

    It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle'. Previous attempts at prescribing a maximum value of the time-step size Δ t that is sufficient to eliminate these violations have recommended a Δ t that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size Δ x . This explicitly demonstrates that the effect of coarsening Δ x is to reduce the limitation on Δ t , which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent time-step restriction can impact IMC solution algorithms. (author)

  14. Derivation of the phase field equations from the thermodynamic extremal principle

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; McDowell, D.L.

    2012-01-01

    Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.

  15. Comparison principle for impulsive functional differential equations with infinite delays and applications

    Science.gov (United States)

    Li, Xiaodi; Shen, Jianhua; Akca, Haydar; Rakkiyappan, R.

    2018-04-01

    We introduce the Razumikhin technique to comparison principle and establish some comparison results for impulsive functional differential equations (IFDEs) with infinite delays, where the infinite delays may be infinite time-varying delays or infinite distributed delays. The idea is, under the help of Razumikhin technique, to reduce the study of IFDEs with infinite delays to the study of scalar impulsive differential equations (IDEs) in which the solutions are easy to deal with. Based on the comparison principle, we study the qualitative properties of IFDEs with infinite delays , which include stability, asymptotic stability, exponential stability, practical stability, boundedness, etc. It should be mentioned that the developed results in this paper can be applied to IFDEs with not only infinite delays but also persistent impulsive perturbations. Moreover, even for the special cases of non-impulsive effects or/and finite delays, the criteria prove to be simpler and less conservative than some existing results. Finally, two examples are given to illustrate the effectiveness and advantages of the proposed results.

  16. The c equivalence principle and the correct form of writing Maxwell's equations

    Energy Technology Data Exchange (ETDEWEB)

    Heras, Jose A, E-mail: herasgomez@gmail.co [Universidad Autonoma Metropolitana Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, 02200, Mexico DF (Mexico)

    2010-09-15

    It is well known that the speed c{sub u}=1/{radical}({epsilon}{sub 0{mu}0}) is obtained in the process of defining SI units via action-at-a-distance forces, like the force between two static charges and the force between two long and parallel currents. The speed c{sub u} is then physically different from the observed speed of propagation c associated with electromagnetic waves in vacuum. However, repeated experiments have led to the numerical equality c{sub u} = c, which we have called the c equivalence principle. In this paper we point out that {nabla}xE=-[1/({epsilon}{sub 0}{mu}{sub 0}c{sup 2})]{partial_derivative}B/{partial_derivative}t is the correct form of writing Faraday's law when the c equivalence principle is not assumed. We also discuss the covariant form of Maxwell's equations without assuming the c equivalence principle.

  17. On the variational principle for the equations of perfect fluid dynamics

    International Nuclear Information System (INIS)

    Serre, D.

    1993-01-01

    One gives a new version of the variational principle δL = 0, L being the usual Lagrangian, for the perfect fluid mechanics. It is formally equivalent to the well-known principle but it gives the first rigorous derivation of the conservation laws (momentum and energy), including the discontinuous case (shock waves, contact discontinuities). Thanks to a new formulation of the constraints, we do not involve any Lagrange multiplier, which in previous works were neither physically relevant, since they do not appear in the Euler equations, nor mathematically relevant. We even give a variational interpretation of the entropy inequality when shock waves occur. Our method covers all aspects of the perfect fluids, including stationary and unstationary motion, compressible and incompressible fluids, axisymmetric case. When the velocity field admits a stream function, the variational principle gives rise to extremal points of the Lagrangian on various infinite dimensional manifolds. For a suitable choice of this manifold, the flow is itself periodic, that is all the fluid particles have a periodic motion with the same period. The flow describes a closed geodesic on some group of diffeomorphisms. (author). 10 refs

  18. Concept of a collective subspace associated with the invariance principle of the Schroedinger equation

    International Nuclear Information System (INIS)

    Marumori, Toshio; Hayashi, Akihisa; Tomoda, Toshiaki; Kuriyama, Atsushi; Maskawa, Toshihide

    1980-01-01

    The aim of this series of papers is to propose a microscopic theory to go beyond the situations where collective motions are described by the random phase approximation, i.e., by small amplitude harmonic oscillations about equilibrium. The theory is thus appropriate for the microscopic description of the large amplitude collective motion of soft nuclei. The essential idea is to develop a method to determine the collective subspace (or submanifold) in the many-particle Hilbert space in an optimal way, on the basis of a fundamental principle called the invariance principle of the Schroedinger equation. By using the principle within the framework of the Hartree-Fock theory, it is shown that the theory can clarify the structure of the so-called ''phonon-bands'' by self-consistently deriving the collective Hamiltonian where the number of the ''physical phonon'' is conserved. The purpose of this paper is not to go into detailed quantitative discussion, but rather to develop the basic idea. (author)

  19. The refraction and reflection laws from a complete integral of the eikonal equation and Huygens’ principle

    International Nuclear Information System (INIS)

    Castro-Ramos, Jorge; Juárez-Reyes, Salvador Alejandro; Ortega-Vidals, Paula; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Marcelino-Aranda, Mariana; Silva-Ortigoza, Ramón

    2015-01-01

    In this work we assume that we have two given optical media with constant refraction indexes, which are separated by an arbitrary refracting surface. In one of the optical media we place a point light source at an arbitrary position. The aim of this work is to use a particular complete integral of the eikonal equation and Huygens’ principle to obtain the refraction and reflection laws. We remark that this complete integral associates a new point light source with each light ray that arrives at the refracting surface. This means that by using only this complete integral it is not possible to determine the direction of propagation of the refracted light rays; the direction of propagation is obtained by imposing two extra conditions on the complete integral which are equivalent to Huygens’ principle (in two dimensions, only one condition is needed). Finally, we establish the connection between the complete integral used here and that derived by using the k-function procedure introduced by Stavroudis, which works with plane wavefronts instead of spherical ones. (paper)

  20. Schaum's outline of theory and problems of Lagrangian dynamics with a treatment of Euler's equations of motion, Hamilton's equations and Hamilton's principle

    CERN Document Server

    Wells, Dare A

    1967-01-01

    The book clearly and concisely explains the basic principles of Lagrangian dynamicsand provides training in the actual physical and mathematical techniques of applying Lagrange's equations, laying the foundation for a later study of topics that bridge the gap between classical and quantum physics, engineering, chemistry and applied mathematics, and for practicing scientists and engineers.

  1. Review of IAEA recommendations on the principles and methodologies for limiting releases of radioactive effluents to the environment

    International Nuclear Information System (INIS)

    Ahmed, J.U.

    1988-01-01

    The limitation of radioactive releases is governed by the basic principles of radiation protection as presented in the ICRP Publication No. 26 and IAEA Safety Series No. 9. Unter its current programme on release limitation the IAEA issued Safety Series No. 77 on principles for release limitation and Safety Series No. 67 on protection against transboundary radiation exposures. A Safety Guide on global upper bounds is now nearly ready for publication, and to guide on the application of Safety Series No. 77, four documents are in various stages of completion

  2. Basic equations of quasiparticle-phonon model of nucleus with account of Pauli principle and phonons interactions in ground state

    International Nuclear Information System (INIS)

    Voronov, V.V.; Dang, N.D.

    1984-01-01

    the system of equations, enabling to calculate the energy and the structure of excited states, described by the wave function, containing one- and two-phon components was obtained in the framework of quasiparticlephonon model. The requirements of Pauli principle for two-phonon components and phonon correlation in the ground nucleus state are taken into account

  3. Unification of the Two-Parameter Equation of State and the Principle of Corresponding States

    DEFF Research Database (Denmark)

    Mollerup, Jørgen

    1998-01-01

    A two-parameter equation of state is a two-parameter corresponding states model. A two-parameter corresponding states model is composed of two scale factor correlations and a reference fluid equation of state. In a two-parameter equation of state the reference equation of state is the two-paramet...

  4. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    Science.gov (United States)

    Gao, Peng

    2018-04-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  5. Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation

    Science.gov (United States)

    Gao, Peng

    2018-06-01

    This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.

  6. On the transparent conducting oxide Al doped ZnO: First Principles and Boltzmann equations study

    Energy Technology Data Exchange (ETDEWEB)

    Slassi, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Naji, S. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Department of Physics, Faculty of Science, Ibb University, Ibb (Yemen); Benyoussef, A. [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco); Hamedoun, M., E-mail: hamedoun@hotmail.com [Institute of Nanomaterials and Nanotechnology, MAScIR, Rabat (Morocco); El Kenz, A. [LMPHE (URAC 12), Faculté des Sciences, Université Mohammed V-Agdal, Rabat (Morocco)

    2014-08-25

    Highlights: • The incorporation of Al in ZnO increases the optical band edge absorption. • Incorporated Al creates shallow donor states of Al-3s around Fermi level. • Transmittance decreases in the visible and IR regions, while it increases in the UV region. • Electrical conductivity increases and reaches almost the saturation for high concentration of Al. - Abstract: We report, in this work, a theoretical study on the electronic, optical and electrical properties of pure and Al doped ZnO with different concentrations. In fact, we investigate these properties using both First Principles calculations within TB-mBJ approximation and Boltzmann equations under the constant relaxation time approximation for charge carriers. It is found out that, the calculated lattice parameters and the optical band gap of pure ZnO are close to the experimental values and in a good agreement with the other theoretical studies. It is also observed that, the incorporations of Al in ZnO increase the optical band edge absorption which leads to a blue shift and no deep impurities levels are induced in the band gap as well. More precisely, these incorporations create shallow donor states around Fermi level in the conduction band minimum from mainly Al-3s orbital. Beside this, it is found that, the transmittance is decreased in the visible and IR regions, while it is significantly improved in UV region. Finally, our calculations show that the electrical conductivity is enhanced as a result of Al doping and it reaches almost the saturation for high concentration of Al. These features make Al doped ZnO a transparent conducting electrode for optoelectronic device applications.

  7. General existence principles for Stieltjes differential equations with applications to mathematical biology

    Science.gov (United States)

    López Pouso, Rodrigo; Márquez Albés, Ignacio

    2018-04-01

    Stieltjes differential equations, which contain equations with impulses and equations on time scales as particular cases, simply consist on replacing usual derivatives by derivatives with respect to a nondecreasing function. In this paper we prove new existence results for functional and discontinuous Stieltjes differential equations and we show that such general results have real world applications. Specifically, we show that Stieltjes differential equations are specially suitable to study populations which exhibit dormant states and/or very short (impulsive) periods of reproduction. In particular, we construct two mathematical models for the evolution of a silkworm population. Our first model can be explicitly solved, as it consists on a linear Stieltjes equation. Our second model, more realistic, is nonlinear, discontinuous and functional, and we deduce the existence of solutions by means of a result proven in this paper.

  8. Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2012-01-01

    Full Text Available This note presents a Laplace transform approach in the determination of the Lagrange multiplier when the variational iteration method is applied to time fractional heat diffusion equation. The presented approach is more straightforward and allows some simplification in application of the variational iteration method to fractional differential equations, thus improving the convergence of the successive iterations.

  9. Bounds and maximum principles for the solution of the linear transport equation

    International Nuclear Information System (INIS)

    Larsen, E.W.

    1981-01-01

    Pointwise bounds are derived for the solution of time-independent linear transport problems with surface sources in convex spatial domains. Under specified conditions, upper bounds are derived which, as a function of position, decrease with distance from the boundary. Also, sufficient conditions are obtained for the existence of maximum and minimum principles, and a counterexample is given which shows that such principles do not always exist

  10. Application of the comparison principle to analysis of nonlinear systems. [using Lipschitz condition and differential equations

    Science.gov (United States)

    Gunderson, R. W.

    1975-01-01

    A comparison principle based on a Kamke theorem and Lipschitz conditions is presented along with its possible applications and modifications. It is shown that the comparison lemma can be used in the study of such areas as classical stability theory, higher order trajectory derivatives, Liapunov functions, boundary value problems, approximate dynamic systems, linear and nonlinear systems, and bifurcation analysis.

  11. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    Science.gov (United States)

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  12. Stakeholder perspectives on a financial sector legitimation process: the case of NGOs and the Equator Principles

    NARCIS (Netherlands)

    O'Sullivan, N.; O'Dwyer, B.

    2009-01-01

    Purpose - The purpose of this paper is to present an in-depth, context rich, and stakeholder-focused perspective on the legitimation dynamics surrounding the initiation and evolution of one of the key financial sector environmental and social responsibility initiatives in recent years, the Equator

  13. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    International Nuclear Information System (INIS)

    Song, T.; Ma, Q.; Sun, X.W.; Liu, Z.J.; Fu, Z.J.; Wei, X.P.; Wang, T.; Tian, J.H.

    2016-01-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model. - Highlights: • The phase transition pressure and electronic band structure for cubic TcN are determined. • Particular attention is paid to investigate the equation of state parameters for cubic TcN. • The thermodynamic properties up to 80 GPa and 3000 K are successfully predicted.

  14. A variational principle giving gravitational 'superpotentials', the affine connection, Riemann tensor, and Einstein field equations

    International Nuclear Information System (INIS)

    Stachel, J.

    1977-01-01

    A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)

  15. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    Science.gov (United States)

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Complex Kohn variational principle for the solution of Lippmann-Schwinger equations

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1992-07-01

    A recently proposed version of the Kohn variational principle for the t matrix incorporating the correct boundary condition is applied for the first time to the study of nucleon-nucleon scattering. Analytic expressions can be obtained for all the integrals in the method for a wide class of potentials and for a suitable choice of trial functions. Closed-form analytic expressions for these integrals are given for Yakawa and exponential potentials. Calculations with two commonly used S-wave nucleon-nucleon potentials show that the method may converge faster than other solution schemes not only for the phase-shifts but also for the off-shell t matrix elements if the freedom in the choice of the trial function is exploited. (author)

  17. Principle Study of Head Meridian Acupoint Massage to Stress Release via Grey Data Model Analysis.

    Science.gov (United States)

    Lee, Ya-Ting

    2016-01-01

    This paper presents the scientific study of the effectiveness and action principle of head meridian acupoint massage by applying the grey data model analysis approach. First, the head massage procedure for massaging the important head meridian acupuncture points including Taiyang, Fengfu, Tianzhu, Fengqi, and Jianjing is formulated in a standard manner. Second, the status of the autonomic nervous system of each subject is evaluated by using the heart rate variability analyzer before and after the head massage following four weeks. Afterward, the physiological factors of autonomic nerves are quantitatively analyzed by using the grey data modeling theory. The grey data analysis can point out that the status of autonomic nervous system is greatly improved after the massage. The order change of the grey relationship weighting of physiological factors shows the action principle of the sympathetic and parasympathetic nerves when performing head massage. In other words, the grey data model is able to distinguish the detailed interaction of the autonomic nervous system and the head meridian acupoint massage. Thus, the stress relaxing effect of massaging head meridian acupoints is proved, which is lacked in literature. The results can be a reference principle for massage health care in practice.

  18. Electronic structure and equation of state of Sm2Co17 from first-principles DFT+ U

    Science.gov (United States)

    Huang, Patrick; Butch, Nicholas P.; Jeffries, Jason R.; McCall, Scott K.

    2013-03-01

    Rare-earth intermetallics have important applications as permanent magnet materials, and the rational optimization of their properties would benefit greatly from guidance from ab initio modeling. However, these systems are particularly challenging for current electronic structure methods. Here, we present an ab initio study of the prototype material Sm2Co17 and related compounds, using density functional theory with a Hubbard correction for the Sm 4 f-electrons (DFT+ U method) and ultrasoft pseudopotentials. The Hubbard U parameter is derived from first principles [Cococcioni and de Gironcoli, PRB 71, 035105 (2005)], not fit to experiment. Our calculations are in good agreement with recent photoemission measurements at ambient pressure and the equation of state up to 40 GPa, thus supporting the validity of our DFT+ U model. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. An Integrated Assessment Framework of Offshore Wind Power Projects Applying Equator Principles and Social Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Yu-Che Tseng

    2017-10-01

    Full Text Available This paper reviews offshore wind power project finance and provides an integrated assessment that employs Equator Principles, life cycle assessment, risk assessment, materiality analysis, credit assessment, and ISAE 3000 assurance. We have not seen any comprehensive review papers or book chapters that covers the entire offshore wind power project finance process. We also conducted an SWancor Formosa Phase 1 case study to illustrate the application of integrated assessment to better assist policymakers, wind farm developers, practitioners, potential investors and observers, and stakeholders in their decisions. We believe that this paper can form part of the effort to reduce information asymmetry and the transaction costs of wind power project finance, as well as mobilize green finance investments from the financial sector to renewable energy projects to achieve a national renewable energy policy.

  20. Seismic tomography analysis using finite differential calculation of the eikonal equation and reciplocal principle; Eikonal equation no sabunkaiho to sohan genri wo riyoshita danseiha tomography kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M; Ashida, Y; Watanabe, T; Sassa, K [Kyoto University, Kyoto (Japan)

    1996-10-01

    This paper describes the seismic tomography analysis of underground structures using finite differential calculation (FDC) and a reciprocal principle which points out that a propagation path is constant even if a source and receiver are exchanged with each other. Tomography analysis generally determines a ray length across each underground cell structure by ray tracing method to modify each cell slowness (inverse of velocity). Travel time field was determined by FDC of eikonal equation among ray tracing methods, and a wave propagation path was determined by reciprocity of elastic wave to carry out inversion. In conventional methods, since a wave length is assumed to be infinitesimal by ray theory, false modified slowness structures frequently appears depending on the density of a ray. Wave propagates in a certain width, and is affected by environment. The slowness was thus modified on the basis of the wave propagation path with a certain width by using not ray-tracing but reciprocity. By this modification, false structures were hardly found under a fine grid, and several propagation paths could be considered. 6 refs., 9 figs.

  1. The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle.

    Science.gov (United States)

    Metz, Johan A Jacob; Staňková, Kateřina; Johansson, Jacob

    2016-03-01

    This paper should be read as addendum to Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013). Our goal is, using little more than high-school calculus, to (1) exhibit the form of the canonical equation of adaptive dynamics for classical life history problems, where the examples in Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013) are chosen such that they avoid a number of the problems that one gets in this most relevant of applications, (2) derive the fitness gradient occurring in the CE from simple fitness return arguments, (3) show explicitly that setting said fitness gradient equal to zero results in the classical marginal value principle from evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin's maximum principle, a well known equivalence that however in the literature is given either ex cathedra or is proven with more advanced tools, (5) connect the classical optimisation arguments of life history theory a little better to real biology (Mendelian populations with separate sexes subject to an environmental feedback loop), (6) make a minor improvement to the form of the CE for the examples in Dieckmann et al. and Parvinen et al.

  2. Three-dimensional inverse problem of geometrical optics: a mathematical comparison between Fermat's principle and the eikonal equation.

    Science.gov (United States)

    Borghero, Francesco; Demontis, Francesco

    2016-09-01

    In the framework of geometrical optics, we consider the following inverse problem: given a two-parameter family of curves (congruence) (i.e., f(x,y,z)=c1,g(x,y,z)=c2), construct the refractive-index distribution function n=n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium, allowing for the creation of the given congruence as a family of monochromatic light rays. We solve this problem by following two different procedures: 1. By applying Fermat's principle, we establish a system of two first-order linear nonhomogeneous PDEs in the unique unknown function n=n(x,y,z) relating the assigned congruence of rays with all possible refractive-index profiles compatible with this family. Moreover, we furnish analytical proof that the family of rays must be a normal congruence. 2. By applying the eikonal equation, we establish a second system of two first-order linear homogeneous PDEs whose solutions give the equation S(x,y,z)=const. of the geometric wavefronts and, consequently, all pertinent refractive-index distribution functions n=n(x,y,z). Finally, we make a comparison between the two procedures described above, discussing appropriate examples having exact solutions.

  3. Radiological protection principles concerning the safeguard, use or release of contaminated materials, buildings, areas or dumps from uranium mining. Recommendations of the Commission on Radiological Protection with explanations

    International Nuclear Information System (INIS)

    Mueller-Neumann, M.

    1992-01-01

    The volume presents the full texts of the SSK Recommendations addressing the aspects and problems involved, and which can be separately retrieved from the database: 1) Radiological protection principles concerning the release of scrap from the shut-down of uranium mining plants; 2) Radiological protection principles concerning the release for industrial use of areas contaminated from uranium mining; 3) Radiological protection principles concerning the use for forest and agricultural purposes and as public gardens (parks) and residential areas of areas contaminated from uranium mining; 4) Radiological protection principles concerning the safeguard and use of mine dumps; 5) Radiological protection principles concerning the release for further commercial or industrial use of buildings used for commercial or industrial purposes and the disposal of building debris from uranium mining and milling; 6) Radiological protection principles concerning the release for general use of reusable equipment and installations from uranium mining. The following appendices round up the material: 1) Radiation exposure from mining in Saxony and Thuringia and its evaluation (Summary of the results of consultations during the 1990 closed meeting); 2) Radiological protection principles for the limitation of the radiation exposure of the public to radon and its daughters; 3) Epidemiological studies on the health state of the inhabitants of the mining region and the miners in Saxony and Thuringia. (orig.) [de

  4. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    Science.gov (United States)

    Hu, S. X.; Gao, R.; Ding, Y.; Collins, L. A.; Kress, J. D.

    2017-04-01

    Using density-functional theory-based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ =0.001 -500 g /c m3 and T =2000 -108K . With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ˜20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1-10 eV (depending on density), while the former becomes higher in the low-T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ˜50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ˜10% slower; (2) the peak density of an in-flight Si shell during implosion is ˜20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ˜40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ˜30% and ˜70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. These results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.

  5. The analysis of the derivation principles of kinetic equations based on exactly solvable models of the bulk reaction A + B → Product

    International Nuclear Information System (INIS)

    Kipriyanov, A.A.; Doktorov, A.B.

    2005-01-01

    We have considered two many-particle models of the irreversible reaction A + B → Product for which closed kinetic equations for the mean concentration N A (t) of A species can be exactly obtained. These equations are identically recast into a unified form of integro-differential equation of general kinetic theory. It is shown that the memory functions for both models under consideration can be represented as a sum of the Markovian and non-Markovian parts. It is essential that the Markovian part of the Laplace transform of any kernel can be obtained using the Laplace transform of the kernel itself, and is the root of the non-Markovian part of the Laplace transform of the kernel. The properties established allowed us to perform correct approximation of the memory functions at small concentrations [B] of B species and derive the binary non-Markovian integro-differential equation. Within the binary theory accuracy this equation has been rewritten in a regular frame of a familiar rate equation satisfying general principles of binary kinetic equations. Thus using particular exactly solvable many-particle models, we have reproduced the most essential steps of the known general way for the derivation of the binary kinetic equation avoiding the sophisticated many-particle technique and the corresponding approximations. Besides, the results obtained can serve as an additional evidence of the approximations made in a general many-particle approach to the derivation of the binary kinetic equation

  6. One- and two-dimensional search of an equation of state using a newly released 2DRoptimize package

    Science.gov (United States)

    Jamal, M.; Reshak, A. H.

    2018-05-01

    A new package called 2DRoptimize has been released for performing two-dimensional searches of the equation of state (EOS) for rhombohedral, tetragonal, and hexagonal compounds. The package is compatible and available with the WIEN2k package. The 2DRoptimize package performs a convenient volume and c/a structure optimization. First, the package finds the best value for c/a and the associated energy for each volume. In the second step, it calculates the EoS. The package then finds the equation of the c/a ratio vs. volume to calculate the c/a ratio at the optimized volume. In the last stage, by using the optimized volume and c/a ratio, the 2DRoptimize package calculates a and c lattice constants for tetragonal and hexagonal compounds, as well as the a lattice constant with the α angle for rhombohedral compounds. We tested our new package based on several hexagonal, tetragonal, and rhombohedral structures, and the 2D search results for the EOS showed that this method is more accurate than 1D search. Our results agreed very well with the experimental data and they were better than previous theoretical calculations.

  7. A Signal-On Fluorosensor Based on Quench-Release Principle for Sensitive Detection of Antibiotic Rapamycin

    Directory of Open Access Journals (Sweden)

    Hee-Jin Jeong

    2015-03-01

    Full Text Available An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose “Q’-body”, which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body technology. We constructed rapamycin Q’-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q’-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin.

  8. A signal-on fluorosensor based on quench-release principle for sensitive detection of antibiotic rapamycin.

    Science.gov (United States)

    Jeong, Hee-Jin; Itayama, Shuya; Ueda, Hiroshi

    2015-03-26

    An antibiotic rapamycin is one of the most commonly used immunosuppressive drugs, and also implicated for its anti-cancer activity. Hence, the determination of its blood level after organ transplantation or tumor treatment is of great concern in medicine. Although there are several rapamycin detection methods, many of them have limited sensitivity, and/or need complicated procedures and long assay time. As a novel fluorescent biosensor for rapamycin, here we propose "Q'-body", which works on the fluorescence quench-release principle inspired by the antibody-based quenchbody (Q-body) technology. We constructed rapamycin Q'-bodies by linking the two interacting domains FKBP12 and FRB, whose association is triggered by rapamycin. The fusion proteins were each incorporated position-specifically with one of fluorescence dyes ATTO520, tetramethylrhodamine, or ATTO590 using a cell-free translation system. As a result, rapid rapamycin dose-dependent fluorescence increase derived of Q'-bodies was observed, especially for those with ATTO520 with a lowest detection limit of 0.65 nM, which indicates its utility as a novel fluorescent biosensor for rapamycin.

  9. Basic equations of the quasiparticle-phonon nuclear model with the effects due to the Pauli principle and the phonon ground state correlations

    International Nuclear Information System (INIS)

    Nguyen Dinh Dang; Voronov, V.V.

    1983-01-01

    A system of basic equations of the quasiparticle-phonon model is obtained for energies and a structure of excited states described by the wave functions containing one- and two-phonon components. The effects due to the Pauli principle for two-phonon components and the phonon ground state correlations of a spherical nucleus are taken here into account. The quantitative estimations of these effects are given by a simplified scheme. The relation between these equations with the results from other theoretical approaches is discussed

  10. Uranium Chemical and Radiological Risk Assessment for Freshwater Ecosystems Receiving Ore Mining Releases: Principles, Equations and Parameters

    International Nuclear Information System (INIS)

    Beaugelin-Seiller, K.; Garnier-Laplace, J.; Gilbin, R.; Adam, C.

    2008-01-01

    Uranium is an element that has the solely characteristic to behave as significant hazard both from a chemical and radiological point of view. Exclusively of natural occurrence, its distribution into the environment may be influenced by human activities, such as nuclear fuel cycle, military use of depleted uranium, or coal and phosphate fertilizer use, which finally may impact freshwater ecosystems. Until now, the associated environmental impact and risk assessments were conducted separately. We propose here to apply the same methodology to evaluate the ecological risk due to potential chemotoxicity and radiotoxicity of uranium. This methodology is articulated into the classical four steps (EC, 2003: problem formulation, effect and exposure analysis, risk characterisation). The problem formulation dealt both with uranium viewed as a chemical element and as the three isotopes 234, 235 and 238 of uranium and their main daughters. Then, the exposure analysis of non-human species was led on the basis of a common conceptual model of the fluxes occurring in freshwater ecosystems. No-effect values for the ecosystem were derived using the same effect data treatment in parallel. A Species Sensitivity Distribution was fitted: (1) to the ecotoxicity data sets illustrating uranium chemotoxicity and allowing the estimation of a Predicted-No-Effect-Concentration for uranium in water expressed in μg/L; (2) to radiotoxicity effect data as it was done within the ERICA project, allowing the estimation of a Predicted No-Effect-Dose-Rate (in μGy·h -1 ). Two methods were then applied to characterize the risk to the ecosystem: a screening method using the risk quotient approach, involving for the radiological aspect back calculation of the water limiting concentration from the PNEDR for each isotope taken into account and a probabilistic risk assessment. A former uranium ore mining case-study will help in demonstrating the application of the whole methodology

  11. A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation

    International Nuclear Information System (INIS)

    Cao Hui; Pereverzev, Sergei V; Klibanov, Michael V

    2009-01-01

    The quasi-reversibility method of solving the Cauchy problem for the Laplace equation in a bounded domain Ω is considered. With the help of the Carleman estimation technique improved error and stability bounds in a subdomain Ω σ is a subset of Ω are obtained. This paves the way for the use of the balancing principle for an a posteriori choice of the regularization parameter ε in the quasi-reversibility method. As an adaptive regularization parameter choice strategy, the balancing principle does not require a priori knowledge of either the solution smoothness or a constant K appearing in the stability bound estimation. Nevertheless, this principle allows an a posteriori parameter choice that up to a controllable constant achieves the best accuracy guaranteed by the Carleman estimate

  12. Simultaneous release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus described by dimensionless equations.

    Science.gov (United States)

    Kasperek, Regina

    2011-01-01

    The release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus was studied. The influence of excipients and of a size of the solid dosage forms on the amount of the released substances at the intervals of time using the different rates of flow of the dissolution medium was investigated. Physical parameters corresponding to the dissolution process as the mass transfer coefficient, the thickness of the boundary diffusion layer and the concentration of the saturated solution at this layer were calculated. The results of release were described by dimensionless equations.

  13. Variational Principles, Lie Point Symmetries, and Similarity Solutions of the Vector Maxwell Equations in Non-linear Optics

    DEFF Research Database (Denmark)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey

    2004-01-01

    the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...

  14. Propensity scores as a basis for equating groups: basic principles and application in clinical treatment outcome research.

    Science.gov (United States)

    West, Stephen G; Cham, Heining; Thoemmes, Felix; Renneberg, Babette; Schulze, Julian; Weiler, Matthias

    2014-10-01

    A propensity score is the probability that a participant is assigned to the treatment group based on a set of baseline covariates. Propensity scores provide an excellent basis for equating treatment groups on a large set of covariates when randomization is not possible. This article provides a nontechnical introduction to propensity scores for clinical researchers. If all important covariates are measured, then methods that equate on propensity scores can achieve balance on a large set of covariates that mimics that achieved by a randomized experiment. We present an illustration of the steps in the construction and checking of propensity scores in a study of the effectiveness of a health coach versus treatment as usual on the well-being of seriously ill individuals. We then consider alternative methods of equating groups on propensity scores and estimating treatment effects including matching, stratification, weighting, and analysis of covariance. We illustrate a sensitivity analysis that can probe for the potential effects of omitted covariates on the estimate of the causal effect. Finally, we briefly consider several practical and theoretical issues in the use of propensity scores in applied settings. Propensity score methods have advantages over alternative approaches to equating groups particularly when the treatment and control groups do not fully overlap, and there are nonlinear relationships between covariates and the outcome. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO{sub 2} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianqiu, E-mail: jianqiu@vt.edu [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Tea, Eric; Li, Guanchen [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Hin, Celine [Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road - MC 0238, Blacksburg, VA 24061 (United States); Department of Material Science and Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road-MC 0238, Blacksburg, VA 24061 (United States)

    2017-06-01

    Highlights: • Hydrogen release process at the Al/SiO{sub 2} metal-oxide interface has been investigated. • A mathematical model that estimates the hydrogen release potential has been proposed. • Al atoms, Al−O bonds, and Si−Al bonds are the major hydrogen traps at the Al/SiO{sub 2} interface. • Hydrogen atoms are primarily release from Al−H and O−H bonds at the Al/SiO{sub 2} metal-oxide interface. - Abstract: The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO{sub 2} interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO{sub 2} metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Al−Si bonds, passivating a Si sp{sup 3} orbital. Interstitial hydrogen atoms can also break interfacial Al−O bonds, or be adsorbed at the interface on aluminum, forming stable Al−H−Al bridges. We showed that hydrogenated O−H, Si−H and Al−H bonds at the Al/SiO{sub 2} interfaces are polarized. The resulting bond dipole weakens the O−H and Si−H bonds, but strengthens the Al−H bond under the application of a positive bias at the metal gate. Our calculations indicate that Al−H bonds and O−H bonds are more important than Si−H bonds for the hydrogen release process.

  16. Registration of Aerial Optical Images with LiDAR Data Using the Closest Point Principle and Collinearity Equations.

    Science.gov (United States)

    Huang, Rongyong; Zheng, Shunyi; Hu, Kun

    2018-06-01

    Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.

  17. Coupled reaction-diffusion equations to model the fission gas release in the irradiation of the uranium dioxide

    International Nuclear Information System (INIS)

    Moyano, Edgardo A.; Scarpettini, Alberto F.

    2003-01-01

    A semi linear model of weakly coupled parabolic p.d.e. with reaction-diffusion is investigated. The system describes fission gas transfer from grain interior of UO 2 to grain boundaries. The problem is studied in a bounded domain. Using the upper-lower solutions method, two monotone sequences for the finite differences equations are constructed. Reasons are mentioned that allow to affirm that in the proposed functional sector the algorithm converges to the unique solution of the differential system. (author)

  18. Technical principles underlying limit values for release of substances for the percolation test TS3: comparison DE and NL

    Energy Technology Data Exchange (ETDEWEB)

    Van Zomeren, A.; Dijkstra, J.J. [ECN Environment and Energy Engineering, Petten (Netherlands); Susset, B. [Consulting Office SiWaP (Germany)

    2013-10-15

    Within CEN TC 351 WG 1, standardized, horizontal test methods are developed to assess the release (leaching) of dangerous substances from construction as defined in ER3 of the CPD. For granular materials TS 3, a horizontal up-flow percolation test, was further developed by CEN TC 351 WG1 and will enter the validation phase in 2013. In CEN TC 351 WG1, there are still discussions regarding the sample preparation and some test conditions. Currently, two options for sample preparation and test conditions are specified. Controversy between DE and NL regarding sample preparation and test conditions and the need for two separate options in the TS 3 percolation test are possibly for a part caused by different approaches for risk assessment in the Netherlands and in Germany and the resulting regulatory concepts. One important reason for this is, that in soil and groundwater regulations the test method and the impact assessment method are systematically linked together but the impact assessment methods and lab methods in both countries are different. The discussions in CEN TC 351 WG 1 show that there is a need to have a better mutual understanding of the relation between test method and impact assessment on the one hand and a clear overview of differences in impact assessment approaches of each country on the other hand. The aim of this project is to explain and compare the assumptions, boundary conditions and conventions of the impact assessment approach that are implemented in the upcoming German Recycling Degree and in the Soil Quality Degree of the Netherlands. Ultimately, a better understanding of the impact assessment approaches provides a basis for further discussion in WG1 to agree on only one option for the percolation test conditions. The following report is prepared by the contractors of Germany and Netherlands together to compare the two country-specific concepts. This report summarizes and explains the presentation given on the 25th of April at TC 351 WG1 in

  19. Equation of state for L.M.F.B.R. fuel (measurement of fission gas release during transients)

    International Nuclear Information System (INIS)

    Combette, P.; Barthelemy, P.

    1979-01-01

    A sample of fuel (UO 2 or UPuO 2 ) can be heated by fission in a heating transient up to energy deposition 4000 j/g, in the Silene reactor. The Kistler type capsule, the calorimeter device and the radiochemical analysis of fission products enable the pressure pulse and the fuel energy deposition to be measured. So, the relationship between the fuel vapour pressure and the fuel specific energy can be deduced. Peaks pressure (about 1 MPa) coming from fresh UO 2 vaporization, have been measured on a 7 milliseconds time scale. There is a good agreement with the E.O.S. for fresh UO 2 , which is well known for low pressure (1 MPa). Numerous tests have been done with 93% enriched UO 2 and a first test with highly active fuel containing plutonium (15 at %) has been performed. The capsule allows the released gas coming from the irradiated fuel to be retained for measurements and analysis. To investigate the mode of fuel disruption, in-pile fission-heated fuel pellets has been recorded by high speed cinematography

  20. Variational principles

    CERN Document Server

    Moiseiwitsch, B L

    2004-01-01

    This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha

  1. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  2. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  3. A Note on the Semi-Inverse Method and a Variational Principle for the Generalized KdV-mKdV Equation

    Directory of Open Access Journals (Sweden)

    Li Yao

    2013-01-01

    Full Text Available Ji-Huan He systematically studied the inverse problem of calculus of variations. This note reveals that the semi-inverse method also works for a generalized KdV-mKdV equation with nonlinear terms of any orders.

  4. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    Science.gov (United States)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  5. Cosmological principles. II. Physical principles

    International Nuclear Information System (INIS)

    Harrison, E.R.

    1974-01-01

    The discussion of cosmological principle covers the uniformity principle of the laws of physics, the gravitation and cognizability principles, and the Dirac creation, chaos, and bootstrap principles. (U.S.)

  6. High-Order Hamilton's Principle and the Hamilton's Principle of High-Order Lagrangian Function

    International Nuclear Information System (INIS)

    Zhao Hongxia; Ma Shanjun

    2008-01-01

    In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.

  7. The computer code EURDYN - 1 M (release 1) for transient dynamic fluid-structure interaction. Pt.1: governing equations and finite element modelling

    International Nuclear Information System (INIS)

    Donea, J.; Fasoli-Stella, P.; Giuliani, S.; Halleux, J.P.; Jones, A.V.

    1980-01-01

    This report describes the governing equations and the finite element modelling used in the computer code EURDYN - 1 M. The code is a non-linear transient dynamic program for the analysis of coupled fluid-structure systems; It is designed for safety studies on LMFBR components (primary containment and fuel subassemblies)

  8. Electrical and electronic principles

    CERN Document Server

    Knight, SA

    1988-01-01

    Electrical and Electronic Principles, 3 focuses on the principles involved in electrical and electronic circuits, including impedance, inductance, capacitance, and resistance.The book first deals with circuit elements and theorems, D.C. transients, and the series circuits of alternating current. Discussions focus on inductance and resistance in series, resistance and capacitance in series, power factor, impedance, circuit magnification, equation of charge, discharge of a capacitor, transfer of power, and decibels and attenuation. The manuscript then examines the parallel circuits of alternatin

  9. Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state

    International Nuclear Information System (INIS)

    Liu, Xiong; Godbole, Ajit; Lu, Cheng; Michal, Guillaume; Venton, Philip

    2014-01-01

    Highlights: • Validated CFD models for decompression and dispersion of CO 2 releases from pipelines. • Incorporation of real gas EOS into CFD code for source strength estimation. • Demonstration of better performance of SST k–ω turbulence model for jet flow. • Demonstration of better performance of real gas EOS compared to ideal gas EOS. • Demonstration of superiority of CFD models over a commercial risk assessment package. - Abstract: Transportation of CO 2 in high-pressure pipelines forms a crucial link in the ever-increasing application of Carbon Capture and Storage (CCS) technologies. An unplanned release of CO 2 from a pipeline presents a risk to human and animal populations and the environment. Therefore it is very important to develop a deeper understanding of the atmospheric dispersion of CO 2 before the deployment of CO 2 pipelines, to allow the appropriate safety precautions to be taken. This paper presents a two-stage Computational Fluid Dynamics (CFD) study developed (1) to estimate the source strength, and (2) to simulate the subsequent dispersion of CO 2 in the atmosphere, using the source strength estimated in stage (1). The Peng–Robinson (PR) EOS was incorporated into the CFD code. This enabled accurate modelling of the CO 2 jet to achieve more precise source strength estimates. The two-stage simulation approach also resulted in a reduction in the overall computing time. The CFD models were validated against experimental results from the British Petroleum (BP) CO 2 dispersion trials, and also against results produced by the risk management package Phast. Compared with the measurements, the CFD simulation results showed good agreement in both source strength and dispersion profile predictions. Furthermore, the effect of release direction on the dispersion was studied. The presented research provides a viable method for the assessment of risks associated with CCS

  10. Bernoulli's Principle

    Science.gov (United States)

    Hewitt, Paul G.

    2004-01-01

    Some teachers have difficulty understanding Bernoulli's principle particularly when the principle is applied to the aerodynamic lift. Some teachers favor using Newton's laws instead of Bernoulli's principle to explain the physics behind lift. Some also consider Bernoulli's principle too difficult to explain to students and avoid teaching it…

  11. Mach's holographic principle

    International Nuclear Information System (INIS)

    Khoury, Justin; Parikh, Maulik

    2009-01-01

    Mach's principle is the proposition that inertial frames are determined by matter. We put forth and implement a precise correspondence between matter and geometry that realizes Mach's principle. Einstein's equations are not modified and no selection principle is applied to their solutions; Mach's principle is realized wholly within Einstein's general theory of relativity. The key insight is the observation that, in addition to bulk matter, one can also add boundary matter. Given a space-time, and thus the inertial frames, we can read off both boundary and bulk stress tensors, thereby relating matter and geometry. We consider some global conditions that are necessary for the space-time to be reconstructible, in principle, from bulk and boundary matter. Our framework is similar to that of the black hole membrane paradigm and, in asymptotically anti-de Sitter space-times, is consistent with holographic duality.

  12. Basic principles for the development of a concept for environmental exposure assessments of single substances released from multiple uses under REACH

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Rita; Bunke, Dirk [Oeko-Institut e.V. - Institut fuer Angewandte Oekologie e.V., Freiburg im Breisgau (Germany); Gartiser, Stefan [Hydrotox GmbH, Freiburg im Breisgau (Germany)

    2011-10-15

    The ECHA Guidance Documents R.12 to R.18 include detailed provisions on how to conduct an exposure assessment as part of the Chemical Safety Report. The guidance documents, however, only restrictedly address the consideration of a substance's emissions into the environment, if the local releases from various uses of the same substance result in a cumulative exposure. In a situation where a chemical has a number of applications in one site, it may however occur that the emissions of several uses which only have a low risk if considered separately will sum up and cause an unacceptable risk to the environment. Against this background, the objective of the present study is a further specification of the guidelines on cumulative risk assessment according to the REACH Regulation. Besides the definition of the key terminology, guidelines on cumulative exposure assessment already laid down in other legal regulations have been evaluated and their transferability to the environmental exposure assessment according to REACH has been investigated. Moreover, the fields of application for which a cumulative exposure assessment might be relevant have been worked out. A distinction was made between cases where the responsibility for cumulative exposure assessment falls into the hands of the registrant as part of the Chemical Safety Report and other cases, where the responsibility lies with the downstream users (DU) or the Member State Competent Authorities (MS-CA). Initial proposals have been elaborated for a technical implementation of the cumulative exposure assessment of chemicals as part of the preparation and evaluation of chemical dossiers by the registrant and the MS-CA, respectively, and as part of the responsibility of the DU. (orig.)

  13. Quantum mechanics principles and formalism

    CERN Document Server

    McWeeny, Roy

    2012-01-01

    Focusing on main principles of quantum mechanics and their immediate consequences, this graduate student-oriented volume develops the subject as a fundamental discipline, opening with review of origins of Schrödinger's equations and vector spaces.

  14. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  15. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  16. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  17. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    In this article survey of variational principles has been given. Variational principles play a significant role in mathematical theory with emphasis on the physical aspects. There are two principals used i.e. to represent the equation of the system in a succinct way and to enable a particular computation in the system to be carried out with greater accuracy. The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basic finite element methods on variational principles. (A.B.)

  18. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  19. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  20. VARIATIONAL PRINCIPLE FOR PLANETARY INTERIORS

    International Nuclear Information System (INIS)

    Zeng, Li; Jacobsen, Stein B.

    2016-01-01

    In the past few years, the number of confirmed planets has grown above 2000. It is clear that they represent a diversity of structures not seen in our own solar system. In addition to very detailed interior modeling, it is valuable to have a simple analytical framework for describing planetary structures. The variational principle is a fundamental principle in physics, entailing that a physical system follows the trajectory, which minimizes its action. It is alternative to the differential equation formulation of a physical system. Applying the variational principle to the planetary interior can beautifully summarize the set of differential equations into one, which provides us some insight into the problem. From this principle, a universal mass–radius relation, an estimate of the error propagation from the equation of state to the mass–radius relation, and a form of the virial theorem applicable to planetary interiors are derived.

  1. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  2. The nonholonomic variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Krupkova, Olga [Department of Algebra and Geometry, Faculty of Science, Palacky University, Tomkova 40, 779 00 Olomouc (Czech Republic); Department of Mathematics, La Trobe University, Bundoora, Victoria 3086 (Australia)], E-mail: krupkova@inf.upol.cz

    2009-05-08

    A variational principle for mechanical systems and fields subject to nonholonomic constraints is found, providing Chetaev-reduced equations as equations for extremals. Investigating nonholonomic variations of the Chetaev type and their properties, we develop foundations of the calculus of variations on constraint manifolds, modelled as fibred submanifolds in jet bundles. This setting is appropriate to study general first-order 'nonlinear nonitegrable constraints' that locally are given by a system of first-order ordinary or partial differential equations. We obtain an invariant constrained first variation formula and constrained Euler-Lagrange equations both in intrinsic and coordinate forms, and show that the equations are the same as Chetaev equations 'without Lagrange multipliers', introduced recently by other methods. We pay attention to two possible settings: first, when the constrained system arises from an unconstrained Lagrangian system defined in a neighbourhood of the constraint, and second, more generally, when an 'internal' constrained system on the constraint manifold is given. In the latter case a corresponding unconstrained system need not be a Lagrangian, nor even exist. We also study in detail an important particular case: nonholonomic constraints that can be alternatively modelled by means of (co)distributions in the total space of the fibred manifold; in nonholonomic mechanics this happens whenever constraints affine in velocities are considered. It becomes clear that (and why) if the distribution is completely integrable (= the constraints are semiholonomic), the principle of virtual displacements holds and can be used to obtain the constrained first variational formula by a more or less standard procedure, traditionally used when unconstrained or holonomic systems are concerned. If, however, the constraint is nonintegrable, no significant simplifications are available. Among others, some properties of nonholonomic

  3. Fundamental quadratic variational principle underlying general relativity

    International Nuclear Information System (INIS)

    Atkins, W.K.

    1983-01-01

    The fundamental result of Lanczos is used in a new type of quadratic variational principle whose field equations are the Einstein field equations together with the Yang-Mills type equations for the Riemann curvature. Additionally, a spin-2 theory of gravity for the special case of the Einstein vacuum is discussed

  4. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  5. Matter tensor from the Hilbert variational principle

    International Nuclear Information System (INIS)

    Pandres, D. Jr.

    1976-01-01

    We consider the Hilbert variational principle which is conventionally used to derive Einstein's equations for the source-free gravitational field. We show that at least one version of the equivalence principle suggests an alternative way of performing the variation, resulting in a different set of Einstein equations with sources automatically present. This illustrates a technique which may be applied to any theory that is derived from a variational principle and that admits a gauge group. The essential point is that, if one first imposes a gauge condition and then performs the variation, one obtains field equations with source terms which do not appear if one first performs the variation and then imposes the gauge condition. A second illustration is provided by the variational principle conventionally used to derive Maxwell's equations for the source-free electromagnetic field. If one first imposes the Lorentz gauge condition and then performs the variation, one obtains Maxwell's equations with sources present

  6. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  7. Press Oil Final Release Survey

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey Jay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ruedig, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-11

    There are forty-eight 55 gallon barrels filled with hydraulic oil that are candidates for release and recycle. This oil needs to be characterized prior to release. Principles of sampling as provided in MARSAME/MARSSIM approaches were used as guidance for sampling.

  8. Safety Principles

    Directory of Open Access Journals (Sweden)

    V. A. Grinenko

    2011-06-01

    Full Text Available The offered material in the article is picked up so that the reader could have a complete representation about concept “safety”, intrinsic characteristics and formalization possibilities. Principles and possible strategy of safety are considered. A material of the article is destined for the experts who are taking up the problems of safety.

  9. Maquet principle

    Energy Technology Data Exchange (ETDEWEB)

    Levine, R.B.; Stassi, J.; Karasick, D.

    1985-04-01

    Anterior displacement of the tibial tubercle is a well-accepted orthopedic procedure in the treatment of certain patellofemoral disorders. The radiologic appearance of surgical procedures utilizing the Maquet principle has not been described in the radiologic literature. Familiarity with the physiologic and biochemical basis for the procedure and its postoperative appearance is necessary for appropriate roentgenographic evaluation and the radiographic recognition of complications.

  10. Cosmological principle

    International Nuclear Information System (INIS)

    Wesson, P.S.

    1979-01-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution

  11. Variational principles in terms of entransy for heat transfer

    International Nuclear Information System (INIS)

    Xu, Mingtian

    2012-01-01

    A variational principle for heat conduction is formulated which results in the steady state heat conduction equation established from the Fourier law. Furthermore based on the thermodynamics in terms of entransy a more general functional is defined for incompressible fluids. We show that extremizing this functional gives rise to the state described by the Navier-Stokes-Fourier equations with vanishing substantive derivatives of the temperature and velocity field. In this sense one may conclude that this variational principle is consistent with the Navier-Stokes-Fourier equations. Therefore the variational principle developed in the present work demonstrates a great advantage over the minimum entropy production principle. -- Highlights: ► A variational principle for heat transfer of incompressible fluid is established in terms of entransy. ► For pure heat conduction the variational principle leads to the classical steady state heat conduction equation. ► For heat convection the variational principle is consistent with the Navier-Stokes-Fourier equations.

  12. Principles of quantum chemistry

    CERN Document Server

    George, David V

    2013-01-01

    Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c

  13. Principles of thermodynamics

    CERN Document Server

    Kaufman, Myron

    2002-01-01

    Ideal for one- or two-semester courses that assume elementary knowledge of calculus, This text presents the fundamental concepts of thermodynamics and applies these to problems dealing with properties of materials, phase transformations, chemical reactions, solutions and surfaces. The author utilizes principles of statistical mechanics to illustrate key concepts from a microscopic perspective, as well as develop equations of kinetic theory. The book provides end-of-chapter question and problem sets, some using Mathcad™ and Mathematica™; a useful glossary containing important symbols, definitions, and units; and appendices covering multivariable calculus and valuable numerical methods.

  14. What happens to linear properties as we move from the Klein-Gordon equation to the sine-Gordon equation

    International Nuclear Information System (INIS)

    Kovalyov, Mikhail

    2010-01-01

    In this article the sets of solutions of the sine-Gordon equation and its linearization the Klein-Gordon equation are discussed and compared. It is shown that the set of solutions of the sine-Gordon equation possesses a richer structure which partly disappears during linearization. Just like the solutions of the Klein-Gordon equation satisfy the linear superposition principle, the solutions of the sine-Gordon equation satisfy a nonlinear superposition principle.

  15. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  16. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  17. A prison mental health in-reach model informed by assertive community treatment principles: evaluation of its impact on planning during the pre-release period, community mental health service engagement and reoffending.

    Science.gov (United States)

    McKenna, Brian; Skipworth, Jeremy; Tapsell, Rees; Madell, Dominic; Pillai, Krishna; Simpson, Alexander; Cavney, James; Rouse, Paul

    2015-12-01

    It is well recognised that prisoners with serious mental illness (SMI) are at high risk of poor outcomes on return to the community. Early engagement with mental health services and other community agencies could provide the substrate for reducing risk. To evaluate the impact of implementing an assertive community treatment informed prison in-reach model of care (PMOC) on post-release engagement with community mental health services and on reoffending rates. One hundred and eighty prisoners with SMI released from four prisons in the year before implementation of the PMOC were compared with 170 such prisoners released the year after its implementation. The assertive prison model of care was associated with more pre-release contacts with community mental health services and contacts with some social care agencies in some prisons. There were significantly more post-release community mental health service engagements after implementation of this model (Z = -2.388, p = 0.02). There was a trend towards reduction in reoffending rates after release from some of the prisons (Z =1.82, p = 0.07). Assertive community treatment applied to prisoners with mental health problems was superior to 'treatment as usual', but more work is needed to ensure that agencies will engage prisoners in pre-release care. The fact that the model showed some benefits in the absence of any increase in resources suggests that it may be the model per se that is effective. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  19. Zymography Principles.

    Science.gov (United States)

    Wilkesman, Jeff; Kurz, Liliana

    2017-01-01

    Zymography, the detection, identification, and even quantification of enzyme activity fractionated by gel electrophoresis, has received increasing attention in the last years, as revealed by the number of articles published. A number of enzymes are routinely detected by zymography, especially with clinical interest. This introductory chapter reviews the major principles behind zymography. New advances of this method are basically focused towards two-dimensional zymography and transfer zymography as will be explained in the rest of the chapters. Some general considerations when performing the experiments are outlined as well as the major troubleshooting and safety issues necessary for correct development of the electrophoresis.

  20. Basic principles

    International Nuclear Information System (INIS)

    Wilson, P.D.

    1996-01-01

    Some basic explanations are given of the principles underlying the nuclear fuel cycle, starting with the physics of atomic and nuclear structure and continuing with nuclear energy and reactors, fuel and waste management and finally a discussion of economics and the future. An important aspect of the fuel cycle concerns the possibility of ''closing the back end'' i.e. reprocessing the waste or unused fuel in order to re-use it in reactors of various kinds. The alternative, the ''oncethrough'' cycle, discards the discharged fuel completely. An interim measure involves the prolonged storage of highly radioactive waste fuel. (UK)

  1. Fermat principle for a nonstationary medium.

    Science.gov (United States)

    Voronovich, A G; Godin, O A

    2003-07-25

    One possible formulation of a variational principle of the Fermat type for systems with time-dependent parameters is suggested. In a stationary case, it reduces to the Mopertui-Lagrange least-action principle. A class of Hamiltonians (dispersion relations) is indicated, for which the variational principle reduces to the Fermat principle in a general nonstationary case. Hamiltonians that are homogeneous functions of momenta are in this category. For the important case of nondispersive waves (corresponding to Hamiltonians being homogeneous function of momenta order 1) the Fermat principle fully determines the geometry of the rays. Equations relating the variation of signal frequency with the rate of change of propagation time are established.

  2. Mach's principle in spatially homogeneous spacetimes

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    On the basis of Mach's Principle it is concluded that the only singularity-free solution to the empty space Einstein equations is flat space. It is shown that the only singularity-free solution to the empty space Einstein equations which is spatially homogeneous and globally hyperbolic is in fact suitably identified Minkowski space. (Auth.)

  3. Momentum Maps and Stochastic Clebsch Action Principles

    Science.gov (United States)

    Cruzeiro, Ana Bela; Holm, Darryl D.; Ratiu, Tudor S.

    2018-01-01

    We derive stochastic differential equations whose solutions follow the flow of a stochastic nonlinear Lie algebra operation on a configuration manifold. For this purpose, we develop a stochastic Clebsch action principle, in which the noise couples to the phase space variables through a momentum map. This special coupling simplifies the structure of the resulting stochastic Hamilton equations for the momentum map. In particular, these stochastic Hamilton equations collectivize for Hamiltonians that depend only on the momentum map variable. The Stratonovich equations are derived from the Clebsch variational principle and then converted into Itô form. In comparing the Stratonovich and Itô forms of the stochastic dynamical equations governing the components of the momentum map, we find that the Itô contraction term turns out to be a double Poisson bracket. Finally, we present the stochastic Hamiltonian formulation of the collectivized momentum map dynamics and derive the corresponding Kolmogorov forward and backward equations.

  4. An imbedding theorem and its applications in degenerate elliptic equations

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1988-06-01

    We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs

  5. equilibrium approach in thederivation of differential equations

    African Journals Online (AJOL)

    user

    DEPT OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY ... In this paper, the differential equations of Mindlin plates are derived from basic principles by ..... Journal of Applied Mechanics, pages 31-38.

  6. Some New Trends in Differential Equations

    Indian Academy of Sciences (India)

    Mythily Ramaswamy TIFR Centre for Applicable Mathematics, Bangalore

    2008-04-05

    Apr 5, 2008 ... Optimal Control Problems. Controllability. Stabilizability. Overview. 1 Differential Equations as Models. Mathematical Models. Brief History. Main Questions. 2 Optimal Control Problems. Mathematical Model. Optimal Control. Dynamic Programming. Pontryagin Maximum Principle. 3 Controllability. A Model.

  7. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  8. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  9. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  10. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  11. Exact solutions of generalized Zakharov and Ginzburg-Landau equations

    International Nuclear Information System (INIS)

    Zhang Jinliang; Wang Mingliang; Gao Kequan

    2007-01-01

    By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)

  12. Microhydrodynamics principles and selected applications

    CERN Document Server

    Kim, Sangtae; Brenner, Howard

    1991-01-01

    Microhydrodynamics: Principles and Selected Applications presents analytical and numerical methods for describing motion of small particles suspended in viscous fluids. The text first covers the fundamental principles of low-Reynolds-number flow, including the governing equations and fundamental theorems; the dynamics of a single particle in a flow field; and hydrodynamic interactions between suspended particles. Next, the book deals with the advances in the mathematical and computational aspects of viscous particulate flows that point to innovations for large-scale simulations on parallel co

  13. General principles of quantum mechanics

    International Nuclear Information System (INIS)

    Pauli, W.

    1980-01-01

    This book is a textbook for a course in quantum mechanics. Starting from the complementarity and the uncertainty principle Schroedingers equation is introduced together with the operator calculus. Then stationary states are treated as eigenvalue problems. Furthermore matrix mechanics are briefly discussed. Thereafter the theory of measurements is considered. Then as approximation methods perturbation theory and the WKB approximation are introduced. Then identical particles, spin, and the exclusion principle are discussed. There after the semiclassical theory of radiation and the relativistic one-particle problem are discussed. Finally an introduction is given into quantum electrodynamics. (HSI)

  14. A fractional Dirac equation and its solution

    International Nuclear Information System (INIS)

    Muslih, Sami I; Agrawal, Om P; Baleanu, Dumitru

    2010-01-01

    This paper presents a fractional Dirac equation and its solution. The fractional Dirac equation may be obtained using a fractional variational principle and a fractional Klein-Gordon equation; both methods are considered here. We extend the variational formulations for fractional discrete systems to fractional field systems defined in terms of Caputo derivatives. By applying the variational principle to a fractional action S, we obtain the fractional Euler-Lagrange equations of motion. We present a Lagrangian and a Hamiltonian for the fractional Dirac equation of order α. We also use a fractional Klein-Gordon equation to obtain the fractional Dirac equation which is the same as that obtained using the fractional variational principle. Eigensolutions of this equation are presented which follow the same approach as that for the solution of the standard Dirac equation. We also provide expressions for the path integral quantization for the fractional Dirac field which, in the limit α → 1, approaches to the path integral for the regular Dirac field. It is hoped that the fractional Dirac equation and the path integral quantization of the fractional field will allow further development of fractional relativistic quantum mechanics.

  15. Design of a single-step immunoassay principle based on the combination of an enzyme-labeled antibody release coating and a hydrogel copolymerized with a fluorescent enzyme substrate in a microfluidic capillary device.

    Science.gov (United States)

    Wakayama, Hideki; Henares, Terence G; Jigawa, Kaede; Funano, Shun-ichi; Sueyoshi, Kenji; Endo, Tatsuro; Hisamoto, Hideaki

    2013-11-21

    A combination of an enzyme-labeled antibody release coating and a novel fluorescent enzyme substrate-copolymerized hydrogel in a microchannel for a single-step, no-wash microfluidic immunoassay is demonstrated. This hydrogel discriminates the free enzyme-conjugated antibody from an antigen-enzyme-conjugated antibody immunocomplex based on the difference in molecular size. A selective and sensitive immunoassay, with 10-1000 ng mL(-1) linear range, is reported.

  16. Principles of modern physics

    CERN Document Server

    Saxena, A K

    2014-01-01

    Principles of Modern Physics, divided into twenty one chapters, begins with quantum ideas followed by discussions on special relativity, atomic structure, basic quantum mechanics, hydrogen atom (and Schrodinger equation) and periodic table, the three statistical distributions, X-rays, physics of solids, imperfections in crystals, magnetic properties of materials, superconductivity, Zeeman-, Stark- and Paschen Back- effects, Lasers, Nuclear physics (Yukawa's meson theory and various nuclear models), radioactivity and nuclear reactions, nuclear fission, fusion and plasma, particle accelerators and detectors, the universe, Elementary particles (classification, eight fold way and quark model, standard model and fundamental interactions), cosmic rays, deuteron problem in nuclear physics, and cathode ray oscilloscope. NEW TO THE FOURTH EDITION: The CO2 Laser Theory of magnetic moments on the basis of shell model Geological dating Laser Induced fusion and laser fusion reactor. Hawking radiation The cosmological red ...

  17. Nonlinear optics principles and applications

    CERN Document Server

    Li, Chunfei

    2017-01-01

    This book reflects the latest advances in nonlinear optics. Besides the simple, strict mathematical deduction, it also discusses the experimental verification and possible future applications, such as the all-optical switches. It consistently uses the practical unit system throughout. It employs simple physical images, such as "light waves" and "photons" to systematically explain the main principles of nonlinear optical effects. It uses the first-order nonlinear wave equation in frequency domain under the condition of “slowly varying amplitude approximation" and the classical model of the interaction between the light and electric dipole. At the same time, it also uses the rate equations based on the energy-level transition of particle systems excited by photons and the energy and momentum conservation principles to explain the nonlinear optical phenomenon. The book is intended for researchers, engineers and graduate students in the field of the optics, optoelectronics, fiber communication, information tech...

  18. Quantum derivatives and the Schroedinger equation

    International Nuclear Information System (INIS)

    Ben Adda, Faycal; Cresson, Jacky

    2004-01-01

    We define a scale derivative for non-differentiable functions. It is constructed via quantum derivatives which take into account non-differentiability and the existence of a minimal resolution for mean representation. This justify heuristic computations made by Nottale in scale-relativity. In particular, the Schroedinger equation is derived via the scale-relativity principle and Newton's fundamental equation of dynamics

  19. P-adic Schroedinger type equation

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1988-12-01

    In p-adic quantum mechanics a Schroedinger type equation is considered. We discuss the appropriate notion of differential operators. A solution of the Schroedinger type equation is given. A new set of vacuum states for the p-adic quantum harmonic oscillator is presented. The correspondence principle with the standard quantum mechanics is discussed. (orig.)

  20. How Should Equation Balancing Be Taught?

    Science.gov (United States)

    Porter, Spencer K.

    1985-01-01

    Matrix methods and oxidation-number methods are currently advocated and used for balancing equations. This article shows how balancing equations can be introduced by a third method which is related to a fundamental principle, is easy to learn, and is powerful in its application. (JN)

  1. Fractional variational principles in action

    Energy Technology Data Exchange (ETDEWEB)

    Baleanu, Dumitru [Department of Mathematics and Computer Science, Faculty of Art and Sciences, Cankaya University, 06530 Ankara (Turkey); Institute of Space Sciences, PO Box MG-23, R 76900, Magurele-Bucharest (Romania)], E-mail: dumitru@cankaya.edu.tr

    2009-10-15

    The fractional calculus has gained considerable importance in various fields of science and engineering, especially during the last few decades. An open issue in this emerging field is represented by the fractional variational principles area. Therefore, the fractional Euler-Lagrange and Hamilton equations started to be examined intensely during the last decade. In this paper, we review some new trends in this field and we discuss some of their potential applications.

  2. The Principle of Energetic Consistency

    Science.gov (United States)

    Cohn, Stephen E.

    2009-01-01

    A basic result in estimation theory is that the minimum variance estimate of the dynamical state, given the observations, is the conditional mean estimate. This result holds independently of the specifics of any dynamical or observation nonlinearity or stochasticity, requiring only that the probability density function of the state, conditioned on the observations, has two moments. For nonlinear dynamics that conserve a total energy, this general result implies the principle of energetic consistency: if the dynamical variables are taken to be the natural energy variables, then the sum of the total energy of the conditional mean and the trace of the conditional covariance matrix (the total variance) is constant between observations. Ensemble Kalman filtering methods are designed to approximate the evolution of the conditional mean and covariance matrix. For them the principle of energetic consistency holds independently of ensemble size, even with covariance localization. However, full Kalman filter experiments with advection dynamics have shown that a small amount of numerical dissipation can cause a large, state-dependent loss of total variance, to the detriment of filter performance. The principle of energetic consistency offers a simple way to test whether this spurious loss of variance limits ensemble filter performance in full-blown applications. The classical second-moment closure (third-moment discard) equations also satisfy the principle of energetic consistency, independently of the rank of the conditional covariance matrix. Low-rank approximation of these equations offers an energetically consistent, computationally viable alternative to ensemble filtering. Current formulations of long-window, weak-constraint, four-dimensional variational methods are designed to approximate the conditional mode rather than the conditional mean. Thus they neglect the nonlinear bias term in the second-moment closure equation for the conditional mean. The principle of

  3. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  4. Cosmological implications of Heisenberg's principle

    CERN Document Server

    Gonzalo, Julio A

    2015-01-01

    The aim of this book is to analyze the all important implications of Heisenberg's Uncertainty Principle for a finite universe with very large mass-energy content such as ours. The earlier and main contributors to the formulation of Quantum Mechanics are briefly reviewed regarding the formulation of Heisenberg's Principle. After discussing “indeterminacy” versus ”uncertainty”, the universal constants of physics are reviewed and Planck's units are given. Next, a novel set of units, Heisenberg–Lemaitre units, are defined in terms of the large finite mass of the universe. With the help of Heisenberg's principle, the time evolution of the finite zero-point energy for the universe is investigated quantitatively. Next, taking advantage of the rigorous solutions of Einstein's cosmological equation for a flat, open and mixed universe of finite mass, the most recent and accurate data on the “age” (to) and the expansion rate (Ho) of the universe and their implications are reconsidered.

  5. Quantum principles and particles

    CERN Document Server

    Wilcox, Walter

    2012-01-01

    QUANTUM PRINCIPLESPerspective and PrinciplesPrelude to Quantum MechanicsStern-Gerlach Experiment Idealized Stern-Gerlach ResultsClassical Model AttemptsWave Functions for Two Physical-Outcome CaseProcess Diagrams, Operators, and Completeness Further Properties of Operators/ModulationOperator ReformulationOperator RotationBra-Ket Notation/Basis StatesTransition AmplitudesThree-Magnet Setup Example-CoherenceHermitian ConjugationUnitary OperatorsA Very Special OperatorMatrix RepresentationsMatrix Wave Function RecoveryExpectation ValuesWrap Up ProblemsFree Particles in One DimensionPhotoelectric EffectCompton EffectUncertainty Relation for PhotonsStability of Ground StatesBohr ModelFourier Transform and Uncertainty RelationsSchrödinger EquationSchrödinger Equation ExampleDirac Delta FunctionsWave Functions and ProbabilityProbability CurrentTime Separable SolutionsCompleteness for Particle StatesParticle Operator PropertiesOperator RulesTime Evolution and Expectation ValuesWrap-UpProblemsSome One-Dimensional So...

  6. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  7. Information Equation of State

    Directory of Open Access Journals (Sweden)

    M. Paul Gough

    2008-07-01

    Full Text Available Landauer’s principle is applied to information in the universe. Once stars began forming there was a constant information energy density as the increasing proportion of matter at high stellar temperatures exactly compensated for the expanding universe. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10 > z > 0.8, over one half of cosmic time. A reasonable universe information bit content of only 1087 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem. In answering the ‘Why now?’ question we wonder ‘What next?’ as we expect the information equation of state to tend towards w = 0 in the future.c

  8. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  9. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein-Zernike self-consistent field approach

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  10. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein–Zernike self-consistent field approach

    International Nuclear Information System (INIS)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-01-01

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S N 2 reaction (Cl − + CH 3 Cl → ClCH 3 + Cl − ) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF

  11. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach.

    Science.gov (United States)

    Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  12. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  13. The gauge principle vs. the equivalence principle

    International Nuclear Information System (INIS)

    Gates, S.J. Jr.

    1984-01-01

    Within the context of field theory, it is argued that the role of the equivalence principle may be replaced by the principle of gauge invariance to provide a logical framework for theories of gravitation

  14. Lie-transformed action principle for classical plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1984-06-01

    The Lie transform for a single particle in a wave is embedded in a Lagrangian action principle for self-consistent plasma dynamics. Variation of the action then yields the Vlasov equation for the oscillation-center distribution, the ray equations and amplitude transport for the wave, and the Poisson equation for the quasistatic field

  15. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  16. Modeling the release, spreading, and burning of LNG, LPG, and gasoline on water

    International Nuclear Information System (INIS)

    Johnson, David W.; Cornwell, John B.

    2007-01-01

    Current interest in the shipment of liquefied natural gas (LNG) has renewed the debate about the safety of shipping large volumes of flammable fuels. The size of a spreading pool following a release of LNG from an LNG tank ship has been the subject of numerous papers and studies dating back to the mid-1970s. Several papers have presented idealized views of how the LNG would be released and spread across a quiescent water surface. There is a considerable amount of publicly available material describing these idealized releases, but little discussion of how other flammable fuels would behave if released from similar sized ships. The purpose of this paper is to determine whether the models currently available from the United States Federal Energy Regulatory Commission (FERC) can be used to simulate the release, spreading, vaporization, and pool fire impacts for materials other than LNG, and if so, identify which material-specific parameters are required. The review of the basic equations and principles in FERC's LNG release, spreading, and burning models did not reveal a critical fault that would prevent their use in evaluating the consequences of other flammable fluid releases. With the correct physical data, the models can be used with the same level of confidence for materials such as LPG and gasoline as they are for LNG

  17. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  18. Generalization of Einstein's gravitational field equations

    Science.gov (United States)

    Moulin, Frédéric

    2017-12-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.

  19. Physical Principle for Generation of Randomness

    Science.gov (United States)

    Zak, Michail

    2009-01-01

    A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)

  20. Exact solutions to two higher order nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Xu Liping; Zhang Jinliang

    2007-01-01

    Using the homogeneous balance principle and F-expansion method, the exact solutions to two higher order nonlinear Schroedinger equations which describe the propagation of femtosecond pulses in nonlinear fibres are obtained with the aid of a set of subsidiary higher order ordinary differential equations (sub-equations for short)

  1. Exact solutions to a class of nonlinear Schrödinger-type equations

    Indian Academy of Sciences (India)

    A class of nonlinear Schrödinger-type equations, including the Rangwala–Rao equation, the Gerdjikov–Ivanov equation, the Chen–Lee–Lin equation and the Ablowitz–Ramani–Segur equation are investigated, and the exact solutions are derived with the aid of the homogeneous balance principle, and a set of subsidiary ...

  2. Renormalization group, principle of invariance and functional automodelity

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1981-01-01

    There exists a remarkable identity of functional equations describing the property of functional automodelity in diverse branches of physics: renormalization group equations in quantum field theory, functional equations of the invariance principle of the one-dimensional transport theory and some others. The origin of this identity is investigated. It is shown that the structure of these equations reflects the simple and general property of transitivity with respect to the way of fixatio of initial on effective degrees of freedom [ru

  3. Principle of Parsimony, Fake Science, and Scales

    Science.gov (United States)

    Yeh, T. C. J.; Wan, L.; Wang, X. S.

    2017-12-01

    Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large

  4. Quantum Gross-Pitaevskii Equation

    Directory of Open Access Journals (Sweden)

    Jutho Haegeman, Damian Draxler, Vid Stojevic, J. Ignacio Cirac, Tobias J. Osborne, Frank Verstraete

    2017-07-01

    Full Text Available We introduce a non-commutative generalization of the Gross-Pitaevskii equation for one-dimensional quantum gasses and quantum liquids. This generalization is obtained by applying the time-dependent variational principle to the variational manifold of continuous matrix product states. This allows for a full quantum description of many body system ---including entanglement and correlations--- and thus extends significantly beyond the usual mean-field description of the Gross-Pitaevskii equation, which is known to fail for (quasi one-dimensional systems. By linearizing around a stationary solution, we furthermore derive an associated generalization of the Bogoliubov -- de Gennes equations. This framework is applied to compute the steady state response amplitude to a periodic perturbation of the potential.

  5. Quasisymmetry equations for conventional stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1994-11-01

    General quasisymmetry condition, which demands the independence of B 2 on one of the angular Boozer coordinates, is reduced to two equations containing only geometrical characteristics and helical field of a stellarator. The analysis is performed for conventional stellarators with a planar circular axis using standard stellarator expansion. As a basis, the invariant quasisymmetry condition is used. The quasisymmetry equations for stellarators are obtained from this condition also in an invariant form. Simplified analogs of these equations are given for the case when averaged magnetic surfaces are circular shifted torii. It is shown that quasisymmetry condition can be satisfied, in principle, in a conventional stellarator by a proper choice of two satellite harmonics of the helical field in addition to the main harmonic. Besides, there appears a restriction on the shift of magnetic surfaces. Thus, in general, the problem is closely related with that of self-consistent description of a configuration. (author)

  6. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  7. Optimal Control for Stochastic Delay Evolution Equations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn [Huzhou University, Department of Mathematical Sciences (China); Shen, Yang, E-mail: skyshen87@gmail.com [York University, Department of Mathematics and Statistics (Canada)

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we apply stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.

  8. Sustained release of radioprotective agents

    International Nuclear Information System (INIS)

    Shani, J.

    1980-11-01

    New pharmaceutical formulations for the sustained release into the G.I. tract of radioprotective agents have been developed by the authors. The experimental method initially consisted in the production of methylcellulose microcapsules. This method failed apparently because of the premature ''explosion'' of the microcapsules and the consequent premature release of massive amounts of the drug. A new method has been developed which consists in drying and pulverising cysteamine and cysteine preparations, mixing them in various proportions with stearic acid and ethylcellulose as carriers. The mixture is then compressed into cylindrical tablets at several pressure values and the leaching rate of the radioprotective agents is then measured by spectrophotometry. The relation between the concentration of the active drug and its rate of release, and the effect on the release rate of the pressure applied to the tablet during its formation were also investigated. Results indicating that the release rate was linearly related to the square root of ''t'' seem to be in agreement with what is predictable, according to Higuchi's equation, save for the very initial and terminal phases. A clear correlation was also established between the stearic acid/ethylcellulose ratios and the release of 20% cysteine, namely a marked decrease in the rate of cysteine release was observed with increasing concentrations of stearic acid. Finally, it was observed that a higher formation pressure results in quicker release of the drug

  9. Variational symmetries, conserved quantities and identities for several equations of mathematical physics

    Energy Technology Data Exchange (ETDEWEB)

    Donchev, Veliko, E-mail: velikod@ie.bas.bg [Laboratory “Physical Problems of Electron and Ion Technologies,” Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko shosse, 1784 Sofia (Bulgaria)

    2014-03-15

    We find variational symmetries, conserved quantities and identities for several equations: envelope equation, Böcher equation, the propagation of sound waves with losses, flow of a gas with losses, and the nonlinear Schrödinger equation with losses or gains, and an electro-magnetic interaction. Most of these equations do not have a variational description with the classical variational principle and we find such a description with the generalized variational principle of Herglotz.

  10. Connection of scattering principles: a visual and mathematical tour

    International Nuclear Information System (INIS)

    Broggini, Filippo; Snieder, Roel

    2012-01-01

    Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these scattering principles have a similar functional form. We first lead the reader through a visual explanation of the relationship between these principles and then present the mathematics that illustrates the link between the governing equations of these principles. Throughout this work, we describe the importance of the interaction between the causal and anti-causal Green's functions. (paper)

  11. State-dependent differential Riccati equation to track control of time-varying systems with state and control nonlinearities.

    Science.gov (United States)

    Korayem, M H; Nekoo, S R

    2015-07-01

    This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Methane release

    International Nuclear Information System (INIS)

    Seifert, M.

    1999-01-01

    The Swiss Gas Industry has carried out a systematic, technical estimate of methane release from the complete supply chain from production to consumption for the years 1992/1993. The result of this survey provided a conservative value, amounting to 0.9% of the Swiss domestic output. A continuation of the study taking into account new findings with regard to emission factors and the effect of the climate is now available, which provides a value of 0.8% for the target year of 1996. These results show that the renovation of the network has brought about lower losses in the local gas supplies, particularly for the grey cast iron pipelines. (author)

  13. Physical Consequences of Mathematical Principles

    Directory of Open Access Journals (Sweden)

    Comay E.

    2009-10-01

    Full Text Available Physical consequences are derived from the following mathematical structures: the variational principle, Wigner’s classifications of the irreducible representations of the Poincar ́ e group and the duality invariance of the homogeneous Maxwell equations. The analysis is carried out within the validity domain of special relativity. Hierarchical re- lations between physical theories are used. Some new results are pointed out together with their comparison with experimental data. It is also predicted that a genuine Higgs particle will not be detected.

  14. Emmy Noether and Linear Evolution Equations

    Directory of Open Access Journals (Sweden)

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  15. First-principle calculations of structural, electronic, optical, elastic ...

    Indian Academy of Sciences (India)

    S CHEDDADI

    2017-11-28

    Nov 28, 2017 ... First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite ... The Kohn–Sham equations were solved using the ... RMTKmax = 7 was used for all the investigated systems,.

  16. Moderate Deviation Principles for Stochastic Differential Equations with Jumps

    Science.gov (United States)

    2014-01-15

    N ŕ’"(dt; dy) and the controls ’" : X [0; T ] ! [0;1) are predictable processes satisfying LT (’") Ma2 (") for some constantM . Here LT denotes...space. Although in the moderate deviations problem one has the stronger bound LT (’") Ma2 (") on the cost of controls, the mere tightness of ’" does not...suitable quadratic form. For " > 0 and M ə, consider the spaces SM+;" : = f’ : X [0; T ]! R+j LT (’) Ma2 (")g (2.5) SM" : = f : X [0; T ]! Rj

  17. Credibility is the first principle

    International Nuclear Information System (INIS)

    Beecher, William

    2002-01-01

    The first principle of an effective public affairs program on nuclear energy is credibility. If credibility is lacking, no matter how artful the message, it will not be persuasive. There has long been a problem in the United States. For years much of the industry followed the practice, when there was an event at a nuclear power plant that resulted in an unplanned release of radioactivity, to tell the public there was 'no release' if in fact the release was below the technical specifications of what the NRC mandates as being safe. The NRC is a safety regulator. It can tell nuclear power plant operators what to do, or not do, when it comes to safety, but doesn't have the right to tell them what to say to the public. The example of an emergency exercise and the NRC press release on that occasion showed the direction how companies could be influenced to behave in order to prevent such avoidably negative news coverage, i.e. attaining credibility when public anxiety is concerned

  18. The principle of the Fermionic projector

    CERN Document Server

    Finster, Felix

    2006-01-01

    The "principle of the fermionic projector" provides a new mathematical framework for the formulation of physical theories and is a promising approach for physics beyond the standard model. This book begins with a brief review of relativity, relativistic quantum mechanics, and classical gauge theories, emphasizing the basic physical concepts and mathematical foundations. The external field problem and Klein's paradox are discussed and then resolved by introducing the fermionic projector, a global object in space-time that generalizes the notion of the Dirac sea. At the mathematical core of the book is a precise definition of the fermionic projector and the use of methods of hyperbolic differential equations for detailed analysis. The fermionic projector makes it possible to formulate a new type of variational principle in space-time. The mathematical tools are developed for the analysis of the corresponding Euler-Lagrange equations. A particular variational principle is proposed that gives rise to an effective...

  19. A variational principle for the plasma centrifuge

    International Nuclear Information System (INIS)

    Ludwig, G.O.

    1986-09-01

    A variational principle is derived which describes the stationary state of the plasma column in a plasma centrifuge. Starting with the fluid equations in a rotating frame the theory is developed using the method of irreversible thermodynamics. This formulation easily leads to an expression for the density distribution of the l-species at sedimentation equilibrium, taking into account the effect of the electric and magnetic forces. Assuming stationary boundary conditions and rigid rotation nonequilibrium states the condition for thermodynamic stability integrated over the volume of the system reduces, under certain restrictions, to the principle of minimum entropy production in the stationary state. This principle yields a variational problem which is equivalent to the original problem posed by the stationary fluid equations. The variational method is useful in achieving approximate solutions that give the electric potential and current distributions in the rotating plasma column consistent with an assumed plasma density profile. (Author) [pt

  20. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  1. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  2. Orbits and variational principles for conservative Hamiltonian systems

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1989-01-01

    It is shown that for any Hamiltonian system whose Hamiltonian is time-independent the equations that determine the orbits followed by the system, without making reference to time, have the form of Hamilton's equations in a phase space of dimension two units smaller than that of the original phase space. By considering the cases of classical mechanics and of geometrical optics, it is shown that this result amounts, respectively, to Maupertuis' least action principle and to Fermat's principle. (Author)

  3. Radiation protection principles

    International Nuclear Information System (INIS)

    Ismail Bahari

    2007-01-01

    The presentation outlines the aspects of radiation protection principles. It discussed the following subjects; radiation hazards and risk, the objectives of radiation protection, three principles of the system - justification of practice, optimization of protection and safety, dose limit

  4. Principles of project management

    Science.gov (United States)

    1982-01-01

    The basic principles of project management as practiced by NASA management personnel are presented. These principles are given as ground rules and guidelines to be used in the performance of research, development, construction or operational assignments.

  5. Application of the principle of similarity fluid mechanics

    International Nuclear Information System (INIS)

    Hendricks, R.C.; Sengers, J.V.

    1979-01-01

    Possible applications of the principle of similarity to fluid mechanics is described and illustrated. In correlating thermophysical properties of fluids, the similarity principle transcends the traditional corresponding states principle. In fluid mechanics the similarity principle is useful in correlating flow processes that can be modeled adequately with one independent variable (i.e., one-dimensional flows). In this paper we explore the concept of transforming the conservation equations by combining similarity principles for thermophysical properties with those for fluid flow. We illustrate the usefulness of the procedure by applying such a transformation to calculate two phase critical mass flow through a nozzle

  6. The certainty principle (review)

    OpenAIRE

    Arbatsky, D. A.

    2006-01-01

    The certainty principle (2005) allowed to conceptualize from the more fundamental grounds both the Heisenberg uncertainty principle (1927) and the Mandelshtam-Tamm relation (1945). In this review I give detailed explanation and discussion of the certainty principle, oriented to all physicists, both theorists and experimenters.

  7. Quantum Action Principle with Generalized Uncertainty Principle

    OpenAIRE

    Gu, Jie

    2013-01-01

    One of the common features in all promising candidates of quantum gravity is the existence of a minimal length scale, which naturally emerges with a generalized uncertainty principle, or equivalently a modified commutation relation. Schwinger's quantum action principle was modified to incorporate this modification, and was applied to the calculation of the kernel of a free particle, partly recovering the result previously studied using path integral.

  8. Dissipative quantum mechanics: The generalization of the canonical quantization and von Neumann equation

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1994-07-01

    Sedov variational principle, which is the generalization of the least actional principle for the dissipative processes is used to generalize the canonical quantization and von Neumann equation for dissipative systems (particles and strings). (author). 66 refs, 1 fig

  9. Fokker-Planck equation in mirror research

    International Nuclear Information System (INIS)

    Post, R.F.

    1983-01-01

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror

  10. Children's Acquisition of Arithmetic Principles: The Role of Experience

    Science.gov (United States)

    Prather, Richard; Alibali, Martha W.

    2011-01-01

    The current study investigated how young learners' experiences with arithmetic equations can lead to learning of an arithmetic principle. The focus was elementary school children's acquisition of the Relation to Operands principle for subtraction (i.e., for natural numbers, the difference must be less than the minuend). In Experiment 1, children…

  11. Connection of Scattering Principles: A Visual and Mathematical Tour

    Science.gov (United States)

    Broggini, Filippo; Snieder, Roel

    2012-01-01

    Inverse scattering, Green's function reconstruction, focusing, imaging and the optical theorem are subjects usually studied as separate problems in different research areas. We show a physical connection between the principles because the equations that rule these "scattering principles" have a similar functional form. We first lead the reader…

  12. Dimensional cosmological principles

    International Nuclear Information System (INIS)

    Chi, L.K.

    1985-01-01

    The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle

  13. A cyclic symmetry principle in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs

  14. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  15. On the correspondence between quantum and classical variational principles

    International Nuclear Information System (INIS)

    Ruiz, D.E.; Dodin, I.Y.

    2015-01-01

    Classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrödinger, Pauli, and Klein–Gordon particles

  16. On Babinet's principle and diffraction associated with an arbitrary particle.

    Science.gov (United States)

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Mishchenko, Michael I

    2017-12-01

    Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

  17. POSITIVE SOLUTIONS TO TWO TYPES OF NEUTRAL DIFFERENTIAL EQUATIONS WITH DISTRIBUTED DELAY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, we study two types of neutral functional differential equations with finite or unbounded distributed deviating arguments. By Banach contraction princi-ple, we obtain some sufficient conditions for the existence of positive solutions to such equations.

  18. General Large Deviations and Functional Iterated Logarithm Law for Multivalued Stochastic Differential Equations

    OpenAIRE

    Ren, Jiagang; Wu, Jing; Zhang, Hua

    2015-01-01

    In this paper, we prove a large deviation principle of Freidlin-Wentzell's type for the multivalued stochastic differential equations. As an application, we derive a functional iterated logarithm law for the solutions of multivalued stochastic differential equations.

  19. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  20. A variational principle for Newton-Cartan theory

    International Nuclear Information System (INIS)

    Goenner, H.F.M.

    1984-01-01

    In the framework of a space-time theory of gravitation a variational principle is set up for the gravitational field equations and the equations of motion of matter. The general framework leads to Newton's equations of motion with an unspecified force term and, for irrotational motion, to a restriction on the propagation of the shear tensor along the streamlines of matter. The field equations obtained from the variation are weaker than the standard field equations of Newton-Cartan theory. An application to fluids with shear and bulk viscosity is given. (author)

  1. ALMOST AUTOMORPHIC MILD SOLUTIONS TO SOME FRACTIONAL DELAY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction principle.

  2. Moving potential for Dirac and Klein–Gordon equations

    Indian Academy of Sciences (India)

    and according to our knowledge the mathematical treatment of relativistic ..... the equation with step + Coulomb is soluble in principle, the time-dependent term ... and A R Hibbs, Quantum mechanics and path integrals (McGraw Hill, New.

  3. On a Volterra Stieltjes integral equation

    Directory of Open Access Journals (Sweden)

    P. T. Vaz

    1990-01-01

    Full Text Available The paper deals with a study of linear Volterra integral equations involving Lebesgue-Stieltjes integrals in two independent variables. The authors prove an existence theorem using the Banach fixed-point principle. An explicit example is also considered.

  4. Principles for establishing acceptance criteria for releases of chemicals

    International Nuclear Information System (INIS)

    Kirkeskov Jensen, L.

    1989-01-01

    The Danish National Agency of Environmental Protection is in the process of making guidelines for setting limit values on chemicals emission. They are going to serve the following purposes: to promote consistency and improve quality in judicial settlements; to make it possible for the population to evaluate and discuss these settlements; to make it possible for the technical experts to plan their investigations in order to make use of them in a subsequent evaluation; to provide information to the public and enable them to take the necessary precautions against air pollution; and to make it possible to use the guidelines in future planning in e.g. local authorities

  5. Turbulence and the Stabilization Principle

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    Further results of research, reported in several previous NASA Tech Briefs articles, were obtained on a mathematical formalism for postinstability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence). To recapitulate: Fictitious control forces are introduced to couple the dynamical equations with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in ordinary perceived three-dimensional space is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. Con sequently, the postinstability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable. The previously reported findings are analyzed from the perspective of the authors Stabilization Principle, according to which (1) stability is recognized as an attribute of mathematical formalism rather than of underlying physics and (2) a dynamical system that appears unstable when modeled by differentiable functions only can be rendered stable by modifying the dynamical equations to incorporate intrinsic stochasticity.

  6. Quantum adiabatic Markovian master equations

    International Nuclear Information System (INIS)

    Albash, Tameem; Zanardi, Paolo; Boixo, Sergio; Lidar, Daniel A

    2012-01-01

    We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Lindblad form. The two equations make markedly different predictions depending on whether or not the Lamb shift is included. Our analysis keeps track of the various time and energy scales associated with the various approximations we make, and thus allows for a systematic inclusion of higher order corrections, in particular beyond the adiabatic limit. We use our formalism to study the evolution of an Ising spin chain in a transverse field and coupled to a thermal bosonic bath, for which we identify four distinct evolution phases. While we do not expect this to be a generic feature, in one of these phases dissipation acts to increase the fidelity of the system state relative to the adiabatic ground state. (paper)

  7. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  8. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  9. Hamilton principle for the dual electrodynamics

    International Nuclear Information System (INIS)

    Souza Silva, Saulo Carneiro de

    1995-01-01

    The present work discusses the classical electromagnetic theory in the presence of magnetic monopoles. We review the connection between such objects and the long standing problem of charge quantization and the main theoretical difficulties in formulating the classical dual electromagnetic theory in terms of an action principle. We show that a deeper understanding of the source of such difficulties leads naturally to the construction of a variational principle for a non-local Lagrangian from which all the (local) dynamical equations for electric, magnetic charges and fields can be obtained. (author)

  10. Born's reciprocity principle in stochastic phase space

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    It is shown that the application of Born's reciprocity principle to relativistic quantum mechanics in stochastic phase space (by the requirement that the proper wave functions of extended particles satisfy the Born-Lande as well as the Klein-Gordon equation) leads to the unique determination of these functions for any given value of their rms radius. The resulting particle propagators display not only Lorentz but also reciprocal invariance. This feature remains true even in the case of mass-zero particles, such as photons, when their localization is achieved by means of extended test particles whose proper wave functions obey the reciprocity principle. (author)

  11. Biomechanics principles and practices

    CERN Document Server

    Peterson, Donald R

    2014-01-01

    Presents Current Principles and ApplicationsBiomedical engineering is considered to be the most expansive of all the engineering sciences. Its function involves the direct combination of core engineering sciences as well as knowledge of nonengineering disciplines such as biology and medicine. Drawing on material from the biomechanics section of The Biomedical Engineering Handbook, Fourth Edition and utilizing the expert knowledge of respected published scientists in the application and research of biomechanics, Biomechanics: Principles and Practices discusses the latest principles and applicat

  12. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  13. Database principles programming performance

    CERN Document Server

    O'Neil, Patrick

    2014-01-01

    Database: Principles Programming Performance provides an introduction to the fundamental principles of database systems. This book focuses on database programming and the relationships between principles, programming, and performance.Organized into 10 chapters, this book begins with an overview of database design principles and presents a comprehensive introduction to the concepts used by a DBA. This text then provides grounding in many abstract concepts of the relational model. Other chapters introduce SQL, describing its capabilities and covering the statements and functions of the programmi

  14. Principles of ecotoxicology

    National Research Council Canada - National Science Library

    Walker, C. H

    2012-01-01

    "Now in its fourth edition, this exceptionally accessible text provides students with a multidisciplinary perspective and a grounding in the fundamental principles required for research in toxicology today...

  15. Quantization of Equations of Motion

    Directory of Open Access Journals (Sweden)

    D. Kochan

    2007-01-01

    Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail. 

  16. Chaotic dynamics in the Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Holm, D.D.; Kovacic, G.

    1992-01-01

    In the slowly varying envelope approximation and the rotating wave approximation for the Maxwell-Bloch equations, we describe how the presence of a small-amplitude probe laser in an excited, two-level, resonant medium leads to homoclinic chaos in the laser-matter dynamics. We also describe a derivation of the Maxwell-Bloch equations from an action principle

  17. Equilibrium approach in the derivation of differential equations for ...

    African Journals Online (AJOL)

    In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, homogenous linear elastic materials. Equilibrium method was adopted in the derivation.

  18. Introducing the Accounting Equation with M&M's®

    Science.gov (United States)

    Scofield, Barbara W.; Dye, Wilma

    2009-01-01

    On the first day of Principles of Accounting classes, students learn the fundamental accounting equation from which all financial accounting practice emerge. The accounting equation is the criterion by which companies are valued and by which company performance is measured. This activity simplifies assets, liabilities, and owners' equity to the…

  19. Second order guiding-center Vlasov–Maxwell equations

    DEFF Research Database (Denmark)

    Madsen, Jens

    2010-01-01

    Second order gyrogauge invariant guiding-center coordinates with strong E×B-flow are derived using the Lie transformation method. The corresponding Poisson bracket structure and equations of motion are obtained. From a variational principle the explicit Vlasov–Maxwell equations are derived...

  20. Reference population equations using peak expiratory flow meters ...

    African Journals Online (AJOL)

    Many formulae for predicting lung function values for Nigerians have been produced by a lot of investigators. The same principle but different statistical methods were adopted by different authors in generating these equations, hence the variability observed among these formulae. Most equations in current use are based on ...

  1. APPLYING THE PRINCIPLES OF ACCOUNTING IN

    OpenAIRE

    NAGY CRISTINA MIHAELA; SABĂU CRĂCIUN; ”Tibiscus” University of Timişoara, Faculty of Economic Science

    2015-01-01

    The application of accounting principles (accounting principle on accrual basis; principle of business continuity; method consistency principle; prudence principle; independence principle; the principle of separate valuation of assets and liabilities; intangibility principle; non-compensation principle; the principle of substance over form; the principle of threshold significance) to companies that are in bankruptcy procedure has a number of particularities. Thus, some principl...

  2. Complex nonlinear Lagrangian for the Hasegawa-Mima equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Abdullatif, R.F.; Sangeetha, G.G.

    2005-01-01

    The Hasegawa-Mima equation is the simplest nonlinear single-field model equation that captures the essence of drift wave dynamics. Like the Schroedinger equation it is first order in time. However its coefficients are real, so if the potential φ is initially real it remains real. However, by embedding φ in the space of complex functions a simple Lagrangian is found from which the Hasegawa-Mima equation may be derived from Hamilton's Principle. This Lagrangian is used to derive an action conservation equation which agrees with that of Biskamp and Horton. (author)

  3. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  4. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  5. Principles of computational fluid dynamics

    CERN Document Server

    Wesseling, Pieter

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state-of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and ho...

  6. Quantum retrodiction and causality principle

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1994-01-01

    Quantum mechanics is factually a predictive science. But quantum retrodiction may also be needed, e.g., for the experimental verification of the validity of the Schroedinger equation for the wave function in the past if the present state is given. It is shown that in the retrodictive analog of the prediction the measurement must be replaced by another physical process called the retromeasurement. In this process, the reduction of a state vector into eigenvectors of a measured observable must proceed in the opposite direction of time as compared to the usual reduction. Examples of such processes are unknown. Moreover, they are shown to be forbidden by the causality principle stating that the later event cannot influence the earlier one. So quantum retrodiction seems to be unrealizable. It is demonstrated that the approach to the retrodiction given by S.Watanabe and F.Belinfante must be considered as an unsatisfactory ersatz of retrodicting. 20 refs., 3 figs

  7. On the superposition principle in interference experiments.

    Science.gov (United States)

    Sinha, Aninda; H Vijay, Aravind; Sinha, Urbasi

    2015-05-14

    The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation.

  8. Stochastic control theory dynamic programming principle

    CERN Document Server

    Nisio, Makiko

    2015-01-01

    This book offers a systematic introduction to the optimal stochastic control theory via the dynamic programming principle, which is a powerful tool to analyze control problems. First we consider completely observable control problems with finite horizons. Using a time discretization we construct a nonlinear semigroup related to the dynamic programming principle (DPP), whose generator provides the Hamilton–Jacobi–Bellman (HJB) equation, and we characterize the value function via the nonlinear semigroup, besides the viscosity solution theory. When we control not only the dynamics of a system but also the terminal time of its evolution, control-stopping problems arise. This problem is treated in the same frameworks, via the nonlinear semigroup. Its results are applicable to the American option price problem. Zero-sum two-player time-homogeneous stochastic differential games and viscosity solutions of the Isaacs equations arising from such games are studied via a nonlinear semigroup related to DPP (the min-ma...

  9. The genetic difference principle.

    Science.gov (United States)

    Farrelly, Colin

    2004-01-01

    In the newly emerging debates about genetics and justice three distinct principles have begun to emerge concerning what the distributive aim of genetic interventions should be. These principles are: genetic equality, a genetic decent minimum, and the genetic difference principle. In this paper, I examine the rationale of each of these principles and argue that genetic equality and a genetic decent minimum are ill-equipped to tackle what I call the currency problem and the problem of weight. The genetic difference principle is the most promising of the three principles and I develop this principle so that it takes seriously the concerns of just health care and distributive justice in general. Given the strains on public funds for other important social programmes, the costs of pursuing genetic interventions and the nature of genetic interventions, I conclude that a more lax interpretation of the genetic difference principle is appropriate. This interpretation stipulates that genetic inequalities should be arranged so that they are to the greatest reasonable benefit of the least advantaged. Such a proposal is consistent with prioritarianism and provides some practical guidance for non-ideal societies--that is, societies that do not have the endless amount of resources needed to satisfy every requirement of justice.

  10. The principle of equivalence

    International Nuclear Information System (INIS)

    Unnikrishnan, C.S.

    1994-01-01

    Principle of equivalence was the fundamental guiding principle in the formulation of the general theory of relativity. What are its key elements? What are the empirical observations which establish it? What is its relevance to some new experiments? These questions are discussed in this article. (author). 11 refs., 5 figs

  11. The Dutch premium principle

    NARCIS (Netherlands)

    van Heerwaarden, A.E.; Kaas, R.

    1992-01-01

    A premium principle is derived, in which the loading for a risk is the reinsurance loading for an excess-of-loss cover. It is shown that the principle is well-behaved in the sense that it results in larger premiums for risks that are larger in stop-loss order or in stochastic dominance.

  12. A new computing principle

    International Nuclear Information System (INIS)

    Fatmi, H.A.; Resconi, G.

    1988-01-01

    In 1954 while reviewing the theory of communication and cybernetics the late Professor Dennis Gabor presented a new mathematical principle for the design of advanced computers. During our work on these computers it was found that the Gabor formulation can be further advanced to include more recent developments in Lie algebras and geometric probability, giving rise to a new computing principle

  13. The anthropic principle

    International Nuclear Information System (INIS)

    Carr, B.J.

    1982-01-01

    The anthropic principle (the conjecture that certain features of the world are determined by the existence of Man) is discussed with the listing of the objections, and is stated that nearly all the constants of nature may be determined by the anthropic principle which does not give exact values for the constants but only their orders of magnitude. (J.T.)

  14. Variational principles in physics

    CERN Document Server

    Basdevant, Jean-Louis

    2007-01-01

    Optimization under constraints is an essential part of everyday life. Indeed, we routinely solve problems by striking a balance between contradictory interests, individual desires and material contingencies. This notion of equilibrium was dear to thinkers of the enlightenment, as illustrated by Montesquieu’s famous formulation: "In all magistracies, the greatness of the power must be compensated by the brevity of the duration." Astonishingly, natural laws are guided by a similar principle. Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be known as Fermat’s principle, a cornerstone of geometrical optics. Variational Principles in Physics explains variational principles and charts their use throughout modern physics. The heart of the book is devoted to the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. Prof. Basdev...

  15. Wave Functions for Time-Dependent Dirac Equation under GUP

    Science.gov (United States)

    Zhang, Meng-Yao; Long, Chao-Yun; Long, Zheng-Wen

    2018-04-01

    In this work, the time-dependent Dirac equation is investigated under generalized uncertainty principle (GUP) framework. It is possible to construct the exact solutions of Dirac equation when the time-dependent potentials satisfied the proper conditions. In (1+1) dimensions, the analytical wave functions of the Dirac equation under GUP have been obtained for the two kinds time-dependent potentials. Supported by the National Natural Science Foundation of China under Grant No. 11565009

  16. Neutral Backward Stochastic Functional Differential Equations and Their Application

    OpenAIRE

    Wei, Wenning

    2013-01-01

    In this paper we are concerned with a new type of backward equations with anticipation which we call neutral backward stochastic functional differential equations. We obtain the existence and uniqueness and prove a comparison theorem. As an application, we discuss the optimal control of neutral stochastic functional differential equations, establish a Pontryagin maximum principle, and give an explicit optimal value for the linear optimal control.

  17. Solution of the stellar structure equations in Eulerian coordinates

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1976-01-01

    The equations of hydrostatic and thermal equilibrium, assuming only radiative energy transport and spherical symmetry, are solved in Eulerian coordinates by a suitable modification of the Henyey method. An Eulerian approach may possibly be more suitably extended to more spatial dimensions than the usual Lagrangian procedure. The principle advantage of this method is that the equations of hydrostatic and thermal equilibrium and Poisson's equation may be solved simultaneously

  18. Principle of space existence and De Sitter metric

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1990-01-01

    The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric

  19. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle

    Directory of Open Access Journals (Sweden)

    Giorgio Kaniadakis

    2018-06-01

    Full Text Available Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker–Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker–Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker–Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker–Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker–Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A 296, 405 (2001, univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker–Planck equation in its most general form.

  20. News/Press Releases

    Data.gov (United States)

    Office of Personnel Management — A press release, news release, media release, press statement is written communication directed at members of the news media for the purpose of announcing programs...

  1. The GUP and quantum Raychaudhuri equation

    Directory of Open Access Journals (Sweden)

    Elias C. Vagenas

    2018-06-01

    Full Text Available In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalised uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters β0 and α0 with η which is the parameter that characterises the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole, which could be read as a beta function equation for the quadratic deformation parameter β0. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.

  2. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  3. Partial differential equations mathematical techniques for engineers

    CERN Document Server

    Epstein, Marcelo

    2017-01-01

    This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate s...

  4. The GUP and quantum Raychaudhuri equation

    Science.gov (United States)

    Vagenas, Elias C.; Alasfar, Lina; Alsaleh, Salwa M.; Ali, Ahmed Farag

    2018-06-01

    In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalised uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters β0 and α0 with η which is the parameter that characterises the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole), which could be read as a beta function equation for the quadratic deformation parameter β0. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.

  5. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  6. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  7. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  8. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  9. Dilaton cosmology and the modified uncertainty principle

    International Nuclear Information System (INIS)

    Majumder, Barun

    2011-01-01

    Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in Plank length which is consistent with doubly special relativity and string theory. The classical and quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we found that it is possible to get a late time acceleration for this model. For the quantum mechanical description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-DeWitt equation for the early universe and compare our results. We have used an approximation method in the case of MUP.

  10. Mach's principle and space-time structure

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)

  11. Dynamic principle for ensemble control tools.

    Science.gov (United States)

    Samoletov, A; Vasiev, B

    2017-11-28

    Dynamical equations describing physical systems in contact with a thermal bath are commonly extended by mathematical tools called "thermostats." These tools are designed for sampling ensembles in statistical mechanics. Here we propose a dynamic principle underlying a range of thermostats which is derived using fundamental laws of statistical physics and ensures invariance of the canonical measure. The principle covers both stochastic and deterministic thermostat schemes. Our method has a clear advantage over a range of proposed and widely used thermostat schemes that are based on formal mathematical reasoning. Following the derivation of the proposed principle, we show its generality and illustrate its applications including design of temperature control tools that differ from the Nosé-Hoover-Langevin scheme.

  12. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  13. Time-advance algorithms based on Hamilton's principle

    International Nuclear Information System (INIS)

    Lewis, H.R.; Kostelec, P.J.

    1993-01-01

    Time-advance algorithms based on Hamilton's variational principle are being developed for application to problems in plasma physics and other areas. Hamilton's principle was applied previously to derive a system of ordinary differential equations in time whose solution provides an approximation to the evolution of a plasma described by the Vlasov-Maxwell equations. However, the variational principle was not used to obtain an algorithm for solving the ordinary differential equations numerically. The present research addresses the numerical solution of systems of ordinary differential equations via Hamilton's principle. The basic idea is first to choose a class of functions for approximating the solution of the ordinary differential equations over a specific time interval. Then the parameters in the approximating function are determined by applying Hamilton's principle exactly within the class of approximating functions. For example, if an approximate solution is desired between time t and time t + Δ t, the class of approximating functions could be polynomials in time up to some degree. The issue of how to choose time-advance algorithms is very important for achieving efficient, physically meaningful computer simulations. The objective is to reliably simulate those characteristics of an evolving system that are scientifically most relevant. Preliminary numerical results are presented, including comparisons with other computational methods

  14. Physical entropy, information entropy and their evolution equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inspired by the evolution equation of nonequilibrium statistical physics entropy and the concise statistical formula of the entropy production rate, we develop a theory of the dynamic information entropy and build a nonlinear evolution equation of the information entropy density changing in time and state variable space. Its mathematical form and physical meaning are similar to the evolution equation of the physical entropy: The time rate of change of information entropy density originates together from drift, diffusion and production. The concise statistical formula of information entropy production rate is similar to that of physical entropy also. Furthermore, we study the similarity and difference between physical entropy and information entropy and the possible unification of the two statistical entropies, and discuss the relationship among the principle of entropy increase, the principle of equilibrium maximum entropy and the principle of maximum information entropy as well as the connection between them and the entropy evolution equation.

  15. Limitations of Boltzmann's principle

    International Nuclear Information System (INIS)

    Lavenda, B.H.

    1995-01-01

    The usual form of Boltzmann's principle assures that maximum entropy, or entropy reduction, occurs with maximum probability, implying a unimodal distribution. Boltzmann's principle cannot be applied to nonunimodal distributions, like the arcsine law, because the entropy may be concave only over a limited portion of the interval. The method of subordination shows that the arcsine distribution corresponds to a process with a single degree of freedom, thereby confirming the invalidation of Boltzmann's principle. The fractalization of time leads to a new distribution in which arcsine and Cauchy distributions can coexist simultaneously for nonintegral degrees of freedom between √2 and 2

  16. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  17. Modern electronic maintenance principles

    CERN Document Server

    Garland, DJ

    2013-01-01

    Modern Electronic Maintenance Principles reviews the principles of maintaining modern, complex electronic equipment, with emphasis on preventive and corrective maintenance. Unfamiliar subjects such as the half-split method of fault location, functional diagrams, and fault finding guides are explained. This book consists of 12 chapters and begins by stressing the need for maintenance principles and discussing the problem of complexity as well as the requirements for a maintenance technician. The next chapter deals with the connection between reliability and maintenance and defines the terms fai

  18. [Bioethics of principles].

    Science.gov (United States)

    Pérez-Soba Díez del Corral, Juan José

    2008-01-01

    Bioethics emerges about the tecnological problems of acting in human life. Emerges also the problem of the moral limits determination, because they seem exterior of this practice. The Bioethics of Principles, take his rationality of the teleological thinking, and the autonomism. These divergence manifest the epistemological fragility and the great difficulty of hmoralñ thinking. This is evident in the determination of autonomy's principle, it has not the ethical content of Kant's propose. We need a new ethic rationality with a new refelxion of new Principles whose emerges of the basic ethic experiences.

  19. Principles of dynamics

    CERN Document Server

    Hill, Rodney

    2013-01-01

    Principles of Dynamics presents classical dynamics primarily as an exemplar of scientific theory and method. This book is divided into three major parts concerned with gravitational theory of planetary systems; general principles of the foundations of mechanics; and general motion of a rigid body. Some of the specific topics covered are Keplerian Laws of Planetary Motion; gravitational potential and potential energy; and fields of axisymmetric bodies. The principles of work and energy, fictitious body-forces, and inertial mass are also looked into. Other specific topics examined are kinematics

  20. Hamilton's principle for beginners

    International Nuclear Information System (INIS)

    Brun, J L

    2007-01-01

    I find that students have difficulty with Hamilton's principle, at least the first time they come into contact with it, and therefore it is worth designing some examples to help students grasp its complex meaning. This paper supplies the simplest example to consolidate the learning of the quoted principle: that of a free particle moving along a line. Next, students are challenged to add gravity to reinforce the argument and, finally, a two-dimensional motion in a vertical plane is considered. Furthermore these examples force us to be very clear about such an abstract principle

  1. Developing principles of growth

    DEFF Research Database (Denmark)

    Neergaard, Helle; Fleck, Emma

    of the principles of growth among women-owned firms. Using an in-depth case study methodology, data was collected from women-owned firms in Denmark and Ireland, as these countries are similar in contextual terms, e.g. population and business composition, dominated by micro, small and medium-sized enterprises....... Extending on principles put forward in effectuation theory, we propose that women grow their firms according to five principles which enable women’s enterprises to survive in the face of crises such as the current financial world crisis....

  2. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  3. Drug release kinetic analysis and prediction of release data via polymer molecular weight in sustained release diltiazem matrices.

    Science.gov (United States)

    Adibkia, K; Ghanbarzadeh, S; Mohammadi, G; Khiavi, H Z; Sabzevari, A; Barzegar-Jalali, M

    2014-03-01

    This study was conducted to investigate the effects of HPMC (K4M and K100M) as well as tragacanth on the drug release rate of diltiazem (DLTZ) from matrix tablets prepared by direct compression method.Mechanism of drug transport through the matrices was studied by fitting the release data to the 10 kinetic models. 3 model independent parameters; i. e., mean dissolution time (MDT), mean release rate (MRR) and release rate efficacy (RE) as well as 5 time point approaches were established to compare the dissolution profiles. To find correlation between fraction of drug released and polymer's molecular weight, dissolution data were fitted into two proposed equations.All polymers could sustain drug release up to 10 h. The release data were fitted best to Peppas and Higuchi square root kinetic models considering squared correlation coefficient and mean percent error (MPE). RE and MRR were decreased when polymer to drug ratio was increased. Conversely, t60% was increased with raising polymer /drug ratio. The fractions of drug released from the formulations prepared with tragacanth were more than those formulated using the same amount of HPMC K4M and HPMC K100M.Preparation of DLTZ matrices applying HPMCK4M, HPMC K100M and tragacanth could effectively extend the drug release. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Maximum Path Information and Fokker Planck Equation

    Science.gov (United States)

    Li, Wei; Wang A., Q.; LeMehaute, A.

    2008-04-01

    We present a rigorous method to derive the nonlinear Fokker-Planck (FP) equation of anomalous diffusion directly from a generalization of the principle of least action of Maupertuis proposed by Wang [Chaos, Solitons & Fractals 23 (2005) 1253] for smooth or quasi-smooth irregular dynamics evolving in Markovian process. The FP equation obtained may take two different but equivalent forms. It was also found that the diffusion constant may depend on both q (the index of Tsallis entropy [J. Stat. Phys. 52 (1988) 479] and the time t.

  5. Surveys in differential-algebraic equations IV

    CERN Document Server

    Reis, Timo

    2017-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  6. Surveys in differential-algebraic equations III

    CERN Document Server

    Reis, Timo

    2015-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  7. Vaccinology: principles and practice

    National Research Council Canada - National Science Library

    Morrow, John

    2012-01-01

    ... principles to implementation. This is an authoritative textbook that details a comprehensive and systematic approach to the science of vaccinology focusing on not only basic science, but the many stages required to commercialize...

  8. On the invariance principle

    Energy Technology Data Exchange (ETDEWEB)

    Moller-Nielsen, Thomas [University of Oxford (United Kingdom)

    2014-07-01

    Physicists and philosophers have long claimed that the symmetries of our physical theories - roughly speaking, those transformations which map solutions of the theory into solutions - can provide us with genuine insight into what the world is really like. According to this 'Invariance Principle', only those quantities which are invariant under a theory's symmetries should be taken to be physically real, while those quantities which vary under its symmetries should not. Physicists and philosophers, however, are generally divided (or, indeed, silent) when it comes to explaining how such a principle is to be justified. In this paper, I spell out some of the problems inherent in other theorists' attempts to justify this principle, and sketch my own proposed general schema for explaining how - and when - the Invariance Principle can indeed be used as a legitimate tool of metaphysical inference.

  9. Principles of applied statistics

    National Research Council Canada - National Science Library

    Cox, D. R; Donnelly, Christl A

    2011-01-01

    .... David Cox and Christl Donnelly distil decades of scientific experience into usable principles for the successful application of statistics, showing how good statistical strategy shapes every stage of an investigation...

  10. Minimum entropy production principle

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2013-01-01

    Roč. 8, č. 7 (2013), s. 9664-9677 ISSN 1941-6016 Institutional support: RVO:68378271 Keywords : MINEP Subject RIV: BE - Theoretical Physics http://www.scholarpedia.org/article/Minimum_entropy_production_principle

  11. Global ethics and principlism.

    Science.gov (United States)

    Gordon, John-Stewart

    2011-09-01

    This article examines the special relation between common morality and particular moralities in the four-principles approach and its use for global ethics. It is argued that the special dialectical relation between common morality and particular moralities is the key to bridging the gap between ethical universalism and relativism. The four-principles approach is a good model for a global bioethics by virtue of its ability to mediate successfully between universal demands and cultural diversity. The principle of autonomy (i.e., the idea of individual informed consent), however, does need to be revised so as to make it compatible with alternatives such as family- or community-informed consent. The upshot is that the contribution of the four-principles approach to global ethics lies in the so-called dialectical process and its power to deal with cross-cultural issues against the background of universal demands by joining them together.

  12. Microprocessors principles and applications

    CERN Document Server

    Debenham, Michael J

    1979-01-01

    Microprocessors: Principles and Applications deals with the principles and applications of microprocessors and covers topics ranging from computer architecture and programmed machines to microprocessor programming, support systems and software, and system design. A number of microprocessor applications are considered, including data processing, process control, and telephone switching. This book is comprised of 10 chapters and begins with a historical overview of computers and computing, followed by a discussion on computer architecture and programmed machines, paying particular attention to t

  13. Electrical and electronic principles

    CERN Document Server

    Knight, S A

    1991-01-01

    Electrical and Electronic Principles, 2, Second Edition covers the syllabus requirements of BTEC Unit U86/329, including the principles of control systems and elements of data transmission. The book first tackles series and parallel circuits, electrical networks, and capacitors and capacitance. Discussions focus on flux density, electric force, permittivity, Kirchhoff's laws, superposition theorem, arrangement of resistors, internal resistance, and powers in a circuit. The text then takes a look at capacitors in circuit, magnetism and magnetization, electromagnetic induction, and alternating v

  14. Remark on Heisenberg's principle

    International Nuclear Information System (INIS)

    Noguez, G.

    1988-01-01

    Application of Heisenberg's principle to inertial frame transformations allows a distinction between three commutative groups of reciprocal transformations along one direction: Galilean transformations, dual transformations, and Lorentz transformations. These are three conjugate groups and for a given direction, the related commutators are all proportional to one single conjugation transformation which compensates for uniform and rectilinear motions. The three transformation groups correspond to three complementary ways of measuring space-time as a whole. Heisenberg's Principle then gets another explanation [fr

  15. Jacobi equations as Lagrange equations of the deformed Lagrangian

    International Nuclear Information System (INIS)

    Casciaro, B.

    1995-03-01

    We study higher-order variational derivatives of a generic Lagrangian L 0 = L 0 (t,q,q). We introduce two new Lagrangians, L 1 and L 2 , associated to the first and second-order deformations of the original Lagrangian L 0 . In terms of these Lagrangians, we are able to establish simple relations between the variational derivatives of different orders of a Lagrangian. As a consequence of these relations the Euler-Lagrange and the Jacobi equations are obtained from a single variational principle based on L 1 . We can furthermore introduce an associated Hamiltonian H 1 = H 1 (t,q,q radical,η,η radical) with η equivalent to δq. If L 0 is independent of time then H 1 is a conserved quantity. (author). 15 refs

  16. Variational principle for the Bloch unified reaction theory

    International Nuclear Information System (INIS)

    MacDonald, W.; Rapheal, R.

    1975-01-01

    The unified reaction theory formulated by Claude Bloch uses a boundary value operator to write the Schroedinger equation for a scattering state as an inhomogeneous equation over the interaction region. As suggested by Lane and Robson, this equation can be solved by using a matrix representation on any set which is complete over the interaction volume. Lane and Robson have proposed, however, that a variational form of the Bloch equation can be used to obtain a ''best'' value for the S-matrix when a finite subset of this basis is used. The variational principle suggested by Lane and Robson, which gives a many-channel S-matrix different from the matrix solution on a finite basis, is considered first, and it is shown that the difference results from the fact that their variational principle is not, in fact, equivalent to the Bloch equation. Then a variational principle is presented which is fully equivalent to the Bloch form of the Schroedinger equation, and it is shown that the resulting S-matrix is the same as that obtained from the matrix solution of this equation. (U.S.)

  17. Controlled release of biofunctional substances by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The release behaviour of a drug from flat circular capsules obtained by radiation-induced polymerization at low temperatures and with different hydrophilic properties has been studied. The effect of various factors on release property was investigated. The release process could be divided into three parts, an initial quick release stage, stationary state release stage and a retarded release stage. Release behaviour in the stationary state was examined using Noyes-Whitney and Higuchi equations. It was shown that the hydrophilic property of polymer matrix expressed by water content was the most important effect on diffusion and release rate. Rigidity of the polymer may also affect diffusivity. The first quick release step could be attributed to rapid dissolution of drug in the matrix surface due to polymer swelling. (author)

  18. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  19. Gauge theories under incorporation of a generalized uncertainty principle

    International Nuclear Information System (INIS)

    Kober, Martin

    2010-01-01

    There is considered an extension of gauge theories according to the assumption of a generalized uncertainty principle which implies a minimal length scale. A modification of the usual uncertainty principle implies an extended shape of matter field equations like the Dirac equation. If there is postulated invariance of such a generalized field equation under local gauge transformations, the usual covariant derivative containing the gauge potential has to be replaced by a generalized covariant derivative. This leads to a generalized interaction between the matter field and the gauge field as well as to an additional self-interaction of the gauge field. Since the existence of a minimal length scale seems to be a necessary assumption of any consistent quantum theory of gravity, the gauge principle is a constitutive ingredient of the standard model, and even gravity can be described as gauge theory of local translations or Lorentz transformations, the presented extension of gauge theories appears as a very important consideration.

  20. A Maximum Principle for SDEs of Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Daniel, E-mail: danieand@math.kth.se; Djehiche, Boualem, E-mail: boualem@math.kth.se [Royal Institute of Technology, Department of Mathematics (Sweden)

    2011-06-15

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  1. A Maximum Principle for SDEs of Mean-Field Type

    International Nuclear Information System (INIS)

    Andersson, Daniel; Djehiche, Boualem

    2011-01-01

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  2. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  3. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  4. Generalization of Einstein's gravitational field equations

    International Nuclear Information System (INIS)

    Moulin, Frederic

    2017-01-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  5. Generalization of Einstein's gravitational field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)

    2017-12-15

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  6. Charge conjugation invariance of the spectator equations

    International Nuclear Information System (INIS)

    Gross, F.

    1999-01-01

    In response to recent criticism, the authors show how to define the spectator equations for negative energies so that charge conjugation invariance is preserved. The result, which emerges naturally from the application of spectator principles to systems of particles with negative energies, is to replace all factors of the external energies W iota by √ W 2 iota , insuring that the amplitudes are independent of the sign of the energies W iota

  7. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  8. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  9. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  10. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  11. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  12. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  13. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  14. A Principle of Intentionality.

    Science.gov (United States)

    Turner, Charles K

    2017-01-01

    The mainstream theories and models of the physical sciences, including neuroscience, are all consistent with the principle of causality. Wholly causal explanations make sense of how things go, but are inherently value-neutral, providing no objective basis for true beliefs being better than false beliefs, nor for it being better to intend wisely than foolishly. Dennett (1987) makes a related point in calling the brain a syntactic (procedure-based) engine. He says that you cannot get to a semantic (meaning-based) engine from there. He suggests that folk psychology revolves around an intentional stance that is independent of the causal theories of the brain, and accounts for constructs such as meanings, agency, true belief, and wise desire. Dennett proposes that the intentional stance is so powerful that it can be developed into a valid intentional theory. This article expands Dennett's model into a principle of intentionality that revolves around the construct of objective wisdom. This principle provides a structure that can account for all mental processes, and for the scientific understanding of objective value. It is suggested that science can develop a far more complete worldview with a combination of the principles of causality and intentionality than would be possible with scientific theories that are consistent with the principle of causality alone.

  15. General principles of radiotherapy

    International Nuclear Information System (INIS)

    Easson, E.C.

    1985-01-01

    The daily practice of any established branch of medicine should be based on some acceptable principles. This chapter is concerned with the general principles on which the radiotherapy of the Manchester school is based. Though many radiotherapists in other centres would doubtless accept these principles, there are sufficiently wide differences in practice throughout the world to suggest that some therapists adhere to a fundamentally different philosophy. The authors believe it is important, especially for those beginning their formal training in radiotherapy, to subscribe to an internally consistent school of thought, employing methods of treatment for each type of lesion in each anatomical site that are based on accepted principles and subjected to continuous rigorous scrutiny to test their effectiveness. Not only must each therapeutic technique be evaluated, but the underlying principles too must be questioned if and when this seems indicated. It is a feature of this hospital that similar lesions are all treated by the same technique, so long as statistical evidence justifies such a policy. All members of the staff adhere to the accepted policy until or unless reliable reasons are adduced to change this policy

  16. The traveltime holographic principle

    Science.gov (United States)

    Huang, Yunsong; Schuster, Gerard T.

    2015-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the `traveltime holographic principle', by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  17. Ethical principles of scientific communication

    Directory of Open Access Journals (Sweden)

    Baranov G. V.

    2017-03-01

    Full Text Available the article presents the principles of ethical management of scientific communication. The author approves the priority of ethical principle of social responsibility of the scientist.

  18. Sigma set scattering equations in nuclear reaction theory

    International Nuclear Information System (INIS)

    Kowalski, K.L.; Picklesimer, A.

    1982-01-01

    The practical applications of partially summed versions of the Rosenberg equations involving only special subsets (sigma sets) of the physical amplitudes are investigated with special attention to the Pauli principle. The requisite properties of the transformations from the pair labels to the set of partitions labeling the sigma set of asymptotic channels are established. New, well-defined, scattering integral equations for the antisymmetrized transition operators are found which possess much less coupling among the physically distinct channels than hitherto expected for equations with kernels of equal complexity. In several cases of physical interest in nuclear physics, a single connected-kernel equation is obtained for the relevant antisymmetrized elastic scattering amplitude

  19. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  20. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  1. Accelerated Simulation of Kinetic Transport Using Variational Principles and Sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Caflisch, Russel [Univ. of California, Los Angeles, CA (United States)

    2017-06-30

    This project is centered on the development and application of techniques of sparsity and compressed sensing for variational principles, PDEs and physics problems, in particular for kinetic transport. This included derivation of sparse modes for elliptic and parabolic problems coming from variational principles. The research results of this project are on methods for sparsity in differential equations and their applications and on application of sparsity ideas to kinetic transport of plasmas.

  2. TRAFIC, a computer program for calculating the release of metallic fission products from an HTGR core

    International Nuclear Information System (INIS)

    Smith, P.D.

    1978-02-01

    A special purpose computer program, TRAFIC, is presented for calculating the release of metallic fission products from an HTGR core. The program is based upon Fick's law of diffusion for radioactive species. One-dimensional transient diffusion calculations are performed for the coated fuel particles and for the structural graphite web. A quasi steady-state calculation is performed for the fuel rod matrix material. The model accounts for nonlinear adsorption behavior in the fuel rod gap and on the coolant hole boundary. The TRAFIC program is designed to operate in a core survey mode; that is, it performs many repetitive calculations for a large number of spatial locations in the core. This is necessary in order to obtain an accurate volume integrated release. For this reason the program has been designed with calculational efficiency as one of its main objectives. A highly efficient numerical method is used in the solution. The method makes use of the Duhamel superposition principle to eliminate interior spatial solutions from consideration. Linear response functions relating the concentrations and mass fluxes on the boundaries of a homogeneous region are derived. Multiple regions are numerically coupled through interface conditions. Algebraic elimination is used to reduce the equations as far as possible. The problem reduces to two nonlinear equations in two unknowns, which are solved using a Newton Raphson technique

  3. A balance principle approach for modeling phase transformation kinetics

    International Nuclear Information System (INIS)

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  4. Ethical principles and theories.

    Science.gov (United States)

    Schultz, R C

    1993-01-01

    Ethical theory about what is right and good in human conduct lies behind the issues practitioners face and the codes they turn to for guidance; it also provides guidance for actions, practices, and policies. Principles of obligation, such as egoism, utilitarianism, and deontology, offer general answers to the question, "Which acts/practices are morally right?" A re-emerging alternative to using such principles to assess individual conduct is to center normative theory on personal virtues. For structuring society's institutions, principles of social justice offer alternative answers to the question, "How should social benefits and burdens be distributed?" But human concerns about right and good call for more than just theoretical responses. Some critics (eg, the postmodernists and the feminists) charge that normative ethical theorizing is a misguided enterprise. However, that charge should be taken as a caution and not as a refutation of normative ethical theorizing.

  5. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  6. Food Web Assembly Rules for Generalized Lotka-Volterra Equations.

    Directory of Open Access Journals (Sweden)

    Jan O Haerter

    2016-02-01

    Full Text Available In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.

  7. Food Web Assembly Rules for Generalized Lotka-Volterra Equations.

    Science.gov (United States)

    Haerter, Jan O; Mitarai, Namiko; Sneppen, Kim

    2016-02-01

    In food webs, many interacting species coexist despite the restrictions imposed by the competitive exclusion principle and apparent competition. For the generalized Lotka-Volterra equations, sustainable coexistence necessitates nonzero determinant of the interaction matrix. Here we show that this requirement is equivalent to demanding that each species be part of a non-overlapping pairing, which substantially constrains the food web structure. We demonstrate that a stable food web can always be obtained if a non-overlapping pairing exists. If it does not, the matrix rank can be used to quantify the lack of niches, corresponding to unpaired species. For the species richness at each trophic level, we derive the food web assembly rules, which specify sustainable combinations. In neighboring levels, these rules allow the higher level to avert competitive exclusion at the lower, thereby incorporating apparent competition. In agreement with data, the assembly rules predict high species numbers at intermediate levels and thinning at the top and bottom. Using comprehensive food web data, we demonstrate how omnivores or parasites with hosts at multiple trophic levels can loosen the constraints and help obtain coexistence in food webs. Hence, omnivory may be the glue that keeps communities intact even under extinction or ecological release of species.

  8. Three Principles of Water Flow in Soils

    Science.gov (United States)

    Guo, L.; Lin, H.

    2016-12-01

    Knowledge of water flow in soils is crucial to understanding terrestrial hydrological cycle, surface energy balance, biogeochemical dynamics, ecosystem services, contaminant transport, and many other Critical Zone processes. However, due to the complex and dynamic nature of non-uniform flow, reconstruction and prediction of water flow in natural soils remain challenging. This study synthesizes three principles of water flow in soils that can improve modeling water flow in soils of various complexity. The first principle, known as the Darcy's law, came to light in the 19th century and suggested a linear relationship between water flux density and hydraulic gradient, which was modified by Buckingham for unsaturated soils. Combining mass balance and the Buckingham-Darcy's law, L.A. Richards quantitatively described soil water change with space and time, i.e., Richards equation. The second principle was proposed by L.A. Richards in the 20th century, which described the minimum pressure potential needed to overcome surface tension of fluid and initiate water flow through soil-air interface. This study extends this principle to encompass soil hydrologic phenomena related to varied interfaces and microscopic features and provides a more cohesive explanation of hysteresis, hydrophobicity, and threshold behavior when water moves through layered soils. The third principle is emerging in the 21st century, which highlights the complex and evolving flow networks embedded in heterogeneous soils. This principle is summarized as: Water moves non-uniformly in natural soils with a dual-flow regime, i.e., it follows the least-resistant or preferred paths when "pushed" (e.g., by storms) or "attracted" (e.g., by plants) or "restricted" (e.g., by bedrock), but moves diffusively into the matrix when "relaxed" (e.g., at rest) or "touched" (e.g., adsorption). The first principle is a macroscopic view of steady-state water flow, the second principle is a microscopic view of interface

  9. Nonlinear Poisson equation for heterogeneous media.

    Science.gov (United States)

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  11. Mechanical engineering principles

    CERN Document Server

    Bird, John

    2014-01-01

    A student-friendly introduction to core engineering topicsThis book introduces mechanical principles and technology through examples and applications, enabling students to develop a sound understanding of both engineering principles and their use in practice. These theoretical concepts are supported by 400 fully worked problems, 700 further problems with answers, and 300 multiple-choice questions, all of which add up to give the reader a firm grounding on each topic.The new edition is up to date with the latest BTEC National specifications and can also be used on undergraduate courses in mecha

  12. Itch Management: General Principles.

    Science.gov (United States)

    Misery, Laurent

    2016-01-01

    Like pain, itch is a challenging condition that needs to be managed. Within this setting, the first principle of itch management is to get an appropriate diagnosis to perform an etiology-oriented therapy. In several cases it is not possible to treat the cause, the etiology is undetermined, there are several causes, or the etiological treatment is not effective enough to alleviate itch completely. This is also why there is need for symptomatic treatment. In all patients, psychological support and associated pragmatic measures might be helpful. General principles and guidelines are required, yet patient-centered individual care remains fundamental. © 2016 S. Karger AG, Basel.

  13. Principles of Optics

    Science.gov (United States)

    Born, Max; Wolf, Emil

    1999-10-01

    Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past forty years. This edition has been thoroughly revised and updated, with new material covering the CAT scan, interference with broad-band light and the so-called Rayleigh-Sommerfeld diffraction theory. This edition also details scattering from inhomogeneous media and presents an account of the principles of diffraction tomography to which Emil Wolf has made a basic contribution. Several new appendices are also included. This new edition will be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.

  14. Electrical principles 3 checkbook

    CERN Document Server

    Bird, J O

    2013-01-01

    Electrical Principles 3 Checkbook aims to introduce students to the basic electrical principles needed by technicians in electrical engineering, electronics, and telecommunications.The book first tackles circuit theorems, single-phase series A.C. circuits, and single-phase parallel A.C. circuits. Discussions focus on worked problems on parallel A.C. circuits, worked problems on series A.C. circuits, main points concerned with D.C. circuit analysis, worked problems on circuit theorems, and further problems on circuit theorems. The manuscript then examines three-phase systems and D.C. transients

  15. Principles of statistics

    CERN Document Server

    Bulmer, M G

    1979-01-01

    There are many textbooks which describe current methods of statistical analysis, while neglecting related theory. There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again fo

  16. On the fundamental principles of the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1990-01-01

    This paper expounds consistently within the frames of the Special Relativity Theory the fundamental postulates of the Relativistic Theory of Gravitation (RTG) which make it possible to obtain the unique complete system of the equations for gravitational field. Major attention has been paid to the analysis of the gauge group and of the causality principle. Some results related to the evolution of the Friedmann Universe, to gravitational collapse, etc. being the consequences of the RTG equations are also presented. 7 refs

  17. Analysis of drug effects on neurotransmitter release

    International Nuclear Information System (INIS)

    Rowell, P.; Garner, A.

    1986-01-01

    The release of neurotransmitter is routinely studied in a superfusion system in which serial samples are collected and the effects of drugs or other treatments on the amount of material in the superfusate is determined. With frequent sampling interval, this procedure provides a mechanism for dynamically characterizing the release process itself. Using automated data collection in conjunction with polyexponential computer analysis, the equation which describes the release process in each experiment is determined. Analysis of the data during the nontreated phase of the experiment allows an internal control to be used for accurately assessing any changes in neurotransmitter release which may occur during a subsequent treatment phase. The use of internal controls greatly improves the signal to noise ratio and allows determinations of very low concentrations of drugs on small amounts of tissue to be made. In this presentation, the effects of 10 μM nicotine on 3 H-dopamine release in rat nucleus accumbens is described. The time course, potency and efficacy of the drug treatment is characterized using this system. Determinations of the exponential order of the release as well as the rate constants allow one to study the mechanism of the release process. A description of 3 H-dopamine release in normal as well as Ca ++ -free medium is presented

  18. Safety principles and design criteria for nuclear power stations

    International Nuclear Information System (INIS)

    Gazit, M.

    1982-01-01

    The criteria and safety principles for the design of nuclear power stations are presented from the viewpoint of a nuclear engineer. The design, construction and operation of nuclear power stations should be carried out according to these criteria and safety principles to ensure, to a reasonable degree, that the likelihood of release of radioactivity as a result of component failure or human error should be minimized. (author)

  19. Variational principles and Heisenberg matrix mechanics

    International Nuclear Information System (INIS)

    Klein, A.; Li, C.-T.

    1979-01-01

    If in Heisenberg's equations of motion for a problem in quantum mechanics (or quantum field theory) one studies matrix elements in the energy representation and by use of completeness conditions expresses the equations solely in terms of matrix elements of the canonical variables, and if one does likewise with the associated kinematical constraints (commutation relations), one arrives at a formulation - largely unexplored hitherto - which can be exploited for both practical and theoretical development. In this contribution, the above theme is developed within the framework of one-dimensional problems. It is shown how this formulation, both dynamics and kinematics, can be derived from a new variational principle, indeed from an entire class of such principles. A powerful method of diagonalizing the Hamiltonians by means of computations utilizing these equations is described. The variational method is shown to be particularly useful for the study of the regime of large quantum numbers. The usual WKB approximation is seen to be contained as well as a basis for the study of systematic corrections to it. Further applications in progress are mentioned. (Auth.)

  20. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  1. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  2. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  3. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  4. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  5. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  6. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  7. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  8. Calculation of propellant gas pressure by simple extended corresponding state principle

    OpenAIRE

    Bin Xu; San-jiu Ying; Xin Liao

    2016-01-01

    The virial equation can well describe gas state at high temperature and pressure, but the difficulties in virial coefficient calculation limit the use of virial equation. Simple extended corresponding state principle (SE-CSP) is introduced in virial equation. Based on a corresponding state equation, including three characteristic parameters, an extended parameter is introduced to describe the second virial coefficient expressions of main products of propellant gas. The modified SE-CSP second ...

  9. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  10. The Principles of Readability

    Science.gov (United States)

    DuBay, William H.

    2004-01-01

    The principles of readability are in every style manual. Readability formulas are in every writing aid. What is missing is the research and theory on which they stand. This short review of readability research spans 100 years. The first part covers the history of adult literacy studies in the U.S., establishing the stratified nature of the adult…

  11. Principles of electrodynamics

    CERN Document Server

    Schwartz, Melvin

    1972-01-01

    This advanced undergraduate- and graduate-level text by the 1988 Nobel Prize winner establishes the subject's mathematical background, reviews the principles of electrostatics, then introduces Einstein's special theory of relativity and applies it throughout the book in topics ranging from Gauss' theorem and Coulomb's law to electric and magnetic susceptibility.

  12. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  13. The Idiom Principle Revisited

    Science.gov (United States)

    Siyanova-Chanturia, Anna; Martinez, Ron

    2015-01-01

    John Sinclair's Idiom Principle famously posited that most texts are largely composed of multi-word expressions that "constitute single choices" in the mental lexicon. At the time that assertion was made, little actual psycholinguistic evidence existed in support of that holistic, "single choice," view of formulaic language. In…

  14. The Pauli Exclusion Principle

    Indian Academy of Sciences (India)

    his exclusion principle, the quantum theory was a mess. Moreover, it could ... This is a function of all the coordinates and 'internal variables' such as spin, of all the ... must remain basically the same (ie change by a phase factor at most) if we ...

  15. The traveltime holographic principle

    KAUST Repository

    Huang, Y.; Schuster, Gerard T.

    2014-01-01

    Fermat's interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat's interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region's boundary.

  16. The Bohr Correspondence Principle

    Indian Academy of Sciences (India)

    IAS Admin

    Deepak Dhar. Keywords. Correspondence principle, hy- drogen atom, Kepler orbit. Deepak Dhar works at the. Tata Institute of Funda- mental Research,. Mumbai. His research interests are mainly in the area of statistical physics. We consider the quantum-mechanical non-relati- vistic hydrogen atom. We show that for bound.

  17. Fundamental Safety Principles

    International Nuclear Information System (INIS)

    Abdelmalik, W.E.Y.

    2011-01-01

    This work presents a summary of the IAEA Safety Standards Series publication No. SF-1 entitled F UDAMENTAL Safety PRINCIPLES p ublished on 2006. This publication states the fundamental safety objective and ten associated safety principles, and briefly describes their intent and purposes. Safety measures and security measures have in common the aim of protecting human life and health and the environment. These safety principles are: 1) Responsibility for safety, 2) Role of the government, 3) Leadership and management for safety, 4) Justification of facilities and activities, 5) Optimization of protection, 6) Limitation of risks to individuals, 7) Protection of present and future generations, 8) Prevention of accidents, 9)Emergency preparedness and response and 10) Protective action to reduce existing or unregulated radiation risks. The safety principles concern the security of facilities and activities to the extent that they apply to measures that contribute to both safety and security. Safety measures and security measures must be designed and implemented in an integrated manner so that security measures do not compromise safety and safety measures do not compromise security.

  18. Principles of Protocol Design

    DEFF Research Database (Denmark)

    Sharp, Robin

    This is a new and updated edition of a book first published in 1994. The book introduces the reader to the principles used in the construction of a large range of modern data communication protocols, as used in distributed computer systems of all kinds. The approach taken is rather a formal one...

  19. The traveltime holographic principle

    KAUST Repository

    Huang, Y.

    2014-11-06

    Fermat\\'s interferometric principle is used to compute interior transmission traveltimes τpq from exterior transmission traveltimes τsp and τsq. Here, the exterior traveltimes are computed for sources s on a boundary B that encloses a volume V of interior points p and q. Once the exterior traveltimes are computed, no further ray tracing is needed to calculate the interior times τpq. Therefore this interferometric approach can be more efficient than explicitly computing interior traveltimes τpq by ray tracing. Moreover, the memory requirement of the traveltimes is reduced by one dimension, because the boundary B is of one fewer dimension than the volume V. An application of this approach is demonstrated with interbed multiple (IM) elimination. Here, the IMs in the observed data are predicted from the migration image and are subsequently removed by adaptive subtraction. This prediction is enabled by the knowledge of interior transmission traveltimes τpq computed according to Fermat\\'s interferometric principle. We denote this principle as the ‘traveltime holographic principle’, by analogy with the holographic principle in cosmology where information in a volume is encoded on the region\\'s boundary.

  20. Fermat's Principle Revisited.

    Science.gov (United States)

    Kamat, R. V.

    1991-01-01

    A principle is presented to show that, if the time of passage of light is expressible as a function of discrete variables, one may dispense with the more general method of the calculus of variations. The calculus of variations and the alternative are described. The phenomenon of mirage is discussed. (Author/KR)

  1. Principles of economics textbooks

    DEFF Research Database (Denmark)

    Madsen, Poul Thøis

    2012-01-01

    Has the financial crisis already changed US principles of economics textbooks? Rather little has changed in individual textbooks, but taken as a whole ten of the best-selling textbooks suggest rather encompassing changes of core curriculum. A critical analysis of these changes shows how individual...

  2. Toxics Release Inventory (TRI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) is a dataset compiled by the U.S. Environmental Protection Agency (EPA). It contains information on the release and waste...

  3. Building an Efficient Model for Afterburn Energy Release

    Energy Technology Data Exchange (ETDEWEB)

    Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

    2012-02-03

    Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

  4. A maximum principle for time dependent transport in systems with voids

    International Nuclear Information System (INIS)

    Schofield, S.L.; Ackroyd, R.T.

    1996-01-01

    A maximum principle is developed for the first-order time dependent Boltzmann equation. The maximum principle is a generalization of Schofield's κ(θ) principle for the first-order steady state Boltzmann equation, and provides a treatment of time dependent transport in systems with void regions. The formulation comprises a direct least-squares minimization allied with a suitable choice of bilinear functional, and gives rise to a maximum principle whose functional is free of terms that have previously led to difficulties in treating void regions. (Author)

  5. Guidance for Evaluating the Safety of Experimental Releases of Mosquitoes, Emphasizing Mark-Release-Recapture Techniques.

    Science.gov (United States)

    Benedict, Mark Q; Charlwood, J Derek; Harrington, Laura C; Lounibos, L Philip; Reisen, William K; Tabachnick, Walter J

    2018-01-01

    Experimental releases of mosquitoes are performed to understand characteristics of populations related to the biology, ability to transmit pathogens, and ultimately their control. In this article, we discuss considerations related to the safety of experimental releases of living mosquitoes, applying principles of good practice in vector biology that protect human health and comfort. We describe specific factors of experimental releases of mosquitoes that we believe are critical to inform institutional biosafety committees and similar review boards to which proposals to conduct mosquito release experiments have been submitted. In this study, "experimental releases" means those that do not significantly increase vector capacity or nuisance biting relative to the unperturbed natural baseline. This document specifically does not address releases of mosquitoes for ongoing control programs or trials of new control methods for which broader assessments of risk are required. It also does not address releases of transgenic or exotic (non-native) mosquito species, both of which require particular regulatory approval. Experimental releases may include females and males and evaluation must consider their effects based on the number released, their genotype and phenotype, the environment into which they are released, and postrelease collection activities. We consider whether increases of disease transmission and nuisance biting might result from proposed experimental releases against the backdrop of natural population size variation. We recommend that experimental releases be conducted in a manner that can be reasonably argued to have insignificant negative effects. Reviewers of proposals for experimental releases should expect applicants to provide such an argument based on evidence from similar studies and their planned activities. This document provides guidance for creating and evaluating such proposals.

  6. The Pauli exclusion principle origin, verifications and applications

    CERN Document Server

    Kaplan, Ilya G

    2017-01-01

    This is the first scientific book devoted to the Pauli Exclusion Principle, which is a fundamental principle of quantum mechanics and is permanently applied in chemistry, physics, molecular biology and in physical astronomy. However, while the principle has been studied for more than 90 years, rigorous theoretical foundations still have not been established and many unsolved problems remain. Following an introduction and historical survey, this book discusses the still unresolved questions around this fundamental principle. For instance, why, according to the Pauli Exclusion Principle, are only symmetric and antisymmetric permutation symmetries for identical particles realized, while the Schrödinger equation is satisfied by functions with any permutation symmetry? Chapter 3 covers possible answers to this, while chapter 4 presents effective and elegant methods for finding the Pauli-allowed states in atomic, molecular and nuclear spectroscopy. Chapter 5 discusses parastatistics and fractional statistics, dem...

  7. Extremum principles for irreversible processes

    International Nuclear Information System (INIS)

    Hillert, M.; Agren, J.

    2006-01-01

    Hamilton's extremum principle is a powerful mathematical tool in classical mechanics. Onsager's extremum principle may play a similar role in irreversible thermodynamics and may also become a valuable tool. His principle may formally be regarded as a principle of maximum rate of entropy production but does not have a clear physical interpretation. Prigogine's principle of minimum rate of entropy production has a physical interpretation when it applies, but is not strictly valid except for a very special case

  8. Principles of computational fluid dynamics

    International Nuclear Information System (INIS)

    Wesseling, P.

    2001-01-01

    The book is aimed at graduate students, researchers, engineers and physicists involved in flow computations. An up-to-date account is given of the present state- of-the-art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated with a fair amount of detail, using elementary mathematical analysis. Attention is given to difficulties arising from geometric complexity of the flow domain and of nonuniform structured boundary-fitted grids. Uniform accuracy and efficiency for singular perturbation problems is studied, pointing the way to accurate computation of flows at high Reynolds number. Much attention is given to stability analysis, and useful stability conditions are provided, some of them new, for many numerical schemes used in practice. Unified methods for compressible and incompressible flows are discussed. Numerical analysis of the shallow-water equations is included. The theory of hyperbolic conservation laws is treated. Godunov's order barrier and how to overcome it by means of slope-limited schemes is discussed. An introduction is given to efficient iterative solution methods, using Krylov subspace and multigrid acceleration. Many pointers are given to recent literature, to help the reader to quickly reach the current research frontier. (orig.)

  9. Nodal algorithm derived from a new variational principle

    International Nuclear Information System (INIS)

    Watson, Fernando V.

    1995-01-01

    As a by-product of the research being carried on by the author on methods of recovering pin power distribution of PWR cores, a nodal algorithm based on a modified variational principle for the two group diffusion equations has been obtained. The main feature of the new algorithm is the low dimensionality achieved by the reduction of the original diffusion equations to a system of algebraic Eigen equations involving the average sources only, instead of sources and interface group currents used in conventional nodal methods. The advantage of this procedure is discussed and results generated by the new algorithm and by a finite difference code are compared. (author). 2 refs, 7 tabs

  10. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  11. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  12. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  13. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  14. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  15. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  16. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  17. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  18. The Schroedinger equation as a singular perturbation problem

    International Nuclear Information System (INIS)

    Jager, E.M. de; Kuepper, T.

    1978-01-01

    Comparisons are made of the eigenvalues and the corresponding eigenfunctions of the eigenvalue problem connected with the one dimensional Schroedinger equation in Hilbert space. The difference of the eigenvalues is estimated by applying Weyl's monotonicity principle and the minimum maximum principle. The difference of the eigenfunctions is estimated in L 2 norm and in maximum norm obtained by using simple tools from operator theory in Hilbert spaces. An application concerning perturbations of the Planck ideal linear oscillator is given. (author)

  19. Efficient reconstruction of contaminant release history

    Energy Technology Data Exchange (ETDEWEB)

    Alezander, Francis [Los Alamos National Laboratory; Anghel, Marian [Los Alamos National Laboratory; Gulbahce, Natali [NON LANL; Tartakovsky, Daniel [NON LANL

    2009-01-01

    We present a generalized hybrid Monte Carlo (GHMC) method for fast, statistically optimal reconstruction of release histories of reactive contaminants. The approach is applicable to large-scale, strongly nonlinear systems with parametric uncertainties and data corrupted by measurement errors. The use of discrete adjoint equations facilitates numerical implementation of GHMC, without putting any restrictions on the degree of nonlinearity of advection-dispersion-reaction equations that are used to described contaminant transport in the subsurface. To demonstrate the salient features of the proposed algorithm, we identify the spatial extent of a distributed source of contamination from concentration measurements of a reactive solute.

  20. Deduction of Einstein equation from homogeneity of Riemann spacetime

    Science.gov (United States)

    Ni, Jun

    2012-03-01

    The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).

  1. Principles of geodynamics

    CERN Document Server

    Scheidegger, Adrian E

    1982-01-01

    Geodynamics is commonly thought to be one of the subjects which provide the basis for understanding the origin of the visible surface features of the Earth: the latter are usually assumed as having been built up by geodynamic forces originating inside the Earth ("endogenetic" processes) and then as having been degrad­ ed by geomorphological agents originating in the atmosphere and ocean ("exogenetic" agents). The modem view holds that the sequence of events is not as neat as it was once thought to be, and that, in effect, both geodynamic and geomorphological processes act simultaneously ("Principle of Antagonism"); however, the division of theoretical geology into the principles of geodynamics and those of theoretical geomorphology seems to be useful for didactic purposes. It has therefore been maintained in the present writer's works. This present treatise on geodynamics is the first part of the author's treatment of theoretical geology, the treatise on Theoretical Geomorphology (also published by the Sprin...

  2. Principles of systems science

    CERN Document Server

    Mobus, George E

    2015-01-01

    This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. The subject of systems science, as a basis for understanding the components and drivers of phenomena at all scales, should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated...

  3. Common principles and multiculturalism.

    Science.gov (United States)

    Zahedi, Farzaneh; Larijani, Bagher

    2009-01-01

    Judgment on rightness and wrongness of beliefs and behaviors is a main issue in bioethics. Over centuries, big philosophers and ethicists have been discussing the suitable tools to determine which act is morally sound and which one is not. Emerging the contemporary bioethics in the West has resulted in a misconception that absolute westernized principles would be appropriate tools for ethical decision making in different cultures. We will discuss this issue by introducing a clinical case. Considering various cultural beliefs around the world, though it is not logical to consider all of them ethically acceptable, we can gather on some general fundamental principles instead of going to the extremes of relativism and absolutism. Islamic teachings, according to the presented evidence in this paper, fall in with this idea.

  4. Principles of Mobile Communication

    CERN Document Server

    Stüber, Gordon L

    2012-01-01

    This mathematically rigorous overview of physical layer wireless communications is now in a third, fully revised and updated edition. Along with coverage of basic principles sufficient for novice students, the volume includes plenty of finer details that will satisfy the requirements of graduate students aiming to research the topic in depth. It also has a role as a handy reference for wireless engineers. The content stresses core principles that are applicable to a broad range of wireless standards. Beginning with a survey of the field that introduces an array of issues relevant to wireless communications and which traces the historical development of today’s accepted wireless standards, the book moves on to cover all the relevant discrete subjects, from radio propagation to error probability performance and cellular radio resource management. A valuable appendix provides a succinct and focused tutorial on probability and random processes, concepts widely used throughout the book. This new edition, revised...

  5. Principles of mathematical modeling

    CERN Document Server

    Dym, Clive

    2004-01-01

    Science and engineering students depend heavily on concepts of mathematical modeling. In an age where almost everything is done on a computer, author Clive Dym believes that students need to understand and "own" the underlying mathematics that computers are doing on their behalf. His goal for Principles of Mathematical Modeling, Second Edition, is to engage the student reader in developing a foundational understanding of the subject that will serve them well into their careers. The first half of the book begins with a clearly defined set of modeling principles, and then introduces a set of foundational tools including dimensional analysis, scaling techniques, and approximation and validation techniques. The second half demonstrates the latest applications for these tools to a broad variety of subjects, including exponential growth and decay in fields ranging from biology to economics, traffic flow, free and forced vibration of mechanical and other systems, and optimization problems in biology, structures, an...

  6. Principles of Stellar Interferometry

    CERN Document Server

    Glindemann, Andreas

    2011-01-01

    Over the last decade, stellar interferometry has developed from a specialist tool to a mainstream observing technique, attracting scientists whose research benefits from milliarcsecond angular resolution. Stellar interferometry has become part of the astronomer’s toolbox, complementing single-telescope observations by providing unique capabilities that will advance astronomical research. This carefully written book is intended to provide a solid understanding of the principles of stellar interferometry to students starting an astronomical research project in this field or to develop instruments and to astronomers using interferometry but who are not interferometrists per se. Illustrated by excellent drawings and calculated graphs the imaging process in stellar interferometers is explained starting from first principles on light propagation and diffraction wave propagation through turbulence is described in detail using Kolmogorov statistics the impact of turbulence on the imaging process is discussed both f...

  7. Principles of Fourier analysis

    CERN Document Server

    Howell, Kenneth B

    2001-01-01

    Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...

  8. Principles of mobile communication

    CERN Document Server

    Stüber, Gordon L

    2017-01-01

    This mathematically rigorous overview of physical layer wireless communications is now in a 4th, fully revised and updated edition. The new edition features new content on 4G cellular systems, 5G cellular outlook, bandpass signals and systems, and polarization, among many other topics, in addition to a new chapters on channel assignment techniques. Along with coverage of fundamentals and basic principles sufficient for novice students, the volume includes finer details that satisfy the requirements of graduate students aiming to conduct in-depth research. The book begins with a survey of the field, introducing issues relevant to wireless communications. The book moves on to cover relevant discrete subjects, from radio propagation, to error probability performance, and cellular radio resource management. An appendix provides a tutorial on probability and random processes. The content stresses core principles that are applicable to a broad range of wireless standards. New examples are provided throughout the bo...

  9. Principles of photonics

    CERN Document Server

    Liu, Jia-Ming

    2016-01-01

    With this self-contained and comprehensive text, students will gain a detailed understanding of the fundamental concepts and major principles of photonics. Assuming only a basic background in optics, readers are guided through key topics such as the nature of optical fields, the properties of optical materials, and the principles of major photonic functions regarding the generation, propagation, coupling, interference, amplification, modulation, and detection of optical waves or signals. Numerous examples and problems are provided throughout to enhance understanding, and a solutions manual containing detailed solutions and explanations is available online for instructors. This is the ideal resource for electrical engineering and physics undergraduates taking introductory, single-semester or single-quarter courses in photonics, providing them with the knowledge and skills needed to progress to more advanced courses on photonic devices, systems and applications.

  10. Common Principles and Multiculturalism

    Science.gov (United States)

    Zahedi, Farzaneh; Larijani, Bagher

    2009-01-01

    Judgment on rightness and wrongness of beliefs and behaviors is a main issue in bioethics. Over centuries, big philosophers and ethicists have been discussing the suitable tools to determine which act is morally sound and which one is not. Emerging the contemporary bioethics in the West has resulted in a misconception that absolute westernized principles would be appropriate tools for ethical decision making in different cultures. We will discuss this issue by introducing a clinical case. Considering various cultural beliefs around the world, though it is not logical to consider all of them ethically acceptable, we can gather on some general fundamental principles instead of going to the extremes of relativism and absolutism. Islamic teachings, according to the presented evidence in this paper, fall in with this idea. PMID:23908720

  11. Principles of (Behavioral) Economics

    OpenAIRE

    David Laibson; John A. List

    2015-01-01

    Behavioral economics has become an important and integrated component of modern economics. Behavioral economists embrace the core principles of economics—optimization and equilibrium—and seek to develop and extend those ideas to make them more empirically accurate. Behavioral models assume that economic actors try to pick the best feasible option and those actors sometimes make mistakes. Behavioral ideas should be incorporated throughout the first-year undergraduate course. Instructors should...

  12. Principles of electrical safety

    CERN Document Server

    Sutherland, Peter E

    2015-01-01

    Principles of Electrical Safety discusses current issues in electrical safety, which are accompanied by series' of practical applications that can be used by practicing professionals, graduate students, and researchers. .  Provides extensive introductions to important topics in electrical safety Comprehensive overview of inductance, resistance, and capacitance as applied to the human body Serves as a preparatory guide for today's practicing engineers

  13. The uncertainty principle

    International Nuclear Information System (INIS)

    Martens, Hans.

    1991-01-01

    The subject of this thesis is the uncertainty principle (UP). The UP is one of the most characteristic points of differences between quantum and classical mechanics. The starting point of this thesis is the work of Niels Bohr. Besides the discussion the work is also analyzed. For the discussion of the different aspects of the UP the formalism of Davies and Ludwig is used instead of the more commonly used formalism of Neumann and Dirac. (author). 214 refs.; 23 figs

  14. PREFERENCE, PRINCIPLE AND PRACTICE

    DEFF Research Database (Denmark)

    Skovsgaard, Morten; Bro, Peter

    2011-01-01

    Legitimacy has become a central issue in journalism, since the understanding of what journalism is and who journalists are has been challenged by developments both within and outside the newsrooms. Nonetheless, little scholarly work has been conducted to aid conceptual clarification as to how jou...... distinct, but interconnected categories*preference, principle, and practice. Through this framework, historical attempts to justify journalism and journalists are described and discussed in the light of the present challenges for the profession....

  15. Advertisement without Ethical Principles?

    OpenAIRE

    Wojciech Słomski

    2007-01-01

    The article replies to the question, whether the advertisement can exist without ethical principles or ethics should be the basis of the advertisement. One can say that the ethical opinion of the advertisement does not depend on content and the form of advertising content exclusively, but also on recipientís consciousness. The advertisement appeals to the emotions more than to the intellect, thus restricting the area of conscious and based on rational premises choice, so it is morally bad. It...

  16. General Principles Governing Liability

    International Nuclear Information System (INIS)

    Reyners, P.

    1998-01-01

    This paper contains a brief review of the basic principles which govern the special regime of liability and compensation for nuclear damage originating on nuclear installations, in particular the strict and exclusive liability of the nuclear operator, the provision of a financial security to cover this liability and the limits applicable both in amount and in time. The paper also reviews the most important international agreements currently in force which constitute the foundation of this special regime. (author)

  17. The Principle of Proportionality

    DEFF Research Database (Denmark)

    Bennedsen, Morten; Meisner Nielsen, Kasper

    2005-01-01

    Recent policy initiatives within the harmonization of European company laws have promoted a so-called "principle of proportionality" through proposals that regulate mechanisms opposing a proportional distribution of ownership and control. We scrutinize the foundation for these initiatives...... in relationship to the process of harmonization of the European capital markets.JEL classifications: G30, G32, G34 and G38Keywords: Ownership Structure, Dual Class Shares, Pyramids, EU companylaws....

  18. Common Principles and Multiculturalism

    OpenAIRE

    Zahedi, Farzaneh; Larijani, Bagher

    2009-01-01

    Judgment on rightness and wrongness of beliefs and behaviors is a main issue in bioethics. Over centuries, big philosophers and ethicists have been discussing the suitable tools to determine which act is morally sound and which one is not. Emerging the contemporary bioethics in the West has resulted in a misconception that absolute westernized principles would be appropriate tools for ethical decision making in different cultures. We will discuss this issue by introducing a clinical case. Con...

  19. The Maquet principle

    International Nuclear Information System (INIS)

    Levine, R.B.; Stassi, J.; Karasick, D.

    1985-01-01

    Anterior displacement of the tibial tubercle is a well-accepted orthopedic procedure in the treatment of certain patellofemoral disorders. The radiologic appearance of surgical procedures utilizing the Maquet principle has not been described in the radiologic literature. Familiarity with the physiologic and biochemical basis for the procedure and its postoperative appearance is necessary for appropriate roentgenographic evaluation and the radiographic recognition of complications. (orig.)

  20. Principles of lake sedimentology

    International Nuclear Information System (INIS)

    Janasson, L.

    1983-01-01

    This book presents a comprehensive outline on the basic sedimentological principles for lakes, and focuses on environmental aspects and matters related to lake management and control-on lake ecology rather than lake geology. This is a guide for those who plan, perform and evaluate lake sedimentological investigations. Contents abridged: Lake types and sediment types. Sedimentation in lakes and water dynamics. Lake bottom dynamics. Sediment dynamics and sediment age. Sediments in aquatic pollution control programmes. Subject index

  1. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  2. Economic uncertainty principle?

    OpenAIRE

    Alexander Harin

    2006-01-01

    The economic principle of (hidden) uncertainty is presented. New probability formulas are offered. Examples of solutions of three types of fundamental problems are reviewed.; Principe d'incertitude économique? Le principe économique d'incertitude (cachée) est présenté. De nouvelles formules de chances sont offertes. Les exemples de solutions des trois types de problèmes fondamentaux sont reconsidérés.

  3. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  4. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  5. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  6. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  7. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  8. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  9. Principled Missing Data Treatments.

    Science.gov (United States)

    Lang, Kyle M; Little, Todd D

    2018-04-01

    We review a number of issues regarding missing data treatments for intervention and prevention researchers. Many of the common missing data practices in prevention research are still, unfortunately, ill-advised (e.g., use of listwise and pairwise deletion, insufficient use of auxiliary variables). Our goal is to promote better practice in the handling of missing data. We review the current state of missing data methodology and recent missing data reporting in prevention research. We describe antiquated, ad hoc missing data treatments and discuss their limitations. We discuss two modern, principled missing data treatments: multiple imputation and full information maximum likelihood, and we offer practical tips on how to best employ these methods in prevention research. The principled missing data treatments that we discuss are couched in terms of how they improve causal and statistical inference in the prevention sciences. Our recommendations are firmly grounded in missing data theory and well-validated statistical principles for handling the missing data issues that are ubiquitous in biosocial and prevention research. We augment our broad survey of missing data analysis with references to more exhaustive resources.

  10. Equation for calculation of nitrogen solubility in iron alloys

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.

    1989-01-01

    Equation for calculating nitrogen solubility in multicomponent iron melts in a wide range of partial pressures (1-1600 kPa), of doping component concentrations and temperatures (1773-2373 K) is proposed. Comparative analysis of experimental and calculated values of nitrogen solubility has demonstrated a principle possibility of applying the equation proposed for evaluating absorption ability to nitrogen of industrial nitrogen containing steels and ferroalloys subjected to melting or remelting in plasma or other melting devices

  11. Basic economic principles of road pricing: From theory to applications

    NARCIS (Netherlands)

    Rouwendal, J.; Verhoef, E.T.

    2006-01-01

    This paper presents, a non-technical introduction to the economic principles relevant for transport pricing design and analysis. We provide the basic rationale behind pricing of externalities, discuss why simple Pigouvian tax rules that equate charges to marginal external costs are not optimal in

  12. Minimal length, Friedmann equations and maximum density

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)

    2014-06-16

    Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  13. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  14. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  15. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  16. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  17. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Principles of visual attention

    DEFF Research Database (Denmark)

    Bundesen, Claus; Habekost, Thomas

    research as a field that is fundamentally fragmented. This book takes a different perspective and presents a unified theory of visual attention: the TVA model. The TVA model explains the many aspects of visual attention by just two mechanisms for selection of information: filtering and pigeonholing......The nature of attention is one of the oldest and most central problems in psychology. A huge amount of research has been produced on this subject in the last half century, especially on attention in the visual modality, but a general explanation has remained elusive. Many still view attention....... These mechanisms are described in a set of simple equations, which allow TVA to mathematically model a large number of classical results in the attention literature. The theory explains psychological and neuroscientific findings by the same equations; TVA is a complete theory of visual attention, linking mind...

  20. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  1. Principles of nucleation theory

    International Nuclear Information System (INIS)

    Clement, C.F.; Wood, M.H.

    1980-01-01

    The nucleation of small stable species is described in the problem of void growth by discrete rate equations. When gas is being produced the problem reduces to one of calculating the incubation dose for the gas bubble to void transition. A general expression for the steady state nucleation rate is derived for the case when voids are formed by vacancy fluctuations which enable an effective nucleation barrier to be crossed. (author)

  2. A projective constrained variational principle for a classical particle with spin

    International Nuclear Information System (INIS)

    Amorim, R.

    1983-01-01

    A geometric approach for variational principles with constraints is applied to obtain the equations of motion of a classical charged point particle with magnetic moment interacting with an external eletromagnetic field. (Author) [pt

  3. Generalized Fermat's principle and action for light rays in a curved spacetime

    Science.gov (United States)

    Frolov, Valeri P.

    2013-09-01

    We start with formulation of the generalized Fermat’s principle for light propagation in a curved spacetime. We apply Pontryagin’s minimum principle of the optimal control theory and obtain an effective Hamiltonian for null geodesics in a curved spacetime. We explicitly demonstrate that dynamical equations for this Hamiltonian correctly reproduce null geodesic equations. Other forms of the action for light rays in a curved spacetime are also discussed.

  4. Computer code to assess accidental pollutant releases

    International Nuclear Information System (INIS)

    Pendergast, M.M.; Huang, J.C.

    1980-07-01

    A computer code was developed to calculate the cumulative frequency distributions of relative concentrations of an air pollutant following an accidental release from a stack or from a building penetration such as a vent. The calculations of relative concentration are based on the Gaussian plume equations. The meteorological data used for the calculation are in the form of joint frequency distributions of wind and atmospheric stability

  5. MHD stability properties of a system of reduced toroidal MHD equations

    International Nuclear Information System (INIS)

    Maschke, E.K.; Morros Tosas, J.; Urquijo, G.

    1993-01-01

    A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs

  6. VMOMS: a computer code for finding moment solutions to the Grad-Shafranov equation

    International Nuclear Information System (INIS)

    Lao, L.L.; Wieland, R.M.; Houlberg, W.A.; Hirshman, S.P.

    1982-02-01

    A code VMOMS is described which finds approximate solutions to the Grad-Shafranov equation describing scalar pressure-balance equilibria for axisymmetric tokamak plasmas. A Fourier series expansion of the flux surface coordinates (R,Z) is made in terms of two new coordinates (rho, theta), and the resulting equation is conveniently reduced to a system of ordinary differential equations (ODE's) using a variational principle. The solution of these simple equations with pressure and current as driving functions, yields, in principle, a complete description of the equilibrium. Complete axisymmetry is assumed, as well as up-down symmetry about the toroidal midplane

  7. Efficiency principles of consulting entrepreneurship

    OpenAIRE

    Moroz Yustina S.; Drozdov Igor N.

    2015-01-01

    The article reviews the primary goals and problems of consulting entrepreneurship. The principles defining efficiency of entrepreneurship in the field of consulting are generalized. The special attention is given to the importance of ethical principles of conducting consulting entrepreneurship activity.

  8. Algorithmic Principles of Mathematical Programming

    NARCIS (Netherlands)

    Faigle, Ulrich; Kern, Walter; Still, Georg

    2002-01-01

    Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear

  9. The Playtime Principle

    DEFF Research Database (Denmark)

    Sifa, Rafet; Bauckhage, Christian; Drachen, Anders

    2014-01-01

    be derived from this large-scale analysis, notably that playtime as a function of time, across the thousands of games in the dataset, and irrespective of local differences in the playtime frequency distribution, can be modeled using the same model: the Wei bull distribution. This suggests...... that there are fundamental properties governing player engagement as it evolves over time, which we here refer to as the Playtime Principle. Additionally, the analysis shows that there are distinct clusters, or archetypes, in the playtime frequency distributions of the investigated games. These archetypal groups correspond...

  10. Complex Correspondence Principle

    International Nuclear Information System (INIS)

    Bender, Carl M.; Meisinger, Peter N.; Hook, Daniel W.; Wang Qinghai

    2010-01-01

    Quantum mechanics and classical mechanics are distinctly different theories, but the correspondence principle states that quantum particles behave classically in the limit of high quantum number. In recent years much research has been done on extending both quantum and classical mechanics into the complex domain. These complex extensions continue to exhibit a correspondence, and this correspondence becomes more pronounced in the complex domain. The association between complex quantum mechanics and complex classical mechanics is subtle and demonstrating this relationship requires the use of asymptotics beyond all orders.

  11. Principles of chemical kinetics

    CERN Document Server

    House, James E

    2007-01-01

    James House's revised Principles of Chemical Kinetics provides a clear and logical description of chemical kinetics in a manner unlike any other book of its kind. Clearly written with detailed derivations, the text allows students to move rapidly from theoretical concepts of rates of reaction to concrete applications. Unlike other texts, House presents a balanced treatment of kinetic reactions in gas, solution, and solid states. The entire text has been revised and includes many new sections and an additional chapter on applications of kinetics. The topics covered include quantitative rela

  12. RFID design principles

    CERN Document Server

    Lehpamer, Harvey

    2012-01-01

    This revised edition of the Artech House bestseller, RFID Design Principles, serves as an up-to-date and comprehensive introduction to the subject. The second edition features numerous updates and brand new and expanded material on emerging topics such as the medical applications of RFID and new ethical challenges in the field. This practical book offers you a detailed understanding of RFID design essentials, key applications, and important management issues. The book explores the role of RFID technology in supply chain management, intelligent building design, transportation systems, military

  13. Principles of meteoritics

    CERN Document Server

    Krinov, E L

    1960-01-01

    Principles of Meteoritics examines the significance of meteorites in relation to cosmogony and to the origin of the planetary system. The book discusses the science of meteoritics and the sources of meteorites. Scientists study the morphology of meteorites to determine their motion in the atmosphere. The scope of such study includes all forms of meteorites, the circumstances of their fall to earth, their motion in the atmosphere, and their orbits in space. Meteoric bodies vary in sizes; in calculating their motion in interplanetary space, astronomers apply the laws of Kepler. In the region of

  14. Principles of Uncertainty

    CERN Document Server

    Kadane, Joseph B

    2011-01-01

    An intuitive and mathematical introduction to subjective probability and Bayesian statistics. An accessible, comprehensive guide to the theory of Bayesian statistics, Principles of Uncertainty presents the subjective Bayesian approach, which has played a pivotal role in game theory, economics, and the recent boom in Markov Chain Monte Carlo methods. Both rigorous and friendly, the book contains: Introductory chapters examining each new concept or assumption Just-in-time mathematics -- the presentation of ideas just before they are applied Summary and exercises at the end of each chapter Discus

  15. Principles of speech coding

    CERN Document Server

    Ogunfunmi, Tokunbo

    2010-01-01

    It is becoming increasingly apparent that all forms of communication-including voice-will be transmitted through packet-switched networks based on the Internet Protocol (IP). Therefore, the design of modern devices that rely on speech interfaces, such as cell phones and PDAs, requires a complete and up-to-date understanding of the basics of speech coding. Outlines key signal processing algorithms used to mitigate impairments to speech quality in VoIP networksOffering a detailed yet easily accessible introduction to the field, Principles of Speech Coding provides an in-depth examination of the

  16. On Weak Markov's Principle

    DEFF Research Database (Denmark)

    Kohlenbach, Ulrich Wilhelm

    2002-01-01

    We show that the so-called weak Markov's principle (WMP) which states that every pseudo-positive real number is positive is underivable in E-HA + AC. Since allows one to formalize (atl eastl arge parts of) Bishop's constructive mathematics, this makes it unlikely that WMP can be proved within...... the framework of Bishop-style mathematics (which has been open for about 20 years). The underivability even holds if the ine.ective schema of full comprehension (in all types) for negated formulas (in particular for -free formulas) is added, which allows one to derive the law of excluded middle...

  17. Principles of fluorescence techniques

    CERN Document Server

    2016-01-01

    Fluorescence techniques are being used and applied increasingly in academics and industry. The Principles of Fluorescence Techniques course will outline the basic concepts of fluorescence techniques and the successful utilization of the currently available commercial instrumentation. The course is designed for students who utilize fluorescence techniques and instrumentation and for researchers and industrial scientists who wish to deepen their knowledge of fluorescence applications. Key scientists in the field will deliver theoretical lectures. The lectures will be complemented by the direct utilization of steady-state and lifetime fluorescence instrumentation and confocal microscopy for FLIM and FRET applications provided by leading companies.

  18. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  19. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  20. Dyons in presence of gravitation and symmetrized field equations

    International Nuclear Information System (INIS)

    Rawat, A.S.; Negi, O.P.S.

    1999-01-01

    Combined theory of gravitation and electromagnetism associated with particles carrying electric and magnetic charges has been established from an invariant action principle. Corresponding field equations, equation of motion and Einstein Maxwell's equations are obtained in unique and consistent way. It is shown that weak field approximation of slowly moving particle in gravitational field leads the symmetry between electromagnetic and linear gravitational fields. Postulation of the existence of gravimagnetic monopole leads structural symmetry between generalized electromagnetic and gravielectromagnetic fields. Corresponding quantization conditions and angular momentum are also analysed. (author)

  1. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  2. The principle of general tovariance

    NARCIS (Netherlands)

    Heunen, C.; Landsman, N.P.; Spitters, B.A.W.; Loja Fernandes, R.; Picken, R.

    2008-01-01

    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance

  3. Fermat and the Minimum Principle

    Indian Academy of Sciences (India)

    Arguably, least action and minimum principles were offered or applied much earlier. This (or these) principle(s) is/are among the fundamental, basic, unifying or organizing ones used to describe a variety of natural phenomena. It considers the amount of energy expended in performing a given action to be the least required ...

  4. Fundamental Principle for Quantum Theory

    OpenAIRE

    Khrennikov, Andrei

    2002-01-01

    We propose the principle, the law of statistical balance for basic physical observables, which specifies quantum statistical theory among all other statistical theories of measurements. It seems that this principle might play in quantum theory the role that is similar to the role of Einstein's relativity principle.

  5. Principles for School Drug Education

    Science.gov (United States)

    Meyer, Lois

    2004-01-01

    This document presents a revised set of principles for school drug education. The principles for drug education in schools comprise an evolving framework that has proved useful over a number of decades in guiding the development of effective drug education. The first edition of "Principles for Drug Education in Schools" (Ballard et al.…

  6. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  7. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  8. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  9. Principles of Mechanical Excavation

    International Nuclear Information System (INIS)

    Lislerud, A.

    1997-12-01

    Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.)

  10. THE RESPONSIBILITY PRINCIPLE

    Directory of Open Access Journals (Sweden)

    Elena ANGHEL

    2015-07-01

    Full Text Available "I'm wishing Law this: all legal obligations sholud be executed with the scrupulosity with which moral obligations are being performed by those people who feel bound by them ...", so beautifully portraited by Nicolae Titulescu`s words1. Life in the society means more than a simple coexistence of human beings, it actually means living together, collaborating and cooperating; that is why I always have to relate to other people and to be aware that only by limiting my freedom of action, the others freedom is feasible. Neminem laedere should be a principle of life for each of us. The individual is a responsible being. But responsibility exceeds legal prescriptions. Romanian Constitution underlines that I have to exercise my rights and freedoms in good faith, without infringing the rights and freedoms of others. The legal norm, developer of the constitutional principles, is endowed with sanction, which grants it exigibility. But I wonder: If I choose to obey the law, is my decision essentially determined only due of the fear of punishment? Is it not because I am a rational being, who developed during its life a conscience towards values, and thus I understand that I have to respect the law and I choose to comply with it?

  11. Principles of Mechanical Excavation

    Energy Technology Data Exchange (ETDEWEB)

    Lislerud, A. [Tamrock Corp., Tampere (Finland)

    1997-12-01

    Mechanical excavation of rock today includes several methods such as tunnel boring, raiseboring, roadheading and various continuous mining systems. Of these raiseboring is one potential technique for excavating shafts in the repository for spent nuclear fuel and dry blind boring is promising technique for excavation of deposition holes, as demonstrated in the Research Tunnel at Olkiluoto. In addition, there is potential for use of other mechanical excavation techniques in different parts of the repository. One of the main objectives of this study was to analyze the factors which affect the feasibility of mechanical rock excavation in hard rock conditions and to enhance the understanding of factors which affect rock cutting so as to provide an improved basis for excavator performance prediction modeling. The study included the following four main topics: (a) phenomenological model based on similarity analysis for roller disk cutting, (b) rock mass properties which affect rock cuttability and tool life, (c) principles for linear and field cutting tests and performance prediction modeling and (d) cutter head lacing design procedures and principles. As a conclusion of this study, a test rig was constructed, field tests were planned and started up. The results of the study can be used to improve the performance prediction models used to assess the feasibility of different mechanical excavation techniques at various repository investigation sites. (orig.). 21 refs.

  12. Maximum Entropy Closure of Balance Equations for Miniband Semiconductor Superlattices

    Directory of Open Access Journals (Sweden)

    Luis L. Bonilla

    2016-07-01

    Full Text Available Charge transport in nanosized electronic systems is described by semiclassical or quantum kinetic equations that are often costly to solve numerically and difficult to reduce systematically to macroscopic balance equations for densities, currents, temperatures and other moments of macroscopic variables. The maximum entropy principle can be used to close the system of equations for the moments but its accuracy or range of validity are not always clear. In this paper, we compare numerical solutions of balance equations for nonlinear electron transport in semiconductor superlattices. The equations have been obtained from Boltzmann–Poisson kinetic equations very far from equilibrium for strong fields, either by the maximum entropy principle or by a systematic Chapman–Enskog perturbation procedure. Both approaches produce the same current-voltage characteristic curve for uniform fields. When the superlattices are DC voltage biased in a region where there are stable time periodic solutions corresponding to recycling and motion of electric field pulses, the differences between the numerical solutions produced by numerically solving both types of balance equations are smaller than the expansion parameter used in the perturbation procedure. These results and possible new research venues are discussed.

  13. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    Science.gov (United States)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  14. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  15. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  16. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  17. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  18. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  19. [Preparation of hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata and study on its in vitro release mechanism].

    Science.gov (United States)

    Xu, Fang-Fang; Shi, Wei; Zhang, Hui; Guo, Qing-Ming; Wang Zhen-Zhong; Bi, Yu-An; Wang, Zhi-Min; Xiao, Wei

    2015-01-01

    In this study, hydrophilic matrix sustained release tablets of total lactones from Andrographis paniculata were prepared and the in vitro release behavior were also evaluated. The optimal prescription was achieved by studying the main factor of the type and amount of hydroxypropyl methylcellulose (HPMC) using single factor test and evaluating through cumulative release of three lactones. No burst drug release from the obtained matrix tablets was observed. Drug release sustained to 14 h. The release mechanism of three lactones from A. paniculata was accessed by zero-order, first-order, Higuchi and Peppas equation. The release behavior of total lactones from A. paniculata was better agreed with Higuchi model and the drug release from the tablets was controlled by degradation of the matrix. The preparation of hydrophilic matrix sustained release tablets of total lactones from A. paniculata with good performance of drug release was simple.

  20. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  1. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  2. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  3. An introduction to the Boltzmann equation and transport processes in gases

    CERN Document Server

    Kremer, Gilberto M; Colton, David

    2010-01-01

    This book covers classical kinetic theory of gases, presenting basic principles in a self-contained framework and from a more rigorous approach based on the Boltzmann equation. Uses methods in kinetic theory for determining the transport coefficients of gases.

  4. Mach's principle and rotating universes

    International Nuclear Information System (INIS)

    King, D.H.

    1990-01-01

    It is shown that the Bianchi 9 model universe satisfies the Mach principle. These closed rotating universes were previously thought to be counter-examples to the principle. The Mach principle is satisfied because the angular momentum of the rotating matter is compensated by the effective angular momentum of gravitational waves. A new formulation of the Mach principle is given that is based on the field theory interpretation of general relativity. Every closed universe with 3-sphere topology is shown to satisfy this formulation of the Mach principle. It is shown that the total angular momentum of the matter and gravitational waves in a closed 3-sphere topology universe is zero

  5. A survey of variational principles

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    The survey of variational principles has ranged widely from its starting point in the Lagrange multiplier to optimisation principles. In an age of digital computation, these classic methods can be adapted to improve such calculations. We emphasize particularly the advantage of basing finite element methods on variational principles, especially if, as maximum and minimum principles, these can provide bounds and hence estimates of accuracy. The non-symmetric (and hence stationary rather than extremum principles) are seen however to play a significant role in optimisation theory. (Orig./A.B.)

  6. Nonoscillation criteria for half-linear second order difference equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej; Řehák, Pavel

    2001-01-01

    Roč. 42, - (2001), s. 453-464 ISSN 0898-1221 R&D Projects: GA ČR GA201/98/0677; GA ČR GA201/99/0295 Keywords : half-linear difference equation%nonoscillation criteria%variational principle Subject RIV: BA - General Mathematics Impact factor: 0.383, year: 2001

  7. 16 reference population equations using peak expiratory flow meters

    African Journals Online (AJOL)

    DR. AMINU

    Many formulae for predicting lung function values for Nigerians have been produced by a lot of investigators. The same principle ... equations in current use are based on linear statistical models which are subject to change and they did not express the .... that present lower limits of normal or present information from which ...

  8. Stability Criteria for Differential Equations with Variable Time Delays

    Science.gov (United States)

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  9. On the equation - Δu+c=Keu

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1989-10-01

    We establish the Sobolev inequality for limiting case. Using this result, the method of McOwen, the Ekeland variational principle and our generalized critical values results, we study the existence of solutions of the equation - Δu+c=Ke u for the case in which K and c may not tend to zero as x tends to infinity. (author). 25 refs

  10. Nonlinear elliptic partial differential equations an introduction

    CERN Document Server

    Le Dret, Hervé

    2018-01-01

    This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.

  11. Large scientific releases

    International Nuclear Information System (INIS)

    Pongratz, M.B.

    1981-01-01

    The motivation for active experiments in space is considered, taking into account the use of active techniques to obtain a better understanding of the natural space environment, the utilization of the advantages of space as a laboratory to study fundamental plasma physics, and the employment of active techniques to determine the magnitude, degree, and consequences of artificial modification of the space environment. It is pointed out that mass-injection experiments in space plasmas began about twenty years ago with the Project Firefly releases. Attention is given to mass-release techniques and diagnostics, operational aspects of mass release active experiments, the active observation of mass release experiments, active perturbation mass release experiments, simulating an artificial modification of the space environment, and active experiments to study fundamental plasma physics

  12. Hybrid principle with applications to synthesis

    International Nuclear Information System (INIS)

    Nanneh, M.M.

    1991-01-01

    The theory of hybrid principles is presented together with the transformation rule for converting odd-parity approximations into even-parity approximations. This rule leads to a method which provides rigorous upper and lower bounds for the disadvantage factor for a reactor lattice cell. With these bounds very precise benchmarks have been constructed for representative lattices. It is found that a combination of even and odd-parity solutions for the neutron flux is much more efficient than solutions based on either the even-parity or odd-parity. This is the basis of one synthesis scheme. In another synthesis method, a hybrid principle with trial functions for both the even- and odd- parity angular flux is used in conjunction with a classical principle with an odd-parity trial function. The synthesis process is efficient because the largest set of equations to be solved, i.e. the frame work, involves as few as one unknown per node of the finite element mesh. The effectiveness of the synthesis method is demonstrated for a thick shield problem. (author)

  13. THE EQUALITY PRINCIPLE REQUIREMENTS

    Directory of Open Access Journals (Sweden)

    CLAUDIA ANDRIŢOI

    2013-05-01

    Full Text Available The problem premises and the objectives followed: the idea of inserting the equality principle between the freedom and the justice principles is manifested in positive law in two stages, as a general idea of all judicial norms and as requirement of the owner of a subjective right of the applicants of an objective law. Equality in face of the law and of public authorities can not involve the idea of standardization, of uniformity, of enlisting of all citizens under the mark of the same judicial regime, regardless of their natural or socio-professional situation. Through the Beijing Platform and the position documents of the European Commission we have defined the integrative approach of equality as representing an active and visible integration of the gender perspective in all sectors and at all levels. The research methods used are: the conceptualist method, the logical method and the intuitive method necessary as means of reasoning in order to argue our demonstration. We have to underline the fact that the system analysis of the research methods of the judicial phenomenon doesn’t agree with “value ranking”, because one value cannot be generalized in rapport to another. At the same time, we must fight against a methodological extremism. The final purpose of this study is represented by the reaching of the perfecting/excellence stage by all individuals through the promotion of equality and freedom. This supposes the fact that the existence of a non-discrimination favourable frame (fairness represents a means and a condition of self-determination, and the state of perfection/excellency is a result of this self-determination, the condition necessary for the obtaining of this nondiscrimination frame for all of us and in conditions of freedom for all individuals, represents the same condition that promotes the state of perfection/excellency. In conclusion we may state the fact that the equality principle represents a true catalyst of the

  14. Dirac equation on a curved surface

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.T., E-mail: fbrandt@usp.br; Sánchez-Monroy, J.A., E-mail: antosan@usp.br

    2016-09-07

    The dynamics of Dirac particles confined to a curved surface is examined employing the thin-layer method. We perform a perturbative expansion to first-order and split the Dirac field into normal and tangential components to the surface. In contrast to the known behavior of second order equations like Schrödinger, Maxwell and Klein–Gordon, we find that there is no geometric potential for the Dirac equation on a surface. This implies that the non-relativistic limit does not commute with the thin-layer method. Although this problem can be overcome when second-order terms are retained in the perturbative expansion, this would preclude the decoupling of the normal and tangential degrees of freedom. Therefore, we propose to introduce a first-order term which rescues the non-relativistic limit and also clarifies the effect of the intrinsic and extrinsic curvatures on the dynamics of the Dirac particles. - Highlights: • The thin-layer method is employed to derive the Dirac equation on a curved surface. • A geometric potential is absent at least to first-order in the perturbative expansion. • The effects of the extrinsic curvature are included to rescue the non-relativistic limit. • The resulting Dirac equation is consistent with the Heisenberg uncertainty principle.

  15. Theory of quasi-Chaplygin unstable media and evolutionary principle for selecting spontaneous solutions

    International Nuclear Information System (INIS)

    Zhdanov, S.K.; Trubnikov, B.A.; Institut Atomnoi Energii, Moscow, USSR)

    1986-01-01

    A one-dimensional ideal gas with negative compressibility described by quasi-Chaplygin equations is discussed. Its reduction to a Laplace equation is shown, and an evolutionary principle for selecting spontaneous solutions is summarized. Three extremely simple spontaneous solutions are obtained along with multidimensional self-similar solutions. The Buneman instability in a plasma is considered as an example. 17 references

  16. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  17. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  18. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  19. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.

  20. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  1. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  2. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  3. ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...

    African Journals Online (AJOL)

    Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.

  4. dimensional Fokas equation

    Indian Academy of Sciences (India)

    However, one can associate the term with any solution of nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent form, (ii) is localized ... In the past several decades, many methods have been proposed for solving nonlinear PDEs, such as ... space–time fractional derivative form of eq. (1) and ...

  5. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  6. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  7. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  8. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  9. Balancing Chemical Equations.

    Science.gov (United States)

    Savoy, L. G.

    1988-01-01

    Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)

  10. No-Hypersignaling Principle

    Science.gov (United States)

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-01

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  11. Principles of Lasers

    CERN Document Server

    Svelto, Orazio

    2010-01-01

    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  12. [Principles of PET].

    Science.gov (United States)

    Beuthien-Baumann, B

    2018-05-01

    Positron emission tomography (PET) is a procedure in nuclear medicine, which is applied predominantly in oncological diagnostics. In the form of modern hybrid machines, such as PET computed tomography (PET/CT) and PET magnetic resonance imaging (PET/MRI) it has found wide acceptance and availability. The PET procedure is more than just another imaging technique, but a functional method with the capability for quantification in addition to the distribution pattern of the radiopharmaceutical, the results of which are used for therapeutic decisions. A profound knowledge of the principles of PET including the correct indications, patient preparation, and possible artifacts is mandatory for the correct interpretation of PET results.

  13. Principles of asymmetric synthesis

    CERN Document Server

    Gawley, Robert E; Aube, Jeffrey

    2012-01-01

    The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis, this book presents a detailed analysis of the factors that govern stereoselectivity in organic reactions. After an explanation of the basic physical-organic principles governing stereoselective reactions, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Practical Aspects of Asymmetric Synthesis" provides a critical overview of the most common methods for the preparation of enantiomerically pure compounds, techniques for analysis of stereoisomers using chromatographic, spectroscopic, and chiroptical methods. The authors then present an overview of the most important methods in contemporary asymmetric synthesis organized by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions, one chapter on reductions...

  14. Principles & practice of physics

    CERN Document Server

    Mazur, Eric; Dourmashkin, Peter A; Pedigo, Daryl; Bieniek, Ronald J

    2015-01-01

    Putting physics first Based on his storied research and teaching, Eric Mazur's Principles & Practice of Physics builds an understanding of physics that is both thorough and accessible. Unique organization and pedagogy allow you to develop a true conceptual understanding of physics alongside the quantitative skills needed in the course. *New learning architecture: The book is structured to help you learn physics in an organized way that encourages comprehension and reduces distraction.*Physics on a contemporary foundation: Traditional texts delay the introduction of ideas that we now see as unifying and foundational. This text builds physics on those unifying foundations, helping you to develop an understanding that is stronger, deeper, and fundamentally simpler.*Research-based instruction: This text uses a range of research-based instructional techniques to teach physics in the most effective manner possible. The result is a groundbreaking book that puts physics first, thereby making it more accessible to...

  15. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  16. Principles of Bioenergetics

    CERN Document Server

    Skulachev, Vladimir P; Kasparinsky, Felix O

    2013-01-01

    Principles of Bioenergetics summarizes one of the quickly growing branches of modern biochemistry. Bioenergetics concerns energy transductions occurring in living systems and this book pays special attention to molecular mechanisms of these processes. The main subject of the book is the "energy coupling membrane" which refers to inner membranes of intracellular organelles, for example, mitochondria and chloroplasts. Cellular cytoplasmic membranes where respiratory and photosynthetic energy transducers, as well as ion-transporting ATP-synthases (ATPases) are also part of this membrane. Significant attention is paid to the alternative function of mitochondria as generators of reactive oxygen species (ROS) that mediate programmed death of cells (apoptosis and necrosis) and organisms (phenoptosis). The latter process is considered as a key mechanism of aging which may be suppressed by mitochondria-targeted antioxidants.

  17. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    International Nuclear Information System (INIS)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  18. Derivation of an applied nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  19. Dynamical principles in neuroscience

    International Nuclear Information System (INIS)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-01-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?

  20. Dynamical principles in neuroscience

    Science.gov (United States)

    Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.

    2006-10-01

    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?