WorldWideScience

Sample records for released processed waste

  1. Zero-Release Mixed Waste Process Facility Design and Testing

    International Nuclear Information System (INIS)

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-01-01

    A zero-release off-gas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotary kiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release off-gas cleaning system is to recycle the bulk of the off-gas stream to the thermal treatment process. A slip stream is taken off the off-gas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the off-gas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing off-gas emissions. Consideration of the proposed closed-system off-gas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis

  2. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10 5 per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables

  3. Discussion on the methods for calculation release limits for low-level radioactive waste

    International Nuclear Information System (INIS)

    Cao Fengbo; Liu Xiaochao

    2012-01-01

    The release request for low-level radioactive waste are briefly described in this paper. Associating with the conditions of low-level radioactive waste of some radioactive waste processing station, the methods and gist for calculating release limits for low-level radioactive waste with national release limits and annual effective dose limit for the public or the occupation are discussed. Then release limits for the low-level radioactive waste are also proposed. (authors)

  4. Release of powdered material from waste packages

    International Nuclear Information System (INIS)

    Berg, H.P.; Gruendler, D.; Peiffer, F.; Seehars, H.D.

    1990-01-01

    Possible incidents in the operational phase of the planned German repository KONRAD for radioactive waste with negligible heat production were investigated to assess the radiological consequences. For these investigations release fractions of the radioactive materials are required. This paper deals with the determination of the release of powdered material from waste packages under mechanical stress. These determinations were based on experiments. The experimental procedure and the process parameters chosen in accordance with the conditions in the planned repository will be described. The significance of the experimental results is discussed with respect to incidents in the planned repository. 8 figs., 3 tabs

  5. Liquid waste processing at Comanche Peak

    International Nuclear Information System (INIS)

    Hughes-Edwards, L.M.; Edwards, J.M.

    1996-01-01

    This article describes the radioactive waste processing at Comanche Peak Steam Electric Station. Topics covered are the following: Reduction of liquid radioactive discharges (system leakage, outage planning); reduction of waste resin generation (waste stream segregation, processing methodology); reduction of activity released and off-site dose. 8 figs., 2 tabs

  6. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  7. A Probabilistic Consideration on Nuclide Releases from a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    Very recently, a GoldSim template program, GSTSPA, for a safety assessment of a conceptual hybrid-typed repository system, called 'A-KRS,' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyroprocessing of PWR nuclear spent fuels, has been developed and is to be disposed of by 'separate disposal' strategies. The A-KRS is considered to be constructed at two different depths in geological media: at a 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and at a 500m depth, believed to be the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for a probabilistic total system performance assessment (TSPA) which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of a waste package and canister with associated uncertainty. To quantify the nuclide release and transport through the various possible pathways in the near- and far-fields of the A-KRS repository system under a normal groundwater flow scenario, some illustrative evaluations have been made through this study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  8. Measurements of Mercury Released From Solidified/Stabilized Waste Forms-FY2002

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2003-01-01

    This report covers work performed during FY 2002 in support of treatment demonstrations conducted for the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) Mercury Working Group. To comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of the following procedures for mixed low-level radioactive wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or (if the wastes also contain organics) an incineration treatment. The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE MWFA Mercury Working Group is working with EPA to determine whether some alternative processes could be used to treat these types of waste directly, thereby avoiding a costly recovery step for DOE. In previous years, demonstrations were performed in which commercial vendors applied their technologies for the treatment of radiologically contaminated elemental mercury as well as radiologically contaminated and mercury-contaminated waste soils from Brookhaven National Laboratory. The test results for mercury release in the headspace were reported in two reports, ''Measurements of Mercury Released from Amalgams and Sulfide Compounds'' (ORNL/TM-13728) and ''Measurements of Mercury Released from Solidified/Stabilized Waste Forms'' (ORNL/TM-2001/17). The current work did not use a real waste; a surrogate sludge had been prepared and used in the testing in an effort to understand the consequences of mercury speciation on mercury release

  9. Influence of Groundwater Flow Rate on Nuclide Releases from Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2011-01-01

    Since the early 2000s several template programs for the safety assessment of a high-level radioactive waste repository as well as a low- and intermediate level radioactive waste repository systems have been developed by utilizing GoldSim and AMBER at KAERI. Very recently, another template program for a conceptual hybrid-typed repository system, called 'A-KRS' in which two kinds of pyroprocessed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from pyroprocessing of PWR nuclear spent fuels has been developed and are to be disposed of by separate disposal strategies. The A-KRS is considered to be constructed at two different depths in geological media: 200m depth, at which a possible human intrusion is considered to be limited after closure, for the pyroprocessed metal wastes with lower or no decay heat producing nuclides, and 500m depth, believed to be in the reducing condition for nuclides with a rather higher radioactivity and heat generation rate. This program is ready for total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios that can occur after a failure of waste package and canister. To quantify a nuclide release and transport through the possible various pathways especially in the near-fields of the A-KRS repository system, some illustrative evaluations have been made through the study. Even though all parameter values associated with the A-KRS were assumed for the time being, the illustrative results should be informative since the evaluation of such releases is very important not only in view of the safety assessment of the repository, but also for design feedback of its performance

  10. Leach resistance properties and release processes for salt-occluded zeolite A

    International Nuclear Information System (INIS)

    Lewis, M.A.; Fischer, D.F.; Laidler, J.J.

    1992-01-01

    The pyrometallurgical processing of spent fuel from the Integral Fast Reactor (IFR) results in a waste of LiCl-KCl-NaCl salt containing approximately 10 wt% fission products, primarily CsCl and SrCl 2 . For disposal, this waste must be immobilized in a form that it is leach resistant. A salt-occluded zeolite has been identified as a potential waste form for the salt. Its leach resistance properties were investigated using powdered samples. The results were that strontium was not released and cesium had a low release, 0.056 g/m 2 for the 56 day leach test. The initial release (within 7 days) of alkali metal cations was rapid and subsequent releases were much smaller. The releases of aluminum and silicon were 0.036 and 0.028 g/m 2 , respectively, and were constant. Neither alkali metal cation hydrolysis nor exchange between cations in the leachate and those in the zeolite was significant. Only sodium release followed t 0.5 kinetics. Selected dissolution of the occluded salt was the primary release process. These results confirm that salt-occluded zeolite has promise as the waste form for IFR pyroprocess salt

  11. Study of benzene release from Savannah River in-tank precipitation process slurry simulant

    International Nuclear Information System (INIS)

    Rappe, K.G.; Gauglitz, P.A.

    1998-08-01

    At the Savannah River Site, the in-tank precipitation (ITP) process uses sodium tetraphenylborate (NaTPB) to precipitate radioactive cesium from alkaline wastes. During this process, potassium is also precipitated to form 4-wt% KTPB/CsTPB slurry. Residual NaTPB decomposes to form benzene, which is retained by the waste slurry. The retained benzene is also readily released from the waste during subsequent waste processing. While the release of benzene certainly poses flammability and toxicological safety concerns, the magnitude of the hazard depends on the rate of release. Currently, the mechanisms controlling the benzene release rates are not well understood, and predictive models for estimating benzene release rates are not available. The overall purpose of this study is to obtain quantitative measurements of benzene release rates from a series of ITP slurry simulants. This information will become a basis for developing a quantitative mechanistic model of benzene release rates. The transient benzene release rate was measured from the surface of various ITP slurry (solution) samples mixed with benzene. The benzene release rate was determined by continuously purging the headspace of a sealed sample vessel with an inert gas (nitrogen) and analyzing that purged headspace vapor for benzene every minute

  12. Fuel processing. Wastes processing

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2000-01-01

    The gaseous, liquid and solid radioactive effluents generated by the fuel reprocessing, can't be release in the environment. They have to be treated in order to respect the limits of the pollution regulations. These processing are detailed and discussed in this technical paper. A second part is devoted to the SPIN research program relative to the separation of the long life radionuclides in order to reduce the radioactive wastes storage volume. (A.L.B.)

  13. Hanford tank residual waste - Contaminant source terms and release models

    International Nuclear Information System (INIS)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael L.; Jeffery Serne, R.

    2011-01-01

    Highlights: → Residual waste from five Hanford spent fuel process storage tanks was evaluated. → Gibbsite is a common mineral in tanks with high Al concentrations. → Non-crystalline U-Na-C-O-P ± H phases are common in the U-rich residual. → Iron oxides/hydroxides have been identified in all residual waste samples. → Uranium release is highly dependent on waste and leachant compositions. - Abstract: Residual waste is expected to be left in 177 underground storage tanks after closure at the US Department of Energy's Hanford Site in Washington State, USA. In the long term, the residual wastes may represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt.%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt.%, respectively. Aluminum concentrations are high (8.2-29.1 wt.%) in some tanks (C-103, C-106, and S-112) and relatively low ( 2 -saturated solution, or a CaCO 3 -saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO 3 -saturated solution than with the Ca(OH) 2 -saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH) 2 -saturated solution than by the CaCO 3 -saturated solution. In general, Tc is much less leachable (<10 wt.% of the

  14. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, D.S.

    2005-01-01

    The body of this document analyzes scenarios involving releases of dried tank waste from the DBVS dried waste transfer system and OGTS HEPA filters. Analyses of dried waste release scenarios from the CH-TRUM WPU are included as Appendix D

  15. Simplified analytical model to simulate radionuclide release from radioactive waste trenches

    International Nuclear Information System (INIS)

    Sa, Bernardete Lemes Vieira de

    2001-01-01

    In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)

  16. Melting decontamination and free release of metal waste at Studsvik RadWaste Co. in Sweden

    International Nuclear Information System (INIS)

    Kawatsuma, Shinji; Ishikawa, Keiji; Matsubara, Tatsuo; Donomae, Yasushi; Imagawa, Yasuhiro

    2006-01-01

    The Studsvik RadWaste Co. in Sweden was visited on August 29, 2005 by members of radioactive waste and decommissioning subgroup of central safety task force in old Japan Nuclear Cycle Development Institute as 'Overseas investigation'. The visit afforded us the chance to survey melting and decontaminating of metallic waste in this company and the status of free release. Domestic and foreign radioactive metallic waste is accepted in this company after 1987, and the majority of the decontaminated waste have been released freely. In the background of the big effort of this company and the strong leadership of the regulator (SSI: Swedish radiation protection Authority), prosperous operation was able to have been achieved. This survey was done based on 'Free release of radioactive metallic waste in Europe: the free release experience for 17 years at Studsvik RadWaste Co. in Sweden' by Dr. J. Lorenzen. (author)

  17. Measurements of Mercury Released from Solidified/Stabilized Waste Forms

    International Nuclear Information System (INIS)

    Mattus, C.H.

    2001-01-01

    This report covers work performed during FY 1999-2000 in support of treatment demonstrations conducted for the Mercury Working Group of the U.S. Department of Energy (DOE) Mixed Waste Focus Area. In order to comply with the requirements of the Resource Conservation and Recovery Act, as implemented by the U.S. Environmental Protection Agency (EPA), DOE must use one of these procedures for wastes containing mercury at levels above 260 ppm: a retorting/roasting treatment or an incineration treatment (if the wastes also contain organics). The recovered radioactively contaminated mercury must then be treated by an amalgamation process prior to disposal. The DOE Mixed Waste Focus Area and Mercury Working Group are working with the EPA to determine if some alternative processes could treat these types of waste directly, thereby avoiding for DOE the costly recovery step. They sponsored a demonstration in which commercial vendors applied their technologies for the treatment of two contaminated waste soils from Brookhaven National Laboratory. Each soil was contaminated with ∼4500 ppm mercury; however, one soil had as a major radioelement americium-241, while the other contained mostly europium-152. The project described in this report addressed the need for data on the mercury vapor released by the solidified/stabilized mixed low-level mercury wastes generated during these demonstrations as well as the comparison between the untreated and treated soils. A related work began in FY 1998, with the measurement of the mercury released by amalgamated mercury, and the results were reported in ORNL/TM-13728. Four treatments were performed on these soils. The baseline was obtained by thermal treatment performed by SepraDyne Corp., and three forms of solidification/stabilization were employed: one using sulfur polymer cement (Brookhaven National Laboratory), one using portland cement [Allied Technology Group (ATG)], and a third using proprietary additives (Nuclear Fuel Services)

  18. Preliminary assessment of the controlled release of radionuclides from waste packages containing borosilicate waste glass

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Apted, M.J.; Engle, D.W.; Eslinger, P.W.

    1990-06-01

    The purpose of this report is to provide a preliminary assessment of the release-rate for an engineered barriers subsystem (EBS) containing waste packages of defense high-level waste borosilicate glass at geochemical and hydrological conditions similar to the those at Yucca Mountain. The relationship between the proposed Waste Acceptance Preliminary Specifications (WAPS) test of glass- dissolution rate and compliance with the NRC's release-rate criterion is also evaluated. Calculations are reported for three hierarchical levels: EBS analysis, waste-package analysis, and waste-glass analysis. The following conclusions identify those factors that most acutely affect the magnitude of, or uncertainty in, release-rate performance

  19. Contaminant Release from Residual Waste in Single Shell Tanks at the Hanford Site, Washington, USA - 9276

    International Nuclear Information System (INIS)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Deutsch, William J.; Lindberg, Michael J.

    2009-01-01

    Determinations of elemental and solid-phase compositions, and contaminant release studies have been applied in an ongoing study of residual tank wastes (i.e., waste remaining after final retrieval operations) from five of 149 underground single-shell storage tanks (241-C-103, 241-C-106, 241-C-202, 241-C-203, and 241-S-112) at the U.S. Department of Energy's Hanford Site in Washington State. This work is being conducted to support performance assessments that will be required to evaluate long-term health and safety risks associated with tank site closure. The results of studies completed to date show significant variability in the compositions, solid phase properties, and contaminant release characteristics from these residual tank wastes. This variability is the result of differences in waste chemistry/composition of wastes produced from several different spent fuel reprocessing schemes, subsequent waste reprocessing to remove certain target constituents, tank farm operations that concentrated wastes and mixed wastes between tanks, and differences in retrieval processes used to remove the wastes from the tanks. Release models were developed based upon results of chemical characterization of the bulk residual waste, solid-phase characterization (see companion paper 9277 by Krupka et al.), leaching and extraction experiments, and geochemical modeling. In most cases empirical release models were required to describe contaminant release from these wastes. Release of contaminants from residual waste was frequently found to be controlled by the solubility of phases that could not be identified and/or for which thermodynamic data and/or dissolution rates have not been measured. For example, significant fractions of Tc-99, I-129, and Cr appear to be coprecipitated at trace concentrations in metal oxide phases that could not be identified unambiguously. In the case of U release from tank 241-C-103 residual waste, geochemical calculations indicated that leachate

  20. Radionuclide release from low-level waste in field lysimeters

    International Nuclear Information System (INIS)

    Oblath, S.B.

    1986-01-01

    A field program has been in operation for 8 years at the Savannah River Plant (SRP) to determine the leaching/migration behavior of low-level radioactive waste using lysimeters. The lysimeters are soil-filled caissons containing well characterized wastes, with each lysimeter serving as a model of a shallow land burial trench. Sampling and analysis of percolate water and vegetation from the lysimeters provide a determination of the release rates of the radionuclides from the waste/soil system. Vegetative uptake appears to be a major pathway for migration. Fractional release rates from the waste/soil system are less than 0.01% per year. Waste-to-soil leach rates up to 10% per year have been determined by coring several of the lysimeters. The leaching of solidified wasteforms under unsaturated field conditions has agreed well with static, immersion leaching of the same type waste in the laboratory. However, releases from the waste/soil system in the lysimeter may be greater than predicted based on leaching alone, due to complexation of the radionuclides by other components leached from the wastes to form mobile, anionic species

  1. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  2. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr

  3. Contaminant Release from Residual Waste in Closed Single-Shell Tanks and Other Waste Forms Associated with the Tanks

    International Nuclear Information System (INIS)

    Deutsch, William J.

    2008-01-01

    This chapter describes the release of contaminants from the various waste forms that are anticipated to be associated with closure of the single-shell tanks. These waste forms include residual sludge or saltcake that will remain in the tanks after waste retrieval. Other waste forms include engineered glass and cementitious materials as well as contaminated soil impacted by previous tank leaks. This chapter also describes laboratory testing to quantify contaminant release and how the release data are used in performance/risk assessments for the tank waste management units and the onsite waste disposal facilities. The chapter ends with a discussion of the surprises and lessons learned to date from the testing of waste materials and the development of contaminant release models

  4. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  5. Release rates from waste packages in a salt repository

    International Nuclear Information System (INIS)

    Chambre, P.L.; Hwang, Y.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    In this report we present estimates of radionuclide release rates from waste packages into salt. This conservative and bounding analysis shows that release rates from waste packages in salt are well below the US Nuclear Regulatory Commission's performance objectives for the engineered barrier system. 2 refs., 2 figs

  6. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)], E-mail: al-abed.souhail@epa.gov; Jegadeesan, G. [Pegasus Technical Services Inc., 46 East Hollister Street, Cincinnati, OH 45219 (United States); Purandare, J. [Englandgeosystem Inc., 15375 Barranca Pkwy, Suite F-106, Irvine, CA 92618 (United States); Allen, D. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2008-05-30

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste.

  7. Leaching behavior of mineral processing waste: Comparison of batch and column investigations

    International Nuclear Information System (INIS)

    Al-Abed, Souhail R.; Jegadeesan, G.; Purandare, J.; Allen, D.

    2008-01-01

    In this study, a comparison of laboratory batch and column experiments on metal release profile from a mineral processing waste (MPW) is presented. Batch (equilibrium) and column (dynamic) leaching tests were conducted on ground MPW at different liquid-solid ratios (LS) to determine the mechanisms controlling metal release. Additionally, the effect of pH on metal release is also discussed. It was observed that acidic pH conditions induced dissolution of As, Zn and Cu. Negligible leaching at alkaline pH was observed. However, Se depicted amphoteric behavior with high release at low and high pH. The batch and column data showed that As and Se release increased with LS ratio, while that of Cu and Zn increased initially and tapered towards equilibrium values at high LS ratios. The results on metal release from the MPW suggested that dissolution of the metal was the controlling mechanism. Leaching profiles from the batch and column data corresponded well for most LS ratios. This is most likely due to the acidic character of the waste, minimal changes in pH during the column operation and granular structure of the waste. From a waste management perspective, low cost batch equilibrium studies in lieu of high cost column experiments can be used for decision making on its disposal only when the waste exhibits characteristics similar to the mineral processing waste

  8. Preoperational assessment of solute release from waste rock at proposed mining operations

    International Nuclear Information System (INIS)

    Lapakko, Kim A.

    2015-01-01

    Highlights: • Modeling to estimate solute release from waste rock at proposed mines is described. • Components of the modeling process are identified and described. • Modeling inputs required are identified and described. • Examples of data generated and their application are presented. • Challenges inherent to environmental review are identified. - Abstract: Environmental assessments are conducted prior to mineral development at proposed mining operations. Among the objectives of these assessments is prediction of solute release from mine wastes projected to be generated by the proposed mining and associated operations. This paper provides guidance to those engaged in these assessments and, in more detail, provides insights on solid-phase characterization and application of kinetic test results for predicting solute release from waste rock. The logic guiding the process is consistent with general model construction practices and recent publications. Baseline conditions at the proposed site are determined and a detailed operational plan is developed and imposed upon the site. Block modeling of the mine geology is conducted to identify the mineral assemblages present, their masses and compositional variations. This information is used to select samples, representative of waste rock to be generated, that will be analyzed and tested to describe characteristics influencing waste rock drainage quality. The characterization results are used to select samples for laboratory dissolution testing (kinetic tests). These tests provide empirical data on dissolution of the various mineral assemblages present as waste rock. The data generated are used, in conjunction with environmental conditions, the proposed method of mine waste storage, and scientific and technical principles, to estimate solute release rates for the operational scale waste rock. Common concerns regarding waste rock are generation of acidic drainage and release of heavy metals and sulfate. Key solid

  9. Kinetics of Brominated Flame Retardant (BFR) Releases from Granules of Waste Plastics.

    Science.gov (United States)

    Sun, Bingbing; Hu, Yuanan; Cheng, Hefa; Tao, Shu

    2016-12-20

    Plastic components of e-waste contain high levels of brominated flame retardants (BFRs), whose releases cause environmental and human health concerns. This study characterized the release kinetics of polybrominated diphenyl ethers (PBDEs) from millimeter-sized granules processed from the plastic exteriors of two scrap computer displays at environmentally relevant temperatures. The release rate of a substitute of PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), from the waste plastics, was reported for the first time. Deca-BDE was the most abundant PBDE congeners in both materials (87-89%), while BTBPE was also present at relatively high contents. The release kinetics of BFRs could be modeled as one-dimensional diffusion, while the temperature dependence of diffusion coefficients was well described by the Arrhenius equation. The diffusion coefficients of BFRs (at 30 °C) in the plastic matrices were estimated to be in the range of 10 -27.16 to 10 -19.96 m 2 ·s -1 , with apparent activation energies between 88.4 and 154.2 kJ·mol -1 . The half-lives of BFR releases (i.e., 50% depletion) from the plastic granules ranged from thousands to tens of billions of years at ambient temperatures. These findings suggest that BFRs are released very slowly from the matrices of waste plastics through molecular diffusion, while their emissions can be significantly enhanced with wear-and-tear and pulverization.

  10. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  11. A big picture prospective for wet waste processing management

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1996-01-01

    This paper provides an overview of general observations made relative to the technical and economical considerations being evaluated by many commercial nuclear power plants involving their decision making process for implementation of several new wet waste management technologies. The waste management processes reviewed include the use of, Reverse Osmosis, Non-Precoat Filters, Resin Stripping ampersand Recycling, Evaporation ampersand Calcination (RVR trademark, ROVER trademark ampersand Thermax trademark), Compression Dewatering (PressPak trademark), Incineration (Resin Express trademark), Survey ampersand Free Release (Green Is Clean) and Quantum Catalytic Extraction Processing (QCEP trademark). These waste management processes are reviewed relative to their general advantages and disadvantages associated with the processing of various wet waste streams including: reactor make-up water, floor drain sludges and other liquid waste streams such as boric acid concentrates and steam generator cleaning solutions. A summary of the conclusions generally being derived by most utilities associated with the use of these waste management processes is also provided

  12. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    Simulations were conducted to analyze the sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of the advective release from waste packages under dripping fractures. The first conceptual model assumed that dripping water directly contacts the waste form inside the 'failed' waste package, and radionuclides are released from the EBS by advection. The second conceptual model assumed that dripping water is diverted around the 'failed' waste package (because of the presence of corrosion products plugging the perforations) and dripping water is prevented from directly contacting the waste form. In the second model, radionuclides were assumed to transport through the perforations by diffusion, and, once outside the waste package, to be released from the EBS by advection. The second model was to incorporate more realism into the EBS release calculations. For the case with the second EBS release model, most radionuclides had significantly lower peak EBS release rates (from at least one to several orders of magnitude) than with the first EBS release model. The impacts of the alternative EBS release models were greater for the radionuclides with a low solubility (or solubility-limited radionuclides) than for the radionuclides with a high solubility (or waste form dissolution-limited radionuclides). The analyses indicated that the EBS release model representing advection through a 'failed' waste package (the first EBS release model) may be too conservative in predicting the EBS performance. One major implication from this sensitivity study was that a 'failed' waste package container with multiple perforations may still be able to perform effectively as an important barrier to radionuclide release. (author)

  13. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  14. Molten salt processing of mixed wastes with offgas condensation

    International Nuclear Information System (INIS)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R.; Gay, R.L.; Stewart, A.; Yosim, S.

    1991-01-01

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000 degrees C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700 degrees C. 15 refs., 5 figs., 1 tab

  15. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    Science.gov (United States)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  16. Investigation of some factors affecting on release of radon-222 from phosphogypsum waste associated with phosphate ore processing.

    Science.gov (United States)

    Hilal, M A; El Afifi, E M; Nayl, A A

    2015-07-01

    The aim of this study is oriented to investigate the influence of some physicochemical factors such as radium distribution, grain size, moisture content and chemical constituents on releases of radon-222 from the accumulated phosphogypsum (PG) waste. The emanation fraction, activity concentration in the pore and the surface exhalation rate of radon-222 in the bulk PG waste are 34.5 ± 0.3%, 238.6 ± 7.8 kBq m(-3) and 213 ± 6.9 mBq m(-2) s(-1), respectively. These values were varied and enhanced slightly in the fine grain sizes (F1 factor of 1.05 folds compared to the bulk residue. It was also found that release of radon from residue PG waste was controlled positively by radium (Ra-226), calcium (CaSO4) and strontium (SrO). About 67% of radon release attributed to the grain size below 0.5 mm, while 33% due to the large grain size above 0.5 mm. The emanation fraction of Rn-222 is increased with moisture content and the maximum emanation is ∼43% of moisture of 3-8%. It reduced slowly with the continuous increase in moisture till 20%. Due to PG waste in situ can be enhancing the background to the surround workers and/or public. Therefore, the environmental negative impacts due to release of Rn-222 can be minimized by legislation to restrict its civil uses, or increasing its moisture to ∼10%, or by the particle size separation of the fine fraction containing the high levels of Ra-226 followed by a suitable chemical treatment or disposal; whereas the low release amount can be diluted and used in cement industry, roads or dam construction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Alexandre, D.

    1986-05-01

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen [fr

  18. Pollution prevention at the Kansas City Division through process waste assessments

    International Nuclear Information System (INIS)

    Pemberton, S.E.; Gentile, C.C.

    1992-01-01

    Allied-Signal Inc., Kansas City Division (KCD) is committed to the hazardous waste minimization requirements set forth under RCRA as amended by the Pollution Prevention Act and DOE Order 5400.1. To assure compliance with these regulations, the KCD has developed a comprehensive Pollution Prevention Program which focuses on the elimination or minimization of all material releases to all environmental media. The ownership of waste minimization is given to all of the waste generators through Departmental Pollution Prevention Plans. These plans include tools to achieve the waste minimization goals. One of these tools is the process waste assessment (PWA). A PWA is a planned procedure with the objective of identifying opportunities and methods to reduce or eliminate waste. A material balance is performed around a specific process which qualifies and quantifies the materials entering and exiting the process. These materials are further defined to the hazardous component level. The exiting materials are separated into what goes into the product, sent to waste management, and what is released to the air (fugitive or point source). Next, opportunities are identified and evaluated for the ability to eliminate or minimize the waste streams exiting the process. Therefore, the PWA provides the basic tool for the creation of a comprehensive process baseline and identification of opportunities to eliminate/minimize the release of hazardous and non-hazardous wastes. This presentation will describe the status and activities of the program conceived to initiate PWAs at the Kansas City Division (KCD) of Allied-Signal Inc.. This program is organized through business units Which consist of manufacturing, quality, and engineering personnel from a specific product line. The departments that these business units represent are the generators of the major process waste at the KCD. Included in the update will be a brief overview of the lessons learned from the methodology development and

  19. Sensitivity of the engineered barrier system (EBS) release rate to alternative conceptual models of advective release from waste packages under dripping fractures

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; McNeish, J.A.; Vallikat, V.

    1996-01-01

    The first model assumed that dripping water directly contacts the waste form inside the ''failed'' waste package and radionuclides are released from the EBS by advection. The second model assumed that dripping water is diverted around the package (because of corrosion products plugging the perforations), thereby being prevented from directly contacting the waste form. In the second model, radionuclides were assumed to diffuse through the perforations, and, once outside the waste package, to be released from the EBS by advection. For the case with the second EBS release model, most radionuclides had lower peak EBS release rates than with the first model. Impacts of the alternative EBS release models were greater for the radionuclides with low solubility. The analysis indicated that the EBS release model representing advection through a ''failed'' waste package (the first model) may be too conservative; thus a ''failed'' waste package container with multiple perforations may still be an important barrier to radionuclide release

  20. Pilot process waste assessment for the fireset area

    International Nuclear Information System (INIS)

    Cole, M.J.; Goethe, M.C.

    1992-08-01

    A pilot process waste assessment (WA) was conducted in the fireset area to develop methodology for conducting future process waste assessments. The study was conducted on trichloroethylene spray cleaning using the guidance for PWAs supplied by Environment, Safety, and Health (ES ampersand H). The first objective was to draw up a flow diagram (see Appendix A, worksheet 4) for the process. When this was done, a mass balance (see Appendix A, Worksheet 5) was conducted to determine the quantity of incoming material and where it was going during the process. The mass balance showed that a large quantity of trichloroethylene and all the isopropyl alcohol was being released to the atmosphere instead of being captured in the waste solvent container. Upon completion of the mass balance, waste minimization options where identified (see Appendix A, Worksheet 8) to reduce or eliminate the quantity of hazardous solvent used

  1. Interim report: Study of benzene release from Savannah River in-tank precipitation process slurry simulant

    International Nuclear Information System (INIS)

    Rappe, K.G.; Gauglitz, P.A.

    1997-09-01

    At the Savannah River Site, the in-tank precipitation (ITP) process uses sodium tetraphenylborate (NaTPB) to precipitate radioactive cesium from alkaline wastes. During this process, potassium is also precipitated to form a 4-wt% KTPB/CsTPB slurry. Residual NaTPB decomposes to form benzene, which is retained by the waste slurry. The retained benzene is also readily released from the waste during subsequent waste processing. While the release of benzene certainly poses both flammability and toxicological safety concerns, the magnitude of the hazard depends on the rate of release. Currently, the mechanisms controlling the benzene release rates are not well understood, and predictive models for estimating benzene release rates are not available. The overall purpose of this study is to obtain quantitative measurements of benzene release rates from a series of ITP slurry stimulants. This information will become a basis for developing a quantitative mechanistic model of benzene release rates. The transient benzene release rate was measured from the surface of various ITP slurry (solution) samples mixed with benzene. The benzene release rate was determined by continuously purging the headspace of a sealed sample vessel with an inert gas (nitrogen) and analyzing that purged headspace vapor for benzene every 3 minutes. The following 75-mL samples were measured for release rates: KTPB slurry with 15,000 ppm freshly added benzene that was gently mixed with the slurry, KTPB slurry homogenized (energetically mixed) with 15,000 ppm and 5,000 ppm benzene, clear and filtered KTPB salt solution saturated with benzene (with and without a pure benzene layer on top of the solution), and a slurry sample from a large demonstration experiment (DEMO slurry) containing-benzene generated in situ

  2. Effects of sorption hysteresis on radionuclide releases from waste packages

    International Nuclear Information System (INIS)

    Barney, G.S.; Reed, D.T.

    1985-01-01

    A one-dimensional, numerical transport model was used to calculate radionuclide releases from waste packages emplaced in a nuclear waste repository in basalt. The model incorporates both sorption and desorption isotherm parameters measured previously for sorption of key radionuclides on the packing material component of the waste package. Sorption hysteresis as described by these isotherms lowered releases of some radionuclides by as much as two orders of magnitude. Radionuclides that have low molar inventories (relative to uranium), high solubility, and strongly sorbed, are most affected by sorption hysteresis. In these cases, almost the entire radionuclide inventory is sorbed on the packing material. The model can be used to help optimize the thickness of the packing material layer by comparing release rate versus packing material thickness curves with Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) release limits

  3. The Optimization of Radioactive Waste Management in the Nuclear Installation Decommissioning Process

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir

    2008-01-01

    The paper presents a basic characterization of nuclear installation decommissioning process especially in the term of radioactive materials management. A large amount of solid materials and secondary waste created after implementation of decommissioning activities have to be managed considering their physical, chemical, toxic and radiological characteristics. Radioactive materials should be, after fulfilling all the conditions defined by the authorities, released to the environment for the further use. Non-releasable materials are considered to be a radioactive waste. Their management includes various procedures starting with pre-treatment activities, continuing with storage, treatment and conditioning procedures. Finally, they are disposed in the near surface or deep geological repositories. Considering the advantages and disadvantages of all possible ways of releasing the material from nuclear installation area, optimization of the material management process should be done. Emphasis is placed on the radiological parameters of materials, availability of waste management technologies, waste repositories and on the radiological limits and conditions for materials release or waste disposal. Appropriate optimization of material flow should lead to the significant savings of money, disposal capacities or raw material resources. Using a suitable calculation code e.g. OMEGA, the evaluation of the various material management scenarios and selection of the best one, based on the multi-criterion analysis, should be done. (authors)

  4. Models for recurrent gas release event behavior in hazardous waste tanks

    International Nuclear Information System (INIS)

    Anderson, D.N.; Arnold, B.C.

    1994-08-01

    Certain radioactive waste storage tanks at the United States Department of Energy Hanford facilities continuously generate gases as a result of radiolysis and chemical reactions. The congealed sludge in these tanks traps the gases and causes the level of the waste within the tanks to rise. The waste level continues to rise until the sludge becomes buoyant and ''rolls over'', changing places with heavier fluid on top. During a rollover, the trapped gases are released, resulting, in a sudden drop in the waste level. This is known as a gas release event (GRE). After a GRE, the wastes leading to another GRE. We present nonlinear time waste re-congeals and gas again accumulates leading to another GRE. We present nonlinear time series models that produce simulated sample paths that closely resemble the temporal history of waste levels in these tanks. The models also imitate the random GRE, behavior observed in the temporal waste level history of a storage tank. We are interested in using the structure of these models to understand the probabilistic behavior of the random variable ''time between consecutive GRE's''. Understanding the stochastic nature of this random variable is important because the hydrogen and nitrous oxide gases released from a GRE, are flammable and the ammonia that is released is a health risk. From a safety perspective, activity around such waste tanks should be halted when a GRE is imminent. With credible GRE models, we can establish time windows in which waste tank research and maintenance activities can be safely performed

  5. A Probabilistic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called A-KRS, in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been probabilistically assessed with 9 selected input parameters, each of which has its own statistical distribution for a normal release and transport scenario associated with nuclide release and transport in and around the repository. Probabilistic dose exposure rates to the farming exposure group have been evaluated. A sensitivity of 9 selected parameters to the result has also been investigated to see which parameter is more sensitive and important to the exposure rates.

  6. Description of processes for the immobilization of selected transuranic wastes

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1980-12-01

    Processed sludge and incinerator-ash wastes contaminated with transuranic (TRU) elements may require immobilization to prevent the release of these elements to the environment. As part of the TRU Waste Immobilization Program sponsored by the Department of Energy (DOE), the Pacific Northwest Laboratory is developing applicable waste-form and processing technology that may meet this need. This report defines and describes processes that are capable of immobilizing a selected TRU waste-stream consisting of a blend of three parts process sludge and one part incinerator ash. These selected waste streams are based on the compositions and generation rates of the waste processing and incineration facility at the Rocky Flats Plant. The specific waste forms that could be produced by the described processes include: in-can melted borosilicate-glass monolith; joule-heated melter borosilicate-glass monolith or marble; joule-heated melter aluminosilicate-glass monolith or marble; joule-heated melter basaltic-glass monolith or marble; joule-heated melter glass-ceramic monolith; cast-cement monolith; pressed-cement pellet; and cold-pressed sintered-ceramic pellet

  7. A Deterministic Safety Assessment of a Pyro-processed Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae; Choi, Jong Won

    2012-01-01

    A GoldSim template program for a safety assessment of a hybrid-typed repository system, called 'A-KRS', in which two kinds of pyro-processed radioactive wastes, low-level metal wastes and ceramic high-level wastes that arise from the pyro-processing of PWR nuclear spent fuels are disposed of, has been developed. This program is ready both for a deterministic and probabilistic total system performance assessment which is able to evaluate nuclide release from the repository and farther transport into the geosphere and biosphere under various normal, disruptive natural and manmade events, and scenarios. The A-KRS has been deterministically assessed with 5 various normal and abnormal scenarios associated with nuclide release and transport in and around the repository. Dose exposure rates to the farming exposure group have been evaluated in accordance with all the scenarios and then compared among other.

  8. Analytical methodology for optimization of waste management scenarios in nuclear installation decommissioning process - 16148

    International Nuclear Information System (INIS)

    Zachar, Matej; Necas, Vladimir; Daniska, Vladimir; Rehak, Ivan; Vasko, Marek

    2009-01-01

    The nuclear installation decommissioning process is characterized by production of large amount of various radioactive and non-radioactive waste that has to be managed, taking into account its physical, chemical, toxic and radiological properties. Waste management is considered to be one of the key issues within the frame of the decommissioning process. During the decommissioning planning period, the scenarios covering possible routes of materials release into the environment and radioactive waste disposal, should be discussed and evaluated. Unconditional and conditional release to the environment, long-term storage at the nuclear site, near surface or deep geological disposal and relevant material management techniques for achieving the final status should be taken into account in the analysed scenarios. At the level of the final decommissioning plan, it is desirable to have the waste management scenario optimized for local specific facility conditions taking into account a national decommissioning background. The analytical methodology for the evaluation of decommissioning waste management scenarios, presented in the paper, is based on the materials and radioactivity flow modelling, which starts from waste generation activities like pre-dismantling decontamination, selected methods of dismantling, waste treatment and conditioning, up to materials release or conditioned radioactive waste disposal. The necessary input data for scenarios, e.g. nuclear installation inventory database (physical and radiological data), waste processing technologies parameters or material release and waste disposal limits, have to be considered. The analytical methodology principles are implemented into the standardised decommissioning parameters calculation code OMEGA, developed in the DECOM company. In the paper the examples of the methodology implementation for the scenarios optimization are presented and discussed. (authors)

  9. Risk-informed assessment of radionuclide release from dissolution of spent nuclear fuel and high-level waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Tae M., E-mail: tae.ahn@nrc.gov

    2017-06-15

    Highlights: • Dissolution of HLW waste form was assessed with long-term risk informed approach. • The radionuclide release rate decreases with time from the initial release rate. • Fast release radionuclides can be dispersed with discrete container failure time. • Fast release radionuclides can be restricted by container opening area. • Dissolved radionuclides may be further sequestered by sorption or others means. - Abstract: This paper aims to detail the different parameters to be considered for use in an assessment of radionuclide release. The dissolution of spent nuclear fuel and high-level nuclear waste glass was considered for risk and performance insights in a generic disposal system for more than 100,000 years. The probabilistic performance assessment includes the waste form, container, geology, and hydrology. Based on the author’s previous extended work and data from the literature, this paper presents more detailed specific cases of (1) the time dependence of radionuclide release, (2) radionuclide release coupled with container failure (rate-limiting process), (3) radionuclide release through the opening area of the container and cladding, and (4) sequestration of radionuclides in the near field after container failure. These cases are better understood for risk and performance insights. The dissolved amount of waste form is not linear with time but is higher at first. The radionuclide release rate from waste form dissolution can be constrained by container failure time. The partial opening area of the container surface may decrease radionuclide release. Radionuclides sequestered by various chemical reactions in the near field of a failed container may become stable with time as the radiation level decreases with time.

  10. Improved liquid waste processing system of PWR plant

    International Nuclear Information System (INIS)

    Suehiro, Kazuyasu

    1977-01-01

    Mitsubishi Heavy Industries, Ltd. has engaged in the improvement and enhancement of waste-processing facilities for PWR power stations, and recently established the improved processing system. With this system, it becomes possible to contain radioactive waste gas semi-permanently within plants and to recycle waste liquid after the treatment, thus to make the release of radioactive wastes practically zero. The improved system has the following features, namely the recycling system is adopted, drain is separated and each separated drain is treated by specialized process, the reboiler type evaporator and the reverse osmosis equipment are used, and the leakless construction is adopted for the equipments. The radioactive liquid wastes in PWR power stations are classified into coolant drain, drain from general equipments, chemical drain and cleaning water. The outline of the improved processing system and the newly developed equipments such as the reboiler type evaporator and the reverse osmosis equipment are explained. With the evaporator, the concentration rate of waste liquid can be raised to about three times, and foaming waste can be treated efficiently. The decontamination performance is excellent. The reverse osmosis treatment is stable and reliable method, and is useful for the treatment of cleaning water. It is also effective for concentrating treatment. The unmanned automatic operation is possible. (Kako, I.)

  11. Waste monitoring of the uranium ore processing activities in Romania

    International Nuclear Information System (INIS)

    Nica, L.

    2002-01-01

    The uranium ore processing activities at the Feldioara site produce a range of liquid and solid waste that are monitored. Liquids are treated through decantation, pH correction and uranium precipitation before their release into the environment. The solid waste is gathered into ore specific area and are covered regularly with clay materials. (author)

  12. Investigation of activity release from bituminized intermediate-level waste forms under thermal stresses

    International Nuclear Information System (INIS)

    Kluger, W.; Vejmelka, P.; Koester, R.

    1983-01-01

    To determine the consequences of a fire during fabrication, intermediate storage and transport of bituminized NaNO 3 waste forms, the fractions of plutonium released from the waste forms were assessed. For this purpose, laboratory tests were made with PuO 2 -containing specimens as well as a field test with specimens containing Eu 2 O 3 . By the evaluation of plutonium release in the laboratory and by the determination of the total sodium release and the relative Eu/Na release in the field tests the plutonium release can be deduced from full-scale specimens. The results show that for bituminized waste forms with high NaNO 3 contents (approx. 36 wt%) the average plutonium release obtained in laboratory testing is 15%. In the field tests (IAEA fire test conditions) an average Eu release of 8% was found. These results justify the statement that also for waste forms in open 175 L drum inserts a maximum plutonium release of about 15% can be expected. From the time-dependence of Eu/Na release in the field tests an induction period of 15-20 minutes between the start of testing and the first Na/Eu release can be derived. The maximum differential Na/Eu release occurs after a test period of 45 to 60 minutes duration and after 90 to 105 minutes (tests K2 and K4, respectively); after that time also the highest temperatures in the products are measured. The release values were determined for products in open 175 L drum inserts which in this form are not eligible for intermediate and ultimate storage. For bituminized waste forms in concrete packages (lost concrete shieldings) a delayed increase in temperature to only 70-80 deg. C takes place (4-5 hours after extinction of the fire) if the fire lasts 45 minutes. The concrete package remains intact under test conditions. This means that activity release from bituminized waste forms packaged in this way can be ruled out in the case under consideration. (author)

  13. DELPHI expert panel evaluation of Hanford high level waste tank failure modes and release quantities

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, G.L.; Han, F.C.

    1996-09-30

    The Failure Modes and Release Quantities of the Hanford High Level Waste Tanks due to postulated accident loads were established by a DELPHI Expert Panel consisting of both on-site and off-site experts in the field of Structure and Release. The Report presents the evaluation process, accident loads, tank structural failure conclusion reached by the panel during the two-day meeting.

  14. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process.

    Science.gov (United States)

    Zou, Jinte; Zhang, Lili; Wang, Lin; Li, Yongmei

    2017-03-01

    The effect of ethylene diamine tetraacetic acid (EDTA) addition on phosphorus release from biosolids and phosphate precipitates during anaerobic fermentation was investigated. Meanwhile, the impact of EDTA addition on the anaerobic fermentation process was revealed. The results indicate that EDTA addition significantly enhanced the release of phosphorus from biosolids, ferric phosphate precipitate and aluminum phosphate precipitate during anaerobic fermentation, which is attributed to the complexation of metal ions and damage of cell membrane caused by EDTA. With the optimal EDTA addition of 19.5 mM (0.41 gEDTA/gSS), phosphorus release efficiency from biosolids was 82%, which was much higher than that (40%) without EDTA addition. Meanwhile, with 19.5 mM EDTA addition, almost all the phosphorus in ferric phosphate precipitate was released, while only 57% of phosphorus in aluminum phosphate precipitate was released. This indicates that phosphorus in ferric phosphate precipitate was much easier to be released than that in aluminum phosphate precipitate during anaerobic fermentation of sludge. In addition, proper EDTA addition facilitated the production of soluble total organic carbon and volatile fatty acids, as well as solid reduction during sludge fermentation, although methane production could be inhibited. Therefore, EDTA addition can be used as an alternative method for recovering phosphorus from waste activated sludge containing ferric or aluminum precipitates, as well as recovery of soluble carbon source. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103

    Energy Technology Data Exchange (ETDEWEB)

    Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

    1997-09-01

    The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days.

  16. Mechanisms of gas retention and release: Experimental results for Hanford waste tanks 241-AW-101 and 241-AN-103

    International Nuclear Information System (INIS)

    Rassat, S.D.; Gauglitz, P.A.; Bredt, P.R.; Mahoney, L.A.; Forbes, S.V.; Tingey, S.M.

    1997-09-01

    The 177 storage tanks at Hanford contain a vast array of radioactive waste forms resulting, primarily, from nuclear materials processing. Through radiolytic, thermal, and other decomposition reactions of waste components, gaseous species including hydrogen, ammonia, and the oxidizer nitrous oxide are generated within the waste tanks. Many of these tanks are known to retain and periodically release quantities of these flammable gas mixtures. The primary focus of the Flammable Gas Project is the safe storage of Hanford tank wastes. To this end, we strive to develop an understanding of the mechanisms of flammable gas retention and release in Hanford tanks through laboratory investigations on actual tank wastes. These results support the closure of the Flammable Gas Unreviewed Safety Question (USQ) on the safe storage of waste tanks known to retain flammable gases and support resolution of the broader Flammable Gas Safety Issue. The overall purpose of this ongoing study is to develop a comprehensive and thorough understanding of the mechanisms of flammable gas retention and release. The first objective of the current study was to classify bubble retention and release mechanisms in two previously untested waste materials from Tanks 241-AN-103 (AN-103) and 241-AW-101 (AW-101). Results were obtained for retention mechanisms, release characteristics, and the maximum gas retention. In addition, unique behavior was also documented and compared with previously studied waste samples. The second objective was to lengthen the duration of the experiments to evaluate the role of slowing bubble growth on the retention and release behavior. Results were obtained for experiments lasting from a few hours to a few days

  17. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  18. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  19. Methodology for estimating accidental radioactive releases in nuclear waste management

    International Nuclear Information System (INIS)

    Levy, H.B.

    1979-01-01

    Estimation of the risks of accidental radioactive releases is necessary in assessing the safety of any nuclear waste management system. The case of a radioactive waste form enclosed in a barrier system is considered. Two test calculations were carried out

  20. Improvement of waste release control in French NPP

    International Nuclear Information System (INIS)

    Samson, T.; Lucquin, E.; Dupin, M.; Florence, D.; Grisot, M.

    2002-01-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  1. Improvement of waste release control in French NPP

    Energy Technology Data Exchange (ETDEWEB)

    Samson, T.; Lucquin, E.; Dupin, M. [EDF/GDL (France); Florence, D. [EDF/GENV (France); Grisot, M. [EDF/CNPE Saint Laurent (France)

    2002-07-01

    The new waste release control in French NPP is more restrictive than the old one and needs heavy investment to bring plants to compliance with it. The great evolutions are a chemical follow up on more chemicals with a higher measurement frequency and with lower maximum concentrations and a specific measurement of carbon 14. Regarding radioactive releases, a new counting has been settled and activity of carbon 14 release is now measured and no longer calculated. The evolution of the French regulation leads to develop specific procedures and analytical techniques in chemistry and in radiochemistry (UV spectrometric methods, carbon 14 measurements,..) EDF NPP operators have launched a voluntarist process to reduce their releases since the beginning and before the evolution of the regulation. EDF priorities in terms of environment care lead henceforth to implement a global optimisation of the impact for a better control of releases. The new regulation will help EDF to reach its goals because it covers all the aspects in one administrative document: it is seen as a real simplification and a clarification towards public. In addition, this new regulation fits in with international practices which will allow an easier comparison of results between EDF and foreign NPP. These big environmental concerns lead EDF to create a national dedicated laboratory (LAMEN) in charge of developing specific measurement procedures to be implemented either by NPP or by sub-contractor laboratories. (authors)

  2. Process equipment waste and process waste liquid collection systems

    International Nuclear Information System (INIS)

    1990-06-01

    The US DOE has prepared an environmental assessment for construction related to the Process Equipment Waste (PEW) and Process Waste Liquid (PWL) Collection System Tasks at the Idaho Chemical Processing Plant. This report describes and evaluates the environmental impacts of the proposed action (and alternatives). The purpose of the proposed action would be to ensure that the PEW and PWL collection systems, a series of enclosed process hazardous waste, and radioactive waste lines and associated equipment, would be brought into compliance with applicable State and Federal hazardous waste regulations. This would be accomplished primarily by rerouting the lines to stay within the buildings where the lined floors of the cells and corridors would provide secondary containment. Leak detection would be provided via instrumented collection sumps locate din the cells and corridors. Hazardous waste transfer lines that are routed outside buildings will be constructed using pipe-in-pipe techniques with leak detection instrumentation in the interstitial area. The need for the proposed action was identified when a DOE-sponsored Resource Conservation and Recovery Act (RCRA) compliance assessment of the ICPP facilities found that singly-contained waste lines ran buried in the soil under some of the original facilities. These lines carried wastes with a pH of less than 2.0, which were hazardous waste according to the RCRA standards. 20 refs., 7 figs., 1 tab

  3. Harmful Waste Process

    International Nuclear Information System (INIS)

    Ki, Mun Bong; Lee, Shi Jin; Park, Jun Seok; Yoon, Seok Pyo; Lee, Jae Hyo; Jo, Byeong Ryeol

    2008-08-01

    This book gives descriptions of processing harmful waste, including concerned law and definition of harmful waste, current conditions and generation of harmful waste in Korea, international condition of harmful waste, minimizing of generation of harmful waste, treatment and storage. It also tells of basic science for harmful waste disposal with physics, chemistry, combustion engineering, microbiology and technique of disposal such as physical, chemical, biological process, stabilizing and solidification, incineration and waste in landfill.

  4. Long term safety assessment of geological waste disposal systems: issues on release scenarios

    International Nuclear Information System (INIS)

    Khan, S.A.; Qureshi, A.A.

    1995-01-01

    Geological insolation of high level nuclear waste is an attractive waste disposal concept. However, long term safety demonstration of this concept is a major challenge to the operators, regulators and the scientific community. Identification of the factors responsible for the release of radionuclides from geosphere to biosphere,is first step in this regard. Current understanding of the release scenarios indicates that faulting, ground after percolation, seismicity, volcanism and human intrusion are the dominating release factors for most of the candidate rock formations. The major source of uncertainties is the probability values of various release events due to random nature of catastrophic geological events and past poor historical records of the frequencies of such events. There is consensus among the experts that the waste release via human intrusion is the most unpredictable scenario at present state of the knowledge. (author)

  5. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  6. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    Science.gov (United States)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  7. Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Knowles, M.K; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

    2000-01-01

    The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. The paper presents a review of the evolution of these models during regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided

  8. Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Knowles, M.K.; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

    2000-01-01

    The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. This paper presents a review of the evolution of these models during the regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided

  9. Waste isolation pilot plant performance assessment: Radionuclide release sensitivity to diminished brine and gas flows to/from transuranic waste disposal areas

    Energy Technology Data Exchange (ETDEWEB)

    Day, Brad A.; Camphouse, R. C.; Zeitler, Todd R. [Sandia National Laboratories, Carlsbad (United States)

    2017-03-15

    Waste Isolation Pilot Plant repository releases are evaluated through the application of modified parameters to simulate accelerated creep closure, include capillary pressure effects on relative permeability, and increase brine and gas saturation in the operations and experimental (OPS/EXP) areas. The modifications to the repository model result in increased pressures and decreased brine saturations in waste areas and increased pressures and brine saturations in the OPS/EXP areas. Brine flows up the borehole during a hypothetical drilling intrusion are nearly identical and brine flows up the shaft are decreased. The modified parameters essentially halt the flow of gas from the southern waste areas to the northern nonwaste areas, except as transported through the marker beds and anhydrite layers. The combination of slightly increased waste region pressures and very slightly decreased brine saturations result in a modest increase in spallings and no significant effect on direct brine releases, with total releases from the Culebra and cutting and caving releases unaffected. Overall, the effects on total high-probability mean releases from the repository are insignificant, with total low-probability mean releases minimally increased. It is concluded that the modified OPS/EXP area parameters have an insignificant effect on the prediction of total releases.

  10. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy.

    Science.gov (United States)

    Case, S D C; Jensen, L S

    2017-11-22

    The drive to a more circular economy has created increasing interest in recycling organic wastes as bio-based fertilizers. This study screened 15 different manures, digestates, sludges, composts, industry by-products, and struvites. Nitrogen (N) and phosphorous (P) release was compared following addition to soil. Three waste materials were then 'upgraded' using heating and pressure (105°C at 220 kPa), alkalinization (pH 10), or sonification to modify N and P release properties, and compared in a second soil incubation. Generally, maximum N release was negatively correlated with the CN ratio of the material (r = -0.6). Composted, dried, or raw organic waste materials released less N (mean of 10.8 ± 0.5%, 45.3 ± 7.2%, and 47.4 ± 3.2% of total N added respectively) than digestates, industry-derived organic fertilizer products, and struvites (mean of 58.2 ± 2.8%, 77.7 ± 6.0%, and 100.0 ± 13.1% of total N added respectively). No analyzed chemical property or processing type could explain differences in P release. No single upgrading treatment consistently increased N or P release. However, for one raw biosolid, heating at a low temperature (105°C) with pressure did increase N release as a percentage of total N added to soil from 30% to 43%.

  11. Release modes and processes relevant to source-term calculations at Yucca Mountain

    International Nuclear Information System (INIS)

    Apted, M.J.

    1994-01-01

    The feasibility of permanent disposal of radioactive high-level waste (HLW) in repositories located in deep geologic formations is being studied world-wide. The most credible release pathway is interaction between groundwater and nuclear waste forms, followed by migration of radionuclide-bearing groundwater to the accessible environment. Under hydrologically unsaturated conditions, vapor transport of volatile radionuclides is also possible. The near-field encompasses the waste packages composed of engineered barriers (e.g. man-made materials, such as vitrified waste forms, corrosion-resistant containers), while the far-field includes the natural barriers (e.g. host rock, hydrologic setting). Taken together, these two subsystems define a series of multiple, redundant barriers that act to assure the safe isolation of nuclear waste. In the U.S., the Department of energy (DOE) is investigating the feasibility of safe, long-term disposal of high-level nuclear waste at the Yucca Mountain site in Nevada. The proposed repository horizon is located in non-welded tuffs within the unsaturated zone (i.e. above the water table) at Yucca Mountain. The purpose of this paper is to describe the source-term models for radionuclide release from waste packages at Yucca Mountain site. The first section describes the conceptual release modes that are relevant for this site and waste package design, based on a consideration of the performance of currently proposed engineered barriers under expected and unexpected conditions. No attempt is made to asses the reasonableness nor probability of occurrence for any specific release mode. The following section reviews the waste-form characteristics that are required to model and constrain the release of radionuclides from the waste package. The next section present mathematical models for the conceptual release modes, selected from those that have been implemented into a probabilistic total system assessment code developed for the Electric Power

  12. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    Science.gov (United States)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  13. Effects of tuff waste package components on release from 76-68 simulated waste glass: Final report

    International Nuclear Information System (INIS)

    McVay, G.L.; Robinson, G.R.

    1984-04-01

    An experimental matrix has been conducted that will allow evaluation of the effects of waste package constituents on the waste form release behavior in a tuff repository environment. Tuff rock and groundwater were used along with 304L, 316, and 1020M ferrous metals to evaluate release from uranium-doped MCC 76-68 simulated waste glass. One of the major findings was that in the absence of 1020M mild steel, tuff rock powder dominates the system. However, when 1020M mild steel is present, it appears to dominate the system. The rock-dominated system results in suppressed glass-water reaction and leaching while the 1020M-dominated system results in enhanced leaching - but the metal effectively scavenges uranium from solution. The 300-series stainless steels play no significant role in affecting glass leaching characteristics. 6 refs., 28 figs., 5 tabs

  14. Determination of the radionuclide release factor for an evaporator process using nondestructive assay

    International Nuclear Information System (INIS)

    Johnson, R.E.

    1998-01-01

    The 242-A Evaporator is the primary waste evaporator for the Hanford Site radioactive liquid waste stored in underground double-shell tanks. Low pressure evaporation is used to remove water from the waste, thus reducing the amount of tank space required for storage. The process produces a concentrated slurry, a process condensate, and an offgas. The offgas exhausts through two stages of high-efficiency particulate air (HEPA) filters before being discharged to the atmosphere 40 CFR 61 Subpart H requires assessment of the unfiltered exhaust to determine if continuous compliant sampling is required. Because potential (unfiltered) emissions are not measured, methods have been developed to estimate these emissions. One of the methods accepted by the Environmental Protection Agency is the measurement of the accumulation of radionuclides on the HEPA filters. Nondestructive assay (NDA) was selected for determining the accumulation on the HEPA filters. NDA was performed on the HEPA filters before and after a campaign in 1997. NDA results indicate that 2.1 E+4 becquerels of cesium-137 were accumulated on the primary HEPA 1700 filter during the campaign. The feed material processed in the campaign contained a total of 1.4 E+l6 Bq of cesium-137. The release factor for the evaporator process is 1.5 E-12. Based on this release factor, continuous compliant sampling is not required

  15. Waste processing air cleaning

    International Nuclear Information System (INIS)

    Kriskovich, J.R.

    1998-01-01

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases

  16. Release to the gas phase of metals, S and Cl during combustion of dedicated waste fractions

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; van Lith, Simone Cornelia; Frandsen, Flemming

    2010-01-01

    The release to the gas phase of inorganic elements such as alkali metals. Cl, S, and heavy metals in Waste-to-Energy (WtE) boilers is a challenge. Besides the risk of harmful emissions to the environment, inorganic elements released from the grate may cause severe ash deposition and corrosion...... and the link to the formation of fly ash and aerosols in full-scale waste incinerators. The release of metals, S and Cl from four dedicated waste fractions was quantified as a function of temperature in a lab-scale fixed-bed reactor. The waste fractions comprised chromated copper arsenate (CCA) impregnated....... The lab-scale release results were then compared with results from a related, full-scale partitioning study, in which test runs with the addition of similar, dedicated waste fractions to a base-load waste had been performed in a grate-fired WtE boiler. In general, the elements Al, Ca, Cr, Cu, Fe, Mg, Si...

  17. Process behavior and environmental assessment of 14C releases from an HTGR fuel reprocessing facility

    International Nuclear Information System (INIS)

    Snider, J.W.; Kaye, S.V.

    1976-01-01

    Large quantities of 14 CO 2 will be evolved when graphite fuel blocks are burned during reprocessing of spent fuel from HTGR reactors. The possible release of some or all of this 14 C to the environment is a matter of concern which is investigated in this paper. Various alternatives are considered in this study for decontaminating and releasing the process off-gas to the environment. Concomitant radiological analyses have been done for the waste process scenarios to supply the necessary feedbacks for process design

  18. Water And Waste Water Processing

    International Nuclear Information System (INIS)

    Yang, Byeong Ju

    1988-04-01

    This book shows US the distribution diagram of water and waste water processing with device of water processing, and device of waste water processing, property of water quality like measurement of pollution of waste water, theoretical Oxygen demand, and chemical Oxygen demand, processing speed like zero-order reactions and enzyme reactions, physical processing of water and waste water, chemical processing of water and waste water like neutralization and buffering effect, biological processing of waste water, ammonia removal, and sludges processing.

  19. Release mechanisms from shallow engineered trenches used as repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Locke, J.; Wood, E.

    1987-05-01

    This report has been written for the Department of the Environment as part of their radioactive waste management research programme. The aim has been to identify release mechanisms of radioactivity from fully engineered trenches of the LAND 2 type and, to identify the data needed for their assessment. No direct experimental work has been involved. The report starts with a brief background to UK strategy and outlines a basic disposal system. It gives reviews of existing experience of low level radioactive waste disposal from LAND 1 trenches and of UK experience of toxic waste disposal to provide a practical basis for the next section which covers the implications of identified release mechanisms on the design requirements for an engineered trench. From these design requirements and their interaction with potential site conditions (both saturated and unsaturated zone sites are considered) an assessment of radionuclide release mechanism is made. (author)

  20. Processing method for radioactive liquid waste

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1991-01-01

    Drainages, such as water after used for washing operators' clothes and water used for washing hands and for showers have such features that the radioactive concentration is extremely low and detergent ingredients and insoluble ingredients such as waste threads, hairs and dirts are contained. At present, waste threads are removed by a strainer. Then, after measuring the radioactivity and determining that the radioactivity is less than a predetermined concentration, they are released to circumstances. However, various organic ingredients such as detergents and dirts in the liquid wastes are released as they are and it is not preferred in respect of environmental protection. Then, in the present invention, activated carbon is filled in a container orderly so that the diameter of the particles of the activated carbon is increased in the upper layer and decreased in the lower layer, and radioactive liquid wastes are passed through the container. With such a constitution. Both of soluble substances and insoluble substances can be removed efficiently without causing cloggings. (T.M.)

  1. Low-level radioactive waste processing at nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    The Solid Radwaste Processing Source Book is presented as a supplement to the Liquid Radwaste Source Book released in 1990 and updated in 1991. The publication is the result of an industry-wide survey, and is intended as a resource for technical and managerial decisions involving of the processing of solid radioactive waste including ''wet'' and ''dry'' active waste as found at both Pressurized and Boiling Water Reactor sites. In addition to information on processes, vendors, volumes, and in-plant management activities, technology under consideration for future use and computer applications are listed. Together with key personnel and contact information contained in the Liquid Source Books, the collected data will be of great use when seeking specific, unbiased experience on which to base decisions related to so processing, disposal policy, or potential economic and regulatory impact

  2. Concrete waste reduction of 50%

    International Nuclear Information System (INIS)

    Vos, R.M. de; Van der Wagt, K.M.; Van der Kruk, E.; Meeussen, H.W.

    2016-01-01

    During decommissioning quite a volume of concrete waste is produced. The degree of activation of the waste can range from clearly activated material to slightly activated or contaminated concrete. The degree of activation influences the applicable waste management processes that can be applied. The subsequent waste management processes can be identified for concrete waste are; disposal, segregation, re-use, conditional release and release. With each of these steps, the footprint of radioactive decommissioning waste is reduced. Future developments for concrete waste reduction can be achieved by applying smart materials in new build facilities (i.e. fast decaying materials). NRG (Nuclear Research and consultancy Group) has investigated distinctive waste management processes to reduce the foot-print of concrete waste streams resulting from decommissioning. We have investigated which processes can be applied in the Netherlands, both under current legislation and with small changes in legislation. We have also investigated the separation process in more detail. Pilot tests with a newly patented process have been started in 2015. We expect that our separation methods will reduce the footprint reduction of concrete waste by approximately 50% due to release or re-use in the nuclear sector or in the conventional industry. (authors)

  3. Modeling of container failure and radionuclide release from a geologic nuclear waste repository

    International Nuclear Information System (INIS)

    Kim, Chang Lak; Kim, Jhin Wung; Choi, Kwang Sub; Cho, Chan Hee

    1989-02-01

    Generally, two processes are involved in leaching and dissolution; (1) chemical reactions and (2) mass transfer by diffusion. The chemical reaction controls the dissolution rates only during the early stage of exposure to groundwater. The exterior-field mass transfer may control the long-term dissolution rates from the waste solid in a geologic repository. Masstransfer analyses rely on detailed and careful application of the governing equations that describe the mechanistic processes of transport of material between and within phases. We develop analytical models to predict the radionuclide release rate into the groundwater with five different approaches: a measurement-based model, a diffusion model, a kinetics model, a diffusion-and-kinetics model, and a modified diffusion model. We also collected experimental leaching data for a partial validation of the radionuclide release model based on the mass transfer theory. Among various types of corrosions, pitting is the most significant because of its rapid growth. The failure time of the waste container, which also can be interpreted as the containment time, is a milestone of the performance of a repository. We develop analytical models to predict the pit growth rate on the container surface with three different approaches: an experimental method, a statistical method, and a mathematical method based on the diffusion theory. (Author)

  4. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.

  5. Process and research method of radionuclide migration in high level radioactive waste geological disposal system

    International Nuclear Information System (INIS)

    Chen Rui; Zhang Zhanshi

    2014-01-01

    Radionuclides released from waste can migrate from the repository to the rock and soil outside. On the other hand, nuclides also are retarded by the backfill material. Radionuclide migration is the main geochemical process of the waste disposal. This paper introduces various methods for radionuclide migration research, and give a brief analysis of the geochemical process of radionuclide migration. Finally, two of the most important processes of the radionuclide migration have been instanced. (authors)

  6. Analysis of a Radioactive Release in a Nuclear Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Poppiti, James [Dept. of Energy, Washington, DC (United States); Nelson, Roger [Dept. of Energy, Carlsbad, NM (United States); MacMillan, Walter J. [Nuclear Waste Partners, Carlsbad, NM (United States); Cunningham, Scott

    2017-07-01

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of the underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.

  7. Analysis of a Radioactive Release in a Nuclear Waste Disposal Facility

    International Nuclear Information System (INIS)

    Poppiti, James; Nelson, Roger; MacMillan, Walter J.; Cunningham, Scott

    2017-01-01

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation's defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of the underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.

  8. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  9. Mechanisms of gas retention and release: Experimental results for Hanford single-shell waste tanks 241-A-101, 241-S-106, and 241-U-103

    International Nuclear Information System (INIS)

    Rassat, S.D.; Caley, S.M.; Bredt, P.R.; Gauglitz, P.A.; Rinehart, D.E.; Forbes, S.V.

    1998-09-01

    The 177 underground waste storage tanks at the Hanford Site contain millions of gallons of radioactive waste resulting from the purification of nuclear materials and related processes. Through various mechanisms, flammable gas mixtures of hydrogen, ammonia, methane, and nitrous oxide are generated and retained in significant quantities within the waste in many (∼25) of these tanks. The potential for large releases of retained gas from these wastes creates a flammability hazard. It is a critical component of the effort to understand the flammability hazard and a primary goal of this laboratory investigation to establish an understanding of the mechanisms of gas retention and release in these wastes. The results of bubble retention experimental studies using waste samples from several waste tanks and a variety of waste types support resolution of the Flammable Gas Safety Issue. Gas bubble retention information gained in the pursuit of safe storage will, in turn, benefit future waste operations including salt-well pumping, waste transfers, and sluicing/retrieval

  10. Critical Protection Item classification for a waste processing facility at Savannah River Site

    International Nuclear Information System (INIS)

    Ades, M.J.; Garrett, R.J.

    1993-01-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed

  11. WASTE-ACC: A computer model for analysis of waste management accidents

    International Nuclear Information System (INIS)

    Nabelssi, B.K.; Folga, S.; Kohout, E.J.; Mueller, C.J.; Roglans-Ribas, J.

    1996-12-01

    In support of the U.S. Department of Energy's (DOE's) Waste Management Programmatic Environmental Impact Statement, Argonne National Laboratory has developed WASTE-ACC, a computational framework and integrated PC-based database system, to assess atmospheric releases from facility accidents. WASTE-ACC facilitates the many calculations for the accident analyses necessitated by the numerous combinations of waste types, waste management process technologies, facility locations, and site consolidation strategies in the waste management alternatives across the DOE complex. WASTE-ACC is a comprehensive tool that can effectively test future DOE waste management alternatives and assumptions. The computational framework can access several relational databases to calculate atmospheric releases. The databases contain throughput volumes, waste profiles, treatment process parameters, and accident data such as frequencies of initiators, conditional probabilities of subsequent events, and source term release parameters of the various waste forms under accident stresses. This report describes the computational framework and supporting databases used to conduct accident analyses and to develop source terms to assess potential health impacts that may affect on-site workers and off-site members of the public under various DOE waste management alternatives

  12. Analysis of Induced Gas Releases During Retrieval of Hanford Double-Shell Tank Waste

    International Nuclear Information System (INIS)

    Wells, Beric E.; Cuta, Judith M.; Hartley, Stacey A.; Mahoney, Lenna A.; Meyer, Perry A.; Stewart, Charles W.

    2002-01-01

    Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105, and AW-101 to the vitrification plant beginning about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both of these operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernatant decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated

  13. Release of low-contaminated reactor wastes for unrestricted use

    International Nuclear Information System (INIS)

    Carleson, G.

    1982-01-01

    A generic methodology has been used to evaluate the dose contributions to an individual and to the population of five categories of low-contaminated reactor wastes produced according to the Swedish program and released for unrestricted handling and use. A reference quantity with a surface dose rate below a predetermined level is followed along the whole commercial pathway from the reactor station to the final product consumer and/or a municipal waste station. Dose contributions are calculated for each step in a normal pathway under maximally unfavourable conditions. (Auth.)

  14. Optimal operation planning of radioactive waste processing system by fuzzy theory

    International Nuclear Information System (INIS)

    Yang, Jin Yeong; Lee, Kun Jai

    2000-01-01

    This study is concerned with the applications of linear goal programming and fuzzy theory to the analysis of management and operational problems in the radioactive processing system (RWPS). The developed model is validated and verified using actual data obtained from the RWPS at Kyoto University in Japan. The solution by goal programming and fuzzy theory would show the optimal operation point which is to maximize the total treatable radioactive waste volume and minimize the released radioactivity of liquid waste even under the restricted resources. (orig.)

  15. Radioactive waste processing

    International Nuclear Information System (INIS)

    Dejonghe, P.

    1978-01-01

    This article gives an outline of the present situation, from a Belgian standpoint, in the field of the radioactive wastes processing. It estimates the annual quantity of various radioactive waste produced per 1000 MW(e) PWR installed from the ore mining till reprocessing of irradiated fuels. The methods of treatment concentration, fixation, final storable forms for liquid and solid waste of low activity and for high level activity waste. The storage of radioactive waste and the plutonium-bearing waste treatement are also considered. The estimated quantity of wastes produced for 5450 MW(e) in Belgium and their destination are presented. (A.F.)

  16. EPRI waste processing projects

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1987-01-01

    The Electric Power Research Institute (EPRI) manages research for its sponsoring electric utilities in the United States. Research in the area of low level radioactive waste (LLRW) from light water reactors focuses primarily on waste processing within the nuclear power plants, monitoring of the waste packages, and assessments of disposal technologies. Accompanying these areas and complimentary to them is the determination and evaluation of the sources of nuclear power plants radioactive waste. This paper focuses on source characterization of nuclear power plant waste, LLRW processing within nuclear power plants, and the monitoring of these wastes. EPRI's work in waste disposal technology is described in another paper in this proceeding by the same author. 1 reference, 5 figures

  17. Gaseous radioactive waste processing system

    International Nuclear Information System (INIS)

    Onizawa, Hideo.

    1976-01-01

    Object: To prevent explosion of hydrogen gas within gaseous radioactive waste by removing the hydrogen gas by means of a hydrogen absorber. Structure: A coolant extracted from a reactor cooling system is sprayed by nozzle into a gaseous phase (hydrogen) portion within a tank, thus causing slipping of radioactive rare gas. The gaseous radioactive waste rich in hydrogen, which is purged in the tank, is forced by a waste gas compressor into a hydrogen occlusion device. The hydrogen occlusion device is filled with hydrogen occluding agents such as Mg, Mg-Ni alloy, V-Nb alloy, La-Ni alloy and so forth, and hydrogen in the waste gas is removed through reaction to produce hydrogen metal. The gaseous radioactive waste, which is deprived of hydrogen and reduced in volume, is stored in an attenuation tank. The hydrogen stored in the hydrogen absorber is released and used again as purge gas. (Horiuchi, T.)

  18. Liquid fuels from food waste: An alternative process to co-digestion

    Science.gov (United States)

    Sim, Yoke-Leng; Ch'ng, Boon-Juok; Mok, Yau-Cheng; Goh, Sok-Yee; Hilaire, Dickens Saint; Pinnock, Travis; Adams, Shemlyn; Cassis, Islande; Ibrahim, Zainab; Johnson, Camille; Johnson, Chantel; Khatim, Fatima; McCormack, Andrece; Okotiuero, Mary; Owens, Charity; Place, Meoak; Remy, Cristine; Strothers, Joel; Waithe, Shannon; Blaszczak-Boxe, Christopher; Pratt, Lawrence M.

    2017-04-01

    Waste from uneaten, spoiled, or otherwise unusable food is an untapped source of material for biofuels. A process is described to recover the oil from mixed food waste, together with a solid residue. This process includes grinding the food waste to an aqueous slurry, skimming off the oil, a combined steam treatment of the remaining solids concurrent with extrusion through a porous cylinder to release the remaining oil, a second oil skimming step, and centrifuging the solids to obtain a moist solid cake for fermentation. The water, together with any resulting oil from the centrifuging step, is recycled back to the grinding step, and the cycle is repeated. The efficiency of oil extraction increases with the oil content of the waste, and greater than 90% of the oil was collected from waste containing at least 3% oil based on the wet mass. Fermentation was performed on the solid cake to obtain ethanol, and the dried solid fermentation residue was a nearly odorless material with potential uses of biochar, gasification, or compost production. This technology has the potential to enable large producers of food waste to comply with new laws which require this material to be diverted from landfills.

  19. Decontamination for free release

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, K A; Elder, G R [Bradtec Ltd., Bristol (United Kingdom)

    1997-02-01

    Many countries are seeking to treat radioactive waste in ways which meet the local regulatory requirements, but yet are cost effective when all contributing factors are assessed. In some countries there are increasing amounts of waste, arising from nuclear plant decommissioning, which are categorized as low level waste: however with suitable treatment a large part of such wastes might become beyond regulatory control and be able to be released as non-radioactive. The benefits and disadvantages of additional treatment before disposal need to be considered. Several processes falling within the overall description of decontamination for free release have been developed and applied, and these are outlined. In one instance the process seeks to take advantage of techniques and equipment used for decontaminating water reactor circuits intermittently through reactor life. (author). 9 refs, 1 fig., 3 tabs.

  20. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  1. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  2. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied

  3. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-06-14

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied.

  4. Integrated performance assessment model for waste package behavior and radionuclide release

    International Nuclear Information System (INIS)

    Kossik, R.; Miller, I.; Cunnane, M.

    1992-01-01

    Golder Associates Inc. (GAI) has developed a probabilistic total system performance assessment and strategy evaluation model (RIP) which can be applied in an iterative manner to evaluate repository site suitability and guide site characterization. This paper describes one component of the RIP software, the waste package behavior and radionuclide release model. The waste package component model considers waste package failure by various modes, matrix alteration/dissolution, and radionuclide mass transfer. Model parameters can be described as functions of local environmental conditions. The waste package component model is coupled to component models for far-field radionuclide transport and disruptive events. The model has recently been applied to the proposed repository at Yucca Mountain

  5. Treatment and processing of the effluents and wastes (other than fuel) produced by a 900 MWe nuclear power plant

    International Nuclear Information System (INIS)

    Giraud

    1983-01-01

    Effluents produced by a 900 MWe power plant, are of three sorts: gaseous, liquid and solid. According to their nature, effluents are either released or stored for decaying before being released to the atmosphere. The non-contaminated reactor coolant effluents are purified (filtration, gas stripping) and treated by evaporation for reuse. Depending upon their radioactive level, liquid waste is either treated by evaporation or discharged after filtration. Solid waste issuing from previous treatments (concentrates, resins, filters) is processed in concrete drums using an encapsulation process. The concrete drum provides biological self-protection consistent with the national and international regulations pertaining to the transport of radioactive substance. Finally, the various low-level radioactive solid waste collected throughout the plant, is compacted into metal drums. Annual estimates of the quantity of effluents (gaseous, liquid) released in the environment and the number of drums (concrete, metal) produced by the plant figure in the conclusion

  6. BLT-MS (Breach, Leach, and Transport -- Multiple Species) data input guide. A computer model for simulating release of contaminants from a subsurface low-level waste disposal facility

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M.; MacKinnon, R.J.

    1996-11-01

    The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS

  7. BLT-MS (Breach, Leach, and Transport -- Multiple Species) data input guide. A computer model for simulating release of contaminants from a subsurface low-level waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.M.; Kinsey, R.R.; Aronson, A.; Divadeenam, M. [Brookhaven National Lab., Upton, NY (United States); MacKinnon, R.J. [Brookhaven National Lab., Upton, NY (United States)]|[Ecodynamics Research Associates, Inc., Albuquerque, NM (United States)

    1996-11-01

    The BLT-MS computer code has been developed, implemented, and tested. BLT-MS is a two-dimensional finite element computer code capable of simulating the time evolution of concentration resulting from the time-dependent release and transport of aqueous phase species in a subsurface soil system. BLT-MS contains models to simulate the processes (water flow, container degradation, waste form performance, transport, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is simulated through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, or solubility. Radioactive production and decay in the waste form are simulated. Transport considers the processes of advection, dispersion, diffusion, radioactive production and decay, reversible linear sorption, and sources (waste forms releases). To improve the usefulness of BLT-MS a preprocessor, BLTMSIN, which assists in the creation of input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. This document reviews the models implemented in BLT-MS and serves as a guide to creating input files for BLT-MS.

  8. Food-Processing Wastes.

    Science.gov (United States)

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  9. Fate of gaseous tritium and carbon-14 released from buried low-level radioactive waste

    International Nuclear Information System (INIS)

    Striegl, R.G.

    1988-01-01

    Microbial decomposition, chemical degradation, and volatilization of buried low-level radioactive waste results in the release of gases containing tritium ( 3 H) and carbon-14 ( 14 C) to the surrounding environment. Water vapor, carbon dioxide, and methane that contain 3 H or 14 C are primary products of microbial decomposition of the waste. Depending on the composition of the waste source, chemical degradation and volatilization of waste also may result in the production of a variety of radioactive gases and organic vapors. Movement of the gases in materials that surround waste trenches is affected by physical, geochemical, and biological mechanisms including sorption, gas-water-mineral reactions, isotopic dilution, microbial consumption, and bioaccumulation. These mechanisms either may transfer 3 H and 14 C to solids and infiltrating water or may result in the accumulation of the radionuclides in plant or animal tissue. Gaseous 3 H or 14 C that is not transferred to other forms is ultimately released to the atmosphere

  10. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: direct brine release

    International Nuclear Information System (INIS)

    Stoelzel, D.M.; O'Brien, D.G.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  11. Screening calculations for radioactive waste releases from non-nuclear facilities

    International Nuclear Information System (INIS)

    Xu, Shulan; Soederman, Ann-Louis

    2009-02-01

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 μSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 μSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment plant

  12. Screening calculations for radioactive waste releases from non-nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shulan Xu; Soederman, Ann-Louis

    2009-02-15

    A series of screening calculations have been performed to assess the potential radiological consequences of discharges of radioactive substances to the environment arising from waste from non-nuclear practices. Solid waste, as well as liquids that are not poured to the sewer, are incinerated and ashes from incineration and sludge from waste water treatment plants are disposed or reused at municipal disposal facilities. Airborne discharges refer to releases from an incineration facility and liquid discharges refer both to releases from hospitals and laboratories to the sewage system, as well as leakage from waste disposal facilities. The external exposure of workers is estimated both in the waste water treatment plant and at the disposal facility. The calculations follow the philosophy of the IAEA's safety guidance starting with a simple assessment based on very conservative assumptions which may be iteratively refined using progressively more complex models, with more realistic assumptions, as necessary. In the assessments of these types of disposal, with cautious assumptions, carried out in this report we conclude that the radiological impacts on representative individuals in the public are negligible in that they are small with respect to the target dose of 10 muSv/a. A Gaussian plume model was used to estimate the doses from airborne discharges from the incinerator and left a significant safety margin in the results considering the conservative assumptions in the calculations. For the sewage plant workers the realistic approach included a reduction in working hours and the shorter exposure time resulted in maximum doses around 10 muSv/a. The calculations for the waste disposal facility show that the doses are higher or in the range of the target dose. The excess for public exposure is mainly caused by H-3 and C-14. The assumption used in the calculation is that all of the radioactive substances sent to the incineration facility and waste water treatment

  13. Plan for glass waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Aines, R.D.

    1987-09-01

    The purpose of glass waste form testing is to determine the rate of release of radionuclides from breached glass waste containers. This information will be used to qualify glass waste forms with respect to the release requirements. It will be the basis of the source term from glass waste for repository performance assessment modeling. This information will also serve as part of the source term in the calculation of cumulative releases after 100,000 years in the site evaluation process. It will also serve as part of the source term input for calculation of cumulative releases to the accessible environment for 10,000 years after disposal, to determine compliance with EPA regulations. This investigation will provide data to resolve information needs. Information about the waste forms which is provided by the producer will be accumulated and evaluated; the waste form will be tested, properties determined, and mechanisms of degradation determined; and models providing long-term evaluation of release rates designed and tested. 23 refs

  14. Thermodynamic analysis for syngas production from volatiles released in waste tire pyrolysis

    International Nuclear Information System (INIS)

    Martínez, Juan Daniel; Murillo, Ramón; García, Tomás; Arauzo, Inmaculada

    2014-01-01

    Highlights: • Pyrolysis experiments have been conducted in a continuous auger reactor. • Pyrolysis temperature influence on composition of both volatiles and char was studied. • A process for syngas production has been proposed from the volatiles. • Equivalence ratio down to 0.4 is a practical limit for syngas production. • The results provide essential data prior to perform any experimental campaign. - Abstract: This paper shows the maximum limit on syngas composition obtained from volatiles released in waste tire pyrolysis when they are submitted to an air–steam partial oxidation process. Thus, from mass and energy balances and a stoichiometric equilibrium model, syngas composition and reaction temperature as well as some process parameters were predicted by varying both the equivalence ratio (ER) and the steam to fuel ratio (SF). In addition, pyrolysis experiments were performed using a continuous auger reactor, and the influence of pyrolysis temperature on composition of both volatiles and char was studied. Consequently, the resulting syngas characteristics were correlated with the pyrolysis temperature. The stoichiometric equilibrium model showed that an ER down to 0.4 is a practical limit to perform the air–steam partial oxidation process. When the process is carried out only with air, volatiles obtained at high pyrolysis temperature lead to lower reaction temperature and higher LHV of syngas in comparison with those found at low pyrolysis temperature. The H 2 production is favored between 0.20 and 0.40 of ER and seems to be more influenced by the H/C ratio than by the water gas-shift reaction. On the other hand, the steam addition shows a more notable effect on the H 2 production for volatiles obtained at the highest pyrolysis temperature (600 °C) in agreement with the lower reaction temperature under these experimental conditions. This thermodynamic analysis provides essential data on the optimization of syngas production from volatiles

  15. Calculation notes in support of ammonia releases from waste tank ventilation systems

    International Nuclear Information System (INIS)

    Wojdac, L.F.

    1996-01-01

    Ammonia is generated in waste tanks via the degradation of nitrogen compounds. The ammonia is released from the liquids by a mechanism which is dependent on temperature, pH, ionic strength and ammonia concentration. The release of ammonia to the environment occurs via diffusion of ammonia through a stagnant air mass and into the ventilation system

  16. Release of CFC-11 from disposal of polyurethane foam waste

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Jensen, M.H.

    2001-01-01

    The halocarbon CFC-11 has extensively been used as a blowing agent for polyurethane (PUR) insulation foams in home appliances and for residential and industrial construction. Release of CFCs is an important factor in the depletion of the ozone layer. For CFC-11 the future atmospheric concentrations...... will mainly depend on the continued release from PUR foams. Little is known about rates and time frames of the CFC release from foams especially after treatment and disposal of foam containing waste products. The CFC release is mainly controlled by slow diffusion out through the PUR. From the literature...... and by reevaluation of an old reported experiment, diffusion coefficients in the range of 0.05-1.7.10(-14) m(2) s(-1) were found reflecting differences in foam properties and experimental designs. Laboratory experiments studying the distribution of CFC in the foam and the short-term releases after shredding showed...

  17. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  18. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

  19. Releases from the cooling water system in the Waste Tank Farm

    International Nuclear Information System (INIS)

    Perkins, W.C.; Lux, C.R.

    1991-01-01

    On September 12, 1991, a cooling-water header broke in the H-Area Waste Tank farm, at the Savannah River Site, releasing contaminated water down a storm sewer that drains to the creek. A copy of the Occurrence Report is attached. As part of the follow-up on this incident, the NPSR Section was asked by Waste Management Technology to perform a probabilistic analysis of the following cases: (1) A large break in the header combined with a large break in a cooling coil inside a waste tank. (2) A large break in the header combined with a leak in a cooling coil inside a waste tank. (3) A large break in the header combined with a very small leak in a cooling coil inside a waste tank. This report documents the results of the analysis of these cases

  20. Pyro-processes and the wastes

    International Nuclear Information System (INIS)

    Kurata, Masaki; Tokiwai, Moriyasu; Inoue, Tadashi; Nishimura, Tomohiro

    2000-01-01

    Reprocessing using pyrometallurgical processes is generally considered to have economical benefits comparing with conventional aqueous processes because of the combination of simpler process and equipments, less criticality, and more compact facilities. On the other hand, the pyrometallurgical processes must generate peculiar wastes and R and D on those wastes is slightly inferior, as compared with the main processes. In this paper, process flows of major pyrometallurgical processes are firstly summarized and, then, the present R and D condition on the wastes are shown. (author)

  1. Plasma technologies: applications to waste processing

    International Nuclear Information System (INIS)

    Fauchais, P.

    2007-01-01

    Since the 1990's, plasma technologies have found applications in the processing of toxic wastes of military and industrial origin, like the treatment of contaminated solids and low level radioactive wastes, the decontamination of soils etc.. Since the years 2000, this development is becoming exponential, in particular for the processing of municipal wastes and the recovery of their synthesis gas. The advantage of thermal plasmas with respect to conventional combustion techniques are: a high temperature (more than 6000 K), a pyrolysis capability (CO formation instead of CO 2 ), about 90% of available energy above 1500 K (with respect to 23% with flames), a greater energy density, lower gas flow rates, and plasma start-up and shut-down times of only few tenth of seconds. This article presents: 1 - the present day situation of thermal plasmas development; 2 - some general considerations about plasma waste processing; 3 - the plasma processes: liquid toxic wastes, solid wastes (contaminated soils and low level radioactive wastes, military wastes, vitrification of incinerators fly ash, municipal wastes processing, treatment of asbestos fibers, treatment of chlorinated industrial wastes), metallurgy wastes (dusts, aluminium slags), medical and ship wastes, perspectives; 4 -conclusion. (J.S.)

  2. Simplified analytical model to simulate radionuclide release from radioactive waste trenches; Modelo simplificado para simulacao da liberacao de radionuclideos de repositorios de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Bernardete Lemes Vieira de

    2001-07-01

    In order to evaluate postclosure off-site doses from low-level radioactive waste disposal facilities, a computer code was developed to simulate the radionuclide released from waste form, transport through vadose zone and transport in the saturated zone. This paper describes the methodology used to model these process. The radionuclide released from the waste is calculated using a model based on first order kinetics and the transport through porous media was determined using semi-analytical solution of the mass transport equation, considering the limiting case of unidirectional convective transport with three-dimensional dispersion in an isotropic medium. The results obtained in this work were compared with other codes, showing good agreement. (author)

  3. Process and device for processing radioactive wastes

    International Nuclear Information System (INIS)

    1974-01-01

    A method is described for processing liquid radioactive wastes. It includes the heating of the liquid wastes so that the contained liquids are evaporated and a practically anhydrous mass of solid particles inferior in volume to that of the wastes introduced is formed, then the transformation of the solid particles into a monolithic structure. This transformation includes the compressing of the particles and sintering or fusion. The solidifying agent is a mixture of polyethylene and paraffin wax or a styrene copolymer and a polyester resin. The device used for processing the radioactive liquid wastes is also described [fr

  4. Environmental release of carbon-14 gas from a hypothetical nuclear waste repository

    International Nuclear Information System (INIS)

    Lehto, M.A.; Merrell, G.B.

    1994-01-01

    Radioisotopes may form gases in a spent nuclear fuel waste package due to elevated temperatures or degradation of the fuel rods. Radioactive carbon-14, as gaseous carbon dioxide, is one of the gaseous radioisotopes of concern at an underground disposal facility for spent nuclear fuel and high-level radioactive waste. Carbon-14 dioxide may accumulate inside an intact waste container. Upon breach of the container, a potentially large pulse of carbon-14 dioxide gas may be released to the surrounding environment, followed by a lower, long-term continuous release. If the waste were disposed of in an unsaturated geologic environment, the carbon-14 gas would begin to move through the unsaturated zone to the accessible environment. This study investigates the transport of radioactive carbon-14 gas in geologic porous media using a one-dimensional analytical solution. Spent nuclear fuel emplaced in a deep geologic repository located at a generic unsaturated tuff site is analyzed. The source term for the carbon-14 gas and geologic parameters was obtained from previously published materials. The one-dimensional analytical solution includes diffusion, advection, radionuclide retardation, and radioactive decay terms. Two hypothetical sites are analyzed. One is dominated by advective transport, and the other is dominated by diffusive transport. The dominant transport mechanism at an actual site depends on the site characteristics. Results from the simulations include carbon-14 dioxide travel times to the accessible environment and the total release to the environment over a 10,000-year period. The results are compared to regulatory criteria

  5. Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment.

    Science.gov (United States)

    Kim, Minwook; Han, Dong-Woo; Kim, Dong-Jin

    2015-08-01

    Selective release characteristics of phosphorus and nitrogen from waste activated sludge (WAS) were investigated during combined thermal and alkali treatment. Alkali (0.001-1.0N NaOH) treatment and combined thermal-alkali treatment were applied to WAS for releasing total P(T-P) and total nitrogen(T-N). Combined thermal-alkali treatment released 94%, 76%, and 49% of T-P, T-N, and COD, respectively. Release rate was positively associated with NaOH concentration, while temperature gave insignificant effect. The ratio of T-N and COD to T-P that released with alkali treatment ranged 0.74-0.80 and 0.39-0.50, respectively, while combined thermal-alkali treatment gave 0.60-0.90 and 0.20-0.60, respectively. Selective release of T-P and T-N was negatively associated with NaOH. High NaOH concentration created cavities on the surface of WAS, and these cavities accelerated the release rate, but reduced selectivity. Selective release of P and N from sludge has a beneficial effect on nutrient recovery with crystallization processes and it can also enhance methane production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Waste Management Process Improvement Project

    International Nuclear Information System (INIS)

    Atwood, J.; Borden, G.; Rangel, G. R.

    2002-01-01

    The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle

  7. Integrated performance assessment model for waste policy package behavior and radionuclide release

    International Nuclear Information System (INIS)

    Kossik, R.; Miller, I.; Cunnane, M.

    1992-01-01

    Golder Associates Inc. (GAI) has developed a probabilistic total system performance assessment and strategy evaluation model (RIP) which can be applied in an iterative manner to evaluate repository site suitability and guide site characterization. This paper describes one component of the RIP software, the waste package behavior and radionuclide release model. The waste package component model considers waste package failure by various modes, matrix alteration/dissolution, and radionuclide mass transfer. Model parameters can be described as functions of local environmental conditions. The waste package component model is coupled to component models for far-field radionuclide transport and disruptive events. The model has recently been applied to the proposed repository at Yucca Mountain

  8. Addressing mixed waste in plutonium processing

    International Nuclear Information System (INIS)

    Christensen, D.C.; Sohn, C.L.; Reid, R.A.

    1991-01-01

    The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed

  9. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples

    International Nuclear Information System (INIS)

    Williamson, Aimee Lynn; Caron, François; Spiers, Graeme

    2014-01-01

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 ( 226 Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 ( 235 U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the 226 Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and 226 Ra leaching. Pacified samples resist the release of 226 Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. - Highlights: • Gamma counting showed an 84% decrease in 235 U after biogeochemical mineral leaching. • Chemical digestion/ICP-MS analysis also showed an 84% decrease in total U. • Over

  10. Release protocol to address DOE moratorium on shipments of waste generated in radiologically controlled areas

    International Nuclear Information System (INIS)

    Rathbun, L.A.; Boothe, G.F.

    1992-10-01

    On May 17, 1991 the US DOE Office of Waste Operations issued a moratorium on the shipment of hazardous waste from radiologically contaminated or potentially contaminated areas on DOE sites to offsite facilities not licensed for radiological material. This document describes a release protocol generated by Westinghouse Hanford submitted for US DOE approval. Topics considered include designating Radiological Materials Management Areas (RMMAs), classification of wastes, handling of mixed wastes, detection limits

  11. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Nomura, Ichiro; Hashimoto, Yasuo.

    1984-01-01

    Purpose: To improve the volume-reduction effect, as well as enable simultaneous procession for the wastes such as burnable solid wastes, resin wastes or sludges, and further convert the processed materials into glass-solidified products which are much less burnable and stable chemically and thermally. Method: Auxiliaries mainly composed of SiO 2 such as clays, and wastes such as burnable solid wastes, waste resins and sludges are charged through a waste hopper into an incinerating melting furnace comprising an incinerating and a melting furnace, while radioactive concentrated liquid wastes are sprayed from a spray nozzle. The wastes are burnt by the heat from the melting furnace and combustion air, and the sprayed concentrated wastes are dried by the hot air after the combustion into solid components. The solid matters from the concentrated liquid wastes and the incinerating ashes of the wastes are melted together with the auxiliaries in the melting furnace and converted into glass-like matters. The glass-like matters thus formed are caused to flow into a vessel and gradually cooled to solidify. (Horiuchi, T.)

  12. Processes for production of alternative waste forms

    International Nuclear Information System (INIS)

    Ross, W.A.; Rusin, J.M.; McElroy, J.L.

    1979-01-01

    During the past 20 years, numerous waste forms and processes have been proposed for solidification of high-level radioactive wastes (HLW). The number has increased significantly during the past 3 to 4 years. At least five factors must be considered in selecting the waste form and process method: 1) processing flexibility, 2) waste loading, 3) canister size and stability, 4) waste form inertness and stability, and 5) processing complexity. This paper describes various waste form processes and operations, and a simple system is proposed for making comparisons. This system suggests that one goal for processes would be to reduce the number of process steps, thereby providing less complex processing systems

  13. Organic waste incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P. [CEA Valrho, Bagnols sur Ceze Cedex (France); Chateauvieux, H.; Thiebaut, C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2001-07-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and {alpha}-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  14. Organic waste incineration processes

    International Nuclear Information System (INIS)

    Lemort, F.; Charvillat, J.P.; Nabot, J.P.; Chateauvieux, H.; Thiebaut, C.

    2001-01-01

    Nuclear activities produce organic waste compatible with thermal processes designed to obtain a significant weight and volume reduction as well as to stabilize the inorganic residue in a form suitable for various interim storage or disposal routes. Several processes may be implemented (e.g. excess air, plasma, fluidized bed or rotating furnace) depending on the nature of the waste and the desired objectives. The authors focus on the IRIS rotating-kiln process, which was used for the first time with radioactive materials during the first half of 1999. IRIS is capable of processing highly chlorinated and α-contaminated waste at a rate of several kilograms per hour, while limiting corrosion due to chlorine as well as mechanical entrainment of radioactive particles in the off-gas stream. Although operated industrially, the process is under continual development to improve its performance and adapt it to a wider range of industrial applications. The main focus of attention today is on adapting the pyrolytic processes to waste with highly variable compositions and to enhance the efficiency of the off-gas purification systems. These subjects are of considerable interest for a large number of heat treatment processes (including all off-gas treatment systems) for which extremely durable, high-performance and low-flow electrostatic precipitators are now being developed. (author)

  15. Microwave waste processing technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the {open_quotes}cold{close_quotes} demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge.

  16. Microwave waste processing technology overview

    International Nuclear Information System (INIS)

    Petersen, R.D.

    1993-02-01

    Applications using microwave energy in the chemical processing industry have increased within the last ten years. Recently, interest in waste treatment applications process development, especially solidification, has grown. Microwave waste processing offers many advantages over conventional waste treatment technologies. These advantages include a high density, leach resistant, robust waste form, volume and toxicity reduction, favorable economics, in-container treatment, good public acceptance, isolated equipment, and instantaneous energy control. The results from the open-quotes coldclose quotes demonstration scale testing at the Rocky Flats nuclear weapons facility are described. Preliminary results for a transuranic (TRU) precipitation sludge indicate that volume reductions of over 80% are achievable over the current immobilization process. An economic evaluation performed demonstrated cost savings of $11.68 per pound compared to the immobilization process currently in use on wet sludge

  17. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  18. Radioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) includes: examining, assaying, characterizing, treating, and repackaging solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. The solid wastes to be handled in the WRAP 1 facility include low-level waste (LLW), transuranic (TRU) waste, TRU mixed wastes, and low-level mixed wastes (LLMW). Airborne releases from the WRAP 1 facility will be primarily in particulate forms (99.999 percent of total unabated emissions). The release of two volatilized radionuclides, tritium and carbon-14 will contribute less than 0.001 percent of the total unabated emissions. Table 2-1 lists the radionuclides which are anticipated to be emitted from WRAP 1 exhaust stack. The Clean Air Assessment Package 1988 (CAP-88) computer code (WHC 1991) was used to calculate effective dose equivalent (EDE) from WRAP 1 to the maximally exposed offsite individual (MEI), and thus demonstrate compliance with WAC 246-247. Table 4-1 shows the dose factors derived from the CAP-88 modeling and the EDE for each radionuclide. The source term (i.e., emissions after abatement in curies per year) are multiplied by the dose factors to obtain the EDE. The total projected EDE from controlled airborne radiological emissions to the offsite MEI is 1.31E-03 mrem/year. The dose attributable to radiological emissions from WRAP 1 will, then, constitute 0.013 percent of the WAC 246-247 EDE regulatory limit of 10 mrem/year to the offsite MEI

  19. Preliminary assessment of nine waste-form products/processes for immobilizing transuranic wastes

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1980-09-01

    Nine waste-form processes for reduction of the present and projected Transuranic (TRU) waste inventory to an immobilized product have been evaluated. Product formulations, selected properties, preparation methods, technology status, problem areas needing resolution and location of current research development being pursued in the United States are discussed for each process. No definitive utility ranking is attempted due to the early stage of product/process development for TRU waste containing products and the uncertainties in the state of current knowledge of TRU waste feed compositional and quantitative makeup. Of the nine waste form products/processes included in this discussion, bitumen and cements (encapsulation agents) demonstrate the degree of flexibility necessary to immobilize the wide composition range present in the TRU waste inventory. A demonstrated process called Slagging Pyrolysis Incineration converts a varied compositional feed (municipal wastes) to a ''basalt'' like product. This process/product appears to have potential for TRU waste immobilization. The remaining waste forms (borosilicate glass, high-silica glass, glass ceramics, ''SYNROC B'' and cermets) have potential for immobilizing a smaller fraction of the TRU waste inventory than the above discussed waste forms

  20. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  1. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  2. Process Waste Assessment - Paint Shop

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is open-quote Paint Shop wasteclose quotes -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so

  3. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    TRINER, G.C.

    1999-01-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge

  4. THERMAL PROCESSING OF PHOSPHOGYPSUM WITH USING ENERGY OF INCINERATED SOLID HOUSEHOLD WASTE

    Directory of Open Access Journals (Sweden)

    KROT O. P.

    2017-05-01

    Full Text Available Summary. The use of resources that have not been directly used for their intended purpose is one of the important tasks of sustainable urban development. The need for an integrated approach to the problem of waste management is realized all over the world. In recent decades, there has been a trend in Ukraine for a significant increase in waste. European experience in handling solid domestic waste uses various processing methods: recycling on the basis of separate collection, sorting, composting and thermal processing with generation of thermal and electric energy. In Ukraine, the most common method of handling waste remains burial in landfills that do not meet European standards, are not properly equipped, they do not comply with the norms and rules of storage. This leads to contamination of groundwater, as well as to the release into the atmosphere of various compounds. No less problem is the accumulation of phosphogypsum in industrial waste dumps. It is necessary to develop innovative technology of a complex for utilization of phosphogypsum using thermal energy of solid domestic waste. The article compares the technological characteristics of aggregates for incineration of solid waste and the production of semi-aqua gypsum to identify the possibility of their interfacing, and also formulated tasks for eliminating inconsistencies in interfaced technologies. The equipment of thermal units of interfaced technologies is offered.

  5. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Matagi, Yoshihiko; Takahara, Akira; Ootsuka, Katsuyuki.

    1984-01-01

    Purpose: To avoid the reduction in the atmospheric insulation by preventing the generation of CO 2 , H 2 O, etc. upon irradiation of microwave heat. Method: Radioactive wastes are charged into a hopper, supplied on a conveyor, fed each by a predetermined amount to a microwave furnace and heated by microwaves applied from a microwave guide. Simultaneously, inert gases are supplied from a supply line. The Radioactive wastes to be treated are shielded by the inert gases to prevent the combustion of decomposed gases produced from the wastes upon irradiation of microwave heat to thereby prevent the generation of CO 2 , H 2 , etc., as well as the generated decomposed gases are diluted with the inert gases to decrease the dissociation of the decomposed gases to prevent the reduction in the atmospheric insulation. Since the spent inert gases can be recovered for reuse, the amount of gaseous wastes released to the atmosphere can be decreased and the working life of the high performance air filters can be extended. (Sekiya, K.)

  6. Electron accelerators for waste processing

    International Nuclear Information System (INIS)

    Kon'kov, N.G.

    1976-01-01

    The documents of the International symposium on radiation vaste processing are presented. Questions on waste utilization with the help of electron accelerators are considered. The electron accelerators are shown to have an advantage over some other ionizing radiation sources. A conclusion is made that radiation methods of waste processing are extensively elaborated in many developed countries. It has been pointed out that an electron accelerator is a most cheap and safe ionizing radiation source primarily for processing of gaseous and liquid wastes

  7. Methods for maintaining a record of waste packages during waste processing and storage

    International Nuclear Information System (INIS)

    2005-01-01

    During processing, radioactive waste is converted into waste packages, and then sent for storage and ultimately for disposal. A principal condition for acceptance of a waste package is its full compliance with waste acceptance criteria for disposal or storage. These criteria define the radiological, mechanical, physical, chemical and biological properties of radioactive waste that can, in principle, be changed during waste processing. To declare compliance of a waste package with waste acceptance criteria, a system for generating and maintaining records should be established to record and track all relevant information, from raw waste characteristics, through changes related to waste processing, to final checking and verification of waste package parameters. In parallel, records on processing technology and the operational parameters of technological facilities should adhere to established and approved quality assurance systems. A records system for waste management should be in place, defining the data to be collected and stored at each step of waste processing and using a reliable selection process carried over into the individual steps of the waste processing flow stream. The waste management records system must at the same time ensure selection and maintenance of all the main information, not only providing evidence of compliance of waste package parameters with waste acceptance criteria but also serving as an information source in the case of any future operations involving the stored or disposed waste. Records generated during waste processing are a constituent part of the more complex system of waste management record keeping, covering the entire life cycle of radioactive waste from generation to disposal and even the post-closure period of a disposal facility. The IAEA is systematically working on the preparation of a set of publications to assist its Member States in the development and implementation of such a system. This report covers all the principal

  8. Estimates of radionuclide release from glass waste forms in a tuff repository and the effects on regulatory compliance

    International Nuclear Information System (INIS)

    Aines, R.D.

    1986-04-01

    This paper discusses preliminary estimates of the release of radionuclides from waste packages containing glass-based waste forms under the expected conditions at Yucca Mountain. These estimates can be used to evaluate the contribution of waste package performance toward meeting repository regulatory restrictions on radionuclide release. Glass waste will be held in double stainless steel canisters. After failure of the container sometime after the 300 to 1000 year containment period, the open headspace in these cans will provide the only area where standing water can accumulate and react with the glass. A maximum release rate of 0.177 g/m 2 x year or 1.3 grams per year was obtained. Normalized loss of 1.3 grams per year corresponds to 0.08 parts in 100,000 per year of the 1660 kg reference weight of DWPF glass

  9. Correlation between radwaste processing and hazardous waste treatment processes

    International Nuclear Information System (INIS)

    Block, O.U.J.; Tulipano, F.J.

    1988-01-01

    The basic framework under SARA has established that preferred remedies are those which permanently and significantly reduce toxicity, mobility or volume of wastes. In the 1970's radwaste process designs at power plants received pressure to satisfy essentially the same criteria when increased emphasis was placed on limited disposal sites which resulted in rapidly escalating disposal costs. This paper provides a historical perspective of radwaste experience and discusses valuable insight to hazardous waste treatment technologies. The radwaste system experience is discussed in terms of providing a source of proven and reliable technologies. Discussion is presented on specific radwaste processes which are applicable technologies for hazardous waste treatment. The technologies presented include (a) Solidification, (b) Evaporation, and (c) Incineration. Experience is presented which establishes assurance that the treatment technologies will provide a permanent remedy to hazardous waste treatment. This paper describes typical radwaste solidification, evaporation and incineration processes at power plants. The design requirements and implementation of radwaste equipment is correlated to design requirement of hazardous waste equipment. Specific discussion is provided on how the available process equipment can reduce toxicity, mobility, and volume of waste. Discussion is presented on how the standard off the shelf processing equipment needs to be modified for radwaste and hazardous waste applications

  10. Radioactive waste processing

    International Nuclear Information System (INIS)

    Curtiss, D.H.; Heacock, H.W.

    1976-01-01

    The description is given of a process for treating radioactive waste whereby a mud of radioactive waste and cementing material is formed in a mixer. This mud is then transferred from the mixer to a storage and transport container where it is allowed to harden. To improve transport efficiency an alkali silicate or an alkaline-earth metal silicate is added to the mud. For one hundred parts by weight of radioactive waste in the mud, twenty to one hundred parts by weight of cementing material are added and five to fifty parts by weight of silicate, the amount of waste in the mud exceeding the combined amount of cementing and silicate material [fr

  11. Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O' Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

    2001-02-01

    This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

  12. Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site

    International Nuclear Information System (INIS)

    Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

    1980-11-01

    Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste material to the environment would happen if the scenario were to occur. Bounding scenarios include both near-term and long-term scenarios. Near-term scenarios are events which occur at 100 years from 1990. Long term scenarios are potential events considered to occur at 1000 and 10,000 years from 1990. Nonbounding scenarios consider events which result in insignificant releases or no release at all to the environment. Three release mechanisms are described in this report: (1) direct exposure of waste to the biosphere by a defined sequence of events (scenario) such as human intrusion by drilling; (2) radionuclides contacting an unconfined aquifer through downward percolation of groundwater or a rising water table; and (3) cataclysmic or explosive release of radionuclides by such mechanisms as meteorite impact, fire and explosion, criticality, or seismic events. Scenarios in this report present ways in which these release mechanisms could occur at a waste management facility. The scenarios are applied to the two in-tank waste management alternatives: in-situ disposal and continued present action

  13. Calcium-borosilicate glass-ceramics wasteforms to immobilize rare-earth oxide wastes from pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Miae [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Heo, Jong, E-mail: jheo@postech.ac.kr [Department of Materials Science and Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Department of Materials Engineering, Adama Science and Technology University (ASTU), PO Box 1888, Adama (Ethiopia)

    2015-12-15

    Glass-ceramics containing calcium neodymium(cerium) oxide silicate [Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2}] crystals were fabricated for the immobilization of radioactive wastes that contain large portions of rare-earth ions. Controlled crystallization of alkali borosilicate glasses by heating at T ≥ 750 °C for 3 h formed hexagonal Ca–silicate crystals. Maximum lanthanide oxide waste loading was >26.8 wt.%. Ce and Nd ions were highly partitioned inside Ca–silicate crystals compared to the glass matrix; the rare-earth wastes are efficiently immobilized inside the crystalline phases. The concentrations of Ce and Nd ions released in a material characterization center-type 1 test were below the detection limit (0.1 ppb) of inductively coupled plasma mass spectroscopy. Normalized release values performed by a product consistency test were 2.64·10{sup −6} g m{sup −2} for Ce ion and 2.19·10{sup −6} g m{sup −2} for Nd ion. Results suggest that glass-ceramics containing calcium neodymium(cerium) silicate crystals are good candidate wasteforms for immobilization of lanthanide wastes generated by pyro-processing. - Highlights: • Glass-ceramic wasteforms containing Ca{sub 2}Nd{sub 8-x}Ce{sub x}(SiO{sub 4}){sub 6}O{sub 2} crystals were synthesized to immobilize lanthanide wastes. • Maximum lanthanide oxide waste loading was >26.8 wt.%. • Ce and Nd ions were highly partitioned inside Ca–Nd–silicate crystals compared to glass matrix. • Amounts of Ce and Nd ions released in the material characterization center-type 1 were below the detection limit (0.1 ppb). • Normalized release values performed by a PCT were 2.64• 10{sup −6} g m{sup −2} for Ce ions and 2.19• 10{sup −6} g m{sup −2} for Nd ions.

  14. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  15. Process for remediation of plastic waste

    Science.gov (United States)

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  16. Radioisotope waste processing systems

    International Nuclear Information System (INIS)

    Machida, Tadashi

    1978-01-01

    The Atomic Energy Safety Bureau established the policy entitled ''On Common Processing System of Radioactive Wastes'' consulting with the Liaison Committee of Radioactive Waste Processing. Japan Atomic Energy Research Institute (JAERI) and Japan Radioisotope Association (JRIA) had been discussing the problems required for the establishment of the common disposal facilities based on the above policy, and they started the organization in spring, 1978. It is a foundation borrowing equipments from JAERI though installing newly some of them not available from JAERI, and depending the fund on JRIA. The operation expenses will be borne by those who want to dispose the wastes produced. The staffs are sent out from JAERI and JRIA. For animal wastes contaminated with RI, formaldehyde dipping should be abolished, but drying and freezing procedures will be taken before they are burnt up in a newly planned exclusive furnace with disposing capacity of 50 kg/hour. To settle the problems of other wastes, enough understanding and cooperation of users are to be requested. (Kobatake, H.)

  17. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  19. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination

  20. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices.

    Science.gov (United States)

    Schiavon, Marco; Martini, Luca Matteo; Corrà, Cesare; Scapinello, Marco; Coller, Graziano; Tosi, Paolo; Ragazzi, Marco

    2017-12-01

    The complaints arising from the problem of odorants released by composting plants may impede the construction of new composting facilities, preclude the proper activity of existing facilities or even lead to their closure, with negative implications for waste management and local economy. Improving the knowledge on VOC emissions from composting processes is of particular importance since different VOCs imply different odour impacts. To this purpose, three different organic matrices were studied in this work: dewatered sewage sludge (M1), digested organic fraction of municipal solid waste (M2) and untreated food waste (M3). The three matrices were aerobically biodegraded in a bench-scale bioreactor simulating composting conditions. A homemade device sampled the process air from each treatment at defined time intervals. The samples were analysed for VOC detection. The information on the concentrations of the detected VOCs was combined with the VOC-specific odour thresholds to estimate the relative weight of each biodegraded matrix in terms of odour impact. When the odour formation was at its maximum, the waste gas from the composting of M3 showed a total odour concentration about 60 and 15,000 times higher than those resulting from the composting of M1 and M2, respectively. Ethyl isovalerate showed the highest contribution to the total odour concentration (>99%). Terpenes (α-pinene, β-pinene, p-cymene and limonene) were abundantly present in M2 and M3, while sulphides (dimethyl sulphide and dimethyl disulphide) were the dominant components of M1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-11-19

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination.

  2. Solidifying processing device for radioactive waste

    International Nuclear Information System (INIS)

    Sueto, Kumiko; Toyohara, Naomi; Tomita, Toshihide; Sato, Tatsuaki

    1990-01-01

    The present invention concerns a solidifying device for radioactive wastes. Solidifying materials and mixing water are mixed by a mixer and then charged as solidifying and filling materials to a wastes processing container containing wastes. Then, cleaning water is sent from a cleaning water hopper to a mixer to remove the solidifying and filling materials deposited in the mixer. The cleaning liquid wastes are sent to a separator to separate aggregate components from cleaning water components. Then, the cleaning water components are sent to the cleaning water hopper and then mixed with dispersing materials and water, to be used again as the mixing water upon next solidifying operation. On the other hand, the aggregate components are sent to a processing mechanism as radioactive wastes. With such procedures, since the discharged wastes are only composed of the aggregates components, and the amount of the wastes are reduced, facilities and labors for the processing of cleaning liquid wastes can be decreased. (I.N.)

  3. Gaseous waste processing facility

    International Nuclear Information System (INIS)

    Konno, Masanobu; Uchiyama, Yoshio; Suzuki, Kunihiko; Kimura, Masahiro; Kawabe, Ken-ichi.

    1992-01-01

    Gaseous waste recombiners 'A' and 'B' are connected in series and three-way valves are disposed at the upstream and the downstream of the recombiners A and B, and bypass lines are disposed to the recombiners A and B, respectively. An opening/closing controller for the three-way valves is interlocked with a hydrogen densitometer disposed to a hydrogen injection line. Hydrogen gas and oxygen gas generated by radiolysis in the reactor are extracted from a main condenser and caused to flow into a gaseous waste processing system. Gaseous wastes are introduced together with overheated steams to the recombiner A upon injection of hydrogen. Both of the bypass lines of the recombiners A and B are closed, and recombining reaction for the increased hydrogen gas is processed by the recombiners A and B connected in series. In an operation mode not conducting hydrogen injection, it is passed through the bypass line of the recombiner A and processed by the recombiner B. With such procedures, the increase of gaseous wastes due to hydrogen injection can be coped with existent facilities. (I.N.)

  4. Liquid waste processing device

    International Nuclear Information System (INIS)

    Matsumoto, Kaname; Obe, Etsuji; Wakamatsu, Toshifumi.

    1989-01-01

    In a liquid waste processing device for processing living water wastes discharged from nuclear power plant facilities through a filtration vessel and a sampling vessel, a filtration layer disposed in the filtration vessel is divided into a plurality of layers along planes vertical to the direction of flow and the size of the filter material for each of the divided layers is made finer toward the downstream. Further, the thickness of the filtration material in each of the divided layers is also reduced toward the downstream. The filter material is packed such that the porosity in each of the divided layers is substantially identical. Further, the filtration material is packed in a mesh-like bag partitioned into a desired size and laid with no gaps to the planes vertical to the direction of the flow. Thus, liquid wastes such as living water wastes can be processed easily and simply so as to satisfy circumstantial criteria without giving undesired effects on the separation performance and life time and with easy replacement of filter. (T.M.)

  5. Thermal processing systems for TRU mixed waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended

  6. Process of radioactive waste gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.; Schroter, H.J.

    1975-01-01

    A method is described in which the radiation level of waste gases from nuclear power plants containing both activation and fission gases is controlled at or below limits permitted by applicable standards by passing such gases, prior to release to the atmosphere, through an adsorptive delay path including a body of activated carbon having the relation to the throughput and character of such gases. (U.S.)

  7. Influences of use activities and waste management on environmental releases of engineered nanomaterials

    International Nuclear Information System (INIS)

    Wigger, Henning; Hackmann, Stephan; Zimmermann, Till; Köser, Jan; Thöming, Jorg; Gleich, Arnim von

    2015-01-01

    Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments. - Highlights: • Textile use activities and two waste management systems (WMSs) are investigated. • Matrix material and use activities determine the ENM release. • Counter-intuitive shifts of releases to air can happen during usage. • WMS export can increase by 350% in case of short service life and

  8. Influences of use activities and waste management on environmental releases of engineered nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wigger, Henning, E-mail: hwigger@uni-bremen.de [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); Hackmann, Stephan [UFT Center for Environmental Research and Sustainable Technology, Department of General and Theoretical Ecology, University of Bremen, Leobener Str., 28359 Bremen (Germany); Zimmermann, Till [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); ARTEC — Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen (Germany); Köser, Jan [UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemistry, University of Bremen, Leobener Str., 28359 Bremen (Germany); Thöming, Jorg [UFT Center for Environmental Research and Sustainable Technology, Department of Sustainable Chemical Engineering, University of Bremen, Leobener Str., 28359 Bremen (Germany); Gleich, Arnim von [Faculty of Production Engineering, Department of Technological Design and Development, University of Bremen, Badgasteiner Str. 1, 28359 Bremen (Germany); ARTEC — Research Center for Sustainability Studies, Enrique-Schmidt-Str. 7, 28359 Bremen (Germany)

    2015-12-01

    Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments. - Highlights: • Textile use activities and two waste management systems (WMSs) are investigated. • Matrix material and use activities determine the ENM release. • Counter-intuitive shifts of releases to air can happen during usage. • WMS export can increase by 350% in case of short service life and

  9. Plan for spent fuel waste form testing for NNWSI [Nevada Nuclear Waste Storage Investigations

    International Nuclear Information System (INIS)

    Shaw, H.F.

    1987-11-01

    The purpose of spent fuel waste form testing is to determine the rate of release of radionuclides from failed disposal containers holding spent fuel, under conditions appropriate to the Nevada Nuclear Waste Storage Investigations (NNWSI) Project tuff repository. The information gathered in the activities discussed in this document will be used: to assess the performance of the waste package and engineered barrier system (EBS) with respect to the containment and release rate requirements of the Nuclear Regulatory Commission, as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate the cumulative releases to the accessible environment over 10,000 years to determine compliance with the Environmental Protection Agency, and as the basis for the spent fuel waste form source term in repository-scale performance assessment modeling to calculate cumulative releases over 100,000 years as required by the site evaluation process specified in the DOE siting guidelines. 34 refs

  10. Method of processing decontaminating liquid waste

    International Nuclear Information System (INIS)

    Kusaka, Ken-ichi

    1989-01-01

    When decontaminating liquid wastes are processed by ion exchange resins, radioactive nuclides, metals, decontaminating agents in the liquid wastes are captured in the ion exchange resins. When the exchange resins are oxidatively deomposed, most of the ingredients are decomposed into water and gaseous carbonic acid and discharged, while sulfur ingredient in the resins is converted into sulfuric acid. In this case, even less oxidizable ingredients in the decontaminating agent made easily decomposable by oxidative decomposition together with the resins. The radioactive nuclides and a great amount of iron dissolved upon decontamination in the liquid wastes are dissolved in sulfuric acid formed. When the sulfuric acid wastes are nuetralized with sodium hydroxide, since they are formed into sodium sulfate, which is most popular as wastes from nuclear facilities, they can be condensated and solidified by existent waste processing systms to thereby facilitate the waste processing. (K.M.)

  11. Independent monitoring of a release from the waste isolation pilot plant in New Mexico, USA. Results and purpose

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Punam; Ballard, Sally [Carlsbad Environmental Monitoring and Research Center, Carlsbad, NM (United States)

    2015-07-01

    The Waste Isolation Pilot Plant (WIPP) is a transuranic (TRU) waste repository operated by the U.S. Department of Energy (DOE). The repository is emplacing defense-related transuranic (TRU) wastes into a bedded salt formation approximately 655 m (2150 ft.) below the surface of the Earth. Located near Carlsbad, New Mexico, an area with less than 30,000 people, the WIPP facility is licensed to accept TRU waste with activity concentrations of alpha-emitting isotopes >3700 Bq/m{sup 3} (> 100 nCi/g) and half-life >20 years. The upper waste acceptance limit is 0.85 TBq/liter (<23 Ci/liter) of total activity and 10 Sv/hr dose rate on contact. The repository, which opened in March 1999 will eventually contain the equivalent of ∝176,000 m{sup 3} of TRU waste. The vast majority of the waste disposed in the WIPP repository is ''contact-handled'' waste, meaning it has a surface dose rate less than 2 mSv per hour. Local acceptance of WIPP is in part due to an independent environmental monitoring program that began before and continues after WIPP began receiving nuclear waste. This independent monitoring is being conducted by the Carlsbad Environmental Monitoring and Research Center (CEMRC), which is associated with New Mexico State University. CEMRC is funded by DOE through a grant process that respects its independence in carrying out and reporting the results of environmental monitoring at and near the WIPP site. The primary focus of CEMRC monitoring is on airborne radioactive particulate; however other pathways are also monitored. Pre-disposal baseline data of various anthropogenic radionuclides present in the WIPP environment is essential for the proper evaluation of the WIPP integrity. These data are compared against disposal phase data to assess whether or not there is any radiological impact from the presence of WIPP on workers and on the regional public. The program has capabilities to detect radionuclides rapidly in case of accidental releases

  12. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    International Nuclear Information System (INIS)

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs

  13. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.D. (comp.)

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  14. Processing of nuclear waste

    International Nuclear Information System (INIS)

    Hennelly, E.J.

    1981-01-01

    The processing of nuclear waste to transform the liquid waste from fuel reprocessing activities is well defined. Most solid waste forms, if they are cooled and contain diluted waste, are compatible with many permanent storage environments. The public acceptance of methods for disposal is being delayed in the US because of the alternatives studies of waste forms and repositories now under way that give the impression of indecision and difficulty for the disposal of HLW. Conservative programs that dilute and cool solid waste are under way in France and Sweden and demonstrate that a solution to the problem is available now. Research and development should be directed toward improving selected methods rather than seeking a best method, which at best, may always be illusory

  15. Geochemical Processes Controlling Migration of High Level Wastes in Hanford's Vadose Zone

    International Nuclear Information System (INIS)

    Zachara, John M.; Serne, R. Jeffrey; Freshley, Mark D.; Mann, Frederick M.; Anderson, Frank J.; Wood, Marcus I.; Jones, Thomas E.; Myers, David A.

    2007-01-01

    High level nuclear wastes (HLW) from Hanford's plutonium reprocessing are stored in massive, buried, single-shell tanks in eighteen tank farms. The wastes were initially hot because of radioactive decay, and many exhibited extreme chemical character in terms of pH, salinity, and radionuclide concentration. At present, 67 of the 149 single shell tanks are suspected to have released over 1.9 million L of tank waste to the vadose zone, with most leak events occurring between 1950 and 1975. Boreholes have been placed through the largest vadose zone plumes to define the extent of contaminant migration, and to develop conceptual models of processes governing the transformation, retardation, and overall transport of tank waste residuals. Laboratory studies with sediments so collected have shown that ion exchange, precipitation and dissolution, and surface complexation reactions have occurred between the HLW and subsurface sediments moderating their chemical character, and retarding the migration of select contaminants. Processes suspected to facilitate the far-field migration of immobile radionuclides including stable aqueous complex formation and mobile colloids were found to be potentially operative, but unlikely to occur in the field, with the exception of cyanide-facilitated migration of 60Co. Fission product oxyanions are the most mobile of tank waste constituents because their adsorption is suppressed by large concentrations of waste anions; the vadose zone clay fraction is negative in surface charge; and, unlike Cr, their reduced forms are unstable in oxidizing environments. Reaction/process-based transport modeling is beginning to be used for predictions of future contaminant mobility and plume evolution

  16. Radioactive waste treatment and handling in France

    International Nuclear Information System (INIS)

    Sivintsev, Yu.V.

    1984-01-01

    Classification of radioactive wastes customary in France and the program of radiation protection in handling them are discussed. Various methods of radioactive waste processing and burial are considered. The French classification of radioactive wastes differs from one used in the other countries. Wastes are classified under three categories: A, B and C. A - low- and intermediate-level radioactive wastes with short-lived radionuclides (half-life - less than 30 years, negligible or heat release, small amount of long-lived radionuclides, especially such as plutonium, americium and neptunium); B - low- and intermediate-level radioactive wastes with long-lived radionuclides (considerable amounts of long-lived radionuclides including α-emitters, low and moderate-level activity of β- and γ-emitters, low and moderate heat release); C - high-level radioactive wastes with long-lived radionuclides (high-level activity of β- and γ-emitters, high heat release, considerable amount of long-lived radionuclides). Volumetric estimations of wastes of various categories and predictions of their growth are given. It is noted that the concept of closed fuel cycle with radiochemical processing of spent fuel is customary in France

  17. Formulation and evaluation of gas release scenarios for the silo in Swedish Final Repository for Radioactive Waste (SFR)

    International Nuclear Information System (INIS)

    Carlsson, J.; Moreno, L.

    1992-01-01

    The Swedish Final Repository for Radioactive Waste (SFR) has been in operation since 1988 and is located in the crystalline rock, 60 m below the Baltic Sea. In the licensing procedure for the SFR the safety assessment has been complemented with a detailed scenario analysis of the performance of the repository. The scenarios include the influence on radionuclide release by gas formation and gas transport processes in the silo. The overall conclusion is that the release of most radionuclides from the silo is only marginally affected by the formation and release of gas, even for scenarios considering unexpected events. The largest effects were found for short-lived radionuclides and radionuclides that have no or low sorption ability. Except for very extreme scenarios for the silo the overall impact from repository on the environment is by far dominated by the release of radionuclides from the rock vaults. 10 refs., 6 figs

  18. Radioactive waste processing method

    International Nuclear Information System (INIS)

    Sakuramoto, Naohiko.

    1992-01-01

    When granular materials comprising radioactive wastes containing phosphorus are processed at first in a fluidized bed type furnace, if the granular materials are phosphorus-containing activated carbon, granular materials comprising alkali compound such as calcium hydroxide and barium hydroxide are used as fluidizing media. Even granular materials of slow burning speed can be burnt stably in a fluidizing state by high temperature heat of the fluidizing media, thereby enabling to take a long burning processing time. Accordingly, radioactive activated carbon wastes can be processed by burning treatment. (T.M.)

  19. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    Vejmelka, P.; Rudolph, G.; Kluger, W.; Koester, R.

    1992-02-01

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG) [de

  20. Solid waste treatment processes for space station

    Science.gov (United States)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  1. Processability analysis of candidate waste forms

    International Nuclear Information System (INIS)

    Gould, T.H. Jr.; Dunson, J.B. Jr.; Eisenberg, A.M.; Haight, H.G. Jr.; Mello, V.E.; Schuyler, R.L. III.

    1982-01-01

    A quantitative merit evaluation, or processability analysis, was performed to assess the relative difficulty of remote processing of Savannah River Plant high-level wastes for seven alternative waste form candidates. The reference borosilicate glass process was rated as the simplest, followed by FUETAP concrete, glass marbles in a lead matrix, high-silica glass, crystalline ceramics (SYNROC-D and tailored ceramics), and coated ceramic particles. Cost estimates for the borosilicate glass, high-silica glass, and ceramic waste form processing facilities are also reported

  2. Utilisation of solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Balu, K

    1978-07-01

    The prime solution to the present energy crisis is the recovery of latent energy from waste materials, for solid waste contains recoverable energy and it merely needs to be released. The paper is concerned with classification of solid waste, energy content of waste, methods of solid waste disposal, and chemical processing of solid waste. Waste disposal must be performed in situ with energy recovery. Scarcity of available land, pollution problem, and unrecovered latent energy restrict the use of the land-filling method. Pyrolysis is an effective method for the energy recovery and disposal problems. Chemical processing is suitable for the separated cellulosic fraction of the waste material.

  3. Mathematical modeling of radionuclide release through a borehole in a radioactive waste repository

    International Nuclear Information System (INIS)

    Choi, Heui Joo

    1996-02-01

    The effects of inadvertent human intrusion as a form of direct drilling into a radioactive waste repository are discussed in this thesis. It has been mentioned that the inadvertent direct drilling into the repository could provide a release pathway for radionuclides even with its low occurrence probability. The following analyses are carried out regarding the problem. The maximum concentration in a water-filled borehole penetrating a repository is computed with a simple geometry. The modeling is based upon the assumption of the diffusive mass transfer in the waste forms and the complete mixing in the borehole. It is shown that the maximum concentrations of six radionuclides in the borehole could exceed the Maximum Permissible Concentration. Also, the diffusive mass transport in a water-filled borehole is investigated with a solubility-limited boundary condition. An analytic solution is derived for this case. Results show that the diffusive mass transport is fast enough to justify the assumption of the complete mixing compared with the considered time span. The axial diffusive mass transport along a water-filled borehole is modeled to compute the release rate taking account of the rock matrix diffusion. The results show that the release of short-lived radionuclides are negligible due to the low concentration gradient in early time and the rock matrix diffusion. The release rates of four long-lived radionuclides are computed. It is also shown that the model developed could be applied to a borehole at a non-cylindrically shaped repository and the off-center drilling of a cylindrical repository. The release rates of long-lived nuclides through a porous material-filled borehole are computed. The results show that the release of all the long-lived nuclides is negligible up to half million years in the case that the borehole is filled with the porous material. The radiological effects of the nuclides released through the borehole penetrating the repository are computed

  4. A process for treatment of mixed waste containing chemical plating wastes

    International Nuclear Information System (INIS)

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-01-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr VI to Cr III from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions

  5. Idaho National Engineering Laboratory response to the December 13, 1991, Congressional inquiry on offsite release of hazardous and solid waste containing radioactive materials from Department of Energy facilities

    International Nuclear Information System (INIS)

    Shapiro, C.; Garcia, K.M.; McMurtrey, C.D.; Williams, K.L.; Jordan, P.J.

    1992-05-01

    This report is a response to the December 13, 1991, Congressional inquiry that requested information on all hazardous and solid waste containing radioactive materials sent from Department of Energy facilities to offsite facilities for treatment or disposal since January 1, 1981. This response is for the Idaho National Engineering Laboratory. Other Department of Energy laboratories are preparing responses for their respective operations. The request includes ten questions, which the report divides into three parts, each responding to a related group of questions. Part 1 answers Questions 5, 6, and 7, which call for a description of Department of Energy and contractor documentation governing the release of waste containing radioactive materials to offsite facilities. ''Offsite'' is defined as non-Department of Energy and non-Department of Defense facilities, such as commercial facilities. Also requested is a description of the review process for relevant release criteria and a list of afl Department of Energy and contractor documents concerning release criteria as of January 1, 1981. Part 2 answers Questions 4, 8, and 9, which call for information about actual releases of waste containing radioactive materials to offsite facilities from 1981 to the present, including radiation levels and pertinent documentation. Part 3 answers Question 10, which requests a description of the process for selecting offsite facilities for treatment or disposal of waste from Department of Energy facilities. In accordance with instructions from the Department of Energy, the report does not address Questions 1, 2, and 3

  6. CNAEM waste processing and storage facility

    International Nuclear Information System (INIS)

    Osmanlioglu, A.E.; Kahraman, A.; Altunkaya, M.

    1998-01-01

    Radioactive waste in Turkey is generated from various applications. Radioactive waste management activities are carried out in a facility at Cekmece Nuclear Research and Training Center (CNAEM). This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes and their activities are up to 10 -3 Ci/m 3 (except spent sealed sources). Chemical treatment and cementation of liquid radwaste, segregation and compaction of solid wastes and conditioning of spent sources are the main processing activities of this facility. A.so, analyses, registration, quality control and interim storage of conditioned low-level wastes are the other related activities of this facility. Conditioned wastes are stored in an interim storage building. All waste management activities, which have been carried out in CNAEM, are generally described in this paper. (author)

  7. MethodS of radioactive waste processing and disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Tolstykh, V.D.

    1983-01-01

    The results of investigations into radioactive waste processing and disposal in the United Kingdom are discussed. Methods for solidification of metal and graphite radioactive wastes and radioactive slime of the Magnox reactors are described. Specifications of different installations used for radioactive waste disposal are given. Climatic and geological conditions in the United Kingdom are such that any deep storages of wastes will be lower than the underground water level. That is why dissolution and transport by underground waters will inevitably result in radionuclide mobility. In this connection an extended program of investigations into the main three aspects of disposal problem namely radionucleide release in storages, underground water transport and radionuclide migration is realized. The program is divided in two parts. The first part deals with retrival of hydrological and geochemical data on geological formations, development of specialized methods of investigations which are necessary for identification of places for waste final disposal. The second part represents theoretical and laboratory investigations into provesses of radionuclide transport in the system of ''sttorage-geological formation''. It is concluded that vitrification on the base of borosilicate glass is the most advanced method of radioactive waste solidification

  8. Polybrominated diphenyl ethers in indoor air during waste TV recycling process

    International Nuclear Information System (INIS)

    Guo, Jie; Lin, Kuangfei; Deng, Jingjing; Fu, Xiaoxu; Xu, Zhenming

    2015-01-01

    Graphical abstract: - Highlights: • Air in the workshops was seriously contaminated by TV recycling activities. • PBDEs profiles and levels varied with particulate matters and different workshops. • Equilibrium between gas-particle partitioning was disrupted by recycling process. • The highest occupational exposure concentrations occurred during heating process. - Abstract: Recycling process for waste TV sets mainly consists of dismantling, printed wiring board (PWB) heating, PWB recycling, and plastic crushing in formal recycling plant. Polybrominated diphenyl ethers (PBDEs) contained in waste TV sets are released to indoor air. Air samples at 4 different workshops were collected to measure the PBDEs concentrations in both gaseous and particulate phases. The mean concentrations of ∑PBDEs in indoor air were in the range of 6780–2,280,000 pg/m 3 . The highest concentration in gaseous phase (291,000 pg/m 3 ) was detected in the PWB heating workshop. The ∑ 12 PBDEs concentrations in PM 2.5 and PM 10 at the 4 workshops ranged in 6.8–6670 μg/g and 32.6–6790 μg/g, respectively. The gas-particle partitioning of PBDEs was disrupted as PBDEs were continuously released during the recycling processes. Occupational exposure assessment showed that only the exposure concentration of BDE-47 (0.118 μg/kg/day) through inhalation in the PWB heating workshop for workers without facemask exceeded the reference dose (0.1 μg/kg/day), posing a health hazard to workers. All the results demonstrated that recycling of TV sets was an important source of PBDEs emission, and PBDEs emission pollution was related to the composition of TV sets, interior dust, and recycling process

  9. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  10. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    International Nuclear Information System (INIS)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  11. A proposal for a test method for assessment of hazard property HP 12 (“Release of an acute toxic gas”) in hazardous waste classification - Experience from 49 waste

    OpenAIRE

    Hennebert , Pierre; Samaali , Ismahen; Molina , Pauline

    2016-01-01

    International audience; A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as “Release of an acute toxic gas”: waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, ...

  12. Processing of low-level wastes

    International Nuclear Information System (INIS)

    Vance, J.N.

    1986-01-01

    Although low-level wastes have been generated and have required processing for more than two decades now, it is noteworthy that processing methods are continuing to change. The changes are not only attributable to improvements in technology, but are also the result of changing regulations and economics and uncertainties regarding the future availabilities of burial space for disposal. Indeed, because of the changes which have and are taking place in the processing of low-level waste, an overview of the current situation is in order. This presentation is a brief overview of the processing methods generally employed to treat the low-level wastes generated from both fuel cycle and non-fuel cycle sources. The presentation is far too brief to deal with the processing technologies in a comprehensive fashion, but does provide a snapshot of what the current or typical processing methods are and what changes are occurring and why

  13. A generic risk assessment from unrestricted releases for RI waste

    International Nuclear Information System (INIS)

    Won-Jae Park; Sang-hoon Park

    1993-01-01

    It has long been recognized in the nuclear industries and the regulatory body that exemption from the regulatory control for a given practice or source of radioactive materials, which is very low radiation exposure situation where the level of risk to any of the public would be considered as trivial, may be beneficial and practical. Therefore, it is necessary to establish the exempt levels of radioactive wastes for unconditional disposal, incineration, recycle and reuse of slightly contaminated materials. In Korea, from its announcement of the Enforcement Regulation of Atomic Energy Act, the Article 97 (Exemption from Permanent Disposal) for very low-level waste disposal in January 1990, the KINS (Korea Institute of Nuclear Safety) have made their efforts to establish a de minimis level (a level of radioactivity in waste that is sufficiently low that the waste can be disposed of as ordinary, non-radioactive trash) for short-lived radioisotopes commonly used in medical, research institutes and industrial applications and to study the possibility for unrestricted deregulation of those radioisotopes. As one of preliminary works to predict environmental radiological impacts from uncontrolled and unrestricted release of RI waste, an average effective dose to any ordinary individual and a collective dose for total population in Korea was estimated, based on conservative assumptions and Korean specific environment data, by an equilibrium biosphere models with a generic probabilistic risk approach

  14. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  15. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  16. Westinghouse Hanford Company effluent releases and solid waste management report for 1987: 200/600/1100 Areas

    International Nuclear Information System (INIS)

    Coony, F.M.; Howe, D.B.; Voigt, L.J.

    1988-05-01

    The purpose of this report is to fulfill the reporting requirements of US Department of Energy (DOE) Order 5484.1, Environmental Protection, Safety, and Health Protection Information Reporting Requirements. Quantities of airborne and liquid wastes discharged by Westinghouse Hanford Company (Westinghouse Hanford) in the 200 Areas, 600 Area, and 1100 Area in 1987 are presented in this report. Also, quantities of solid wastes stored and buried by Westinghouse Hanford in the 200 Areas are presented in this report. The report is also intended to demonstrate compliance with Westinghouse Hanford administrative control limit (ACL) values for radioactive constituents and with applicable guidelines and standards for nonradioactive constituents. The summary of airborne release data, liquid discharge data, and solid waste management data for calendar year (CY) 1987 and CY 1986 are presented in Table ES-1. Data values for 1986 are cited in Table ES-1 to show differences in releases and waste quantities between 1986 and 1987. 19 refs., 3 figs., 19 tabs

  17. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-01-01

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  18. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  19. Estimated quantity of mercury in amalgam waste water residue released by dentists into the sewerage system in Ontario, Canada.

    Science.gov (United States)

    Adegbembo, Albert O; Watson, Philip A

    2004-12-01

    To estimate the quantity of dental amalgam that Ontario dentists release into waste water. Information from a self-administered postal survey of Ontario dentists was combined with the results of other experiments on the weight of amalgam restorations and the quantity of amalgam waste that bypasses solids separators in dental offices. Algorithms were developed to compute the quantity of amalgam waste leaving dental offices when dentists used or did not use ISO 11143 amalgam particle separators. A total of 878 (44.0%) of 1,994 sampled dentists responded to the survey. It was estimated that Ontario dentists removed 1,880.32 kg of amalgam (940.16 kg of mercury) during 2002, of which 1,128.19 kg of amalgam (564.10 kg of mercury) would have been released into waste water in Ontario if no dentists had been using a separator. Approximately 22% of the dentists reported using amalgam particle separators. On the basis of current use of amalgam separators, it was estimated that 861.78 kg of amalgam (430.89 kg of mercury or 170.72 mg per dentist daily) was released in 2002. The use of amalgam separators by all dentists could reduce the quantity of amalgam (and mercury) entering waste water to an estimated 12.41 kg (6.21 kg of mercury, or 2.46 mg per dentist per day). Amalgam particles separators can dramatically reduce amalgam and mercury loading in waste water released from dental offices.

  20. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  1. Liquid radioactive waste processing system in Improved OPR-1000

    International Nuclear Information System (INIS)

    Lee, Soonmin; Kim, Kiljung; Park, Jungsu

    2008-01-01

    The design goal of liquid rad waste system is to minimize the release of radioactive materials to the environment, the occupational radiation exposure to workers, and the solid rad waste volume generated from LRS operation. In 1998, KOPEC in conjunction with KHNP (Korea Hydro and Nuclear Power Co.) started a special task study which had been focused on the worldwide advanced technologies in the liquid rad waste process area by considering the design goals above. As a result of this task, KOPEC and KHNP finally decided to adopt a reverse osmosis processing method for Improved OPR-1000 in Korea. The advanced LRS design incorporating the R/O process has been introduced into Shin-Wolsong 1 and 2 (SWN 1 and 2) as well as Shin-Kori 1 and 2 (SKN 1 and 2), which are recently under construction, and also is adopted for Shin-Kori 3 and 4 (SKN 3 and 4) and Shin-Ulchin 1 and 2 (SUN 1 and 2), which are planned for the near future construction as the first APR-1400 type of Korean reactors. The LRS shop performance test for SKN 1 and 2 (Improved OPR-1000 R/O package system) was conducted by DOOSAN and DTS (Diversified Technologies Services, Inc) in January, 2008. The purpose of the test was to demonstrate the performance of actual R/O system to be installed in SKN 1 and 2 site. In this paper, overall system configuration and the shop performance test result is presented based on Improved OPR-1000 LRS R/O Package system

  2. Development of comprehensive waste acceptance criteria for commercial nuclear waste

    International Nuclear Information System (INIS)

    O'Hara, F.A.; Miller, N.E.; Ausmus, B.S.; Yates, K.R.; Means, J.L.; Christensen, R.N.; Kulacki, F.A.

    1979-01-01

    A detailed methodology is presented for the identification of the characteristics of commercial nuclear waste which may require criteria. This methodology is analyzed as a six-step process which begins with identification of waste operations and proceeds until the waste characteristics affecting the potential release of radionuclides are determined. All waste types and operations were analyzed using the methodology presented. Several illustrative example are included. It is found that thirty-three characteristics can be identified as possibly requiring criteria

  3. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  4. Release and attenuation of fluorocarbons in landfills

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-01-01

    Several halocarbons with very high global warming and ozone depleting potentials have been used as blowing agent for insulation foam in refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam...... blown with CFC-11, HCFC-141b, HFC- 134a, and HFC-245fa revealed that most of the blowing agent is not released to the atmosphere during a six-week period following the shredding process. The fraction which is released in the six-week period is highly dependent on how fine the foam is shredded....... The residual blowing agent remaining after the six-week period may be very slowly released if the integrity of the foam particles with respect to diffusional properties is kept after disposal of the foam waste in landfills. Laboratory experiments simulating attenuation processes in the landfilled waste...

  5. Comparative assessment of TRU waste forms and processes. Volume II. Waste form data, process descriptions, and costs

    International Nuclear Information System (INIS)

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Thornhill, R.E.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This volume contains supporting information for the comparative assessment of the transuranic waste forms and processes summarized in Volume I. Detailed data on the characterization of the waste forms selected for the assessment, process descriptions, and cost information are provided. The purpose of this volume is to provide additional information that may be useful when using the data in Volume I and to provide greater detail on particular waste forms and processes. Volume II is divided into two sections and two appendixes. The first section provides information on the preparation of the waste form specimens used in this study and additional characterization data in support of that in Volume I. The second section includes detailed process descriptions for the eight processes evaluated. Appendix A lists the results of MCC-1 leach test and Appendix B lists additional cost data. 56 figures, 12 tables

  6. Waste processing method

    International Nuclear Information System (INIS)

    Furukawa, Osamu; Shibata, Minoru.

    1996-01-01

    X-rays are irradiated from a predetermined direction to solid wastes containing radioactive isotopes packed in a bag before charged into an inlet of an incinerator. Most of the wastes is burnable plastics such as test tubes and papers. Glasses such as chemical bottles and metals such as lead plates for radiation shielding are contained as a portion of the wastes. The X-rays have such an intensity capable of discriminating metals and glasses from burnable materials. Irradiation images formed on a X-ray irradiation receiving portion are processed, and the total number of picture elements on the portion where a gradation of the light receiving portion of the metal is within a predetermined range is counted on the image. Then, the bag having total picture elements of not less than a predetermined number are separated from the bag having a lesser number. Similar processings are conducted for glasses. With such procedures, the bags containing lead and glasses not suitable to incineration are separated from the bags not containing them thereby enabling to prevent lowering of operation efficiency of the incinerator. (I.N.)

  7. Commercial processing and disposal alternatives for very low levels of radioactive waste in the United States

    International Nuclear Information System (INIS)

    Benda, G.A.

    2005-01-01

    The United States has several options available in the commercial processing and disposal of very low levels of radioactive waste. These range from NRC licensed low level radioactive sites for Class A, B and C waste to conditional disposal or free release of very low concentrations of material. Throughout the development of disposal alternatives, the US promoted a graded disposal approach based on risk of the material hazards. The US still promotes this approach and is renewing the emphasis on risk based disposal for very low levels of radioactive waste. One state in the US, Tennessee, has had a long and successful history of disposal of very low levels of radioactive material. This paper describes that approach and the continuing commercial options for safe, long term processing and disposal. (author)

  8. Gas retention and release behavior in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A. [and others

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior.

  9. Gas retention and release behavior in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A.

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior

  10. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    International Nuclear Information System (INIS)

    Jardine, L J

    2003-01-01

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R and D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities

  11. Processing of palm oil mill wastes based on zero waste technology

    Science.gov (United States)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  12. Environmental impacts of unmanaged solid waste at a former base metal mining and ore processing site (Kirki, Greece).

    Science.gov (United States)

    Liakopoulos, Alexandros; Lemière, Bruno; Michael, Konstantinos; Crouzet, Catherine; Laperche, Valérie; Romaidis, Ioannis; Drougas, Iakovos; Lassin, Arnault

    2010-11-01

    The Kirki project aimed to identify, among the mining waste abandoned at a mine and processing plant, the most critical potential pollution sources, the exposed milieus and the main pathways for contamination of a littoral area. This was accompanied by the definition of a monitoring network and remedial options. For this purpose, field analytical methods were extensively used to allow a more precise identification of the source, to draw relevant conceptual models and outline a monitoring network. Data interpretation was based on temporal series and on a geographical model. A classification method for mining waste was established, based on data on pollutant contents and emissions, and their long-term pollution potential. Mining waste present at the Kirki mine and plant sites comprises (A) extraction waste, mainly metal sulfide-rich rocks; (B) processing waste, mainly tailings, with iron and sulfides, sulfates or other species, plus residues of processing reagents; and (C) other waste, comprising leftover processing reagents and Pb-Zn concentrates. Critical toxic species include cadmium and cyanide. The stormy rainfall regime and hilly topography favour the flush release of large amounts of pollutants. The potential impacts and remedial options vary greatly. Type C waste may generate immediate and severe chemical hazards, and should be dealt with urgently by careful removal, as it is localised in a few spots. Type B waste has significant acid mine drainage potential and contains significant amounts of bioavailable heavy metals and metalloids, but they may also be released in solid form into the surface water through dam failure. The most urgent action is thus dams consolidation. Type A waste is by far the most bulky, and it cannot be economically removed. Unfortunately, it is also the most prone to acid mine drainage (seepage pH 1 to 2). This requires neutralisation to prevent acid water accelerating heavy metals and metalloids transfer. All waste management options

  13. ORNL process waste treatment plant modifications

    International Nuclear Information System (INIS)

    Bell, J.P.

    1982-01-01

    The ORNL Process Waste Treatment Plant removes low levels of radionuclides (primarily Cs-137 and Sr-90) from process waste water prior to discharge. The previous plant operation used a scavenging precipitaton - ion exchange process which produced a radioactive sludge. In order to eliminate the environmental problems associated with sludge disposal, the plant is being converted to a new ion exchange process without the precipitation process

  14. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  15. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  16. Vitrification process testing for reference HWVP waste

    International Nuclear Information System (INIS)

    Perez, J.M. Jr.; Goles, R.W.; Nakaoka, R.K.; Kruger, O.L.

    1991-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify high-level radioactive wastes stored on the Hanford site. The vitrification flow-sheet is being developed to assure the plant will achieve plant production requirements and the glass product will meet all waste form requirements for final geologic disposal. The first Hanford waste to be processed by the HWVP will be a neutralized waste resulting from PUREX fuel reprocessing operations. Testing is being conducted using representative nonradioactive simulants to obtain process and product data required to support design, environmental, and qualification activities. Plant/process criteria, testing requirements and approach, and results to date will be presented

  17. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  18. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  19. Energy recovery from containerized waste

    International Nuclear Information System (INIS)

    Benoit, M.R.; Hansen, E.R.; Reese, T.J.

    1991-01-01

    This patent describes a method for achieving environmentally sound disposal of solid waste in an operating rotary kiln. It comprises: a heated, rotated cylinder containing in-process mineral material, the method comprising the steps of packaging the waste in containers and charging the containerized waste into the kiln to contact the mineral material at a point along the length of the kiln cylinder where the kiln gas temperature is sufficient to decompose volatile components of the waste released upon contact of the waste with the in-process mineral material

  20. Ongoing environmental monitoring and assessment of the long-term impacts of the February 2014 radiological release from the waste isolation pilot plant.

    Science.gov (United States)

    Thakur, Punam; Runyon, Tim

    2018-04-09

    Three years ago, the Waste Isolation Pilot Plant (WIPP) experienced its first minor accident involving a radiological release. Late in the evening on February 14, 2014, a waste container in the repository underwent a chemical reaction that caused the container to overheat and breach, releasing its contents into the underground. Following a lengthy recovery process, the facility recently resumed waste disposal operations. The accident released significant levels of radioactivity into the disposal room and adjacent exhaust drifts, and although no one was present in the underground at the time of the release, a total of 22 workers tested positive for very low level of radiation, presumably from some of the radioactive material that was released above ground through a small leak in the HEPA filtration system. The dominant radionuclides released were 241 Am and 239 + 240 Pu in a ratio that matched the content of the drum from Los Alamos National Laboratory (LANL) that was eventually identified as the breached container. From the air particulate monitoring and plume modeling, it was concluded that the dose, at the nearest location accessible to the general public, from this radiation release event would have been less than 0.01 mSv (< 1 mrem/year). This level is well below the 0.1 mSv/year (10 mrem/year) regulatory limit for DOE facilities established by the US Environmental Protection Agency (EPA).While no long-term impacts to public health or the environment are expected as a result of the WIPP radiation release, the limited ventilation and residual contamination levels in the underground are still a concern and pose a major challenge for the full recovery of WIPP. This article provides an up-to-date overview of environmental monitoring results through the WIPP recovery and an estimate of the long-term impacts of the accident on the natural and human environment.

  1. Gaseous waste processing device

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1992-01-01

    In a gaseous waste processing device, if activated carbon is charged uniformly to a holdup tower, the amount of radioactive rare gases held in a first tower at the uppermost stream is increased to greater than that in other towers at the downstream since the radioactive rare gases decay in the form of an exponential function. Then in the present invention, the entire length of a plurality of activated carbon holdup towers connected in series is made longer than that of the towers in the downstream. As a result, since the amount of radioactive rare gases held in each of the holdup towers is made uniform, even if any one of connecting pipelines is ruptured, the amount of radioactive rare gases flown out is uniform. Only the body length of the holdup tower is changed because it is economical in view of the design and the manufacture of the vessel, and the cross section of the portion in which activated carbons are filled is made identical to keep the optimum flow rate of the rare gases. Thus, the radioactivity releasing amount can be minimized upon occurrence of an accident. (N.H.)

  2. Polybrominated diphenyl ethers in indoor air during waste TV recycling process

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Lin, Kuangfei; Deng, Jingjing; Fu, Xiaoxu [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-02-11

    Graphical abstract: - Highlights: • Air in the workshops was seriously contaminated by TV recycling activities. • PBDEs profiles and levels varied with particulate matters and different workshops. • Equilibrium between gas-particle partitioning was disrupted by recycling process. • The highest occupational exposure concentrations occurred during heating process. - Abstract: Recycling process for waste TV sets mainly consists of dismantling, printed wiring board (PWB) heating, PWB recycling, and plastic crushing in formal recycling plant. Polybrominated diphenyl ethers (PBDEs) contained in waste TV sets are released to indoor air. Air samples at 4 different workshops were collected to measure the PBDEs concentrations in both gaseous and particulate phases. The mean concentrations of ∑PBDEs in indoor air were in the range of 6780–2,280,000 pg/m{sup 3}. The highest concentration in gaseous phase (291,000 pg/m{sup 3}) was detected in the PWB heating workshop. The ∑{sub 12}PBDEs concentrations in PM{sub 2.5} and PM{sub 10} at the 4 workshops ranged in 6.8–6670 μg/g and 32.6–6790 μg/g, respectively. The gas-particle partitioning of PBDEs was disrupted as PBDEs were continuously released during the recycling processes. Occupational exposure assessment showed that only the exposure concentration of BDE-47 (0.118 μg/kg/day) through inhalation in the PWB heating workshop for workers without facemask exceeded the reference dose (0.1 μg/kg/day), posing a health hazard to workers. All the results demonstrated that recycling of TV sets was an important source of PBDEs emission, and PBDEs emission pollution was related to the composition of TV sets, interior dust, and recycling process.

  3. Prospective of Macedonia for treatment and recycling of tire waste with Pirolitic process

    Directory of Open Access Journals (Sweden)

    Sarafov Victor

    2017-01-01

    Full Text Available The automotive industry is one of the ever-developing branches of modern society and therefore collecting and recycling of old tires must not be ignored. It must be taken into consideration that tire waste is decomposing at an extremely low pace under the influence of climate factors, that waste from used tires not only is covering large areas, but there is also a possibility of spontaneous fire that is usually long-lasting and emits gasses that have negative effect on human health. Tires are made of complex polymeric materials and contain chemical additives. When burning tires on an open field highly toxic and cancerous organic compounds are being released (biphenyl, anthracene, fluoranthene and other toxins. Pyrolysis is a process that offers sustainable management of this type of waste which in continuation is to be explained in detail.

  4. BIODOSE: a code for predicting the dose to man from radionuclides released from underground nuclear waste repositories

    International Nuclear Information System (INIS)

    Bonner, N.A.; Ng, Y.C.

    1980-03-01

    The BIODOSE computer program simulates the environmental transport of radionuclides released to surface water and predicts the resulting dosage to humans. This report describes the program and discusses its use in the evaluation of nuclear waste repositories. The methods used to estimate dose are examined critically, and the most important parameters in each stage of the calculations are identified as an aid in planning for measurements in the field. Dose predictions from releases of nuclear waste to a large northwestern river (the baseline river) are presented to point out the nuclides, compartments and pathways that contribute most to the hazard as a function of waste storage time. Predictions for five other water systems are presented to identify the most important system parameters that determine the concentrations of individual nuclides in compartments and the resultant dose. The uncertainties in the biological parameters for dose prediction are identified, and changes in current values are suggested. Various ways of reporting dose estimates for radiological safety assessments are discussed. Additional work needed to improve the dose predictions from BIODOSE and specific areas and steps to improve our capabilities to assess the environmental transport of nuclides released from nuclear waste repositories and the resultant dose to man are suggested

  5. Hanford Tanks 241-C-202 and 241-C-203 Residual Waste Contaminant Release Models and Supporting Data

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Mattigod, Shas V.; Schaef, Herbert T.; Arey, Bruce W.

    2007-09-13

    As directed by Congress, the U. S. Department of Energy (DOE) established the Office of River Protection in 1998 to manage DOE's largest, most complex environmental cleanup project – retrieval of radioactive waste from Hanford tanks for treatment and eventual disposal. Sixty percent by volume of the nation's high-level radioactive waste is stored at Hanford in aging deteriorating tanks. If not cleaned up, this waste is a threat to the Columbia River and the Pacific Northwest. CH2M Hill Hanford Group, Inc., is the Office of River Protection's prime contractor responsible for the storage, retrieval, and disposal of Hanford's tank waste. As part of this effort, CH2M HILL Hanford Group, Inc. contracted with Pacific Northwest National Laboratory (PNNL) to develop release models for key contaminants that are present in residual sludge remaining after closure of Hanford Tanks 241-C-203 (C-203) and 241-C-204 (C-204). The release models were developed from data generated by laboratory characterization and testing of samples from these two tanks. These release models are being developed to support the tank closure risk assessments performed by CH2M HILL Hanford Group, Inc., for DOE.

  6. Gaseous waste processing device in nuclear power plant

    International Nuclear Information System (INIS)

    Takechi, Eisuke; Matsutoshi, Makoto.

    1978-01-01

    Purpose: To arrange the units of waste processing devices in a number one more than the number thereof required for a plurality of reactors, and to make it usable commonly as a preliminary waste processing device thereby to effectively use all the gaseous waste processing devices. Constitution: A gaseous waste processing device is constituted by an exhaust gas extractor, a first processing device, a second processing device and the like, which are all connected in series. Upon this occasion, devices from the exhaust gas extractor to the first processing device and valves, which are provided in each of reactors, are arranged in series, on one hand, but valves at the downstream side join one another by one pipeline, and are connected to a stack through a total gaseous waste processing device, on another. (Yoshihara, H.)

  7. Waste Disposition Issues and Resolutions at the TRU Waste Processing Center at Oak Ridge TN

    International Nuclear Information System (INIS)

    Gentry, R.

    2009-01-01

    This paper prepared for the Waste Management Conference 2009 provides lessons learned from the Transuranic (TRU) Waste Processing Center (TWPC) associated with development of approaches used to certify and ensure disposition of problematic TRU wastes at the Waste Isolation Pilot Plant (WIPP) site. The TWPC is currently processing the inventory of available waste TRU waste at the Oak Ridge National Lab (ORNL). During the processing effort several waste characteristics were identified/discovered that did not conform to the normal standards and processes for disposal at WIPP. Therefore, the TWPC and ORNL were challenged with determining a path forward for this problematic, special case TRU wastes to ensure that they can be processed, packaged, and shipped to WIPP. Additionally, unexpected specific waste characteristics have challenged the project to identify and develop processing methods to handle problematic waste. The TWPC has several issues that have challenged the projects ability to process RH Waste. High Neutron Dose Rate resulting from both Californium and Curium in the waste stream challenge the RH-TRU 72-B limit for dose rate measured from the side of the package under normal conditions of transport, as specified in Chapter 5.0 of the RH-TRU 72-B SAR (i.e., ≤10 mrem/hour at 2 meters). Difficult to process waste in the hot cell has introduced processing and handling difficulties included problems associated with the disposition of prohibited items that fall out of the waste stream such as liquids, aerosol cans, etc. Lastly, multiple waste streams require characterization and AK challenge the ability to generate dose-to curie models for the waste. Repackaging is one solution to the high neutron dose rate issue. In parallel, an effort is underway to request a change to the TRAMPAC requirements to allow shielding in the drum or canister to reduce the impact of the high neutron dose rates. Due diligence on supporting AK efforts is important in ensuring adequate

  8. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  9. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  10. Atmospheric release model for the E-area low-level waste facility: Updates and modifications

    International Nuclear Information System (INIS)

    None, None

    2017-01-01

    The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.

  11. Atmospheric release model for the E-area low-level waste facility: Updates and modifications

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-11-16

    The atmospheric release model (ARM) utilizes GoldSim® Monte Carlo simulation software (GTG, 2017) to evaluate the flux of gaseous radionuclides as they volatilize from E-Area disposal facility waste zones, diffuse into the air-filled soil pores surrounding the waste, and emanate at the land surface. This report documents the updates and modifications to the ARM for the next planned E-Area PA considering recommendations from the 2015 PA strategic planning team outlined by Butcher and Phifer.

  12. Development of a general model to predict the rate of radionuclide release (source term) from a low-level waste shallow land burial facility

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Kempf, C.R.; Suen, C.J.; Mughabghab, S.M.

    1988-01-01

    Federal Code of Regulations 10 CFR 61 requires that any near surface disposal site be capable of being characterized, analyzed, and modeled. The objective of this program is to assist NRC in developing the ability to model a disposal site that conforms to these regulations. In particular, a general computer model capable of predicting the quantity and rate of radionuclide release from a shallow land burial trench, i.e., the source term, is being developed. The framework for this general model has been developed and consists of four basic compartments that represent the major processes that influence release. These compartments are: water flow, container degradation, release from the waste packages, and radionuclide transport. Models for water flow and radionuclide transport rely on the use of the computer codes FEMWATER and FEMWASTE. These codes are generally regarded as being state-of-the-art and required little modification for their application to this project. Models for container degradation and release from waste packages have been specifically developed for this project. This paper provides a brief description of the models being used in the source term project and examples of their use over a range of potential conditions. 13 refs

  13. Release consequence analysis for a hypothetical geologic radioactive waste repository in salt

    International Nuclear Information System (INIS)

    1979-08-01

    One subtask conducted under the INFCE program is to evaluate and compare the health and safety impacts of different fuel cycles in which all radioactive wastes (except those from mining and milling) are placed in a geologic repository in salt. To achieve this objective, INFCE Working Group 7 examined the radiologic dose to humans from geologic repositories containing waste arisings as defined for seven reference fuel cycles. This report examines the release consequences for a generic waste repository in bedded salt. The top of the salt formation and the top of the repository are assumed to be 250 and 600 m, respectively, below the surface. The hydrogeologic structure above the salt consists of two aquifers and two aquitards. The aquifers connect to a river 6.2 km from the repository. The regional gradient to the river is 1 m/km in all aquifers. Hydrologic, transport, and dose models were used to model two release scenarios for each fuel cycle, one without a major disturbance and one in which a major geologic perturbation breached the repository immediately after it was sealed. The purpose of the modeling was to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere, and to determine the potential dose to humans. Of the many radionuclides in the waste, only 129 I and 226 Ra arrived at the river in sufficient concentrations for a measurable dose calculation. Radionuclide concentrations in the ground water pose no threat to man because the ground water is a concentrated brine and it is diluted by a factor of 10 6 to 10 7 upon entering the river

  14. Process waste assessment for the Radiography Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-07-01

    This Process Waste Assessment was conducted to evaluate the Radiography Laboratory, located in Building 923. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility. The Radiography Laboratory provides film radiography or radioscopy (electronic imaging) of weapon and nonweapon components. The Radiography Laboratory has six x-ray machines and one gamma ray source. It also has several other sealed beta- and gamma-ray isotope sources of low microcurie (μCi) activity. The photochemical processes generate most of the Radiography Laboratory's routinely generated hazardous waste, and most of that is generated by the DuPont film processor. Because the DuPont film processor generates the most photochemical waste, it was selected for an estimated material balance

  15. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  16. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    International Nuclear Information System (INIS)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF 6 ) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992

  17. Multibarrier waste forms. Part III: Process considerations

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1979-10-01

    The multibarrier concept for the solidification and storage of radioactive waste utilizes up to three barriers to isolate radionuclides from the environment: a solidified waste inner core, an impervious coating, and a metal matrix. The coating and metal matrix give the composite waste form enhanced inertness with improvements in thermal stability, mechanical strength, and leach resistance. Preliminary process flow rates and material costs were evaluated for four multibarrier waste forms with the process complexity increasing thusly: glass marbles, uncoated supercalcine, glass-coated supercalcine, and PyC/Al 2 O 3 -coated supercalcine. This report discusses the process variables and their effect on optimization of product quality, processing simplicity, and material cost. 11 figures, 2 tables

  18. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Ikeda, Takashi; Funabashi, Kiyomi; Chino, Koichi.

    1992-01-01

    In a waste processing device for solidifying, pellets formed by condensing radioactive liquid wastes generated from a nuclear power plant, by using a solidification agent, sodium chloride, sodium hydroxide or sodium nitrate is mixed upon solidification. In particular, since sodium sulfate in a resin regenerating liquid wastes absorbs water in the cement upon cement solidification, and increases the volume by expansion, there is a worry of breaking the cement solidification products. This reaction can be prevented by the addition of sodium chloride and the like. Accordingly, integrity of the solidification products can be maintained for a long period of time. (T.M.)

  19. Release of Waste Tire Comprehensive Utilization Industry Access Conditions

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    On July 31, 2012, the Ministry of Industry and Information Technology released the Tire Retread- ing lndustry Access Conditions and Waste Tire Comprehensive Utilization Industry Access Condi- tions with the No. 32 announcement of 2012. The state will lay a foundation for realizing the green, safe, efficient, eco-friendly and energy saving tar- gets in the "12th Five-year Plan" of the industry by raising access conditions, regulating industrial development order, strengthening environmental protection, promoting corporate optimizing and up- grading, improving resources comprehensive utiliza- tion technology and management level and guiding the "harmless recycling and eco-friendly utiliza- tion" of the industry.

  20. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  1. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    International Nuclear Information System (INIS)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.; Serne, R. Jeffrey; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I.; Chorover, Jon

    2011-01-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  2. Waste Receiving and Processing Module 2A waste certification strategy

    International Nuclear Information System (INIS)

    LeClair, M.D.; Pottmeyer, J.A.; Hyre, R.A.

    1994-01-01

    This document addresses the certification of Mixed Low Level Waste (MLLW) that will be treated in the Waste Receiving and Processing Facility Module 2A (WRAP 2A) and is destined for disposal in the MLLW trench of the Low Level Burial Grounds (LLBG). The MLLW that will be treated in WRAP 2A contains land disposal restricted and radioactive constituents. Certification of the treated waste is dependent on numerous waste management activities conducted throughout the WRAP 2A operation. These activities range from waste treatability testing conducted prior to WRAP 2A waste acceptance to overchecking final waste form quality prior to transferring waste to disposal. This document addresses the high level strategies and methodologies for certifying the final waste form. Integration among all design and verification activities that support final waste form quality assurance is also discussed. The information generated from this effort may directly support other ongoing activities including the WRAP 2A Waste Characterization Study, WRAP 2A Waste Analysis Plan development, Sample Plan development, and the WRAP 2A Data Management System functional requirements definition

  3. Waste processing plant eco-auditing system for minimization of environmental risk: European Communities regulatory proposal

    International Nuclear Information System (INIS)

    Brunetti, N.

    1993-01-01

    This paper delineates a system of process control and monitoring checks to be applied to municipal-industrial waste processing and disposal plants to ensure their energy efficient, environmentally safe and reliable operation. In line with European Communities environmental protection strategies, this eco-auditing system requires the preparation of environmental impacts statements on a regular basis during plant operation, as well as, prior to plant start-up. Continuous plant environmental compatibility evaluations are to ascertain: material and energy inputs and outputs; the composition and amounts of exhaust gases released into the atmosphere and the integrity of treatment liquids; control and monitoring instrumentation reliability. The implementation of the auditing system is to be carried out under the supervision of authorized auditing personnel. Waste processing and disposal plants are to make maximum use of energy and materials recovery processes so as to minimize energy consumption and risk to the environment

  4. Method of controlling radioactive waste processing systems

    International Nuclear Information System (INIS)

    Mikawa, Hiroji; Sato, Takao.

    1981-01-01

    Purpose: To minimize the pellet production amount, maximize the working life of a solidifying device and maintaining the mechanical strength of pellets to a predetermined value irrespective of the type and the cycle of occurrence of the secondary waste in the secondary waste solidifying device for radioactive waste processing systems in nuclear power plants. Method: Forecasting periods for the type, production amount and radioactivity level of the secondary wastes are determined in input/output devices connected to a control system and resulted signals are sent to computing elements. The computing elements forecast the production amount of regenerated liquid wastes after predetermined days based on the running conditions of a condensate desalter and the production amounts of filter sludges and liquid resin wastes after predetermined days based on the liquid waste processing amount or the like in a processing device respectively. Then, the mass balance between the type and the amount of the secondary wastes presently stored in a tank are calculated and the composition and concentration for the processing liquid are set so as to obtain predetermined values for the strength of pellets that can be dried to solidify, the working life of the solidifying device itself and the radioactivity level of the pellets. Thereafter, the running conditions for the solidifying device are determined so as to maximize the working life of the solidifying device. (Horiuchi, T.)

  5. Limitation of the EIA Process for the assessment of nuclear fuel waste disposal in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, B.L.; Kuhn, R.G. [Guelph Univ., ON (Canada). Dept. of Geography

    1999-12-01

    The Canadian environmental impact assessment process for the Nuclear Fuel Waste Management and Disposal Concept was completed in 1994. Almost four years later, in February 1998, the Review Panel released its report. The viewpoints of those who participated in the assessment process is archived in the thousands of pages of hearing testimony, meeting transcripts and written briefs. One of the most contentious issues raised, and one that continues to plague management in Canada, is the debate surrounding how the problem of NFW waste management should be defined. The purpose of this paper is to critically assess the problem frame of the Canadian NFW management disposal concept EIS. This will be accomplished through an analysis of stakeholder participation and views, and through an evaluation of the range and nature of the information considered legitimate or constrained in the Canadian process.

  6. Limitation of the EIA Process for the assessment of nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Murphy, B.L.; Kuhn, R.G.

    1999-01-01

    The Canadian environmental impact assessment process for the Nuclear Fuel Waste Management and Disposal Concept was completed in 1994. Almost four years later, in February 1998, the Review Panel released its report. The viewpoints of those who participated in the assessment process is archived in the thousands of pages of hearing testimony, meeting transcripts and written briefs. One of the most contentious issues raised, and one that continues to plague management in Canada, is the debate surrounding how the problem of NFW waste management should be defined. The purpose of this paper is to critically assess the problem frame of the Canadian NFW management disposal concept EIS. This will be accomplished through an analysis of stakeholder participation and views, and through an evaluation of the range and nature of the information considered legitimate or constrained in the Canadian process

  7. Waste Receiving and Processing (WRAP) facility engineering study

    International Nuclear Information System (INIS)

    Christie, M.A.; Cammann, J.W.; McBeath, R.S.; Rode, H.H.

    1985-01-01

    A new Hanford waste management facility, the Waste Receiving and Processing (WRAP) facility (planned to be operational by FY 1994) will receive, inspect, process, and repackage contact-handled transuranic (CH-TRU) contaminated solid wastes. The wastes will be certified according to the waste acceptance criteria for disposal at the Waste Isolation Pilot Plant (WIPP) geologic repository in southeast New Mexico. Three alternatives which could cost effectively be applied to certify Hanford CH-TRU waste to the WIPP Waste Acceptance Criteria (WIPP-WAC) have been examined in this updated engineering study. The alternatives differed primarily in the reference processing systems used to transform nonconforming waste into an acceptable, certified waste form. It is recommended to include the alternative of shredding and immobilizing nonconforming wastes in cement (shred/grout processing) in the WRAP facility. Preliminary capital costs for WRAP in mid-point-of-construction (FY 1991) dollars were estimated at $45 million for new construction and $37 million for modification and installation in an existing Hanford surplus facility (231-Z Building). Operating, shipping, and decommissioning costs in FY 1986 dollars were estimated at $126 million, based on a 23-y WRAP life cycle (1994 to 2017). During this period, the WRAP facility will receive an estimated 38,000 m 3 (1.3 million ft 3 ) of solid CH-TRU waste. The study recommends pilot-scale testing and evaluation of the processing systems planned for WRAP and advises further investigation of the 231-Z Building as an alternative to new facility construction

  8. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  9. Evaluation of the potential for significant ammonia releases from Hanford waste tanks

    International Nuclear Information System (INIS)

    Palmer, B.J.; Anderson, C.M.; Chen, G.; Cuta, J.M.; Ferryman, T.A.; Terrones, G.

    1996-07-01

    Ammonia is ubiquitous as a component of the waste stored in the Hanford Site single-shell tanks (SSTs) and double-shell tanks (DSTs). Because ammonia is both flammable and toxic, concerns have been raised about the amount of ammonia stored in the tanks and the possible mechanisms by which it could be released from the waste into the head space inside the tanks as well as into the surrounding atmosphere. Ammonia is a safety issue for three reasons. As already mentioned, ammonia is a flammable gas and may contribute to a flammability hazard either directly, if it reaches a high enough concentration in the tank head space, or by contributing to the flammability of other flammable gases such as hydrogen (LANL 1994). Ammonia is also toxic and at relatively low concentrations presents a hazard to human health. The level at which ammonia is considered Immediately Dangerous to Life or Health (IDLH) is 300 ppm (WHC 1993, 1995). Ammonia concentrations at or above this level have been measured inside the head space in a number of SSTs. Finally, unlike hydrogen and nitrous oxide, ammonia is highly soluble in aqueous solutions, and large amounts of ammonia can be stored in the waste as dissolved gas. Because of its high solubility, ammonia behaves in a qualitatively different manner from hydrogen or other insoluble gases. A broader range of scenarios must be considered in modeling ammonia storage and release

  10. Special waste-form lysimeters-arid: Three-year monitoring report

    International Nuclear Information System (INIS)

    Jones, T.L.; Serne, R.J.; Toste, A.P.

    1988-04-01

    Regulations governing the disposal of commercial low-level waste require all liquid waste to be solidified before burial. Most waste must be solidified into a rigid matrix such as cement or plastic to prevent waste consolidation and site slumping after burial. These solidification processes affect the rate at which radionuclides and other solutes are released into the soil. In 1983, a program was initiated at Pacific Northwest Laboratory to study the release of waste from samples of low-level radioactive waste that had been commercially solidified. The primary method used by this program is to bury sample waste forms in field lysimeters and monitor leachate composition from the release and transport of solutes. The lysimeter facility consists of 10 lysimeters, each containing one sample of solidified waste. Five different waste forms are being tested, allowing duplicate samples of each one to be evaluated. The samples were obtained from operating nuclear power plants and are actual waste forms routinely generated at these facilities. All solidification was accomplished by commercial processes. Sample size is a partially filled 210-L drum. All containers were removed prior to burial leaving the bare waste form in contact with the lysimeter soil. 11 refs., 14 figs., 16 tabs

  11. Radioactive waste processing container

    International Nuclear Information System (INIS)

    Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    A radioactive waste processing container used for processing radioactive wastes into solidification products suitable to disposal such as underground burying or ocean discarding is constituted by using cements. As the cements, calcium sulfoaluminate clinker mainly comprising calcium sulfoaluminate compound; 3CaO 3Al 2 O 3 CaSO 4 , Portland cement and aqueous blast furnace slug is used for instance. Calciumhydroxide formed from the Portland cement is consumed for hydration of the calcium sulfoaluminate clinker. According, calcium hydroxide is substantially eliminated in the cement constituent layer of the container. With such a constitution, damages such as crackings and peelings are less caused, to improve durability and safety. (I.N.)

  12. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  13. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  14. Logistic paradigm for industrial solid waste treatment processes

    Directory of Open Access Journals (Sweden)

    Janusz Grabara

    2014-12-01

    Full Text Available Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form together with an analysis of individual processes and their linkages, and opportunities to improve flow of industrial waste streams. Furthermore, the model allows for justification of the relevance of use logistics and its processes for waste management

  15. Evaluation of radionuclide releases from underground waste repositories using the method of status vectors

    International Nuclear Information System (INIS)

    Zappe, D.

    1983-01-01

    For safety analyses of underground repositories for radioactive wastes various possible release scenarios have to be defind and anticipated consequences to be calculated and compared. Normally only the main exposure pathways (i.e. the critical pathways) of the radionuclides disposed of in the repository are calculated using deterministic methods and varying the parameters. It is proposed to evaluate all the individual pathways including those differing considerably from the critical pathway by forming weighted averages of their consequences. This offers the possibility of including, without any restriction, in the evaluation of the repository the various possible events and processes that influence the function of barriers for the retention of radionuclides. Various states (scenarios) of a repository in a salt formation, which might occur in the course of time have been used as an example. The consequences related to these states and the probabilities of their occurrence or the scenario weights form the components of 'status vectors'. For low- and intermediate-level wastes the overall consequences obtained from these calculations are negligibly small, for high-level wastes they are about 3 x 10 - 5 Sv a - 1 /GW a. These values are reached if at least a part of the barriers is effective. Variations of the weighting factors for the states and their influence on the overall consequences are given. (author)

  16. A reliability-risk modelling of nuclear rad-waste facilities

    International Nuclear Information System (INIS)

    Lehmann, P.H.; El-Bassioni, A.A.

    1975-01-01

    Rad-waste disposal systems of nuclear power sites are designed and operated to collect, delay, contain, and concentrate radioactive wastes from reactor plant processes such that on-site and off-site exposures to radiation are well below permissible limits. To assist the designer in achieving minimum release/exposure goals, a computerized reliability-risk model has been developed to simulate the rad-waste system. The objectives of the model are to furnish a practical tool for quantifying the effects of changes in system configuration, operation, and equipment, and for the identification of weak segments in the system design. Primarily, the model comprises a marriage of system analysis, reliability analysis, and release-risk assessment. Provisions have been included in the model to permit the optimization of the system design subject to constraints on cost and rad-releases. The system analysis phase involves the preparation of a physical and functional description of the rad-waste facility accompanied by the formation of a system tree diagram. The reliability analysis phase embodies the formulation of appropriate reliability models and the collection of model parameters. Release-risk assessment constitutes the analytical basis whereupon further system and reliability analyses may be warranted. Release-risk represents the potential for release of radioactivity and is defined as the product of an element's unreliability at time, t, and the radioactivity available for release in time interval, Δt. A computer code (RARISK) has been written to simulate the tree diagram of the rad-waste system. Reliability and release-risk results have been generated for cases which examined the process flow paths of typical rad-waste systems, the effects of repair and standby, the variations of equipment failure and repair rates, and changes in system configurations. The essential feature of this model is that a complex system like the rad-waste facility can be easily decomposed into its

  17. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  18. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  19. Waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wilhite, E.L.

    1986-01-01

    Waste salt solution, produced during processing of high-level nuclear waste, will be incorporated in a cement matrix for emplacement in an engineered disposal facility. Wasteform characteristics and disposal facility details will be presented along with results of a field test of wasteform contaminant release and of modeling studies to predict releases. 5 refs., 11 figs., 5 tabs

  20. Effect of buffer thickness on the retardation of radionuclide release from the high-level waste repository

    International Nuclear Information System (INIS)

    Cho, Won Jin; Lee, Jae Owan; Kang, Chul Hyung; Han, Kyung Won

    2000-12-01

    The radionuclide release from buffer in the high-level waste repository to the surrounding host rock was assessed, and the effect of the radial buffer thickness on the release rate was analyzed. The total release rates decrease sharply with increasing radial buffer thickness up to 0.25 m, and decrease moderately at the buffer thickness between 0.25 m and 0.5 m. But increasing the radial buffer thickness beyond 0.5 m has little effect in reducing radionuclide release. Therefore a radial buffer thickness between 0.25 m and 0.5 m is sufficient based on the viewpoint of radionuclide retention

  1. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  2. Atmospheric Dispersion Modeling of the February 2014 Waste Isolation Pilot Plant Release

    Energy Technology Data Exchange (ETDEWEB)

    Nasstrom, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Piggott, Tom [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simpson, Matthew [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lobaugh, Megan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tai, Lydia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pobanz, Brenda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yu, Kristen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-22

    This report presents the results of a simulation of the atmospheric dispersion and deposition of radioactivity released from the Waste Isolation Pilot Plant (WIPP) site in New Mexico in February 2014. These simulations were made by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL), and supersede NARAC simulation results published in a previous WIPP report (WIPP, 2014). The results presented in this report use additional, more detailed data from WIPP on the specific radionuclides released, radioactivity release amounts and release times. Compared to the previous NARAC simulations, the new simulation results in this report are based on more detailed modeling of the winds, turbulence, and particle dry deposition. In addition, the initial plume rise from the exhaust vent was considered in the new simulations, but not in the previous NARAC simulations. The new model results show some small differences compared to previous results, but do not change the conclusions in the WIPP (2014) report. Presented are the data and assumptions used in these model simulations, as well as the model-predicted dose and deposition on and near the WIPP site. A comparison of predicted and measured radionuclide-specific air concentrations is also presented.

  3. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-06-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  4. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1981-01-01

    The process which will be used to decontaminate waste glass canisters at the Savannah River Plant consists of: decontamination (slurry blasting); rinse (high-pressure water); and spot decontamination (high-pressure water plus slurry). No additional waste will be produced by this process because glass frit used in decontamination will be mixed with the radioactive waste and fed into the glass melter. Decontamination of waste glass canisters with chemical and abrasive blasting techniques was investigated. The ability of a chemical technique with HNO 3 -HF and H 2 C 2 O 4 to remove baked-on contamination was demonstrated. A correlation between oxide removal and decontamination was observed. Oxide removal and, thus, decontamination by abrasive blasting techniques with glass frit as the abrasive was proposed and demonstrated

  5. Radioactive waste gas processing systems

    International Nuclear Information System (INIS)

    Kita, Kaoru; Minemoto, Masaki; Takezawa, Kazuaki.

    1981-01-01

    Purpose: To effectively separate and remove only hydrogen from hydrogen gas-containing radioactive waste gases produced from nuclear power plants without using large scaled facilities. Constitution: From hydrogen gas-enriched waste gases which contain radioactive rare gases (Kr, Xe) sent from the volume control tank of a chemical volume control system, only the hydrogen is separated in a hydrogen separator using palladium alloy membrane and rare gases are concentrated, volume-decreased and then stored. In this case, an activated carbon adsorption device is connected at its inlet to the radioactive gas outlet of the hydrogen separator and opened at its outlet to external atmosphere. In this system, while only the hydrogen gas permeates through the palladium alloy membrane, other gases are introduced, without permeation, into the activated carbon adsorption device. Then, the radioactive rare gases are decayed by the adsorption on the activated carbon and then released to the external atmosphere. (Furukawa, Y.)

  6. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future.

    Science.gov (United States)

    Man, Ming; Naidu, Ravi; Wong, Ming H

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Advanced liquid waste processing technologies: Theoretical versus actual application

    International Nuclear Information System (INIS)

    Barker, Tracy A.

    1992-01-01

    This paper provides an overview of Chem-Nuclear Systems, Inc. (CNSI) experience with turn-key chromate removal at the Maine Yankee Nuclear Plant. Theoretical and actual experiences are addressed on topics such as processing duration, laboratory testing, equipment requirements, chromate removal, waste generation, and waste processing. Chromate salts are used in industrial recirculation cooling water systems as a corrosion inhibitor. However, chromates are toxic at concentrations necessary for surface inhibition. As a result, Chem-Nuclear was contracted to perform turn-key chromate removal and waste disposal by demineralization. This project was unique in that prior to on-site mobilization, a composite sample of chromated waste was shipped to CNSI laboratories for treatment through a laboratory scale system. Removal efficiency, process media requirements, and waste processing methodology were determined from this laboratory testing. Samples of the waste resulting from this testing were processed by dewatering and solidification, respectively. TCLP tests were performed on the actual processed waste, and based on the TCLP results, pre-approval for media waste disposal was obtained. (author)

  8. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    International Nuclear Information System (INIS)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented

  9. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  10. Radioactive waste handling at the Mochovce NPP, 1998-2008

    International Nuclear Information System (INIS)

    Vasickova, Gabriela

    2009-01-01

    The radioactive waste management system at the Mochovce NPP is described. The system addresses technical aspects as well as administrative provisions related to radioactive waste generated within the controlled area, from the waste generation phase to waste sorting, packaging, storage, recording, measurement, and transportation to the Bohunice waste processing facility or transfer to the Mochovce liquid radioactive waste treatment facility. The article also addresses conditions for release from the controlled area to the environment for radioactive waste which can be exempt from the institutional administrative control system or released to the environment on the basis of a valid permission issued by the relevant regulatory authority

  11. Process and device for decontamination of the waste gas of the fuel circuit of a fusion reactor from tritium and/or deuterium in waste gas containing them in chemically bound form

    International Nuclear Information System (INIS)

    Penzhorn, R.D.; Glugla, M.

    1987-01-01

    The invention concerns a process and a device for the decontamination of the wate gases of the fuel circuit of a fusion reactor from tritum and/or deuterium in waste gas containing them in chemically bound form, in which the waste gas is taken over an oxidation catalyst and then over a hot metal bed, tritium and/or deuterium is released from its compounds, separated from the waste gas and is returned to the fuel circuit. The process is intended to prevent losses of tritum and/or deuterium by permeation and the high loading of the hot metal getter materials, as occurs in the previously known corresponding process, and to avoid the formation of nitrogen oxides. This is achieved by: a) The catalytic oxidation reaction being carried out at a temperature of 200 0 C to 300 0 C. b) The gas mixture then being brought into contact with a hot metal bed at 200 0 C to 300 0 C to remove the remaining O 2 and for the selective conversion of the proportion of water into the hydrogen isotope. c) The gas mixture being brought into contact with a diaphragm made of palladium or a palladium-silver alloy at 400 0 C to 450 0 C to decompose the ammonia, all the released hydrogen isotope being passed through the diaphragm, separated from the remaining waste gas flow and removed. (orig.) [de

  12. The Research and Application of Sustainable Long-release Carbon Material with Agricultural Waste

    Science.gov (United States)

    Wen, Z.

    2017-12-01

    (1) The element analysis shown that ten kinds of agricultural wastes containing a certain amount of C, N, H elements, the highest content of C element, and t value ranges from 36.02% 36.02%, and the variation of C, N, H elements content in difference materials was not significant. The TOC concentration of sugar cane was up to 38.66 mg·g-1, and quality ratio was 39‰, significantly lower than C elements content. The released TOC quality of the rest materials were 2.36 2.36 mg·g-1, and the order from high to low were the soybean straw, rice straw, corn straw, rice husk, poplar branches, wheat straw, reeds, corn cob and wood chips respectively. The long-term leaching experiment of selected Optimized agricultural waste showed that the TOC content in leaching solution rise rapidly to peak value and was stable afterwards, with the concentration of 4.59 19.46 mg·g-1. The TOC releasing amount order was same with the short-term leaching experiment. (2) The releasing of nitrate nitrogen in ten kinds of agricultural waste was low (corn straw was up to 0.12mg·g-1, and the rest were all below 0.04mg·g-1 without accumulation. Most of the ammonia nitrogen concentration in leachate was lower than 0.3mg·g-1. The kjeldahl nitrogen in the corn straw, soybean straw, rice straw, reed, rice husk, and sugar cane leachate (0.81 1.65mg·g-1) were higher than that of poplar branches, corn cob and wood chips (corn straw, rice husk and wheat straw leachate. Above all, it can be concluded that the sugar cane, corn straw, rice husk, wheat straw, corn cob, wood were ideal carbon source material in ten kinds of agricultural.

  13. Plasma Processing of Model Residential Solid Waste

    Science.gov (United States)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  14. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    International Nuclear Information System (INIS)

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford's Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste

  15. Radioactive liquid wastes processing device

    International Nuclear Information System (INIS)

    Sauda, Kenzo; Koshiba, Yukihiko; Yagi, Takuro; Yamazaki, Hideki.

    1985-01-01

    Purpose: To carry out optimum photooxidizing procession following after the fluctuation in the density of organic materials in radioactive liquid wastes to thereby realize automatic remote procession. Constitution: A reaction tank is equipped with an ultraviolet lamp and an ozone dispersing means for the oxidizing treatment of organic materials in liquid wastes under the irradiation of UV rays. There are also provided organic material density measuring devices to the inlet and outlet of the reaction tank, and a control device for controlling the UV lamp power adjusting depending on the measured density. The output of the UV lamp is most conveniently adjusted by changing the applied voltage. The liquid wastes in which the radioactivity dose is reduced to a predetermined level are returned to the reaction tank by the operation of a switching valve for reprocession. The amount of the liquid wastes at the inlet is controlled depending on the measured ozone density by the adjusting valve. In this way, the amount of organic materials to be subjected to photolysis can be kept within a certain limit. (Kamimura, M.)

  16. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  17. Technology Summary Advancing Tank Waste Retreival And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated since it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans and methods. WRPS and the DOE are therefore developing, testing, and deploying technologies to ensure that they can meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  18. Radioactive gas waste processing device

    International Nuclear Information System (INIS)

    Soma, Koichi.

    1996-01-01

    The present invention concerns a radioactive gas waste processing device which extracts exhaust gases from a turbine condensator in a BWR type reactor and releases them after decaying radioactivity thereof during temporary storage. The turbine condensator is connected with an extracting ejector, a preheater, a recombiner for converting hydrogen gas into steams, an off gas condensator for removing water content, a flow rate control valve, a dehumidifier, a hold up device for removing radiation contaminated materials, a vacuum pump for sucking radiation decayed-off gases, a circulation water tank for final purification and an exhaustion cylinder by way of connection pipelines in this order. An exhaust gas circulation pipeline is disposed to circulate exhaust gases from an exhaust gas exit pipeline of the recycling water tank to an exhaust gas exit pipeline of the exhaust gas condensator, and a pressure control valve is disposed to the exhaust gas circulation pipeline. This enable to perform a system test for the dehumidification device under a test condition approximate to the load of the dehumidification device under actual operation state, and stabilize both of system flow rate and pressure. (T.M.)

  19. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1993-03-01

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates

  20. Waste package materials selection process

    International Nuclear Information System (INIS)

    Roy, A.K.; Fish, R.L.; McCright, R.D.

    1994-01-01

    The office of Civilian Radioactive Waste Management (OCRWM) of the United States Department of Energy (USDOE) is evaluating a site at Yucca Mountain in Southern Nevada to determine its suitability as a mined geologic disposal system (MGDS) for the disposal of high-level nuclear waste (HLW). The B ampersand W Fuel Company (BWFC), as a part of the Management and Operating (M ampersand O) team in support of the Yucca Mountain Site Characterization Project (YMP), is responsible for designing and developing the waste package for this potential repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) is responsible for testing materials and developing models for the materials to be used in the waste package. This paper is aimed at presenting the selection process for materials needed in fabricating the different components of the waste package

  1. Processing of transuranic waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Gruber, L.M.; Mentrup, S.J.

    1986-01-01

    Transuranic wastes at the Savannah River Plant (SRP) have been retrievably stored on concrete pads since early 1972. This waste is stored primarily in 55-gallon drums and large carbon steel boxes. Higher activity drums are placed in concrete culverts. In support of a National Program to consolidate and permanently dispose of this waste, a major project is planned at SRP to retrieve and process this waste. This project, the TRU Waste Facility (TWF), will provide equipment and processes to retrieve TRU waste from 20-year retrievable storage and prepare it for permanent disposal at the Waste Isolation Pilot Plant (WIPP) geological repository in New Mexico. This project is an integral part of the SRP Long Range TRU Waste Management Program to reduce the amount of TRU waste stored at SRP. The TWF is designed to process 15,000 cubic feet of retrieved waste and 6200 cubic feet of newly generated waste each year of operation. This facility is designed to minimize direct personnel contact with the waste using state-of-the-art remotely operated equipment

  2. Electrochemical processing of low-level waste solutions

    International Nuclear Information System (INIS)

    Hobbs, D.T.; Ebra, M.A.

    1987-01-01

    The feasibility of treating low-level Savannah River Plant (SRP) waste solutions by an electrolytic process has been demonstrated. Although the economics of the process are marginal at the current densities investigated at the laboratory scale, there are a number of positive environmental benefits. These benefits include: (1) reduction in the levels of nitrate and nitrite in the waste, (2) further decontamination of 99 Tc and 106 Ru, and (3) reduction in the volume of waste

  3. Risk evaluations of transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Smith, T.H.; Keneshea, F.J.

    1980-01-01

    Approximately 75% of the defense low-level transuranic (TRU) waste stored in the United States and 25% of the buried TRU waste is located at the Idaho National Engineering Laboratory (INEL). Studies have been performed to identify and evaluate technical alternatives for the long-term management of this waste. (The alternatives range from leaving the waste in place as is to reviewing, processing, and shipping it to an offsite geological repository.) Among the evalations that have been performed were preliminary risk evaluations. The dose commitment and risk of hypothetical, near-term, accidental or uncontrolled releases of radionuclides have been evaluated for each alternative. The following potential causes of radionuclide release have been studied: process and handling accidents, shipping accidents, natural events (e.g., earthquakes), man-caused events (e.g., airplane crashes), and future intrusion by individuals or small populations after loss of societal control over the waste. The hypothetical releases have been evaluated, in terms of dose commitment and (if pertinent) probability and risk, for all operational steps making up each concept. The dominant scanerios in terms of near-term risk are (1) lava flow up through or over the waste, leading to airbone releases; (2) an explosion or a criticality accident in the waste-processing facility; and (3) a tornado strike or a fire during waste retrieval. The dominant long-term releases are (1) volcanic action; and (2) intrusion of people on the waste site.Although substantial dose commitments to individual members of the public were calculated for the lava flow and intrusion scenarios, no prompt health effects would be expected from the exposures. The effects would be in the form of a slightly increased likelihood of latent cancer induction

  4. Waste container weighing data processing to create reliable information of household waste generation.

    Science.gov (United States)

    Korhonen, Pirjo; Kaila, Juha

    2015-05-01

    Household mixed waste container weighing data was processed by knowledge discovery and data mining techniques to create reliable information of household waste generation. The final data set included 27,865 weight measurements covering the whole year 2013 and it was selected from a database of Helsinki Region Environmental Services Authority, Finland. The data set contains mixed household waste arising in 6m(3) containers and it was processed identifying missing values and inconsistently low and high values as errors. The share of missing values and errors in the data set was 0.6%. This provides evidence that the waste weighing data gives reliable information of mixed waste generation at collection point level. Characteristic of mixed household waste arising at the waste collection point level is a wide variation between pickups. The seasonal variation pattern as a result of collective similarities in behaviour of households was clearly detected by smoothed medians of waste weight time series. The evaluation of the collection time series against the defined distribution range of pickup weights on the waste collection point level shows that 65% of the pickups were from collection points with optimally dimensioned container capacity and the collection points with over- and under-dimensioned container capacities were noted in 9.5% and 3.4% of all pickups, respectively. Occasional extra waste in containers occurred in 21.2% of the pickups indicating the irregular behaviour of individual households. The results of this analysis show that processing waste weighing data using knowledge discovery and data mining techniques provides trustworthy information of household waste generation and its variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Compliance of the Vaalputs national radioactive waste disposal facility to a frequency-magnitude release criterion as required for licensing

    International Nuclear Information System (INIS)

    Adrian, H.W.W.; Gerber, H.H.; Kruger, J.; Weygand, J.

    1986-01-01

    Accidental releases of radioactivity from the Vaalputs nuclear waste repository have been quantified and release frequencies have been attached to a number of accident scenarios of human or natural origin. These have then been compared to a frequency-magnitude release criterion according to South African licensing requirements. It was shown that the criterion was applicable in three release bands. In two of these the criterion was met by some orders of magnitude. In the third band the permitted release frequency was a factor 55 below the limit in spite of pessimistic release assumptions

  6. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  7. Quantum-CEP trademark for mixed waste processing

    International Nuclear Information System (INIS)

    Nahass, P.; Sekula-Moise, P.A.; Chanenchuk, C.A.

    1994-01-01

    No commercially available technology exists to effectively treat the hundreds of thousands of tons of mixed waste stored and generated in the United States and worldwide. Catalytic Extraction Processing (CEP) is an innovative flexible recycling technology which has inherent advantages for processing mixed wastes in a wide variety of chemical and physical forms. CEP uses a molten metal bath to completely dissociate feeds and recombine them with selected reactants to form useful products. Dissolved carbon in the metal bath creates a reducing atmosphere, readily converting hydrocarbons to synthesis gas, metals to alloys in their reduced state, and inorganics to an engineered ceramic phase. Process conditions can be manipulated to strongly favor partitioning of select radionuclides to a nonleachable vitreous phase, ready for final form disposal. Molten Metal Technology has adapted its CEP technology for radioactive processing and has delivered Quantum-CEP trademark units to customers for demonstration of mixed waste processing leading to commercial scale installations for reducing both private and government inventories. Agreements have also been reached to build commercial CEP facilities to recycle hazardous and industrial wastes

  8. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  9. Processing and discarding method for contaminated concrete wastes

    International Nuclear Information System (INIS)

    Yamamoto, Kazuo; Konishi, Masao; Matsuda, Atsuo; Iwamoto, Yoshiaki; Yoshikane, Toru; Koie, Toshio; Nakajima, Yoshiro

    1998-01-01

    Contaminated concrete wastes are crashed into granular concrete wastes having a successive grain size distribution. They are filled in a contamination processing vessel and made hardenable in the presence of a water-hardenable material in the granular concrete wastes. When underground water intrudes into the contamination processing vessel filled with the granular concrete wastes upon long-term storage, the underground water reacts with the water-hardenable material to be used for the solidification effect. Accordingly, leaching of contaminated materials due to intrusion of underground water can be suppressed. Since the concrete wastes have a successive grain size distribution, coarse grains can be used as coarse aggregates, medium grains can be used as fine aggregates and fine grains can be used as a solidifying material. Accordingly, the amount of wastes after processing can be remarkably reduced, with no supply of a solidifying material from outside. (T.M.)

  10. Colloidal agglomerates in tank sludge: Impact on waste processing

    International Nuclear Information System (INIS)

    Bunker, B.C.; Martin, J.E.

    1998-01-01

    'Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control of agglomeration phenomena. Insoluble colloidal sludges in hazardous waste streams such as tank wastes can pose serious problems for waste processing, interfering with retrieval, transport, separation, and solidification procedures. Properties of sediment layers and sludge suspensions such as slurry viscosities, sedimentation rates, and final sediment densities can vary by orders of magnitude depending on the particle types present, the degree to which the particles agglomerate or stick to each other, and on a wide range of processing parameters such as solution shear rates, pH, salt content, and temperature. The objectives of this work are to: (1) understand the factors controlling the nature and extent of colloidal agglomeration under expected waste processing conditions; (2) determine how agglomeration phenomena influence physical properties relevant to waste processing including rheology, sedimentation, and filtration; and (3) develop strategies for optimizing processing conditions via control

  11. Modeling of release of radionuclides from an engineered disposal facility for shallow-land disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuzuru, H.; Suzuki, A.

    1989-01-01

    The computer code, ENBAR-1, for the simulation of radionuclide releases from an engineered disposal facility has been developed to evaluate the source term for subsequent migration of radionuclides in and through a natural barrier. The system considered here is that a waste package (waste form and container) is placed, together with backfill materials, into a concrete pit as a disposal unit for shallow-land disposal of low-level radioactive wastes. The code developed includes the following modules: water penetration into a concrete pit, corrosion of a drum as a container, leaching of radionuclides from a waste form, migration of radionuclides in backfill materials, release of radionuclides from the pit. The code has the advantage of its simplicity of operation and presentation while still allowing comprehensive evaluation of each element of an engineered disposal facility to be treated. The performance and source term of the facility might be readily estimated with a few key parameters to define the problem

  12. A reliability study on influence of the geosphere thickness over the activity release from a near surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Lais Alencar de, E-mail: laguiar@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Damaso, Vinicius Correa, E-mail: vcdamaso@gmail.com [Estado-Maior do Exercito (EME/EB), Brasilia, DF (Brazil)

    2013-07-01

    Infiltration of water into a waste disposal facility and into the waste region is the main factor inducing the release of radionuclides from a disposal facility. Since infiltrating water flow is dependent on the natural percolation at the site and the performance of engineered barriers, its prediction requires modelling of unsaturated water flow through intact or partially/completely failed components of engineered barriers and through the rock layer of the geosphere on which the repository is constructed. The engineered barriers include the cover systems, concrete vault, backfill, waste forms, and overpacks. This paper aims to carry out a performance study regarding a near surface repository in terms of reliability engineering. It is assumed that surface water infiltrates through the barriers reaching the matrix where radionuclides are contained, thus releasing them into the environment. The repository consists of a set of barriers which are considered saturated porous medium. As results, this paper presents the relation between the thickness of the geosphere layer and the radionuclide release rate in terms of activity. Such results represent a useful information for choosing the repository sites in order to keep the released activity in acceptable levels over time. (author)

  13. A reliability study on influence of the geosphere thickness over the activity release from a near surface radioactive waste repository

    International Nuclear Information System (INIS)

    Aguiar, Lais Alencar de; Damaso, Vinicius Correa

    2013-01-01

    Infiltration of water into a waste disposal facility and into the waste region is the main factor inducing the release of radionuclides from a disposal facility. Since infiltrating water flow is dependent on the natural percolation at the site and the performance of engineered barriers, its prediction requires modelling of unsaturated water flow through intact or partially/completely failed components of engineered barriers and through the rock layer of the geosphere on which the repository is constructed. The engineered barriers include the cover systems, concrete vault, backfill, waste forms, and overpacks. This paper aims to carry out a performance study regarding a near surface repository in terms of reliability engineering. It is assumed that surface water infiltrates through the barriers reaching the matrix where radionuclides are contained, thus releasing them into the environment. The repository consists of a set of barriers which are considered saturated porous medium. As results, this paper presents the relation between the thickness of the geosphere layer and the radionuclide release rate in terms of activity. Such results represent a useful information for choosing the repository sites in order to keep the released activity in acceptable levels over time. (author)

  14. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  15. Small-scale demonstration of high-level radioactive waste processing and solidification using actual SRP waste

    International Nuclear Information System (INIS)

    Okeson, J.K.; Galloway, R.M.; Wilhite, E.L.; Woolsey, G.B.; Ferguson, R.B.

    1980-01-01

    A small-scale demonstration of the high-level radioactive waste solidification process by vitrification in borosilicate glass is being conducted using 5-6 liter batches of actual waste. Equipment performance and processing characteristics of the various unit operations in the process are reported and, where appropriate, are compared to large-scale results obtained with synthetic waste

  16. The used epoxy matrix in immobilization sludge process of alpha emitter radioactive waste

    International Nuclear Information System (INIS)

    Walman, E.; Salimin, Z.; Johan, B.

    1998-01-01

    Immobilization of alpha emitter radioactive waste containing of ion complex of uranyl carbonate on uranium concentration ≤ 50 mg/l has been carried out using epoxy matrix. The first step of process is the coagulation of uranium with 1.3 mole/l of Ca(OH) 2 coagulant concentration on pH 8 to precipitate the calcium uranyl carbonate on uranium concentration ≤ g/l. The immobilization of calcium uranyl carbonate with epoxy matrix was done on variation of the ratio of resin epoxy and hardener of 1 : 1 (giving the maximum value of density and compressive strength), the increasing of precipitate loading capacity give the decreasing of compressive strength of embedded waste. The test of compressive strength and leaching was done for the embedded waste after its curing time using Paul Weber equipment and 7 days immersion of samples in normal water. On the precipitate loading capacity of 70%, the quality of embedded waste still conform to the standard quality value i.e. density 1.2 g/cm 3 , compressive strength 10 kN/cm 2 and there is not any release of radionuclide during leaching test (undetectable).. (author)

  17. Microbial processes in radioactive waste repository

    International Nuclear Information System (INIS)

    Gazso, L.; Farkas-Galgoczi, G.; Diosi, G.

    2002-01-01

    Microbial processes could potentially affect the performance of a radioactive waste disposal system and related factors that could have an influence on the mobility of radionuclides are outlined. Analytical methods, including sampling of water, rock and surface swabs from a potential disposal site, are described and the quantitative as well as qualitative experimental results obtained are given. Although the results contribute to an understanding of the impact of microbial processes on deep geological disposal of nuclear waste, there is not yet sufficient information for a model which will predict the consequences of these processes. (author)

  18. Radioactive waste processing device

    International Nuclear Information System (INIS)

    Inaguma, Masahiko; Takahara, Nobuaki; Hara, Satomi.

    1996-01-01

    In a processing device for filtering laundry liquid wastes and shower drains incorporated with radioactive materials, a fiber filtration device is disposed and an activated carbon filtration device is also disposed subsequent to the fiber filtration device. In addition, a centrifugal dewatering device is disposed for dewatering spent granular activated carbon in the activated carbon filtration device, and a minute filtering device is disposed for filtering the separated dewatering liquid. Filtrates filtered by the minute filtration device are recovered in a collecting tank. Namely, at first, suspended solid materials in laundry liquid wastes and shower drains are captured, and then, ingredients concerning COD are adsorbed in the activated carbon filtration device. The radioactive liquid wastes of spent granular activated carbon in the activated carbon filtration device are reduced by dewatering them by the centrifugal dewatering device, and then the granular activated carbon is subjected to an additional processing. Further, it is separated by filtration using the minute filtration device and removed as cakes. Since the filtrates are recovered to the collecting tank and filtered again, the water quality of the drains is not degraded. (N.H.)

  19. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    J.C. CUNNANE

    2004-08-31

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release.

  20. CSNF WASTE FORM DEGRADATION: SUMMARY ABSTRACTION

    International Nuclear Information System (INIS)

    CUNNANE, J.C.

    2004-01-01

    The purpose of this model report is to describe the development and validation of models that can be used to calculate the release of radionuclides from commercial spent nuclear fuel (CSNF) following a hypothetical breach of the waste package and fuel cladding in the repository. The purpose also includes describing the uncertainties associated with modeling the radionuclide release for the range of CSNF types, exposure conditions, and durations for which the radionuclide release models are to be applied. This document was developed in accordance with Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package (BSC 2004 [DIRS 169944]). This document considers radionuclides to be released from CSNF when they are available for mobilization by gas-phase mass transport, or by dissolution or colloid formation in water that may contact the fuel. Because other reports address limitations on the dissolved and colloidal radionuclide concentrations (BSC 2004 [DIRS 169944], Table 2-1), this report does not address processes that control the extent to which the radionuclides released from CSNF are mobilized and transported away from the fuel either in the gas phase or in the aqueous phase as dissolved and colloidal species. The scope is limited to consideration of degradation of the CSNF rods following an initial breach of the cladding. It considers features of CSNF that limit the availability of individual radionuclides for release into the gaseous or aqueous phases that may contact the fuel and the processes and events expected to degrade these CSNF features. In short, the purpose is to describe the characteristics of breached fuel rods and the degradation processes expected to influence radionuclide release

  1. Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA

    Science.gov (United States)

    Stillings, Lisa L.; Amacher, Michael C.

    2010-01-01

    Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0), Se is also an integral component of sulfide phases (pyrite, sphalerite and vaesite–pyritess) in the waste rock. It may also be present as adsorbed selenate and/or selenite, and FeSe2 and organo-selenides.Se release from the waste rock has been observed in field and laboratory experiments. Release rates calculated from waste rock dump and column leachate solutions describe the net, overall Se release from all of the possible sources of Se listed above. In field studies, Se concentration in seepage water (pH 7.4–7.8) from the Wooley Valley Unit 4 dump ranges from 3600 µg/L in May to 10 µg/L by Sept. Surface water flow, Q, from the seep also declines over the summer, from 2 L/s in May to 0.03 L/s in Sept. Se flux ([Se] ⁎ Q) reaches a steady-state of Laboratory experiments were performed with the waste shale in packed bed reactors; residence time varied from 0.09 to 400 h and outlet pH ∼ 7.5. Here, Se concentration increased with increasing residence time and release was modeled with a first order reaction with k = 2.19e−3 h− 1 (19.2 yr− 1).Rate constants reported here fall within an order of magnitude of reported rate constants for oxidation of Se(0) formed by bacterial precipitation. This similarity among rate constants from both field and laboratory studies combined with the direct observation of Se(0) in waste shales of the Phosphoria Formation suggests that oxidation of Se(0) may control steady-state Se concentration in water draining the Wooley Valley waste dump.

  2. Low-level waste shallow land disposal source term model: Data input guides

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Suen, C.J.

    1989-07-01

    This report provides an input guide for the computational models developed to predict the rate of radionuclide release from shallow land disposal of low-level waste. Release of contaminants depends on four processes: water flow, container degradation, waste from leaching, and contaminant transport. The computer code FEMWATER has been selected to predict the movement of water in an unsaturated porous media. The computer code BLT (Breach, Leach, and Transport), a modification of FEMWASTE, has been selected to predict the processes of container degradation (Breach), contaminant release from the waste form (Leach), and contaminant migration (Transport). In conjunction, these two codes have the capability to account for the effects of disposal geometry, unsaturated/water flow, container degradation, waste form leaching, and migration of contaminants releases within a single disposal trench. In addition to the input requirements, this report presents the fundamental equations and relationships used to model the four different processes previously discussed. Further, the appendices provide a representative sample of data required by the different models. 14 figs., 27 tabs

  3. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kurumada, Norimitsu; Shibata, Setsuo; Wakabayashi, Toshikatsu; Kuribayashi, Hiroshi.

    1984-01-01

    Purpose: To facilitate the procession of liquid wastes containing insoluble salts of boric acid and calcium in a process for solidifying under volume reduction of radioactive liquid wastes containing boron. Method: A soluble calcium compound (such as calcium hydroxide, calcium oxide and calcium nitrate) is added to liquid wastes whose pH value is adjusted neutral or alkaline such that the molar ratio of calcium to boron in the liquid wastes is at least 0.2. Then, they are agitated at a temperature between 40 - 70 0 C to form insoluble calcium salt containing boron. Thereafter, the liquid is maintained at a temperature less than the above-mentioned forming temperature to age the products and, thereafter, the liquid is evaporated to condensate into a liquid concentrate containing 30 - 80% by weight of solid components. The concentrated liquid is mixed with cement to solidify. (Ikeda, J.)

  4. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    International Nuclear Information System (INIS)

    Joglekar, R.D.; Feltcorn, E.M.; Ortiz, A.M.

    2003-01-01

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public

  5. Molten salt destruction process for mixed wastes

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.; Karlsen, C.E.

    1993-04-01

    We are developing an advanced two-stage process for the treatment of mixed wastes, which contain both hazardous and radioactive components. The wastes, together with an oxidant gas, such as air, are injected into a bed of molten salt comprising a mixture of sodium-, potassium-, and lithium-carbonates, with a melting point of about 580 degree C. The organic constituents of the mixed waste are destroyed through the combined effect of pyrolysis and oxidation. Heteroatoms. such as chlorine, in the mixed waste form stable salts, such as sodium chloride, and are retained in the melt. The radioactive actinides in the mixed waste are also retained in the melt because of the combined action of wetting and partial dissolution. The original process, consists of a one-stage unit, operated at 900--1000 degree C. The advanced two-stage process has two stages, one for pyrolysis and one for oxidation. The pyrolysis stage is designed to operate at 700 degree C. The oxidation stage can be operated at a higher temperature, if necessary

  6. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  7. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  8. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  9. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  10. The cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites: Whose jurisdiction?

    International Nuclear Information System (INIS)

    Hartnett, C.

    1994-01-01

    There exists an overlap between the Comprehensive Environmental Response, Compensation and Recovery Act (open-quotes CERCLAclose quotes) and the Atomic Energy Act (open-quotes AEAclose quotes) regarding the cleanup of releases of radioactive materials from commercial low-level radioactive waste sites. The Nuclear Regulatory Commission (open-quotes NRCclose quotes) and Agreement States have jurisdiction under the AEA, and the Environmental Protection Agency (open-quotes EPAclose quotes) has jurisdiction pursuant to CERCLA. This overlapping jurisdiction has the effect of imposing CERCLA liability on parties who have complied with AEA regulations. However, CERCLA was not intended to preempt existing legislation. This is evidenced by the federally permitted release exemption, which explicitly exempts releases from CERCLA liability pursuant to an AEA license. With little guidance as to the applicability of this exemption, it is uncertain whether CERCLA's liability is broad enough to supersede the Atomic Energy Act. It is the purpose of this paper to discuss the overlapping jurisdiction for the cleanup of releases of radioactive materials from commercial low-level radioactive waste disposal sites with particular emphasis on the cleanup at the Maxey Flats, West Valley and Sheffield sites

  11. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  12. Nitrogen and phosphorus release from organic wastes and suitability as bio-based fertilizers in a circular economy

    DEFF Research Database (Denmark)

    Case, Sean; Jensen, Lars Stoumann

    2018-01-01

    The drive to a more circular economy has created increasing interest in recycling organic wastes as bio-based fertilizers. This study screened 15 different manures, digestates, sludges, composts, industry by-products, and struvites. Nitrogen (N) and phosphorous (P) release was compared following...... of the material (r = −0.6). Composted, dried, or raw organic waste materials released less N (mean of 10.8 ± 0.5%, 45.3 ± 7.2%, and 47.4 ± 3.2% of total N added respectively) than digestates, industry-derived organic fertilizer products, and struvites (mean of 58.2 ± 2.8%, 77.7 ± 6.0%, and 100.0 ± 13.1% of total...

  13. INJECT and the modeling of waste recycling processes

    Energy Technology Data Exchange (ETDEWEB)

    Gracyalny, E.J.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Enhancements were performed to the computer model CORCON to allow for more general energy and transport processes, thus creating a general equilibrium, chemistry tool for a liquid pool with fluid injection. The summation of these model modifications are referred to as INJECT. It is believed that with these enhancements, INJECT becomes a useful tool to study waste management technologies and materials processing. A demonstration of such was performed with a simulation of pyrolysis and materials extraction of ion exchange resins produced by pressurized water reactors. A 5 kg pool consisting of iron, carbon and alumina was injected with CO{sub 2} and contaminated resin, commonly known as styrene. The injection rates varied from 0.2-1.0 {sub min}{sup L} for the CO{sub 2} and 0.5-1.5 {sub min}{sup g} for the resin. Simulation results indicated that the cesium and zinc contaminants were released as gases, cobalt would be in the metallic phase, cerium remained in the oxidic phase and manganese was found in both the oxidic and metallic phases.

  14. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  15. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns

  16. Identification of release scenarios for a repository of radioactive waste in a salt dome in the Netherlands

    International Nuclear Information System (INIS)

    Glasbergen, P.; Hamstra, J.

    1981-01-01

    A review is presented of the long-term scenarios used in the safety analysis which was carried out for the disposal of radioactive waste in salt domes in the Netherlands. The long-term analysis involved the following natural processes or events: climatological and sea-level changes, glacial erosion, diapirism, subsidence, faulting and dissolution. The model calculations which were carried out showed the dominant parameters: the rate of diapirism and the rate of subsurface dissolution of rock salt. During the operational period the intrusion of water in the repository was considered to be the most hazardous event. Because the layout of the disposal mine, the disposal geometry and the disposal mining procedures were still under consideration, the first approach of a release scenario was made on a generic basis. A generic scenario is presented for the events during the flooding of the repository. The transport ways of water through the repository and its surroundings are indicated. It is concluded that release scenario analysis for long-term periods and for the operational period provides essential information to optimize the overall disposal system in an iterative process

  17. The Plasco Process for energy from waste

    Energy Technology Data Exchange (ETDEWEB)

    Bryden, R.M. [Plasco Energy Group, Ottawa, ON (Canada)

    2006-07-01

    Plasco Energy Group (Plasco) has a patented process that provides a way of recycling products that are difficult or uneconomic for conventional recycle programs. This presentation included information on the Plasco PGP system that can process energy from waste. The specifications and benefits of the Plasco process were discussed, notably that no energy supplements such as coal or natural gas are required for the process. The amount of power consumed by households and in a Plasco plant were identified. The amounts of waste processed and converted by the Plasco plant were also provided along with sketches of Plasco's Ottawa demonstration facility and Plasco gasification converter. Last, the presentation addressed the cooperative solution involving several partners such as the city of Ottawa, province of Ontario and Plasco. The waste recycling opportunities for communities were also highlighted. 1 tab., figs.

  18. Current and potential uses of bioactive molecules from marine processing waste.

    Science.gov (United States)

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  19. Process evaluation for treatment of aluminium bearing declad waste

    International Nuclear Information System (INIS)

    Banerjee, D.; Rao, Manjula A.; Srinivas, C.; Wattal, P.K.

    2012-01-01

    Declad waste generated by the process of chemical decladding of Al-cladded uranium metal fuel is characterized by highly alkaline, high Al bearing intermediate level waste. It was found that the process developed and adopted in India for plant scale treatment of alkaline intermediate level waste (ILW) is unsuitable for treatment of declad waste. This is mainly due to its exotic characteristics, notably substantial amounts of aluminium in the declad waste. As part of development of treatment scheme for this waste, 137 Cs removal by RFPR has been demonstrated earlier and the present paper reports the results of further processing of the Cs-lean effluent. The waste simulated with respect to the major chemical constituents of stored Al-bearing alkaline ILW after 137 Cs and 90 Sr removal by ion exchange, is used in this study

  20. Toxic and hazardous waste disposal. Volume 1. Processes for stabilization/solidification

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1979-01-01

    Processes for the stabilization and/or solidification of toxic, hazardous, and radioactive wastes are reviewed. The types of wastes classified as hazardous are defined. The following processes for the solidification of hazardous wastes are described: lime-based techniques; thermoplastic techniques; organic polymer techniques; and encapsulation. The following processes for the solidification of high-level radioactive wastes are described: calcination; glassification; and ceramics. The solidification of low-level radioactive wastes with asphalt, cement, and polymeric materials is also discussed. Other topics covered include: the use of an extruder/evaporator to stabilize and solidify hazardous wastes; effect disposal of fine coal refuse and flue gas desulfurization slurries using Calcilox additive stabilization; the Terra-Tite Process; the Petrifix Process; the SFT Terra-Crete Process; Sealosafe Process; Chemfix Process; and options for disposal of sulfur oxide wastes

  1. Thermal processing system concepts and considerations for RWMC buried waste

    International Nuclear Information System (INIS)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided

  2. Thermal processing system concepts and considerations for RWMC buried waste

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  3. Counter-current acid leaching process for copper azole treated wood waste.

    Science.gov (United States)

    Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul

    2012-09-01

    This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.

  4. Low-level radioactive wastes: Their treatment, handling, disposal

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Conrad P [Robert A. Taft Sanitary Engineering Center, Radiological Health Research Activities, Cincinnati, OH(United States)

    1964-07-01

    The release of low level wastes may result in some radiation exposure to man and his surroundings. This book describes techniques of handling, treatment, and disposal of low-level wastes aimed at keeping radiation exposure to a practicable minimum. In this context, wastes are considered low level if they are released into the environment without subsequent control. This book is concerned with practices relating only to continuous operations and not to accidental releases of radioactive materials. It is written by use for those interested in low level waste disposal problems and particularly for the health physicist concerned with these problems in the field. It should be helpful also to water and sewage works personnel concerned with the efficiency of water and sewage treatment processes for the removal of radioactive materials; the personnel engaged in design, construction, licensing, and operation of treatment facilities; and to student of nuclear technology. After an introduction the following areas are discussed: sources, quantities and composition of radioactive wastes; collection, sampling and measurement; direct discharge to the water, soil and air environment; air cleaning; removal of radioactivity by water-treatment processes and biological processes; treatment on site by chemical precipitation , ion exchange and absorption, electrodialysis, solvent extraction and other methods; treatment on site including evaporation and storage; handling and treatment of solid wastes; public health implications. Appendices include a glossary; standards for protection against radiation; federal radiation council radiation protection guidance for federal agencies; site selection criteria for nuclear energy facilities.

  5. Mechanisms of iodine release from iodoapatite in aqueous solution

    Science.gov (United States)

    Zhang, Z.; Wang, J.

    2017-12-01

    Immobilization of iodine-129 with waste forms in geological setting is challenging due to its extremely long half-life and high volatility in the environment. To evaluate the long-term performance of waste form, it is imperative to determine the release mechanism of iodine hosted in the waste form materials. This study investigated the iodine released from apatite structured waste form Pb9.85 (VO4)6 I1.7 to understand how diffusion and dissolution control the durability of apatite waste form. A standard semi-dynamic leach test was adopted in this study. Samples were exposed in fresh leachant periodically and the leachant was replaced after each interval. Each experiment was carried out in cap-sealed Teflon vessels under constant temperature (e.g. 90 °C). ICP-MS analysis on the reacted leachates shows that Pb and V were released constantly and congruently with the stoichiometric ratio of Pb/V. However, iodine release is incongruent and time dependent. The iodine release rate starts significantly higher than the corresponding stoichiometric value and gradually decreases, approaching the stoichiometric value. Therefore, a dual-mode mechanism is proposed to account for the iodine release from apatite, which is dominated by short-term diffusion and long-term dissolution processes. Additional tests show that the element release rates depend on a number of test parameters, including sample surface to solution volume ratio (m-1), interval (day), temperature (°C), and solution pH. This study provides a quantitative characterization of iodine release mechanism. The activation energy of iodine leaching 21±1.6 kJ/mol was obtained by varying the test temperature. At the test conditions of to neutral pH and 90 °C, the long-term iodine release rate 3.3 mg/(m2 • day) is projected by normalizing sample surface area to solution volume ratio (S/V) to 1.0 m-1 and interval to 1 day. These findings demonstrate i) the feasibility of our approach to quantify the release mechanism

  6. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future

    International Nuclear Information System (INIS)

    Man, Ming; Naidu, Ravi; Wong, Ming H.

    2013-01-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. - Highlights: ► We recommended to ban uses of deca-BDE in addition to penta- and octa-BDEs. ► We suggested to replace PVC in electronic products with non-chlorinated polymers. ► Spend less time on debating responsibilities and definition of e-waste and recycling. ► Proposed to work more on eliminating sources and potentials of toxic substances

  7. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  8. Discarding processing method for radioactive waste

    International Nuclear Information System (INIS)

    Komura, Shiro; Kato, Hiroaki; Hatakeyama, Takao; Oura, Masato.

    1992-01-01

    At first, in a discrimination step, extremely low level radioactive wastes are discriminated to metals and concretes and further, the metal wastes are discriminated to those having hollow portions and those not having hollow portions, and the concrete wastes are discriminated to those having block-like shape and those having other shapes respectively. Next, in a processing step, the metal wastes having hollow portions are applied with cutting, devoluming or packing treatment and block-like concrete wastes are applied with surface solidification treatment, and concrete wastes having other shapes are applied with crushing treatment respectively. Then, the extremely low level radioactive wastes contained in a container used exclusively for transportation are taken out, in a movable burying facility with diffusion inhibiter kept at a negative pressure as required, in a field for burying operation, and buried in a state that they are isolated from the outside. Accordingly, they can be buried safely and efficiently. (T.M.)

  9. Predicting Mineral N Release during Decomposition of Organic Wastes in Soil by Use of the SOILNNO Model

    International Nuclear Information System (INIS)

    Sogn, T.A.; Haugen, L.E.

    2011-01-01

    In order to predict the mineral N release associated with the use of organic waste as fertilizer in agricultural plant production, the adequacy of the SOILN N O model has been evaluated. The original thought was that the model calibrated to data from simple incubation experiments could predict the mineral N release from organic waste products used as N fertilizer on agricultural land. First, the model was calibrated to mineral N data achieved in a laboratory experiment where different organic wastes were added to soil and incubated at 15 degree C for 8 weeks. Secondly, the calibrated model was tested by use of NO 3 -leaching data from soil columns with barley growing in 4 different soil types, added organic waste and exposed to natural climatic conditions during three growing seasons. The SOILN N O model reproduced relatively well the NO 3 -leaching from some of the soils included in the outdoor experiment, but failed to reproduce others. Use of the calibrated model often induced underestimation of the observed NO 3 -leaching. To achieve a satisfactory simulation of the NO 3 -leaching, recalibration of the model had to be carried out. Thus, SOILN N O calibrated to data from simple incubation experiments in the laboratory could not directly be used as a tool to predict the N-leaching following organic waste application in more natural agronomic plant production systems. The results emphasised the need for site- and system-specific data for model calibration before using a model for predictive purposes related to fertilizer N value of organic wastes applied to agricultural land.

  10. Hospital waste processing. Tratamiento de residuos hospitalarios

    Energy Technology Data Exchange (ETDEWEB)

    Rocafiguera, X de

    1994-01-01

    Generally speaking, Hospitalary wastes are apparently similar to any kind of urban waste. Nevertheless it must be taken into account that the origin of Hospitalary wastes is different as they can be contaminated with microbes, virus, bacteria, bacillus...Because of this they should be treated and stored with special techniques in all the process. (Author)

  11. Waste Minimization Study on Pyrochemical Reprocessing Processes

    International Nuclear Information System (INIS)

    Boussier, H.; Conocar, O.; Lacquement, J.

    2006-01-01

    Ideally a new pyro-process should not generate more waste, and should be at least as safe and cost effective as the hydrometallurgical processes currently implemented at industrial scale. This paper describes the thought process, the methodology and some results obtained by process integration studies to devise potential pyro-processes and to assess their capability of achieving this challenging objective. As example the assessment of a process based on salt/metal reductive extraction, designed for the reprocessing of Generation IV carbide spent fuels, is developed. Salt/metal reductive extraction uses the capability of some metals, aluminum in this case, to selectively reduce actinide fluorides previously dissolved in a fluoride salt bath. The reduced actinides enter the metal phase from which they are subsequently recovered; the fission products remain in the salt phase. In fact, the process is not so simple, as it requires upstream and downstream subsidiary steps. All these process steps generate secondary waste flows representing sources of actinide leakage and/or FP discharge. In aqueous processes the main solvent (nitric acid solution) has a low boiling point and evaporate easily or can be removed by distillation, thereby leaving limited flow containing the dissolved substance behind to be incorporated in a confinement matrix. From the point of view of waste generation, one main handicap of molten salt processes, is that the saline phase (fluoride in our case) used as solvent is of same nature than the solutes (radionuclides fluorides) and has a quite high boiling point. So it is not so easy, than it is with aqueous solutions, to separate solvent and solutes in order to confine only radioactive material and limit the final waste flows. Starting from the initial block diagram devised two years ago, the paper shows how process integration studies were able to propose process fittings which lead to a reduction of the waste variety and flows leading at an 'ideal

  12. Thermal process for immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Kupfer, M.J.; Schulz, W.W.

    1971-01-01

    The Thermalt process involves an exothermic, thermite-like reaction of aluminum metal with basalt, quartz sand, and radioactive waste. The resulting melt when solidified is a silicious stone-like material that is similar in chemical composition to basalt. The process utilizes low cost ingredients: basalt rock, which occurs naturally in the Hanford region, inexpensive aluminum metal such as aluminum scrap which need not be pure, and the waste which is predominately sodium nitrate salt. The waste itself along with the basalt provides the oxygen necessary for the reaction. The exothermic reaction provides the necessary heat to melt the ingredients thus eliminating the need for external heat sources such as furnaces which are necessary with most other melt methods. The final product is highly stable and essentially nonleachable; leach rates appear as low or lower than other melt products described in the literature. Initial studies indicate the process is effective for both low-level and high-level wastes. (U.S.)

  13. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    Vende, L.

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase ( 14 CO 2 , HT...) or in solution ( 14 CO 3 2- , HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  14. A proposal for a test method for assessment of hazard property HP 12 ("Release of an acute toxic gas") in hazardous waste classification - Experience from 49 waste.

    Science.gov (United States)

    Hennebert, Pierre; Samaali, Ismahen; Molina, Pauline

    2016-12-01

    A stepwise method for assessment of the HP 12 is proposed and tested with 49 waste samples. The hazard property HP 12 is defined as "Release of an acute toxic gas": waste which releases acute toxic gases (Acute Tox. 1, 2 or 3) in contact with water or an acid. When a waste contains a substance assigned to one of the following supplemental hazards EUH029, EUH031 and EUH032, it shall be classified as hazardous by HP 12 according to test methods or guidelines (EC, 2014a, 2014b). When the substances with the cited hazard statement codes react with water or an acid, they can release HCl, Cl 2 , HF, HCN, PH 3 , H 2 S, SO 2 (and two other gases very unlikely to be emitted, hydrazoic acid HN 3 and selenium oxide SeO 2 - a solid with low vapor pressure). Hence, a method is proposed:For a set of 49 waste, water addition did not produce gas. Nearly all the solid waste produced a gas in contact with hydrochloric acid in 5 min in an automated calcimeter with a volume >0.1L of gas per kg of waste. Since a plateau of pressure is reached only for half of the samples in 5 min, 6 h trial with calorimetric bombs or glass flasks were done and confirmed the results. Identification of the gases by portable probes showed that most of the tested samples emit mainly CO 2 . Toxic gases are emitted by four waste: metallic dust from the aluminum industry (CO), two air pollution control residue of industrial waste incinerator (H 2 S) and a halogenated solvent (organic volatile(s) compound(s)). HF has not been measured in these trials started before the present definition of HP 12. According to the definition of HP 12, only the H 2 S emission of substances with hazard statement EUH031 is accounted for. In view of the calcium content of the two air pollution control residue, the presence of calcium sulphide (EUH031) can be assumed. These two waste are therefore classified potentially hazardous for HP 12, from a total of 49 waste. They are also classified as hazardous for other properties (HP 7

  15. SILVER RECYCLING FROM PHOTO-PROCESSING WASTE USING ELECTRODEPOSITION METHOD

    Directory of Open Access Journals (Sweden)

    Mochammad Feri Hadiyanto

    2010-06-01

    Full Text Available Silver electrodeposition of photo-processing waste and without addition of KCN 1,0 M has been studied for silver recycling. Photo procesing waste containing silver in form of [Ag(S2O32]3- was electrolysed at constant potential and faradic efficiency was determined at various of electrolysis times. Electrolysis of 100 mL photo processing waste without addition of KCN 1,0 M was carried out at constant potential 1.20 Volt, while electrolysis 100 mL photo procesing waste with addition of 10 mL KCN 1,0 M electrolysis was done at 1.30 Volt.The results showed that for silver electrodeposition from photo processing waste with addition of KCN 1,0 M was more favorable with faradic efficiency respectively were 93,16; 87,02; 74,74 and 78,35% for 30; 60; 90 and 120 minutes of electrolysis.   Keywords: Silver extraction, electrodeposition, photo-processing waste

  16. Hanford's self-assessment of the solid waste forecast process

    International Nuclear Information System (INIS)

    Hauth, J.; Skumanich, M.; Morgan, J.

    1996-01-01

    In fiscal year (FY) 1995 the forecast process used at Hanford to project future solid waste volumes was evaluated. Data on current and future solid waste generation are used by Hanford site planners to determine near-term and long-term planning needs. Generators who plan to ship their waste to Hanford's Solid Waste Program for treatment, storage, and disposal provide volume information on the types of waste that could be potentially generated, waste characteristics, and container types. Generators also provide limited radionuclide data and supporting assumptions. A self-assessment of the forecast process identified many effective working elements, including a well-established and systematic process for data collection, analysis and reporting; sufficient resources to obtain the necessary information; and dedicated support and analytic staff. Several areas for improvement were identified, including the need to improve confidence in the forecast data, integrate forecast data with other site-level and national data calls, enhance the electronic data collection system, and streamline the forecast process

  17. Return transport of processed radioactive waste from France and Great Britain

    International Nuclear Information System (INIS)

    2010-11-01

    The report on returning transport and interim storage of processed radioactive waste from France and Great Britain in vitrified block containers covers the following issues: German contracts with radioactive waste processing plants concerning the return of processed waste to Germany; optimized radioactive waste processing using vitrified block containers; the transport casks as basic safety with respect to radiation protection; interim storage of processes high-level waste by GNS in Gorleben; licensing, inspections and declarations; quality assurance and control.

  18. Air modelling as an alternative to sampling for low-level radioactive airborne releases

    International Nuclear Information System (INIS)

    Morgenstern, M.Y.; Hueske, K.

    1995-01-01

    This paper describes our efforts to assess the effect of airborne releases at one DOE laboratory using air modelling based on historical data. Among the facilities affected by these developments is Los Alamos National Laboratory (LANL) in New Mexico. RCRA, as amended by the Hazardous and Solid Waste Amendments (HSWA) in 1984, requires all facilities which involve the treatment, storage, and disposal of hazardous waste obtain a RCRA/HSWA waste facility permit. LANL complied with CEARP by initiating a process of identifying potential release sites associated with LANL operations prior to filing a RCRA/HSWA permit application. In the process of preparing the RCRA/HSWA waste facility permit application to the U.S. Environmental Protection Agency (EPA), a total of 603 Solid Waste Management Units (SWMUs) were identified as part of the requirements of the HSWA Module VIH permit requirements. The HSWA Module VIII permit requires LANL to determine whether there have been any releases of hazardous waste or hazardous constituents from SWMUs at the facility dating from the 1940's by performing a RCRA Facility Investigation to address known or suspected releases from specified SWMUs to affected media (i.e. soil, groundwater, surface water, and air). Among the most troublesome of the potential releases sites are those associated with airborne radioactive releases. In order to assess health risks associated with radioactive contaminants in a manner consistent with exposure standards currently in place, the DOE and LANL have established Screening Action Levels (SALs) for radioactive soil contamination. The SALs for each radionuclide in soil are derived from calculations based on a residential scenario in which individuals are exposed to contaminated soil via inhalation and ingestion as well as external exposure to gamma emitters in the soil. The applicable SALs are shown

  19. Waste processing system for nuclear power plant

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Tezuka, Fuminobu; Maesawa, Yukishige; Irie, Hiromitsu; Daibu, Etsuji.

    1996-01-01

    The present invention concerns a waste processing system of a nuclear power plant, which can reduce the volume of a large amount of plastics without burying them. Among burnable wastes and plastic wastes to be discarded in the power plant located on the sea side, the plastic wastes are heated and converted into oils, and the burnable wastes are burnt using the oils as a fuel. The system is based on the finding that the presence of Na 2 O, K 2 O contained in the wastes catalytically improves the efficiency of thermal decomposition in a heating atmosphere, in the method of heating plastics and converting them into oils. (T.M.)

  20. Technology Summary Advancing Tank Waste Retrieval And Processing

    International Nuclear Information System (INIS)

    Sams, T.L.; Mendoza, R.E.

    2010-01-01

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them. This technology overview provides a high-level summary of technologies being investigated, developed, and deployed by WRPS to advance Hanford Site tank waste retrieval and processing. Transformational technologies are needed to complete Hanford tank waste retrieval and treatment by 12/31/2047. Hanford's underground waste storage tanks hold approximately 57 million gallons of radiochemical waste from nuclear defense production - more tank waste than any other site in the United States. In addition, the waste is uniquely complicated because it contains constituents from at least six major radiochemical processes and several lesser processes. It is intermixed and complexed more than any other waste collection known to exist in the world. The multi-faceted nature of Hanford's tank waste means that legally binding agreements in the Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement) and between the Department of Energy (DOE) and its contractors may not be met using current vitrification schedules, plans, and methods. WRPS and the DOE are developing, testing, and deploying technologies to meet the necessary commitments and complete the DOE's River Protection Project (RPP) mission within environmentally acceptable requirements. Technology solutions are outlined, along with processes and priorities for selecting and developing them. DOE's Office of Environmental Management (EM) identifies the environmental management technology needs and the activities necessary to address them. The U.S. Congress then funds these activities through EM or the DOE field offices. Finally, an array of entities that include DOE site prime contractors and

  1. Development of chemical decontamination for low level radioactive wastes

    International Nuclear Information System (INIS)

    Ichikawa, Seigo; Omata, Kazuo; Obinata, Hiroshi; Nakajima, Yoshihiko; Kanamori, Osamu.

    1995-01-01

    During routine intermittent inspection and maintenance at nuclear power plants, a considerable quantity of low level radioactive waste is generated requiring release from the nuclear site or treating additionally. To decontaminate this waste for safe release from the nuclear power plant, the first step could be washing the waste in Methylene chloride, CH 2 Cl 2 , to remove most of the paint coating. However, CH 2 Cl 2 washing does not completely remove the paint coating from the waste, which in the next step is shot blasted with plastic bead media to loose and remove the remaining paint coating. Following in succession, in the third step, the waste is washed in a chelate solution, after which most waste is decontaminated and suitable to be released for recycling. The residual chelate solution may be decomposed into nontoxic carbon dioxide and water by an electrolysis process and then safely discharged into the environment. (author)

  2. Chemical mode control in nuclear power plant decommissioning during operation of technologies in individual radioactive waste processing plants

    International Nuclear Information System (INIS)

    Horvath, J.; Dugovic, L.

    1999-01-01

    Sewage treatment of nuclear power plant decommissioning is performed by system of sewage concentration in evaporator with formation of condensed rest, it means radioactive waste concentrate and breeding steam. During sewage treatment plant operation department of chemical mode performs chemical and radiochemical analysis of sewage set for treatment, chemical and radiochemical analysis of breeding steam condensate which is after final cleaning on ionization filter and fulfilling the limiting conditions released to environment; chemical and radiochemical analysis of heating steam condensate which is also after fulfilling the limiting conditions released to environment. Condensed radioactive concentrate is stored in stainless tanks and later converted into easy transportable and chemically stable matrix from the long term storage point of view in republic storage Mochovce. The article also refer to bituminous plant, vitrification plant, swimming pool decontamination plant of long term storage and operation of waste processing plant Bohunice

  3. Basic design of alpha aqueous waste treatment process in NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Mineo, Hideaki; Matsumura, Tatsuro; Nishizawa, Ichio; Mitsui, Takeshi; Ueki, Hiroyuki; Wada, Atsushi; Sakai, Ichita; Takeshita, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Kenji

    1996-11-01

    This paper described the basic design of Alpha Aqueous Waste Treatment Process in NUCEF. Since various experiments using the TRU (transuranium) elements are carried out in NUCEF, wastes containing TRU elements arise. The liquid wastes in NUCEF are categorized into three types. Decontamination and volume reduction of the liquid waste mainly of recovery water from acid recovery process which has lowest radioactive concentration is the most important task, because the arising rate of the waste is large. The major function of the Alpha Aqueous Waste Treatment Process is to decontaminate the radioactive concentration below the level which is allowed to discharge into sea. Prior the process design of this facility, the followings are evaluated:property and arising rate of the liquid waste, room space to install and licensing condition. Considering varieties of liquid wastes and their large volume, the very high decontamination factor was proposed by a process of multiple evaporation supported with filtration and adsorption in the head end part and reverse osmosis in the distillate part. (author)

  4. The TEES process cleans waste and produces energy

    International Nuclear Information System (INIS)

    Elliott, D.C.; Silva, L.J.

    1995-02-01

    A gasification system is under development that can be used with most types of wet organic wastes. The system operates at 350 degrees C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet waste can be fed as a solution or slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. The system has utility both for direct conversion of high-moisture biomass to fuel gas or as a wastewater cleanup system for wet organic wastes including unconverted biomass from bioconversion processes. By the use of this system >99% conversions of organic waste to medium-Btu fuel gas can be achieved

  5. Technical and economic evaluation of processes being developed for solid waste processing

    International Nuclear Information System (INIS)

    Tittlova, E.; Hladky, E.

    1985-01-01

    An analysis was made of the economic benefits of two developed processes for reducing the volume of solid radioactive wastes prior to disposal, namely compacting and incineration. Input data were obtained from the actual production of solid radioactive wastes at the V-1 nuclear power plant, from compacting on site, and the operation of an experimental incineration plant. The two WWER-440 units of the V-1 nuclear power plant generate ca 200 m 3 of wastes per annum (not including air filters and wood) of which 69% is assumed to be incinerable and 27% compactable. The rest is disposed of without prior volume reduction. Disposal costs are assessed at 7,500 Czechoslovak crowns per 1 m 3 of wastes, representing a total of 1.5 million crowns per annum. As compared with the disposal of unprocessed wastes the compacting of 95% of wastes generated, reduces the costs of transport and disposal to 25%. With both compacting and incineration, the costs represent 16 to 25% of the initial sum, depending on the ratio of the two processes. The high capital costs of building the incineration plant will thus be offset by the reduction in costs of the radioactive waste disposal. From the technical point of view the analysis did not make a detailed comparison of the properties of the compacted incinerable wastes and ash with regard to stability and leachability of radionuclides. It did also not take into account operating costs and the technological challenge of the two waste volume redution processes. (Z.M.)

  6. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  7. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program

  8. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  9. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  10. Waste Form Features, Events, and Processes

    International Nuclear Information System (INIS)

    R. Schreiner

    2004-01-01

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  11. Waste Form Features, Events, and Processes

    Energy Technology Data Exchange (ETDEWEB)

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  12. Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data

    International Nuclear Information System (INIS)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2005-01-01

    CH2M HILL is producing risk/performance assessments to support the closure of single-shell tanks at the DOE's Hanford Site. As part of this effort, staff at PNNL were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. This report provides the information developed by PNNL

  13. Process and technological wastes compaction through a fluidized bed incineration process

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1993-01-01

    The various fluidized bed systems (dense or circulating) are reviewed and the advantages of the circulation fluidized bed are highlighted (excellent combustion performance, clean combustion, large operating range, poly-functionality with regards to waste type, ...). Applications to contaminated graphite (with the problem of ash management) and to plant process wastes (ion exchangers, technological wastes, aqueous effluents); study of the neutralization and chlorine emission

  14. Organic waste processing using molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  15. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    International Nuclear Information System (INIS)

    Mersereau, M.; McIntyre, K.

    2006-01-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  16. Low-level waste (LLW) reclamation program for the Point Lepreau Solid Radioactive Waste Management Facility (SRWMF)

    Energy Technology Data Exchange (ETDEWEB)

    Mersereau, M.; McIntyre, K. [Point Lepreau Generating Station, Lepreau, New Brunswick (Canada)]. E-mail: MMersereau@nbpower.com; KMcIntyre@nbpower.com

    2006-07-01

    Low level radioactive waste retrieved from intermediate storage vaults at Point Lepreau Generating Station has been sorted to remove the non-radioactive portion. The program began with trials to validate procedures and equipment, followed by a production run that is on-going. Waste boxes are opened and sorted at a ventilated sorting table. The sorted waste is directed to the station's free-release ('Likely Clean') waste stream or to the radioactive waste stream, depending on activity measurements. The radioactive waste content of the sorted materials has been reduced by 96% (by mass) using this process. (author)

  17. Method for processing radioactive wastes containing sodium

    International Nuclear Information System (INIS)

    Kubota, Takeshi.

    1975-01-01

    Object: To bake, solidify and process even radioactive wastes highly containing sodium. Structure: H and or NH 4 zeolites of more than 90g per chemical equivalent of sodium present in the waste is added to and left in radioactive wastes containing sodium, after which they are fed to a baker such as rotary cylindrical baker, spray baker and the like to bake and solidify the wastes at 350 to 800 0 C. Thereby, it is possible to bake and solidify even radioactive wastes highly containing sodium, which has been impossible to do so previously. (Kamimura, M.)

  18. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  19. A Cask Processing Enclosure for the TRU Waste Processing Center - 13408

    Energy Technology Data Exchange (ETDEWEB)

    Newman, John T.; Mendez, Nicholas [IP Systems, Inc., 2685 Industrial Lane, Broomfield, Colorado 80020 (United States)

    2013-07-01

    This paper will discuss the key elements considered in the design, construction, and use of an enclosure system built for the TRU Waste Processing Center (TWPC). The TWPC system is used for the repackaging and volume reduction of items contaminated with radioactive material, hazardous waste and mixed waste. The modular structural steel frame and stainless steel skin was designed for rapid field erection by the use of interchangeable self-framing panel sections to allow assembly of a sectioned containment building and for ease of field mobility. The structure was installed on a concrete floor inside of an outer containment building. The major sections included an Outer Cask Airlock, Inner Cask Airlock, Cask Process Area, and Personnel Airlocks. Casks in overpacks containing transuranic waste are brought in via an inter-site transporter. The overpack lid is removed and the cask/overpack is transferred into the Outer Cask Airlock. A contamination cover is installed on the overpack body and the Outer Cask Airlock is closed. The cask/overpack is transferred into the Inner Cask Airlock on a cask bogie and the Inner Cask Airlock is closed. The cask lid is removed and the cask is transferred into the Cask Process Area where it is placed on a cask tilting station. Once the Cask Processing Area is closed, the cask tilt station is activated and wastes are removed, size reduced, then sorted and re-packaged into drums and standard waste boxes through bag ports. The modular system was designed and built as a 'Fast Track' project at IP Systems in Broomfield Colorado and then installed and is currently in use at the DOE TWPC located near Oak Ridge, Tennessee. (authors)

  20. Treatment of tributyl phosphate wastes by extraction cum pyrolysis process

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Ramaswamy, M.; Kartha, P.K.S.; Kutty, P.V.E.; Ramanujam, A.

    1989-01-01

    For the treatment of spent tri n-butyl phospate (TBP) wastes from Purex process, a method involving extraction of TBP with phosphoric acid followed by pyrolysis of TBP - phosphoric acid phase was investigated. The process was examined with respect to simulated waste, process solvent wastes and aged organic waste samples. These studies seem to offer a simple treatment method for the separation of bulk of diluent from spent solvent wastes. The diluent phase needs further purification for reuse in reprocessing plant; otherwise it can be incinerated. (author). 18 refs., 3 tabs., 6 figs

  1. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  2. Electromagnetic mixed waste processing system for asbestos decontamination

    International Nuclear Information System (INIS)

    Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

    1994-01-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste

  3. Complex processing of rubber waste through energy recovery

    Directory of Open Access Journals (Sweden)

    Roman Smelík

    2015-12-01

    Full Text Available This article deals with the applied energy recovery solutions for complex processing of rubber waste for energy recovery. It deals specifically with the solution that could maximize possible use of all rubber waste and does not create no additional waste that disposal would be expensive and dangerous for the environment. The project is economically viable and energy self-sufficient. The outputs of the process could replace natural gas and crude oil products. The other part of the process is also the separation of metals, which can be returned to the metallurgical secondary production.

  4. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  5. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2006-01-01

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program

  6. Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim

    2017-12-15

    The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Persistent toxic substances released from uncontrolled e-waste recycling and actions for the future

    Energy Technology Data Exchange (ETDEWEB)

    Man, Ming [Croucher Institute for Environmental Sciences, Hong Kong Baptist University (Hong Kong); Naidu, Ravi [Cooperative Research Centre for Contamination Assessment and Remediation of Environments (CRC CARE), University of South Australia (Australia); Wong, Ming H., E-mail: mhwong@hkbu.edu.hk [Croucher Institute for Environmental Sciences, Hong Kong Baptist University (Hong Kong)

    2013-10-01

    The Basel Convention on the Control of Transboundary Movement of Hazardous Wastes and their Disposal was adopted on March 22, 1989 and enforced on May 5, 1992. Since then, the USA, one of the world's largest e-waste producers, has not ratified this Convention or the Basel Ban Amendment. Communities are still debating the legal loophole, which permits the export of whole products to other countries provided it is not for recycling. In January 2011, China's WEEE Directive was implemented, providing stricter control over e-waste imports to China, including Hong Kong, while emphasizing that e-waste recycling is the producers' responsibility. China is expected to supersede the USA as the principal e-waste producer, by 2020, according to the UNEP. Uncontrolled e-waste recycling activities generate and release heavy metals and POPs into the environment, which may be re-distributed, bioaccumulated and biomagnified, with potentially adverse human health effects. Greater efforts and scientific approaches are needed for future e-product designs of minimal toxic metal and compound use, reaping greater benefits than debating the definition and handling responsibilities of e-waste recycling. - Highlights: ► We recommended to ban uses of deca-BDE in addition to penta- and octa-BDEs. ► We suggested to replace PVC in electronic products with non-chlorinated polymers. ► Spend less time on debating responsibilities and definition of e-waste and recycling. ► Proposed to work more on eliminating sources and potentials of toxic substances.

  8. Evaluation of the impact and inter-generation risk transfers related to the release and disposal of radioactive waste from the nuclear fuel cycle: a methodological exercise

    International Nuclear Information System (INIS)

    Croueail, P.; Schneider, T.; Sugier, A.

    2000-01-01

    , which have never been implemented or envisaged as such in reality: i.e. underground disposal of C-14, Kr-85 and I-129 or, total release, either in the sea or in the atmosphere, of Cs-137, Pu-239 and Np-237. As the alternative waste management options analysed are of a one-off nature, it leads to some extremely high exposures such as for the integral release of Cs-137. But between total disposal and total release, many options are available, which have to be evaluated in an ALARA perspective. Based on these evaluations, the indicators characterising the radiological impacts are discussed taking into account the time and space dimensions. Individual and collective doses associated with the present and future generations are presented for the different options and their usefulness for evaluating these options is considered. In this perspective, this kind of time and space presentation provides useful information for helping decision-making processes and facilitating the communication with non-specialists. (author)

  9. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  10. Proposed methods for treating high-level pyrochemical process wastes

    International Nuclear Information System (INIS)

    Johnson, T.R.; Miller, W.E.; Steunenberg, R.K.

    1985-01-01

    This survey illustrates the large variety and number of possible techniques available for treating pyrochemical wastes; there are undoubtedly other process types and many variations. The choice of a suitable process is complicated by the uncertainty as to what will be an acceptable waste form in the future for both TRU and non-TRU wastes

  11. Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste

    International Nuclear Information System (INIS)

    Delay, Markus; Lager, Tanja; Schulz, Horst D.; Frimmel, Fritz H.

    2007-01-01

    The changes in waste management policy caused by the massive generation of waste materials (e.g. construction and demolition waste material, municipal waste incineration products) has led to an increase in the reuse and recycling of waste materials. For environmental risk assessment, test procedures are necessary to examine waste materials before they can be reused. In this article, results of column and lysimeter leaching tests having been applied to inorganic compounds in a reference demolition waste material are presented. The results show a good agreement between the leaching behaviour determined with the lysimeter unit and the column units used in the laboratory. In view of less time and system requirements compared to lysimeter systems, laboratory column units can be considered as a practicable instrument to assess the time-dependent release of inorganic compounds under conditions similar to those encountered in a natural environment. The high concentrations of elements in the seepage water at the initial stage of elution are reflected by the laboratory column leaching tests. In particular, authorities or laboratories might benefit and have an easy-to-use, but nevertheless reliable, method to serve as a basis for decision-making

  12. In Situ Modular Waste Retrieval and Treatment System

    International Nuclear Information System (INIS)

    Walker, M.S.

    1996-10-01

    As part of the Comprehensive Environmental Response, Compensation, and Liability Act process from remediation of Waste Area Grouping (WAG 6) at ORNL, a public meeting was held for the Proposed Plan. It was recognized that contaminant releases from WAG 6 posed minimal potential risk to the public and the environment. The US DOE in conjunction with the US EPA and the TDEC agreed to defer remedial action at WAG 6 until higher risk release sites were first remediated. This report presents the results of a conceptual design for an In Situ Modular Retrieval and Treatment System able to excavate, shred, and process buried waste on site, with minimum disturbance and distribution of dust and debris. the system would bring appropriate levels of treatment to the waste then encapsulate and leave it in place. The system would be applicable to areas in which waste was disposed in long trenches

  13. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  14. From mineral processing to waste treatment: an open-mind process simulator

    International Nuclear Information System (INIS)

    Guillaneau, J.C.; Brochot, S.; Durance, M.V.; Villeneuve, J.; Fourniguet, G.; Vedrine, H.; Sandvik, K.; Reuter, M.

    1999-01-01

    More than two hundred companies are using the USIM PAC process simulator within the mineral industry world-wide. Either for design or plant adaptation, simulation is increasingly supporting the process Engineer in his activities. From the mineral field, new domains have been concerned by this model-based approach as new models are developed and new applications involving solid waste appears. Examples are presented in bio-processing, steel-making flue dust treatment for zinc valorisation, soil decontamination or urban waste valorisation (sorting, composting and incineration). (author)

  15. Process Waste Assessment for the Plotting and Digitizing Support Laboratory

    International Nuclear Information System (INIS)

    Phillips, N.M.

    1994-04-01

    This Process Waste Assessment was conducted to evaluate the Plotting and Digitizing Support Laboratory, located in Building 913, Room 157. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility

  16. Characteristics of Polybrominated Diphenyl Ethers Released from Thermal Treatment and Open Burning of E-Waste.

    Science.gov (United States)

    Li, Ting-Yu; Zhou, Jun-Feng; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Zeng, Eddy Y

    2018-04-17

    Primitive processing of e-waste potentially releases abundant organic contaminants to the environment, but the magnitudes and mechanisms remain to be adequately addressed. We conducted thermal treatment and open burning of typical e-wastes, that is, plastics and printed circuit boards. Emission factors of the sum of 39 polybrominated diphenyl ethers (∑ 39 PBDE) were 817-1.60 × 10 5 ng g -1 in thermal treatment and nondetected-9.14 × 10 4 ng g -1 , in open burning. Airborne particles (87%) were the main carriers of PBDEs, followed by residual ashes (13%) and gaseous constituents (0.3%), in thermal treatment, while they were 30%, 43% and 27% in open burning. The output-input mass ratios of ∑ 39 PBDE were 0.12-3.76 in thermal treatment and 0-0.16 in open burning. All PBDEs were largely affiliated with fine particles, with geometric mean diameters at 0.61-0.83 μm in thermal degradation and 0.57-1.16 μm in open burning from plastic casings, and 0.44-0.56 and nondetected- 0.55 μm, from printed circuit boards. Evaporation and reabsorption may be the main emission mechanisms for lightly brominated BDEs, but heavily brominated BDEs tend to affiliate with particles from heating or combustion. The different size distributions of particulate PBDEs in emission sources and adjacent air implicated a noteworthy redisposition process during atmospheric dispersal.

  17. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  18. Final voluntary release assessment/corrective action report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-12

    The US Department of Energy, Carlsbad Area Office (DOE-CAO) has completed a voluntary release assessment sampling program at selected Solid Waste Management Units (SWMUs) at the Waste Isolation Pilot Plant (WIPP). This Voluntary Release Assessment/Corrective Action (RA/CA) report has been prepared for final submittal to the Environmental protection Agency (EPA) Region 6, Hazardous Waste Management Division and the New Mexico Environment Department (NMED) Hazardous and Radioactive Materials Bureau to describe the results of voluntary release assessment sampling and proposed corrective actions at the SWMU sites. The Voluntary RA/CA Program is intended to be the first phase in implementing the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) and corrective action process at the WIPP. Data generated as part of this sampling program are intended to update the RCRA Facility Assessment (RFA) for the WIPP (Assessment of Solid Waste Management Units at the Waste Isolation Pilot Plant), NMED/DOE/AIP 94/1. This Final Voluntary RA/CA Report documents the results of release assessment sampling at 11 SWMUs identified in the RFA. With this submittal, DOE formally requests a No Further Action determination for these SWMUs. Additionally, this report provides information to support DOE`s request for No Further Action at the Brinderson and Construction landfill SWMUs, and to support DOE`s request for approval of proposed corrective actions at three other SWMUs (the Badger Unit Drill Pad, the Cotton Baby Drill Pad, and the DOE-1 Drill Pad). This information is provided to document the results of the Voluntary RA/CA activities submitted to the EPA and NMED in August 1995.

  19. Waste minimization/pollution prevention at R ampersand D facilities: Implementing the SNL/NM Process Waste Assessment Program

    International Nuclear Information System (INIS)

    Kjeldgaard, E.A.; Stermer, D.L.; Saloio, J.H. Jr.; Lorton, G.A.

    1993-01-01

    The Sandia National Laboratories, New Mexico (SNL/NM) Process Waste Assessment (PWA) program began formally on November 2, 1992. This program represents the first laboratory-wide attempt to explicitly identify and characterize SNL/NM's waste generating processes for waste minimization purposes. This paper describes the major elements of the SNL/NM PWA program, the underlying philosophy for designing a PWA program at a highly diverse laboratory setting such as SNL/NM, and the experiences and insights gained from five months of implementing this living program. Specifically, the SNL/NM PWA program consists of four major, interrelated phases: (1) Process Definition, (2) Process Characterization, (3) Waste Minimization Opportunity Assessment, and (4) Project Evaluation, Selection, Implementation, and Tracking. This phased approach was developed to Provide a flexible, yet appropriate, level of detail to the multitude of different ''processes'' at SNL/NM. Using a staff infrastructure of approximately 60 Waste Minimization Network Representatives (MinNet Reps) and consulting support, the SNL/NM PWA program has become the linchpin of even more progressive and proactive environmental, safety, and health (ES ampersand H) initiatives such as: (1) cradle-to-grove material/waste tracking, (2) centralized ES ampersand H reporting, and (3) detailed baselining and tracking for measuring multi-media waste reduction goals. Specific examples from the SNL/NM PWA program are provided, including the results from Process Definition, Process Characterization, and Waste Minimization Opportunity Assessments performed for a typical SNL/NM process

  20. Low Activity Waste Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  1. Design of a Pu-238 waste incineration process

    International Nuclear Information System (INIS)

    Charlesworth, D.L.; McCampbell, R.B.

    1985-01-01

    Combustible 238 Pu waste is generated as a result of normal operation and decommissioning activity at the Savannah River Plant and is being retrievably stored at the Plant. As part of the long-term plan to process the stored waste and current waste in preparation for future disposition, a 238 Pu incinceration process is being cold-tested at SRL. The incineration process consists of a continuous-feed preparation system, a two-stage, electrically fired incinerator, and a filtration off-gas system. Process equipment has been designed, fabricated, and installed for nonradioactive testing and cold run-in. Design features to maximize the ability to remotely maintain the equipment were incorporated into the process. Interlock, alarm, and control functions are provided by a programmable controller. Cold testing is scheduled to be completed in 1986

  2. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  3. Using bentonite for NPP liquid waste treatment

    International Nuclear Information System (INIS)

    Bui Dang Hanh

    2015-01-01

    During operation, nuclear power plants (NPPs) release a large quantity of water waste containing radionuclides required treatment for protection of the radiation workers and the environment. This paper introduces processes used to treat water waste from Paks NPP in Hungary and it also presents the results of a study on the use of Vietnamese bentonite to remove radioactive Caesium from a simulated water waste containing Cs. (author)

  4. LABCORE post release 1.0 development system project management plan

    International Nuclear Information System (INIS)

    Rich, H.S.

    1994-01-01

    The LABCORE post release 1.0 development system project management plan (SPMP) is the primary planning document governing the development of specific enhancements to the LABCORE project. The mission of the Westinghouse Hanford Company (WHC) laboratories is changing from supporting the 200 Area chemical processing plants for process control, waste management, and effluent monitoring to supporting environmental restoration and regulatory compliance commitments. The LABCORE program was implemented as the key element for meeting the commitments by upgrading the laboratories through the implementation of an Automated Data Processing improvement program in January 1994. Scope for LABCORE release 1.0 consisted of hardware and software implementation required to support a minimum number of analyses (Single-Shell Tank [SST] analysis at 222S Laboratory and Performance Evaluation samples at the Waste Sampling Characterization Facility laboratory) using manual entry of data, and to support routine laboratory functions, common to all laboratories. LABCORE post release 1.0 enhancements will expand the functionality presented to the laboratory. Post release 1.0 enhancements will also address the integration of a database for Analytical Services Program Integration, budgeting, and scheduling offices into LABCORE

  5. Processing ix spent resin waste for C-14 isotope recovery

    International Nuclear Information System (INIS)

    Chang, F. H.; Woodall, K. B.; Sood, S. K.; Vogt, H. K.; Krochmainek, L. S.

    1991-01-01

    A process developed at Ontario Hydro for recovering carbon-14 (C-14) from spent ion exchange resin wastes is described. Carbon-14 is an undesirable by-product of CANDU 1 nuclear reactor operation. It has an extremely long (5730 years) half-life and can cause dosage to inhabitants by contact, inhalation, or through the food cycle via photosynthesis. Release of carbon-14 to the environment must be minimized. Presently, all the C-14 produced in the Moderator and Primary Heat Transport (PHT) systems of the reactor is effectively removed by the respective ion exchange columns, and the spent ion exchange resins are stored in suitably engineered concrete structures. Because of the large volumes of spent resin waste generated each year this method of disposal by long term storage tends to be uneconomical; and may also be unsatisfactory considering the long half-life of the C-14. However, purified C-14 is a valuable commercial product for medical, pharmaceutical, agricultural, and organic chemistry research. Currently, commercial C-14 is made artificially in research reactors by irradiating aluminum nitride targets for 4.5 years. If the C-14 containing resin waste can be used to reduce this unnecessary production of C-14, the total global build-up of this radioactive chemical can be reduced. There is much incentive in removing the C-14 from the resin waste to reduce the volume of C-14 waste, and also in purifying the recovered C-14 to supply the commercial market. The process developed by Ontario Hydro consists of three main steps: C-14 removal from spent resins, enrichment of recovered C-14, and preparation of final product. Components of the process have been successfully tested at Ontario Hydro's Research Division, but the integration of the process is yet to be demonstrated. A pilot scale plant capable of processing 4 m 3 of spent resins annually is being planned for demonstrating the technology. The measured C-14 activity levels on the spent resins ranged from 47

  6. Vermicomposting of vegetable waste: A biophysicochemical process ...

    African Journals Online (AJOL)

    some cities, the organic waste (market, municipal, household) are dumped indiscriminately or littered on the streets causing environmental deterioration. Biological processes such as composting followed by vermicomposting to convert vegetables waste (as valuable nutrient source) in agriculturally useful organic fertilizer ...

  7. Method of processing low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsunaga, Ichiro; Sugai, Hiroshi.

    1984-01-01

    Purpose: To effectively reduce the radioactivity density of low-level radioactive liquid wastes discharged from enriched uranium conversion processing steps or the likes. Method: Hydrazin is added to low-level radioactive liquid wastes, which are in contact with iron hydroxide-cation exchange resins prepared by processing strongly acidic-cation exchange resins with ferric chloride and aqueous ammonia to form hydrorizates of ferric ions in the resin. Hydrazine added herein may be any of hydrazine hydrate, hydrazine hydrochloride and hydranine sulfate. The preferred addition amount is more than 100 mg per one liter of the liquid wastes. If it is less than 100 mg, the reduction rate for the radioactivety density (procession liquid density/original liquid density) is decreased. This method enables to effectively reduce the radioactivity density of the low-level radioactive liquid wastes containing a trace amount of radioactive nucleides. (Yoshihara, H.)

  8. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Katada, Katsuo.

    1986-01-01

    Purpose: To improve the management for radioactive wastes containers thereby decrease the amount of stored matters by arranging the radioactive wastes containers in the order of their radioactivity levels. Method: The radiation doses of radioactive wastes containers arranged in the storing area before volume-reducing treatment are previously measured by a dosemeter. Then, a classifying machine is actuated to hoist the containers in the order to their radiation levels and the containers are sent out passing through conveyor, surface contamination gage, weight measuring device and switcher to a volume-reducing processing machine. The volume-reduced products are packed each by several units to the storing containers. Thus, the storing containers after stored for a certain period of time can be transferred in an assembled state. (Kawakami, Y.)

  9. Process for the biological purification of waste water

    DEFF Research Database (Denmark)

    1992-01-01

    Process for the biological purification of waste water by the activated sludge method, the waste water being mixed with recirculated sludge and being subjected to an anaerobic treatment, before the waste water thus treated is alternately subjected to anoxic and aerobic treatments and the waste...... water thus treated is led into a clarification zone for settling sludge, which sludge is recirculated in order to be mixed with the crude waste water. As a result, a simultaneous reduction of the content both of nitrogen and phosphorus of the waste water is achieved....

  10. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  11. Use of depleted uranium silicate glass to minimize release of radionuclides from spent nuclear fuel waste packages

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1996-01-01

    A Depleted Uranium Silicate Container Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill the void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (a) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (b) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  12. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  13. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  14. Process innovations in the management of radioactive wastes

    International Nuclear Information System (INIS)

    Theyyunni, T.K.

    1995-01-01

    Innovative processes and techniques were investigated for their possible application in the management of low, intermediate and high level radioactive wastes. High decontamination, high volume reduction, process simplicity and operational safety are some of the objectives of these investigation. Based on the favourable results, it is hoped that many of these process innovations can be introduced in the waste management schemes with beneficial results. (author)

  15. Water Mock-up for the Sodium Waste Treatment Process

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Kim, Jong Man; Kim, Byung Ho; Lee, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    It is important to safely treat the waste sodium which was produced from the sodium cooled fast reactors and the sodium facilities. About 1.3 tons of sodium waste has accumulated at KAERI from the sodium experiments which have been carried out since 1990. Also, large scaled sodium experiments are scheduled to verify the design of the sodium cooled fast reactor. As a treatment method for the waste sodium produced at the sodium facility, an investigation of the reaction procedure of the waste sodium with the sodium hydroxide aqueous has been developed. The NOAH process was developed in France for the treatment of waste sodium produced from sodium facilities and reactors. In the NOAH process, a small amount of sodium waste is continuously injected into the upper space which is formed on the free surface of the aqueous and slowly reacted with sodium hydroxide aqueous. Since the density of the sodium is lower than that of the aqueous, the injected sodium waste sometimes accumulates above the free surface of the sodium hydroxide aqueous, and its reaction rate becomes slow or suddenly increases. In the improved process, the sodium was injected into a reaction vessel filled with a sodium hydroxide aqueous through an atomizing nozzle installed on a lower level than that of the aqueous to maintain the reaction uniformly. Fig.1 shows the sodium waste process which was proposed in KAERI. The aqueous is composed of 60% sodium hydroxide, and its temperature is about 60 .deg. C. The process is an exothermic reaction. The hydrogen gas is generated, and the concentration of the sodium hydroxide increases in this process. It needs several systems for the process, i.e. a waste sodium injection, a cooling of the aqueous, hydrogen ventilation, and neutralization with nitric acid. The atomizing nozzle was designed to inject the sodium with the nitrogen gas which supplies a heat to the sodium to prevent its solidification and to uniformly mix the sodium with the aqueous. There are

  16. Biological processes influencing contaminant release from sediments

    International Nuclear Information System (INIS)

    Reible, D.D.

    1996-01-01

    The influence of biological processes, including bioturbation, on the mobility of contaminants in freshwater sediments is described. Effective mass coefficients are estimated for tubificid oligochaetes as a function of worm behavior and biomass density. The mass transfer coefficients were observed to be inversely proportional to water oxygen content and proportional to the square root of biomass density. The sediment reworking and contaminant release are contrasted with those of freshwater amphipods. The implications of these and other biological processes for contaminant release and i n-situ remediation of soils and sediments are summarized. 4 figs., 1 tab

  17. Radioactive liquid waste processing system

    International Nuclear Information System (INIS)

    Noda, Tetsuya; Kuramitsu, Kiminori; Ishii, Tomoharu.

    1997-01-01

    The present invention provides a system for processing radioactive liquid wastes containing laundry liquid wastes, shower drains or radioactive liquid wastes containing chemical oxygen demand (COD) ingredients and oil content generated from a nuclear power plant. Namely, a collecting tank collects radioactive liquid wastes. A filtering device is connected to the exit of the collective tank. A sump tank is connected to the exit of the filtering device. A powdery active carbon supplying device is connected to the collecting tank. A chemical fluid tank is connected to the collecting tank and the filtering device by way of chemical fluid injection lines. Backwarding pipelines connect a filtered water flowing exit of the filtering device and the collecting tank. The chemical solution is stored in the chemical solution tank. Then, radioactive materials in radioactive liquid wastes generated from a nuclear power plant are removed by the filtering device. The water quality standard specified in environmental influence reports can be satisfied. In the filtering device, when the filtering flow rate is reduced, the chemical fluid is supplied from the chemical fluid tank to the filtering device to recover the filtering flow rate. (I.S.)

  18. Plasma processing of compacted drums of simulated radioactive waste

    International Nuclear Information System (INIS)

    Geimer, R.; Batdorf, J.; Larsen, M.M.

    1991-01-01

    The charter of the Department of Energy (DOE) Office of Technology Development (OTD) is to identify and develop technologies that have potential application in the treatment of DOE wastes. One particular waste of concern within the DOE is transuranic (TRU) waste, which is generated and stored at several DOE sites. High temperature DC arc generated plasma technology is an emerging treatment method for TRU waste, and its use has the potential to provide many benefits in the management of TRU. This paper begins by discussing the need for development of a treatment process for TRU waste, and the potential benefits that a plasma waste treatment system can provide in treating TRU waste. This is followed by a discussion of the results of a project conducted for the DOE to demonstrate the effectiveness of a plasma process for treating supercompacted TRU waste. 1 fig., 1 tab

  19. Properties of radioactive wastes and waste containers

    International Nuclear Information System (INIS)

    Arora, H.S.; Dayal, R.

    1984-01-01

    Major tasks in this NRC-sponsored program include: (1) an evaluation of the acceptability of low-level solidified wastes with respect to minimizing radionuclide releases after burial; and (2) an assessment of the influence of pertinent environmental stresses on the performance of high-integrity radwaste container (HIC) materials. The waste form performance task involves studies on small-scale laboratory specimens to predict and extrapolate: (1) leachability for extended time periods; (2) leach behavior of full-size forms; (3) performance of waste forms under realistic leaching conditions; and (4) leachability of solidified reactor wastes. The results show that leach data derived from testing of small-scale specimens can be extrapolated to estimate leachability of a full-scale specimen and that radionuclide release data derived from testing of simulants can be employed to predict the release behavior of reactor wastes. Leaching under partially saturated conditions exhibits lower releases of radionuclides than those observed under the conventional IAEA-type or ANS 16.1 leach tests. The HIC assessment task includes the characterization of mechanical properties of Marlex CL-100, a candidate radwaste high density polyethylene material. Tensile strength and creep rupture tests have been carried out to determine the influence of specific waste constituents as well as gamma irradiation on material performance. Emphasis in ongoing tests is being placed on studying creep rupture while the specimens are in contact with a variety of chemicals including radiolytic by-products of irradiated resin wastes. 12 references 6 figures, 2 tables

  20. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  1. Separation processes for high-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Sutherland, D.G.

    1992-11-01

    During World War II, production of nuclear materials in the United States for national defense, high-level waste (HLW) was generated as a byproduct. Since that time, further quantities of HLW radionuclides have been generated by continued nuclear materials production, research, and the commercial nuclear power program. In this paper HLW is defined as the highly radioactive material resulting from the processing of spent nuclear fuel. The HLW is the liquid waste generated during the recovery of uranium and plutonium in a fuel processing plant that generally contains more than 99% of the nonvolatile fission products produced during reactor operation. Since this paper deals with waste separation processes, spent reactor fuel elements that have not been dissolved and further processed are excluded

  2. Summary of four release consequence analyses for hypothetical nuclear waste repositories in salt and granite

    International Nuclear Information System (INIS)

    Cole, C.R.; Bond, F.W.

    1980-12-01

    Release consequence methology developed under the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) program has now been applied to four hypothetical repository sites. This paper summarizes the results of these four studies in order to demonstrate that the far-field methodology developed under the AEGIS program offers a practical approach to the post-closure safety assessment of nuclear waste repositories sited in deep continental geologic formations. The four studies are briefly described and compared according to the following general categories: physical description of the repository (size, inventory, emplacement depth); geologic and hydrologic description of the site and the conceptual hydrologic model for the site; description of release scenario; hydrologic model implementation and results; engineered barriers and leach rate modeling; transport model implementation and results; and dose model implementation and results. These studies indicate the following: numerical modeling is a practical approach to post-closure safety assessment analysis for nuclear waste repositories; near-field modeling capability needs improvement to permit assessment of the consequences of human intrusion and pumping well scenarios; engineered barrier systems can be useful in mitigating consequences for postulated release scenarios that short-circuit the geohydrologic system; geohydrologic systems separating a repository from the natural biosphere discharge sites act to mitigate the consequences of postulated breaches in containment; and engineered barriers of types other than the containment or absorptive type may be useful

  3. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  4. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  5. Radioactive alpha wastes processing at the nuclear center of Mol

    International Nuclear Information System (INIS)

    Voorde, N. van de

    1978-01-01

    This process is based on calcination at very high temperature (1500 0 C) of wastes, mainly burnable, with selected non-burnable wastes, such as glass, metal, sludge, ion echanger, etc. Incineration wastes melt at this temperature and an insoluble granitic mass is obtained. This operation is performed in a special oven equipped with a gas purification device installed in a place like alpha bearing wastes treatment working spot where the staff can work in an air-supplied suit. Two incineration units are planned, the first one with a capacity of 150 kg/hr in view to treat a large amount of wastes with a low plutonium content (max. 10 mg/l), the second smaller with a capacity of 10 kg/hr, specially designed to process wastes with a high Pu content. This project for the first unit, at least is now tested with beta gamma wastes processing. Alpha bearing wastes pocessing will start at the end of 1978, we are now building the second unit [fr

  6. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  7. Characterization and process technology capabilities for Hanford tank waste disposal

    International Nuclear Information System (INIS)

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory's (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory's extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory's radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations

  8. A process for treating radioactive water-reactive wastes

    International Nuclear Information System (INIS)

    Dziewinski, J.; Lussiez, G.; Munger, D.

    1995-01-01

    Los Alamos National Laboratory and other locations in the complex of experimental and production facilities operated by the United States Department of Energy (DOE) have generated an appreciable quantity of hazardous and radioactive wastes. The Resource Conservation and Recovery Act (RCRA) enacted by the United States Congress in 1976 and subsequently amended in 1984, 1986, and 1988 requires that every hazardous waste must be rendered nonhazardous before disposal. Many of the wastes generated by the DOE complex are both hazardous and radioactive. These wastes, called mixed wastes, require applying appropriate regulations for radioactive waste disposal and the regulations under RCRA. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category

  9. Strategy for research on radioactive waste processing and conditioning in France

    International Nuclear Information System (INIS)

    Cavedon, J.M.; Tallec, M.

    2001-01-01

    Research on radioactive medium level waste processing and conditioning aims at offering processing routes for waste forms and materials of potential value that are not yet provided easy handling by existing industrial processes. These studies are mandatory under the Dec 31, 1991 law and are coordinated by CEA. The strategy relies on the completion and rationalization of the existing processing routes, within acceptable technical and economic limits. Waste processing techniques aim at reducing the volume and the chemical diversity of medium activity waste, and are based on incineration-vitrification. Conditioning techniques call for high performance matrices and standardized containers, the latter keeping an ability to contain bulk waste. (author)

  10. Modeling corrosion and constituent release from a metal waste form

    International Nuclear Information System (INIS)

    Bauer, T. H.; Fink, J. K.; Abraham, D. P.; Johnson, I.; Johnson, S. G.; Wigeland, R. A.

    2000-01-01

    Several ANL ongoing experimental programs have measured metal waste form (MWF) corrosion and constituent release. Analysis of this data has initiated development of a consistent and quantitative phenomenology of uniform aqueous MWF corrosion. The effort so far has produced a preliminary fission product and actinide release model based on measured corrosion rates and calibrated by immersion test data for a 90 C J-13 and concentrated J-13 solution environment over 1-2 year exposure times. Ongoing immersion tests of irradiated and unirradiated MWF samples using more aggressive test conditions and improved tracking of actinides will serve to further validate, modify, and expand the application base of the preliminary model-including effects of other corrosion mechanisms. Sample examination using both mechanical and spectrographic techniques will better define both the nature and durability of the protective barrier layer. It is particularly important to assess whether the observations made with J-13 solution at 900 C persist under more aggressive conditions. For example, all the multiplicative factors in Table 1 implicitly assume the presence of protective barriers. Under sufficiently aggressive test conditions, such protective barriers may very well be altered or even eliminated

  11. Department of Energy's process waste assessment graded approach methodology

    International Nuclear Information System (INIS)

    Pemberton, S.E.

    1994-03-01

    As the initial phase of the formal waste minimization program, the Department of Energy requires assessments of all its waste-generating operations. These assessments, called process waste assessments (PWAs), are a tool which helps achieve the pollution prevention goals. The DOE complex is comprised of numerous sites located in many different states. The facilities as a whole represent a tremendous diversity of technologies, processes, and activities. Due to this diversity, there are also a wide variety and number of waste streams generated. Many of these waste streams are small, intermittent, and not of consistent composition. The PWA graded approach methodology addresses these complexities and recognizes that processes vary in the quantity of pollution they generate, as well as in the perceived risk and associated hazards. Therefore, the graded approach was developed to provide a cost-effective and flexible methodology which allows individual sites to prioritize their local concerns and align their efforts with the resources allocated. This presentation will describe a project sponsored by the DOE Office of Environmental Restoration and Waste Management, Waste Minimization Division, which developed a graded approach methodology for use throughout the DOE. This methodology was initiated in FY93 through a combined effort of the following DOE/Defense Program sites: Kansas City Plant, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories. This presentation will describe the process waste assessment tool, benefits achieved through the completion of PWAs, DOE's graded approach methodology, and an update on the project's current status

  12. The Hybrid Treatment Process for mixed radioactive and hazardous waste treatment

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-06-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process. It also uses techniques from several additional technologies. Mixed wastes are being generated by both the US Department of Energy (DOE) and by commercial sources. The wastes are those that contain both a hazardous waste regulated under the US Environmental Protection Agency's (EPA) Resource, Conservation, and Recovery Act (RCRA) regulations and a radioactive waste with source, special nuclear, or byproduct materials. The dual regulation of the wastes increases the complexity of the treatment, handling, and storage of the waste. The DOE is the largest holder and generator of mixed waste. Its mixed wastes are classified as either high-level, transuranic (TRU), or low-level waste (LLW). High-level mixed wastes will be treated in vitrification plants. Transuranic wastes may be disposed of without treatment by obtaining a no-migration variance from the EPA. Lowlevel wastes, however, will require treatment, but treatment systems with sufficient capacity are not yet available to DOE. Various facilities are being proposed for the treatment of low-level waste. The concept described in this paper represents one option for establishing that treatment capacity

  13. Vitrification chemistry and nuclear waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The vitrification of nuclear waste offers unique challenges to the glass technologist. The waste contains 50 or 60 elements, and often varies widely in composition. Most of these elements are seldom encountered in processing commercial glasses. The melter to vitrify the waste must be able to tolerate these variations in composition, while producing a durable glass. This glass must be produced without releasing hazardous radionuclides to the environment during any step of the vitrification process. Construction of a facility to convert the nearly 30 million gallons of high-level nuclear waste at the Savannah River Plant into borosilicate glass began in late 1983. In developing the vitrification process, the Savannah River Laboratory has had to overcome all of these challenges to the glass technologist. Advances in understanding in three areas have been crucial to our success: oxidation-reduction phenomena during glass melting; the reaction between glass and natural wastes; and the causes of foaming during glass melting

  14. Radionuclide release rates from spent fuel for performance assessment modeling

    International Nuclear Information System (INIS)

    Curtis, D.B.

    1994-01-01

    In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments

  15. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  16. Effects of biodrying process on municipal solid waste properties.

    Science.gov (United States)

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Integrated treatment process of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Shibuya, M.; Suzuki, K.; Fujimura, Y.; Nakashima, T.; Moriya, Y.

    1993-01-01

    An integrated waste treatment system was studied based on technologies developed for the treatment of liquid radioactive, organic, and aqueous wastes containing hazardous materials and soils contaminated with heavy metals. The system consists of submerged incineration, metal ion fixing and stabilization, and soil washing treatments. Introduction of this system allows for the simultaneous processing of toxic waste and contaminated soils. Hazardous organic wastes can be decomposed into harmless gases, and aqueous wastes can be converted into a dischargeable effluent. The contaminated soil is backfilled after the removal of toxic materials. Experimental data show that the integration system is practical for complicated toxic wastes

  18. Process development for treatment of fluoride containing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahesh; Kanvinde, V Y [Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Many chemical and metallurgical industries generate liquid wastes containing high values of fluorides in association of nitrates and other metals. Due to harmful effects of fluorides these type of wastes can not be disposed off in the environment without proper treatment. Bench-scale laboratory experiments were conducted to develop a process scheme to fix the fluorides as non-leachable solid waste and fluoride free treated liquid waste for their disposal. To optimize the important parameters, simulated synthetic and actual wastes were used. For this study, three waste streams were collected from Nuclear Fuel Complex, Hyderabad. (author). 6 tabs., 1 fig.

  19. SPEEDUP simulation of liquid waste batch processing. Revision 1

    International Nuclear Information System (INIS)

    Shannahan, K.L.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    The Savannah River Site (SRS) has accumulated radioactive hazardous waste for over 40 years during the time SRS made nuclear materials for the United States Department of Energy (DOE) and its predecessors. This waste is being stored as caustic slurry in a large number of 1 million gallon steel tanks, some of which were initially constructed in the early 1950's. SRS and DOE intend to clean up the Site and convert this waste into stable forms which then can be safely stored. The liquid waste will be separated into a partially decontaminated low-level and radioactive high-level waste in one feed preparation operation, In-Tank Precipitation. The low-level waste will be used to make a concrete product called saltstone in the Saltstone Facility, a part of the Defense Waste Processing Facility (DWPF). The concrete will be poured into large vaults, where it will be permanently stored. The high-level waste will be added to glass-formers and waste slurry solids from another feed preparation operation, Extended Sludge Processing. The mixture will then be converted to a stable borosilicate glass by a vitrification process that is the other major part of the DWPF. This glass will be poured into stainless steel canisters and sent to a temporary storage facility prior to delivery to a permanent underground storage site

  20. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-03-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the US Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt

  1. In situ vitrification of buried waste: Containment issues and suppression systems

    International Nuclear Information System (INIS)

    Luey, J.; Powell, T.D.

    1992-01-01

    Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) are developing a remedial action technology for buried waste through the adaptation of the in situ vitrification (ISV) process. The ISV process is a thermal treatment process originally developed for the U.S. Department of Energy (DOE) to stabilize soils contaminated with transuranic waste. ISV tests with buried waste forms have demonstrated that the processing of buried waste is more dynamic than the processing of soils. This paper will focus on the issue of containment of the gases released during the processing of buried waste and on engineered suppression systems to alleviate transient events associated with dynamic off-gassing from the ISV melt. (author)

  2. French processes for waste embedding. The use of epoxy resin for waste containment

    International Nuclear Information System (INIS)

    Augustin, X.; Gauthey, J.C.

    1993-01-01

    The low- and medium-level wastes generated by nuclear facilities when operating as well as during their decommissioning (dismantling, decontamination, etc.) are embedded for the purpose of obtaining a product suitable for disposal. Due to the varieties of waste produced, it was necessary to resort to multi-purpose techniques to solve problems relating to their embedding. The process for waste embedding in thermosetting polymer (polyester, epoxy) developed by the French Atomic Energy Commission (CEA) and its subsidiary TECHNICATOME is easy to operate and yields excellent results having regard to volume reduction and containment of radioisotopes (particularly caesium). The industrial development of this process has led to the design of small, flexible, fixed or mobile, embedding stations. Examples illustrating the increasing use of this process during facility dismantling are described

  3. Processing of basalt fiber production waste

    Science.gov (United States)

    Sevostyanov, V. S.; Shatalov, A. V.; Shatalov, V. A.; Golubeva, U. V.

    2018-03-01

    The production of mineral rock wool forms a large proportion of off-test waste products. In addition to the cost of their production, there are costs for processing and utilization, such as transportation, disposal and preservation. Besides, wastes have harmful effect on the environment. This necessitates research aimed to study the stress-related characteristics of materials, their recyclability and use in the production of heat-saving products.

  4. Process Technical Basis Documentation Diagram for a solid-waste processing facility

    International Nuclear Information System (INIS)

    Benar, C.J.; Petersen, C.A.

    1994-02-01

    The Process Technical Basis Documentation Diagram is for a solid-waste processing facility that could be designed to treat, package, and certify contact-handled mixed low-level waste for permanent disposal. The treatment processes include stabilization using cementitious materials and immobilization using a polymer material. The Diagram identifies several engineering/demonstration activities that would confirm the process selection and process design. An independent peer review was conducted at the request of Westinghouse Hanford Company to determine the technical adequacy of the technical approach for waste form development. The peer review panel provided comments and identified documents that it felt were needed in the Diagram as precedence for Title I design. The Diagram is a visual tool to identify traceable documentation of key activities, including those documents suggested by the peer review, and to show how they relate to each other. The Diagram is divided into three sections: (1) the Facility section, which contains documents pertaining to the facility design, (2) the Process Demonstration section, which contains documents pertaining to the process engineering/demonstration work, and 3) the Regulatory section, which contains documents describing the compliance strategy for each acceptance requirement for each feed type, and how this strategy will be implemented

  5. Increasing operational efficiency in a radioactive waste processing plant - 16100

    International Nuclear Information System (INIS)

    Turner, T.W.; Watson, S.N.

    2009-01-01

    The solid waste plant at Harwell in Oxfordshire, contains a purpose built facility to input, assay, visually inspect and sort remote handled intermediate level radioactive waste (RHILW). The facility includes a suite of remote handling cells, known as the head-end cells (HEC), which waste must pass through in order to be repackaged. Some newly created waste from decommissioning works on site passes through the cells, but the vast majority of waste for processing is historical waste, stored in below ground tube stores. Existing containers are not suitable for long term storage, many are already badly corroded, so the waste must be efficiently processed and repackaged in order to achieve passive safety. The Harwell site is currently being decommissioned and the land is being restored. The site is being progressively de-licensed, and redeveloped as a business park, which can only be completed when all the nuclear liabilities have been removed. The recovery and processing of old waste in the solid waste plant is a key project linked to de-licensing of a section of the site. Increasing the operational efficiency of the waste processing plant could shorten the time needed to clear the site and has the potential to save money for the Nuclear Decommissioning Authority (NDA). The waste processing facility was constructed in the mid 1990's, and commissioned in 1999. Since operations began, the yearly throughput of the cells has increased significantly every year. To achieve targets set out in the lifetime plan (LTP) for the site, throughput must continue to increase. The operations department has measured the overall equipment effectiveness (OEE) of the process for the last few years, and has used continuous improvement techniques to decrease the average cycle time. Philosophies from operational management practices such as 'lean' and 'kaizen' have been employed successfully to drive out losses and increase plant efficiency. This paper will describe how the solid waste plant

  6. Evaluating the potential of process sites for waste heat recovery

    International Nuclear Information System (INIS)

    Oluleye, Gbemi; Jobson, Megan; Smith, Robin; Perry, Simon J.

    2016-01-01

    Highlights: • Analysis considers the temperature and duties of the available waste heat. • Models for organic Rankine cycles, absorption heat pumps and chillers proposed. • Exploitation of waste heat from site processes and utility systems. • Concept of a site energy efficiency introduced. • Case study presented to illustrate application of the proposed methodology. - Abstract: As a result of depleting reserves of fossil fuels, conventional energy sources are becoming less available. In spite of this, energy is still being wasted, especially in the form of heat. The energy efficiency of process sites (defined as useful energy output per unit of energy input) may be increased through waste heat utilisation, thereby resulting in primary energy savings. In this work, waste heat is defined and a methodology developed to identify the potential for waste heat recovery in process sites; considering the temperature and quantity of waste heat sources from the site processes and the site utility system (including fired heaters and, the cogeneration, cooling and refrigeration systems). The concept of the energy efficiency of a site is introduced – the fraction of the energy inputs that is converted into useful energy (heat or power or cooling) to support the methodology. Furthermore, simplified mathematical models of waste heat recovery technologies using heat as primary energy source, including organic Rankine cycles (using both pure and mixed organics as working fluids), absorption chillers and absorption heat pumps are developed to support the methodology. These models are applied to assess the potential for recovery of useful energy from waste heat. The methodology is illustrated for an existing process site using a case study of a petroleum refinery. The energy efficiency of the site increases by 10% as a result of waste heat recovery. If there is an infinite demand for recovered energy (i.e. all the recoverable waste heat sources are exploited), the site

  7. Effect of Concrete Waste Form Properties on Radionuclide Migration

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Skinner, De'Chauna J.; Cordova, Elsa A.; Wood, Marcus I.

    2009-01-01

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation) the mechanism of contaminant release, the significance of contaminant release pathways, how waste form performance is affected by the full range of environmental conditions within the disposal facility, the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility, the effect of waste form aging on chemical, physical, and radiological properties and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. Numerous sets of tests were initiated in fiscal years (FY) 2006-2009 to evaluate (1) diffusion of iodine (I) and technetium (Tc) from concrete into uncontaminated soil after 1 and 2 years, (2) I and rhenium (Re) diffusion from contaminated soil into fractured concrete, (3) I and Re (set 1) and Tc (set 2) diffusion from fractured concrete into uncontaminated soil, (4) evaluate the moisture distribution profile within the sediment half-cell, (5) the reactivity and speciation of uranium (VI) (U(VI)) compounds in concrete porewaters, (6) the rate of dissolution of concrete monoliths, and (7) the diffusion of simulated tank waste into concrete.

  8. Waste immobilization process development at the Savannah River Plant

    International Nuclear Information System (INIS)

    Charlesworth, D.L.

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed

  9. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  10. Waste Processing Cost Recovery at Los Alamos National Laboratory-Analysis and Recommendations

    International Nuclear Information System (INIS)

    Booth, St. R.

    2009-01-01

    Los Alamos National Laboratory is implementing full cost recovery for waste processing in fiscal year 2009 (FY2009), after a transition year in FY2008. Waste processing cost recovery has been implemented in various forms across the nuclear weapons complex and in corporate America. The fundamental reasoning of sending accurate price signals to waste generators is economically sound, and leads to waste minimization and reduced waste expense over time. However, Los Alamos faces significant implementation challenges because of its status as a government-owned, contractor-operated national scientific institution with a diverse suite of experimental and environmental cleanup activities, and the fact that this represents a fundamental change in how waste processing is viewed by the institution. This paper describes the issues involved during the transition to cost recovery and the ultimate selection of the business model. Of the six alternative cost recovery models evaluated, the business model chosen to be implemented in FY2009 is Recharge Plus Generators Pay Distributed Direct. Under this model, all generators who produce waste must pay a distributed direct share associated with their specific waste type to use a waste processing capability. This cost share is calculated using the distributed direct method on the fixed cost only, i.e., the fixed cost share is based on each program's forecast proportion of the total Los Alamos volume forecast of each waste type. (Fixed activities are those required to establish the waste processing capability, i.e., to make the process ready, permitted, certified, and prepared to handle the first unit of waste. Therefore, the fixed cost ends at the point just before waste begins to be processed. The activities to actually process the waste are considered variable.) The volume of waste actually sent for processing is charged a unit cost based solely on the variable cost of disposing of that waste. The total cost recovered each year is the

  11. Molten metal technologies advance waste processing systems for liquid radioactive waste treatment for PWRs and BWRs

    International Nuclear Information System (INIS)

    Strand, Gary; Vance, Jene N.

    1997-01-01

    Molten Metal Technologies (MMT) has recently acquired a proprietary filtration process for specific use in radioactive liquid waste processing systems. The filtration system has been incorporated in to a PWR liquid radwaste system which is currently being designed for the ComEd Byron Nuclear Station. It has also been adopted as the prefiltration step up from of the two RO systems which were part of the VECTRA acquisition and which are currently installed in the ComEd Dresden and Lacily Nuclear Stations. The filtration process has been successfully pilot-tested at both Byron and Dresden and is currently being tested at LaSalle. The important features of the filtration process are the high removal efficiencies for particulates, including colloidal particles, and the low solid waste volume generation per gallon filtered which translates into very small annual solid waste volumes. This filtration process system has been coupled with the use of selective ion exchange media in the PWR processing system to reduce the solid waste volumes generated compared to the current processing methods and to reduce the curie quantities discharged to the environs. In the BWR processing system, this filtration method allows the coupling of an RO system to provide for recycling greater than 95% of the liquid radwaste back to the plant for reuse while significantly reducing the solid waste volumes and operating costs. This paper discusses the process system configurations for the MMT Advanced Waste Processing Systems for both PWRs and BWRs. In addition, the pilot test data and full-scale performance projections for the filtration system are discussed which demonstrate the important features of the filtration process

  12. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  13. Management of radioactive liquid waste at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Bendixsen, C.L.

    1992-01-01

    Highly radioactive liquid wastes (HLLW) are routinely produced during spent nuclear fuel processing at the Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL). This paper discusses the processes and safe practices for management of the radioactive process waste streams, which processes include collection, concentration, interim storage, calcination to granular solids, and long-term intermediate storage. Over four million gallons of HLLW have been converted to a recoverable granular solid form through waste liquid injection into a high-temperature, fluidized bed wherein the wastes are converted to their respective solid oxides. The development of a glass ceramic solid for the long-term permanent disposal of the high level waste (HLW) solids is also described

  14. Technical-and-economic analysis and optimization of the full flow charts of processing of radioactive wastes on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of fast reactors

    Science.gov (United States)

    Gupalo, V. S.; Chistyakov, V. N.; Kormilitsyn, M. V.; Kormilitsyna, L. A.; Osipenko, A. G.

    2015-12-01

    When considering the full flow charts of processing of radioactive wastes (RAW) on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of NIIAR fast reactors, we corroborate optimum technical solutions for the preparation of RAW for burial from a standpoint of heat release, dose formation, and technological storage time with allowance for technical-and-economic and ecological indices during the implementation of the analyzed technologies and equipment for processing of all RAW fluxes.

  15. Device for processing regenerative wastes of ion exchange resin

    International Nuclear Information System (INIS)

    Kuroda, Osamu; Ebara, Katsuya; Shindo, Toshikazu; Takahashi, Sankichi

    1986-01-01

    Purpose: To facilitate the operation and maintenance of a processing device by dividing radioactive wastes produced in the regenerative process of ion exchange resin into a regenerated usable recovery liquid and wastes. Constitution: Sulfuric acid is recovered by a diffusion dialysis method from wastes containing sulfuric acid that are generated in the regenerative process of cation-exchange resin and also caustic soda is recovered by the diffusion dialysis method from wastes containing caustic soda that are generated in the regenerative process of anion-exchange resin. The sulfuric acid and caustic soda thus recovered are used for the regeneration of ion-exchange resin. A concentrator is provided for concentrating the sulfuric acid and caustic soda water solution to concentration suitable for the regeneration of these ion-exchange resins. Also provided is a recovery device for recovering water generated from the concentrator. This device is of so simple a constitution that its operation and maintenance can be performed very easily, thereby greatly reducing the quantity of waste liquid required to be stored in drums. (Takahashi, M.)

  16. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    International Nuclear Information System (INIS)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon

    2016-01-01

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  17. Probabilistic Safety Assessment of Waste from PyroGreen Processes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hee Jae; Ham, In hye; Hwang, Il Soon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The main object of PyroGreen processes is decontaminating SNFs into intermediate level waste meeting U.S. WIPP contact-handled (CH) waste characteristics to achieve long-term radiological safety of waste disposal. In this paper, radiological impact of PyroGreen waste disposal is probabilistically assessed using domestic input parameters for safety assessment of disposal. PyroGreen processes is decontamination technology using pyro-chemical process developed by Seoul National University in collaboration with KAERI, Chungnam University, Korea Hydro-Nuclear Power and Yonsei University. Advanced Korean Reference Disposal System (A-KRS) design for vitrified waste is applied to develop safety assessment model using GoldSim software. The simulation result shows that PyroGreen vitrified waste is expected to satisfy the regulatory dose limit criteria, 0.1 mSv/yr. With small probability, however, radiological impact to public can be higher than the expected value after 2E5-year. Although the result implies 100 times safety margin even in that case, further study will be needed to assess the sensitivity of other input parameters which can affect the radiological impact for long-term.

  18. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  19. Radioecology of and radiation dose from Dutch waste gypsum released into the environment

    International Nuclear Information System (INIS)

    Koster, H.W.; Weers, A.W. van; Netherlands Energy Research Foundation, Petten)

    1985-11-01

    The Dutch industries release 9 kinds of waste gypsum, 90% of the total quantity is phosphogypsum. Only waste gypsums from the phosphate industries show increased radioactivity, the strongest in phosphogypsum. All phosphogypsum, 2 Tg.a -1 , is disposed of into the Rhine at Rotterdam. This leads to an increase of radionuclides, from the U-238 chain, along the Dutch coast. The calculated increase of activity concentrations in sea food causes an increase of the individual radiation dose of maximal 150 μSv.a -1 and of the Dutch population dose of 170 manSv.a -1 . Stacking of the phosphogypsum would result in a dose increase of one order of magnitude lower. The need for environmental disposal or stacking of at least the fine and coarse fractions of the phosphogypsum, which are difficult to recycle, will remain. (Auth.)

  20. A Short History of Hanford Waste Generation, Storage, and Release

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  1. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  2. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    International Nuclear Information System (INIS)

    Broderick, T. E.; Grondin, R.

    2003-01-01

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN

  3. Experimentation of nuclear weapons, releases and storages of radioactive wastes in the Kara sea and in New Zemble

    International Nuclear Information System (INIS)

    Charmasson, S.

    1996-01-01

    132 nuclear weapons were tested from 1955 to 1990 in New Zemble. From 1959 to 1993, low level liquid radioactive wastes, low and medium level solid radioactive wastes, reactor core and fuel of submarine and nuclear propelled ships were released in the Kara and the Barentz seas. For these two seas, a recapitulation of the different radioactive sources and the found level of radioactivity of the marine environment are presented. (A.B.). 22 refs. 4 figs., 6 tabs

  4. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  5. Chemical precipitation processes for the treatment of aqueous radioactive waste

    International Nuclear Information System (INIS)

    1992-01-01

    Chemical precipitation by coagulation-flocculation and sedimentation has been commonly used for many years to treat liquid (aqueous) radioactive waste. This method allows the volume of waste to be substantially reduced for further treatment or conditioning and the bulk of the waste to de discharged. Chemical precipitation is usually applied in combination with other methods as part of a comprehensive waste management scheme. As with any other technology, chemical precipitation is constantly being improved to reduce cost to increase the effectiveness and safety on the entire waste management system. The purpose of this report is to review and update the information provided in Technical Reports Series No. 89, Chemical Treatment of Radioactive Wastes, published in 1968. In this report the chemical methods currently in use for the treatment of low and intermediate level aqueous radioactive wastes are described and illustrated. Comparisons are given of the advantages and limitations of the processes, and it is noted that good decontamination and volume reduction are not the only criteria according to which a particular process should be selected. Emphasis has been placed on the need to carefully characterize each waste stream, to examine fully the effect of segregation and the importance of looking at the entire operation and not just the treatment process when planning a liquid waste treatment facility. This general approach includes local requirements and possibilities, discharge authorization, management of the concentrates, ICRP recommendations and economics. It appears that chemical precipitation process and solid-liquid separation techniques will continue to be widely used in liquid radioactive waste treatment. Current research and development is showing that combining different processes in one treatment plant can provide higher decontamination factors and smaller secondary waste arisings. Some of these processes are already being incorporated into new and

  6. New process of co-coking of waste plastics and blend coal

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.; Yu, G.; Zhao, P. (and others) [Shougang Technical Research Institute, Beijing (China)

    2006-07-01

    To recycle and reuse waste plastics, as well as to get a new resource of coking, co-coking process of waste plastics and blend coal has been developed by Nippon Steel. However, the ratio of waste plastics in blend coal should be limited in the range of 1% to maintain the coke strength. This paper suggested a new process of co-coking of waste plastics and blend coal. The new process can add the waste plastics ratio up to 2-4%; when the waste plastics ratio is 2%, the coke strength after reaction with CO{sub 2} (CSR) increased 8%. 8 refs., 2 figs., 3 tabs.

  7. Logistic paradigm for industrial solid waste treatment processes

    OpenAIRE

    Janusz Grabara; Ioan Constantin Dima

    2014-01-01

    Due to the fact that industrial waste are a growing problem, both economic and environmental as their number is increasing every year, it is important to take measures to correctly dealing wi th industrial waste. This article presents the descriptive model of logistics processes concerning the management of industrial waste. In this model the flow of waste begins in the place of production and ends at their disposal. The article presents the concept of logistics model in graphical form...

  8. Solid municipal waste processing plants: Cost benefit analysis

    International Nuclear Information System (INIS)

    Gerardi, V.

    1992-01-01

    This paper performs cost benefit analyses on three solid municipal waste processing alternatives with plants of diverse daily outputs. The different processing schemes include: selected wastes incineration with the production of refuse derived fuels; selected wastes incineration with the production of refuse derived fuels and compost; pyrolysis with energy recovery in the form of electric power. The plant daily outputs range from 100 to 300 tonnes for the refuse derived fuel alternatives, and from 200 to 800 tonnes for the pyrolysis/power generation scheme. The cost analyses consider investment periods of fifteen years in duration and interest rates of 5%

  9. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  10. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  11. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    International Nuclear Information System (INIS)

    Ebert, W. L.; Snyder, C. T.; Frank, Steven; Riley, Brian

    2016-01-01

    This report describes the scientific basis underlying the approach being followed to design and develop ''advanced'' glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na_2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl- in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease the waste

  12. Designing Advanced Ceramic Waste Forms for Electrochemical Processing Salt Waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, W. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Snyder, C. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Brian [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-01

    This report describes the scientific basis underlying the approach being followed to design and develop “advanced” glass-bonded sodalite ceramic waste form (ACWF) materials that can (1) accommodate higher salt waste loadings than the waste form developed in the 1990s for EBR-II waste salt and (2) provide greater flexibility for immobilizing extreme waste salt compositions. This is accomplished by using a binder glass having a much higher Na2O content than glass compositions used previously to provide enough Na+ to react with all of the Cl– in the waste salt and generate the maximum amount of sodalite. The phase compositions and degradation behaviors of prototype ACWF products that were made using five new binder glass formulations and with 11-14 mass% representative LiCl/KCl-based salt waste were evaluated and compared with results of similar tests run with CWF products made using the original binder glass with 8 mass% of the same salt to demonstrate the approach and select a composition for further studies. About twice the amount of sodalite was generated in all ACWF materials and the microstructures and degradation behaviors confirmed our understanding of the reactions occurring during waste form production and the efficacy of the approach. However, the porosities of the resulting ACWF materials were higher than is desired. These results indicate the capacity of these ACWF waste forms to accommodate LiCl/KCl-based salt wastes becomes limited by porosity due to the low glass-to-sodalite volume ratio. Three of the new binder glass compositions were acceptable and there is no benefit to further increasing the Na content as initially planned. Instead, further studies are needed to develop and evaluate alternative production methods to decrease the porosity, such as by increasing the amount of binder glass in the formulation or by processing waste forms in a hot isostatic press. Increasing the amount of binder glass to eliminate porosity will decrease

  13. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  14. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL

  15. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    International Nuclear Information System (INIS)

    Dippre, M. A.

    2003-01-01

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational

  16. Crystalline Ceramic Waste Forms: Comparison Of Reference Process For Ceramic Waste Form Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, K. S. [Savannah River National Laboratory; Marra, J. C. [Savannah River National Laboratory; Amoroso, J. [Savannah River National Laboratory; Tang, M. [Los Alamos National Laboratory

    2013-08-22

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be produced from a melting and crystallization process. The objective of this report is to explore the phase formation and microstructural differences between lab scale melt processing in varying gas environments with alternative densification processes such as Hot Pressing (HP) and Spark Plasma Sintering (SPS). The waste stream used as the basis for the development and testing is a simulant derived from a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. Melt processing as well as solid state sintering routes SPS and HP demonstrated the formation of the targeted phases; however differences in microstructure and elemental partitioning were observed. In SPS and HP samples, hollandite, pervoskite/pyrochlore, zirconolite, metallic alloy and TiO{sub 2} and Al{sub 2}O{sub 3} were observed distributed in a network of fine grains with small residual pores

  17. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    International Nuclear Information System (INIS)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-01-01

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment ''systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs

  18. Plutonium scrap waste processing based on aqueous nitrate and chloride media

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    A brief review of plutonium scrap aqueous waste processing technology at Rocky Flats is given. Nitric acid unit operations include dissolution and leaching, anion exchange purification and precipitation. Chloride waste processing consists of cation exchange and carbonate precipitation. Ferrite and carrier precipitation waste treatment processes are also described. 3 figs

  19. Waste Evaporator Accident Simulation Using RELAP5 Computer Code

    International Nuclear Information System (INIS)

    POLIZZI, L.M.

    2004-01-01

    An evaporator is used on liquid waste from processing facilities to reduce the volume of the waste through heating the waste and allowing some of the water to be separated from the waste through boiling. This separation process allows for more efficient processing and storage of liquid waste. Commonly, the liquid waste consists of an aqueous solution of chemicals that over time could induce corrosion, and in turn weaken the tubes in the steam tube bundle of the waste evaporator that are used to heat the waste. This chemically induced corrosion could escalate into a possible tube leakage and/or the severance of a tube(s) in the tube bundle. In this paper, analyses of a waste evaporator system for the processing of liquid waste containing corrosive chemicals are presented to assess the system response to this accident scenario. This accident scenario is evaluated since its consequences can propagate to a release of hazardous material to the outside environment. It is therefore important to ensure that the evaporator system component structural integrity is not compromised, i.e. the design pressure and temperature of the system is not exceeded during the accident transient. The computer code used for the accident simulation is RELAP5-MOD31. The accident scenario analyzed includes a double-ended guillotine break of a tube in the tube bundle of the evaporator. A mitigated scenario is presented to evaluate the excursion of the peak pressure and temperature in the various components of the evaporator system to assess whether the protective actions and controls available are adequate to ensure that the structural integrity of the evaporator system is maintained and that no atmospheric release occurs

  20. Understanding and Predicting the Process of Software Maintenance Releases

    Science.gov (United States)

    Basili, Victor; Briand, Lionel; Condon, Steven; Kim, Yong-Mi; Melo, Walcelio L.; Valett, Jon D.

    1996-01-01

    One of the major concerns of any maintenance organization is to understand and estimate the cost of maintenance releases of software systems. Planning the next release so as to maximize the increase in functionality and the improvement in quality are vital to successful maintenance management. The objective of this paper is to present the results of a case study in which an incremental approach was used to better understand the effort distribution of releases and build a predictive effort model for software maintenance releases. This study was conducted in the Flight Dynamics Division (FDD) of NASA Goddard Space Flight Center(GSFC). This paper presents three main results: 1) a predictive effort model developed for the FDD's software maintenance release process; 2) measurement-based lessons learned about the maintenance process in the FDD; and 3) a set of lessons learned about the establishment of a measurement-based software maintenance improvement program. In addition, this study provides insights and guidelines for obtaining similar results in other maintenance organizations.

  1. The Treatment of Low Level Radioactive Liquid Waste Containing Detergent by Biological Activated Sludge Process

    International Nuclear Information System (INIS)

    Zainus Salimin

    2002-01-01

    The treatment of low level radioactive liquid waste containing persil detergent from laundry operation of contaminated clothes by activated sludge process has been done, for alternative process replacing the existing treatment by evaporation. The detergent concentration in water solution from laundry operation is 14.96 g/l. After rinsing operation of clothes and mixing of laundry water solution with another liquid waste, the waste water solution contains about ≤ 1.496 g/l of detergent and 10 -3 Ci/m 3 of Cs-137 activity. The simulation waste having equivalent activity of Cs-137 10 -3 Ci/m 3 , detergent content (X) 1.496, 0.748, 0.374, 0.187, 0.1496 and 0.094 g/l on BOD value respectively 186, 115, 71, 48, 19, and 16 ppm was processed by activated sludge in reactor of 18.6 l capacity on ambient temperature. It is used Super Growth Bacteria (SGB) 102 and SGB 104, nitrogen and phosphor nutrition, and aeration. The result show that bacteria of SGB 102 and SGB 104 were able to degrade the persil detergent for attaining standard quality of water release category B in which BOD values 6 ppm. It was need 30 hours for X ≤ 0.187 g/l, 50 hours for 0.187 < X ≤ 0.374 g/l, 75 hours for 0.374 < X ≤ 0.748, and 100 hours for 0.748 < X ≤ 1.496 g/l. On the initial period the bacteria of SGB 104 interact most quickly to degrade the detergent comparing SGB 102. Biochemical oxidation process decontaminate the solution on the decontamination factor of 350, Cs-137 be concentrate in sludge by complexing with the bacteria wall until the activity of solution be become very low. (author)

  2. Quality assurance in processing radioactive waste for land disposal

    International Nuclear Information System (INIS)

    1984-01-01

    To provide the appropriate assurances as to the quality of processed radioactive waste it is necessary to consider the complete range of activities involved in the formation and operation of a radioactive waste processing facility. To this end, an outline has been given to the individual elements which should be addressed in quality assurance proposals to the authorising Departments. In general terms, the quality checks on product material should be aimed at demonstrating that the radioactive waste product is what was agreed at the time of process approval. In addition, at the discretion of the authorising Departments, the waste processor will be required to confirm that the product meets any specific acceptance criteria such as the capability to retain the immobilised radionuclides when in contact with water. (author)

  3. Life cycle environmental impacts of different construction wood waste and wood packaging waste processing methods

    OpenAIRE

    Manninen, Kaisa; Judl, Jáchym; Myllymaa, Tuuli

    2016-01-01

    This study compared the life cycle environmental impacts of different wood waste processing methods in three impact categories: climate impact, acidification impacts and eutrophication impacts. The wood waste recovery methods examined were the use of wood waste in terrace boards made out of wood composite which replace impregnated terrace boards, incineration of wood waste in a multi-fuel boiler instead of peat and the use of wood waste in the production of particleboard in either Finland or ...

  4. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  5. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.

    Science.gov (United States)

    Thakur, P; Lemons, B G; Ballard, S; Hardy, R

    2015-08-01

    The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the

  6. Scale up issues involved with the ceramic waste form: ceramic-container interactions and ceramic cracking quantification

    International Nuclear Information System (INIS)

    Bateman, K. J.; DiSanto, T.; Goff, K. M.; Johnson, S. G.; O'Holleran, T.; Riley, W. P. Jr.

    1999-01-01

    Argonne National Laboratory is developing a process for the conditioning of spent nuclear fuel to prepare the material for final disposal. Two waste streams will result from the treatment process, a stainless steel based form and a ceramic based form. The ceramic waste form will be enclosed in a stainless steel container. In order to assess the performance of the ceramic waste form in a repository two factors must be examined, the surface area increases caused by waste form cracking and any ceramic/canister interactions that may release toxic material. The results indicate that the surface area increases are less than the High Level Waste glass and any toxic releases are below regulatory limits

  7. PWR-GALE, Radioactive Gaseous Release and Liquid Release from PWR

    International Nuclear Information System (INIS)

    Chandrasekaran, T.; Lee, J.Y.; Willis, C.A.

    1988-01-01

    1 - Description of program or function: The PWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from pressurized water reactors (PWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment. 2 - Method of solution: GALE calculates expected releases based on 1) standardized coolant activities derived from ANS Standards 18.1 Working Group recommendations, 2) release and transport mechanisms that result in the appearance of radioactive material in liquid and gaseous waste streams, 3) plant-specific design features used to reduce the quantities of radioactive materials ultimately released to the environs, and 4) information received on the operation of nuclear power plants. 3 - Restrictions on the complexity of the problem: The liquid release portion of GALE uses subroutines taken from the ORIGEN (CCC-217) to calculate radionuclide buildup and decay during collection, processing, and storage of liquid radwaste. Memory requirements for this part of the program are determined by the large nuclear data base accessed by these subroutines

  8. Characterisation of bitumenised waste in SFR 1

    International Nuclear Information System (INIS)

    Pettersson, Michael; Elert, M.

    2001-06-01

    The waste deposited in the Final Repository for Radioactive Operational Waste, SFR, consists in part of waste solidified in bitumen. Bitumen is considered to have favourable chemical and physical properties to act as a fixation material for radioactive waste. However, during interim storage and subsequent disposal bitumen's properties may change. This may influence the stability of the bitumen matrix to retain radionuclides. This report discusses different processes affecting the long-term performance of bitumenised waste, and an evaluation of these properties in waste deposited in SFR 1 is made. The possible effect of a bitumen barrier on the release rate of radionuclides from SFR 1 is assessed. Based on leaching experiments reviewed in this study, it could take some thousand years, possibly more, to release all radionuclides in a 200-litre drum. The results are, however, extrapolated from experiments performed during a short period of time. Long- term deteriorating effects and the effect of a low temperature on the bitumen matrix are not very well documented. The literature focuses principally on bitumenised evaporator concentrate, but the bitumenised waste deposited in SFR 1 consists mainly of ion exchange resins. There are indications that the non-radioactive waste products usually investigated overestimate bitumen's ability to retain waste. Radiolytic effects has been estimated in this work to be negligible for waste categories F.17, F.20 and B.20 deposited in SFR 1, but for categories B.05, B.06 and F.18 the possibility of increased water uptake rate due to radiolysis can not be excluded. A more reasonable assumption is that bitumen will act as an effective barrier for radionuclide release during a time span from some hundreds to thousand of years. Generally, the majority of the inventory of radionuclides in SFR 1 is not solidified in bitumen. By taking the bitumen barrier into account in the modelling of release of radio- nuclides from SFR 1, the total

  9. Characterisation of bitumenised waste in SFR 1

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Michael; Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)

    2001-06-01

    The waste deposited in the Final Repository for Radioactive Operational Waste, SFR, consists in part of waste solidified in bitumen. Bitumen is considered to have favourable chemical and physical properties to act as a fixation material for radioactive waste. However, during interim storage and subsequent disposal bitumen's properties may change. This may influence the stability of the bitumen matrix to retain radionuclides. This report discusses different processes affecting the long-term performance of bitumenised waste, and an evaluation of these properties in waste deposited in SFR 1 is made. The possible effect of a bitumen barrier on the release rate of radionuclides from SFR 1 is assessed. Based on leaching experiments reviewed in this study, it could take some thousand years, possibly more, to release all radionuclides in a 200-litre drum. The results are, however, extrapolated from experiments performed during a short period of time. Long- term deteriorating effects and the effect of a low temperature on the bitumen matrix are not very well documented. The literature focuses principally on bitumenised evaporator concentrate, but the bitumenised waste deposited in SFR 1 consists mainly of ion exchange resins. There are indications that the non-radioactive waste products usually investigated overestimate bitumen's ability to retain waste. Radiolytic effects has been estimated in this work to be negligible for waste categories F.17, F.20 and B.20 deposited in SFR 1, but for categories B.05, B.06 and F.18 the possibility of increased water uptake rate due to radiolysis can not be excluded. A more reasonable assumption is that bitumen will act as an effective barrier for radionuclide release during a time span from some hundreds to thousand of years. Generally, the majority of the inventory of radionuclides in SFR 1 is not solidified in bitumen. By taking the bitumen barrier into account in the modelling of release of radio- nuclides from SFR 1, the

  10. Inverse osmotic process for radioactive laundry waste

    Energy Technology Data Exchange (ETDEWEB)

    Ebara, K; Takahashi, S; Sugimoto, Y; Yusa, H; Hyakutake, H

    1977-01-07

    Purpose: To effectively recover the processing amount reduced in a continuous treatment. Method: Laundry waste containing radioactive substances discharged from a nuclear power plant is processed in an inverse osmotic process while adding starch digesting enzymes such as amylase and takadiastase, as well as soft spherical bodies such as sponge balls of a particle diameter capable of flowing in the flow of the liquid wastes along the inverse osmotic membrane pipe and having such a softness and roundness as not to damage the inverse osmotic membrane. This process can remove the floating materials such as thread dusts or hairs deposited on the membrane surface by the action of the soft elastic balls and remove paste or the like through decomposition by the digesting enzymes. Consequently, effective recovery can be attained for the reduced processing amount.

  11. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  12. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  13. Process simulation and uncertainty analysis of plasma arc mixed waste treatment

    International Nuclear Information System (INIS)

    Ferrada, J.J.; Welch, T.D.

    1994-01-01

    Innovative mixed waste treatment subsystems have been analyzed for performance, risk, and life-cycle cost as part of the U.S. Department of Energy's (DOE)'s Mixed Waste Integrated Program (MWIP) treatment alternatives development and evaluation process. This paper concerns the analysis of mixed waste treatment system performance. Performance systems analysis includes approximate material and energy balances and assessments of operability, effectiveness, and reliability. Preliminary material and energy balances of innovative processes have been analyzed using FLOW, an object-oriented, process simulator for waste management systems under development at Oak Ridge National Laboratory. The preliminary models developed for FLOW provide rough order-of-magnitude calculations useful for sensitivity analysis. The insight gained from early modeling of these technologies approximately will ease the transition to more sophisticated simulators as adequate performance and property data become available. Such models are being developed in ASPEN by DOE's Mixed Waste Treatment Project (MWTP) for baseline and alternative flow sheets based on commercial technologies. One alternative to the baseline developed by the MWIP support groups in plasma arc treatment. This process offers a noticeable reduction in the number of process operations as compared to the baseline process because a plasma arc melter is capable of accepting a wide variety of waste streams as direct inputs (without sorting or preprocessing). This innovative process for treating mixed waste replaces several units from the baseline process and, thus, promises an economic advantage. The performance in the plasma arc furnace will directly affect the quality of the waste form and the requirements of the off-gas treatment units. The ultimate objective of MWIP is to reduce the amount of final waste produced, the cost, and the environmental impact

  14. Release of polyaromatic hydrocarbons from coal tar contaminated soils

    International Nuclear Information System (INIS)

    Priddy, N.D.; Lee, L.S.

    1996-01-01

    A variety of process wastes generated from manufactured gas production (MGP) have contaminated soils and groundwater at production and disposal sites. Coal tar, consisting of a complex mixture of hydrocarbons present as a nonaqueous phase liquid, makes up a large portion of MGP wastes. Of the compounds in coal tar, polyaromatic hydrocarbons (PAHs) are the major constituents of environmental concern due to their potential mutagenic and carcinogenic hazards. Characterization of the release of PAHs from the waste-soil matrix is essential to quantifying long-term environmental impacts in soils and groundwater. Currently, conservative estimates for the release of PAHs to the groundwater are made assuming equilibrium conditions and using relationships derived from artificially contaminated soils. Preliminary work suggests that aged coal tar contaminated soils have much lower rates of desorption and a greater affinity for retaining organic contaminants. To obtain better estimates of desorption rates, the release of PAHs from a coal tar soil was investigated using a flow-interruption, miscible displacement technique. Methanol/water solutions were employed to enhance PAH concentrations above limits of detection. For each methanol/water solution employed, a series of flow interrupts of varying times was invoked. Release rates from each methanol/water solution were estimated from the increase in concentration with duration of flow interruption. Aqueous-phase release rates were then estimated by extrapolation using a log-linear cosolvency model

  15. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  16. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: cuttings, cavings and spallings

    International Nuclear Information System (INIS)

    Berglund, J.W.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; Smith, L.N.

    2000-01-01

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (i) mathematical description of models; (ii) uncertainty and sensitivity analysis results arising from subjective (i.e. epistemic) uncertainty for individual releases; (iii) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e. aleatory) uncertainty; and (iv) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  17. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: Cuttings, cavings and spallings

    International Nuclear Information System (INIS)

    Berglund, J.W.; Garner, J.W.; Helton, Jon Craig; Johnson, J.D.; Smith, L.N.; Anderson, R.P.

    2000-01-01

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models. (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194)

  18. Radioactive wastes processing device

    International Nuclear Information System (INIS)

    Takamura, Yoshiyuki; Fukujoji, Seiya.

    1986-01-01

    Purpose: To exactly recognize the deposition state of mists into conduits thereby effectively conduct cleaning. Constitution: A drier for performing drying treatment of liquid wastes, a steam decontaminating tower for decontaminating the steams generated from the drier and a condenser for condensating the decontaminating steams are connected with each other by means of conduits to constitute a radioactive wastes processing apparatus. A plurality of pressure detectors are disposed to the conduits, the pressure loss within the conduits is determined based on the detector output and the clogged state in the conduits due to the deposition of mists is detected by the magnitude of the pressure loss. If the clogging exceeds a certain level, cleaning water is supplied to clean-up the conduits thereby keep the operation to continue always under sound conditions. (Sekiya, K.)

  19. Redox processes in the safety case of deep geological repositories of radioactive wastes. Contribution of the European RECOSY Collaborative Project

    International Nuclear Information System (INIS)

    Duro, L.; Bruno, J.; Grivé, M.; Montoya, V.; Kienzler, B.; Altmaier, M.; Buckau, G.

    2014-01-01

    Highlights: • The RECOSY project produced results relevant for the Safety Case of nuclear disposal. • We classify the safety related features where RECOSY has contributed. • Redox processes effect the retention of radionuclides in all repository subsystems. - Abstract: Redox processes influence key geochemical characteristics controlling radionuclide behaviour in the near and far field of a nuclear waste repository. A sound understanding of redox related processes is therefore of high importance for developing a Safety Case, the collection of scientific, technical, administrative and managerial arguments and evidence in support of the safety of a disposal facility. This manuscript presents the contribution of the specific research on redox processes achieved within the EURATOM Collaborative Project RECOSY (REdox phenomena COntrolling SYstems) to the Safety Case of nuclear waste disposal facilities. Main objectives of RECOSY were related to the improved understanding of redox phenomena controlling the long-term release or retention of radionuclides in nuclear waste disposal and providing tools to apply the results to Performance Assessment and the Safety Case. The research developed during the project covered aspects of the near-field and the far-field aspects of the repository, including studies relevant for the rock formations considered in Europe as suitable for hosting an underground repository for radioactive wastes. It is the intention of this paper to highlight in which way the results obtained from RECOSY can feed the scientific process understanding needed for the stepwise development of the Safety Case associated with deep geological disposal of radioactive wastes

  20. Processing the THOREX waste at the West Valley demonstration project

    International Nuclear Information System (INIS)

    Barnes, S.M.; Schiffhauer, M.A.

    1994-01-01

    This paper focuses on several options for neutralizing the THOREX and combining it with the PUREX wastes. Neutralization testing with simulated wastes (nonradioactive chemicals) was performed to evaluate the neutralization reactions and the reaction product generation. Various methods for neutralizing the THOREX solution were examined to determine their advantages and disadvantages relative to the overall project objectives and compatibility with the existing process. The primary neutralization process selection criteria were safety and minimizing the potential delays prior to vitrification. The THOREX neutralization method selected was direct addition to the high pH PUREX wastes within Tank 8D-2. Laboratory testing with simulated waste has demonstrated rapid neutralization of the THOREX waste acid. Test results for various direct addition scenarios has established the optimum process operating conditions which provide the largest safety margins

  1. Method of processing liquid wastes

    International Nuclear Information System (INIS)

    Naba, Katsumi; Oohashi, Takeshi; Kawakatsu, Ryu; Kuribayashi, Kotaro.

    1980-01-01

    Purpose: To process radioactive liquid wastes with safety by distillating radioactive liquid wastes while passing gases, properly treating the distillation fractions, adding combustible and liquid synthetic resin material to the distillation residues, polymerizing to solidify and then burning them. Method: Radioactive substance - containing liquid wastes are distillated while passing gases and the distillation fractions containing no substantial radioactive substances are treated in an adequate method. Synthetic resin material, which may be a mixture of polymer and monomer, is added together with a catalyst to the distillation residues containing almost of the radioactive substances to polymerize and solidify. Water or solvent in such an extent as not hindering the solidification may be allowed if remained. The solidification products are burnt for facilitating the treatment of the radioactive substances. The resin material can be selected suitably, methacrylate syrup (mainly solution of polymethylmethacrylate and methylmethacrylate) being preferred. (Seki, T.)

  2. Nuclear and toxic waste recycling process

    International Nuclear Information System (INIS)

    Bottillo, T.V.

    1988-01-01

    This patent describes the process for the safe and convenient disposal of nuclear and/or toxic wastes which comprises the steps of (a) collecting nuclear and/or toxic wastes which pose a danger to health; (b) packaging the wastes within containers for the safe containment thereof to provide filled containers having a weight sufficient to sink into the molten lava present within an active volcano; and (c) depositing the filled containers directly into the molten lava present within a volcano containing same to cause the containers to sink therein end to be dissolved or consumed by the heat, whereby the contents thereof are consumed to become a part of the mass of molten lava present within the volcano

  3. Feed Basis for Processing Relatively Low Radioactivity Waste Tanks

    International Nuclear Information System (INIS)

    Pike, J.A.

    2002-01-01

    This paper presents the characterization of potential feed for processing relatively low radioactive waste tanks. The feed characterization is based on waste characterization data extracted from the waste characterization system. This data is compared to salt cake sample results from Tanks 37, 38 and 41

  4. Process and apparatus for emissions reduction from waste incineration

    International Nuclear Information System (INIS)

    Khinkis, M.J.; Abbasi, H.A.; Lisauskas, R.A.; Itse, D.C.

    1991-01-01

    This paper describes a process for waste combustion. It comprises: introducing the waste into a drying zone within a combustion chamber; supplying air to the drying zone for preheating, drying, and partially combusting the waste; advancing the waste to a combustion zone within the combustion chamber; supplying air to the combustion zone for further advancing the waste to a burnout zone with the combustion chamber; supplying air to the burnout zone for final burnout of organics in the waste; and injecting fuel and recirculated glue gases into the combustion chamber above the waste to create a reducing secondary combustion zone

  5. Handling and processing of radioactive waste from nuclear applications

    International Nuclear Information System (INIS)

    2001-01-01

    The main objective of this report is to provide technical information and reference material on different steps and components of radioactive waste management for staff in establishments that use radionuclides and in research centres in Member States. It provides technical information on the safe handling, treatment, conditioning and storage of waste arising from the various activities associated with the production and application of radioisotopes in medical, industrial, educational and research facilities. The technical information cited in this report consists mainly of processes that are commercialised or readily available, and can easily be applied as they are or modified to solve specific waste management requirements. This report covers the sources and characteristics of waste and approaches to waste classification, and describes the particular processing steps from pretreatment until storage of conditioned packages

  6. Computer enhanced release scenario analysis for a nuclear waste repository

    International Nuclear Information System (INIS)

    Stottlemyre, J.A.; Petrie, G.M.; Mullen, M.F.

    1979-01-01

    An interactive (user-oriented) computer tool is being developed at PNL to assist in the analysis of release scenarios for long-term safety assessment of a continental geologic nuclear waste repository. Emphasis is on characterizing the various ways the geologic and hydrologic system surrounding a repository might vary over the 10 6 to 10 7 years subsequent to final closure of the cavern. The potential disruptive phenomena are categorized as natural geologic and man-caused and tend to be synergistic in nature. The computer tool is designed to permit simulation of the system response as a function of the ongoing disruptive phenomena and time. It is designed to be operated in a determinatic manner, i.e., user selection of the desired scenarios and associated rate, magnitude, and lag time data; or in a stochastic mode. The stochastic mode involves establishing distributions for individual phenomena occurrence probabilities, rates, magnitudes, and phase relationships. A Monte-Carlo technique is then employed to generate a multitude of disruptive event scenarios, scan for breaches of the repository isolation, and develop input to the release consequence analysis task. To date, only a simplified one-dimensional version of the code has been completed. Significant modification and development is required to expand its dimensionality and apply the tool to any specific site

  7. Processing biodegradable waste by applying aerobic digester EWA

    Directory of Open Access Journals (Sweden)

    Đokić Dragoslav

    2014-01-01

    Full Text Available The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of biodegradable waste, including sewage sludge and animal products produced in accordance with European Union regulations. Fermenter is intended to be used for combustion in boilers for solid fuels with humidity of biomaterials below 30%.

  8. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Wells, BE; Meyer, P.E.; Chen, G.

    2000-01-01

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000

  9. Principles of development of the industry of technogenic waste processing

    Directory of Open Access Journals (Sweden)

    Maria A. Bayeva

    2014-01-01

    Full Text Available Objective to identify and substantiate the principles of development of the industry of technogenic waste processing. Methods systemic analysis and synthesis method of analogy. Results basing on the analysis of the Russian and foreign experience in the field of waste management and environmental protection the basic principles of development activities on technogenic waste processing are formulated the principle of legal regulation the principle of efficiency technologies the principle of ecological safety the principle of economic support. The importance of each principle is substantiated by the description of the situation in this area identifying the main problems and ways of their solution. Scientific novelty the fundamental principles of development of the industry of the industrial wastes processing are revealed the measures of state support are proposed. Practical value the presented theoretical conclusions and proposals are aimed primarily on theoretical and methodological substantiation and practical solutions to modern problems in the sphere of development of the industry of technogenic waste processing.

  10. Storage process of large solid radioactive wastes

    International Nuclear Information System (INIS)

    Morin, Bruno; Thiery, Daniel.

    1976-01-01

    Process for the storage of large size solid radioactive waste, consisting of contaminated objects such as cartridge filters, metal swarf, tools, etc, whereby such waste is incorporated in a thermohardening resin at room temperature, after prior addition of at least one inert charge to the resin. Cross-linking of the resin is then brought about [fr

  11. Decontamination of alpha contaminated metallic waste by cerium IV redox process

    International Nuclear Information System (INIS)

    Shah, J.G.; Dhami, P.S.; Gandhi, P.M.; Wattal, P.K.

    2012-01-01

    Decontamination of alpha contaminated metallic waste is an important aspect in the management of waste generated during dismantling and decommissioning of nuclear facilities. Present work on cerium redox process targets decontamination of alpha contaminated metallic waste till it qualifies for the non alpha waste category for disposal in near surface disposal facility. Recovery of the alpha radio nuclides and cerium from aqueous secondary waste streams was also studied deploying solvent extraction process and established. The alpha-lean secondary waste stream has been immobilised in cement based matrix for final disposal. (author)

  12. High-Level Waste (HLW) Feed Process Control Strategy

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    2000-01-01

    The primary purpose of this document is to describe the overall process control strategy for monitoring and controlling the functions associated with the Phase 1B high-level waste feed delivery. This document provides the basis for process monitoring and control functions and requirements needed throughput the double-shell tank system during Phase 1 high-level waste feed delivery. This document is intended to be used by (1) the developers of the future Process Control Plan and (2) the developers of the monitoring and control system

  13. Energies and media nr 30. Conditions for the nuclear sector. The fuel cycle and wastes. The usefulness of fuel reprocessing. Wastes

    International Nuclear Information System (INIS)

    2009-10-01

    After some comments on recent events in the nuclear sector in different countries (energy policy and projects in the USA, Europe, China, India, Russia), this issue proposes some explanations on the nuclear fuel cycle and on nuclear wastes: involved processes and products from mining to reprocessing and recycling, usefulness of reprocessing (future opportunities of fast neutron reactors, present usefulness of reprocessing with the recycling of separated fissile materials), impact of reprocessing on the environment in La Hague (gas and liquid releases, release standard definition), and the destiny of wastes

  14. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  15. The magnitude and relevance of the February 2014 radiation release from the Waste Isolation Pilot Plant repository in New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, P. [Carlsbad Environmental Monitoring & Research Center, 1400 University Drive, Carlsbad, NM, 88220 (United States); Lemons, B.G.; White, C.R. [AECOM, Carlsbad Operations, Carlsbad, NM, 88220 (United States)

    2016-09-15

    After almost fifteen years of successful waste disposal operations, the first unambiguous airborne radiation release from the Waste Isolation Pilot Plant (WIPP) was detected beyond the site boundary on February 14, 2014. It was the first accident of its kind in the 15-year operating history of the WIPP. The accident released moderate levels of radioactivity into the underground air. A small but measurable amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. The dominant radionuclides released were americium and plutonium, in a ratio consistent with the known content of a breached drum. The radiation release was caused by a runaway chemical reaction inside a transuranic (TRU) waste drum which experienced a seal and lid failure, spewing radioactive materials into the repository. According to source-term estimation, approximately 2 to 10 Ci of radioactivity was released from the breached drum into the underground, and an undetermined fraction of that source term became airborne, setting off an alarm and triggering the closure of seals designed to force exhausting air through a system of filters including high-efficiency-particulate-air (HEPA) filters. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to determine the extent of impact to WIPP personnel, the public, and the environment, if any. This article attempts to compile and interpret analytical data collected by an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC) and by a compliance-monitoring program conducted by the WIPP's management and operating contractor, the Nuclear Waste Partnership (NWP), LLC., in response to the accident. Both the independent and the WIPP monitoring efforts concluded that the levels detected were very low and localized, and no radiation-related health effects among local workers or the public would be

  16. Development of very low-level radioactive waste sequestration process criteria

    Energy Technology Data Exchange (ETDEWEB)

    Chan, N.; Wong, P., E-mail: nicholas.chan@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2015-12-15

    Segregating radioactive waste at the source and reclassifying radioactive waste to lower waste classes are the key activities to reduce the environmental footprint and long-term liability. In the Canadian Standards Association's radioactive waste classification system, there are 2 sub-classes within low-level radioactive waste: very short-lived radioactive waste and very low-level radioactive waste (VLLW). VLLW has a low hazard potential but is above the Canadian unconditional clearance criteria as set out in Schedule 2 of Nuclear Substances and Devices Regulations. Long-term waste management facilities for VLLW do not require a high degree of containment and isolation. In general, a relatively low-cost near-surface facility with limited regulatory control is suitable for VLLW. At Canadian Nuclear Laboratories' Chalk River Laboratories site an initiative, VLLW Sequestration, was implemented in 2013 to set aside potential VLLW for temporary storage and to be later dispositioned in the planned VLLW facility. As of May 2015, a total of 236m{sup 3} resulting in approximately $1.1 million in total savings have been sequestered. One of the main hurdles in implementing VLLW Sequestration is the development of process criteria. Waste Acceptance Criteria (WAC) are used as a guide or as requirements for determining whether waste is accepted by the waste management facility. Establishment of the process criteria ensures that segregated waste materials have a high likelihood to meet the VLLW WAC and be accepted into the planned VLLW facility. This paper outlines the challenges and various factors which were considered in the development of interim process criteria. (author)

  17. Radioactive waste management

    International Nuclear Information System (INIS)

    Alfredson, P.G.; Levins, D.M.

    1975-08-01

    Present and future methods of managing radioactive wastes in the nuclear industry are reviewed. In the stages from uranium mining to fuel fabrication, the main purpose of waste management is to limit and control dispersal into the environment of uranium and its decay products, particularly radium and radon. Nuclear reactors produce large amounts of radioactivity but release rates from commercial power reactors have been low and well within legal limits. The principal waste from reprocessing is a high activity liquid containing essentially all the fission products along with the transuranium elements. Most high activity wastes are currently stored as liquids in tanks but there is agreement that future wastes must be converted into solids. Processes to solidify wastes have been demonstrated in pilot plant facilities in the United States and Europe. After solidification, wastes may be stored for some time in man-made structures at or near the Earth's surface. The best method for ultimate disposal appears to be placing solid wastes in a suitable geological formation on land. (author)

  18. Decolorization of Industrial Waste Using Fenton Process and Photo Fenton

    OpenAIRE

    Wardiyati, Siti; Dewi, Sari Hasnah; Fisli, Adel

    2013-01-01

    Industrial waste water decolorization has been done using the method of Fenton and Photo Fenton. The experiment was conducted in order to obtain the optimum process conditions for industrial waste treatment method with Fenton and Photo Fenton. Industrial waste used in this experiment waste of blue batik making process derived from Rara Djograng Batik Yogyakarta. Factors were studied in this research are the effect of the amount of catalyst FeSO4.7H2O, the amount of oxidant H2O2, and the time ...

  19. Audit Report on 'Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site'

    International Nuclear Information System (INIS)

    2010-01-01

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million

  20. Evaluation of process alternatives for solidification of the West Valley high-level liquid wastes

    International Nuclear Information System (INIS)

    Holton, L.K.; Larson, D.E.

    1982-01-01

    The Department of Energy (DOE) established the West Valley Solidification Project (WVSP) in 1980. The project purpose is to demonstrate removal and solidification of the high-level liquid wastes (HLLW) presently stored in tanks at the Western New York Nuclear Service Center (WNYNSC), West Valley, New York. As part of this effort, the Pacific Northwest Laboratory (PNL) conducted a study to evaluate process alternatives for solidifcation of the WNYNSC wastes. Two process approaches for waste handling before solidification, together with solidification processes for four terminal and four interim waste forms, were considered. The first waste-handling approach, designated the salt/sludge separation process, involves separating the bulk of the nonradioactive nuclear waste constituents from the radioactive waste constituents, and the second waste-handling approach, designated the combined-waste process, involves no waste segregation prior to solidification. The processes were evaluated on the bases of their (1) readiness for plant startup by 1987, (2) relative technical merits, and (3) process cost. The study has shown that, based on these criteria, the salt/sludge separation process with a borosilicate glass waste form is preferred when producing a terminal waste form. It was also concluded that if an interim waste form is to be used, the preferred approach would be the combined waste process with a fused-salt waste form